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Abstract

English

The study of light—matter interaction has drawn through the years more
and more interest. With the improvement of the techniques used for
building electromagnetic cavities, it is now possible to couple cavities
with nanocircuits merging the fields of quantum optics and nanoelectron-
ics. Not only that, but some experiments also reported the possibility to
use a scanning tunneling microscope as a plasmonic cavity coupled with
electronic transport.

In this thesis a theoretical framework is proposed, based on meso-
scopic quantum electrodynamics, for studying the coupling between elec-
tronic transport in a molecular junction and the electromagnetic field of a
cavity. This thesis focuses on the sequential tunneling regime for the elec-
trons and use density matrix approach. This allows to derive the master
equation as well as a computational scheme to compute electronic cur-
rent and the photon statistic when it is not possible to obtain analytical
results.

First, a single-level model for the molecule in the junction is stud-
ied. Indeed the electronic current induces a fluctuation of the charge
on the molecule that couples with the electromagnetic field in the cav-
ity. The investigations on this system are done in the experimentally
relevant limit of large damping rate x for the cavity mode and arbitrary
strong light-matter coupling strength. This model shows the equivalence
between the electron—photon coupling for a single level and the electron—
phonon coupling that has long been studied in nanoelectronics known as
the Franck-Condon principle. The current-voltage characteristics show
steps, each separated by the energy of a photon, as the electron tunneling
dissipate some energy in the cavity mode. In this work a formula has
been derived for the electronic current taking into account the damp-
ing of the cavity. This allows to show that the width of the current’s
steps are controlled by x rather than the temperature. The single-level
junction shows interesting light—emission regimes. At large bias voltage
this theory predicts strong photon bunching of the order x/I" where T
is the electronic tunneling rate. However, at the first inelastic threshold
the theory predicts current—driven non—classical light emission from the
single—level junction. Finally the investigation of the effect of a strong
external drive of the cavity on the electronic current shows a quantization
of the current that is linked to the Franck—Condon effect.

Finally the theory is applied to a double-level model for the molec-
ular junction inspired by quantum optics. In this scenario, the cavity
mode couples to the electronic transition between the two states of the
molecule. The effect of the charge fluctuations for each single electronic
level is neglected. Therefore the coupling is a dipolar coupling in this
case. The focus is mainly on the weak coupling regime. The electronic
current shows the Rabi splitting due to the hybridization of the cavity
mode and the molecule. Electronic tunneling can occur into these hy-
bridized states and is responsible for light emission in the cavity in a
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single tunneling process. Light antibunching is seen in the weak cou-
pling regime since our model predicts that only single photon emission
is possible during a tunneling event in this case. Though the intermedi-
ate coupling regime is only briefly treated, the strong coupling regime is
shown to be similar to two independent single level.

Keywords: quantum transport, nanophotonics, plasmonics

Spanish

El estudio de las interacciones entre luz y materia ha atraido un interés
creciente a lo largo de los afios. La mejora de las técnicas de fabricacion de
las cavidades electromagnéticas permite hoy conjugar las cavidades con
nanocircuitos, combinando asi los campos de la 6ptica cuantica y de la
nanoelectréonica. Se anade a eso la posibilidad de usar un microscopio con
efecto tunel a modo de cavidad plasmoénica combinada con el transporte
electréonico que fue demostrado en numerosas experiencias.

Esa tesis propone un cuadro teérico basado en la electrodindmica
mesoscopica, permitiendo el estudio de la combinacion del transporte
electronico dentro de una uniéon molecular con el campo electromagnético
de una cavidad. El foco se centra en el régimen tiunel secuencial de los
electrones, a cual esta apto el uso de la matriz densidad para los calculos.
Ese régimen permite establecer ecuaciones claves que rigen el desarrollo
temporal de la matriz densidad, tal como un esquema de calculo numérico
de la corriente electronica y de la estadistica de los fotones en la cavidad
cuando no es posible obtener un resultado analitico.

Primero se estudia un modelo de un solo nivel electrénico para la
molécula. En efecto, la existencia de una corriente electronica significa
que la carga en la molécula fluctia y esa fluctuacién se combina con el
campo electromagnético de la cavidad. El estudio de ese sistema se hace
en el limite, experimentalmente pertinente, del ratio alto de la amor-
tiguacién x del modo de la cavidad y del acoplo luz—materia arbitraria-
mente alto. Ese modelo demuestra la equivalencia del acoplo electron—
foton para un nivel electrénico y el acoplo electrén—fonén que se ha estu-
diado desde hace mucho tiempo en el campo de la nanoelectrénica bajo
el nombre del principio de Franck—Condon. La caracteristica corriente—
tension del circuito hace aparecer una evolucion de escalones, cada uno
separado por la energia de un foton. Eso corresponde a una disipacion
de energia por parte de los electrones al modo de la cavidad durante el
proceso de transporte. En ese trabajo se derivé una ecuacion para la
corriente electronica que toma en cuenta el efecto de la amortiguacién de
la cavidad. Esto demuestra que la anchura de los saltos en la corriente
esta controlada por K mas que por la temperatura. El modelo de un solo
nivel muestra también regimenes inesperados de emision de luz. En el
limite de voltaje alto entre los electrodos de la unién molecular, la teoria
predice una agrupacién («bunchingy) de los fotones emitidos dentro de
la cavidad. La correlacion entre dos fotones emitidos alcanza un valor
del orden de k/I" donde T es el ratio de tunelamiento de los electrones.
Sin embargo, en el primer umbral de transferencia inelastica esa teoria
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predice una emisién de luz no-clasica provocada por la corriente elec-
tronica. Por fin, el estudio del impacto de una fuerte excitacién externa
del modo de la cavidad muestra también una cuantizacion de la corriente
relacionada al efecto Franck—Condon.

Finalmente, la teoria desarrollada en esta tesis esta aplicada también
a una union molecular de dos niveles electronicos inspirada de la 6ptica
cuantica. FEn ese escenario el modo de la cavidad estd acoplado con la
transicion electronica entre dos orbitales moleculares. El efecto de fluc-
tuaciones de carga en cada orbital no se tiene en cuenta. Entonces en
ese marco el acoplo es solo dipolar. Se centra la atenciéon principalmente
en el régimen del acoplo débil. La corriente electrénica muestra la huella
de oscilaciones de Rabi como resultado de la hibridacién del modo de la
cavidad con la molécula. El transporte de electrones se puede ocurrir
mediante estos estados hibridos. Entonces el traslado de un tunico elec-
trén es responsable de la emision de un fotén en la cavidad. Se observa
el desagrupamiento («anti-bunching») de la luz emitida. Aunque el rég-
imen de acoplo intermedio es solamente tratado en breve, el régimen de
acoplo fuerte muestra que es muy similar a la combinacion de dos niveles
electronicos independientes acoplado al modo de la cavidad.

Palabras claves: transporte cuantico, nanofoténica, plasmonica

French

L’étude de l'interaction entre la lumiere et la matiere n’a cessé de sus-
citer un intérét croissant au fil des années. L’amélioration des techniques
de fabrication des cavités électromagnétiques permet aujourd’hui de cou-
pler ces cavités a des nanocircuits, se faisant, combinant les champs de
optique quantique et de la nanoélectronique. A cela s’ajoute enfin la
démonstration expérimentale de la possibilité d’utiliser un microscope a
effet tunnel comme cavité plasmonique couplée au transport électronique.

Cette these propose un cadre théorique basé sur ’électrodynamique
quantique en cavité, permettant 1’étude du couplage entre le transport
électronique dans une jonction moléculaire et le champ électromagné-
tique d’une cavité. L’attention est portée sur le régime de transfert tun-
nel séquentiel des électrons, auquel est adapté 'utilisation les calculs
basés sur 1'usage de la matrice densité. Ce régime permet d’établir les
equations maitresses régissant 1’évolution temporelle de la matrice den-
sité, ainsi qu'un schéma de calcul numérique du courant électronique et
des propriétés statistiques des photons dans la cavité quand il n’est pas
possible d’obtenir un résultat analytique.

Dans un premier temps, 'attention est portée sur un modele de jonc-
tion moléculaire a une orbitale. En effet, 'existence d’un courant élec-
tronique signifie que la charge de la molécule fluctue et cette fluctu-
ation se couple au champ électromagnétique de la cavité. L’étude de
ce premier systeme est faite dans le régime, expérimentalement per-
tinent, de fort taux d’amortissement x > kgT du mode de la cav-
ité et de couplage lumiere-matiere arbitrairement élevé. Ce modele
met en évidence 1’équivalence du couplage électron—photon et du cou-



plage électron—phonon pour un unique niveau électronique. Ce couplage
¢électron—phonon est étudié depuis longtemps en nanoélectronique sous
le nom de principe Franck-Condon. La caractéristique courant—tension
du circuit fait apparaitre une évolution par paliers ou seuils inelastiques,
chacun séparé par 1’énergie d’'un photon. Ce phénomene correspond a
une dissipation d’énergie, par émission de photons dans la cavité, médiée
par le courant électronique. Pour cette étude, une formule du courant
électronique prenant en compte l'effet de 'amortissement de la cavité
(facteur de qualité @ ~ 10) a été dérivée. Cela a permis de montrer
que la largeur des sauts du courant est contrélée par x plutot que la
température. Ce modele démontre la possibilité d’obtenir divers régimes
d’émission de lumiere par passage de courant au sein de la jonction. Pour
une importante différence de potentiel entre les électrodes de la jonction,
cette théorie prédit un important groupement («bunching») des pho-
tons émis dans la cavité. La fonction de corrélation de deux photons a
temps égaux ¢?(0) atteint alors une valeur de I'ordre de /T, ou T est
le taux de transfert tunnel des électrons. En revanche, au premier seuil
de transfert inélastique des électrons, cette théorie prédit une émission
de lumiere non—classique provoquée par le courant électronique molécu-
laire & un niveau (la jonction se comporte alors comme une source a un
photon). Enfin, nous avons montré qu’en présence d’une source de volt-
age dépendant du temps appliqué a la cavité, le courant dc présente des
paliers analogues a ceux obtenus dans le régime Franck-Condon.

La théorie développée dans cette these est ensuite appliquée a une
jonction moléculaire a deux niveaux électroniques. Dans ce scénario, le
mode de la cavité se couple a la transition électronique entre les deux
orbitales moléculaires. L’effet des fluctuations des charges de chaque or-
bitale est négligé. Dans ce cadre, nous avons étudié le cas d’un couplage
cavité-molécule de type dipolaire électrique. L’attention est portée prin-
cipalement sur le régime de couplage faible entre le dipole de la molécule
et le mode de la cavité. Le courant électronique montre I’empreinte des
oscillations de Rabi provenant de I’hybridation du mode de la cavité et
de la molécule. Le transfert d’électrons peut se produire au travers des
états hybridés. On observe alors que le transfert d’un unique électron
est responsable de ’émission d’'un photon dans la cavité. Les photons
émis dans la cavité sont ainsi dégroupés («anti-bunching»). Bien que le
régime de couplage modéré soit seulement brievement traité, le régime de
couplage fort, quant a lui, se montre tres similaire au couplage de deux
niveaux électroniques indépendants avec le mode de la cavité.

Mots-clefs: transport quantique, nano-photonique, plasmonique
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Chapter 1

Introduction

1.1 Light—matter interaction

We have known since the 19th century that electrons are sensitive to elec-
tromagnetic fields. It is the Lorentz force that is responsible for electronic
motion. It was also demonstrated that light is electromagnetic waves and
therefore electrons and light were shown to interact in the photovoltaic
effect discovered by E. Becquerel in 1839 [1]. Another example of light-
matter interaction was shown by R. Hertz in 1887 in the photoelectric
effect, where he showed that electrons can be extracted from a metal
under light irradiation. Since then more examples of light-matter inter-
actions have been demonstrated in chemistry with photocatalysis [2], in
biological phenomena such as photosynthesis [3] or retinal photorecep-
tion [4].

Light-matter interactions have found some technological uses with
the design of solar cells using the photovoltaic effect [5] or lasers for
example [6]. Physicists have put a lot of efforts in understanding light-
matter interactions from a fundamental point of view as well as the use
that can be made of it in engineering. In fact the photoelectric effect de-
scribed by R. Hertz found a theoretical explanation in 1905 in the famous
work of A. Einstein [7]. This is a corner stone in the understanding of the
nature of light since A. Einstein made use of the principle of quantifica-
tion previously used by M. Planck to explain the black-body spectrum.
Hence the notion of light particles, later on called photons, was intro-
duced. This discovery led to the development of quantum mechanics and
the study the quantum nature of light lead to the field known today as
quantum optics.

1.2 Cavity Quantum Electrodynamics

In order to study light—matter interaction between an atom or a molecule
and an electric field, physicists placed the object to study between two
conducting plates. This is what is called a cavity. As the cavity gives
some boundaries that limits the volume in which the electric field exists,
this results in a discrete spectrum of the field. The study of the phe-
nomena linked to the discretization of the cavity’s modes is called Cavity



Quantum Electrodynamics (cavity-QED).

There are three types of phenomena involved in cavity QED. The
modification of the spontaneous emission rate of an atom resonant with
a cavity mode known as Purcell effect. The modification of the atom’s
energy levels known as Lamb shift. And finally, the oscillatory energy
exchange between the atom and a cavity mode showing a pure quan-
tum behaviour known as Rabi oscillations. The first two phenomena
mentioned can be observed in the weak coupling regime but the Rabi
oscillations require and define the strong coupling regime, that is when
the coupling intensity overcomes the dissipation rates in the system. In
other words, from the experimental point of view, the strong coupling
regime is achieved when the Rabi oscillations are measurable.

The Purcell effect was the first of the three to be observed [§] and
its observation started the field of cavity QED. It corresponds to the
enhancement of the atomic spontaneous light emission rate by the factor
f = 3Q\3/47x*n3V when placed in a cavity, where X is the wavelength,
@ the quality factor of the cavity, n the refractive index and V the
mode volume of the cavity. As the light emission rate of the atom is
proportional to the density of modes of the electric field, the fact that
the cavity’s geometry concentrates a mode in its volume can result in
the enhancement of the light emission rate of the atom when the cavity
and the atomic transition are tuned. The enhancement factor is roughly
given by the quality factor @) of the cavity. On the contrary, if the cavity
and the atomic transition are not tuned, the light emission is suppressed
since there is no mode available for the atom to relax its energy.

The shift of the atomic energies has been studied from a theoretical
point of view [9-11] but very few experiments have been realised [12] as
the measurements are limited to a particular contribution resulting from
a single wave vector k in a planar geometry. Finally, the Rabi oscillations
[13] have been studied theoretically using the Jaynes—Cummings model
[14] and demonstrated in various experiments [15-18].

The Rabi oscillations are the manifestation of the interaction between
the dipolar momentum of a two-level quantum dot x and the electric field
of the cavity which gives a coupling strength A = pF.,,,, where E,,,, is
the zero point motion of the electromagnetic field. When A overcomes
the dissipation of the cavity or the atom spontaneous emission rate, the
Rabi oscillations can be measured by observing the splitted peak in the
optical spectrum of the cavity. This defines the strong coupling regime.
Several experiments have used the strong couplings between atoms and
the electric field of a cavity [19-21] allowing to explore the quantum
nature of light and matter, but only few have managed to strongly couple
a single atom to the cavity field. This was done for the first time building
the micromaser [22]. A particular interest of the micromaser is its ability
to generate sub-Poissonian distribution of photons and therefore purely
quantum fields in the cavity.

Recently, the capability to fabricate a source of photons with specified
statistics has received great interest. This is mainly due to quantum
cryptography requiring the design of single photon sources and therefore
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Figure 1.1: Coupling regime achieved for various type of cavities. The
mode effective volume V/Vy (Vi ~ (\/n)3) is plotted against the cavity
quality factor ). The green region shows the strong coupling regime.
The icons depicts some types of cavities, from right to left: whisper-
ing gallery spheres, microdisks, photonic crystals, micropillars and gold
nanoparticles. Extracted from Ref. [29].

a lot of efforts have been put in the design of cavities strongly coupled
to a single quantum dot. In their efforts to design strongly coupled
cavities, physicists have explored various setups and geometries. To name
a few examples cavities have been engineered using whispering gallery
spheres 23], microdisks [24], photonic crystals or micropillars [26]27].
The various types of cavities and their corresponding parameter regimes
(effective volume against quality factor) are shown in Fig. [1.1, However
getting to the strong coupling regime for a single quantum dot have
remained a challenge [28].

From the nature of the coupling A = pE.,,, we see that the coupling
strength depends on two quantities. First the dot dipolar momentum,
which is intrinsic to the molecule or atom we are considering and does not
come from the specific design of the electromagnetic cavity. The second
quantity of interest is the field zero-point quantum fluctuation’s intensity.
The field intensity corresponds to how well the cavity concentrate the
electric field and this depends on the wavelength of the field and the
volume of the cavity since E,,, = \/hw./Vey, where w, is the cavity
frequency, ¢y the vacuum electric permittivity and V is the volume of
the cavity. There are three limitations to the reduction of the size of the
cavity. The first one is the difficulty to build the cavity due to technical
limitations. The second one is that the smaller the cavity becomes, the
bigger the loss rate x gets and therefore it becomes harder to measure the



Rabi oscillations since they are perturbed by the cavity’s electromagnetic
environment. Finally optical cavities are limited to a size of hundreds
of nanometers since the wavelength we want to select is given by the
distance between the boundaries of the cavity.

1.3 Mesoscopic Quantum Electrodynamics

Strong coupling with a single quantum dot has mostly been realised
for microcavities [13,[30-33]. At the same time nanoelectronics has also
known progresses allowing for the fabrication of a wide variety of nanocir-
cuits and the understanding of electron’s dynamics. This led to the de-
sign of quantum dots with a discrete energy spectrum comparable to
artificial atoms. Physicists were able to show, studying the electronic
current, how the strong confinement of the electrons in a nanojunction
leads to current quantization analogous to what was observed for a waveg-
uide [34-36). A few examples of quantum dots have been realised with
carbon nanotubes [37], semiconducting nanowires [38| or self-assembled
quantum dots [39].

At first the nanocircuits build for nanoelectronics experiments were
studied based on dc current measurement, but it was quickly realised
that the response of the circuit to microwave excitation was interesting for
fundamental purpose but also for the engineering of quantum information
devices. Therefore physicists start to study photo-assisted tunneling of
electrons [40]. The fabrication of nanocircuits and the control of the
electronic current offered by nanoelectronics give the missing tool for
the fabrication of a single photon source. Indeed there are two major
ingredients to gather for the use of a single photon source in quantum
information. The ability to generate a small number of photons that was
shown by strongly interacting microwave cavities with a quantum dots,
and the ability to control the photon source which should be given by
nanoelectronics. Hence nanoelectronics and quantum optics have merged
in a field called Mesoscopic QED. Since then nanocircuits embedded in
microwave cavities have been used to further study electronic transport
thanks to photonic spectroscopic tools and to mimic Cavity-QED by
trying to engineer ways to strongly coupled an artificial two level system
to a microwave cavity. This includes carbon nanotubes [41H45], quantum
dots using the coupling to the charge degree of freedom [46-49], and
Josephson junctions [50H52].

1.4 Plasmonic cavities

We have seen so far that strong coupling between the cavity electromag-
netic field and a two level system was achievable in microwave cavities
with a real atom [13,/30-33] or using a nanocircuit [41-52] such as a
double quantum dot junction for example. However, theoretically, if we
manage to reduce the size of the cavity, we also increase the coupling
and we could hope to overcome the increase of the loss rate. This has
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Figure 1.2: First light emission measurement from an STM junction.
(a), (b) Schematic representation of the elastic tunneling processes in
the STM junction. (c), (d) Schematic representation of the inelastic
tunneling processes in the STM junction responsible for light emission.
Reproduced from Ref. [53].

been another path that was explored to reach strong coupling. In fact
instead of using standard optical cavities, the idea to use metallic nanos-
tructures and surface plasmons to mimic the behaviour of a standard
cavity at sub-wavelength scales emerged.

Plasmons are collective oscillation of electrons at an interface [54].
They allow for a very intense concentration of an electric field at the
nanoscale at optical wavelengths and therefore overcome the diffraction
limit as well as the need for a very controlled cavity (large @) and small
temperature). However until recently strong coupling was only achieved
thanks to superradiance due to a collective excitation of identical quan-
tum emitters inside the cavity. Plasmonic cavities have been designed
using gold particles [55] or silver nanorods and nanoprisms [56,[57] as
plasmonic cavitities in interaction with J-aggregate as quantum emitters,
showing the possibility to use plasmon polaritons even at room temper-
ature to achieve strong coupling. More recently some experiments have
even showed single molecule strong coupling using gold nanoparticles [29]
or silver bowtie structure [58] as plasmonic cavities. Therefore showing
how plasmonic cavities are promising for the design of quantum infor-
mation devices. However in the case of plasmonic cavities at this point
remains the question on how to control the light emission for their use
as single photon sources for example. Considering their size, one could
think that electronic transport can be considered between the metallic
particles constituting the cavity. Interestingly, in parallel to the devel-
opment of nanophotonics and plasmonic cavities, physicists have shown
light emission from Scanning Tunneling Microscope (STM) experiments.
The first report of light emission in an STM experiment was shown in
1989 by Gimzewski [53]. Fig. shows reproduction of the first light



emission measurement done in . Of course the STM tip and sub-
strate being metallic structures, surface plasmons can propagate at their
surfaces and we understand the STM junction acts as a plasmonic cavity
in which the electronic current can be at the origin of the light emission.
Further experiments have been realised using STM junction as plasmonic
cavities in interaction with a molecule [59-70]. Fig. shows a few ex-
amples of experiments extracted from the literature coupling molecules
to the plasmonic field of an STM junction.
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Figure 1.3: Examples of molecular coupling with the plasmonic field
from an STM junction. (a) A plasmonic field is generated in the STM
junction and a molecule outside of the junction interacts with the field.
Reproduced from [71]. (b) Light emission from a single molecule in an
STM junction. Reproduced from [72]. (c) Light emission from layers of
Cgo in an STM junction. Reproduced from Ref. .

An interesting feature with these techniques is that the high spatial
resolution of the STM allows to study the variation of the light emission
depending on the part of the molecule that is probed by the STM tip.
Also, these techniques allow to mix current measurement with optical
measurement. To this day the exact process of light emission is still



under discussion when an emitter is placed in the STM junction in this
community and theoretical studies are still lacking though single photon
emission was already shown to be possible [64,72].

1.5 Outline of the thesis

The first objective of this thesis is to find a theoretical model for elec-
tronic transport through a two molecular orbitals coupled to the field of
an electromagnetic cavity. Since the Jaynes-Cummings model used in
quantum optics does not account for charge fluctuation of the molecule.
Of course one has to extend the Hilbert space to take into account the
state in which the molecule as a double occupancy or no occupancy at
all [74./75]. However this is not enough since it neglects a crucial coupling
term that called the monopolar coupling in the following. This coupling
exists even for a single molecular orbital. Hence in the deriva-
tion of the Hamiltonian is discussed focusing on the interaction terms
that arise between the electric field and the molecular orbitals.

