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Abstract

The neurocognitive mechanisms that support the generalization of semantic rep-
resentations across different languages remain to be determined. Current psycholin-
guistic models propose that semantic representations are likely to overlap across
languages, although there is evidence also to the contrary. Neuroimaging studies
observed that brain activity patterns associated with the meaning of words may be
similar across languages. However, the factors that mediate cross-language general-
ization of semantic representations are not known. We here identify a key factor: the
depth of processing. Human participants were asked to process visual words as they
underwent functional MRI. We found that, during shallow processing, multivariate
pattern classifiers could decode the word semantic category within each language
in putative substrates of the semantic network, but there was no evidence of cross-
language generalization in the shallow processing context. By contrast, when the
depth of processing was higher, significant cross-language generalization was ob-
served in several regions, including inferior parietal, ventromedial, lateral temporal,
and inferior frontal cortex. These results are in keeping with distributed-only views
of semantic processing and favour models based on multiple semantic hubs. The re-
sults also have ramifications for existing psycholinguistic models of word processing
such as the BIA+, which by default assumes non-selective access to both native and
second languages.
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2



1 Introduction

A key unresolved question is whether different languages in bilingual people are in-
tegrated in the same system with shared/overlapping representations or rely on sepa-
rate systems/representations for each language. Behavioral evidence from cross-language
priming studies suggests that semantic representations are at least partially overlapping
(Grainger, 1998; Perea, Dunabeitia, & Carreiras, 2008; Schoonbaert, Duyck, Brysbaert,
& Hartsuiker, 2009). The evidence has led to the development of psycholinguistic models
of bilingual language representation (Kroll & Stewart, 1994; Van Hell & De Groot, 1998).
Although these models differ in their predictions about the mechanisms that underlie lexi-
cal processing and the links between lexical and semantic processing of the two languages,
they agree that semantic representations are at least partially overlapping between lan-
guages. Yet, other studies have failed to support overlapping semantic systems (Grainger
& Beauvillain, 1988; De Groot & Nas, 1991; Altarriba & Basnight-Brown, 2007). The
mixed evidence between the cross-language priming studies is likely to originate from a
lack of control of low-level properties of primes and targets (e.g. word length and fre-
quency) (Balota & Chumbley, 1984), which can lead to cross-language priming effects not
due to semantics.

Previous fMRI studies based on univariate activation-based approaches did not show
reliable differences in task-related (i.e. word generation, picture naming) hemodynamic
activity across languages (Abutalebi, Cappa, & Perani, 2001; Stowe & Sabourin, 2005; In-
defrey, 2006). One limitation of these studies is that the experimental tasks and contrasts
supposedly targeting semantic processing were often confounded by other untargeted or-
thographic/phonological processes (Binder, Desai, Graves, & Conant, 2009). Univariate
fMRI-based priming studies (Chee, Soon, & Lee, 2003; Crinion et al., 2006) have found
some evidence for both language-shared and language-specific brain responses, but the
role of strategic factors such as expectancy lists of prime-target relations could not be de-
termined (Basnight-Brown & Altarriba, 2007). Strategies linked to expectancy lists (i.e.
involving participants constructing a list of expected targets), alongside the use of long
SOAs, may also alter the depth of processing (Basnight-Brown & Altarriba, 2007). More-
over, mass-univariate approaches are not best suited to identify whether or not semantic
processing is mediated by a similar system across the different languages. The observation
that a cortical area is activated in both languages does not imply that the brain represen-
tations are also similar. Two recent studies used multivariate pattern analysis (MVPA)
to assess whether the brain activity patterns elicited by words in one language can predict
the patterns of equivalent words in the other language (Buchweitz, Shinkareva, Mason,
Mitchell, & Just, 2012; Correia et al., 2014). They found language-shared representations
in well-known semantic substrates including the left parietal lobe, inferior frontal gyrus,
and posterior temporal lobe.

A key limitation of the studies reviewed so far is that the factors underlying the gener-
alization of semantic representations across languages remain to be determined. Critically,
none of the previous MVPA studies noted above (Buchweitz et al., 2012; Correia et al.,
2014) considered the depth of processing during the task. Here we operationalize the
depth of processing based on the contrast between covertly reading a visual word (hence-
forth shallow processing) and mentally simulating the properties associated with the word
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concept (henceforth deep processing) based on the re-enactment of modality-specific rep-
resentations. We note that while our manipulation of the depth of processing differs from
the seminal experimental framework on ‘levels of processing’ (Craik & Lockhart, 1972)
based on tasks targeting semantic vs. lower level phonemic/orthographic judgements,
our experimental procedure is in keeping with different processing depths of processing;
mental simulation is more likely to promote deeper semantic access, while the more shal-
low processing counterpart mainly taps onto phonological processing and rich semantic
analyses is not mandatory.

Little research has examined the role of task-related factors on the brain representation
of meaning. We here hypothesize that the depth of processing imposed by the task plays
a critical role in the generalizability of semantic representations across languages. How-
ever, according to influential psycholinguistic models of word processing i.e. the Bilingual
Integrated Activation model (Dijkstra & Van Heuven, 2002), the activation of language-
shared representations may be independent of the depth of processing, and rather derived
in parallel and non-selectively. Other theoretical accounts such as the perceptual symbols
theory (Barsalou, 1999; Simmons & Barsalou, 2003) propose that semantic representa-
tions result from an implicit and automatic process of simulation in modality-specific
sensory and action systems. This model therefore also predicts that semantic represen-
tations generalize across languages regardless of the depth of processing. Here we used
fMRI-based MVPA to investigate how the depth of processing influences both within-
language decoding and the generalization of semantic representations across languages in
canonical substrates of the semantic network (Binder et al., 2009). The cross-language
generalization of the decoder was taken as a proxy for language-shared representations
(Dehghani et al., 2017). To pre-empt the results, we observed that while the decoding
of the semantic category of words is significant within a given language regardless of the
depth of processing, cross-language generalization of the brain representations of concepts
was only found in the context of deeper levels of processing.

2 Materials and Methods

2.1 Participants

Thirty early and proficient Spanish-Basque bilinguals (mean age 24.2 ± 3.0 years; 19-34
years; 20 female) including twenty with Spanish as L1 were recruited through BCBL’s
own web portal specifically designed for this purpose: https://www.bcbl.eu/participa.
They came from different educational backgrounds ranging from high school to postgrad-
uate and professional training. All of them were healthy, had normal or corrected to
normal vision, gave written informed consent prior to the experiment and were finan-
cially compensated with 20 euros for their time. The experiment was approved by the
BCBL Ethics Review Board and conformed to the guidelines of the Helsinki Declaration.

All participants had acquired both languages before the age of 6. The age of acqui-
sition of Spanish (mean = 0.24 ± 0.74) was found to be statistically significantly lower
(t(29) = −2.60; p = 0.01) than the age of acquisition of Basque (1.17 ± 1.61). Simi-
larly, their reported performance in the two well known tests of language proficiency,
i.e. LexTALE (Lemhöfer & Broersma, 2012) - available for only 27 out of 30 partic-
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ipants - and BEST (De Bruin, Carreiras, & Duñabeitia, 2017) - available for only 29
out of 30 participants - was also found to be statistically significantly higher (LexTALE:
t(26) = 5.46; p < 0.05, BEST: t(28) = 5.40; p < 0.05) in Spanish (LexTALE: 94.54± 4.93,
BEST: 99.36±1.27) as compared to Basque (LexTALE: 86.56±9.13, BEST: 89.76±9.20).
This shows that participants were more proficient in Spanish than in Basque.

Basque and Spanish are two very different languages with different roots. While
Spanish is a romance language, Basque has unknown linguistic roots. It is an isolated
pre-indo-european language. In addition, Basque holds many prominent linguistic differ-
ences with Spanish in the canonical word order in sentences regarding the subject, verb
and object, morphology (Basque: agglutinative), syntax (Basque: ergative), and lexicon
(many different vocabulary and non-cognates).

