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Laburpena

Tesi hau bertsolaritza kantu-ahots sintesi sistema berri baten garapenean zen-
tratzen da, zuzeneko grabazioak oinarri gisa erabiliz. Lan honen erronka ez da soi-
lik kantu-ahots sintesi sistema bat martxan jartzea. Bertsolaritza grabazioen cor-
pusak bertso inprobisatuen transkripzioak ditu, baina grabazio artxiboek kantu-
ahotsa ez diren hainbat elementu dituzte. Grabazioa gehienak zuzeneko saioak di-
renez, hizlarien ahotsa, jendearen txaloak eta zarata datu-basearen parte dira. Gain-
era, kantu-ahotsa ez dago etiketatua datu-basean. Ezaugarri hauek dituen datu-
base batekin, lan honen helburua bertsolaritza audioak garbitu, segmentatu eta
etiketatzeko metodoak sortzea da, ondoren datu horiek kantu-ahotsaren sintesi
ereduak sortzeko balio duten aztertzeko.

Grabazioetan kantu-ahots segmentuak automatikoki lortzeko metodoak garatu
ditugu, hizketa eta kantu-ahotsa bereizten dituzten algoritmoak sortuz. Interbentzi-
oen eta fonemen segmentazioa burutu dugu kantari anitzeko datubasean. Pro-
posatutako segmentazio algoritmoek etorkizunean ager daitezken bertsolari be-
rrien grabazioak segmentatzeko gaitasuna dute. Ondoren, bertsolaritza artearen
propietate musikalak aztertu ditugu eta datu-baseko melodia teorikoak eta haien
interpretazioa alderatu ditugu. Sistema automatikoak definitu ditugu bertsolarien
kantu-ahotsa musikalki etiketatzeko. Etiketatze honek vibratoa kontuan hartzen
du eta honen erabilera aztertu dugu bertsolari bakoitzean. Lortutako etiketatze
sistema guztien ebaluazioa egin dugu prozesuan zehar.

Etiketatutako bertso grabazioen datu-basea sortu ondoren kantu-ahots sintesi

sistemak sortu ditugu HMM eta DNN-ak erabiliz. Sistema hauei pitch nor-
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malizazioa, tempo egokitzapena eta vibrato iragarpen teknikak gehitu dizkiegu.
Metodo bat definitu dugu partiturak bertsolari bakoitzera automatikoki egok-
itzeko hauen pitch tartea kontuan hartuz. Bertsolari desberdinetarako sortutako
sintesi ereduak modu subjektibo eta objektiboan ebaluatu ditugu emaitza onak lor-
tuz.

Tesi honen ekarpenak bertsolaritza eta kantu-ahotsaren sintesiarekin erlazion-
atzen dira. Informazio maila berriak gehitu dizkiogu bertsolaritza corpusari, kantu-
ahotsaren segmentazioarekin, interbentzioen segmentazi- oa, fonemen segmen-
tazioa eta etiketatze musikalarekin. Etiketatzeko metodo hauek ez dute inolako
kontrolik behar eta, beraz, etorkizunean datu-base etiketatuak handitzeko tresnak
sortu ditugu. Kantari anitzeko datu-base bat sortu dugu, artearen egoerako beste
kantu-ahots datubaseak baina handiago dena. Azkenik, bertsolaritza kantu-ahotsa
sintetizatzeko sistemak definitu ditugu kantari eta teknologia desberdinekin, emai-

tza positiboak lortuz.
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Abstra&

This thesis focuses on the development of a new bertsolaritza singing voice syn-
thesis system using as base original bertsolaritza live session recordings. The chal-
lenge of this work is not only the implementation of a singing voice synthesis sys-
tem. The recorded corpus of bertsolaritza contains the transcriptions of impro-
vised verses, but the audio files contain multiple elements that are not singing voice.
As the majority of the recorded audios are live sessions, the voice of a speaker, ap-
plause of the public and noise are part of the database. In addition, the musical
labeling of the singing voice is not included in the database. With a database of
these properties, the aim of this work is to create methods to clean, segment and
label the audios in the bertsolaritza and analyze the possibility of using them to
create synthesis models for bertsolaritza singing voice synthesis.

We have developed methods to automatically obtain the singing voice segments
in the recordings, creating new speech and singing voice classification algorithms.
The segmentation of bertso utterances and phonemes has been performed in a
multi-singer database. The segmentation algorithms proposed have the capacity
to align material from unseen bertsolaris in the future. After that, we analyzed the
musical properties of the bertsolaritza art and compared the theoretical melodies
in the database with the actual interpretation of them. We defined automatic sys-
tems to musically label the bertsolaritza singing voice generating a fully labeled
bertsolaritza database. Musical labeling included vibrato and we analyzed the use
of it in each bertsolari. We evaluated all automatic labeling systems in the process.

After creating alabeled database of bertso recordings we generated singing voice



synthesis systems using HMMs and DNNs. We included f, normalization, tempo
adaptation and vibrato prediction techniques in these systems. We defined meth-
ods to automatically adapt music scores for each bertsolari considering the pitch
range of each bertsolari. We evaluated synthesis models created for different bert-
solaris in a subjective and objective way obtaining good results.

The contributions of this thesis are related to bertsolaritza and singing voice syn-
thesis. We added new information levels to the bertsolaritza corpus with the seg-
mentation of singing voice, the alignment of utterances and phonemes and the
subsequent musical labeling. These labeling methods need no manual supervision
and therefore we created tools to increase the labeled database in the future. We
created a multi-singer singing voice database that is considerably bigger than any
state of the art singing voice databases. Finally we defined systems to synthesize
bertsolaritza singing voice using different singers and technologies obtaining pos-

itive results.
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Introduction

Bertsolaritza is an art of improvised poetry singing that is very popular in the
Basque Country. This art is always performed in Basque and the recordings and
documentation of the live sessions since the 60s are considered an important lit-
erary and musical corpus of Basque language and the Basque culture. The combi-
nation of longevity and non literacy of the Basque language has made the Basque
popular literature mainly oral and bertsolarism can be considered a sub-genre of
it [S0]. In this thesis we will use the terminology in Basque language to address

different elements of bertsolaritza. These are the definitions of these terms:
« Bertso: Abertso is a strophe of the improvised lyrics.
« Bertsolari: The name of the improviser and singer of the bertsos.

Given the importance of this art in the Basque society, multiple research areas

have been opened related to it. Literary [49][52], sociological [117], musical



[54][55], Natural Language Processing (NLP) [1][7] and robotics [6] related
researches have been developed in the analysis of bertsolaritza. Considering the
growth of voice synthesis in the 21st century and specially of singing voice synthe-
sisin the decade 0f 2010s, the development of bertsolaritza singing voice synthesis
became a new research option.

The increase of digital data and data driven methods in the 20th century brought
new ways of understanding the singing voice synthesis research. The highest qual-
ity systems and commercial systems like Vocaloid [72] are based in concatenative
synthesis systems but the synthesis systems based on statistical models have been
improving their results since their first appearance in 2006 [123].

The first bertsolaritza voice synthesis system was developed in 2015 to add
singing voice to Bertsobot, the Bertsolari robot [6]. That singing voice was cre-
ated by speech to singing voice conversion, modifying the parameters generated
by an speech synthesis system. The research on bertsolaritza singing voice created
the need of a deeper analysis of this art and the next steps have been taken in this
thesis. This work analyzes the recordings of a bertsolaritza corpus and the potential
applications of this corpus in the singing voice synthesis research. For this purpose
we have used state of the art technologies. The analysis of bertso recordings from a
signal processing perspective and the creation of a singing voice synthesis system
based on these recordings are research paths that can bring a whole new possibility
both to Basque society and singing voice research. This chapter is a summary of
the work and contains the motivation, research lines and objectives of the work.
The last part of this chapter explains the structure of the thesis document and the

content of each section.

1.1 Motivation

The motivation of this work can be explained as the convergence of three main
concepts: the bertsolaritza art from the Basque Country, the singing voice syn-

thesis research and the trajectory of Aholab research group. These three elements



converge in the need of creating new tools and analysis methods.

1.1.1 Bertsolaritza

Bertsolaritza is an improvisation poetry art from the Basque Country. With the
first examples located at the end of the 18th century [81], this art is strongly rooted
in the Basque culture and with the increase of recorded and transcribed material,
in the 20th century it became a very important element in the Basque literature
and culture. Performed in cider houses, bars, squares and stadiums this popu-
lar art achieved a professional status since the 80s and is taught to the kids since
early ages. With the popularization of recording tools in the 60s the recordings
of bertsos started to increase and the organization Xenpelar Dokumentazio Zen-
troa was created to save all the data related to bertsolaritza: music scores, transcrip-
tions, recordings and the related metadata. The growth of the newly created corpus
pushed the emergence of new research areas such as its sociocultural impact [ 117],
automatic poetry generation [ 1], musical analysis [ 54][55] and literary style anal-
ysis [49] [52] among others. In the area of signal processing research applied to
bertsolaritza, a singing voice generation system had been created before the begin-

ning of this thesis, but without analyzing the recordings of original bertso sessions.

1.1.2 Singing voice synthesis

Starting from its first public exposition in 1961 as marketing stunt of Bell labora-
tories, the singing voice synthesis evolved in the second half of the 20th century
in parallel with the digital signal processing and data science. During the 20th
century, rule based methods [167][147] made big improvements and many re-
searchers tried to analyze all the phenomena that happen in singing voice. At the
end of the 20th century concatenative methods started to be applied in singing
voice synthesis [89]. In the 21st century, data driven approaches started to im-
prove results and recent singing voice synthesis research has been focused in HMM

[123][139] and Neural Network [103][16] approaches. Although the direction



of research is on data driven approaches, nowadays concatenative singing voice
synthesis systems are the ones with best results and the ones used in commercial

systems [72].

1.1.3 Aholab signal processing laboratory

Aholab is a signal processing laboratory from the University of the Basque Coun-
try specialized in speech processing created in 1992. Aholab developed the first
Basque Text-to-speech (TTS) system [118][62] and it is the reference research
group in terms of speech processing for Basque language. Aholab took part in the
project of bertso singer robot Bertsobot [6]. In this project Aholab created the
singing voice of the robot, by adapting a speech synthesis system.