As mentioned above, the electronic transport modifies how the molecule
and the field of the electromagnetic cavity interact. First the current in
a molecular junction in which only a single electronic level is involved
is studied in [chapter 3| In this chapter the theoretical framework for
the derivation of the current and other physical quantities is introduced.
This work is based on master and rate equations approach using the Born-
Markov approximation. This relies on the weak tunneling rates between
the electronic leads and the molecule, however the coupling between the
molecular orbitals and the cavity’s field is treated nonperturbatively. An
important advantage of this theoretical approach is that it allows to treat
correctly the strong damping of the plasmonic mode of the cavity and
its effect on the electronic current.

As it will be shown, light can be emitted thanks to the coupling to
a single electronic level molecular junction. In the different
regimes of emitted light depending on the parameters of the system are
explored. Mainly the coupling strength. The second-order correlation
function of the emitted light shows that the single level molecular junc-
tion can act as a single photon source and analytical predictions using
the rate equation approach are found.

This results are to be compared with the case of the two electronic
level molecular junction in [chapter 5|

Finally, a summary and an outlook are presented in



Chapter 2

Discussion on the model
Hamiltonian

The interaction between a molecule or an atom and an electric field has
been studied for a very long time [19,20,76]. Classical as well as purely
quantum approaches have been used. In this work we are interested
in a pure quantum approach. Compared to a semi-classical approach,
the purely quantum one is known to describe well the spontaneous as
well as stimulated emission of an excited molecule and also allows for
the interpretation in term of photons [14,20]. So far, the interaction
between an atom and an electric field is well known in fields such as
cavity-QED, leading for example to the well known Jaynes—Cummings
Hamiltonian [14}|77]. But, as light emitted from a scanning tunneling
microscope (STM) was observed [78|, came the idea to study the coupling
between a molecular junction and the electric field of a cavity. In the
STM setup, the molecular junction is made of the STM and a molecule
placed between the STM tip and a substrate, and it interacts with the
electric field that exists between the STM tip and the substrate [64-70],
mimicking cavity QED experiments. So far, some processes have been
proposed to explain the light emission [28,68,(79-82], however a clear
consensus is still missing in this field. In this chapter we introduce the
Hamiltonian describing the coupling between a molecule, electronic leads
and an electric field, discuss the various type of interaction involved and
the importance of each terms regarding one another.

2.1 Model Hamiltonian of the electron—photon
interaction

The following derivation of the Hamiltonian is based on the work of
A. Cottet, T. Kontos and B. Doucot [83]. The system to be described
consists in a molecule inside an STM junction. This molecule interacts
with the electric field inside the junction and the tip and the substrate
acting as electronic leads. The nanocircuit, where electron tunneling oc-
curs, is modelled by a set of charges Q. These charges interact with the
electromagnetic field of the cavity {F, B}, where E is the electric field



Figure 2.1: Generic scheme of a nanocircuit made of a nanoconductor
(black) connected to fermionic reservoirs (blue) and electrostatic gates
(red) inside a cavity (green).

and B is the magnetic field. The cavity, gate electrodes, and effective
plasmonic reservoirs are taken into account as a set of boundary con-
ditions whether the charge @ or the potential V' is kept fixed. These
ensembles are called F and B, respectively. They are represented by
green or blue elements in Fig. [2.1]

The STM junction is a special case of the typical system considered
by Cottet et al . Since the cavity is composed by the electronic
reservoirs, its charge is not constant and it is, therefore, an element of B.
We call o a particle in @, so that the charge distribution in the circuit
can be written p(r,t) = >, e.0(r — r,) and the current distribution
J =Y ae€alad(r —ry), where 1 is a position in space and e, is the charge
of a.

A field F' is decomposed following the Hodge decomposition into a
part with no rotational F'|, a part with no divergence F} and a part
with no rotational nor divergence Flam, so that F' = F| + F| + Fparm.
We also call U and A the scalar potential and vector fields such that
E = —VU — 0;A and B = V x A. From Maxwell’s equations in the
Coulomb gauge V - A = 0, we find that

V- E” = ,0/60, (2.1)
which translate onto U as
AU = p/e. (2.2)

We decompose this Laplace equation into two static problems. One cor-
responding to an homogeneous problem that describes the empty cavity,

AqsharmOn) = 07 (23)

with the boundary conditions
/S v¢harm(r) : nidQT = _Q’HZ € Fa (24)
(bharm(r) = ‘/; 1€ BJ (25)



where S; is the surface of the object 7, n; is the outgoing unit length vector
perpendicular to S;. The second static problem in the decomposition
corresponds to the description of the charge distribution of the circuit
inside the cavity. It reads

AG(r,r") = =d(r — ') /€0, (2.6)

with the boundary conditions

/s- V.G(r,r")nyd*r =0,i € F (2.7)
G(;", y=0,ieB and reSs,. (2.8)
This ensures that
Eparm(r) = =V ham (2.9)
Ey(r,t) =-VU, = —/VTG(T, M p(r' t)d>r. (2.10)

This leaves us with E| and B being determined by the potential vector
A

B =V x 4, (2.12)

where A follows propagation equation
1 .
AA—gﬁA:—mﬂ. (2.13)
The quantized Hamiltonian resulting from this field is [83]

H = HA + ; Z €aUH(qa) + Z ea(bharm(QOz)a (214)

where p, = Mada + €4 A(q,) is the conjugate variable of g, and TI(r,t) =
—eoE | (r,t) is the conjugate variable of A(r,t), and

1
Hy=Y 5

o «

o= eatan'+ 3 [ (HILOF + L9 < A0

(2.15)
is the Hamiltonian of an atom coupled to an electromagnetic field. Hence,
compared to Hx, H has two supplementary terms; the third term in
Eq. (2.14), containing the harmonic potential @pam, accounts for the
effect of the electrostatic gates while the second term, containing the
longitudinal potential Uj, accounts for the Coulomb interaction between
the tunneling electrons. The fourth term is treated in a standard way
by separating the longitudinal part from the transverse part. This gives
in one hand a Coulomb interaction Hamiltonian and in the other hand
a radiation Hamiltonian Hg containing the modes of the cavity. In the
following we will consider a single cavity mode, so that Hp = w.ala with
a' the creation operator. The vector potential A is written in terms of
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the cavity mode A(r) = iA(r)(a — a'). We can use the field operator of
the tunneling charges v to write the Hamiltonian Eq. (2.14])

H = [ 01 (r)ho(r)e(n)d*r + Hogu +w.ala (2.16)
Where
ho(r) = 21”(614(7“) _ V)2 = ednarm(r) — eVions (1) (2.17)
and )
Heout = % / DTV ()G, Yo (Y () P (2.18)

Here e is the (positive) electron charge and m its mass. While Hgyy cor-
responds to the second term in the Hamiltonian Eq. , the potential
Veons corresponds to the confinement potential arising from the last term
in Eq. treated as a mean field. Now we would like to write this
Hamiltonian in a charge representation using second quantization and
remove the term A? from the Hamiltonian. In order to perform this
transformation, it was proposed in Ref. [83] to introduce a pseudopoten-
tial V| (a + a') defined for r inside the nanocircuit.

Vi(r) = wc/ A(r').dr, (2.19)

C(ro,r)

where 1 is a point in the nanocircuit and C' a continuous path connecting
two points. V| can be interpreted as the work performed by the cavity
electric field when a charge is transported along a path C' connecting
the point r to the reference point ry. As long as that magnetic effects
are negligible, meaning that V x A can be ignored, the choice of C' and
ro should not have much effects. In this limit it should be noted that
VVi(r) ~ w.A. We define now the unitary transformation

U = exp {e(aw_aT)/VL(T)W(r)ﬂz(r)d?’r} : (2.20)

While this transformation has no effect on Hegy, it introduces a term
V(a+ a') + V?/w., where

V=—c / ) )V () dPr, (2.21)
and it removes the term A? from hg, leading to
~ A
hQ(T) = _% - 6¢harm(r> - 6chonf(r)' (222)

We thereby find that the transformed Hamiltonian is
1= [ W) haryb(r)dr + Hon + weata + Vit a) + V2. (2.23)

Hence, we find a linear coupling between the photons and the tunneling
electrons, given by V(a+a'). At this point, if one assumes that the vector
potential A does not vary over the length of the nanocircuit A(r) ~ A
one obtains the dipole approximation usually used in cavity-QED. One
can expand the pseudopotential keeping only the linear dependence on
r: Vi(r) = weA - r(a+ a). However, this approximation does not hold
for plasmonic cavities since the electric field is known to have strong
variations at the scale of the circuit [70].

11



2.2 Electronic transport description

As we specified earlier, our aim is to describe the tunneling of the elec-
trons through the nanocircuit. To do so, we need to express the Hamil-
tonian in the charge representation. We call O the ensemble of objects
constituting the nanocircuit and j an orbital of one object. Hence, we
describe each part of the nanocircuit as a collection of creation (annihi-
lation) operator C:I), (¢,;), such that {c! 1 Corji} = 00,005 4. The different
orbitals in an object are orthogonal, while the overlap between two or-
bitals of two different objects can exist although we consider the case
where this overlap is weak. The tunneling Hamiltonian without the cav-
ity reads [84]

Hr = 2807 chicoi+ D ( OJO]/CO]CO, s+ H.c.), (2.24)

0#£0' 5,5’

where ¢, ; is the energy of the orbital j on object o and t,;; is the
tunnel coupling between orbitals j and j' on objects o and o. From this
representation of the tunneling charges, we write the field operators as

r) = Z@o,j(T)Co,ja (2.25)

where ¢, ; is the wave function of the orbital j of 0 and is mainly localised
on o. Thus, introducing the field operator’s expression Eq. (2.25)) into
the Hamiltonian Eq. (2.23]) gives

H = Hyp +w.a'a+ HEy + hin(a + ab), (2.26)
where
znt = Z AOJ o ]/COJCO/ g’ (227)
o, o’ 7.]7]

The term V?/w, has disappeared since it only introduces a renormaliza-
tion of the electronic energy levels €, ;, the tunneling rates ¢,; »;» and the
Coulomb interaction HE .

2.3 Electron—photon coupling

The electron—photon coupling intensity is given by

Bojoryr = —e [ Vi(r)gh, (r)ew (). (2.28)

We can separate the couplings into two types of couplings. The first one
is when o = o’ and j = j’. It is the coupling to the charge that is absent
in the Jaynes—Cummings model. In this case the coupling depends on
the pseudopotential and the modulus squared of the wave function

Moy = =€ [ VilD)lgas (NP, (2.29)

This term is particularly relevant in the case of electronic transport as it
does not appear in quantum optics model due to the fact that the charge

12



in the atom/molecule is constant. When o is a quantum dot inside the
cavity, this term describes the interaction between the charge fluctuations
of the dot and the electric field of the cavity. If we assume that the empty
quantum dot is neutral, then adding a charge on it amounts to adding
a charged particle into the cavity which should interact with the electric
field of the cavity. Otherwise, when o is an electronic lead, this term
correspond to the coupling of a fermionic reservoir to the cavity field.
This account for the processes by which an electron in a lead can relax
some energy in the cavity plasmon mode, emitting a photon, or on the
contrary a plasmon mode can decay in a fermionic reservoir, absorbing
a photon.

We separate these two contribution into Ap; for the dots and Ag ;
for the fermionic reservoirs. While this first term can be interpreted as
a shift of the energy level (this will be explained in more details later)
of the dots or the fermionic reservoirs, the other coupling appearing in
Eq. is a term mixing the orbitals of two different objects of the
nanocircuit

Nojoryr = —e [ Vi(r)gh, (n)po s (r)dr, (2.30)

for o # o/. This term depends on the overlap between two wave func-
tions and the pseudopotential V. It accounts for the modulation of the
tunneling between two parts of the nanocircuit by the electromagnetic
field of the cavity. This last term can describe the excitation of the plas-
monic mode by the tunneling current between two fermionic reservoirs
or between the dot and a reservoir. This term is particularly relevant in
experiments studying the light emitted by an STM like the one presented
in Ref. [67]. In this experiment, represented schematically in Fig. the
authors show that a molecule interacts with the electric field. A tran-
sition occurs between its HOMO and LUMO states when the current
in the STM is turned on. The current in the junction couples to the
plasmon through terms of the form —j - A. This coupling is responsible
for plasmon emission. The plasmonic field is, in turn, able to induce
HOMO-LUMO transitions in the molecule.

13
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Figure 2.2: Representation of the interaction between the plasmonic field
generated in a STM and the HOMO-LUMO transition of a molecule.
Extracted from Ref. [67].

The intensity of the interaction is strongly dependent on the distance
between the molecule and the tip and in Ref. they show how the
emitted light spectrum is modified by moving the molecule. A theoreti-
cal framework has been developed by Kaasbjerg and Nitzan in Ref.
in which a term I(a + a') appears in the Hamiltonian corresponding to
the standard interaction —f- A between the electronic current and the
cavity mode. This term mixes the orbitals of two electronic reservoirs
of the tunnel junction and is still found in the interaction Hamiltonian
Eq. (2.27). This term in the Hamiltonian also contributes to the damp-
ing of the cavity and contains terms allowing the exchange of a photon
when an electronic transition occurs in a dot. Basically it is in this last
term that we will find the between the HOMO-LUMO transition and
the electric field of the cavity that is responsible for the Rabi oscillations
and appears in the Jaynes—Cummings model. As this corresponds to the
interaction between a dipolar momentum and the electromagnetic field,
we call it dipolar coupling.

2.4 Origin of the pseudopotential

So far we have expressed the coupling term as being proportional to
Eq. . In this expression intervenes the pseudopotential V| that is,
as any potential, only defined up to a constant. The value of the constant
is given by the origin ry for the path C in Eq. . This means that
as we have defined the coupling so far, it is also defined up to a constant
and does not have a unique value. Of course the physics does not depend
on this constant since we can show that adding to the pseudopotential
V| a constant C' only introduces a shift of the equilibrium position of
cavity mode without changing the physics

V= e / Vi (r) + Clot (r)(r)d*r = V + CN, (2.31)
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where N is the total number of charges in the system. Hence shifting
the pseudopotential by a constant C' adds a term CN(a' + a) to the
Hamiltonian. This term can be removed by the unitary transformation
U = eONe=a") which shifts the cavity operators by the quantity C'N.

We now discuss which origin we choose for the pseudopotential in
order to define the coupling terms A,; ;. This amounts to choosing an
element of the circuit for which the coupling strength will be taken to
be 0. In fact we have defined earlier B as being the ensemble of the
elements in the circuit on which the voltage is fixed. This typically will
include the electrodes. For the elements in B the voltage is fixed as a
boundary condition given in Eq. . Therefore the static component
of the field, given by ¢p.m already includes the potential’s origin, and
the other components of the field £/, and £ should not introduce any
other potential difference between any points of the elements of B. This
means that for all the elements of B, V) + V| should always be equal to
0. Since from the boundary conditions for the elements in B in Eq. ,
the parallel component of the electric field have no contribution, we must
have that V| is the same for all elements in B and can be taken to be 0.

As a conclusion the interaction term A,; for all the leads o does not
depend on the lead a and can always be chosen to be 0. This fixes a
“natural” reference to the interaction terms in h;,;. Another way to say
that is that we define Aj..q as being the coupling term to the charge in
the leads and we define /~\oj = A, j — Ajeqq as the coupling strength for an
object o that is not in B. Therefore, for a term coupling the charge to the
field, meaning o, j = ¢, j/, the coupling strength is the work for bringing
the charge from a lead to the dot in the junction. In the following we
will set Ajeqq = 0, so that /~\Oj =A,;.

2.5 Comparison between charge and dipo-
lar coupling

We propose in this section a rough comparison between the coupling of
the charge on one electronic level on a quantum dot and the coupling
between the transitions of a charge between two electronic levels of the
dot. We will refer to those two coupling as a monopolar coupling A,,, when
only one level is involved and to a dipolar coupling A; ; when two levels
are involved. Let us start with some estimation of those couplings based
on their physical interpretations. As we explained in the previous section,
the monopolar coupling can be interpreted as the potential interaction
between a charged particle and an electric field. This has the form

A =q Vi, (2.32)

where ¢ is the charge of the particle and V,, is the potential of the elec-
tric field. As the electric field is the gradient of the potential V,,, we
approximate V,, as

Vin =~ LE ., (2.33)
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considering that the electric field does not vary over the distance L, where
L is the typical length over which the tunneling event occurs and E.,,,
are the zero-point quantum vacuum fluctuations of the cavity electric
field.

If we look back at the model we derived earlier we can find a simi-
lar result. Indeed, neglecting the pseudopotential’s V| variations in the
cavity, we approximate the monopolar coupling as

Ay~ —eVi(ry) >~ eLE,m, (2.34)

where 7, is the location of the molecule. We recover exactly the estima-

tion we made based on our interpretation of A,,. Considering the energy

density of the field, we find the order of magnitude of A,,
u = Y E2 4 L B2 — We

2.35
2 2,U/0 V ’ ( )

where V is the cavity’s volume. Then we find the order of magnitude of
the field

We
VEO )
The dipolar interaction is the interaction between a dipolar momentum
and an electric field. The energy of this interaction is

Ai,j - _/JJi,jEzpm7 (237)

where p; ; = —ed is the dipolar momentum between the two levels con-
sidered and d is the size of the dipole. Hence, we find that the ratio
between the monopolar and the dipolar approximation should be of the

order of A .

m
~—. 2.38
A, " d (2.38)
As we expect L > d, this leads to a monopolar coupling stronger than the
dipolar one. However, if we were to use the approximation V| constant in

this case, we would find A; ; = 0 as the two orbitals should be orthogonal.

2.6 Examples

In this section we show three examples of calculations of the coupling
strength that are relevant with usual cases studied in the literature.

2.6.1 Point-like approximation

As we mentioned earlier, in most of the work that has been done so far
in Cavity-QED, the quantum emitters have been considered in the point
dipole approximation. When the cavity’s dimensions are very large com-
pared to the emitter’s size this, is not an issue to consider that the electric
field around the emitter is almost constant. However, for nanocavities,
the emitter has a size that is close to the dimensions of the cavity and
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therefore some recent works have questioned the point-dipole approxi-
mation for plasmonic cavities [85].

Through assuming that the point-dipole approximation holds (that
we call in our case the point-like approximation), we want in this section
to evaluate the corresponding coupling strength that should actually be
an upper approximation of the real coupling strength. Considering the
emitter to be point-like means that the extent of its wave functions is
negligible compared to the scale over which the electric field varies and
therefore the wave functions in the expression of the coupling strength
in Eq. behave has delta distributions. The coupling strength for a
molecular orbital is then

Ad,i = —6VJ_(’I“0), (239)

where d denotes the quantum dot, 7 one of its orbital and rg its location
in the cavity. Here we assumed that V| is 0 in the leads so for a STM ex-
periment, this means that V| at the boundaries of the cavity is vanishing
and therefore the coupling is Ay; = 0 when the dot is at the boundaries
of the cavity. A way to show that is to consider the cavity as a box of
length L. At x = 0 and x = L are placed two perfectly reflecting surfaces
and at y =0, L and z = 0, L two perfectly conducting metals.

We can show from Maxwell’s equations that a transverse magnetic
field (TM) in such a geometry as the form

nmx mmy Pz

E, = Eycos( 7 ) sin ( 7 ) sin ( L)
. NTx mry, . prz
E, = Eysin ( 7 ) cos ( 7 ) sin ( 7 ) (2.40)

prz
)

Using the definition of V| in Eq. (2.19)), we choose ry = 0 so that the
reference is at the surface of a lead and we choose the contour C as simple

as possible in Cartesian coordinate as a path going along the z-axis then
parallel to the y-axis and finally parallel to the z-axis. Hence

E.= Ezgsin(nzm)sin(mgy)cos(

Vi(r)= /Ogc E. (2, z)dx’+/()y E,0,y, ,zt)dg/—l—/(;Z E.(0,0,2")dz". (2.41)

Then we find the expression of the potential V| as a function of the
position of the dot inside the cavity

EuoL
° Sin (mL””) sin (mzy)sm(%). (2.42)

VL<x7y7 Z) - ni

Fig. shows the evolution of the coupling strength along the x

direction. We see that if the dot is on a boundary of the cavity then the

coupling strength becomes 0, whereas when the dot is in the middle of the

cavity the coupling strength reaches its maximum value as the potential

also reach its own maximum value. We also recognize in Eq. that
the coupling strength is in that case given by the product E.,,, L.
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Figure 2.3: Intensity of the coupling A along the = direction inside the
cavity.

2.6.2 Homogeneous electric field

We now show the calculation of the coupling terms in a homogeneous
field. This could apply to the microwave domain for which the cavity is
very large compared to the nanocircuit inside

E = Ey = w.A,. (2.43)

The pseudopotential resulting from such an electric field is
V() = / Bo(7").d". (2.44)
C(70,7)

We set the origin at 79 so that 7 = 0 and define C(7,7") = 7 — 7.
For such a path V| have a simple expression in spherical coordinates

V.(7) = Ey - 7. (2.45)

It is interesting to note here that changing our reference point would only
add a constant term in V| and only result in shifting the energy levels of
the tunneling region and also renormalise the Coulomb interaction term.
From the expression of V|, we find the interaction terms

Nojory = —¢ [ Boig, (Mg (P’ (2.46)

To evaluate these terms, we use the hydrogen atom wave functions. Let’s
first consider a monopolar term and the orbital 1s of the hydrogen atom.
We will consider the atom to be in the middle of the cavity. We call (1
the wave function of the orbital 1s of the hydrogen atom.

1
v15(r) = 736_”“0, (2.47)
mag

Where ag is the Bohr radius. As both the pseudopotential and the wave
function have a spherical symmetry, we find no coupling between this
orbital and the cavity electric field since for all vector 7 that will have
a contribution, the vector —r will have the opposite contribution. In
fact any orbital that present a central symmetry won’t couple to the
charge, then we conclude that the hydrogen atom or any atomic orbital
won’t couple to the electric field of the cavity through its charge. For the
dipolar coupling we don’t have the same restriction.
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Let us consider the coupling between orbitals 1s and 2py of the hy-
drogen atom so that the product of the wave function does not have a
central symmetry. The wave function for orbital 2py is

©opy () 572 cos(@)re_r/%o, (2.48)

4 2may
Hence, the coupling corresponding to the dipolar momentum between
these two orbitals is Y
32+/2

A1572py = —671'?@0. (249)
So far we have only discussed the case where the origin for the potential
is at the center of the atom. Introducing an origin 7 to the potential (or
the wave function, which is equivalent and corresponds to moving the
atom from the origin of the potential) we only add to the coupling the
term

Agj,o’j’ = _€EO'FO/¢:7j(F)¢O/j/(F)d37’. (250)

Therefore, applying this formula on every component of the coupling,
we find a constant term proportional to the total number of charges in
the system —eFEy.7yN (a + a'). This term corresponds to a shift of the
cavity mode and can be removed by the unitary transformation U =
e~cEomoN(a=a") " Tp conclusion the physics is not changed by moving the
atom inside the cavity in this case assuming that we remain in a region
where the electric field can be considered constant.