2.2 MRI Acquisition

A SIEMENS’s Magnetom Prisma-fit scanner, with 3 Tesla magnet and 64-channel head
coil, was used to collect, for each participant, one high-resolution T1-weighted structural
image and ten functional acquisition runs each lasting for about 7 minutes. The proposed
MR sequence was set up and run using SIEMENS’s software Numaris/4 (version: syngo
MR E11). In each fMRI run, a multiband gradient-echo echo-planar imaging sequence
with acceleration factor of 6, resolution of 2.4×2.4×2.4mm3, TR of 850ms, TE of 35 ms,
flip angle of 56 deg and bandwidth of 2582 Hz/Px was used to obtain 477 3D volumes
of the whole brain (66 sagittal slices; FoV = 210mm). The high resolution T1-weighted
structural image covering the whole brain (resolution of 1.0×1.0×1.0mm3, TR of 2530ms,
TE of 2.36 ms, flip angle of 7 deg) was collected after the fifth functional run using a
fast 3D mprage sequence. The visual stimuli were projected on an MRI-compatible out-
of-bore screen using a projector placed in the room adjacent to the MRI-room. A small
mirror, mounted on the head coil, reflected the screen for presentation to the participants.
The head coil was also equipped with a microphone that enabled the participants to
communicate with the experimenters in between the runs.

2.3 Stimuli

A total of 16 words were used with 8 words per language. The Basque words were
translational equivalents of Spanish words. Among 8 words, the 4 were living words
including wolf, rooster, fox, and sheep, and the 4 were non-living words including candle,
key, tube and mirror (for Spanish and Basque translations, see Figure 1). All the words
were non-cognates and were balanced with respect to length and frequency (per million
words; a standard measure independent of the corpus size) across categories (living and
non-living) and languages (t(7) = −1.16, p = 0.28 for length and t(7) = 0.28, p = 0.78 for
frequency per million; see Table 1 for details) based on the statistics provided by Espal
(for Spanish; (Duchon, Perea, Sebastián-Gallés, Mart́ı, & Carreiras, 2013) and E-Hitz
databases (for Basque; (Perea et al., 2006)). The requirement of length and frequency
balancing across categories and languages put some constraints on the number of words;
nevertheless the number finally selected was in keeping with previous studies of semantic
decoding (Shinkareva, Malave, Mason, Mitchell, & Just, 2011; Buchweitz et al., 2012;
Correia et al., 2014). The semantic analysis of these words based on word embeddings
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i.e. word2vec (see § S7) show the non-living things to be more similar between them (light
blue shade) as compared to the living things and there is a room for increased separation
in the semantic space.

Spanish Basque
Living Non-living Living Non-living

Length 4.5±0.58 4.75±0.96 4.5±0.58 5.25±0.96
Frequency 28.73±19.90 19.90±6.12 23.53±17.90 24.55±8.01

Table 1: The table shows mean word length and frequency per million of stimuli with
respect to both languages and semantic categories. These statistics were gathered using
Espal for Spanish and E-Hitz for Basque. It can be seen that they are balanced across
categories and languages.

2.4 Experimental Procedure

Each trial began with a fixation period of 250 ms followed by a blank screen of 500 ms
(see Figure 2). The target word, randomly drawn from a pool of 4 living and 4 non-living
words (see § 2.3), was presented for 1 s. Depending on a run’s instructions (shallow or
deep processing), the participants were supposed to either read and attend to the word,
or to think about the characteristics of the living/non-living object it represented (e.g.
its shape, its color etc.). Following a delay of 4 seconds, a red asterisk appeared at the
center of the screen presented for a jittered time (see below) in which participants were
instructed to do nothing. To ensure that the participants focused on the stimuli and the
task, a maximum of two catch trials were set to appear at random points in each of the
runs. These catch trials showed number words from among ZERO, ONE, and THREE
in place of usual living/non-living words, and participants were supposed to respond by
pressing any one of the four buttons on the fMRI response pad. The number TWO (“dos”
in Spanish and “bi” in Basque) was not used due to different number of letters across
languages. The total number of catch trials was kept equal across conditions.

To have as many trials as possible per each run, and at the same time maximize the
separation between the brain activity corresponding to each of the trials, an event-related
design was used and the time for which the asterisk stayed on the screen was jittered
between 6 to 8s. This jitter was based on a pseudo-exponential distribution resulting in
50% of trials with the inter-trial interval of 6s, 25% with 6.5s, 12.5% with 7s and so on.

Both instructions and stimuli were presented at the center of the screen, in white
against black background and in all uppercase Arial font. The experiment was pro-
grammed using Psychopy (Peirce, 2007) and is summarized in Figure 1. It comprised
10 runs (7 minutes each) and lasted for about 1.25 hours. In odd-numbered runs, par-
ticipants were instructed to read and attend to the words (shallow processing), while in
the even numbered ones, they were instructed to think about the characteristics of the
living/non-living that the word represented (deep processing). Each fMRI run was subdi-
vided into four language blocks with two Spanish (S) and two Basque (B) blocks, and the
order of these blocks was counterbalanced across runs (SBSB, BSBS, and so on). In each
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Number Words Used for
Catch Trials

8 words = 8 trials

with 4 living and 4 non-living words

Figure 1: The figure summarizes the organization of runs, blocks and trials in the exper-
iment. The experiment comprised of 10 runs with odd-numbered runs for shallow pro-
cessing and even-numbered runs for deep processing. Each run was further subdivided
into 4 language blocks (2 Spanish and 2 Basque). Each of these blocks was made up of 8
trials corresponding to single presentation of each of 4 living and 4 non-living words. The
figure also shows the Spanish and Basque translations of both living/non-living words
and number words.

of these blocks, eight words were presented (without repetition) in a random arrangement
resulting in a total of thirty two trials per run.

2.5 MRI Data Preprocessing

The preprocessing of fMRI data was performed using FEAT (fMRI Expert Analysis Tool),
a tool in FSL suite (FMRIB Software Library; v5.0). After converting all data from
DICOM to NIfTI format using MRIConvert (http://lcni.uoregon.edu/downloads/
mriconvert), the following steps were performed on each run’s fMRI. To ensure steady
state magnetisation, the first 9 volumes corresponding to the task instruction period were
discarded; to remove non-brain tissue, brain extraction tool (BET) (Smith, 2002) was
used; head-motion was accounted for using MCFLIRT (Jenkinson, Bannister, Brady, &
Smith, 2002); minimal spatial smoothing was performed using a gaussian kernel with
FWHM of 3mm. Next, ICA based automatic removal of motion artifacts (ICA-AROMA)
was used to remove motion-induced signal variations (Pruim et al., 2015) and this was
followed by a high-pass filter with a cutoff of 60s. All the runs were aligned to a reference
volume of the first run. All further analyses were performed in native BOLD space.
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LOBO

word

1s

 

UNO

catch trial

Figure 2: The figure illustrate the sequence of events on each trial. Following a fixation
period, a word was presented for 1s. The participants were supposed to either read
and attend to the word or think about the living/non-living thing it represented. Next,
following a delay of 4s, a red asterisk appeared at the center of the screen and stayed
there for a jittered interval of 6-8s. To ensure that the participants were engaged, catch
trials were placed at random points in each of the runs. These catch trials showed number
words from among ZERO, ONE, and THREE in place of living/non-living words, and
participants were supposed to respond by pressing a button.

A set of 8 left-lateralized ROIs was pre-specified (see Figure S3) with 7 based on a
meta-analysis of the semantic system by Binder et al. 2009 (Binder et al., 2009) and
one anterior temporal lobe (ATL) due to its crucial role as a ”semantic hub” (Damasio,
Grabowski, Tranel, Hichwa, & Damasio, 1996; Patterson, Nestor, & Rogers, 2007; Cor-
reia et al., 2014). So, the ROIs included: inferior parietal lobe (IPL), lateral temporal
lobe (LTL), ventromedial temporal lobe (VTL), dorsomedial prefrontal cortex (dmPFC),
inferior frontal gyrus (IFG), ventromedial prefrontal cortex (vmPFC), posterior cingulate
gyrus (PCG) and anterior temporal lobe (ATL). First, automatic segmentation of the
high-resolution structural image was obtained using FreeSurfer’s automated algorithm
recon-all. Next, mri binarize was used to extract individual gray matter masks from
aparc+aseg volume using corresponding label indices in FreeSurferColorLUT text file
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI). And fi-
nally, after visually inspecting these in FSLView, they were transformed to each run’s func-

8

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI


tional space using FLIRT (7 DoF global rescale transformation). (Jenkinson & Smith,
2001; Jenkinson et al., 2002) and were binarized (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FLIRT/FAQ).