1.1.4 Convergence of paths

Considering the relevance of bertsolaritza for the Basque Country and Basque lan-
guage, any research line about this art has scientific and cultural interest. The data
compiled by the Xenpelar Dokumentazio Zentroa includes hours of recordings of
this art and before this thesis, this data had not been analyzed from a signal pro-
cessing point of view. Aholab research group has experience analyzing Basque
speech and extending the research area of Basque language from speech to singing
voice would open a whole new research area around a topic with growing interest
in the signal processing field. Although the starting motivation of this work is an
improvement of bertsolaritza singing voice synthesis, defining the technology and
standards for the laboratory in singing voice would create possibilities for record-

ing analysis, score prediction, singing voice synthesis and conversion.

1.2 Research overview

If we analyze the structure of a generic singing voice synthesis system in Figure

1.2.1, we can see that musical scores and their respective interpretations of singing
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voice are needed to create synthesis models.

Synthesis model

creation Recordings

New music Synthesized
scores recordings

Figure 1.2.1: General architecture of a singing voice synthesis system

In the case of bertsolaritza, the audio files are recordings of live sessions, there-
fore, together with the singing voice, they include speech from the host who sets
the improvisation themes, applause of the public and other extra noises. A prepro-
cessing of the audio files needs to be done to obtain only the singing voice segments
that will be used to create synthesis models. The data collected by Xenpelar Doku-
mentazio Zentroa include the orthographic transcriptions of the sung parts. How-
ever, due to the improvised nature of bertsolaritza, there is no music score with the
musical information. The improvised verses are conditioned to specific meters and
usually bertsolaris use predefined melodies for each meter. Nevertheless, because
of the improvisation and also because bertsolaris are not professional singers, ev-
ery melody can vary even when maintaining the meter. Meter and melody are the
metadata parameters directly related with the musical structures and are incom-
plete in the provided archives. Taking into account that every recording has ortho-
graphic transcriptions and there are missing meter and melody annotations, we
decided to create methods to predict these missing metadata features. The whole

research performed in this thesis can be divided in three different phases:

« Metadata prediction: Meter and melody are the most relevant metadata



related to musical information and they are crucial to build the music scores
used as input in singing voice synthesis systems. As they are missing in some
files, new methods for predicting meter and melody must be created and

tested.

 Music score creation: With the complete metadata obtained in the previ-
ous phase, novel methods to define the music scores corresponding to the

recordings will be developed and evaluated.

« Bertsolari voice synthesis: Using the music score created in the previous
phases, different singing voice synthesis models will be built and their qual-

ity will be compared and assessed using objective and subjective measures.

The complete process is represented in Figure 1.2.2.

1.3 Objectives

With the defined research structure, the objectives of this thesis are the next ones:

- Singing voice synthesis research: Collect information about the histori-
cal trajectory of singing voice synthesis and about the main state of the art
technologies to select the best technologies to create a bertso singing voice

synthesis.

« Data collection: Collect all the singing voice databases available to test and
compare different singing voice processing methods that will be developed

in this work.

« Metadata prediction: Create classification systems for the metadata of
bertso recordings with transcriptions in order to make metadata annotation
in recordings with missing information easier and to automatically annotate
future recordings. Test the systems and evaluate their reliability for future

improvements.
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Figure 1.2.2: Main tasks to be covered by the thesis work



« Database standardization: Define the standard formats and type of files
for the diverse information contained in the Bertso database considering

the differences with a speech database.

« Bertso melody evaluation: Evaluate the musical coherence of the bertso

recordings with standard melodies.

« Music score prediction: Using the bertso recordings, the orthographic
transcriptions and the bertso melodies, create methods to define the music

score represented by the singing voice in the recording.

« Creation of an annotated bertso singing voice database: Combining the
manual and automatic methods proposed in this work define a fully anno-

tated bertso singing voice database.

« Music score synthesis standardization: Define methods to standardize

music scores for different singers with different data distributions.

« Bertsolarivoice synthesis: Create singing voice synthesis models for mul-
tiple singers and compare them by means of objective and subjective evalu-

ations.

1.4 Thesis structure

The structure of this work is designed to achieve every goal of the thesis. In Chap-
ter 2 singing voice generation, analysis, synthesis and labeling methods are de-
scribed along with a general description of bertsolaritza art. History and analy-
sis methods of speech are included in this chapter because multiple elements are
shared with singing voice. First, singing voice generation by humans is explained
in Section 2.1 and the representation of music in music scores is analyzed in Sec-
tion 2.2. Then, we summarize the history of speech synthesis before the appear-
ance of the singing voice synthesis in Section 2.3. In Section 2.4 we analyze differ-

ent methods of modeling singing voice and in Section 2.5 we explain the spectral



methods used in the second half of the 20th century for the singing voice analysis
and synthesis. Then, different singing voice synthesis system types are explained
in Section 2.6. Next, different methods for automatic singing voice labeling are de-
scribed in Section 2.7. Finally, the history and characteristics of bertsolaritza art
are described in Section 2.8. This chapter meets the goal of analyzing the needs
of bertsolaritza art and the optimal technologies to achieve the objectives in the
current context.

In Chapter 3, the available databases of singing voice are described in Section
3.1 along with standard files and formats in singing voice databases. In this section
transcriptions are properly cleaned and edited to adjust them to the recordings.
The edited transcriptions are used to evaluate meter prediction systems as part of
the goal of creating a metadata prediction system. In Section 3.2, the state of the
art about the available software that can be valuable to perform the work proposed
in the thesis is defined.

In Chapter 4, we propose new methods to define the music score representa-
tion of the bertso recordings. We start with the separation of singing voice from
the rest of audio events present in the recordings. This process is described in Sec-
tion 4.1. Then, utterance and phoneme segmentation are applied and described in
Section 4.2 and Section 4.3 respectively. In Section 4.4 we define different ways to
musically represent the singing voice in amateur recordings without music scores
and describe the results of testing the annotation system in other databases. In Sec-
tion 4.5 we analyze the music scores created by the method proposed in Section
4.4. The range, year of the recordings, note durations and the use of vibrato are
analyzed in different bertsolaris. We also analyze the singing voice ranges of the
singers of National University of Singapore (NUS) database.

In Chapter § we use the data and annotations created in Chapter 4 to model dif-
ferent singer voices with multiple singing voice synthesis systems. In Section 5.1
we define the general scheme of the synthesis systems and in Section 5.2 we pro-
pose adaptation techniques for note pitch and duration to obtain synthesis models
with more flexibility and better quality. In Section 5.3 we define the reconstruc-

tion of the vibrato from the parameters predicted with the Deep Neural Network



(DNN) system. Next, in Section 5.4, we define the model dependent conversion
of the music scores used to adapt music scores to the range of each singer in an
automatic way. After this, we describe the representation of the audio recordings
and music scores that we use to create singing voice synthesis models in Section
5.S. Next, we explain the HMM-based and DNN-based singing voice synthesis sys-
tems in Section 5.6 and Section 5.7. In Section 5.8, we assess the synthesis systems
by evaluating synthesized samples both with objective and subjective measures.
In Chapter 6 we describe the conclusions of this thesis. The contributions and
obtained goals are listed in Section 6.1. In Section 6.2 we define the possible im-
provements of the synthesis systems created in this work and the technologies that

could be used to achieve these improvements.
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State of the art

In this chapter we describe the previous research related to different aspects of
the singing voice, the research area related with this thesis. We also describe the
history and characteristics of bertsolaritza art. The chapter starts explaining the
singing voice generation by humans in Section 2.1 and the representation of music
in music scores in Section 2.2. Then, we summarize the history of speech synthe-
sis before the appearance of the singing voice synthesis in Section 2.3 given the
close relation between these two technologies. In Section 2.4 we analyze different
methods of modeling singing voice and in Section 2.5 we explain the spectral meth-
ods used for the singing voice analysis and synthesis. Then, different singing voice
synthesis system types are described in Section 2.6. Next, different methods for
automatic singing voice labeling are summarized in Section 2.7. Finally, the bert-
solaritza art and a summary of research lines related to it are detailed in Section
2.8.
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2.1 Singing voice

Singing voice is the generation of musical notes using the human vocal apparatus.
Considered as one of the oldest musical instruments ever used, the cultural and
social presence of the singing voice in our societies is undeniable. The high expres-
siveness of the singing voice combined with lyric poetry makes it a perfect tool to
define cultural identities and idiosyncrasies. Singing voice has also been an oral
method of music tradition transmission for many cultures.

The generation of singing voice is similar to that of speech. In Figure 2.1.1 we

can see the structure of the human voice generation system.

Nasal cavity

Tongue
Oral cavity

Trachea

Figure 2.1.1: Structure of the human voice generation system
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All the sounds in human speech or singing voice are generated with this system,
therefore the flexibility and versatility of the system is very high. This versatility
makes the singing voice one of the most important elements in music perception of
humans [32]. In the voice generation process, the lungs create air pressure waves
that, after crossing the trachea, arrive to the vocal folds. The vocal folds are a set of
muscles that can vibrate under this pressure. The speed of this vibration (i.e. the
number of times per second that the vocal folds open and close under the air pres-
sure wave) can be considered the fundamental frequency of the speech or singing
voice. The term pitch is used to refer to the perceived frequency instead of the
actual frequency that has been generated by the vocal folds. This pitch frequency
controls the intonation in speech or the singing pitch in singing voice. Pitch is
related to the length of the vocal folds and we can control this length in a certain
range around their natural length. The length of the vocal folds is related to the size
of the neck, therefore there is a variety of pitch ranges to sing and speak. Longer
folds produce a voice of a lower pitch. The range of pitch that a human can gener-
ate can also vary and can be trained to sing higher range songs. An image of the

vocal folds can be seen in Figure 2.1.2.