2.6.3 Plate capacitor

As another example we show the plate capacitor which would be a very
simple model of cavity in which we can take into account the space vari-
ation of the electric field. Our cavity is made of two metallic plates at
fixed voltages V7 and V5. As we suppose that the plates are very large in
the z and y direction compare to their width and to the distance between
them we will consider them as infinite planes orthogonal to the z-axis,

see Fig. 2.4

()

Figure 2.4: Plate capacitor.

From the Maxwell’s equation and the Coulomb gauge condition we
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find that

AE — 50?E =0
AB— £8?B =0
AV =0
V-A=0

(2.51)

We set the lower plate to be at z = 0, using the boundary conditions on
the potential V' and the translational invariance on the (z,y) plan,

Vi =V
Vi(z) = 1d22+%. (2.52)
From the potential V' we deduce that the electric field is
Vo =V
E= 2d1Q+Eﬂﬁm (2.53)

where E,. is solution of Eq. (2.51) and of the Maxwell’s equations. As
the electric field propagates freely in the (x,y)-plan, we assume plane
wave solution for the (z,y) variation of E,.

Eoe(r,t) = Ego(2)e®Imi—t, (2.54)
where r| and k| have no z component. From the boundary conditions

nxE=0 (2.55)
n-B=0, (2.56)

where n is unit a vector orthogonal to the plates, we know that the electric
field has no (z,y) component at z = 0 and z = d. From Eq. and
Eq. one can show that the fields can be decomposed into the TM
and TE solutions. The TM fields have no component in the direction
parallel to k) for the magnetic field and the TE fields have no component
in the direction parallel to k) for the electric field. We chose a set of axis
so that kj = k- e, where e, is a unit vector. Then we write a TE field as

E—z%mnCZQ>JMim%, (2.57)
where e, is a unit vector and a TM field as
B = B, cos (n;z) ehe—iwte, . (2.58)

It follows from Eq. (2.58) that the TM-electric field is

2
e _m;rc B, sin <7ZTZ) gika—iwty _ %By oS (?z) etkr=ivte (2.59)

Considering a TM field we find a potential vector

E, .
22 cos <mz> glhe—iwte (2.60)
w

A= —
d
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where E, = —wB, /k. To compute the pseudopotential V| we first choose
a path to connect two points in the nanocircuit. Let’s choose a path that
first extend along p, where p is the radius in cylindrical coordinates, then

z, as shown in Fig. 2.5

Figure 2.5: Continuous path C' between r and ' in the (p, z)-plan.

The pseudopotential is found using Eq. (2.19))

d . (nm ik
Vi(r)= Ez% sin (dz) e*r L V. (2.61)
We see from Eq. (2.61)) that if the field has no component along the z-axis
there is no coupling. In the following we disregard the constant Vj. If
we look at the coupling between an orbital 1s of the hydrogen atom and
the electric we find

E d —2p 4y in
Aig= =5 [sin <m<pcos¢+zO>> p2sin ge” o0 TSI g gy,
0

nmwla d
(2.62)
where zg is the z coordinate of the center of the molecular orbital.
2 Ez —20 44 0s 0 sin
As=— € ?’dsin (mz()) /cos <mpcos gb) p? sin ge ag T ikpcost ¢dpd0d¢),
nmag d d

(2.63)
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Chapter 3

Electronic transport in a
plasmonic cavity for a single
level dot

As we explained in [chapter 1, we are particularly interested in the de-
scription of an STM setup as depicted in Fig. In those experiments
the cavity is made of the apex of the STM and the substrate. The
molecule or an atom is embedded inside the STM junction. Therefore,
our nanocircuit includes the dot and the STM tip and substrate.

tip

insulator

substrate

Figure 3.1: Representation of an STM cavity interaction with a molecule.

If we look at the coupling between the electrons on the dot and the
electric field of the cavity in Eq. , we see a term proportional to the
charge and a term proportional to a transition between two electronic
levels of the dot. It is in the second term in Eq. that we will find
the dipolar interaction that has been long studied in quantum optics
with models such as the Jaynes-Cummings model [14]. The first term is
specific to the case of electronic transport as if the charge on the dot were
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fixed, then we would reduce the Hilbert space accordingly and this term
would be a constant and could be removed from the Hamiltonian through
a unitary transformation. Also, this term is similar to the coupling of
the charge with vibration modes of a molecule that as been studied in
quantum transport in the well-known Franck-Condon physics [82,86-89).
Thus, we expect that this coupling could result in the emission of photons
when the bias voltage between the STM tip and the substrate allows for
it.

Hence, there are four reasons for studying a single-level dot model.
The first one is that it is the simplest case we can think of and therefore, it
should be a very nice theoretical framework. The second one is that it is
experimentally relevant as the bias voltage applied in STM experiments
is of the order of 2 eV at most. Therefore, in some cases, the bias voltage
is smaller than the gap energy between two orbitals of the dot. This
means that only one electronic level is involved in electronic transport
and unless the molecule is excited by an external source of radiation,
the dipolar coupling cannot lead to emission. Hence, only the monopolar
coupling can contribute. Also, in limiting the system to a single electronic
level, it allows us to isolate the effects of the charge-coupling, we can then
add on top the other coupling as we well understand the effects of the
first one. And finally this coupling is in general disregarded in quantum
optics and plasmonic. However, we will show in the following that this
coupling can result in photon emission and, depending on the parameters
the light emitted, can show non-classical features, such as anti-bunching
and sub-Poissonian distribution. This makes this kind of systems relevant
for designing single-photon sources.

3.1 Hamiltonian for the single level-dot

The first step here is to write the Hamiltonian in a suitable representa-
tion. To do so, we first try to simplify as much as we can the expression
of the interaction. From Eq. we find three interaction terms. The
first one is the interaction between the dot’s charge and the electric field

HM = Ayd'd(a + al). (3.1)

Of course we assume that we are not in a case where this term is zero
as it will be our main focus. The second term is the interaction between
the fermionic reservoirs’ charges and the field

Hp = Z Aakchcak(a + ah). (3.2)
ak

In our setup the field cannot penetrate far into the electrodes, so this
term can be neglected. Also, near the Fermi energy the properties of
the wave function can be considered constant so A, = A,. Actually we
can choose the potential so that this interaction term is zero by setting
the origin of the potential at the electrodes, since we have shown in the
previous chapter that the potential should be constant in the electrodes
and the same for any electrodes.
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Another way to understand this is by considering to subtract Ag = A,
everywhere in the coupling terms A;, the sum of all the terms proportional
to A, will give a term proportional to the total number of charges and
to the electric field as

A cz,jco,j(a +a') = Ay(a+al). (3.3)
J

Such a term can be eliminated of the Hamiltonian by the unitary trans-
formation U = etala—al)/we, Next, we have the interaction between a
tunneling charge and the field

(Aagachpd + H.c)(a+ ab). (3.4)

From the definition of the coupling, we can estimate the coupling Ay 4
as a tunneling amplitude times the coupling to the charge at most

Aokd = taxNa/EF, (3.5)

where Ep is the Fermi energy at which the electrons tunnel between
the leads and the dot. Typically for metallic leads, Fr ~ 5 — 10 eV
and as shown in Fig. [3.1] the substrate and the dot are separated by an
insulating layer so that the tunneling between the dot and the leads is
weak. Therefore the coupling between the charge and the electric field
in Eq. is expected to be dominant compared to the direct coupling
between the field and a a tunneling electron. This analysis holds also for
the coupling between the direct current between the STM tip and the
substrate as we expect the tunneling rate to be even weaker. Hence, so
far, we have reduced the Hamiltonian to

H = Hgs+ Hp + Hiy (36)
where
Hg = &yd'd + wea'a + Agd'd(a + al), (3.7)
Hp =" carchyCor (3.8)
ak
Hig = > tarchyd + Hec., (3.9)
ak

where d' is the creation operator for the electron of energy &, on the
dot, a' is the creation operator for the photon field. The two fermionic
reservoirs are described by Hp, where clk is the creation operator of an
electron in lead « on orbital k of energy ,,. The tunneling amplitude
between the dot and the orbital k of lead « is given by ¢,x. Going fur-
ther we can diagonalize the Hamiltonian Hg by shifting the equilibrium
position of the cavity mode using the Lang—Firsov unitary transforma-
tion U = exp[A\d'd(a — a')], where Aw, = A4. Doing so the dot creation
operator d is transformed into

D = dfeMe’-o), (3.10)
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while the photonic mode’s creation operator a is transformed into
a'=a' — \d'd. (3.11)

In a way, from Eq. we see that upon the creation of a charge in
the dot, a coherent state of the photon field is created in the cavity. As
a result in the transformed Hamiltonian the dot energy level is shifted
by Aw, and the tunneling term also involves transitions between states
with a different number of photons while Hp is left unchanged.

Hg = god'd + w.a'a (3.12)
Hy = twcl,D+ Hee. (3.13)
ak
where g9 = &) — MNw,. In this representation we can work with the

cigenstates of Hg and deduce from H; the transition rates between them
to extract the current or other information from the system. So far we
have considered the cavity to be isolated. However, it is known that if
the reduced volume of plasmonic cavities allows for stronger couplings
compared to bigger cavities, it is nonetheless at the cost of a bad quality
factor. Indeed, cavity factors @) of the order of 10 have been reported in
plasmonic cavities [29,58,90]. It is expected that an STM cavity exhibits
a large damping rate k. To account for this in our model, we include in
the description the presence of the electromagnetic environment, that we
model by a collection of harmonic oscillators. The cavity field is coupled
linearly to the bosonic environment. Hence, we add to the Hamiltonian
Hpg a collection of bosonic modes

HB - Z gakCchak + Z qu;b(p (314)

ak q

where b:; is the creation operator of an external photon with pulsation
wq. The interaction Hamiltonian is then

Hy =Y tarcl D+ > I bla+ Hee. (3.15)

ak q

where [, is the transition rate between the mode ¢ from the bath an the
mode of the cavity. Including the external bath before or after the Lang—
Firsov transformation does not affect the physics we want to describe as
the shift of the cavity mode will only introduce a new term in the dot
energy that is not relevant as we will consider the reservoirs to be at
thermal equilibrium.

3.2 Master equation

In order to reduce hybridisation between the substrate and the molecule
in STM experiments, an insulating layer is placed above the substrate.
As a result the tunneling between the leads and the quantum dot in the
junction is weak and the tunneling Hamiltonian can be considered as
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a perturbation of the system and bath Hamiltonians. In other words
the energies in the system are ordered as I' < kT < w. where I' =
27 3o |tar]?0(w — €4x) is the electron tunneling rate. This is called the
sequential tunneling regime, in which the typical time for an electron
tunneling event is the largest time scale at which the system evolves and
should dominate the long time evolution. This implies that between two
tunneling events the coherence of the electrons is lost. Therefore, the
reservoirs evolving at a faster pace can always be considered at equilib-
rium. This regime fits well the density matrix approach [88,91].

Depending on the quality factor @ of the cavity, K = w./Q, the
damping rate of the cavity, will be smaller or larger than kg1 but always
bigger than the tunneling rate in the cases we will consider. Indeed, if we
consider that the system is at room temperature, then kgT ~ 1072eV.
For a quality factor 10 < @ < 1000 the damping rate verifies 0.1 >
k/w. > 1073, so that in the worst case I' < kT < Kk < w, and in the
best case I' < k <€ kT < w.. We will derive our results in this last
limit, for which we can find reliable approximations [92].

The time evolution of the density matrix p is given by the Liouville—
von Neumann equation

p = —ilH, pl. (3.16)

By defining Hy = Hg + Hp and the unitary transformation Ul(t,t) =
e~ HHo(t=10) we can write Eq. in the interaction picture in which the
time evolution of the density matrix is set by the interaction Hamiltonian
H;. This treatment allows us to solve the system for any value of the
coupling \ as long as H; can be considered as a perturbation of Hy. It
follows that in the interaction picture any operator A evolves with H
and becomes

Ap(t) = UT(t, 1) AU (t, ty) = etflolt=to) ge=iHo(t=to) (3.17)

Using the relation given in Eq. (3.17) on Eq. (3.16]) we find the Liouville—

von Neumann equation in the interaction picture

pr(t) = —i[Hinur (1), pr(t)]; (3.18)

with the initial condition

p1(to) = p(to), (3.19)

where we chose t; as the time at which the interactions between the
environments and the system are turned on. This means that at time g
the density matrix is in a product state

p(to) = ps(to) ® pu(to)- (3.20)

Integrating Eq. (3.18) we find that at first order in Hj,; the density

matrix is

pr(®) = pr(©) =i [ [Huus (¥). pr ()]t (3.21)
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Re-introducing this last expression in Eq. (3.18) we find the time evolu-
tion of p; at second order in the interaction

p1(t) = —i[Hinei (), pr(to)] — /tz[Hin“(t)7 [Hiner ('), pr()]]dt’. (3.22)

We define pg = Trp(p) the reduced density matrix of the system.
From the trace invariance properties it follows that

pst = Trp(pr), (3.23)

and therefore the time evolution of pg; is given by

t
psi(t) = Tri (=il Husr (). (1)) = [ [Hiosr(8), [Hves (¢, pu (¢ )

’ (3.24)
As the interaction Hamiltonian is a product of bath and system operators
and we chose t; so that the bath and the system are each in thermal
equilibrium, the first term in the right-hand side of Eq. vanishes
since it is proportional to the bath creation and annihilation operators’
averages. Since we consider a weak coupling between the bath and the
system and since the bath is supposed to be very large compared to
the system, we make the Born approximation [92]. This means that we
consider that at all time the density matrix is in a product state between
the bath and the system and that we neglect the time dependence of
the reduced density matrix of the environment pg. In other words, we
neglect the effect of the system on the environment at all times.

p = ps(t) @ pp. (3.25)

This approximation simplifies Eq. as it allows to trace out the
bath’s density matrix and write an equation for pg only. The double
commutator in Eq. involves terms mixing the two electronic reser-
voirs and the photonic environment. However as nor Hg nor Hj,; mixes
directly any of them, they act as three separate environments each in
their individual equilibrium state. This means that using an eigenbasis
such as the charge states and photon number states, we can show that
only the term that does not mix operators from two different environ-
ments in the double commutator in Eq. will survive. Therefore, it
only remains terms proportional to

CE(t,¢) = Trs (Z |tak|2ch<t>cak<t’>pB) (3.26)
Co(t,#) = Tr (Z |tak\2cak<t>c2k<t'>p3) (3.27)
(1, ¥) = Tr (Z |zq12bz<t>bq<t'>p3) (3.28)

K= (t,) = Trp Z|l|b (t')p ) (3.29)
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which are the bath self-correlation functions. As pp does not depend
on time, it commutes with Hp and using once again the trace-invariant
properties, we have for any self-correlator S of the environment

St t)=8{t—t,0)=8(t—1t). (3.30)
As the bath is in thermal equilibrium, we can compute the self-correlators
Cr(t—1t) Z |t o2 ) (2 00) (3.31)
C,(t—t) Z |t o2k ) £ (2 ) (3.32)
it —t) Z |12 g (w,) (3.33)
K-(t—t)= Z |lq|26_iwq®_t/)[1 + np(wy)]- (3.34)
q

We define the tunneling rates T'p(w) = 27 3ok [tak]?0(w — eax) and
assume the wide-band approximation and fI(w) = 1—f, (w) = f(w—fia)
where f is the Fermi distribution and p, the chemical potential of the
lead . This means that close to the Fermi energy, the rates I', should
not depend much on w.

CHt—1) r/ wt=t) £+ () dw /27 (3.35)
Co(t—1) r/ =) £~ (o) duw /2m (3.36)
(3.37)

Introducing this expression of the correlation functions into Eq. (3.24]),
we find

p) =~ [ {gﬁ Di(0)psi (1)
+ 3G (Tlpsat m(t/), Di(t)
+ K lar), ol psi (1)
K (=) [pst(#)a} (#), ar(B)] + H.c.}dt’,

(3.38)

where 7 =t — t'. In Eq. the reduced density matrix at time ¢
depends on its past, therefore it seems that pg has a non-Markovian evo-
lution. A non-Markovian evolution refers to a process of evolution for
which the future states can not be predicted solely from the present state
but also depends on the past states of the system. However, as we con-
sider the environment to be in thermal equilibrium its correlation time
is given by the temperature. Thus, the correlation time of the environ-
ment is very small compared to the typical timescale of the interaction
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given by I' and x over which the reduced density matrix evolves . In
this situation we can consider that the density matrix does not evolve in
the integral since changes of p at times larger than the correlation time
are not relevant. It is the so-called Markov approximation [92]. We also
change our variable of integration into 7 and set ¢y at —oo

pertt) == [ SesIDi. Ditt vt
+ ¢ (st DY), D)
I ar 0.0} s 0)
+ K (=7)[psr(t)al(t'), ar(t)] + H.c.}dT,

(3.39)

We now can go back into the Schrédinger picture using the fact that
ps(t) = —i[Hy, ps(t)] + e psr(t)e!™". (3.40)

Using Eq. (3.40) onto some products of operators A;(t) Br(t') and A;(t') B;(t)
in the interaction picture, we find

e ot AL () By (t) et = AB(—7) (3.41)
e 1ot A (1) By (t)e™" = A;(—7)B. (3.42)

This means that in the Schrodinger representation Eq. (3.39) becomes

ps(t) = — il o, ps(t)] — /0 { s, Di-npst
+Zc —7)[ps(t) DI (=7), D]
+/<:+<T>[a,a}<—r>ps<t>1

+ K= (=7)[ps(t)al(—7),a] + H.c.}dr

(3.43)

We can derive the time evolution of the cavity’s operators in the inter-

action picture from
= i[Hy,d'] = —iw,a, (3.44)

Therefore '
ar(t) = ae™"™". (3.45)

Performing the integration on the terms proportional to the bosonic cor-
relation functions K* we see that this part takes a Lindblad form

GiiHotA[( )B[( ) iHot — AB[<—T> (346)

e ot A () By (t)e'™™t = Ap(—7)B. (3.47)
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This means that in the Schrodinger representation Eq. (3.39) becomes

ps(t) = = i[Ho, ps(t)] + [D_ps(t) — ps(t)Dy, D' + H.c.

K
+ 5(2@ps(75)6fr —alaps(t) — ps(t)ata) — knplal, [a, ps(t)]],
(3.48)
where k = 273, |lq]*6(w. — wy) and np is taken at the cavity frequency
w,. and

+oo
D, = / S CE(L7)Dy(—7)dr. (3.49)
0 (0%
From Eq. 1} we define the Liouvillian superoperator £ such that
ps(t) = Lps(t) = —i[Ho, ps(t)] + (Le + Le)ps(t), (3.50)
where we defined

Leps(t) = [D_ps(t) — ps()Dy, D] + H.c.

v

K

Leps(t) = 5 2aps(t)a’ — alaps(t) — ps(t)ala) — wnpla’, [a, ps ()]
(3.51)

Remark. In the definition of the damping rate k we dropped the imagi-

nary part proportional to iPwOiw as it only introduces a renormalisation
of the energies.

3.3 Rate equations approach

In general we cannot find an analytical solution to Eq. . However,
one can derive the rate equations using a secular approximation on the
master equation. The rate equations give an approximation of the time
evolution of the populations by separating the evolution of the popula-
tions, the diagonal part of pg, from the coherences, the off-diagonal part.
Let us first project Eq. onto the eigenstates of Hy. The unitary
evolution of pg only involves off diagonal terms and the damping of the
cavity governed by L. does not mix the populations and the coherences.
Hence, we focus on the electronic part ﬁvepg of Eq. . We start from
the electronic part of Eq. and project it onto an eigenbasis of Hy.
We only show the calculations for the second term in the first commu-
tator. The others can be deduced following exactly the same steps. We

call A the first term in the electronic part of Eq. (3.39)

+00 . .
A= [T S CHE)Dlypse Duge =B P E B )
0

a,abed

o0 ) )
- / > CH(r)DypseDeac’ e E0t e Ev—E 4| ) (d)
0 a,abed

(3.52)
The two different expressions of A in Eq. (3.52) are found using the fact
that due to the Markov approximation, pg; must commute with e**of,
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Doing the secular approximation means we neglect the fast oscillating
terms in Eq. (3.52) that average to 0 when looking at the long time
evolution of pg. Hence for the two expressions of A in Eq. (3.52)) we find

E,—Ey+E.—E;=0
(3.53)
E,— E;=0.

We, therefore, find that E. = Ej, and A is approximated by

400 .
A [T S CHT)DypsieDeae B drd, 5, bp, ). (3.5)
0

a,abed

If £9 is not a multiple of the cavity frequency w. the only way for two
states |a) and |b) to have E, = E, is that |a) = |b). Then we find

+o0 .
A~ / Z C;_(’7')lepsjbbDbael(Eb_Ea)TdT (355)
0

a,a,b

We can perform the integral over 7 in Eq. (3.52) using Eq. (3.31]) and
find

A= "Tuwpsiw, (3.56)
ab

where I'y; is the transition rate given by the Fermi’s golden rule between
two eigenstates of Hy. Applying this result on each term of Eq.
we show that the populations approximately evolves following the rate
equations

Plag,n) =3 {T5 Pld',n) = T4 Pla,n)}
+r(1+ nB){(n +1)P(¢,n+ 1) —nP(q, n)} (3.57)
+ mnB{nP(q, n—1)—(14n)P(q, n)},

where P(q,n) is the population of the state |¢,n) with ¢ its charge and
n its photon number and Fg;l”/ is the transition rate from the state |q, n)
to the state |¢/,n’). When k = 0 this is exactly the rate equations used
to study the Franck-Condon blockade regime in [86)88] in molecular
electronics. The transition rates Fg'n”/ can be found from the Fermi’s
golden rule

I‘(1)2/ = Z Fa|Fn,n’|2fi([n/ - n]WC)
(3.58)
F?Z/ = Z Fa|Fn,n’|2fc:([n - nl]WC)

where F, v = (n|e*®=%)|n’) is the Franck-Condon matrix element [8§]

, !
Fpw = (sgn(n/ — n))n= e X/2p\M=m, | %Lﬁ‘,{ “m()2), (3.59)

with m = min(n,n’) and M = max(n,n’) and L? are the generalised
Laguerre polynomials. The physical process described by the rates in
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Eq. is the tunneling of an electron between one electrode and the
quantum dot with emission or absorption of n’ —n photons in the cavity.
Taking a closer look at the rates Fg/n”' the Franck-Condon matrix elements
act as intensity factor for the rate while the Fermi distributions f= give
the energy condition for the rate to be different than zero. We see in
Eq. that an electronic rate corresponding to the charge of the dot
is turned on when eV, > (n’ — n)w,, while a rate to discharge the dot is
turned on when eV, < (n' — n)w,.

(a) r, r[f} We (b) rjfj We
1227 €0 e
/ KLLLL\ br ! Ty [ff‘ MR

I'p

We L FL
R
€o

I'r

Figure 3.2: Example of configurations of the leads for excitation or dis-
sipation of the cavity mode by the electronic transport from electron
tunneling out of or in the dot. I', is the tunneling rate between the dot
and the lead «a, w, the cavity frequency, ¢ the dot energy and eV, is the
voltage drop between the lead o and the dot energy level.