7
4

6

2

5

ROIs  DEFINITIONs
  1      Inferior Parietal Lobe
  2      Lateral Temporal Lobe
  3      Ventromedial Temporal Lobe
  4      Dorsomedial Prefrontal Cortex
  5      Inferior Frontal Gyrus
  6      Ventromedial Prefrontal Cortex
  7      Posterior Cingulate Gyrus
  8      Anterior Temporal Lobe
 

 

1

3
8

Figure 3: The figure shows the selected regions of interest projected on an MNI stan-
dard template image. These 8 left-lateralized areas were pre-specified and included
inferior parietal lobe (IPL), lateral temporal lobe (LTL), ventromedial temporal lobe
(VTL) including fusiform gyrus and parahippocampal gyrus, dorsomedial prefrontal cor-
tex (dmPFC), inferior frontal gyrus (IFG), ventromedial prefrontal cortex (vmPFC), pos-
terior cingulate gyrus (PCG) and anterior temporal lobe (ATL).

2.6 Multivariate Pattern Analysis

Multivariate pattern analysis was conducted using scikit-learn (Pedregosa et al., 2011) and
PyMVPA (Hanke et al., 2009) libraries. Specifically, classification based on a supervised
machine learning algorithm i.e. linear support vector machine (Fan, Chang, Hsieh, Wang,
& Lin, 2008), was used to evaluate whether multi-voxel patterns in each of the eight ROIs
carry information related to the semantic category (living, non-living) of the word in each
of the conditions. Within-language (or language-specific) decoding involved restricting the
analysis to trials of a specific language (either Spanish or Basque) while cross-language (or
language-independent) decoding entailed training the classifier on trials from one language
and testing it on trials from another language. Both of these analyses were done separately
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for shallow and deep processing trials. Additional details related to the data preparation,
feature selection, classification and statistics are presented in the following subsections.

2.6.1 Data Preparation

For each participant, the relevant time points or scans of the preprocessed fMRI data of
each run were labeled with attributes such as word, category, language, and condition
using Psychopy generated data files (CSVs). Invariant voxels (or features) were removed.
These were the voxels/features whose value did not vary throughout the length of one
run. If not removed, such features can cause numerical difficulties with procedures like
z-scoring of features. Next, data from all ten runs were stacked and each voxel’s time
series was run-wise z-score normalized and linear detrended. Finally, following two recent
cross-language generalization studies (Correia et al., 2014; Buchweitz et al., 2012), one
example was created per trial by averaging the 4 volumes between the interval of 3.4s and
6.8s after the word onset, which corresponded to 1 second presentation of the word (see
Figure 2). Importantly, this was the same in the shallow and deep processing conditions.

2.6.2 Pattern Classification

Linear support vector machine (SVM) classifier, with all parameters set to default values
as provided by the scikit-learn package (l2 regularization, C = 1.0, tolerance = 0.0001),
was used for both within- and cross-language decoding in both shallow and deep process-
ing conditions. The following procedure was repeated for each ROI separately. To obtain
an unbiased generalization estimate, following Varoquaux et al. 2016 (Varoquaux et al.,
2016) the data was randomly shuffled and resampled multiple times to create 300 sets
of balanced train-test (80%-20%) splits. Since each example was represented by a single
feature vector with each feature a mean of voxel intensities across the sub-interval of 3.4s
and 6.8s (see § 2.6.1), the length of a vector was equal to the number of voxels in the ROI.
To further reduce the dimensionality of the data and thus reduce the chances of overfit-
ting (Pereira, Mitchell, & Botvinick, 2009; Mitchell et al., 2004), Principal Component
Analysis (PCA) with all parameters set to default values as provided by the scikit-learn
was used. Since the n components argument was set to None, the number of components
was chosen to be the smaller from among the number of samples (m) and features (n). In
our case, the n was always greater than m, hence, the first m components were selected.
The size of the data matrix after PCA was therefore m × m. These components were
linear combinations of the preprocessed voxel data and since none of the components was
excluded, it was an information loss-less change of the coordinate system to a subspace
spanned by the examples (Mourão Miranda, Bokde, Born, Hampel, & Stetter, 2005).
Features thus created were used to train the decoder, and its classification performance
on the test set was recorded. This procedure was repeated separately for each of the 300
sets, and the mean of corresponding accuracies was collected for each of the participants.
Note that PCA was performed on the training set; then the trained PCA was used to
extract components in the test data and its classification performance was assessed. This
procedure was repeated separately for each of the 300 sets, and the mean of corresponding
accuracies was collected for each of the participants.

Our rationale to infer language-shared representations from the MVP classification
analysis is based on the following logic: if a classier trained to discriminate stimulus classes
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in context A (or language A) generalises to discriminate the stimulus classes of previously
unseen items in context B, there are grounds to argue that the underlying representations
are similar across the two contexts and the level of similarity is proportional to the level
of generalization performance of the classifier.

2.6.3 Statistics

To determine whether the observed decoding accuracy in a given ROI is statistically sig-
nificantly different from the chance-level of 0.5 (or 50%), a two-tailed t-test was performed
with p-values corresponding to each of the ROIs corrected for multiple comparisons us-
ing a false discovery rate (FDR) method. To get the empirical estimate of chance-level,
we ran the classification tests while randomly permuting over the category labels. The
chance-level was computed across participants, ROIs, classification problems (within and
cross-language) and conditions. For each case, 300 permutations were performed and the
mean and standard deviation of the collected permutation scores was calculated across
participants. For all ROIs, and classification problems, the chance-level was consistently
found to be centered around 0.5. All effect sizes are reported as mean effect size±standard
error, t(degrees of freedom)=t-value, p-value across all participants.

3 Results

3.1 Behavioral

To ensure that participants were attending to the items during the task, a few catch
trials were randomly presented at different points in each run. These trials showed number
words and required a response via button press. Further details related to the participants
and procedure are provided in § 2. To ensure equal treatment of both conditions, the
total number of catch trials (mean = 6.8 ± 1.6) was kept equal in both shallow and deep
processing runs. Catch trial data from two initial participants could not be obtained due
to a technical issue. The proportion of correct responses on catch trials was 0.90 ± 0.13
in the shallow processing, and 0.93 ± 0.12 in deep processing conditions, which did not
differ (t(27) = 0.87, p = 0.39), hence showing that participants were equally engaged with
the task in both conditions.

3.2 FMRI-based MVPA Results

For each participant, we performed MVPA in 8 well-known left-lateralized semantic ROIs
(see Figure S3). We asked whether shallow processing is sufficient for decoding the word
semantic category within a given language and also to activate semantic representations
that generalize across languages; or, whether higher depth of processing is needed for such
cross-language generalization. Specifically, linear support vector machine (SVM) was used
for classification of the semantic category in all ROIs in both shallow and deep processing
conditions. Two different classification analyses were performed, namely within-language
decoding and cross-language generalization. Both of these were performed separately
for each of the conditions on each subject, and were restricted to eight pre-specified
ROIs based on a prior meta-analysis (Binder et al., 2009). To determine whether the
observed decoding accuracy in a specific ROI and condition is statistically significantly
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above chance, a two-tailed t-test was performed. All t-tests reported below were corrected
for multiple comparisons using FDR method.

3.2.1 Within-language Decoding

Within-language decoding was restricted to one language at a time whereby 80% of tri-
als of that language were used to train the SVM-based classifier and the remaining 20%
to test the learned model. Figures 4 and 5 therefore present the summary statistics of
the ROIs for both shallow and deep processing conditions within Spanish and Basque
respectively. It can be seen that in both the shallow and deep processing conditions, the
decoding of the semantic category (living/non-living) was found to be statistically signif-
icantly above chance in almost all pre-specified ROIs (see Figures 4, 5 and Supplemental
Results § S1 for statistics).

Deep processing also resulted in relatively higher decoding performance relative to
the shallow processing condition in some of the ROIs. Specifically, deep processing was
found to improve within-language decoding in IPL (p = 0.004), VTL (p = 0.02), and
PCG (p = 0.002) for Spanish and IPL (p = 0.001), VTL (p = 0.008) and IFG (p = 0.04)
for Basque. It can also be seen that an exception to this was ATL where decoding in
the shallow condition was found to be higher than that in deep condition (p = 0.002 for
Spanish, p = 0.75 for Basque).