Esophagus Pyriform fossa

Trachea

True vocal cord
Vestibular fold

Glottis

Epiglottis

Tongue

Figure 2.1.2: Representation of the vocal folds
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When the vocal folds are used to create a sound, the generated sounds are de-
fined as voiced. But unvoiced sounds can be generated too with the human voice
generation system. In unvoiced sounds, the vocal folds do not vibrate in a har-
monic way and the resulting signal is considered as noisy. In both voiced and un-
voiced sounds, the resulting signal is defined as glottal voice source and it then
passes through the nasal and oral cavities. With the control of the nasal and oral
cavities, different transformations can be applied to the glottal voice source creat-
ing different sounds.

Multiple models tried to reproduce the human voice generation process through
history but the most popular nowadays is the source-filter model. This model rep-
resents speech as the result of a source signal that passes through a linear acoustic
filter. The glottal voice source is considered as the source and the nasal and oral
cavities are considered as a linear filter. The generation of a voiced sound with the
source-filter model is represented in Figure 2.1.3. The glottal voice source (source)
is modeled as a train of pulses when the sound is voiced (as shown in the image)
and as white noise in unvoiced sounds. The glottal source passes through the oral
and nasal cavities (acting as filter) before reaching the output. The oral and nasal
cavities create acoustic resonances at certain frequency bands, called formants’
They are seen in the spectrum as prominent frequency bands. Vowels are char-
acterized by having stable formants and can be identified with only two of them.
Although these formants are not identical for each realization, mainly because the
position of the formants can vary depending on the surrounding phones, humans
are capable of identifying them. For unvoiced sounds, white noise goes through
the vocal-tract and generates non periodic turbulent noises. Although these turbu-
lent noises are not periodic, humans can define different phonemes creating differ-
ent noises.

In the source-filter model the source signal, represented as glottal voice source,
is convolved with the impulse response of the filter, represented as the vocal and
nasal tract. In Figure 2.1.3 we can observe the frequency response of the vocal and
nasal tract and its resonance frequencies around 650, 1200 and 2300 Hz. These

peaks are considered the formants. In the source-filter model, the generation of the
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sound can be represented as the multiplication of the frequency representation of
the source and impulse response of the filter in frequency space. In the unvoiced
sounds white noise passes through the vocal tract generating different turbulent

noises that the human hear can identify.
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Figure 2.1.3: Voice production process from the signal processing point of

view
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With the source-filter model we can distinguish three different parameters:
power, pitch and timbre. The power is related to the power envelope of the wave-
form, the pitch is related to the glottal source periodicity and the timbre relates to
the form of the oral cavity.

The speech and singing voice share the same generation system and both usually
express linguistic phonemes. Nevertheless, for humans speech and singing voice
are two different types of sound and are used in different contexts. At the acoustic

level, the differences between speech and singing voice are the next ones:

« Voiced/unvoiced ratio: In singing voice usually each note defines the av-
erage pitch and duration of a syllable of the lyrics. The pitch of a note is
defined using the fundamental frequency and therefore is closely related to
the voiced phonemes. The duration of the notes is not always longer than
the duration of the syllables in speech, but this is commonly the case. Com-
bining the importance of voiced phonemes for the pitch and the increase of
syllable durations, the ratio of the duration of voiced to the unvoiced seg-

ments is higher in the singing voice comparing to speech.

« Vocal Dynamics: In musical terms, vocal dynamics is used to define the
volume or power range of the voice. The singing voice tends to be more ex-
pressive and therefore the power of the singing voice has bigger range than
that of speech. The average power of the singing voice is also higher than

that of speech.

« Range of fundamental frequency: In the singing voice the fundamental
frequency is driven by the notes in a music score. This makes the range of
the fundamental frequency in the singing voice dependent on the music
scores. If we consider the range needed to sing common music scores, this
range is usually greater than the range needed for speech. The range of the
fundamental frequency in speech goes from 80 Hz to 400 Hz and although
it is complicated to define the range of all the possible sung melodies, we
can put the example that the range of a soprano singer can go from 250 Hz

to 1,500 Hz.
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« Vibrato: In singing voice, sometimes a periodic modulation of the funda-
mental frequency is used to add expressiveness to notes with long duration.
This modulation is called vibrato and it is a phenomenon that does not ap-

pear in speech.

« Formants: The purpose of speech and singing voice are different. The pur-
pose of speech is the communication of a message and the singing voice
purpose is closer to aesthetics and expression. In the transmission of a mes-
sage the definition of the phonemes is a crucial part because these are the
base of our acoustic linguistic channel. The definition of these phonemes
is related with the formants as explained earlier in this section. The singing
voice tends to give more importance to the expressiveness and the interpre-
tation of the notes instead of to the understanding of the phonemes. These
priorities sometimes change the formant positions of the voiced phonemes
in singing voice. Opera singing voice also has an extra formant around 3
kHz that does not appear in speech [ 146]. This formant is closely related to
the higher vocal loudness of this singing style.

If we consider the modeling of the singing voice from a source-filter perspec-
tive, four main elements can be predicted from a music score: phoneme durations,
energy, timbre and f;. Many analyses have been realized to determine energy con-
tours [ 124 ] and the delay of the phonemes from the notes in the music score [ 123].
According to Saino et al. [123], the synthesis of singing voice sounds unnatural if
we use the note durations to strictly calculate phoneme durations. This happens
because there are time-lags between start timings of notes and real singing voice
phonemes. Research about the timbre in singing voice has also been developed.
The differences of timbre between different singing styles has been analyzed by
Thalén and Sundberg [ 149] and singer formants have been analyzed by Sundberg
[142]. The modeling of the f; is one of the key parts of the singing voice modeling,

and this is why we explain it in a deeper way in the next Section 2.1.1.
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2.1.1 Singing voice f;

Compared to the other elements of the singing voice, f, has attracted special at-
tention in the research of the singing voice synthesis. The reason for this atten-
tion is the importance of the f; in the musical melody and the expressiveness of
the singing voice. The f; of the singing voice must represent a melody in the cor-
rect way, fill multiple mechanical conditions related to sung phonemes and add
multiple expressive elements that are not included in music scores like vibrato for
instance. It has been proved that changes in f, have greater effect in the percep-
tion of the quality of the singing voice if we compare it with changes in spectral
characteristics [126].

The main elements in the singing voice f, where researchers have focused their

efforts are the next ones:

« Note onset positions: The note onset position is placed in the first vowel
onset inside the note in rule based systems like that of Kungliga Tekniska
Hogskolan (KTH) [147] and in expressive synthesis systems like the one
described in [125].

« Small fluctuations: The small fluctuations in f, have been proved to be im-
portant for the naturalness of synthetic speech by Akagi et al. [4] and these
fluctuations have been measured also in singing voice synthesis and been
defined as fine fluctuations [3]. Saitou et al. created a singing f, synthesis
method with second order filtering of the staggered curve of the pitch val-
ues that included fluctuations with white noise [ 127]. Ohishi et al. used a

white Gaussian noise in their singing f, synthesis system [106].

« Microprosody: The deviation from the melody present in the f; curve be-
cause of the pronounced phonemes is called microprosody. Consonants
tend to create f, valleys that complicate the relationship between the notes
in the music score and the sung pitch values. Saino etal. [124] used aligned

phonemes and interpolation to separate the phoneme dependent variations
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and the melodic f;. According to Saino et al. the voiced f; segments inside
consonants suffer deviations from the melody. Removing this deviation by
interpolation creates smoother f, curves that are easier to model consider-

ing the sung melody.

Transitions between notes: If we consider the note transitions, Mori et
al. observed that after the transitions, the f, values tend to surpass the des-
tination pitch in the direction of the transition [101]. They defined this
excess as overshoot extent. One year later Saitou et al. defined that before
the transitions there was also a deflection in the opposite direction of the
note change and called it preparation [127]. Saitou et al. created a f, gener-
ation model taking into account the preparation and overshoot, processing

a staggered melody curve with a second-order system.

Vibrato: Vibrato is defined as a periodic, rather sinusoidal, modulation of
the fy curve. The modulation rate is usually between S and 8 Hz and the
depth can vary between different singing styles. The depth needs a mini-
mum of £ 0.5 semitones to be noticed and vibratos that exceed the £ 2
semitones are perceived as a bad singing technique [145]. The smooth-
ness of the fy curve that statistical prediction methods assume makes the
vibrato modeling a complicate task. This is why it has been modeled in a
separate way in multiple statistical parametric singing voice synthesis meth-
ods [127][108][63].

Portamento: The portamento is a pitch slide between two notes that is re-
alized slower than a normal transition [134]. The portamento can be ad-
dressed in music scores, but the singers can also use it as an expressive mech-
anism without being signaled in the music score. This expressive mecha-
nism has been taken into account in multiple singing voice synthesis sys-

tems [106][158] and note transcription systems [76][98][152].
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2.1.1.1 Modeling strategies

Many of the research proposals in singing voice synthesis respond to the afore-
mentioned phenomena. In 2005, Saitou et al. proposed a dynamic second-order
system to process an initial staggered curve of the pitch values with defined dura-
tions [127]. This system took into account the generation of preparation, over-
shoot, fine-fluctuations and vibrato. In 2010 Saino et al. proposed the separation
of phoneme-dependent components and melody components from the f, curve.
The system modeled the notes from the melody component with different HMM
configurations for different note structures. To address the vibrato problem, they
created a method to remove the vibrato from the melody component, model it
separately and reconstruct it in synthesis [125]. In 2013 Umbert et al. used unit
selection combined with transformation and concatenation processes to obtain
natural and smooth f; curves [157]. Each unit contained the f; curve segment in-
side three consecutive notes or silence. The synthesized music score defines an
ideal contour where each note has specific conditions of pitch and vocal dynam-
ics. With the pitch and vocal dynamics conditions, the units are selected to fill the
constraints on each note. After the selection of the desired note units, vibratos
are removed and saved using rate, depth and reconstruction error contours. The
selected units are transformed to adjust them to the conditions and crossfading is
used to smooth the transitions. After crossfading the vibrato is reconstructed us-
ing saved parameters. Also in 2015, Ardillon et al. used B-spline curves to create
melodic, microprosody, vibrato and fine-fluctuations [ 5]

In the last decade, neural network based strategies have been proposed to syn-
thesize the melody. In 2015 Ozer modeled the f; and vibrato with separate Long
Short-Term Memorys (LSTM) using as input a time aligned staggered pitch curve
and information about the pitch and duration of the current and contiguous notes
[110]. In 2016 Nishimura et al. applied f; normalization combined with DNNs
and discussed different interpolations procedures for the normalization of un-
voiced phonemes and silence frames. After the success of Wavenet autoregressive

structures to predict directly the audio waveform from fixed parameters, two dif-
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ferent f, prediction models employed this structure, Blaauw and Bonada in 2017
[15] and Wada et al. in 2018 [ 158]. Blaauw and Bonada used one-hot encoding of
phonemes and notes as conditional features and Wada et al. used features related
to the melody and out of tune penalizingloss. In 2018 Hua proposed parametrical
note models with separated modeling of transitions and vibrato using DNNs [68].