Fig. shows a schematic representation of the processes occurring
in the setup where 9 shows the dot energy level and py/r shows the
position of the left and right potentials. The red arrows show the ab-
sorption and emission of photons required for the tunneling event to take
place so that the energy balance is fulfilled. Although this representation
depicts well the relative positions of the energies in the system, it does
not show the actual energy conditions that matter for understanding the
rate equations. Indeed, we have seen that thanks to the electron-photon
coupling there are actually several channels through which electrons can
tunnel. Here, we call a channel the transition from a state |g,n) to a
state |¢’,n’). For each channel there is an energy condition &y + kw, to
be fulfilled for an electron to be able to go through, where k =n' —n is
a relative integer.

Fig. shows a schematic representation of the energy thresholds
corresponding to all the tunneling channels. The relative positions of
the electronic leads’ potentials with respect to the dot energy level eV /g
are represented by the gray areas while in the middle is given the ladder
of energy conditions corresponding to the different types of electronic
channels. The channel labeled 0 corresponds to the elastic transport for
which no energy is exchanged with the cavity mode. Then the other
channels are labeled by kw. with £ € Z*. k is the number photons
created in the cavity during a charging event of the dot, while if the

32



event corresponds to the electron leaving the dot, it is —k which is the
number of photons emitted in the cavity. It means that one energy level
kw,. corresponds to an infinite number of processes in which n’ —n = k
where n is the number of photons in the cavity before the tunneling event
and n’ is the number of photons in the cavity after the tunneling event.
The blue arrows show the direction of the electron during the tunneling
event with respect to each electronic leads, the middle area corresponding
to the quantum dot location. If an arrow has two heads, it means that
the electron can go in or out of the dot, if both arrows point toward a
lead, this means that the dot can only be discharged and therefore can’t
be populated, on the contrary if the two arrows point toward the dot it
means that the dot can only be charged. In those two cases there is no
current through the corresponding channels.

As a summary, if eV, > kw,, all the tunneling event resulting in the
emission of k photons while the dot is being charged in the cavity are
allowed while if eV, < —kw,. all the tunneling events resulting in the
emission of k photons while the dot is being discharged are allowed.

Figure 3.3: Schematic representation of the electronic channels located
by the energy condition for the electron to pass through a channel. eV,
gives the relative position of the lead o chemical potential with respect
to the dot energy level 5 while a tunneling event resulting in the creation
of k photons in the cavity is depicted by an energy kw.. The blue arrows
show the direction of the electron during a tunneling event where the
middle area corresponds to the quantum dot. Therefore an arrow going
from lead a to the energy level kw. means that an electron can charge
the dot creating k photons in the cavity during the tunneling event. I,
is the tunneling rate associated to lead «.

Looking at Fig.[3.3|or Eq. we see that if both the voltage drops
are in | —w,; w.[ (disregarding thermal effects), then only elastic tunneling
is possible, therefore, the number of photon in the cavity is not affected
by the electronic current and the cavity should remain in its initial state.
Now if one of the leads has its voltage drop decreased then only the
tunneling events resulting in the decrease of the number of photons in
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the cavity are allowed and the electronic current can only relax the cavity
mode. Therefore, if we start from a cavity at thermal equilibrium with
kT < w,, since photons can’t be emitted in the junction and the cavity
is initially in its ground state, only the charge transfer occurs. However,
if one of the voltage drops is raised above the first inelastic threshold
at w., the electronic leads can exchange energy with the cavity during
a tunneling event and a new channel opens each time the voltage drop
verifies |n' — n| = [|eV/w.|n].

Remark. The probability of the processes described in Fig. depends
on the probability of the stationary state. It is to be expected that the
probability of a state with a high number of photons is very small and
therefore a process requiring an absorption of photons very unlikely, even
if the rate is big, for a cavity that is not driven by a source of light or a
very large voltage drop compared to the cavity frequency.

3.4 Populations

The first step to find any physical quantity is to find the populations
or more generally to solve the master equation and find p. As usually
in experiment only the long time behaviour of a system is measured,
we look for the stationary solution of Eq. or Eq. . In the
case of the master equation Eq. , as we mentioned, we can’t find an
analytical solution. However, this equation can be solved numerically, see
appendix [A] For this purpose, we developed a code able from a system
Hamiltonian of the form and an interaction Hamiltonian of the form
to find the superoperator L or the corresponding rate equations
and compute the stationary solution of Eq. or Eq. .

However, some interesting approximations can be made in order to
find an analytical solution of the rate equations. As we mentioned, the
plasmonic cavity formed by the STM has been reported to have a very
large damping rate [28]. In this case we have x > I', which means that
the rates governing the evolution of the populations in the rate equations
are dominated by the rates proportional to x which only acts on the
photonic populations P,(n). Under those conditions, we can assume that
the photonic population P, remain close to their equilibrium distribution.
In molecular electronics this is known as equilibrated phonons.

As a first approximation we consider the charge states and the pho-
tonic states to be close to independent. This means that the joint
probability of the photons and the electrons P(g,n) is approximated
by P(q,n) = P.(q)Py(n). As a result this allows us to write rate equa-
tions for the photons or for the charge summing Eq. over q or n
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respectively.

Pi(q) =Y {T4P.(q) — TT P.(g)} (3.60)

+ k(1 +np){(n+ 1)By(n+1) = nPy(n)} (3.61)

+ /an{an(n -1) -1+ n)Pp(n)},

where
Fq = Z F” ¢ P,( (3.62)
and
= Z an” P.(q). (3.63)
qa#q

The solution of Eq. (3.60) is
P.(q) =T%/> T.. (3.64)

Hence, the population of the dot is directly proportional to the rate for
an electron tunneling into the dot. From Eq. we assume that the
photons are equilibrated F,(n) = P5(n) = e~ el kBT (] —e=we/kBT) " SQince
kpT < w. we can take the limit P7?(0) = 1 and then the populations are

>an Fa’\ [T (nwe — eVy)
> Fa% [ft(nw, —eVy) + [~ (—nw. — eV,)]

F(1) =

(3.65)
>onlTa Aj, f(—nw. —eV,)

) S T (noe — Vi) + (e — V)]

where eV, = o — €p.

3.5 Electronic current

The electronic current is computed from the evolution of the number of
charges in one electronic reservoirs Ny = Y ¢l ¢

I, = —eN, = ie Z {takchD — takcakDT}. (3.66)
k

The average current from lead « is then computed thanks to the density
matrix

(1) = —€Tr(1,p). (3.67)

When we derived Eq. (3.50) we stopped at order 2 in the rates ¢, and
l;. In order to have a current at the same order in t,; we therefore use
an expansion at first order in the tunneling Hamiltonian for the density
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matrix, since the current operator is also an operator of order one in the
tunneling rates. We hence use Eq. (3.21]) into Eq. (3.67)) in the interaction
picture to find an adequate expression of the average current

(L) = ieTe(Ta(t)pr(to)) — /tt Te(Loy (8)[Hinr (), pr(£)))dt. (3.68)

As the first term is proportional to the average current at time ¢y this
term is 0. The second term can be treated the same way we derived the
time evolution of the reduced density matrix. Using the Born-Markov
approximation and the invariance of the trace under permutation we find

(L) =2 S Re [ {CHE)Shon(4,8) = G (7)Ship(t. ), (3.69)

where ST 5(t, ') = (A;(t)Br(t')) is the correlation function between A at
time t and B at time ¢’ in the interaction picture. To compute the average
current corresponding to the rate equations, we have to also perform the
same secular approximation we used on the density matrix on the average
current in Eq. . We show the calculation for the first correlation

Sppt (7).

Sppi(t, 1)) = 3" DuyD} pgeqe’Fe Bt iEe BT, (3.70)

abc

We neglect in Eq. (3.70) the fast oscillating terms for which E, # E.
which means that we only take into account terms for which |a) = |c)

Sppt(t,t) =" Dy Df, psaae’ e )7, (3.71)
ab
Using Eq. (3.71)) in Eq. (3.69) and integrating over 7, we find
~—ed {r9r P(1,n) — T, P(0,n)}. (3.72)

Injecting Eq. (3.65)) into Eq. (3.72) we find the average current when the
charge states and the photonic states can be considered independent in
the case of symmetric voltage drops V, = —Vp =V

(I,) ~ I ZP(n)[f(nwc —eV) — f(nw, + eV)], (3.73)

Where P(n) = A"’ /n! is the Poisson distribution of parameter A2
and Iy = el' I'g/(I'L + 'g). Although this expression only applies in the
case of equilibrated photons, we see that the current evolves in steps each
time a voltage drop attains a multiple of the photon energy, similarly to
the Franck-Condon physics [82,86,/88]. The height of the step is given
by the Poisson distribution, which means that the current is suppressed
at low bias voltage. This shows how the energy of the leads is dissipated
inside the cavity mode.
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3.6 Results on the rate equations

3.6.1 Effect of the voltage

-5 T T 1
—5-4-3-2—-101 2 3 4 5

eVvR/Wc

Figure 3.4: Electronic current as a function of the voltage drops eV}, and
eVg for A = 1.4. The model parameters are k = 10kgT = 0.lw,. and
', =g = 10"3w,.. Reproduced from Ref. [93].

Fig. [3.4 reports the electronic current I as a function of the relative volt-
age drops eV}, and eVy in a regime of parameters that should correspond
to an actual experimental setup. See appendix[A]for the numerical imple-
mentation. Here, we clearly see the similarities with the Franck—-Condon
blockade. The {eVy,eVgr} plan is separated in squared region in which
the current is approximately constant. The length of those square region
is given by the energy of one photon w.. Eq. should give a good ap-
proximation of a cut along the line eV, = —eV; on Fig. where we can
see the low bias current suppression. This kind of 2p map is particularly
interesting as it allows us to cover all kind of setups for the voltage drops.
Therefore a cut along the diagonal between the upper left corner and the
lower right corner of Fig. [3.4] shows the evolution of the current for a
symmetrically biased junction to which equation Eq. corresponds.
A vertical cut on Fig. corresponds to a junction in which the right
voltage drop is constant and only the left one is varying. This would be
typically the case for an STM experiment. Fig. 3.5 shows a closer look
at the current for a symmetrically biased junction for six different values
of the coupling strength .
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Figure 3.5: Electronic current as a function of the voltage drops eV}, for
different values of the coupling strength A\. The model parameters are
k = 10kpT = 0.1w, and I';, = ' = 1073w,

As expected the suppression of the current increases with the cou-
pling strength and we clearly see the steps of the current at each in-
elastic threshold, where photons are emitted or absorbed in the cavity.
Fig. [3.6) shows the height of the consecutive steps of the current for a
set of different values of the coupling strength for a large damping rate
of the cavity. As k > kgT > I it is to be expected that the photon
population is always very small and thus that P,(0) > P,(n) for any
integer n > 0. Moreover we argued earlier that the rate governing the
photonic population P,(n) are dominated by the terms in s thus the
probabilities of a charge state and a photonic state should be close to
independent as photon should remain equilibrated. As we predicted that
the electronic current for the equilibrated photons should be described
by the Poissonian partition function, Fig. [3.6] shows that for x = 0.1w,
the approximation of equilibrated photons is valid in this case as the
electronic current as a function of the voltage does not deviate much
from the Poisson partition function. In fact we see that the stronger the
coupling strength the less accurate this approximation is, however in an
experimental setup we don’t expect coupling strength higher than 10%
of the photon energy. Therefore Eq. gives a good estimate of the
current in the case k > I' and the current is proportional to the Poisson
partition function.

38



1.0 H 1.0 H
A=0.1 A=0.3
0.8 0.8
0.6 0.6
0.4 0.4
0.2 7 0.2
0.0 T T T T T 0.0 T III T T T
0 1 2 3 4 0 1 2 3 4
1.0 H 1.0 H
A=0.6 A=0.8
0.8 0.8
K 0.6 0.6
L
~
< 0.4 0.4
0.2 - " 0.2 -
0.0 T T ll. T T 0.0 T III = T
0 1 2 3 4 0 1 2 3 4
1.0 1.0
A=14 A=2
0.8 0.8
0.6 0.6
0.4 0.4
i | T 1l
0.0 III T T T III 0.0 ——=r= 11 III T T
0 1 2 3 4 0 1 2 3 4
eAVL Jwe

Figure 3.6: Steps heights of the electronic current (in blue) compared to
the Poisson distribution (in red) for a symmetric junction (V;, = —Vg)

with parameters k = 10kgT = 0.1w. and I'y, = I'.

Eq. (3.73) also predicts an exponential decrease of the first step’s
height with the square of the coupling strength A which is shown in

Fig. 3.7
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Figure 3.7: Plain blue curve: value of the current I at eV = 0.5w,. as
a function of the coupling strength A in the case of a fully symmetric
junction (V, = =Vx =V, 'y =T'g = 0.00lw. and k = 10kgT = 0.1w,).
In dashed black is represented the expected dependence In(I/T) ~ —\?

provided by Eq. (3.73).

3.6.2 Effect of the damping

Earlier we saw that a damping rate x of the cavity of orders of magnitude
bigger than the tunneling rates allows us to decouple the electronic state
from the photonic state of the cavity. However, we also expect it to have
an effect on the current steps’ height and width as it is the dominant
dissipation mechanism when & is even larger than kg7, which is reported
to be the case in plasmonic cavities. Fig. shows the evolution of the
current as a function of the damping rate of the cavity s at eV = 2.5w,
for both a symmetrically (panel (a)) and non-symmetrically (panel (b))
biased junction for three different values of the coupling strength A. We
see in both panel (a) and (b) that as soon as the damping rate of the
cavity becomes of the same order as the tunneling rate I', the current
does not depend much on x and reaches the strong cavity damping limit.
We see for A = 0.8 that both for panel (a) and (b) the current increases
with k. This comes from the fact that an increasing damping rate of the
cavity implies that the probability of having 0 photons inside the cavity
increases accordingly.

Fig. shows the evolution of P,(0) as a function of the coupling
strength in panel (a) at eV, = —eVr = 1.5w, and as a function of the
eV = eV = —eVg in panel (b) for A = 1.4 for three different values of
x in both panels. Panel (a) shows that P,(0) has a minimum close to
A = 1. This minimum is due to Fgl)l reaching a maximum. However as the
damping rate increases, the population is less sensible to I' and therefore
to the modification of the coupling strength since at large damping rate
the effect of k dominates over the effects of I'. Panel (b) shows that this
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effect is seen along all the voltage drop axis.
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Figure 3.8: Current as a function of the damping rate of the cavity x at
eV = 2z.5w. for (a) a symmetrically biased junction (V, = —Vz = V)
and (b) an asymmetrically biased junction (V, = V and Vi = —0.5w..)
for three different values of the coupling strength . In both cases I'y, =
I'r = 103w, and kT = 10~%w,.

In Fig. for A = 1.4 the behaviour changes depending on the fact
that the junction is symmetrically biased or not. From Eq. we
know that for a coupling strength A < 1 the dominant rates are the ones
that conserve the number of photons in the cavity I‘g'n" and in particular

Fgloo is the biggest one. Since in Eq. (3.72) the electronic current is given
by the product between the rates and the populations, we understand
from the fact that FZE]O is the biggest rate that the contributions associ-
ated with P,(0) has the most impact on the current. Therefore increasing
P,(0) results in the increase of the current we see in Fig. . On the
contrary when A = 2 the dominant rates are no longer the rates that
conserve the number of photons in the cavity as the rates increase with
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the number of photons exchanged up to An = 4, where An is the num-
ber of photons exchanged, and then decrease with An from this value.
Therefore when k increases, it reduces the probability of the states with
n > 0 and thus the current only goes through channels with a smaller
rate I resulting in the decrease of the current.
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Figure 3.9: Probability of having no photon in the cavity F,(0) as a
function of (a) the coupling strength A at bias voltage eV = 1.5w,. and
(b) the bias voltage with coupling strength A = 1.4. Both for of a fully
symmetric junction (V, = —=Vx =V, 'y, = I'g = 0.00lw, and kT =
0.01w.) and three different values of the damping rate of the cavity .

The case A = 1.4 seems a bit peculiar since it behaves differently
when the junction is symmetrically biased compared to when it is not.
We know from Eq. that for A = 1.4 the biggest contribution in
the electronic current comes from the 0 occupancy state of the dot and
the cavity |0,0). The second biggest contribution comes from the state
|1,0) with a negative contribution. In the case of the symmetrically
biased junction, we can apply the same reasoning as for A < 1 since
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as P,(0) increases the electronic current also increases due to I'j3 being
the biggest rate. Therefore when r increases, P,(0) also increases and
since in Eq. the contribution from T'}2 is proportional to P,(0), the
current increases.

However, for the asymmetrically biased junction, the channels at neg-
ative energy thresholds can only charge the dot for the two electrodes.
Therefore, it introduces an asymmetry between the probability of occu-
pancy of the dot since it is more likely that the dot is charged. Fig.
shows a schematic representation of this asymmetry. While all the nega-
tive energies contribute to the charged state of the dot only the energies
above eV}, contributes to the empty state of the dot. The energies be-
tween eV, and eV have contributions to both states therefore summing
over all the energy we see that there are ||e(V, — Vg)/w.|| more energy
thresholds contributing to the charged state of the dot. Hence when k
increases and therefore P,(0) it is in fact mostly P(1,0) which increases.
As mentioned |1,0) has a negative contribution to the current which
explains that in this case the current decreases.

Figure 3.10: Schematic representation of the energy levels of the system
relative to the dot energy ¢y. eV, gives the relative position of the lead
a chemical potential with respect to the dot energy level €y. The blue
arrows show the direction of the electron during a tunneling event where
the middle area correspond to the quantum dot. An arrow going from
lead « to the energy level kw,. means the creation of the state |1, k) while
an arrow turning the other way means its destruction. I', is the tunneling
rate associated to lead a. The dot on the energy levels represent the
contribution of the state to the average number of electron on the dot.
Black for 1, white for 0 and gray for I'r,/(I'r, + I'r).

We now understand how the damping rate of the cavity affects the
height of the current’s steps. However, if we look at the width of the
steps in Eq. (3.73)), we see that the width is given by the temperature
from the Fermi distribution. The width of the Fermi function is found
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by finding the maximum of the absolute value of its derivative
[ p—
kpT (1 + ex/ksT)2’
|f(0)] = 1/4kpT is the maximum of | f’|. Then solving |f'(x)| = |f'(0)|/2

we find that the distance between the two roots of this equation is
k:BTln(gf;g). Therefore, the width predicted by the rate equations
depends on kg7 only and not on . This is confirmed in Fig. [3.11] show-
ing the full width at half maximum (FWHM) of a conductance peak at
eVy, = 1.5w, as a function of x in panel (a) and kT in panel (b). We see
in panel (a) that whatever the temperature the curves remain flat and
the FWHM doesn’t depend on the damping rate x, while the panel (b)
shows the same linear dependence of the FWHM with the temperature
whatever the damping rate of the cavity k.

(3.74)
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Figure 3.11: Full width at half maximum of the conductance’s peak at
eVp = w. for a symmetrically biased junction as a function of (a) k
for two different values of the temperature kgT and (b) kgT for two

different values of the damping rate of the cavity x. For both panels,
I'n=Tp= 10_3wc.
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3.7 Full computation of the density matrix

When the damping rate of the cavity exceeds the temperature, we expect
the population and the current to evolve on a scale given by k since it is
the dominant channel for dissipation. However, when we computed the
current at second order in H;, in the interaction picture, we neglected
terms accounting for the relaxation coming from x. In order to recover
the effect of x on the width of each current’s step we start from Eq.
and re—sum all the terms by using the full time evolution of the system
instead of the system only, thus replacing efo* by e,

I) =2 Re [ CE ()b (4, 1) — Co (1) Sprp(t,t) br, (3.75)

where Syp(t,t') = (A{t)uBu(t')) = (A(0)gBu(7)). To compute the
correlation functions of the dot, we can use the quantum regression theo-
rem [94,95]. We call x = By (7)p. Then x = —i[H, x| and since D and DT
only act on the system, we conclude that ys(t) = Trs(x(t)) = Bu(t)ps
time evolution is given by Eq. . In other words x(t) = e£'x(0) and
Sap(t, 1) = Sap(r) = Tr(Ae'B). Let us define i¢ such that

—+00 «
i = /0 ce(r)elrdr. (3.76)

Using the Fourier transform of C§, we can write ¢ in the frequency
domain instead of time domain as following

+o00  ptoo . < d
i@ = [ ) /0 Fafj(w)e(in“ﬁ)TdT%, (3.77)

where we used the wide band approximation on I',. At this point, we
can perform the time integral and find an approximate expression of ¢,

T, [+o +
e / ), (3.78)
21 J—oo (iwFn)Ild+ L

where 7 — 0 and Id is the identity super-operator. The full expression
for the current then reads

1 “
Ias:——F Re / (w _Di et
o) { Jal (zw—n)IcH—E Bs
« 1 “
+ fo (W) wD? -D Stdw}.
Ja (@) (iw+mn)ld— L Ls

(3.79)

This expression of the current was used in this work to compute numer-
ically the current, see appendix [A]

Remark. In fact, in general the Born—-Markov approximation is not
enough to conserve the positivity of the density matriz, in our previous
calculation of the current and of the rate equations, it was the secular
approximation that was ensuring the positivity of the density matriz. In
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the case of Eq. , we can have an idea of the error we make on the
current by considering the non-interacting case A = k = 0, case between
the cavity mode and the electrons. In this case we can reduce the Hilbert
space to the charge states of the molecule only and write the Liouvillian
L as a4 x 4 matriz

T, 0 0 r_

< | o —r2—is 0 0

E=1 o 0 —T/2+isy 0 | (380)
T, 0 0 T

where T2 Y, Do fE(go) and T = 3, T. We can find the eigenvalues of
this matriz and, therefore, directly compute the current in this case.

LLLfs(en) — olo)]
) == [ S T oy

(3.81)

We see that in Eq. the term o« # [ has a Landauer-like form,
however the term o = [ correspond to an artifact coming from the Born—
Markov approzimation that is not vanishing at 0 bias voltage nor when
there is only one electronic lead coupled to the transport. This error is
of order I'/kgT < 1. We also see that for non-trivial cases where the
junction is not fully symmetric, this expression is not current-conserving,

i.e. <IL> 7é <IR>

—1I/el’

eVL /wc

Figure 3.12: Electronic current I as a function of the left voltage drop
eV, for a symmetrically biased junction for six different values of the
coupling strength . For all the curves kgT = 10 %w,, k = 10~ w, and
I', = Tg = 1073w,. Reproduced from Ref. [93].

Fig. shows the electronic current as a function of the left voltage

drop for a symmetrically biased junction (V, = —Vg) at large damping
rate (k = 0.1w,.). We see exactly the same features as when we used the
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rate equations in Fig.|3.5. The current exhibit steps each time we add to
the voltage the energy of one photon, which correspond to energy being
exchange between the electron and the cavity in an inelastic tunneling
process. The heights of the plateaus shown in the two plots are the
same which means that the rate equations predicts well the populations
far from an inelastic threshold. However, we see in Fig. that the
current steps are broadened as expected.

Previous work by Braig and Flensberg [89] already shown a way to
incorporate the broadening of the vibration mode into the electronic
current in the Franck—Condon physics. Compared to this method, our
method is able to take into account the effect of the damping of the
cavity on the current without making any assumption on the photon
distribution.