We conducted further control analyses to address the following points. First, it may
be argued that the decoding accuracy in the within-language classification could reflect
low-level features of the items given that the same words (though different examples)
were used in training and testing the classifier. We believe this is an unlikely explanation
because we controlled for linguistic properties (i.e. length and frequency) of the items.
Further, classification accuracy was quite distributed across the ROIs, including high-level
semantic ROIs. Nevertheless, the within-language decoding analyses were re-run with the
classifier trained on all words but one and tested on the left-out word. Similar results
were observed, although the level of decoding accuracy was somehow weaker across ROIs
and the within-language decoding was most evident in Spanish relative to Basque (see
Supplemental Results § S3). It is possible that any seemingly stronger effect in Spanish
may be due to the fact that most of our participants had Spanish as the first language.
However, since this is not the focus of the study, this issue will not be discussed further.
In summary, these results show that within-language decoding did not reflect low-level
features of the words. Note that this issue does not apply in the case of cross-language
generalization, which is the focus of the present study.

3.2.2 Cross-language Decoding

Cross-language generalization involved training the decoder on the examples of one lan-
guage (training language) and testing it on the examples of the other language (test
language). Figures 7 and 6 present summary statistics of the ROIs for Spanish to Basque
and Basque to Spanish generalization respectively in both shallow and deep processing
conditions. It can be seen that in the shallow processing condition, the cross-language
generalization from both Spanish to Basque and Basque to Spanish was not different
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* * *

Figure 4: The figure shows summary statistics of the ROIs for within-language decoding
in Spanish. It can be seen that the decoding was above chance in all ROIs in both
conditions. The three dotted lines inside each violin are the quartiles. The black asterisks
mark ROIs that showed statistically significant improvement in decoding accuracy in deep
as compared to shallow processing condition. The p-values were corrected for multiple
comparisons.

from chance-level in all pre-specified ROIs (see Supplemental Results § S2 for additional
details).

In the deep processing condition on the other hand, the Spanish to Basque gener-
alization was found to be statistically significantly above-chance and better than shal-
low condition (FDR corrected for multiple comparisons) in five out of eight ROIs in-
cluding: IPL (55.18 ± 5.27, t(29) = 5.29, p = 2.99e − 05), LTL (55.84 ± 5.35, t(29) =
5.88, p = 1.78e− 05), VTL (55.45 ± 5.49, t(29) = 5.34, p = 2.99e− 05), dmPFC (53.12 ±
4.25, t(29) = 3.95, p = 0.0006), IFG (54.89 ± 5.33, t(29) = 4.94, p = 6.00e − 05), vmPFC
(51.47± 2.74, t(29) = 2.89, p = 0.008), PCG (53.57± 4.62, t(29) = 4.15, p = 0.0004), ATL
(50.01 ± 4.69, t(29) = 0.02, p = 0.99). Similarly, Basque to Spanish generalization was
found to be statistically significantly above chance and better compared to shallow con-
dition (FDR corrected for multiple comparisons) in four out of eight ROIs including: IPL
(54.50±5.12, t(29) = 4.74, p = 0.0002), LTL (54.47±5.72, t(29) = 4.21, p = 0.0005), VTL
(55.34 ± 6.36, t(29) = 4.52, p = 0.0003), dmPFC (53.05 ± 4.38, t(29) = 3.75, p = 0.001),
IFG (54.78±5.06, t(29) = 5.08, p = 0.0002), vmPFC (50.55±3.65, t(29) = 0.82, p = 0.48),
PCG (53.03 ± 5.95, t(29) = 2.74, p = 0.01), ATL (49.64 ± 4.28, t(29) = −0.45, p = 0.65)).
Notably, above-chance cross-language generalization in the deep condition was not re-
stricted to ROIs that showed superior within-language decoding as compared to the shal-
low condition (see Figures 4 and 5). We come back to this point in the Discussion.

13



* * *

Figure 5: The figure shows summary statistics of the ROIs for within-language decoding in
Basque. It can be seen that the decoding was above chance in all ROIs in both conditions.
The three dotted lines inside each violin are the quartiles. The black asterisks mark
ROIs that showed statistically significant improvement in deep as compared to shallow
processing condition. The p-values were corrected for multiple comparisons.

The above results clearly show that cross-language generalization was stronger in the
deep compared to the shallow processing condition. Because parametric statistical tests
were used, additionally Shapiro-Wilk tests were run to check the normality assumption
in the data. The results showed that normality assumption held in our dataset. Ad-
ditionally, we also ran non-parametric statistical tests i.e. Wilcoxon signed-rank tests
and found a similar pattern of results to those obtained using parametric t-tests. Fur-
thermore, we also ran Bayesian analyses with all parameters set to default values in the
JASP statistical package (Wagenmakers et al., 2018; Team et al., 2018)) to assess the
extent of the evidence for the null hypothesis in the cross-language generalization in the
shallow condition (see Supplemental Table S5). The results here showed that evidence for
the null hypothesis in the shallow condition ranged from moderate to anecdotal in all of
the ROIs. While this could be interpreted as non-conclusive evidence for the absence of
generalization in the shallow processing case, the key observation is that generalization is
far stronger in the deep relative to the shallow processing condition. The evidence for the
alternative hypothesis in the deep processing context was found to be extreme in most of
the ROIs (see Supplemental Table S6).

Given the evidence for ATL involvement as a semantic hub, we performed some ad-
ditional analysis in the ATL. The results presented above showed that while significant
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* * * * *

Figure 6: The figure shows summary statistics of the ROIs for cross-language general-
ization from Spanish to Basque in both shallow and deep processing conditions. It can
be seen that whereas the generalization was not different from chance in all ROIs in the
shallow condition, it was statistically significantly above-chance and better than shallow
condition in deep condition in five out of eight ROIs including IPL, LTL, VTL, IFG and
PCG. The three dotted lines inside each violin are the quartiles. The orange asterisks
mark ROIs where cross-language generalization in deep was found to be statistically sig-
nificantly above chance and better than shallow condition. The p-values were corrected
for multiple comparisons.

decoding in the ATL was found in the shallow context, there was no evidence of cross-
language generalization even during deep processing. This result was obtained with a
mask of the ATL based on Freesurfer anatomical segmentation and is in keeping with the
study of Damasio et al. 1996 (Damasio et al., 1996) and Correia et al. 2014 (Correia et
al., 2014) in which cross-language generalization was found. However, there is a further,
relatively more posterior ATL area that was also implicated as a multi-modal semantic
hub (see Chen et al. 2017 (Chen, Ralph, & Rogers, 2017)). To re-run the decoding
analysis on this area, we derived a 6 mm mask for each subject in native space based
on registration from the corresponding MNI coordinates (-39, 18, -30), which lie between
ROIs 3 and 8 in Figure S3. We found above-chance within-language decoding in both
shallow (Spanish: 52.78 ± 5.82, t(29) = 2.57, p = 0.02; Basque: 53.48 ± 6.00, t(29) =
3.12, p = 0.004) and deep (Spanish: 54.60 ± 4.48, t(29) = 5.53, p = 7.00e − 06; Basque:
54.14 ± 5.08, t(29) = 4.40, p = 0.0001) conditions with no significant differences between
them (p = 0.20 for Spanish, and 0.63 for Basque), chance-level cross-language generaliza-
tion was found in both conditions (shallow: 51.19±3.82, t(29) = 1.67, p = 0.19 for Spanish
to Basque and 50.66 ± 3.52, t(29) = 1.01, p = 0.56 for Basque to Spanish generalization;
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* * * *

Figure 7: The figure shows summary statistics of the ROIs for cross-language general-
ization from Basque to Spanish in both shallow and deep processing conditions. It can
be seen that while the generalization was not different from chance in all ROIs in the
shallow condition, it was statistically significantly above-chance and better than shallow
condition in deep condition in four out of eight ROIs including IPL, LTL, VTL and IFG.
The three dotted lines inside each violin are the quartiles. The orange asterisks mark
ROIs where cross-language generalization in deep was found to be statistically signifi-
cantly above chance and better than shallow condition. The p-values were corrected for
multiple comparisons.

deep: 50.16 ± 4.15, t(29) = 0.20, p = 0.95 and 50.03 ± 4.21, t(29) = 0.03, p = 0.97).