As it can be seen, intensive research has been developed around the synthesis
of melody, which demonstrates the importance of this component in the singing

voice.

2.2 Musical scores

Musical scores are the written interpretation of music and they can represent musi-
cal melodies with and without lyrics. The music score without lyrics are prepared
for musical instruments and when lyrics are included the singing voice is needed
to interpret it. In the music scores with lyrics, the text from the lyrics is split be-
tween the notes in the melody. This split usually separates syllables and each note
contains the orthographic symbols of one syllable. If we consider that any ortho-
graphic representation can be converted to a phonetic representation, we can con-
sider a music score as a sequence of notes in which each note contains one or more
phonemes. Each note defines the average fundamental frequency and the duration
of a set of phonemes and these sets of phonemes are concatenated generating the
song. The silence is also a possible note symbol in music scores. Although mu-
sic is a very expressive art and can vary from literal interpretations of the scores,
any melody base can be written in a score. The Western musical notation system
offers many tools to represent musical events in a song. There are many specific
symbols, but we are going to define only the ones common in our bertso music

scores. Examples of these elements in a music sheet can be seen in Figure 2.2.1.

« Staves. The staves represent relative pitch positions. Notes are positioned

in these levels to represent a specific pitch level.
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Clef. The clef indicates the absolute position of the staves in a Western mu-

sic note/octave scale.

Accidental. Symbols preceding a note that lowers or raises a note in a semi-
tone resulting in a "non natural” pitch. The most common ones in Western

music are the sharp (#), flat (b), and natural () symbols.
Bar line. Vertical lines in staves signaling melodic stress.

Time signature. Symbol indicating the duration of notes between two bar

lines and stress patterns in that space.

Note. Base musical unit. It defines a pitch position and a duration symbol.

These two parameters are a relative value in a musical scale.

Rest. Note equivalent to silence. It has no pitch and it is a representation of

a duration symbol.

Slur. Connection of two or more notes of different pitch position that means

they have to be played without separation.

Tie. Connection of two or more notes with the same pitch position that
means they have to be played as a single note summing the duration of all

of them.

Tempo. Representation of the number of times a specific duration symbol

can fit in a minute.

Key signature. A symbol written after the clef that represents a shift in the

representation of the notes in the stave.

Lyrics. Orthographic representation of the phonemes that have to be inter-

preted in each note.
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Figure 2.2.1: Example of elements considered in music notation

With these elements we can define the phonemes, the identity in note/octave
scale and the duration of each note. These notes can be simplified as a sequence
of pitch values and silences of specific duration. If the representation was ideal,
we would obtain the sequence of notes where the phonemes within each note
would fulfill the pitch and duration conditions of the note. The pitch should be
represented with the fy of voiced phonemes and the sum of the durations of the
phonemes should be equivalent to the note duration. This would result in a voice
with a staggered f, representing the notes. Nevertheless, we explained in Section
2.1 that the singing voice is a very expressive human tool and the expressiveness
comes precisely from the deviations from the music score that humans realize in
the performance. Although the deviation from the music score creates expressive
singing voice, deviating too much from the melody can result in bad quality singing
voice. The melody of the music score has to be recognizable and for this purpose it
is essential to perform sustained f, segments in the pitch values signaled in the mu-
sic score. The durations of the phonemes are also modified from the durations sig-
naled in the music score but the note transitions must respect the tempo of the mu-
sic score. In conclusion, the duration and pitch conditions from the music scores

are not strictly followed in the singing voice performances, but these conditions
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are essential for the performance.

To obtain the phonemes that correspond to each note we have to convert the or-
thographic representation of the lyrics into phonemes. This conversion depends
on the language of the lyrics. Each language has different phonetic rules and nor-
mally these rules are context dependent. To be context dependent means that the
same orthographic symbol has different phonetic representation depending of the
contiguous symbols. This is why it is essential to join the split lyrics in the music
score to obtain the phonetic representation. We can see in Figure 2.2.1 that phrases
and words are split in different notes making it impossible to obtain the phonetic
transcription for each note in a independent way. In this thesis we used the pho-
netic rules of Basque and English because we have used databases with lyrics in
both languages.

The pitch and duration values of the notes are represented in music scores in
a relative” way and can be translated to real frequency (Hz) and time (s) values
using standard references or references signaled in the music score. In the next two
sections we will explain the process we need to follow to get the pitch and duration
values of the notes from the score. Although these may seem to be standard known
processes, the explanation will help us to show the problems that will appear when

trying to label the bertso recordings.

2.2.1 Frequency of a note

The real frequency of a note can be obtained from the corresponding note and

octave. These two parameters can be calculated using:

« Note position in the staff.
o Clef.
o Accidental.

+ Key signature.
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Using these elements the note and octave of a note symbol can be obtained from
the music score and we can also obtain the Musical Instrument Digital Interface
(MIDI) number of the note. The MIDI representation of a note is a technical rep-
resentation of musical notes created in the 1980s for electronic music [69]. This
scale is a standard way to represent all notes between C_, to Gy using integers from
0 to 127. This scale allows simplifying the representation of each note using only
one integer instead of two (octave and note). We use Equation 2.1 for the conver-

sion from note and octave to MIDI number

m= (12k+n+ 12) (2.1)

where 7 and k are the note and octave of the note we want to calculate respec-
tively and m is the corresponding MIDI number. In the MIDI scale, the octave
value range goes from -1 to 9 and the note value range goes from 0 to 11. With the
MIDI number we can calculate the physical frequency of the note using Equation

2.2.

f(n, 0) = 2lm=ma)/ 12 (22)

where m,rand f,.rare the MIDI number and frequency of the note we selected as
reference for the scale. According to this equation, the relation between note and
frequency is always dependent on the note defined as reference, mostly known as
tuning pitch. The standard in Western music for this reference note is the ninth
note of the 4th octave, defined as A4, and the frequency assigned to this note is
440 Hz. Applying the standard tuning system to Equation 2.2 produces Equation
2.3, which is the one we have applied in this thesis to calculate the frequency of any

note in a music score.

f(n, k) — 2((12k+n+12)—69)/1244_0 (23)
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2.2.2 Duration of a note

The duration of a note is calculated using the symbol of the note and the tempo
of the music score. The note symbols have no standard numerical representation,
therefore we defined a numerical pairing scale that we have applied through the
thesis. Although more symbols exist, we defined only the ones that usually appear
in musical scores. We also considered only one dot symbol, although more than
one can be used. This is again because it is very rare to see more than one dotina
music score. The symbol names and relative duration values are explained in Table

2.2.1.

American name British name Quarter value | Dotted value
whole note semibreve 4 4+2
half note minim 2 2+1
quarter note crotchet 1 1+1/2
eighth note quaver 1/2 1/2+1/4
sixteenth note semiquaver 1/4 1/4+1/8
thirty-second note | demisemiquaver 1/8 1/8+1/16
sixty-fourth note hemidemisemiquaver 1/16 | 1/16+1/32

Table 2.2.1: Note symbol names and relative duration values

Asit can be seen in the table, the duration values of the notes in music scores are
also relative temporal values represented in quarters. Although these are the most
common used symbols in a music score, it is very usual to use ties and sum these
symbols to obtain new duration values for the notes. This is why we will use the
duration in quarters as a single number to represent the relative duration of a note.
The real duration in seconds of a note symbol can be obtained with the formula
defined in Equation 2.4

60 ¢

d(q) = (2.4)

t ref
where g is the quarter value we want to obtain the duration for and tis the tempo

defined for the reference quarter value g,..
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In note duration there is no standard tempo reference as there was the standard
tuning pitch for the frequency definition of notes. This happens because this time
discretization system has not enough flexibility to define all music styles. This
discretization defines a recommended structure once a rhythm is defined for the
melody. Therefore, this equation changes from music score to music score. Any
musical symbol can be used to define the tempo in a music score but we decided
to use the quarter note as as the unique reference to simplify terminology. There-
fore when we use a tempo value in this work, it will always make reference to the
number of quarter notes that can fit in a minute of time. With this reference set,
the new expression to get the duration of a note symbol is shown in Expression 2.5

60.q
t

d(q) = (2.5)

2.3 History of speech synthesis before
singing voice synthesis

The history of speech synthesis and singing voice synthesis have been closely re-
lated although singing voice synthesis appeared later than artificial speech. Taking
into account that both speech and singing voice are created by the same articula-
tory system, it is normal to share system components when synthesizing them arti-
ficially. In this section we want to summarize the main speech synthesis attempts
that took place before the singing voice was synthesized. This can contribute to
locate the beginning of the singing voice synthesis in context and explain the dif-
ferences in motivation of speech and singing voice synthesis.

The first efforts in speech synthesis have been dated as early as 1779 in a compe-
tition organized by The Imperial Academy of St. Petersburg, to explain the physi-
ological differences between five vowels and their artificial production [45]. The
winner, Kratzenstein, constructed a vocal tract-like resonator and he activated it
using interrupted air streams similar to those generated by the vocal folds. In 1791

von Kempelen published his speech synthesis machine [38] he had been working

27



on for 20 years. The work of von Kempelen inspired subsequent works made by
Charles Wheatstone, Alexander Graham Bell and his father Alexander Melville
Bell. In 1937, Riesz developed a new synthesizer [24] with a tube that could
be modified by means of nine movable components representing the lips, teeth,
tongue, pharynx, and velar coupling. The mechanical and semi-electronical syn-
thesis research continued till the 1960s with no great success [82] and although
there are some modern mechanical systems [48] they are a minority in the domain
of artificial speech and cannot compete in quality with digital synthesizers.