We know in the case of the rate equations that the width of the steps
is controlled by temperature and grows as k:BTln(ngg%) from Eq. (3.73)).
Only the first step at eV, = 0 is not impacted by the damping of the
cavity which is explained by the fact that this step correspond to elastic
tunneling of electrons where there isn’t any exchange of photons. There-
fore, since photons are not involved the width is only controlled by the
thermal fluctuations in the electronic leads. Fig. shows FWHM of
the conductance’s peak at eV, = w.. In panel (a) is presented the depen-
dence of the FWHM on the damping rate of the cavity  for two different
values of the temperature and panel (b) presents the dependence of the
FWHM on the temperature for two different values of the damping rate
of the cavity.
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Figure 3.13: Full width at half maximum of the conductance’s peak at
eV = w, for a symmetrically biased junction as a function of (a) x for
two different values of the temperature kg7 and (b) kg1 for two different
values of the damping rate of the cavity x. In dashed black are the width
of the Fermi distribution corresponding to each cases. For both panels,
I'r=Ig= 1073000.

As we just discussed the expression in Eq. allows us to take into
account the broadening of the electronic current by the damping rate x
of the cavity. We see in panel (a) that at high temperature, in blue, the
width grows linearly with x, with FWHM ~ x + kBTln(gfgg). This
means that although the width is mostly given by the temperature when
kgT > k there is always a contribution proportional to x with a ratio of
~ 1. In this regime it seems that the contribution from the temperature
and from the damping rate of the cavity adds up linearly. However
when the temperature is smaller, in green in Fig. [3.13] the width mixes
the effect of the temperature non linearly as the slope changes when
becomes bigger than kg7 where it is expected that the width is mostly

given by s. In panel (b), we show the dependence of the width with the
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temperature kg1 for a damping rate k > kg7 in blue and a damping rate
k < kgT in green. We see that when temperature is very large compared
to k the width is only given by the width of the Fermi distribution and
therefore by the temperature (shown by the lower black dotted line) and
only depends on T (green curve), whereas when x > kgT for very small
temperature the width is only given by x and therefore we see a plateau
at low temperature for the blue curve. However when kgT reaches 0.1k,
the FWHM grows with kgT' linearly with a slope given by the Fermi
distribution as shown by the upper black dotted line.

3.8 Strong drive

3.8.1 Derivation

So far, we have studied the electronic current in a molecular tunnel junc-
tion coupled to an electromagnetic cavity in its ground state. However,
it is interesting to look at the action of the cavity mode on the current.
One way to do that is to drive the cavity out of its ground state. In
this section we will consider that the number of photons in the cavity is
kept constant thanks to the damping of the cavity. The driven system
Hamiltonian is

Hg = eod'd + weala + Ad'd(a + a') + aw, cos(wrt)(a +a').  (3.82)

The interaction Hamiltonian only contains the interaction between the
electronic leads and the dot

Hipt = > tagch,d + Hee. (3.83)
ak

and the environment is only composed of the electronic leads

ak

where the total Hamiltonian is H = Hg + Hg + H;,;. We want to derive
the master equation for this problem but first we would like to remove
the time dependence from H,. First of all we can remove the terms
coupling the dot and the cavity mode Ad'd(a + a') using the unitary
transformation

Uy = M'dla=al), (3.85)

This transforms the system Hamiltonian into
HY = [g) — 2Aa cos(wpt)]d'd + weala + aw, cos(wrt)(a + al),  (3.86)
where e, = ¢ + Mw,.. The interaction Hamiltonian is transformed into

H,y =Y tape™ el d + Hee, (3.87)
ak
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In order to remove the time-dependence in the driving term aw, cos(wrt)(a+
a'), we use the unitary time-dependent transformation

Uy (t) = erelot (3.88)

and neglecting all terms rotating at a frequency bigger than w, — wy,, we
find

HY% = [g) — 2Aa cos(wpt)]d'd + (w, — wp)a'a + %wc(a +a')  (3.89)
for the system Hamiltonian and
HY =3 togetaeH=alei 0 g4 Hee. (3.90)
ak

for the interaction Hamiltonian. Now we want to remove the time-
dependence of the dot energy level. Here we have a dot energy which is
oscillating between two leads, which is equivalent to having the leads’ po-
tential oscillating. This problem has been studied in electronic transport
by C. Bruder and H. Schoeller [96]. We define the transformation

Us(t) = ei(hdid, (3.91)

where €(t) = [ 2aA cos(wpt')dt’ = 2aA sin(wpt) /wr. Using Eq. (3.91) on
Hg removes the time variation in the dot’s energy

HY = ehdld + (w. — wi)ala + Swe(a +af) (3.92)

and moves it in the tunneling rates in H},,

H,L/Zt _ Ztake}\(aefiw[,tfafeith)%*iE(t)Clkd + H.C. (393)
ak

"

Finally we can diagonalise Hg' by shifting the cavity mode by —a using
the unitary transformation

Us = eToeoop @71 (3.94)
In the end the system Hamiltonian is
Hg = eod'd + (w, — wi)a'a (3.95)
and the interaction Hamiltonian is
Hiy = topetocHimal et tic el g4 Hee. (3.96)
ak
where we dropped all the superscripts and redefined € as
e(t) = QAM sin(wrt). (3.97)

(We — wr)wr,

Eq. (3.96) can be simplified further in the small coupling A\ and large drive
a so that Aa > A. Then the tunneling rates could be approximated by
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tor(t) = tore € More generally, we consider that « is very large so
that we can average a and a' by v/ N. Then the Hamiltonian becomes
the Hamiltonian of a single dot coupled to electronic leads

Hg = ¢od'd (3.98)

with time-dependent tunneling rates

Hi = Z take_“(t)clkd + H.c. (3.99)

ak
where we redefined €(t) = (2A\VN — 207 Q“L e )sin(wpt). We define
= (2AV/N — 2aA j“fw e ). We still Work in the sequential tunneling

regime kT > T, however since the driving introduces a fast time evolu-
tion for in the density matrix, we won’t use the Markov approximation.
As a result we find time dependent rates in the master equation. We
can start from the time-evolution of the density matrix in the interac-
tion picture in Eq. since Hg is time independent. Then expending
Eq. at second order in H;,;, and tracing over the leads’ degrees of
freedom following the derivation in [96], we find

portt) = = [ {040, DY st ()] che (Bt

to ok
HIDI(B), Dy (t)psi (#)(Carc (D) } dt’ + H.c.
(3.100)
where we defined D = de~®. Using the Born approximation, we con-
sider that the electronic leads are kept at thermal equilibrium since the
perturbation provoked by the dot should be negligible. This approxima-
tion allows us to express the average values of the electronic leads in term
of the Fermi distribution following Eq. to Eq. . Then in the
Schrodinger picture we find that the reduced density matrix pg evolves
following

ﬁs(t) HO;PS / Z|t ’2 —iHg(t—to)

([Ds(t), D} )ps (t >]ew<t D fE (Ear)

+[D(t), Di(t) psr(t))]e~Eer 1) f= (eak)) sl gy’ 1 [ .c.
(3.101)
In order to find the rate equations we project Eq. on the dot’s
states |¢) where ¢ € {0,1}

Py(t) = (alps(t)lq)- (3.102)

Since D|q) = d,1e7 ) and Df|q) = §,0e™®), this last equation reduces
to a simple expression

. t
Pyt) =2Re [ S tarl? (Suofs (Ca) Pit) = 8y i (car) PA(E)
> ak
—0g.0 o (ea) Po(t') + 6q,1f;(5ak)P0(t/>) ¢! (Far—e0)(t=t)=i(e(t)—e(t") gy
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where we took the limit £y — —oo. We finally have an expression of the
populations as a function of time. Since the drive is periodic, it seems
natural to study the Fourier transformation of the population

Pty = he [ TS (G = )R + (G = 8,005 )

w (W' —e0)(t—t")—i(e t) e(t dw/dt
(3.103)
where we defined Ty = 27 Y [tarx|*0(w — €ar), applied the wide-band
approximation and used the fact that Py(t) + Pi(t) = 1. Since P, must
be periodic due to the driving, we expand P, into a Fourier series

t)=>_ P,(k)e " (3.104)
k

Integrating Eq. (3.103)) over time and using e "™« = 3, =ikt J. ( )
we find that the Fourier components of P, follow the equation

—iw Y _mPy(m)e”™™ =3 "T'(840 — 0g,1) Pr(m)e ™™

+2Re {Z [, (2q — 1)F§n(Eg)eimwt} ,

. (3.105)
where we defined F4 (E) = (=1)™" Y, Jhin (%) Jtm (%) Y(E + kw),

J,, being the Bessel’s functions and Y (w) = 1 (f(w) — iH[f](w)), where
f is the Fermi distribution, H[f] is its Hilbert transform and Ef = gy —
to- The normalisation of the probabilities imposes that Y; P;(n) = d,.0.
Identifying each Fourier components on each sides of Eq. , we
show that

o Lo [Fim(ES) + Fi (E9)]

Pi(m) = ——" , (3.106)
for any m € N, and
Pi(m) =—PFy(m) (3.107)
for m > 0 and
Py(0) =1 — Pi(0). (3.108)

Since the real part of Y is the Fermi distribution over 2, the populations
for m = 0 are

PL(0) = % ST T2(A fw) f(ES + k). (3.100)

So, from the Fermi distribution, the populations show steps widened by
the temperature at each multiple of the photon energy, the height of the
steps being given by the square of the Bessel function Ji(A/w). This is
very similar to the undriven case we discussed in the previous sections
except for the height that was given by the Poisson distribution [88]. The
electronic current can be derived from Eq. which in this case is
equivalent to

=X [ TwtO)Nle) - Na@IR (), (3.110)
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where N, is the number of electron in the lead « and
Do (#) = 2Re {{al Hont(8) ') (0] Hina () lg) € E B0} (3.111)
We can write the populations P, using their Fourier series in Eq.
t)=eY ToPi(m)e ™" —e Z T (FS (ES) 4+ F2* (ES))e ™,
" (3.112)

We are interested in the DC component of the current n = 0. Using the
analytical expression of the populations from Eq. (3.8.1)) in Eq. (3.112)
we find

<I _ GFLFR

ZJk Afw) [F(ES + kw) = f(Ey +kw)] . (3.113)

As we already mentioned for the populations, we see that the current is
quantized with steps at each multiple of the drive frequency and their
height is given by the square of the Bessel’s functions. This formula
is equivalent to the Landauer—Biitikker formula where the transmission
coefficients are given by JZ(A/w).

0.0 *— T T T T
0 5 10 15 20
Ajwr,

Figure 3.14: DC current as a function of the drive intensity A at kg1 =
1072 and eV}, = —eVi = 5wy, in a weakly coupled junction I'y, = 'y =
10_3wL.

3.8.2 Results

As a result of the transmission coefficients, the DC current oscillates with
A as shown in Fig. [3.14]l This is also shown on a larger scale in Fig. [3.15]
In panel (b) where we see the DC current as a function of the bias voltage
and A in a symmetrically biased junction eV, = —eVr = eV//2 while
panel (a) shows the dependence with the bias voltage and the dot energy
level 9. We see in panel (a) that the DC current is suppressed in diamond
shaped regions along the line eV = 0 where due to the value of A the first
Bessel function are being suppressed. Panel (b) shows that the smallest
A is, the less suppressed is the current around eV = 0 and it also shows
that with A increasing, the current is reduced on a larger scale. In fact
the DC current behave in a way very similar to the non-driven current.
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Indeed in both cases the current exhibits steps and is suppressed at low
voltage as the coupling strength increases. Here A is playing the role of
the coupling strength.
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Figure 3.15: DC current as a function of (a) the bias voltage in a sym-
metrically biased junction (eV, = —eVg = eV//2) and the dot energy &
at kgT = 1072wy, for a weakly coupled junction I';, = ' = 103w, at
A = bwy. (b) is the DC current in the same junction as a function of A
and the bias voltage with g9 = 0.

Fig. |3.16| shows some currents as a function of the bias voltage in
the symmetrically biased junction for different values of A all taken at
the same coupling strength A. The blue curve shows the un-driven case
studied in the previous sections of this chapter for which the steps are
Poissonians. We see that as the average number of photons, and therefore
the intensity of the drive increases, the current suppression is getting
more important at low bias voltage. Therefore, we have shown that a
strong drive of the cavity induces a current blockade in the junction.
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Figure 3.16: DC current as a function of the bias voltage in a sym-
metrically biased junction (eV, = —eVr = eV/2) weakly coupled
[, =T'g = 1073wy, for different values of the average number of photons
(N) = A/2X with A = 1 and kT = 10" %w;,.

Remark. We have mentioned the similarities with the Franck-Condon
physics as the current shows steps at the same thresholds and the current
is suppressed at low wvoltage drops, pointing one difference in that the
tunneling rates are not Poissonian but given by the Bessel’s function.
Another difference is that the tunneling channels in an energy diagram
where organised in an infinite ladder from —oo to +o00 whereas in this
case only positive values are allowed.
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Chapter 4

Current-driven light emission
from a single-level dot

As we emphasized in the introduction one major goal for meso-
scopic QED as well as STM light emission experiments is to design single
photon sources. Therefore, we want to know how the electronic current
drives the cavity and what kind of photon distribution it generates. Also,
the light emission spectrum gives an additional spectroscopic tool to ex-
plore the states of the cavity and of the electronic system. In this section
we call A < 0.1 the weak coupling regime and A > 1 the strong coupling
regime although experimentally A ~ 0.1 is already the strong coupling
regime.

4.1 Light-emission spectrum

As we mentioned while studying the current through the junction Fig.[3.5]
the current characteristics shows steps corresponding to inelastic tunnel-
ing events during which light is emitted. A step occurs when the voltage
drop is a multiple of the photon energy in the cavity eV = nw,. where
n is a relative integer. In fact each step corresponds to the opening of
a channel for electronic transport, where a channel is in fact a process
in which one electron is exchanged between the dot and one lead. In
order to prove that this corresponds to light emission, one can look at
the light emission spectrum of the cavity. The light emitted from the
junction is proportional to the average number of photons in the cavity
~ kw.(a'a). Fig. shows the average number of photons in the cavity
as a function of the left and right voltage drops, eV, and eVj, for three
different coupling strengths. We recognise in Fig. the same step-like
behaviour as the current characteristics. Each time the voltage drop hit
a multiple of the energy of a photon in the cavity, the average number
of photons increases abruptly. Note that at eV, = 0 no step is seen in
the average number of photons, contrary to the current. The tunneling
events occurring at eV, = 0 corresponds to elastic processes for which the
electron conserves its energy. Therefore, no light can be emitted during
these tunneling events.
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Figure 4.1: Average number of photons in the cavity N as a function
of the left and right voltage drops eV g for weak coupling (a) A = 0.1,
average coupling (b) A = 0.6 and strong coupling (c) A = 1.4 in a strongly
damped cavity x = 0.1w. and weakly coupled tunnel junction I', = T'g =
1073w, at room temperature kg1 = 10~ 2w,.

We have seen in that the rate equations Eq. (3.57)), Eq. (3.60)

and Eq. are sufficient to understand the energy exchange process
between the dot, the leads and the cavity. It gives a good description of
the plateau in the populations. Also, the average number of photons is
simply given by the photonic populations in our shifted basis, since the
operator a'a is diagonal in this basis. Therefore,

(a'a) = Tr(a'ap) = Y nBy(n). (4.1)

The populations of the cavity are given, when the charge and the pho-
tons can be assumed to be independent, meaning P(n,q) = P(n)P(q),

from Eq. (3.61)). Assuming low temperature so that ng ~ 0, Eq. (3.61))
simplifies into

Py(n) =3 {0 Py(n') = T By(n)} + K {(n + 1) Py(n + 1) — nP,(n)},

(4.2)
where we remind that [ = 3 . Fg;"/Pc(q). Thought the idea that
the charge and the photonic populations are uncorrelated might seems
surprising at first glance, it is in fact very natural in the case of a sym-
metric junction (I'y, = 'k and eV, = —eVi = eV). In this case the
probability of any charge state is always 1/2, whatever the value of the
voltage V. Therefore, the photon emission is necessarily independent of

n
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the charge population. In general the photon emission is a consequence
of the charge’s fluctuations. But not directly of the charge states of the
molecule. A photon can be emitted during a tunneling event regardless
of the event being the charge or the discharge of the molecule and thus
regardless of the state of the molecule. However since in a lot of cases
the fluctuations of the charge is correlated to the charge state the pho-
tonic state and the charge states are not independent. This is typically
the case when a state of the molecule is preferred due to the fermionic
environment.

Assuming the charge and the number of photons are independent,
for instance in a symmetric junction, Eq. shows that the number
of photons in the cavity is regulated by two different processes. The
obvious one is the relaxation of the cavity into its external environment
that is described by the terms proportional to x and the population of
photons in the cavity. As we mentioned this term in plasmonic cavities is
expected to be largely dominant given that x > I' and ensures that the
cavity is always close to its ground state. The other process acting on the
photonic population is the charging and discharging of the dot given by
the terms proportional to I'. This corresponds to the inelastic tunneling
of the electron. Thanks to the electron-photon coupling, electrons, while
tunneling, can dissipate some energy in the cavity emitting some photons,
or on the contrary, absorb some energy by absorbing some photons from
the cavity.

The rates for those processes are given by 1_“2/, which are proportional
to the charge on the dot P.. The tunneling rates, Fg'n”/, are given in
Eq. . In the rates I the fact that the quantum dot is being charged
or discharged is taken into account in the Fermi distributions f* and
the charge probability P.. Apart from that the photonic part, in those
terms, does not depend on the charge state of the molecule. This means
that as long as the energy difference appearing in the argument of the
function f* is negative for the charge of the dot (f*) or positive for
the discharge of the dot (f~), the corresponding rate is turned on and
the process of emitting a photon in the cavity, or absorbing a photon
from the cavity respectively, is allowed. It is only the voltage drops that
regulates which process is allowed due to the state of the electronic leads,
since the voltage drops also regulate the dot electronic population P..

Strictly speaking, each steps in the current I and photon average
population (a'a) corresponds to the opening of new transport channels
with a given energy |eV,| = nw. being exchanged. However, as this
always corresponds to a transition between a state with 0 photon and a
state with n photons, this can also be viewed as the spectroscopy of the
cavity.

Fig. also shows that the electronic current acting like the source
of the photons in the cavity allows for the control of the intensity of
the light inside the cavity. As in experiment we have typically x >
I' in plasmonic cavities, the typical time between two tunneling events
(given by 1/T") is much longer than the damping time (given by 1/k).
In other words, a photon emitted during the tunneling of an electron
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Figure 4.2: Representation of an inelastic tunneling event during which
2 photons are emitted in the empty cavity.

should dissipate before another tunneling event occurs, and therefore
before another photon is emitted in the cavity. This limit corresponds to
taking P,(0) ~ 1 and P,(0) > P,(n) for any integer n other then 0.

Let us apply this limit to Eq. (3.57)):
P(g,n) =T33 P(¢',0) = 8,0 Y T2 Pla,n)

+ k(14 np){(n+1)P(g,n+1) = nP(g,n)} (4.3)
+ HHB{TZP(Q, n—1)—(14+n)P(q, n)}
For simplicity we take the symmetrically biased junction for which I'y, =
I'r and eV, = —eVg. In this case, the electronic rates Fq 7 and Fq "
are equal. This allows to find the rate equations for the photons only by

summing Eq. (4.3] . over the charge ¢, without assuming the charge and
the photons to be independent.

Pp(”) :FOan(()) — no Z Pnn’Pp(n>

+ i1+ np){(n+1)Py(n+1) = nBy(n)} (4.4)
+ me{an(n -1)—-(1+ n)Pp(n)},
where
T = T =197, (4.5)

Typically in optics experiments kT < w,., thus ng ~ 0. This sim-
plifies the rate equations further Eq. since now the only way to
populate the cavity is through the tunneling of an electron from the
ground state of the cavity Fig. [1.2]

Pp(”) =I'0,5(0) = dno Z A ()
n (4.6)
+ H{(n +1)Py(n+1) — an(n)}.
From Eq. (4.6]), we deduce that in the stationary regime

1) = 3 T0 P (0). (47)
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This corresponds to the equilibrium between the rate at which the cavity
goes into its ground state from an excitation (proportional to k) and the
rate at which the electronic current excites other modes of the cavity
from the ground state (proportional to I'). Since the relaxation of the
cavity is almost instantaneous, the probability of having one photon in
the cavity is proportional to the ratio between the emission rate and the
damping rate P,(1) = >, '0,P,(0)/x ~ ¥, T'o,/k. This is actually a
pretty good estimate of the average number of photons in the cavity.

20.0% -

15.0% A

10.0% A

A(aTa>/<aTa)

5.0% A

0.0% - T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

K/we

Figure 4.3: Normalized difference between the analytical prediction of

Eq. (4.10) and the numerical result using Eq. (3.50) A{a'a)/(a’a) as a

function of cavity damping rate x for a coupling strength A\ = 1.4 and
a weakly coupled symmetric junction, I';, = I'p = 1073w, and eV}, =
—€VR = 5.5wc.

Using the recurrence principle we show that for n > 0

P,(n) = Py(0) Y _ Loy/kn. (4.8)

k>n

Using the normalisation of the probability P, we find

FOn
K

> ;) 71. (4.9)

k<n

RO = (143

n>1
From the expression we found of the populations, we can compute {(a'a)

ZnZl nlon

—_—. 4.10
K+ ZnZl 1—‘On ( )

(ala) =3 nPy(n) =

Where we recall that Tg, = e ** X2 f(n — eV)/nl. Let us define S, (x) =
S x®/k!, the partial sum up to n of the exponential power series.
Then, assuming a very low temperature, so that the Fermi distribution
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can be approximated by a 6 function, Eq. (4.10) can be written as

: Te M A28y, _1(\?)
<a a) = 2 )
K+ e[Sy, (A?) — 1]

(4.11)

where Ny = |eV/w,.] is the greatest integer smaller than eV/w.. In the
limit of infinite bias voltage, we therefore find that (a'a) scales as

2
r
lim (a'a) = A

. 4.12
Ny —+00 k+T(1—e?) (4.12)

This expression can be simplified further using the fact that x > I' to
find that
. + )2
Nvlgr}roo(a a)y = \T'/k. (4.13)
We therefore predict that the light intensity in the cavity scales as \2I" /K
at large bias voltage. However large bias voltage is not the limit that
is usually explored. In STML experiments for instance, the bias voltage
does not in general go far beyond 2eV" [68].
Using again the fact that x > I' in Eq. (4.11)), we can expand the
denominator in the right-hand side around I'/x = 0

fala) = e X8, () 1= e S, () - 1}] +o (H ) |

K K
(1.14)
At first order in I'/k, Eq. (4.14)) gives that
r
(afa) ~ Ee—VA?sNV_l(A?). (4.15)

From Eq. it appears that the voltage drop gives the number of
terms from the power series of e we need to find the light intensity.
Another way to see that the bias voltage controls the accuracy of the
approximation we make using Eq. instead of Eq. for the
light intensity. Indeed the error we make using the large bias voltage
limit is of the order of e \2Mv+1) /i and therefore gives a very good
approximation in the weak coupling regime. Thus in the weak coupling
regime Eq. gives a very good approximation of (a'a) at any voltage
drop.