Next, we explore several factors that may account for the apparent absence of cross-
language generalization in the shallow condition.

We wondered whether cross-language generalization in the shallow condition may be
related to inter-individual differences in language proficiency scores in BEST and LeX-
TALE tests. Hence, we assessed the correlation of language proficiency and cross-language
decoding accuracy in the different ROIs. Specifically, we expected that balanced bilin-
guals, namely, participants with minimal difference in Spanish and Basque proficiency
scores would display increased cross-language generalization accuracy (mean generaliza-
tion scores across Spanish to Basque and vice versa). However, we did not find reliable
evidence in support of this hypothesis (see Supplemental Results § S6).

It could be argued that the sub-interval of 3.4s-6.8s may not be the most optimal
choice for creating examples (see § 2.6.1). As mentioned above, the choice of this time
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window was based on previous cross-language generalization studies (Buchweitz et al.,
2012; Correia et al., 2014) and standard guidelines in the field of fMRI-based multivari-
ate pattern decoding (Pereira et al., 2009). However, we also re-ran the whole analysis
taking the average of 2 volumes across the sub-interval of 4.25s and 5.95s. We found both
within-language and cross-language generalization to be similar to those obtained using
the sub-interval of 3.4s and 6.8s. Specifically, cross-language generalization was again
found to be at chance-level in all ROIs in the shallow condition.

It could also be argued that information critical for cross-language generalization in
the shallow condition is stored in spatially distributed, remote brain areas (Yamashita,
Sato, Yoshioka, Tong, & Kamitani, 2008). Given that our ROI-based approach re-
stricted the MVP analysis to one ROI at a time, it remains possible that significant
cross-language generalization in the shallow condition is observed with a bigger ROI. To
investigate this, we combined the data from all eight ROIs and repeated the analysis
in the shallow condition. We found above-chance within-language decoding (Spanish:
59.12 ± 4.47, t(29) = 10.98, p = 7.61e − 12; Basque: 58.24 ± 4.88, t(29) = 9.10, p =
5.36e − 10), but cross-language decoding was not different from chance during Spanish
to Basque generalization (51.37 ± 4.77, t(29) = 1.54, p = 0.13) and Basque to Spanish
generalization (51.19 ± 4.46, t(29) = 1.43, p = 0.16).

Conversely, it could also be argued that the pre-specified ROIs were relatively large
and the PCA merged features that were irrelevant for further classification analysis
(Van Schooten, Harel, Ercan, & De Groot, 2014). This could be suggested as one pos-
sible reason for chance-level cross-language generalization in the shallow condition. In
an attempt to address this point, the 8 ROIs were further subdivided into 15 more fine-
grained ROIs based on individual anatomically segmented masks from Freesurfer (i.e.
including inferior parietal lobe, inferior temporal lobe, medial temporal lobe, fusiform
gyrus, parahippocampal gyrus, superior frontal gyrus, pars opercularis, pars orbitalis,
pars triangularis, lateral orbitofrontal cortex, medial orbitofrontal cortex, posterior cin-
gulate gyrus, precuneus, and anterior temporal lobe). Then, the same MVP analysis
was repeated. However, cross-language generalization in the shallow condition was not
different from chance in all ROIs for both Spanish to Basque and Basque to Spanish
generalization, while crucially generalization was significantly above chance in the deep
condition in a number of ROIs located in the anatomical spaces of the 8 ROIs described
above (see Supplemental Results § S5).

4 Discussion

An important question in psychology and neuroscience is whether the acquisition of
different languages is integrated within the same neurocognitive system and include
shared/overlapping representations, or whether different languages are represented in
separate brain systems. Previous investigations did not address the factors that under-
lie the generalization of semantic representations across languages. Hence it remained
to be determined whether and how semantic representations generalise across languages.
This fMRI study provides novel insights into this issue by uncovering how the depth of
processing during semantic tasks influences within-language decoding of word category
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and cross-language generalization based on multivoxel patterns of BOLD responses in
putative substrates of the semantic network.

We found that the semantic category of words could be significantly decoded above
chance levels when both Spanish and Basque languages were considered separately in all
pre-specified semantic areas based on a prior meta-analysis (Binder et al., 2009). This
happened even under shallow processing conditions when participants were merely asked
to attend and read the words. However, the decoding performance was significantly bet-
ter in deep compared to shallow processing in IPL, VTL, and PCG for Spanish and IPL,
VTL, and IFG for Basque. The superior decoding performance in the deep relative to
shallow processing condition aligns with other recent observations in our laboratory (Soto,
Sheikh, Mei, & Santana, 2019) and indicates that the task requirement had an impact on
the brain representation of meaning.

Cross-language generalization was not different from chance in all ROIs during shallow
processing conditions (see also (Sheikh, Carreiras, & Soto, 2019)). Only in the context of
deep information processing did brain activity patterns reliably generalize from Spanish
to Basque in several brain regions (from Spanish to Basque: IPL, LTL, VTL, dmPFC,
IFG, and PCG; from Basque to Spanish: IPL, LTL, VTL and IFG) known to be involved
in semantic processing. For instance, the left IPL has been found to allow cross-language
generalization in fMRI studies using visual (Buchweitz et al., 2012), auditory word com-
prehension with concrete nouns (Correia et al., 2014) and also during narrative compre-
hension task (Dehghani et al., 2017). PCG, and dmPFC have previously been found in
cross-language generalization with visual stimuli (Buchweitz et al., 2012; Dehghani et al.,
2017) but not in those using auditory stimuli (Correia et al., 2014). Similarly, LTL and
VTL have been found to carry patterns that generalize across languages in studies using
visual word comprehension (Buchweitz et al., 2012) as well as production tasks (Van de
Putte, De Baene, Brass, & Duyck, 2017; Van de Putte, 2018).

It is worth noting that cross-language generalization in the deep condition was also
found in ROIs which showed no difference in within-language decoding as function of the
depth of processing. Specifically, multivoxel patterns in the lateral temporal lobe and
dorsomedial prefrontal regions contained information that generalized across languages
only in the context of a higher depth of processing but not during shallow processing,
despite within-language decoding accuracy was the same in deep and shallow contexts.
This pattern of results indicates that cross-language generalization in the deep processing
case is not merely due to the increased signal to noise ratio of the multivoxel patterns
corresponding to living and non-living items or merely based on modality-specific repre-
sentations triggered by mental (e.g. visual) imagery processes occurring more strongly
during deep relative to shallow processing (Soto et al., 2019). Our results also indi-
cate that language-independent neural representations of semantic knowledge may not
be easily generated during bottom-up information processing (i.e. automatically) but
may require top-down strategic control processes (Stolz & Besner, 1999) such as those
triggered during deep information processing and mental simulation.

The influential hub-and-spoke model suggests that sensory-motor representations of a
concept are encoded in modality-specific brain regions (spokes), yet, unified and amodal
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representations are formed within a single transmodal hub in anterior temporal lobes
(ATL). On the other hand, the distributed-only model suggests that the higher-order
generalizations from modality-specific (or language-specific) to amodal (or language-
independent) semantic representations is not confined to a single semantic hub, rather
distributed multiple brain regions are involved (Patterson et al., 2007; Ralph, Jefferies,
Patterson, & Rogers, 2017). In our study, we found significant within-language decoding
in ATL, yet cross-language generalization was not observed in this region in both shallow
and deep conditions. These null results however must be taken with caution given that
ATL is well-known to have susceptibility-induced signal dropout issues, and also consider-
ing the amount of evidence in the favour of the key role of ATL as a multi-modal semantic
hub (Lambon Ralph, 2014). The critical finding however is that the cross-language gen-
eralization was found in multiple substrates of the semantic network. This is in keeping
with previous neuroimaging studies (Buchweitz et al., 2012; Correia et al., 2014), though
here we revealed the critical role of the depth of processing. We propose that the depth of
information processing triggered the global sharing of information across a distributed set
of brain areas implicated in semantic representation and this supported cross-language
generalization. We suggest that the present results are in keeping with distributed-only
views of semantic processing (Patterson et al., 2007).