In parallel to the development of these mechanical systems, the first attempt for
a electronic synthesizer appears in 1922 by Stewart [74]. In his system, the two
lowest formants of vowels were created with resonant circuits. The Voder (Voice
Operating Demonstrator) [39] was the first fully capable electronic speech syn-
thesizer. It was developed by the Bell Telephone Laboratories, and a human was
needed to control the synthesis process. The Voder [133] was inspired by the
Vocoder (Voice coder), a method also invented in Bell Laboratories to reduce the
bandwidth of a voice signal by parametrizing its slowly varying acoustic parame-
ters and reconstructing the signal after the transmission of these parameters. Al-
though the vocoder did not achieve the expected bandwidth optimization level, it
was used during the World War 2 for secret communications [154] and brought a
concept revolution to the speech and sound signal processing research area.

In 1962 Kelly and Lockbaum published a software version of the acoustic tube
model, a digitized vocal-tract analog model [87]. Using this model, one year ear-
lier in 1961, they synthesized the song "Daisy Bell (Bicycle Built for Two)” with
the help of Max Matthews to create the musical accompaniment, also produced
digitally. The long way made by research in speech synthesis before arriving to
singing voice synthesis shows us the difference of motivation and objectives be-
tween the areas of speech and singing voice synthesis, although both signals are
created by the same human vocal tract. The research of speechisrelated to the com-
munication channels used by humans in everyday life, therefore is more related to
the communication of a message. The first public example of synthesized singing

voice appeared with a marketing purpose and singing a popular song. This shows
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that the singing voice synthesis searches aesthetic and cultural purposes more than

communication.

2.4 Digital analysis of singing voice signal

In the second half of the 20th century, the constant improvement of computing
capacities allowed many digital methods for the synthesis of audio signals. We
can classify these methods into two classes depending on what part of communi-
cation system they focus on: the input side, i.e. generation or the output side i.e.
perception. Models that focus on generation are known as physical models and
the physical models of human voice try to imitate the voice generation system of
the humans. The defined control parameters are similar to the ones humans use
in their voice generation system. These seem to be optimal systems for intuitive
control of the synthesis but guessing the positions of multiple muscles and artic-
ulations in speech is not an easy task for humans. The digital acoustic tubes from
Kelly and Lockbaum can be clearly classified as an example for the physical model.
As previously mentioned, Kelly-Lockbaum tube was the first digital simulation of
the vocal tract, created in 1962 [87]. The Kelly-Lockbaum tube is a concatenation
of cylindrical tubes of the same length but different radius that attempt to model
the profile of the vocal tract. The first singing voice synthesis system using the vo-
cal tract model was made in 1993 and it was called Singing Physical Articulatory
Synthesis Model (SPASM) [29]. SPASM used transition times, vocal tract shape
and glottal configurations including glottal frequency (note) and vibrato.

On the other hand, spectral models are an example of the other kind of models,
those focused on the output of the system. The objective of the spectral models
of human voice is to generate the spectrum of the human voice. The spectral mod-
els are also known as parametric synthesis models because they extract a compact
set of acoustic control parameters from the waveform. These parameters can be
used to analyze the waveforms and the models create mechanisms to generate the

waveform back from these parameters. The main difference with generation mod-
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els is that the extracted acoustic features do not have to represent physically the hu-
man voice generation systems. Nevertheless, the source-filter theory of the human
voice generation system is the base of multiple spectral models and can be consid-
ered as semi-physical. This is because the decomposition of the spectrum is based
in the assumption that the human voice generation system is a source-filter system.
The source-filter methods are considered as spectral models because the acoustic
parameters do not have a direct physical representation in the human body. Some
example of spectral models are the Frequency Modulation (FM), Formant wave
functions, vocoders and sinusoidal models. Given the weight that spectral mod-
els took in voice synthesis in the second half of the 20th century, we explain their

history, functioning and relation with the singing synthesis in Section 2..S.

2.5 Spectral modeling of singing voice

As we have explained in Section 2.3, the objective of spectral models is to char-
acterize the spectrum of the human voice with parameters that do not necessarily
have a direct representation in the human voice generation system. Multiple meth-
ods have been created through the second half of the 20th century that have been

applied to singing voice.

2.5.1 Formant synthesizer

The formant synthesizer for speech applies the source-filter model and defines res-
onance filters at formant frequencies which filter the excitation. This excitation
can be of two types: a noisy signal to generate unvoiced sounds and a glottal-pulse-
train for voiced sounds. Additional pole and zero modules can be used to generate
fricatives and nasal sounds. The first speech formant synthesizer was published in
1968 [116].

The first singing voice synthesis research based on formant synthesis was based
on the OVE (Orator Vox Electrica) speech synthesizer from KTH and Fant and
it was called Music and Singing Synthesis Equipment (MUSSE). According to
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[147], initially the system was designed to sing just vowels but later on it was able
to pronounce consonants and in 1984 [167] a system for the solmization of sylla-
bles was presented. The main parameters of the system could be controlled with
knobs and were five formant frequencies and bandwidths, vibrato rate and extent,
pitch-synchronous glottal noise, random variation of fundamental frequency f;,
and rate of f; changes between notes. The initial hardware version was substituted
by a software version during the 1990’s. The system has been mainly used to in-
vestigate the acoustic correlates of dynamic variations in the singing voice and on

pitch perception.

2.5.2 Linear predictive coding

In 1970 Linear Predictive Models appeared revolutionizing both speech and musi-
cal technologies [8]. This method of speech coding ended up being one of the
most used speech synthesis methods at the end of the 20th century. The first
singing voice synthesis system using Linear Predictive Coding (LPC) was created
in 1982 [47].

Based in the source-filter theory of speech generation, LPC supposes that the
vocal tract is a linear filter of n coefficients and tries to calculate the inverse of this
filter. Applying the inverse filter to the waveform, the effect of the formants can be
removed and the remaining signal (called the error prediction or residual signal)
can be analyzed to estimate the power and the fundamental frequency. With the
inverse filter of the vocal tract (timbre), the fundamental frequency and the power,

the three elements needed to characterize a source-filter system are obtained.

2.5.3 Frequency modulation

In 1973 John M. Chowning demonstrated the possibility of creating complex au-
dio synthesis using FM, commonly used in radio communications [26]. Chown-
ing used FM synthesis to create various synthetic sounds and also implemented a

singing voice synthesizer [27]. This method uses multiple carrier/modulator pairs
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to generate spectra with an arbitrary shape. It has been very successful in commer-
cial computer music generation, offering very good simulation of musical instru-
ment sounds, using very few computational resources. To synthesize vocal sounds,
the carriers are placed near the formant frequencies, and a common modulation

oscillator at the fundamental frequency is used.

2.5.4 Sinusoidal modeling

Sinusoidal modeling is based in the theory that speech may be constructed as
the sum of multiple sinusoidal waves with time-varying amplitude and frequency.
The first attempt to construct a speech analysis/synthesis system with sinusoidal
modeling was made in 1986 [94] and used peak detection in the Short-Time
Fourier Transform (STFT) to estimate the parameter’s values. This modeling had
great success in music synthesizers and the first singing voice synthesizer using si-
nusoidal modeling came in 1997 [89]. The singing voice synthesis model used
Analysis-by-Synthesis/Overlap-Add (ABS/OLA) and added vibrato and vocal in-
tensity variations to the original speech controls. The success of sinusoidal model-
ing for the synthesis of music drove the researchers to improve the modeling cre-
ating the sinusoidal plus residual model [137]. In 2001, Bonada et al. created a
singing voice synthesis system using a new parametrization called Excitation plus
Resonance (EpR) [20]. The EpR model combined the sinusoidal plus residual
model with the source-filter model. In 2007 the Vocaloid was released, a commer-

cial singing voice synthesis systems with EpR parametrization [72].

2.5.5 Formant wave functions

Formant wave functions (known as FOF because of the definition in French Fonc-
tion d'Onde Formantique) simplify the source-filter definition of signals by a time-
domain decomposition of the signal in a finite number of FOFs [ 119]. This decom-
position can be faster than source-filter methods because it avoids source-filter sep-

aration. With this method, the singing voice synthesizer CHANT was created in
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1984 [121].

2.5.6 Mel cepstral analysis

The concept of cepstrum was originally used for pitch detection [104]. The cep-
strum is the Fourier transform of the log-magnitude spectrum. This transforma-
tion is very eflicient finding periodicities in the signal. Considering that voiced
speech is created with a glottal pitch, the cepstrum coeflicients show a peak at the
index corresponding to the fundamental frequency of the voice. Mel cepstrum syn-
thesis uses the fundamental frequency and the mel log spectral envelope codifica-
tion to reconstruct the speech signal. The first speech synthesis system to use mel
cepstral parameters was developed in 1983 [70] and reduced the speech encoded
data in 60-70 % while maintaining the quality. The first singing voice synthesis
system using mel-cepstral coefficients arrived in 2006 [123]. This system arrived
relatively late compared with other systems because during the 90s the sinusoidal

modeling had been the most popular vocoding method for singing voice synthesis.

2.6 Artificial singing voice synthesis

The voice parameters or the concatenative units are the base for speech generation,
but which units to choose or how to generate the correct parameters has been a re-
search topic of growing interest through the second half of the 20th century. We
have to take into account that the origin of synthetic speech and singing voice are
text and music scores respectively and this means that a transformation has to be
made to create an audio signal from a symbol sequence. In a music score, while mu-
sical notes define the mean fundamental frequency of the notes, duration values
and loudness, the lyrics define the phonemes pronounced in each note by means
of the orthographic text. The creation of the signal from this information is what
defines a singing voice synthesis system. We have explained in Section 2.5 that
there are many methods to express a singing voice signal in a parametric way; in

this section we analyze what type of methods have been developed during the last
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years to convert a sequence of symbols into audio. Usually the input sequence
of symbols will be converted into a sequence of parameters representing the voice,
and then finally synthetic voice will be reconstructed from the parameters. We also
analyze the concatenative method because of its importance in the singing voice
synthesis area. The concatenative method concatenates waveform units of natural
singing voice to generate new synthetic audios without any parameter step. We
described here three main methods to generate audio from music scores; the rule
based parametric method, the concatenative method and the statistical parametric

method.