Fig. shows the comparison between formula Eq. and the
numerical computation of (afa) using Eq. as a function of the
damping rate of the cavity x in a symmetrically biased junction at voltage
drop eV = 5.5w.. The difference between the numerical and analytical
solution seems to scale as 1/k.

As expected we see that when k gets closer to I' the analytical solution
fails to recover the full numerical result since the cavity does not have
the time to fully dissipate between two tunneling events and therefore
dissipation is compensated by the inelastic tunneling of the electrons.
However for k = 0.1w. the comparison between the numerical and ana-
lytical results is very good, < 0.3%, and it appears that we can neglect
electron-tunneling processes between the excited states of the cavity.
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The coupling strength also impacts the photon emission since the
electronic rates not only depend on I', but also on A\ as reported on
Fig.[4.4] Indeed, We see that even though I' < « it is possible that some
rates 'y, or even more generally I',,, become bigger than the cavity
damping rates with the increase of A. For instance it is the case for
g2 when A > 1.8. However, this is not enough to significantly impact
the populations. Fig. 4.5 shows the difference between the predicted
average number of photon in the cavity from Eq. and the numerical
calculation. even though some fluctuations are reported, the difference
between the two is in the range of less than a percent. Therefore, it seems
that the ground state of the cavity remains largely dominant.

0.6 + +

® )=01
0.5 - ¢ =06
N 4+ A =14
0.4 - V )2=138
. + A=20
3
\503- +
a -
0.2 4 v +
VV%y
0.1
v +
v +
wd)doée e d BN EUHBE S
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16

n

Figure 4.4: Inelastic tunneling rates from the ground state of the cavity
[y, as a function of the number of photons n in for different values of
the coupling strength ranging from small A = 0.1 to large A = 2 coupling
Eq. (4.5).
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Figure 4.5: Normalized difference between the analytical prediction of
Eq. and the numerical result using Eq. Ala'a)/{a'a) as a
function of the coupling strength A\ for a strongly damped cavity, x =
0.1w, and a weakly coupled symmetric junction, I';, = I'p = 1073w, and
eV, = —eVir = 5.5w..

So far we have treated the photo-emission using the rate equation,
however, the same way we argued for the electronic current that the
width of the steps should be given by k rather than the temperature when
k > kgT, the same should go for the steps of the number of photons
in the cavity or the emitted light out of the cavity. We won’t show any
calculation of the sort here as it appeared that for the understanding
of the populations we didn’t need to capture the width of the steps.
However, we could take into account this broadening by x deriving the
photo-current (3°, fqbfla — H.c.) emitted from the cavity using the same
approach we used for the electronic current in [chapter 3

4.2 Photon statistics

We have shown so far that due to the coupling between the fluctuating
charge and the electromagnetic field of the cavity, the inelastic tunneling
of the electrons in the junction results in the emission of light with a small
intensity. We now study the photon statistics, in order to characterize
the emitted light.

Experimentally, photon statistics is studied by counting the number of
photons emitted from the system. The probability of photon absorption
is proportional to the following matrix element

Tip = [{(fFIED (r t)]0) P, (4.16)

where |7) and |f) are the initial and the final state, respectively, and
E™)(r,t) is the positive frequency part of the electric field [97,98]. Hence,
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the total probability for the detector to absorb a photon is the sum over
all the final states of Tj; averaged over the initial states. This is the
measured average field intensity

I(r,t) =Y P(i)Tiy = Te[EC) (r, t) D (r, 1) p]. (4.17)
if

The degree of coherence G (x, ) was first introduced in optics to char-
acterize interference of two superposed light fields in interference experi-
ments. It is defined as the correlation function of the electric field at two
different times and spaces

G (z,2") = Te[ET) () ED) (2")p), (4.18)

where z = (r,t). Two fields showing interference fringes are called coher-
ent. If instead the interference contrast vanishes, then the two fields do
not produce interference fringes and are called incoherent. In this last
case one can show that the intensity collected at r from two light sources
at r1 and ry and at distance from r s; and s, respectively is:

I(z) = G(l)(xhl"l) + G(l)(ﬂﬂz,ﬂfz) + 2Re[G(1)(9:1, T9)l, (4.19)

where x; = (r;,t — s;/c). Nowadays, in STML experiments, for instance,
physicists measure the joint probability of detecting a photon at time
t and a second one at time t + 7. Fig. [4.6 shows an actual experi-
mental setup extracted from [72]. The sample emits light that is col-
lected through two single-photon avalanche diodes delayed in time. It
was shown by Glauber [97] that this corresponds to the calculation of
the second order degree of coherence or second order correlation function
of the light

GO(r) = C IMI(t+7) ), (4.20)

where :: indicates the normal ordering (all creation operators are placed
on the left-hand side of the expression). Instead of using G® we will
study the normalized second-order correlation function

&)
4 (1) = | g( 1)(%)'2_ (4.21)

In second-quantization formalism this reads:

(a'(t)al(t + T)a(t + T)a(t)) '

@) (1) —
g7 (1) aa)?

(4.22)
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Figure 4.6: Experimental setup for measuring the photon statistics in an
STML experiment. Reproduced from Ref. [72].

Of course for 7 > 7, where 7, is the correlation time of the field,
the electric field will lose its correlation and therefore g®(+o0) = 1.
g (1) < g?(0) characterise photon bunching. It means that it is more
likely to detect a photon soon after the first detection. On the contrary
when ¢ (1) > ¢®(0) it is less likely to measure a second photon after
some time, this behaviour is called anti-bunching. Actually ¢®(0) < 1
is enough to characterize anti-bunching since ¢(®)(4+o0) = 1, although it
is in fact characteristic of sub-Poissonian statistics [99]. It can be shown
that classical light can only exhibit bunching behaviour therefore anti-
bunching is currently used to show that the radiation is in a non-classical
state.

4.2.1 Bare cavity

As an introduction to the degree of coherence, we show its calculation
for a cavity mode damped by an external bath. The Hamiltonian of a
bare cavity coupled with a bath is

H.=wala+>" wjb;bj +> {kjbja’ + m;b}a}, (4.23)
J J

where a' is the creation operator of the cavity mode and b} of the mode

J in the bath. From H. the time evolution of the operators a and b; is
deduced

0= —iwea —iy  K;b; (4.24)
J
by = —iw;b; — iK}a. (4.25)

J
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Eq. (4.25)) is integrated to find

J

Using Eq. (4.26) in Eq. (4.24)) shows
= —iw.a Z |k / i@ = ZZ ke ', (0 (4.27)

We define

) t o
b;(t) = e7'b;(0) — m;/ a(t e =gyt (4.26)
0

a(s) = /;OO e *a(t)dt, (4.28)

the Laplace transform of a. The time evolution of a(s) is given by

a(s) = /0+oo a(t)e s'dt = lim [a(t)e™ )% + 8/0+00 a(t)e *dt = sa(s) — a(0).

T—00

(4.29)
Therefore using Eq. (4.29) in Eq. (4.27) we show that
— a(0) = — iw,a(s) — .
sa(s) — a(0) iwWea i Z i + . b;(
(4.30)

S / = [lateyerest v

By switching the order of the integrals in the last term in Eq. (4.30) whe
show that

+oo  rt . L
| [ atyer et arar — - als) (4.31)

s—l—zwj

This manipulation allows us to simplify a lot Eq. (4.30) and we find

G(O) o ZZ] zwﬁj-l—s b] <O)
a(s) = iy P (4.32)

J s+iw;

Using Wigner—Weisskopf approximation [100] on Eq. (4.32)) it simplifies

into
a(0) _ZZJ iw; e b;(0)

= 4.33
als) s+ iwe + K/2 (4.33)
We use the inverse Laplace transform on Eq. (4.33)) to find a(t)
) —iwjt _ ,—(lwetk/2)t
a(t) = e~ /2t 0) — 30 © ‘ kb (0).  (4.34)

T We —wj —1K/2

As the aim is to compute G, we first compute a(t)a(t). This can be
done directly from Eq. (4.24) and Eq. (4.25))

d 4
ﬁaTa = —ka'a+i Z *bT )e™ita — k;a’b;(0)e "], (4.35)
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Using Eq. (4.34) in Eq. (4.35) and averaging over the bath degrees of
freedom assuming the bath to be in thermal equilibrium, we find (a'a) 5

1 — 6(n/2+i(wj —we))t

k)2 —i(w; —we)

d
—(d'a)p = —r{a'a)p +_ 2|k;|*n;Re
J

p (4.36)

where n; = <b}(0)bj(0)) follows the Bose distribution and () 5 is the
average over the bath. We can approximate the summation over j with
an integral over the frequency w as the fraction is strongly peaked around
w; = w, and |k;|?n; should vary very slowly with j. Doing so, we show

that
d

dt
The solution of this equation is

(a'a)gr = —r(a'a)p + Kn. (4.37)

(a'(t)a(t)) g = e "a’(0)a(0) + n[l — e "] (4.38)
From the definition of G in Eq. and Eq. (4.38])
G (t) = (a(0)%a(0)%)e ™ + nla’(0)a(0))[1 — e~ (4.39)
Using Wick’s theorem we know that (a?a?) = 2(a'a)?. Hence,
gP@t) =1+e" (4.40)

Therefore, the degree of coherence of the bare cavity starts from 2 at time
t = 0 and decreases towards 1 and ¢ — oo, with an exponential decay of
—~k. This means that the photons in the cavity are always bunched and
have a super Poissonian statistic.

4.2.2 Single—level dot junction
The degree of coherence is defined in Eq. (4.22)) as the normalised second

order correlation function of the electric field. In the density matrix

formalism Eq. is
gD (t) = Tr[a’al (t)a(t)aps)/ (ala)?. (4.41)

Eq. (4.41) can be used to find numerically the degree of coherence. In-
deed, using the properties of the trace Eq. (4.41)) is equivalent to

gD (t) = Tr[atae M apga’e™) [ (aTa)?. (4.42)

From Eq. (4.42) we define the operator A(t) = e~*tap a’e'. We can
compute the time derivative of A and show that A satisfies the same
Liouville-von Neumann equation of p

A(t) = —i[H, A(t)]. (4.43)

Therefore since a and a' are system operators only, we can trace out
the environment degrees of freedom the same way we did for the density
matrix. This means that we can define a reduced operator Ag that has
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the same time evolution as pg. In terms of the Liouvillian super-operator,
one can then write:

gA(t) = Tr[ZzT(zeétdBSth]. (4.44)

Since we are able to solve numerically Eq. (3.50), we can use Eq. (4.44)
to compute the degree of coherence ¢'®. See appendix . Fig. m shows

the degree of coherence as a function of time for a symmetrically biased
junction and a strongly damped cavity. We see that for a weak coupling
strength the behaviour is a simple exponential decrease similarly to the
cavity in thermal equilibrium shown [subsection 4.2.1. Thus, there is a
smooth crossover between ¢®(0) = 2 and ¢®(c0) = 1 on a timescale
1/k. The fact that in the weak coupling regime the interacting system
behaves like the non-interacting cavity at thermal equilibrium is of course
not surprising. What is more interesting is that for any coupling strength
the second order correlation function conserves its exponential decrease
in time. However, the initial value depends on the coupling strength .
Apart for small oscillations in time, the correlation scales to zero on the
time scale 1/k.

0 5 10 15 20 25 30
twe

Figure 4.7: Second order photon correlation function ¢® as a function of
time t for various values of the coupling strength A for a single-level dot
junction in the weak tunneling regime I';, = I'r = 10~3w,. The junction
is symmetrically biased eV, = —eVy = 1.2w. and the cavity strongly
damped x = kgT = 0.lw.. The dotted black line shows the value 1.
Reproduced from Ref. [93].

Moving now to the strong coupling case, we see that Fig. [4.7] shows
that photon anti-bunching (¢®(0) < 1) is possible for a single-level
molecular junction. This is quite surprising and, to our knowledge,
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was not reported before from the theoretical point of view. Also, from
Fig. 4.7, we see that in the case of a single-level dot junction, sub-
Poissonian distribution and photon anti-bunching appear to be equiv-
alent. Indeed, both these behaviours are given by the condition ¢®(0) <
1. Thus, we can focus on the initial value of the degree of coherence
g?(0) only to differentiate photon-bunching and photon anti-bunching
behaviour.

From Eq. we can find an analytical formula for the second order
correlation function of the electromagnetic field. Indeed, in the basis of
the shifted cavity, after the Lang-Firsov transformation, the basis states
are |q,n) where ¢ is the charge on the quantum dot and n is the number
of photons in the cavity. Projecting Eq. on the basis vectors, we
find a simple expression for the second order correlation function

g?(0) = 3 n(n = 1)Py(n)/ > nPy(n)), (4.45)

n

That only depends on the populations. This stems from the fact that
the operators a'a and a'afaa are diagonal in this basis. This means that
as for the average intensity, we only need the populations to obtain the
correlation function. Therefore the diagonal part of the reduced density
matrix pg is sufficient to compute the second order correlation function.
We already solved the rate equations in the regime of strong damping of
the cavity and weak tunneling rates x > I' in Eq. and Eq. (4.9).

Introducing Eq. (4.8)) in Eq. (4.45)), we find that
K Zn(n - 1) Zan Lo

@(0) = 4.46
N ()[R A0
which can be expressed using the partial sums S,,(x) as
g 22
g (0) = 2 Snv2l) (1.47)

Bp(0)L Sy 1(A%)
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Figure 4.8: Second order photon correlation function at time t = 0,
g?(0), as a function of the voltage drop eV}, in a symmetrically biased
junction eV} = —eVpg, for various values of the coupling strength A for a
single-level dot junction in the weak tunneling regime I'y, = I'r = 10 3w,..
The cavity is strongly damped x = kT = 0.1w.. The dashed black line
shows the analytical prediction assuming that electronic tunneling always
occurs when the cavity is in its ground state from Eq. (4.47)). The dotted
black line shows the analytical prediction from Eq. (4.52) taking into
account electronic transitions from the first excited mode of the cavity.
Both of these curves are shown for A = v/2. Reproduced from [93].

Fig. [4.8) shows the second order correlation function of the light at
time ¢ = 0 as a function of the voltage drop eV, for a symmetrically
biased junction (eV = —eVg). We see that at very low bias voltage
(e|VL, — Vr| < kpT), before the first inelastic threshold, the current does
not influence the cavity as noticed earlier. Hence whatever the coupling
strength the cavity remains in thermal equilibrium and ¢®(0) = 2. How-
ever, around the first inelastic threshold, there is enough energy avail-
able to excite a photon and the photon distribution in the cavity deviates
from thermal equilibrium. This threshold corresponds to only one photon
emitted for each electron—tunneling event. Therefore, it is where photon
anti-bunching is the most expected. We see in Fig. that indeed, for
sufficiently strong coupling, photon anti-bunching is possible for a single-
level molecular junction at the first inelastic threshold of the tunneling
electrons, but as soon as the second threshold is attained, the cavity en-
ters a regime of "super-bunching" where the degree of coherence suddenly
increases up to around 50. The impossibility to see anti-bunching a large
voltage for a single electronic level quantum dot and the limit of strong
bunching has been reported recently in Ref. |28]. Now comparing the

70



analytical result we found in Eq. (4.47)) to the numerical results, we see
that at large bias voltage the analytical prediction only depends on the

ratio between x and I’ p

®(0) = . 4.4
§2(0) = = (4.48)
Taking k = 0.1w, and T’ = 1073w, in Eq. (4.48)) we find that
lim ¢®(0) = 50. (4.49)

V—+4o00

However for a voltage drop eV, < 2w,, since we only took into account
transitions starting from the ground state of the cavity, 'y, in Eq. ,
at the first inelastic threshold only I'g; is different from 0. This means
that only P,(0) and P,(1) are not vanishing and since there is no process
allowing to attain more populated states of the cavity, the probability
of those states is equal to 0. So there is at most one photon in the
cavity at any given time, and therefore the degree of coherence vanishes.
Photon-bunching can only occur when more than one photon exist in
the cavity. Since at the first inelastic threshold only one photon can be
emitted in a tunneling event, successive tunneling events are needed to
increase the number of photons in the cavity. Therefore, we need to go
to higher order in the population to take into account tunneling rates
between populated states of the cavity. Let us relax a bit the condition
that the cavity is always in its ground state and admit that P,(n) for
n < 2 can be non-vanishing. In this case the rate equations Eq. (3.61))
become

PQ :F02P0—|—F12P1 —Pg(Fgl —|—F20) —|—2/€TP1 —2/€¢P2
Py = ki Py — Po(ke +To1 + To2) (4.50)
Po+ P+ P =1,

Where two new electronic tunneling rates enter the equations: I'y; =
2)\2
Te A2y, falw,) and Ty = Fe"\2)\27(2_5\ L5 falwe).
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Figure 4.9: Photon emission processes considered. (a) Photon emission
from the ground state by an electron tunneling through the junction with
rate ['p;. (b) Photon emission from the first excitation of the cavity by
an electron tunneling with rate I'yo
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Fig. shows the two processes involved in the photon emission. In
panel (a), we recognize the process that we already took into account in
Eq. (4.6). It corresponds to a photon being excited by the fluctuation
of the charge of the quantum dot in the cavity in its ground state. The
rate I'g; is the product of the tunneling rate I', the Fermi distribution
and the Franck—Condon overlap between the wave function of the cavity
mode at 0 photon and the wave function of the cavity mode displaced by
A due to the electron on the molecule at 1 photon. As mentioned earlier,
the Fermi distribution leads to the condition on the voltage drops that
allows for this transition. The Franck—Condon overlap between the two
wave functions of the cavity mode involved in I'y; is e M \2,

The second process, panel (b), that we consider is the excitation of an
additional photon from the charge’s fluctuations on the dot in the cavity
populated by one photon. The rate corresponding to this process is "5
and is proportional to the overlap between the wave function of the cavity
mode with 1 photon and the wave function of the cavity mode with 2
photons displaced by A due to the additional electron on the dot. This
overlap is given by e™**\2(2— A2?)2/2. Since the rate equations Eq. (4.50)
involve a finite number of unknowns, it is solvable and the populations
are found in

2Ii¢
P1 = K(/{T -+ F()l + FOQ) (451)
Py = (K To2 4 (261 + Ti2) (k4 + Tor + To2)) /A,

Here we defined A = k| (Fog + 2k)) + (k) + To1 4+ Lo2) (I'12 + 2(ky + K)),

ke = knp and k| = k(np +1). Introducing Eq. (4.51]) into Eq. (4.44]) we
find at the first inelastic threshold eV, = we

_20(2) T _ (2-)%)

@) (0 — 12
970 =5 e T, 2

(4.52)

This approximation of the degree of coherence shows that ¢ at the
first inelastic threshold mainly depends on the coupling strength A. From

Eq. (4.52)) we predict that anti-bunching is possible when /2 — \KQ) <

A< \/2> + /2 for a symmetrically biased junction, with a minimum of
g?(0) = 0 at A = v/2. The comparison between the analytical formula
Eq. and the numerical calculation is shown on Fig. in the
dotted black curve that represents Eq. at A = /2. We see that
Eq. fit very well the purple curve A = 1.4 even up until the second
inelastic threshold at eV;, = 2w.. Of course this is due to the fact that
we took into consideration all the rates involving P,(2), P,(1) and F,(0),
a better fit at higher voltage drops could be found by considering more
populations in the rate equations.

As a conclusion anti-bunching for a single-electronic level is possible
depending on the coupling strength since the emission of a second photon
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in the cavity is possible even at eV ~ w.. The emission of the second
photon is allowed thanks to the overlap between the first exited state
of the cavity mode and the second excited state of the displaced cavity
mode giving the rate ['15. This rate is controlled by the coupling strength
between the charge and the electromagnetic field, therefore it vanishes in
the small coupling regime. I'j» hits its minimal value at A = 0, A = /2
and then vanishes again as the coupling strength increases since the cavity
mode and the displaced cavity mode become too far apart for any overlap
to exist and the states become independent. This phenomenon is similar
to the anti-bunching reported in Josephson junctions [51].

This behaviour is confirmed numerically in Fig. where we show
the ¢®(0) as a function of the left (eVy) and right (eVz) voltage drops
and Fig. panel (c) showing the absolute minimum of g(® as a function
of the coupling strength.
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eVy /we
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Figure 4.10: Degree of coherence ¢®(0) for different electron—photon
coupling strengths (a) A = 0.1, (b) A = 0.6, and (c) A = 1.4, respec-
tively. The black dashed lines mark the contour ¢‘¥(0) = 1 delimiting
the regions of anti-bunching (blue areas). The model parameters are
k= kgT = 0.1w, and I';, = I'p = 10~ 3w,. Reproduced from Ref. .

Fig. [£.10] shows a 2D map of the second order degree of coherence
g9(0) as a function of the left and right voltage drops eV, and eVx. We
distinguish two regions, the red region in which ¢(®(0) > 1, meaning that
the photons are bunched. The blue region in which ¢ (0) < 1, meaning
that the photons are antibunched. In panel (a) in Fig. the coupling
strength is A = 0.1 thus only photon bunching appears. The light red
region is dominated by the thermal distribution of the photons while the
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red regions at the upper left and lower right corners shows the super-
bunching due to electron-tunneling assisted multi-photon emission in the
junction. As X increases in panel (b) the strong bunching in the upper
left and lower right corners becomes even stronger due to the increase of
the photon-assisted electronic tunneling rates given in Eq. . Also
four blue regions in which the photons are anti-bunched appear. Increas-
ing further the coupling strength up to A = 1.4 in panel (c), we see that
the blue regions expand toward the line eV}, = —eVy corresponding to
the symmetrically biased junction. As the blue regions merged together,
g?(0) goes to even smaller values for the symmetrically biased junction.
Hence, it seems that anti-bunching is attained for a wider range of cou-
pling strength in a non symmetrically biased junction. This has some
interest since in most experimental setups the junction should not be
symmetrical. However, the strongest suppression of the photon-bunching
is obtained in the symmetrically biased junction. This is confirmed in
Fig. panel (c) which shows the minimal value obtained for g(?)(0)
over any value of the left and right voltage drops (blue line) and for a
symmetrically biased junction (purple dashed line) as a function of the
coupling strength .