We observed significant decoding of semantic category in inferior parietal, medial and
inferior temporal and inferior frontal regions. These cortical association areas, also known
as a transmodal cortex” (Luria, 1976), are thought to play a critical role in higher-order
semantic processing (Lambon Ralph, 2014). Although the specific role of inferior frontal
cortex still remains a topic of debate, previous studies indicate that it is not involved
in the storage of semantic knowledge as such, but in semantic control (Thompson-Schill,
D’Esposito, Aguirre, & Farah, 1997; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001;
Noonan, Jefferies, Corbett, & Lambon Ralph, 2010). In our study, word meaning could
be decoded from patterns of activity in inferior frontal gyrus, namely, pars opercularis
and pars triangularis, both within-, and also cross-languages. These results implicate
this region in semantic representation (see also (Buchweitz et al., 2012; Shinkareva et al.,
2011; Soto et al., 2019)). It is typically assumed that bilinguals are constantly switching
between the two languages, selecting one and inhibiting the other based on task goals.
However, it is hard to explain the within- and cross-language decoding of semantic cate-
gories based on this language switching account and semantic control view.

The present results have ramifications for psycholinguistic models of visual word recog-
nition e.g. BIA+ (Dijkstra & Van Heuven, 2002). These models implement word pro-
cessing in a purely bottom-up manner with parallel and non-selective (i.e. language
independent) activation of linguistic codes not just at the level of semantics but orthogra-
phy and phonology too. We propose that such models need to be revised to incorporate
the influence of top-down factors related to the depth of processing. Our results indicate
that non-selective access to word meaning across languages is not mandatory or intrinsic
property of the semantic system. Instead, our results are in keeping with the view that
depending on the depth of processing, the extent of parallel and non-selective access can
be modulated. For instance, studies that did not encourage high depth of processing only
found evidence for selective access (Rodriguez-Fornells, Rotte, Heinze, Nösselt, & Münte,
2002; Hoversten, Brothers, Swaab, & Traxler, 2015). More research is however needed
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to elucidate the extent to which the depth of processing shapes how bilinguals access
semantic representations, namely, the extent to which different language representations
for a given concept are co-activated in parallel (Oppenheim, Wu, & Thierry, 2018) or
whether, according to BIA+, bilinguals access to the lexical and semantic representation
is delayed in the second language compared to the first language (Brysbaert, Van Wijnen-
daele, & Duyck, 2002). Furthermore, here we only used eight words per language in order
to match them as much as possible in linguistic factors, however, the limited number of
words imposes constraints on the scope of inferences that can be drawn about the neu-
rocognitive architecture of the semantic system across different languages. Future studies
using a larger corpus of words, time-resolved electrophysiology and computational models
are needed to pinpoint the effect of the depth of processing and other task-related fac-
tors on the brain dynamics for accessing semantic representations in different languages.
Ongoing work in the lab is being directed to test this view. An additional limitation
of the present study may relate to the high sampling rate used (multiband acceleration
factor of 6), which might have led to signal loss in some regions and geometric distortion
that can affect the anatomical registration of the functional images. No field maps were
obtained to correct for potential field inhomogeneities. However, inspection of our images
did not reveal greater distortions compared to standard (i.e. no multiband) acquisitions.
Additional research is needed to achieve a comprehensive evaluation of the relationship
between acquisition parameters (MB factors, in-plane acceleration, voxel size, TR, flip
angle) and MVPA decoding results, and benefits in event-related designs with short trial
event have already been demonstrated through a comparison of multiband 2 and 3 (see
(Demetriou et al., 2016), also (Chen et al., 2015)). Of note, however, the level of decoding
performance in the present study was similar to previous MVPA decoding studies that
used similar paradigms with standard MRI sequences (Shinkareva et al., 2011; Buchweitz
et al., 2012; Correia et al., 2014).
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Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering
meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31 (2),
329–338.

Yamashita, O., Sato, M.-a., Yoshioka, T., Tong, F., & Kamitani, Y. (2008). Sparse
estimation automatically selects voxels relevant for the decoding of fmri activity
patterns. NeuroImage, 42 (4), 1414–1429.

24



Supplemental Results

S1 Within-Language Decoding

ROI shallow deep deep - shallow
IPL 58.61±4.40 p = 3.97×10−11 62.98±5.85 p = 8.19×10−12 p = 9.77×10−3

LTL 59.45±4.54 p = 1.27×10−11 60.81±6.97 p = 5.35×10−9 p = 0.45
VTL 58.89±5.19 p = 5.20×10−10 61.62±5.57 p = 1.21×10−11 p = 4.77×10−2

dmPFC 58.80±4.89 p = 5.40×10−11 60.18±5.31 p = 6.39×10−11 p = 0.44
IFG 59.30±4.01 p = 2.84×10−12 61.21±7.38 p = 6.69×10−9 p = 0.38

vmPFC 55.01±5.64 p = 4.59×10−5 56.19±5.92 p = 5.00×10−6 p = 0.44
PCG 58.64±4.10 p = 1.27×10−11 62.84±6.07 p = 1.21×10−11 p = 9.24×10−3

ATL 56.57±6.29 p = 5.05×10−6 52.00±5.47 p = 0.06 p = 9.24×10−3

Table S1: The table presents within-language decoding results for Spanish in both shallow
and deep processing conditions. The p-values were corrected for multiple comparisons.

ROI shallow deep deep - shallow
IPL 58.95±4.18 p = 1.30×10−11 62.62±4.65 p = 5.28×10−14 p = 0.01
LTL 58.34±4.75 p = 4.67×10−10 60.44±5.86 p = 2.29×10−10 p = 0.26
VTL 58.50±5.27 p = 1.95×10−9 62.73±6.09 p = 1.13×10−11 p = 0.03

dmPFC 58.29±4.82 p = 6.02×10−10 60.56±5.12 p = 1.16×10−11 p = 0.15
IFG 58.45±4.00 p = 1.30×10−11 61.57±6.06 p = 5.65×10−11 p = 0.11

vmPFC 54.80±5.87 p = 1.51×10−4 55.54±5.12 p = 2.88×10−6 p = 0.69
PCG 59.12±4.93 p = 1.94×10−10 60.78±4.48 p = 5.57×10−13 p = 0.30
ATL 54.15±5.88 p = 6.85×10−4 53.71±5.63 p = 0.001 p = 0.75

Table S2: The table presents within-language decoding results for Basque in both shallow
and deep processing conditions. The p-values were corrected for multiple comparisons.
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S2 Cross-Language Generalization

ROI shallow deep deep - shallow
IPL 50.62±4.74 p = 0.57 55.18±5.27 p = 2.99×10−5 p = 0.03
LTL 51.04±4.08 p = 0.48 55.84±5.35 p = 1.78×10−5 p = 0.02
VTL 52.22±4.21 p = 0.07 55.45±5.49 p = 2.99×10−5 p = 4.94×10−2

dmPFC 50.85±4.42 p = 0.57 53.12±4.25 p = 6.00×10−4 p = 0.07
IFG 50.47±3.67 p = 0.57 54.89±5.33 p = 6.00×10−5 p = 0.03

vmPFC 50.62±4.55 p = 0.57 51.47±2.74 p = 8.00×10−3 p = 0.92
PCG 50.45±4.59 p = 0.60 53.57±4.62 p = 4.00×10−4 p = 0.06
ATL 51.20±3.72 p = 0.37 50.01±4.69 p = 0.99 p = 0.92

Table S3: The table presents cross-language generalization results for Spanish to Basque
generalization in both shallow and deep processing conditions. The p-values were cor-
rected for multiple comparisons.

ROI shallow deep deep - shallow
IPL 51.66±4.97 p = 0.16 54.50±5.12 p = 2.00×10−4 p = 0.03
LTL 51.08±4.20 p = 0.28 54.47±5.72 p = 5.00×10−4 p = 0.06
VTL 52.36±4.35 p = 0.05 55.34±6.36 p = 3.00×10−4 p = 0.08

dmPFC 50.87±4.00 p = 0.34 53.05±4.38 p = 1.00×10−3 p = 0.12
IFG 51.48±3.18 p = 0.07 54.78±5.06 p = 2.00×10−4 p = 0.03

vmPFC 51.73±4.73 p = 0.16 50.55±3.65 p = 0.48 p = 0.96
PCG 50.67±4.73 p = 0.51 53.03±5.95 p = 0.01 p = 0.14
ATL 50.12±3.99 p = 0.88 49.64±4.28 p = 0.65 p = 0.13

Table S4: The table presents cross-language generalization results for Basque to Span-
ish generalization in both shallow and deep processing conditions. The p-values were
corrected for multiple comparisons.