2.6.1 Rule based parametric synthesis

In rule based parametric systems, the sequence of parameters to generate the
singing voice is created from the information given by the music score using a set of
rules. These rules are created observing real interpretation of music scores. These
rules have to define the duration of notes and the phonemes inside each note, the
articulatory parameters of each phoneme and the pitch characteristics defined by
the notes. Although the note sequence is a discrete sequence, its translation to
a natural fundamental frequency of a singing voice cannot be done as a staggered
curve. The variation of the pitch from the nominal mean, the vibrato and the transi-
tion between notes have to be taken into account. A general scheme of a rule-based
singing voice synthesis system can be seen in Figure 2.6.1.

In the second half of the 20th century, the majority of the singing voice synthe-
sis systems that used spectral parameters were rule based. This is why many of the
systems cited in Section 2.5 are rule based. Singing voice synthesis systems defin-
ing rules for FM [27], formant synthesizers [167], LPC [47] and FOF [121] had
been published through the 80s. The research group Speech Transmission Labo-
ratory (STL) of KTH, developers of the singing voice synthesis system based in
formant synthesis [ 167], developed the most important contributions to the rule-

based singing voice synthesis [144][13][147].
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2.6.2 Concatenative synthesis

While all voice parametrization methods tried to synthesize speech with the best
possible quality using parametrization of audio signals to reduce the number of
features, methods using natural audio segments were also under study in the last
decade of the 20th century. In concatenative synthesis systems, parameters are ex-
tracted from music scores with fixed rules as in rule based parametric systems, but
in a second step these parameters are used to select the optimal combination of nat-
ural singing segments to represent the music score. The optimal units are selected
considering the cost of including a unit in a specific position of the sequence. This
cost usually includes two main elements, the target cost and the concatenation
cost. The target cost calculates how the selected unit fills the conditions of the po-
sition. The concatenation cost takes into account the amount of change that the
unit will need in the boundaries to obtain acceptable transitions in the resulting
audio. After the selection of the units, the transitions between independent units
are smoothed using different techniques. The structure of a concatenative singing
voice synthesis system can be seen in Figure 2.6.2.

The quality of concatenative systems is dependent on the database used for the

selection of samples. There is a compromise between the challenge of using a big
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Figure 2.6.2: Concatenative singing voice synthesis scheme

database and the quality of the synthesis. Small databases are easier to create but
the synthesis quality is limited due to the lack of segments for many combinations
of contextual factors in the scores (i.e. pitch values, lyrics, and durations). A big-
ger database can cover more music score symbols and contexts but is harder to
prepare; it also makes the unit selection problem more difficult because the search
space is bigger.

In 1958 the first concatenative system for speech synthesis was published by GE
Peterson [ 112]. In that system transitions and stable onsets of phonemes were con-
catenated. Concatenative speech synthesis systems evolved from using databases
made up of diphones and rule-based simple selection to concatenate them (usu-
ally using signal processing to smooth the discontinuities), to databases of many

hours of speech and elaborated unit-selection algorithms.
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Singing voice synthesis has different prosody rules comparing to speech syn-
thesis, because music scores set the pitch values that every phoneme must have.
Nevertheless, the range and expressiveness of the singing voice is wider than that
of speech. The first concatenative singing voice synthesis was presented in 2002
[85]. Although it is not the first singing voice synthesis system that used natural
recordings as concatenative units, it is the first system that used original signals
without parametrization. In 1997, the first sinusoidal model synthesis system also
used natural signal segments as base [89], but the sinusoidal modeling of these
segments was used to create new signals.

As it is impossible to cover all the possible contexts in singing voice, adapting
the units to the needs of the synthesis is a common practice. In the system Lyri-
cos, natural voice recordings were adapted with ABS/OLA method to create more
natural singing voice with concatenation [89]. The first version of Vocaloid, the
state of the art commercial synthesis system, adapted the singing voice units using
spectrum scaling methods to modify the pitch of the singing voice units [72]. Con-
catenative synthesis achieved the best results at the beginning of singing voice syn-
thesis and the databases started to become bigger and more sophisticated to cover
different linguistic and musical contexts. Umbert et al. added modules to control
the f, and vocal dynamics to improve the expression of concatenative singing voice

systems [157].

2.6.3 Statistical parametric synthesis

Statistical parametric synthesis is a singing voice synthesis method that models
parametric representation of the singing voice in a statistical way. The statistical
modeling is made analyzing the distribution of the acoustic parameters of similar
signal segments. The general scheme of this system can be seen in Figure 2.6.3.
These systems started to grow with the use of HMMs. The HMMs also helped
to segment the phonemes in the databases in an automatic way. First automatic
segmentation of databases for speech and the use of these databases for synthe-

sis started in 1998 with two tools for automatic segmentation: Whistler, created
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by Windows [113] and another system published by International Business Ma-
chines Corporation (IBM) [36]. The Blizzard challenges of 2005 and 2006 proved
that although the ceiling quality of the Statistical Parametric Synthesis Systems
(SPSS) for speech was lower than that of the unit selection synthesis systems, the
overall quality was better. These first HMM systems were based on mel-cepstral
parameters. The first singing voice synthesis system using statistical parametric
synthesis arrived in 2006 [123] and used a time-lag model to adjust the phoneme
boundaries to music tempo conditions. This system also used mel-cepstral pa-
rameters as the first HMM speech synthesis system. The mel-cepstral parameters
are the most popular in the statistical singing voice because the fundamental fre-
quency parameter can be controlled independently. We explained in Section 2.1.1
the importance of the fundamental frequency for the tuning and expression of the
singing voice.

In 2010 the system described in [ 123] was improved using pitch-shifting exten-
sions of the database [91] and vibrato [108]. In 2012 pitch adaptation training
was introduced [109] and singer adaptation [139] in 2014.

In 2013 the first DNN speech synthesis system was presented [ 166] and in 2016
the same mechanism was applied to the singing voice [103]. In 2017 Wavenet
was published with architectures to create raw audio with neural networks directly
from parameters and in 2017 the Neural Parametric Singing Synthesizer (NPSS)
presented a singing voice parameter generation using a similar architecture [15].
In 2018 Neural Network Tacotron introduced the first Wavenet that generated
speech waveform from mel-spectrum [138]. This brought a revolution to the
speech synthesis because opened the possibility to synthesize speech without us-
ing the historical parametric analysis of speech signals. Nevertheless, the major-
ity of statistical parametric singing voice synthesis systems continued to use mel-
cepstral parameters to have more control of the pitch of the singing voice.

In the following years many neural network architectures have been proposed
for singing voice synthesis: Convolutional Neural Network (CNN) [102], Con-
ditional Generative Adversarial Network (CGAN) [64] and Wasserstein Genera-
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Figure 2.6.3: Statistical parametric singing voice synthesis scheme

tive Adversarial Network Sing (WGANSing) [25] are the most remarkable ones.

Efficient singer voice cloning has also been achieved using neural networks [17].

2.7 Singing voice labeling

We explained in Section 1.2 that one of our objectives is to segment and label a
singing voice database that contains multiple elements apart from singing voice
in the recordings and has no music scores of the singing voice segments. This is

why we present the state of the art of different aspects related to the labeling of
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singing voice recordings. We analyze three main areas: the segmentation of the
audio signal, the alignment of lyrics and audio and the musical transcription of

singing.

2.7.1 Audio segmentation

One of the common problems in the research about the singing voice is that the
majority of the recordings are polyphonic audios with musical instrument accom-
paniment. Bertsolaritza normally has no musical accompaniment but the record-
ings contain applause, noise, silence and speech. We call audio segmentation to the
separation of all these components. The separation of applause, noise and silence
from speech and singing voice is a common Voice Activity Detection (VAD) prob-
lem. In this section we focus on the discrimination of speech and singing voice,
both classified as voice by VAD.

Discrimination of speech and singing voice is not an easy task even for humans,
who need approximately one second long segments to discriminate singing voice
and speaking voices with more than 95% accuracy [105]. When speech s repeated,
rhythm patterns appear and repeated spoken segments are perceived as singing
[34], [44]. Although singing voice and speech are closely related and difficult to
be distinguished by humans, the technologies developed for spoken speech are not
directly applicable to singing voice. In general, results deteriorate heavily in tasks
such as automatic speech recognition [95] or phonetic alignment [88]. Therefore
when dealing with recordings that contain both speech and singing voice a tool to
discriminate among them must be first used. Afterwards, the technique or strategy
suitable for each type of voice can be safely applied.

There are two different tasks related to the automatic discrimination of singing
voice and speech: classification, when each segment (or file) belongs to only one
class and segmentation where both classes are present in the same file and have
to be first separated and then classified. For the classification step short-term and
long-term features extracted from the audio signal have been traditionally used.

With the use of short term features the signal is classified at frame level and then
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decisions for different frames must be combined to obtain a single decision for
each segment.

Most works, however, rely on long-term parameters related to pitch to discrim-
inate speech and singing voice. For instance, the distribution of different pitch
based features was tested in [ 53] and most of them achieved to correctly classify
more than half of the items in the database. The best results were obtained for cor-
relation of pitch between syllables with 78 % accuracy. This feature tries to find
the similarities of the pitch between syllables, considering that syllable repetitions
are more probable in singing voice.

Pitch and energy related features are also used in [136] where they are feed
to a multilayer Support Vector Machine (SVM) obtaining a 99.22 % accuracy.
The pitch-related features were the ones that contributed most to discrimination.
Thomson [150] proposed to use the Discrete Fourier Transform (DFT) of the
pitch histogram to estimate the distribution of pitch deviations. These deviations
should have lower variance for singing voice than for speech. He obtained the best
results using segments of 16 seconds with 98 % accuracy.