We explained the anti-bunching using Eq. as the suppression of
the electron tunneling assisted photon rate I'y5. This rate is actually the
sum of four electron tunneling rates: I'j7.; p and I3} each producing
a photon in the cavity starting from the cavity already populated by
one photon. Fig. [£.12] shows a representation of the electron tunneling
processes at the first inelastic thresholds resulting in the emission of a
photon (panel (a) and (b)) and the representation of their corresponding
energy thresholds (panel (c) and (d)) for a symmetrically biased junction
(panel (a) and (c)) and a non-symmetrically biased junction ((b) and
(d)). In the case of the symmetrically biased junction, the channels can
be considered as pairs since when eV}, passes an energy threshold for the
charge of the dot corresponding to the emission of k photons (eVy, > kw,),
at a given bias voltage (eV, = —eVg = eV/2 where eV defines the bias
voltage) eVg meets the threshold for the emission of & photons from
the discharge of the dot (eVp < —k). Therefore at the first inelastic
threshold in a symmetrically biased junction there are two tunneling
channels contributing to ¢®(0). Whereas for a non-symmetrically biased
junction only one tunneling channel is contributing since only one of the
voltage drop passes through an inelastic threshold. An example of that is
shown in Fig. panel (b) and (d) where the left potential up is tuned
to the dot energy £y and therefore the electrons on average only tunnel
in the direction of the right lead and photons are only emitted during
the charging process when an electron leaves the left lead to go onto the
dot. This explains why the anti-bunching in the case of a symmetrically
biased junction requires a bigger coupling strength.
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N\~~~ analytic

Figure 4.11: (a), (b) Role of temperature T on the degree of coherence
g?(0) for V, = —Vg with (a) A = 0.1 and (b) A = 1.4. Blue and
magenta thick lines are obtained from Fig. [£.10] while the orange ones
are computed from Eq. (4.52). Dashed (dotted) horizontal line indicates
g®(0) = 2 (1) for thermal (uncorrelated) photon emission. (c¢) Minimum
value of ¢®(0) (thick blue line) on the plane (Vz, Vz), for fixed A and
kgT = 0.1w.. Dashed magenta line shows that minimum constrained
to Vi = —Vgx. Dashed black line gives the 7' = 0 analytical prediction
(A2 —2)2/2. Other parameters are those of Fig. [£.10] Reproduced from

[93].

In conclusion, we expect that the regime of parameters allowing for
the photon anti-bunching is in fact broader than what is predicted from
Eq. . This is shown in Fig. panel (c¢). In this plot we represent
the minimum value of ¢ (0) (plain blue curve), obtained numerically,
as a function of A for any value of the left and right voltage drops. The
minimum of ¢ (0) is compared to the value of g (0) obtained for a
symmetrically biased junction (dashed purple curve) and the analytical
prediction of Eq. (dashed black curve). We see, comparing the
analytical prediction to the numerical results for a symmetrically biased
junction, that we predict well the position of the minimum of ¢®(0) at
)\ = /2. However, for large values of the coupling strength, we underes-
timate the degree of coherence since we neglect other transitions of the
type 'y n41. As a result we overestimate the upper-limit of anti-bunching
since the additional photon emission we neglect results in the increase of
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the degree of coherence. Nevertheless looking at the minimization over
the full plane (eV7, eVg), we see that in general we largely underestimated
the range for which anti-bunching is possible. Indeed, the condition of
anti-bunching is 0.17 < A < 1.85 from the numerical results. Surprisingly

the upper-limit we predicted from Eq. (4.52) at A = \/2 + /2 is pretty
accurate though the actual maximum value of A for which anti-bunching
is found correspond to an asymmetrically biased junction since the blue
curve and the dashed purple curve do not coincide for 1.7 < A < 2.
Fig. panels (a) and (b) shows ¢?)(0) as a function for various values
of the temperature. Temperature has a very straight forward effect on
g?(0) as it sharpened the thresholds at each integer values of eVy.
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Figure 4.12: Photon emission processes. (a) for a symmetrically biased
junction and (b) for an unsymmetrically biases junction. Panel (c¢) and
(d) represent the energy thresholds corresponding to the tunneling chan-
nels in panel (a) and (b), respectively.
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Chapter 5

Dipolar coupling of a
two-level quantum dot

So far we have studied the single-level quantum dot. We found that
the charge fluctuations, when coupled to the electromagnetic field of a
cavity, allows to observe new phenomena not expected otherwise: Specif-
ically non-classical photon emission. However, the case of the presence
of two electronic levels is also of great interest and it has attracted much
attention from the STM community as the most regarded explanation
of light emission in molecular STM junctions [66,/68,71]. An important
difference with the single level case is the presence of the dipolar interac-
tion [14,95,/101]. The system has two states with the same total charge
on the molecule, corresponding to an electron in either the lower or the
higher electronic level.

The dipolar momentum between the two states couples to the elec-
tromagnetic field of the cavity. One major effect of this coupling is that
it impacts drastically the spectrum of the two-level dot and the cavity
when the detuning between the levels is close to resonant with the cavity
frequency [102-108]. On top of this effect, electronic current through
two—level quantum dot has been shown to impact photon emission in the
cavity and conversely [74}/75,/108-112]. It is clear that in this problem
the interplay between the energy splitting A of the two-level system and
the cavity resonating frequency will play an important role. We will as-
sume in the following that the cavity is tuned at this difference of energy
we = A.

5.1 Model Hamiltonian

In this chapter we want to explore the light emission from a two-level
molecular junction in a cavity. More precisely we want to focus on the
dipolar interaction between the electronic transition in the molecule and
the cavity electromagnetic field. Doing so, we want to predict from a
theoretical point of view what would be the response of the cavity under
electronic current excitation neglecting the monopolar interaction of the
two electronic levels of the molecule with the cavity field. Therefore,
our system is similar to the system we studied in the previous chapters.
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A nanocircuit made of two electronic reservoirs at respective voltages
Vi, and Vi and a quantum dot placed between the two reservoirs. The
quantum dot is modeled by two electronic levels, neglecting the spin
degree of freedom. The electronic reservoirs of the nanocircuit also act
as the boundaries of an electromagnetic cavity of pulsation w.. Fig. [5.1
shows a graphic representation of the system.

Figure 5.1: Schematic of two metallic electrodes forming a plasmonic
nanocavity characterized by a resonating frequency w./27.Two electronic
levels €9 and ¢y + A of a molecule in the nanogap couples to the elec-
tromagnetic radiation with coupling constant A. Electrons can tunnel
to and from the dot with tunneling rates I',. Voltage drops, V,, with
respect to g are indicated.

In this chapter we study only the effects of the dipolar coupling,
neglecting the effects studied in |chapter 3| and [chapter 4]

A== [Vilsyme.(r)dr, (5.1)

where A = Aw,. is the dipolar coupling, ¢, is the wave function of the low-
est unoccupied orbital (LUMO) of the dot and ¢, is the highest occupied
orbital (HOMO) of the dot. Let’s write the Hamiltonian corresponding
to the two-level dot junction in a cavity

H = Hg+ Hp + Hin, (5.2)

where the system Hamiltonian describes the two-level dot the cavity
mode and their interaction

Hg = eodid, + (0 + A)dld, + weala + Aa + o) (did, + did,), (5.3)

d;-r being the creation operators of the dot’s orbitals and a' the creation
operator of the cavity mode at frequency w.. The bath Hamiltonian Hp
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is exactly the same as for the single-level dot since we consider the same
environment

Hp =Y earclpcar + O wblb, (5.4)

ak q

and last, the interaction Hamiltonian couples the two electronic levels to
the electronic leads and the cavity mode to the bosonic environment

Hipy = Z takiclkdi + Z lqbZa + H.c. (55)
aki q

Our system Hamiltonian is very similar to the Rabi Hamiltonian with
the difference that the Hilbert space contain also the doubly occupied

state and the empty state for the quantum dot ,.
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Figure 5.2: Eigenvalues for one-electron states of the molecule depending
en the coupling constant A. The states are denoted +,7. + stands for
an even number of excitation of the system (number of electron in the
excited state of the molecule+number of photons), — for an odd number
of excitations and ¢ is the ordering of the levels among those of same
parity.

We call the number of excitations the number of electrons in the
excited state of the dot plus the number of photons in the cavity N, =
did, + a'a. Defining Py, = €™ as the parity operator of the excitation
number, we show by calculating the commutator [Hg, Py, ] that the parity
of the number of excitation is conserved by Hg when A = w,.. Therefore,
we can use the parity as a quantum number for the eigenstates of Hg.
Fig. shows the energy spectrum of the system Hamiltonian Hg, the
states are labelled by their parity and order in the energy spectrum. We
can separate the spectrum into three parts; at low coupling A < 0.45
we recognise the anti-crossing between the states n — 1, — and n, + for
n € N*. At low values of the coupling constant, we can use a rotating
wave approximation to neglect the terms that do not conserve the number
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of excitations in Hg [103,[105,|106]
H§ = eodid, + (g0 + A)dld, + wea'a + Ay(dd,a" + did,a).  (5.6)

This form is similar to the Jaynes—-Cummings Hamiltonian. Then at
moderate coupling-constant values 0.45 < A < 2 the energy ordering of
states n,+ and n,—, for n > 0, changes and the even states become
of higher energy than their corresponding odd states. At A = 0.45 the
energies predicted using the rotating wave approximation significantly
deviate from their real values [103,104]. The Lamb shift, originating from
virtual transitions, are of order \%w.. However, they are not taken into
account in the rotating wave approximation since this effect is generated
by the counter-rotating terms in the coupling. This explain the deviation
between the energy predicted using Hg compared to Hg [103]. Finally for
A > 1 the states n, + and n, — are degenerate. We will concentrate on the
low coupling regime, since so far, experiments on single molecules do not
reach coupling strength above a few percent of the photon energy [29].
As in this regime the rotating wave approximation gives good results,
we will work with that. This means that in the following we neglect
the terms that do not conserve the number of excitation in H [10§].
However starting from the moderate coupling regime the rotating wave
approximation fails, therefore, we drop it.

We focus on the resonance between the dipole and the cavity mode
A = w,. The Hamiltonian H§ is exactly solvable [92,/107]. We first use
the basis {|0,q),|g,q),|e, q), |2,q>}q, where ¢ is the number of photons
in the cavity and {0, g,e,2} are the states of the quantum dot (0 and
2 for the unoccupied and doubly occupied dot and ¢g and e for the oc-
cupation of the LUMO and HOMO alone respectively) and we find the
eigenstates {|0,n), |S,n),|4,n),|2,n)} with corresponding eigenvalues
{nwe, nwe + 9 — Ay/n,n + g + Ay/n, (n + 1)we + 260}, where n € N is
the number of excitations of a state [102,]107,109]. |0,n) designates the
states with n excitations and 0 electrons on the dot while |2,n) desig-
nates the state with n excitations and 2 electrons on the dot. We define

|Sn) = W and |A,) = W for n > 0. For n = 0, we define
|So) = |g,0) and |Ap) doesn’t exist. Therefore the gap we found between
two consecutive energies of same parity is the Rabi splitting 2A/n which

is the energy separating |S,) and |A,).

5.2 Electronic current

Let us first look at the current characteristics and obtain a description for
the current assisted light emission [74,75,/108]. We use the rate equation
approach to find the electronic current. As we identified three coupling
regimes, we separate this section into three parts, one for each regime,
plus an additional section for the non-interacting case.

5.2.1 Non-interacting case (A = 0)

In the simplest case, the coupling A is set to 0.
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Figure 5.3: Two-level quantum dot tunnel junction

As for the single—level dot, we consider the sequential tunneling regime
where kgT > I'. We regard the tunneling Hamiltonian H;,; as a pertur-
bation, and we diagonalize exactly the system Hamiltonian Hg. Then we
compute the tunneling rates using Fermi’s golden rule. We find a very
simple expression of the tunneling rates

Foz—>g = Fagf;r(o)
Fa—>e - Foaef;(A)
Faeg = Fagfa_ (O)

Faee = Faef(;<A>7

where I',,_.; designates the rate for an electron to tunnel from lead « to
the dot’s level k. From the tunneling rates we deduce the rate equations:

P(O) = F<—gP<g) + F<—5P(€) - (F—>g + F—>e)P(O)

P(g) = F—>9P(O) + T eP(2) — (F<—g +T'-)P(g)

‘ (5.8)
Ple) = T P(0) + Ty P(2) — (T + T, P(e)
P(2) = ToP(g) + Ty P(e) — (T + T ) P(2),
where I, = >, T'o—sk. Solving Eq. (5.8)) we find the populations
I'e.l'y
P(0) = _ e ¢9
0) = =5
I .,
P — 9
(9) Ty
(5.9)
| S
P _ g
(0=
P(2) — P—>er—>g
I's,

where I's = I', . I' g+ T, ' g+ T '+ T I'y. The expression for
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the current is then

It =e[(Treg = Trse) P(9) — (Prse + Try) P(0)
(5.10)
F(Ppe = Ty ) Pe) + (Thee + oo )P

Fig. shows the 2D map of the current as a function of the left and
right voltage drops eV}, and eVg. In the three white regions the current
is blocked, this corresponds in the upper right corner to the population
P(0) = 1, the middle block to P(g) = 1 and the lower left corner to
P(2) = 1. The light blue and light red region corresponds to the opening
of a tunneling channel for the electrons, on the left through the excited
state of the dot and on the right through the ground state. In the deep
red and blue regions both channels are open [109].

Hence, we detect in the current the eigenstates of the Hamiltonian.
The thresholds of the current corresponds to eV,, = E; where v is an
eigenstate of Hg.

2
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(8]
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Figure 5.4: (a) Current through the dot as a function of the left and
right voltage drops eV and eVg at temperature kT = 10 3w.. (b)
Conductance as a function of eV, = eV along the line eV, = —eVy
corresponding to a symmetrically biased junction. In both panels A = 0.

We will see in the following how this simple picture is modified by
the interaction with the photon cavity.
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5.2.2 "Weak" coupling A\ < 0.45

In [section 5.1] we showed the eigenstates and eigenenergies of the Hamil-
tonian Hg. From these eigenstates, we can use the Fermi’s golden rule
with the interaction Hamiltonian H;,; as a perturbation of Hg to find the
rates for an electron tunneling from the leads to the dot [75,86,88,/111]

FZ% = Fagf;_<_A\/ﬁ)

Io5 = Tacfa (we — Av/n)

. (5.11)
Fa—) = Fagf(j(A\/ﬁ)
TZ: = Faefc—:— (Wc + Aﬁ)
and the rates for an electron tunneling from the dot to the leads
T00 = Toefs (we + AV/n)
fZe =Tagfo (A\/ﬁ)
(5.12)

FZ: = Faefoj (WC - A\/ﬁ)
Toe =Tagfs (=AVn)

We can start by comparing the two-electronic level case to the single—
electronic level case for the rates. Indeed, in the case of a single-level
dot, the tunneling rates couple any states of the cavity to one another, as
long as the Franck—Condon overlap is not vanishing Eq. . However,
in the two-level case in the weak coupling regime, the electronic tunnel-
ing is dominated by the coupling between states of the same excitation
number. In our approximation this translates in having tunneling rates
only between states of the same excitation number. This is easily seen
from the fact that the tunneling rates between an initial state |i) and
a final state |f) is proportional to |[{i|H;.|f)|?, and that the tunneling
Hamiltonian H;,; is purely electronic. Therefore, a tunneling event can
at most modify the number of photons by one. Intrinsically we can’t
have multiple photon emission or absorption for the two-level system for
A < 0.45.

Another striking difference is seen in the Fermi function’s argument.
In the case of a single level, the energy condition in the Fermi functions
corresponded to the difference of photon number between the two states
involved in the transition. Therefore, it was an integer multiple of the
photon energy. In the case of the two-level dot, this energy difference
depends on the coupling strength and on the square root of the number
of photons. Thus, we expect that steps in the electronic current will
appear at each Ay/n or w. + Ay/n instead of each nw,.
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The rate equations read

P(|n,0)) = P(ISp))T + P(|Ap))TL. + P(|Sp41)) D" DF
P(| A1) T — P(ln,0))(T7, + T7, 4 10D+ L TOTO
P(|S,)) = P(|n, 0)I™, + P(|In — 1,0)T" + P(|jn — 1,2))T,.
P(jn, 2)T" = P(IS.) (T + T, + T +T7)
P(|An)) = P(|n, 2)T%F + P(|ln — 1,2))T + P(|n — 1,0)T"
P(jn,0)T", — P(|A,))(I™, + T2 + T +T0)

P(In,2)) = P(|[An))I™ + P(IS)T + P(|Apyr) DO

P(‘Sn+1>)f(_7;b+1) _ P(| >)(Im+ + F + F(n+1) + F(n-‘rl))
(5.13)

Here we don’t take into account the damping of the cavity. From these

equations we obtain for the tunneling current in the stationary regime:

I, = Z {P(\n, 0T}, + FL—) 4 F(n+1)+ n 1_‘(n+1)+)

n

P(IS:))(T15 + Ths) + P(AD)TE, + T35}

(5.14)
Ie =" {P(jn.2)(03 + T + T30 +T,0)
=N+ = n n
P(IA)) (T +Th0) + P(IS)(Th +TE0)}
where the net tunneling current [ is

Fig. shows the electronic current as a function of the voltage drops.

As expected we see in the conductance the signature of the Rabi split-
ting in the splitting of the two peaks at eV, = w,.. This means that in
an experiment, a two-level dot junction coupled to a cavity mode with
only a dipolar coupling should exhibit the Rabi splitting in its conduc-
tance for a coupling A < 0.45 and we predict light emission from the
split states at eV, = w.+ A [109,112]. We see in the conductance a
first pick at eV, = 0 which corresponds to u; = &y. This peak cor-
responds to electronic tunneling through the ground state |Sp). Then
there is another pick at eV, = A = w, (ur, = €0 + A) corresponding to
electrons tunneling through the excited state while the ground state is
already populated. In other words, this is a transition from |Sp) to |0, 2).
Those two kinds of tunneling events do not involve photon emission nor
absorption. Close this last pick we discussed there are two side smaller
picks, for eV, = w. £ A. These picks correspond to transitions from the
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Figure 5.5: (a),(b) electronic current as a function of the voltage drop
in a two-electronic level tunnel junction coupled to a cavity with dipolar
coupling A = 0.2 at kgT = 1073w, and k = 0.1w,. (a) for a symmetrically
biased junction eV;, = —eVz = eV and (b) for a right lead tuned to the
dot’s ground state, eV, = eV and eVg = 0. (c) and (d) shows the
corresponding conductance G = dI /dV7,.
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unoccupied state of the molecule |0,0) to the states |S1) and |A;). Only
these two transitions involve the emission of one photon in the cavity.

It is worth to note that in Fig. [5.5 panels (b) and (c) would be the
closest to an actual experimental setup and in the conductance we see
that the two main picks correspond to the energy of the eigenstates of
the bare molecule at eV, = 0 and eV}, = w. and do not involve photon
emission.

In our approach using the rate equations, we neglect the broadening
coming from the damping of the cavity. From the analysis we made on
the electronic current in and the impact of the damping of the
cavity on the electronic current, we expect that the broadening should be
of the order of k. Chikkaraddy et al. [29] were able to measure a coupling
strength A ~ 90meV in a plasmonic cavity with a resonance at w, = 2eV’.
This means that A ~ 0.045. Therefore as long as x/w. < 0.045, it should
be possible to measure the side peaks in the conductance at eV, = w.tA.
Such a value of x correspond to ) ~ 22 for the quality factor which is in
the range known for plasmonic cavities (between @) ~ 10 and @ ~ 100).
However, if the cavity has a very bad quality factor and considering the
dipolar coupling should not exceed a few percent [29] only two peaks
should be distinguished in the conductance corresponding the the states
of the bare molecule. As we mentioned these peaks at eV, = 0 and
eV, = w, do not account for photon emission. Hence when x > A, we
can’t conclude on light emission in the cavity from the current—voltage
characteristics. In this case it may be required to directly measure the
light intensity in the cavity.

The full structure of the current characteristics is shown in Fig. [5.6]
The electronic current is plotted as a function of the left and right bias
voltage. We see three white regions where the current is totally blocked,
the light blue and light red regions correspond to regions where electronic
current goes only through one of the states |0, g) or |0,2) and finally the
strong blue and red correspond to when both those states are involved.

2 2
1
0
— -1
-9 —2
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e} =
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Figure 5.6: Current through the dot as a function of the left and right
voltage drops eV, and eVy at temperature kgT = 10~ 1w, for a coupling
strength A = 0.2.

86



5.2.3 "Moderate" coupling 0.45 < A < 1

In the "moderate" coupling regime an analytical diagonalization of the
Hamiltonian is not possible. Hence, we can only rely on the numerical
calculation. We developed a python library to diagonalize the Hamil-
tonian, solve the master equations and compute the physical quantities
such as the current and the light emission numerically for various sce-
narios. We then used this library in the case of a two-level dot junction
coupled to a cavity to treat the case of the moderate coupling for the
two—level system.

A=0.3 07 A=0.8
0.8 s
\_a 0.4
Q
0.4 0.3
0.2
0.2
0.1
0.0 0.0
0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
n n

Figure 5.7: Photonic population in the cavity P,(n) for two different
values of the coupling strength A with n being the number of photons at
eV, =0, kgT = 1073w, and eV = 0. The red curve shows a Poissonian
distribution with expected value \2.

Fig. shows the population of the cavity for two different values of
the coupling strength A at 0 bias voltage. It appears that, independently
of the current, the cavity field is being heated with the increasing coupling
strength. This corresponds to the bare cavity vacuum not being anymore
an eigenstate of the Hamiltonian. We will develop more on that point in
a following section.

87



15 A
1 -
= 10 A
3 oA 3
~
: 3
5 -
—14 A
_9 4 04 lllll.ll AA
T T T T T T T T T T
—4 -2 0 2 4 —4 -2 0 2 4
eV/we eV/we

Figure 5.8: (a) electronic current as a function of the voltage drop in
a two-electronic level tunnel junction coupled to a cavity with dipolar
coupling A = 0.8 at kgT = 1073w, and k = 0.1w.. (a) for a symmetri-
cally biased junction eV, = —eVi = eV. (b) shows the corresponding
conductance G = dI/dV7,.

Fig.[5.8 shows the current and conductance in a symmetrically biased
junction for a coupling strength A = 0.8w.. We see several peaks in the
conductance and it becomes hard to predict the corresponding transitions
[109]. However, it is noticeable that the peak initially at eV, = 0 is
being split, which corresponds to a shift of the dot energy level ¢y by the
quantity \2w, as we predicted looking at Fig. [5.7]

5.2.4 Ultra strong coupling \ > 1

In the ultra strong coupling regime the coupling strength A becomes
larger than the photon energy and therefore larger than the gap between
the two energy levels of the molecule. In this regime considering A > A
we can try neglecting the dot energy levels and approximate the system
Hamiltonian by

Hg = weala + A(a" + a)(did, + did,), (5.16)

meaning that the molecule is only seen as a perturbation of the cavity
field. This system Hamiltonian is equivalent to a charge interacting with
the cavity mode since we can diagonalize the electronic part dldg + d;de
independently. We define

di + df
AN — 5.17
+ \/5 ( )
Using Eq. (5.17)) into Eq. (5.16)), we find
Hs = weata + A(a" + a)(dld, —d'd_). (5.18)

In this representation the Hamiltonian shows the interaction between
two charges and the electric field of the cavity. Therefore, we expect a
behaviour similar to two single—level dots coupled through their charge
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0.12

Figure 5.9: Photonic population in the cavity P,(n) with n being the
number of photons at eV, = 0 at kgT = 1073w, and A\ = 4. The red
curve shows a Poissonian distribution with expected value \2.

fluctuation to the cavity mode. Using the unitary transformation U =

ot d —dt . :
eMa—a)ldid, —dd ) we diagonalize Hg

Hs = UTHsU = weafa — Nw,(d\d, —d d_)2. (5.19)

In turn this transformation also modifies the tunneling Hamiltonian

kol _ T _df tak + tocke take - tak
gt (=) ()
% k \/5 + \/5

+ H.c.