S3 Out of Sample Generalization

Figure S1 and S2 present the summary statistics of the ROIs for out-of-sample general-
ization in both shallow and deep processing conditions. It can be seen that in the shallow
processing condition, the decoding of the semantic category (living/non-living) in Spanish
was found to be above-chance (FDR corrected for multiple comparisons) in two out of
eight ROIs including IPL (51.07±3.96; t(30) = 1.46; p = 0.27), LTL (52.46±4.35; t(30)
= 3.05; p = 0.02), VTL (51.31±5.00; t(30) = 1.41; p = 0.27), dmPFC (51.50±4.61; t(30)
= 1.76; p = 0.24), IFG (52.17±3.87; t(30) = 3.01; p = 0.02), vmPFC (50.29±4.64; t(30)
= 0.34; p = 0.74), PCG (50.75±4.22; t(30) = 0.96; p = 0.39), ATL (51.31±5.47; t(30) =
1.29; p = 0.28). In Basque however, it was found to be at chance-level in all pre-specified
ROIs including IPL (51.06±4.53; t(30) = 1.26; p = 0.82), LTL (50.57±4.85; t(30) = 0.63;
p = 0.82), VTL (50.21±4.78; t(30) = 0.23; p = 0.82), dmPFC (50.23±4.29; t(30) = 0.29;
p = 0.82), IFG (50.34±4.68; t(30) = 0.39; p = 0.82), vmPFC (49.66±5.29; t(30) = -0.34;
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p = 0.82), PCG (51.48±4.50; t(30) = 1.77; p = 0.69), ATL (49.44±5.42; t(30) = -0.56; p
= 0.82).

* ** * * * *

Figure S1: The figure shows summary statistics of the ROIs for out-of-sample general-
ization of the semantic category in Spanish. The three dotted lines inside each violin are
the quartiles. The green and orange asterisks mark the ROIs that showed significantly
above-chance performance in the shallow and deep conditions respectively and the black
asterisks those with statistically significant improvement in deep as compared to shallow
condition. The p-values were corrected for multiple comparisons.

On the other hand, in the deep processing condition, the decoding of the semantic
category in Spanish was found to be above-chance and better than shallow condition
(FDR corrected for multiple comparisons) in three out of eight ROIs including: IPL
(54.39±5.57; t(30) = 4.24; p = 0.002), LTL (53.05±6.55; t(30) = 2.51; p = 0.029), VTL
(53.77±5.80; t(30) = 3.49; p = 0.004), dmPFC (51.37±5.43; t(30) = 1.36; p = 0.21), IFG
(53.37±7.22; t(30) = 2.51; p = 0.03), vmPFC (50.70±5.72; t(30) = 0.66; p = 0.51), PCG
(53.95±5.98; t(30) = 3.56; p = 0.004), ATL (48.29±5.11; t(30) = -1.80; p = 0.11). In
Basque however, it was found to be above-chance and better than shallow condition (FDR
corrected for multiple comparisons) in one out of eight ROIs including: IPL (53.28±5.03;
t(30) = 3.52; p = 0.006), LTL (51.87±5.73; t(30) = 1.76; p = 0.14), VTL (53.69±4.81;
t(30) = 4.13; p = 0.002), dmPFC (51.45±5.33; t(30) = 1.47; p = 0.20), IFG (51.68±5.14;
t(30) = 1.76; p = 0.14), vmPFC (50.11±4.84; t(30) = 0.12; p = 0.90), PCG (52.11±4.82;
t(30) = 2.36; p = 0.07), ATL (49.53±4.23; t(30) = -0.59; p = 0.64).
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* *

Figure S2: The figure shows summary statistics of the ROIs for out-of-sample general-
ization of the semantic category in Basque. The three dotted lines inside each violin are
the quartiles. The orange asterisks mark those that showed above-chance performance
in the deep condition and the black asterisks mark those with statistically significant
improvement in deep as compared to shallow condition. The p-values were corrected for
multiple comparisons.
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Figure S3: The figure shows another location of anterior temporal lobe projected on an
MNI standard template image. It is a more posterior area previously implicated as a
semantic hub by (Chen et al., 2017).

S4 Bayesian Analysis

S4.1 Cross-language Generalization

ROIs Spanish Basque
IPL 0.245; moderate 0.816; anecdotal
LTL 0.452; anecdotal 0.461; anecdotal
VTL 5.37; moderate support of H1 6.277; moderate support of H1

dmPFC 0.316; anecdotal 0.359; anecdotal
IFG 0.241; moderate 2.72; anecdotal support of H1

vmPFC 0.249; moderate 1.061; anecdotal
PCG 0.221; moderate 0.255; moderate
ATL 0.745; anecdotal 0.197; moderate

Table S5: Results of Bayesian analyses testing the evidence favor the null hypothesis in
the cross-language generalization in the shallow condition, and the corresponding inter-
pretation based on Lee and Wagenmakerś classification scheme. Regions in which the test
moderately supported the alternative hypothesis (H1) are noted (Lee & Wagenmakers,
2014).
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ROIs Spanish Basque
IPL 463.9; extreme 1902; extreme
LTL 124.1; extreme 8427; extreme
VTL 267.4; extreme 2165; extreme

dmPFC 40.91; very strong 66.76; very strong
IFG 1112; extreme 773.2; extreme

vmPFC 0.264; moderately support the null 5.961; moderate
PCG 4.389; moderate 108.8; extreme
ATL 0.214; moderately supports the null 0.194; moderately supports the null

Table S6: Results of Bayesian analyses testing the evidence favor the alternative hypoth-
esis in the cross-language generalization in the deep condition, and the corresponding
interpretation based on Lee and Wagenmakerś classification scheme (Lee & Wagenmak-
ers, 2014).
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S5 Cross-language Generalization with 15 ROIs

A set of 15 left-lateralized ROIs was pre-specified (see Figure S4) based on a meta-analysis
of the semantic system by Binder et al. 2009 (Binder et al., 2009) and one anterior tempo-
ral lobe (ATL) due to its crucial role as a ”semantic hub” (Damasio et al., 1996; Patterson
et al., 2007; Correia et al., 2014). So, the ROIs included: inferior parietal lobe (IPL), infe-
rior temporal lobe (ITL), middle temporal lobe (MTL), precuneus, fusiform gyrus (FFG),
parahippocampal gyrus (PHG), superior frontal gyrus (SPG), posterior cingulate gyrus
(PCG), pars opercularis (POP), pars triangularis (PTR), pars orbitalis (POR), frontal
pole (FP), medial orbitofrontal cortex (MOFC), laterial orbitofrontal cortex (LOFC), and
anterior temporal lobe (ATL).

ROIs	DEFINITIONS
   1	   Inferior Parietal Lobe (IPL)
   2	   Inferior Temporal Lobe (ITL)
   3	   Middle Temporal Lobe (MTL)
   4	   Precuneus
   5	   Fusiform Gyrus (FFG)
   6	   Parahippocampal Gyrus (PHG)
   7    Superior Frontal Gyrus (SFG) 
   8    Posterior Cingulate Gyrus (PCG)

  9	    Pars Opercularis (POP)
  10	  Pars Triangularis (PTR)
  11	  Pars Orbitalis (POR)
  12	  Frontal Pole (FP)
  13	  Medial Orbitfrontal Cortex (MOFC)
  14	  Lateral Orbitofrontal Cortex (LOFC)
  15   Anterior Temporal Lobe (ATL)

4
8

7

12
13

14
15

5
6

1

3
211

109

Figure S4: The figure shows the selected regions of interest projected on an MNI standard
template image. The 15 left-lateralized areas were pre-specified and included regions:
inferior parietal lobe, inferior temporal lobe, middle temporal lobe, precuneus, fusiform
gyrus, parahippocampal gyrus, superior frontal gyrus, posterior cingulate gyrus, pars
opercularis, pars triangularis, pars orbitalis, frontal pole, medial orbitofrontal cortex,
laterial orbitofrontal cortex and anterior temporal lobe.