Some works combine short-term features related with the spectral envelope and
long-term features related with prosody to train GMMs and distinguish speech and
singing voice. In [105] the authors found that short term features work better for
segments shorter than 1 second while pitch-related features obtain the best results
for segments longer than 1 second. The best result obtained in this work neverthe-
less used segments of 2 seconds with 94 % accuracy. On the contrary, the work in
[156] also uses a GMM classifier and finds that spectral features alone work bet-
ter than pitch based ones alone when using segments between 17 and 26 seconds.
Regardless, he obtained the best results when combining both types of features.
The obtained best result is 94 % for accuracy. In [135], a large set of 276 attributes
related with spectral envelope, pitch, harmonic to noise ratio and other character-
istics and a ensemble of classifiers are proposed to classify singing voice, speech
and polyphonic music. Using all the features to train an ensemble classifier with a
Naive Bayes, a k-nearest neighbor, a SVM, an unpruned C4.5, a bagging C4.5 and
aboosting C4.5, the system gets 99.43 % accuracy.
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2.7.2 Lyrics alignment

Lyrics alignment is one of the key parts of the singing voice synthesis process. As
in speech synthesis, the alignment of phonetic representation of lyrics text with
the recording is necessary to model the spectrum and duration of the different el-
ements in the singing voice. Because both speech and singing voice use the same
phonemes lyrics and text alignment methods are very similar, but lyrics alignment
includes musical information in the process.

Comparing to speech phoneme alignments, the singing voice poses a problem
because of the background music. The majority of singing voice recordings are
polyphonic because the singing voice is combined with multiple instruments in
music. This is why the lyrics alignment process includes the detection of the
singing voice in the songs and the separation of the voice from the music to
align the phonemes. The phoneme alignment techniques applied in monophonic
singing voice recordings or after the detection of the singing voice signal in poly-
phonic recording are closely related to the methods used in speech.

The first automatic phoneme alignment in speech was a result of the forced align-
ment technique used for speech recognition [71]. With the growth of the speech
databases and the increase of data-driven speech synthesizers, the manual segmen-
tation of speech databases became highly time consuming and the research of au-
tomatic phoneme alignment became essential. Different methods of phoneme
segmentation were developed: Dynamic Time Warping (DTW) alignments us-
ing parallel synthesized signals [90], HMM based alignments using Viterbi algo-
rithm to optimize the phoneme positions [162] and two stage alignment meth-
ods that refined initial alignments obtained by HMMs using SVM [86] [79] or
Neural Networks [80]. Different variations of segmentation systems have been
developed considering multi-speaker scenarios, for example using Maximum Like-
lihood Linear Regression (MLLR) or Maximum a Posteriori (MAP) algorithms
[168]. In 1999, two years after the publication of the HMM based speech align-
ment algorithm by Wightman and Talkin [162], Loscos et al. created an HMM

alignment system for singing voice synthesis including aspiration states and du-
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ration conditions predicted from music scores. In 2004 the LyricAlly system was
published[160]. This system used the song structure, multi-model HMMs and dif-
ferent types of parametrization of audio segment to align lyrics lines to the signal.
Later, the musical chords information in the phonemes [92] and musical duration
information of syllables [40] were used for lyrics alignments. In 2018 Gong and
Serra used CNN onset detection combined with Hidden Semi-Markov Models
(HSMM) with musical duration condition to segment phonemes in singing voice
[58].

End-to-end speech synthesis systems like Tacotron [161] introduced speech
synthesis methods that do not need previous phoneme alignments. These systems
model the alignments between input characters and acoustic frames during the
training, using attention mechanisms. Instead of using attention mechanisms to
align the phonemes with the acoustic parameters in an automatic way, Blaaw and
Bonada decided to force the attention alignment in the training using pre-defined
note duration models [ 16]. The hypothesis is that the network can learn the devi-
ation of the acoustic parameters starting from the theoretical alignment although
the alignment is not perfect. This method is applied because of the importance of

the tempo and the note timing in singing voice synthesis.

2.7.3 Musical singing transcription

Singing transcription is an important part of the area of Music Information Re-
trieval (MIR). The objective of singing transcription is to represent the notes that
constitute the sung melody in the recording. In MIR, applications like query by
humming [30], singing scoring [97], singing tutors [66] and musicology studies
[77] need the singing transcription data for research. The work of manually anno-
tating the notes in the singing voice is challenging and the definition of standards
is complicated even for experts [83]. Systems that label the notes in singing voice
in an automatic way with no manual supervision have become a subject of interest
with the growth of big data and MIR. This area is named Automatic Singing Tran-
scriptions (AST) and is specially challenging because the diversity of styles, the
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difficulties to sing in a perfect tune for the majority of humans and the expressive
elements that appear in singing voice to add expressiveness (vibrato, portamento,
etc.).

Considered an unresolved problem still in early 2000s [73], different ap-
proaches have been developed to automatize this process in the 21st century: Pol-
lastri used range sequences with histogram data to adjust tuning [114], Wang et
al. used Adaptive Round Semitones (ASR) to correct out of tune notes and mu-
sical grammars to obtain musically coherent sequences [159], Mulder et al. used
the energy boundaries to separate potential notes and applied a special treatment
to process portamentos [31], Ryyninen and Klapuri used HMM:s to model notes
and musicological rules [122], Gémez and Bonada optimized paths across matri-
ces with frame/note values and iterative methods to annotate flamenco recordings
[57], Mauch et al. modeled HMMs and probabilistic pitch combinations to detect
the most probable notes and Molina et al. used power and aperiodicities to detect
note boundaries and dynamic averaging to detect the note pitch values [99].

The lack of a standard evaluation method has also been discussed by Molina et
al. [98]. The evaluation has to take into account note onsets, offsets, pitch and note
purity. All these parameters result in a multivariate evaluation and considering that
pitch values are not always predicted in a discrete scale with 440 Hz A, reference,

the acceptable error margins have to be defined.

2.8 Bertsolaritza

Bertsolaritza or bertsolarism, is the art of singing improvised songs called bertsos
in Basque. The improvised verses are conditioned by previously defined rhythm
patterns, structures and melodies. Bertso singing is performed in many different
social contexts: at local festivals, celebrations lunches and tributes to outstanding
people. However, the most relevant events related to Bertsolaritza are the compe-
titions which take place every year. Considered as improvised literature, its early

origins and constant reinvention makes it a relevant reflection of the society of
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each time. In this section we will explain a resumed history of bertsolarism and
the current state of this art. We will also address the research made about this art

in the area of signal processing until this moment.

2.8.1 History

The history of bertsolarism is closely related to the history of the Basque language
which is considered as the last remaining descendant of the pre-indo-european lan-
guages from Western Europe [155]. In spite of this longevity, the written docu-
ments of Basque have been few till early 20th century, although the first Basque
book, a poetry collection named Linguae Vasconum Primitiae, was published in
1545. This combination of longevity and non literacy makes oral tradition very
important. Basque literary culture has been scant until the beginning of the 20th
century and various artistic expressions have been classified as "Basque popular
literature” Basque popular literature is mainly oral and bertsolarism can be con-
sidered a sub-genre of it [50].

If we try to define the origin of bertsolaritza, we can find that the long oral his-
tory makes it difficult to know it with high precision. The hypotheses about its

origins can be classified in three main types.

o Ancestral theory: A theory influenced mainly by Manuel Lekuona, the
first real scholar of bertsolaritza. It argues a prehistorical creation of bert-
solaritza using as argument the poetic activity of Basque people from the

origins and the origins of Basque language [60].

« Modern bertsolaritza theory: In opposition to the ancestral theory, a
modernist theory analyzes that the first mention of bertsolaritza occurs at
the end of the 18th century [81]. Nevertheless, these first references present
bertsolaritza as a fully developed and mature cultural expression by this

time.

« No explicit root theory: This theory, developed by Luis Michelena [96],

marks the first documented references of this art in the 15th century. Al-
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though the term bertsolaritza is not used, laws banning street singing writ-
ten in 1452 exist in Ancient Charter for Bizkaia. These laws refer explicitly

"women who are shameful and agitator, and who sing in the street”.

Although there are many theories about the origin of bertsolaritza, there is con-
sensus that it is at the end of the 18th century that first records talking explicitly
about bertsolaritza appeared. The beginning of the 18th century is considered as
the popularization period of the bertsolaritza competitions. The spread of the en-
lightenment in this century developed Basque literature and by the end of the cen-
tury, records of bertsolaritza and the first well known bertsolari appear, Pernando
Amezketarra (1754-1823). The 19th century is better documented and the bertso-
laris from this century are considered as "classical”. The improvement of documen-
tation of this art did not expand to the improvisation world. The documentation
refers mainly to non-improvised poetry and biographical data of the bertsolaris.
We have to wait until mid 20th century and the availability of audio recording de-
vices for the appearance of considerable corpus and trustworthy transcriptions of
improvised sessions.

In 1935, the first-ever Basque Country Bertsolari Championship was held by
the group Euskalzaleak and 19 bertsolaris took part on it. This was a first strong
step in the professionalization of the bertsolarism, an art related mainly to envi-
ronments of cider houses and bars until then. Topics and styles started to expand
from that year on. Although we can find in the 19th century bertsos with topics like
the loss of historical rights of Basque people, the professionalism brought a deeper
analysis of the art and improvisation about fictional situations that contributed to
expand the art. Competition also brought the bertso scoring system and criteria
deepening the quality analysis. During the Spanish Civil War (1936-1939) and
Franco’s dictatorship (1939-1975) bertsolaritza went from censorship in the 40s
and 50s to become a powerful denounce of repression and appearing regularly in
the media in the 60s and 70s. In the 80s, after the end of the dictatorship, bertsolar-
itza was modernized gaining attention from a broader public. First bertso schools

appeared at the time. Since the 80s, the bertso in stage has not stopped growing
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without abandoning cider house and bar culture in parallel. Nowadays, the bertso-
lari championship is celebrated every 4 years where the champions from 7 different
provinces compete. In the last edition 14.600 people attended to Bilbao Exhibition
Center to the championship final.

In 1991 the Xenpelar Documentation Center was created to compile all the dig-
ital information related to bertsolaritza such as melody scores, recordings, tran-
scriptions as well as meta-information of these records. This center has continued
with the systemic compilation of the bertso session till this day, and the majority
of the compiled data has been used in this work. The details of the used data are
explained in Section 3.1.1.