(5.20)
From Eq. , we see that the one-electron states have their ener-
gies shifted by A?w.. The photon population can be deduced at eV, = 0
from (0, 0]4)|? where |i) is an eigenstate of Hg. This is equivalent to the
expected value for a coherent state of the photon field with |a|? = A2
Therefore, we predict that the photon population follows a Poissonian
distribution with expected value A\2. This prediction is confirmed in
Fig. where we plot the result of the full numerical calculation for
the photonic population in the cavity at vanishing voltage drop. From
the diagonalization of Hg, we can derive the tunneling rates between the
eigenstates of Hg. The rates for an electron to tunnel from a lead to the

dot are

F?Ll,lr;:a = F1|Mn7n’|2fi([n/ —n- )‘Q]WC)
Priaria = D2 Mo £ (10 = 0 = Nwe) 5.21)
FE;?:(X = F3|Mn,n’|2f;([n/ —-—n-—- )‘Q]WC) .

[

0 =T M2 (0 = n — Aw,).

n,n':a
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While the tunnel rates from the dot to a lead are

ngz?:oc = Fi’Mn,n’Ff ([n — n' — 2]W6>
Do = P2 Mo £ ([ = 1 = W) (5.22)
P2 =T Myl fo ([0 —n' — Aw,) '

[

02 =T M2 fr (n—n' = Mw,).

n,n' o

Here T'1%, | stands for the transition rate from state [n, A) to state [n/, B)

through lead a, n and n’ being the photon numbers and A and B molec-
ular states. |II.) = d}|0).

|
My, iy = [sgn(ng — nl)]"l_m)\N_"e_’\?m\/ %Lg‘"()?), (5.23)

where N = maz{ni,ns}, N = min{ni,ns} and L% is the generalized
Laguerre polynomial and finally T'¢ = 7 3, (fake £ takg)20(€ — €ar)-

Our system behaves at high coupling as a two-level Franck—Condon
system. Fig. shows the current characteristic for the two-electronic
level junction in the ultra strong coupling regime with A = 2.5. We
recover exactly the expected behaviour corresponding to the Franck—
Condon physics from the energy shift A\? = 6.25 to the current suppression
at low bias voltage and the quantization of the current. Of course one can
notice some small side peaks in the conductance since it is not exactly a
charge coupling and A is not far from the photon energy.
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Figure 5.10: (a) electronic current as a function of the voltage drop in
a two-electronic level tunnel junction coupled to a cavity with dipolar
coupling A = 2.5 at kgT = 5103w, and k = 0. (a) for a symmetri-
cally biased junction eV, = —eVi = eV. (b) shows the corresponding
conductance G = dI/dV7.

5.3 Light emission

First of all we already noticed that the average number of photons in
the cavity at eV, = eVg = 0 depends on the coupling strength. Indeed
Fig. [5.11| shows the dependence of (a'a) with the coupling strength \ in
this case. The average number of photons in the cavity is compared to
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A2, shown by the dashed black curve. We separated Fig. |5.11] into three
regions.

Region (a) corresponds to the weak coupling. The average number of
photons is A\2. This value of A\? is found from perturbation theory in the
coupling . We call V = hw,(a’ + a)(d}d, + dfd,). The energies E of the
perturbed system are given by

_ [(k|V[n)?
E = E, + (n|V]|n) +l§% E B

(5.24)

where |n) and |k) are eigenstates of the unperturbed Hamiltonian and
E,, and Ej, are their respective energies. Since V' does not conserve the
charge nor the photonic states, the first order term (n|V|n) vanishes.
At eV = eVig = 0 the only two states that should be populated are
|0,0) and |Sp) = |g,0) and only the latter is impacted by the coupling
Hamiltonian V. At first order in A we find

A

|S0) = |So) — At

le, 1), (5.25)

where |§0> is the eigenstate of the perturbed Hamiltonian of energy eo.
Thus the only two states possible for the system are |0, 0) and |Sp). Then

the average number of photons in the cavity is (a'a) = (wﬁA)Q P(|So)).

Region (b) in Fig. [5.11| shows an intermediate regime in which the
average number of photons deviates from \2. This region corresponds to
the transition between the weak coupling and the strong coupling shown
in region (c), where the system behaves like two single-level dot and the
average number of photons is A\? as we predicted in the previous section

due to the renormalization of the energies.
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Figure 5.11: Average number of photons (afa) at 0 voltage drop (eVy, =
eVg = 0) as a function of the coupling strength X at kgT = 10~ 3w,. The
dashed black curve shows 2.

We are mostly interested in the small coupling regime in which A < 1
since it is the most relevant case for experiments. Fig. shows the
average number of photons in the cavity as a function of the left and right
voltage drops for three different values of the coupling strength. We see
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that between A = 0.002 and A = 0.02 there is only an increase in {(a'a)
by a factor 10, but the structure remains the same.

We can see a large blue area where there are almost no photons in
the cavity. In this region it seems than the electronic current does not
affect the state of the cavity. This 2D maps can be compared to the
map of the electronic current Fig. [5.6, we see that the red regions in
Fig. [5.12| correspond to the strong blue and strong red regions in the
electronic current map. Therefore, the light blue and light red regions

have disappeared in Fig. [5.12
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Figure 5.12: Average number of photons in the cavity (afa) as a function
of the left and right voltage drops eV /g for three values of the coupling
strength in the "weak' coupling regime (a) A = 0.002, (b) A = 0.02 and
(¢) A = 0.2 in a strongly damped cavity £ = 0.1lw. and weakly coupled
tunnel junction I'y, = I'p = 1073w, at temperature kg7 = 10~ w,..

First let us focus on the red regions in Fig. [5.12, The red regions
are delimited by the energy thresholds corresponding to the transitions
between states |S1), |[A1) and |0,0). These transitions are responsible for
the emission of a photon in the cavity. In fact half a photon on average
at eV = w, £ A. With the states |S;) and |A;) being populated it also
authorizes a bunch of other transitions between states |S1) and |A;) with
states |0, 1), |2,0) and |2,1). Among these transitions some correspond
to emission and others to absorption. However, those transitions are less
probable, since they are weighted by the population of the symmetric
and anti-symmetric states which remains weak as I' is very small and
k > I'. Therefore, the average number of photons increases due to the
population of states containing at least a photon.
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Figure 5.6} Current through the dot as a function of the left and right
voltage drops eV; and eVy at temperature kg1 = 10~ w, for a coupling
strength A = 0.2.

In the light red and light blue region in Fig. [5.6] we do not see any
excitation of the cavity and (a'a) ~ 0. For eVg,eVy < w, — A the energy
conservation condition on the voltage is not fulfilled to allow |S;) and
|A1) to be populated. Therefore, the junction can’t emit any photon.

For eV, > w. — A and eV < w. — A, the emission of photons is
still suppressed, despite the fact that there are non vanishing transition
rates that allow the population of |S;) from |0,0). However, due to
concurrent processes, the system can’t populate |S;) nor |0,0) in this
window in the stationary regime. To show that, let us have a look on
the electronic tunneling rates. For A < eV, < w, — A (dark red region
in panel (c¢) Fig. there is no transition in the gap between the
two electrodes’ potentials. The non-vanishing tunneling rates are I'} IR
T} ks Dhires TLir. . In this case there is no current on average. The
rate I'l, corresponds to transitions from [0, 1) to |S;) and from |A;) to
12,0) (during both these transitions on average 1/2 photon is absorbed
since (Xi|aTa|X;) = 1/2, with X € {A,S}). f‘lL/RH corresponds to
transitions from |0, 1) to |A;) and from |S7) to |2,0) (during both these
transitions 1/2 photon is absorbed on average). flLJ/rm_ corresponds to
transitions from |2, 1) to |S;) and from |A;) to |0,0) (which involve the
absorption of 1/2 photon on average). Finally, FlLJ/“m_ corresponds to
transitions from |S7) to |0,0) and from |2,1) to |A;) (responsible for the
absorption of 1/2 photon on average).

Fig.[5.13|shows an oriented graph representing the tunneling processes
for the states with 0 and 1 excitation. An arrow from state = to state
y means that a rate for the transition from z to y is non zero. All
other transitions involving states with higher numbers of excitation are
represented by a dashed arrow going down since only transitions reducing
the number of excitation are possible in the voltage range we are looking
at. Therefore the upper part of the graph can be viewed as a source
only (the upper part of the graph also connects the left and right graphs
represented in Fig. [5.13)).

From Fig. only the state |Sp) should be significantly populated
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in this case since it is at the extremity of any path in the two graphs.
Therefore any random walker on the graphs ends at some point on |Sp)
and can’t leave. Hence in the stationary regime P(]Sp)) = 1.

0,1) 2,1)

|S1) |Ay) |S1) | A1)

10,0) 2,0) 0,0) 12,0)

|So) |:S0)

Figure 5.13: Graph of the transitions allowed for A < eV, < w. — A by
electron tunneling.

Increasing V7, for A < eVg < w. — A and eV, > w, — A (light red
region in the upper left region in Fig. , the tunneling rates that are
not vanishing are: FE/R_}, TL/R_” fg_, I3t and I}H, fi: I}t corre-
sponds to transitions from |0, 0) to |S;) and from |A;) to |2,1) (emission

of 1/2 photons). FIL: corresponds to transitions from |0,0) to |A;) and
from |Sy) to |2,1) (emission of 1/2 photons).

0, 1) 2,1)

Figure 5.14: Graph of the transitions allowed for A < eV < w. — A and
we > eV > w. — A by electron tunneling.

Even though more path are allowed compared to the previous regime
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we explored (A < eV, < w.—A), |S) is still the only possible end of any
path in the graphs (see Fig. |5.14]). Therefore, the stationary population
can still only be P(|Sp)) =1 and |Sp) has no photon.

This remains true until one of the voltage drops reach w,, then elec-
trons can go back and forth between |Sy) and |2,0) and the stationary
population is distributed between those two states depending on the ra-
tio I're/Tge (see Fig. . Anyway none of these two states include a
photon therefore the cavity is empty in this region.

0,1) 2,1)
ANEVA
Sy 1A Sy 1A
AVAREVA

55) 150)

Figure 5.15: Graph of the transitions allowed for A < eV < w. — A and
we > eV > w. — A\ by electron tunneling.

We conclude that in an experimental case, unless one of the electronic
leads is tuned the energy of the ground state of the dot |Sp), we expect
from our model, that the number of photons in the cavity should not
be affected by the electronic current going through a two-electronic level
quantum dot.

Now let’s focus panel (c) in Fig. . As the coupling strength in-
creases, the average number of photons in the cavity also increases in
the region where electronic current is allowed, however we see that the
top left and bottom right red regions of the 2D map are getting bigger
as their thresholds are moved from eV, = w. — A to eV, = —A. Also,
an island of large intensity appears around eV, = eVz = 0. In fact this
Island corresponds to the highest light intensity in the cavity where light
behave coherently from our prediction of (a'a) = A2,
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Figure 5.16: Average number of photons in the cavity (a'a) as a function
of the left voltage drops eV for A = 0.2w, in a strongly damped cavity
k = 0.1w. and weakly coupled tunnel junction I';, = I'p = 1073w, at
room temperature kgT = 1072w,. Panel (a) shows the average number
of photons for a symmetrically biased junction (eV;, = —eVg) while panel
(b) shows the average number of photons for eVz = —w..

Fig. shows a cut in Fig. panel (c) along the line eV, = —eVg
in panel (a) corresponding to the symmetrically biased junction and along

the line eVzp = —w,. In the case of the symmetrically biased junction,
we see that at 0 bias voltage the average number of photons is close to
0.02. Furthermore, as soon as the bias voltage deviates from 0 there is a
sudden decrease of the average number of photons.

Using perturbation theory, we have already shown that the ground
state of the molecule is modified by the interaction with the photons
in the cavity. The ground state can be approximated by |Sp) = [So) —

Aﬁwc |1, e) giving the average number of photons (a'a) = (Aﬁwc)Q P(|50)).
At eV =0, P(|Sy)) ~ 1 (see Fig. [5.13)) while for eV > kgT, P(|S;)) ~
1/2 leading to the decrease of (a'a).

The average number of photons then increases at the threshold eV =
w. — A\ as the electrons can tunnel through the dot to populate the state
|S1). At the threshold eV = w, the average number of photons decreases
due to the possibility for the electron to populate |0,2) which decreases
the number of photons in the cavity. Finally, the last threshold is at
eV = w. + A. At this threshold |A;) can be populated from |0,0) and
|S1) can be populated from |2, 0) increasing then the number of photons
in the cavity.

In the case where the right voltage drop is tuned to eVp = —w,,
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the cavity is in its ground state |0,0). As soon as eV, > 0 the average
number of photons in the cavity increases. So, while in the case of the
symmetrically biased junction at eV = eV = 0, P(|Sy)) ~ 1, in the
case shown in Fig. [5.16| panel (b), the system can’t reach this value
and the average number of photons is lower. However the plateau for
0 < eVr < w.— A is obtained in both cases. We then see the exact same
structure in the two cases.

Hence, as the coupling strength grows, its effect on the ground state
of the molecule |Sy) (in other words the HOMO) can greatly modify the
emission spectrum. Indeed, not only |S;) and |A;) corresponds to light
emission, but also |Sp) in this case.

Fig. |5.17] shows the second order correlation function of the field of
the cavity corresponding to the same three cases shown in Fig. [110].
We see that panel (a) and (b) of Fig. and Fig. have the same
structure. In the regions where the electronic current does not affect the
photonic population of the cavity, the cavity should remain in its thermal
equilibrium. Therefore, the photons are bunched and ¢ (0) > 1. But
when the electronic current starts to affect the field of the cavity at the
thresholds eV = w. — A, the second order degree of coherence suddenly
decreases. This can be understood from the fact that only single photon
processes are involved, since only transitions between states |n, 0) or |n, 2)
and |Sy+1) or |An+1) produce a photon exchange. Therefore on a time
scale given by I' at most one photon can be produced in the cavity.
It then appears that anti-bunching is far more easier to obtain with two
electronic levels than with one since there is no multi-photon process with
a dipolar coupling assuming the system is not in the ultra-strong coupling
regime. However panel (c) shows that when the coupling strength become
high enough the anti-bunching is killed and the electronic current even
produces strong bunching with ¢®(0) ~ 10.
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Figure 5.17: Degree of coherence ¢g®(0) as a function of the left and
right voltage drops eV, g for three values of the coupling strength in the
"weak" coupling regime (a) A = 0.002, (b) A = 0.02 and (¢) A = 0.2 in
a strongly damped cavity x = 0.1w,. and weakly coupled tunnel junction
', =g = 1073w, at temperature kT = 10~ w,.
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Chapter 6

Conclusions

6.1 Summary

Electron-light coupling as long been studied in quantum optics and us-
ing microwave cavities. These kinds of experiments have shown the effect
of the hybridization of the dipole of a molecule and the electric field of
the cavity and the well known Rabi-splitting. However more recently
physicists have tried to couple the electric field of the cavity to electronic
transport as a way to control the light emitted from the molecule. In par-
allel, as microwave cavities are confined to single-molecule weak coupling
and knowing that the coupling inversely scales with the volume of the cav-
ity, physicists have designed plasmonic cavities at the nanoscale in which
they hopped to observe the strong-coupling regime at the nanoscale. The
mix of those two results is found in STM experiments where the STM act
as a nanoplasmonic cavity and as the electronic leads of a nanocircuit.
This thesis proposes a theoretical framework for studying the cou-
pling between electronic transport and the electric field in a cavity. Our
results are applicable for nanoplasmonic cavities such as STM cavities
as well as microwave cavities coupled to a nanocircuit. One major ef-
fect of the coupling between an electronic current is that not only the
cavity electric field couples to the dipolar momentum of the molecule
inside the cavity, but it also couples to the charge fluctuations on the
molecule. This leads to a "monopolar" coupling that is similar to the
coupling between phonons and electrons that has long been studied in
molecular electronics. The electron—phonon coupling has been studied
in the Franck—Condon physics. As in the experiments we are interested
in, typically I' < kgT and we were interested in studying the effect of
the coupling strength on our model, we use a density matrix approach
to solve our model in the sequential tunneling regime. This allows us to
treat any regime of coupling however we are restricted to sequential tun-
neling of electrons and neglect any co-tunneling event. By first limiting
the system to a single electronic level for the molecule in the junction,
we show some specificity of that comes with the coupling the the charge
fluctuations on the molecule and we clearly demonstrate the equivalence
with the Franck—Condon physics. Hence we showed that the electronic
current for a single level exhibits steps at each multiple of the photon en-
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ergy that corresponds to the inelastic tunneling of the electrons leading
to the emission or absorption of some photons in the cavity. Moreover
we also incorporated the effect of a bosonic environment to our model as
plasmonic cavities are known, due to their small size, to have small qual-
ity factors (Q < 10%). Hence we developed a way to compute the current
that take into account the broadening due to the large damping rate of
the cavity. As we are interested in the photonic response of the cavity,
our method does not require any assumption on the photons distribution
in the cavity. As the electronic current shows photons are emitted in the
cavity due to the electron tunneling, we show that the average number of
photons in the cavity displays the exact same behaviour as the electronic
current depending on the voltage that is imposed to the electronic leads.
Then studying the photon correlation functions we show that the single
electronic-level junction shows very unusual behaviour for the emitted
light: Super-bunching at large voltage, where multi-photon emission is
dominant. Anti-bunching at the first inelastic threshold where only one
photon can be emitted in a single electron tunneling event. Of course the
existence of the anti-bunching depends on the electron-photon coupling
strength. We show that the condition of its existence is mainly found in
the Franck—Condon overlap. That is the overlap between a wave func-
tion of the bare cavity mode and of the cavity mode displaced by A due
to the coupling with an electron on the molecule. This overlap affects
the photon-assisted electron tunneling rates and we were able to show
that around A = v/2 the tunneling rate responsible for the emission of a
second photon in the cavity is suppressed.

As mostly the two level system is studied in cavity quantum electro-
dynamics and it is viewed as the most probable cause of light emission
in STM junctions, we then applied our model to the case of a two-level
system with no "monopolar" coupling. In this case we showed that the
hybridization between the molecule and the cavity electric field was mea-
surable in the current even in plasmonic cavities. The signature of the
hybridization is shown in the conductance where two side peaks appear
around the peak that correspond to the tunneling through the second
electronic level. These side peaks are separated in energy by the Rabi-
frequency 2A where A is now the "dipolar" coupling. It is to be expected
that to these two new peaks correspond light emission processes and
this is shown in the light emission spectrum. It is interesting to em-
phasize that the monopolar and dipolar coupling are both responsible
for light emission. However in the case of the monopolar coupling many
transitions could result in light emission whereas for the dipolar coupling
mainly two transitions are responsible for light emission. This comes from
the fact that for the dipolar weak coupling regime, only single-electronic
states can emit one photon in the cavity. The light ¢(® correlation func-
tion shows that in the case of the dipolar coupling antibunching is seen
as soon as the hybridized states are involved in the electronic transport
as only single-photon emission is possible in this case. Thus antibunch-
ing is seen at weak coupling strength, which means that the design of
a single-photon source should be easier using the dipolar coupling only
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compared to the monopolar case. Interestingly as the dipolar coupling
strength increases the model starts to deviate towards an equivalent of
the monopolar coupling for two electronic levels and we lose the anti-
bunching in the strong coupling regime.

6.2 Outlook

While we were able to answer some questions about the effect of the
electronic transport on the light emission, a lot more remains to be done.
One major addition we can do is to include both the monopolar and
the dipolar coupling, and see what are the resulting current and photon
statistics. From the experimental point of view, for the two-level system,
they both are present.

For our work we developed a python library that we can use to study
more complex Systems. We could take into account vibrational effects
on the molecule, adding phonons in our model.

Another interesting case is the study of the super radiance in which
the light emission is enhanced by the collective interaction of several iden-
tical molecules. Regarding the effect of the driving of the electric field on
the electronic current, We only partially answered this question, studying
the strong drive regime where the photons field becomes classical.

Finally on the method we used, it would be interesting to study the
limitations of the Markov approximation that is no more valid for damp-
ing rates of the cavity k > kpT. The dynamics become non-Markovian
and require a different approach.
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Appendix A

Numerical methods

As mentioned through the manuscript, a lot of results have been obtained
numerically when analytical calculation was not possible. To this end we
developed a python package named cavity implementing the various
approached we used for our calculations. Our package is based on the
use of the python libraries numpy, scipy and netCDF4 for data storage.
The package is build around four modules. The first module implements
the Hamiltonians used through our work. It makes use of the package
secondquant developed by T. Frederiksen, implementing general second
quantization operators. The Hamiltonians are returned in matrix repre-
sentation. Then the three other modules implement the rate equation
approach, the full Liouvillian approach and the time-dependent approach
used to solve [section 3.8l The latter three modules have a similar imple-

mentation.

Algorithm 1: How to compute pg.

Build the Hamiltonian of the system Hg;

From H build the Liouvillian Eq. or its secular
approximation Eq. as a matrix;

Replace a line in L with the matrix representation of Tr(X);

Solve Lp = B where B ensures that Tr(p) = 1;

Convert p into a matrix;

Result: Compute the density matrix p

In Algorithm [I the reduced density matrix is computed from the
Liouvillian operator. Once this is done, p can be used to compute any
physical quantity (O). In the simplest case, corresponding to the Fermi
golden rule approach, only the diagonal part of the density matrix is
computed. Then any physical quantity can be computed.
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Algorithm 2: How to compute (O) as a function of the voltage
drops

Initialize a 2D voltage map V = (V, Vg);
Initialize the matrix representation of O;
for pp, pgr in V do
Compute ps(pir, fir);
Compute Tr(Op);
end
Result: Compute (O) as a function of voltage map V

Of course the calculation of the electronic current in the case of the
full density matrix implementation is a little bit more complicated as
we recollect the coherent evolution of the cavity mode. In this case
Algorithm [2] still applies but we use Algorithm [3] instead of computing
the trace in the for loop of Algorithm [2|

Algorithm 3: How to compute the electronic current taking
into account the cavity damping

Initialize the Liouvillian Eq. ;
Compute p;
Define a grid G;
for w in G do
‘ Compute the current density i(w) in frequency space;
end
Integrate the current density;
Result: Compute the electronic current

For the integration Algorithm [3] uses numpy function trapz. Finally
the time dependence of an operator is computed using the Liouvillian
operator L using exponential multiplication expm multiply from scipy.

104



Algorithm 4: How to compute time dependent correlation
functions
Result: Compute a time dependent correlation function
Initialize operators O; and Os;
Initialize the Liouvillian;
Compute p as a matrix;
if ¢ > 0 then

Compute v = Oyp as a vector;
Compute S = expm_multiply(Lt,v) as a matrix;
Compute Tr(0;5);
end
else
Hermitian transpose O; and Os;
Compute v = Oqp as a vector;
Compute S = expm_multiply(-Lt,v) as a matrix;
Compute Tr(055)*;
end

Algorithm {4 separates the case of positive and negative times as the
formula used to holds only for positive times. To address negative time
evolution one has to Hermition transpose the expression and makes the
system evolves with —L.
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