It can be seen that in the shallow processing condition, the cross-language gener-
alization from Basque to Spanish (see Figure S6) was found to be not different from
chance (FDR corrected for multiple comparisons) in all pre-specified ROIs including FP
(51.77 ± 3.77; t(30) = 2.53; p = 0.26), FFG (51.71 ± 4.41; t(30) = 2.09; p = 0.27), IPL
(50.62 ± 4.74; t(30) = 0.71p = 0.74), ITL (50.76 ± 4.14; t(30) = 0.99; p = 0.71), LOFC
(50.39 ± 3.81; t(30) = 0.55; p = 0.74), MOFC (50.36 ± 4.70; t(30) = 0.42; p = 0.78), MTL
(51.24 ± 4.40; t(30) = 1.51; p = 0.42), POP (49.85 ± 3.70; t(30) = −0.21; p = 0.86), POR
(50.42 ± 4.08; t(30) = 0.55; p = 0.74), PTR (50.47 ± 3.88; t(30) = 0.65; p = 0.74), PHG

31



(51.65 ± 4.42; t(30) = 2.01; p = 0.27), PCG (49.84 ± 4.76; t(30) = −0.18; p = 0.86), Pre-
cuneus (50.74 ± 4.89; t(30) = 0.81; p = 0.74), SFG (50.86 ± 4.43; t(30) = 1.05; p = 0.71),
ATL (51.20 ± 3.72; t(30) = 1.74; p = 0.34). Similarly, the cross-language generaliza-
tion from Spanish to Basque (see Figure S5) was also found to be not different from
chance (FDR corrected for multiple comparisons) in all pre-specified ROIs including FP
(51.53 ± 4.33; t(30) = 1.91; p = 0.35), FFG (51.53 ± 4.35; t(30) = 1.90; p = 0.35), IPL
(51.66 ± 4.97; t(30) = 1.80; p = 0.35), ITL (50.85 ± 4.04; t(30) = 1.14; p = 0.38), LOFC
(51.00 ± 3.99; t(30) = 1.35; p = 0.38), MOFC (51.21 ± 4.92; t(30) = 1.33; p = 0.38), MTL
(51.16 ± 3.87; t(30) = 1.61; p = 0.35), POP (51.31 ± 4.173537473061428; t(30) = 1.69; p =
0.35), POR (50.40 ± 4.35; t(30) = 0.49; p = 0.72), PTR (50.88 ± 4.32; t(30) = 1.10; p =
0.38), PHG (50.93 ± 4.04; t(30) = 1.24; p = 0.38), PCG (50.10 ± 3.98; t(30) = 0.11; p =
0.91), Precuneus (50.72±4.97; t(30) = 0.78; p = 0.55), SFG (50.87±4.01; t(30) = 1.17; p =
0.38), ATL (50.12 ± 3.99; t(30) = 0.16; p = 0.91).

*** **

Figure S5: The figure shows summary statistics of the ROIs for cross-language general-
ization from Spanish to Basque in both shallow and deep processing conditions. It can be
seen that while the generalization was at chance-level in all ROIs in the shallow condition,
it was statistically significantly above-chance and better than shallow in deep condition in
five out of fifteen ROIs including FFG, IPL, MTL, POP and ITL. The three dotted lines
inside each violin are the quartiles. The orange asterisks mark ROIs where cross-language
generalization in deep was found to be statistically significantly above chance and better
than shallow condition. The p-values were corrected for multiple comparisons.

In the deep processing condition on the other hand, the Basque to Spanish general-
ization (see Figure S6) was found to be statistically significantly above-chance and better
than shallow condition (FDR corrected for multiple comparisons) in 5 out of 15 ROIs
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including FP (50.30 ± 4.21; t(30) = 0.38; p = 0.76), FFG (56.19 ± 6.50; t(30) = 5.12; p =
0.0003), IPL (54.50 ± 5.12; t(30) = 4.74; p = 0.0004), ITL (54.48 ± 5.57; t(30) = 4.33; p =
0.0006), LOFC (50.24 ± 2.97; t(30) = 0.43; p = 0.76), MOFC (50.13 ± 4.46; t(30) =
0.15; p = 0.88), MTL (53.50 ± 5.52; t(30) = 3.41; p = 0.004), POP (54.53 ± 5.52; t(30) =
4.41; p = 0.0006), POR (51.91 ± 4.12; t(30) = 2.49; p = 0.03), PTR (53.10 ± 3.98; t(30) =
4.19; p = 0.0007), PHG (51.97 ± 5.46; t(30) = 1.95; p = 0.09), PCG (50.46 ± 4.55; t(30) =
0.55; p = 0.76), Precuneus (52.98±5.56; t(30) = 2.89; p = 0.01), SFG (53.04±4.39; t(30) =
3.73; p = 0.002), ATL (49.64 ± 4.28; t(30) = −0.45; p = 0.76). Similarly, Spanish to
Basque generalization (see Figure S5) was found to be statistically significantly above
chance and better compared to shallow condition (FDR corrected for multiple com-
parisons) in five out of fifteen ROIs including: FP (50.36 ± 4.07; t(30) = 0.48; p =
0.68), FFG (55.63 ± 5.64; t(30) = 5.38; p = 8.41e − 05), IPL (55.18 ± 5.27; t(30) =
5.29; p = 8.41e − 05), ITL (55.27 ± 5.69; t(30) = 4.98; p = 0.0001), LOFC (51.05 ±
2.56; t(30) = 2.21; p = 0.048), MOFC (49.45 ± 5.04; t(30) = −0.59; p = 0.65), MTL
(54.23± 5.06; t(30) = 4.50; p = 0.0004), POP (54.43± 5.86; t(30) = 4.08; p = 0.001), POR
(51.72 ± 2.97; t(30) = 3.11; p = 0.007), PTR (52.85 ± 4.62; t(30) = 3.32; p = 0.005), PHG
(52.43 ± 5.28; t(30) = 2.48; p = 0.030), PCG (51.12 ± 4.26; t(30) = 1.42; p = 0.21), Pre-
cuneus (53.26±4.79; t(30) = 3.66; p = 0.002), SFG (53.13±4.25; t(30) = 3.97; p = 0.001),
ATL (50.01 ± 4.69; t(30) = 0.02; p = 0.99).
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*** * *

Figure S6: The figure shows summary statistics of the ROIs for cross-language general-
ization from Basque to Spanish in both shallow and deep processing conditions. It can be
seen that while the generalization was at chance-level in all ROIs in the shallow condition,
it was statistically significantly above-chance and better than shallow in deep condition in
five out of fifteen ROIs including FFG, IPL, PTR, POP and ITL. The three dotted lines
inside each violin are the quartiles. The orange asterisks mark ROIs where cross-language
generalization in deep was found to be statistically significantly above chance and better
than shallow condition. The p-values were corrected for multiple comparisons.
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S6 Correlation between Cross-language Generalization
and Language Proficiency

There were a few negative correlations between proficiency in Basque and Spanish indexed
by the LeXTALE and cross-language generalization in LTL, IFG and dmPFC. However,
these results should be taken with caution given that our study was not designed to
explore inter-individual differences and that, while there were clear negative correlations,
their statistical significance did not survive correction for multiple comparisons.

ROI BEST scores LeXTALE scores
IPL 0.136; p = 0.497 −0.227; p = 0.255
LTL −0.139; p = 0.489 −0.392; p = 0.043
VTL −0.062; p = 0.759 −0.306; p = 0.120

dmPFC −0.304; p = 0.123 −0.401; p = 0.038
IFG −0.276; p = 0.164 −0.406; p = 0.036

vmPFC −0.034; p = 0.866 −0.142; p = 0.479
PCG −0.129; p = 0.522 −0.378; p = 0.052
ATL 0.026; p = 0.897 −0.282; p = 0.155

Table S7: The table shows correlation between cross-language generalization score, and
the difference between proficiency scores between Basque and Spanish in the shallow
condition. The p-values are uncorrected.

S7 Semantic Analysis of the Stimuli

A matrix of word embeddings (word2vec) summarizing the semantic relationships between
words within and across categories is presented in the Figure S7.
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Figure S7: The figure shows a matrix of word embeddings i.e. word2vec summarizing the
semantic relationships between stimuli within and across categories.
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