More extended information about the history of bertsolaritza can be found in
[51][107] [10][50].

2.8.2 Women in bertsolaritza

The presence of women in bertsolaritza scene has not been ample during early doc-
umented years. Although one of the origin theories arguments that first references
of improvisation singing are set in the 15th century with women singers, it is hard
to find many more examples. All the “classical” bertsolaris from the 18th century
are men and the first participation of a woman in a bertsolaritza championship
happened in 1985. Nevertheless, the growth of women in bertsolaritza has not
stopped since the 80s and in the main championship in 2017 a woman won the

final for the first time in history.

2.8.3 Bertso structure

Bertsolaritza is an art of poetry improvisation and therefore we can consider that
any creation is constructed with strophes, lines and rhymes. In bertsolaritza the
term bertso is used to define the strophe and each improvisation can have multiple
bertsos. The bertso is the basic unit of bertsolaritza and the terminology refers to

different structure and elements of the bertsos. In Figure 2.8.1 we can see the main
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elements of a bertso.
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eta lasai-lasai bizi

i

Foot

Figure 2.8.1: Main elements in the bertso structure

The definition of these elements and other definitions about the structure of the

bertso are given below:

« Bertso: Strophe of the improvisation.

« Line: Aline from the bertso.

« Foot: The last word of each line including a rhyme.
« Point: Two consecutive lines ending with a foot.

« Meter: A structure defining the number of lines of a bertso and the num-
ber of syllables in each line. Every different meter has its name. The most

common meters are listed in Table 2.8.1.
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« Melody: Melody used to sing the improvised lyrics. Closely related to me-
ters, each melody can be used to sing bertsos with a specific meter as the

number of syllables has to be adjusted to the number of notes in the melody.

Name N. of lines Syllable structure
Zortziko minor 817/6/7/6/7/6/7/6
Zortziko major 81| 10/8/10/8/10/8/10/8
Hamarreko minor 10 | 7/6/7/6/7/6/7/6/7/6
Hamarreko major 10 | 10/8/10/8/10/8/10/8/10/8
Hamaseiko equal 16 | 8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8

Table 2.8.1: Definition and names of most common meters

2.8.4 Bertso performance types

The bertsolaritza art is closely related to live shows. Non-improvised bertsos and
melodies can be seen in music albums, press or homages, but the art is considered
to have its base on the improvisation. The improvisation can be completely free
on meter and theme, but usually conditions for the improvisation are set by an
external host or by the organizers in live shows. Depending on the conditions given
for the improvisation, we can classify different types of bertso performances. The
first characteristic of an improvisation is that bertsolaris can perform solo or in

pairs. In the solo performances these categories can be performed:

« First point based: The host sings the first point of a bertso and the bert-
solari has to improvise the rest of the bertso. The meter and melody con-
ditions for the improvisation are implicit in this first point. This exercise is

usually made with bertsos using the zortziko minor meter.

« Feetbased: The bertsolari is given four feet and a meter. All four feet must

be used to create a bertso respecting the meter.
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« Final point based: The host sings the last point of a bertso and based on
this, the bertso must be completed. The meter and melody conditions for

the improvisation are implicit in this last point.

« Topic based: A topic and a meter are given to the bertsolari and one or
more bertsos have to be improvised around the theme with the specific me-

ter.
In pair performances we find the next categories:

« By trades: The host gives to each bertsolari a trade or role to play and de-
fines a meter. The bertsolaris alternate turns to improvise a single bertso

responding to each other.

« By points: The host gives to each bertsolari a trade or role to play and de-
fines a meter. The bertsolaris alternate turns to improvise a single point in

each turn.

2.8.5 Research in bertsolaritza

As explained in the previous sections, bertsolaritza is nowadays a strong improvi-
sation literary art with a corpus big enough for analysis. Many research areas have
been opened around bertso art. In this thesis we have focused in the audio record-

ings and signal processing but we can observe research in many other areas.

« Literary research: The growing number of transcriptions from improvisa-
tion sessions and championships have increased the size of the corpus avail-

able for the analysis of poetic and rhetoric aspects of bertsolaritza [49] [52].

« Sociologicalresearch: As explained earlier in this document, the influence
of bertsolaritza in the Basque society after hundreds of years of presence is

deep enough to analyze it as a sociological phenomenon [117].
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 Musical analysis: The multiple melodies used in bertsolaritza have been
collected by Xenpelar Organization. The analysis of these melodies has
opened the research in music genre classification [54] and melody gener-
ation [55].

« Natural Language Processing (NLP): The goal of NLP is the understand-
ing and generation of natural languages by computers. Although literature
and poetry generation are one of the hardest challenges in this research area,
multiple works have been developed to create bertsos with structure and

rhyme conditions in an automatic way [1] [7].

« Robotics: The work of automatic bertso improvisation evolved into the
development of an on-stage robot imitating the behavior of a bertsolari to

sing automatically generated lyrics [6].

When it comes to the analysis of the bertsolaritza singing voice, we can only
find published work about the the prosody of bertsolaritza [2]. Although there are
many recordings of historical bertsolaritza sessions, not much research has been
done about the singing style of bertsolaritza. The research of the on stage robot
by Astigarraga et al. [6] created the need of a singing voice for the robot. In that
first work, a statistical speech synthesis system was used with forced durations and

pitch to match the requirements of the melody.

2.9 Chapter conclusion

In this chapter we covered the relevant research related to this work and resumed
the bertsolaritza art. It has been made clear that singing voice synthesis systems
take reference technologically from speech synthesis system. However, a different
expressiveness challenge appears in singing voice synthesis. In the second half of
the 20th century, a revolution in all areas related to digital information has been
produced and speech and singing voice have not been an exception. The increase

of digital data and computer capacities have ended up giving the advantage to data
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driven statistical systems in the 21st century, but concatenative systems are still
competitive. The increase of corpus size in bertsolaritza art since the decade of the
60s fits perfectly in the narrative of big data in the modern era of statistical signal
processing and this thesis tries to fill the gap of the missing research around the
world of bertsolaritza. This increase in database sizes also created the need of sys-
tems to label singing voice synthesis databases at recording, phoneme and musical
levels. The adaptation of these systems for bertsolaritza can open new research

lines in musicology and signal processing areas.
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Materials

This chapter presents the basic materials utilized to develop the singing synthesis
system applied to bertsolaritza. We have used several databases to train and test the
different tools developed in the thesis and diverse existing software tools. First, in
Section 3.1 we will describe the three different databases of singing voice we have
used for the development of this thesis: the Bertso database obtained from the
BDB database compiled by Xenpelar Dokumentazio Zentroa, the NUS database
and the NITech database. For each database, information about the audio charac-
teristics, quantity of audio and available metadata will be provided. In Section 3.2

the main software tools used in this work will be briefly described.
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3.1 Databases

3.1.1 Bertso database

The Bertso database is a modified version of the database Bertsolaritzaren Datu-
Basea (BDB) (https://bdb.bertsozale.eus), collected, organized and sus-
tained by Xenpelar Dokumentazio Zentroa. In this section we will explain the in-
formation that the original BDB database already provided and the information we
have added to it in order to make it suitable for the development of singing speech
synthesis systems. We have augmented the BDB database with two types of infor-
mation: on the one hand we have added complementary information not related
with audio processing and completed missing metadata. On the other hand, we
have segmented and labeled the original audio signals and added this information
to the database. In this section, we will describe the procedure followed to add
the first type of information and the segmentation and labeling process will be ex-

plained in Chapter 4.

3.1.1.1 Original BDB database

The original BDB database is composed by recordings of bertsos and melodies of
bertsolaritza. All recordings have metadata attached to them, but some recordings
have more information than others. We made two lists to define the metadata pa-
rameters provided in the database: one lists the features common to all recordings
and the other gathers the features that are defined only in some recordings. The

features defined in all recordings are the next ones:

« Date and Place: Place and date where the recording has been made.

« Bertsolari: Name of the bertsolari who sings in the recording.
The features present only in some of the recordings are the following ones:
« Melody: Melody used in the recording.
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« Meter: Metric of the sung bertsos.

« Identity of the host: Name of the host who sets the theme for the impro-

visation.

The initial files contained in the BDB database, the corresponding file formats
and the database structure can be seen in Figure 3.1.1. Each recording has an asso-
ciated MP3 file with the audio recording and a text file with the orthographic tran-
scription of the singing segments of the recordings. The melodies have a graphical
representation of the score in Tagged Image File Format (TIFF) or PDF format, a
MIDI format file and a piano interpretation in a MP3 sound file. The bertso record-
ings that have associated information about the sung melody include a Melody ID

that relates the recording with the used melody.

Melody ID

- -

Music Score (TIFF/PDF)
Music Score (MIDI)
Music Score (MP3)

Audio (MP3)
Transcriptions (TXT)

Figure 3.1.1: Structure of the original BDB database
We analyzed the original BDB database and defined the modifications in the

metadata, transcriptions and file formats that were necessary to accomplish our

goals. These modifications are described in the next subsections.
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3.1.1.2 Audio pre-processing

The original recordings in the BDB database are MP3 files with 22.05, 44.1 or 48
kHz sample rate. We converted and down-sampled them to obtain Waveform Au-
dio File Format (WAV) files with 16 kHz sample rate. As the original database
contains audio signals recorded with different recording equipment and in differ-
ent environments, we applied a loudness normalization algorithm, according to
EBU R128 [41]. The process is visualized in Figure 3.1.2.

Original Recordings

Used recordings
BDB database oudness
Format: MP3 (EBU 128) Format: WAV

Sample rate: 22.05, 44.1 b
or 48 ’kHz Sample rate: 16 kHz

Figure 3.1.2: Pre-processing steps applied to the recordings

3.1.1.3 Music score conversion

The graphical musical scores in TIFF format have been converted to PDF format,
to have all the graphical representation of the scores in the same format. The music
scores of the 30 most used melodies have been manually converted to Music ex-
tensible Markup Language (MusicXML) format with the help of Audiveris [14],
an Open Source Image recognition program that converts printed music scores to
machine readable formats. We realized that the music score have no tempo infor-
mation, mostly because bertsolaris can choose freely the tempo they want to use

in the competitions.

3.1.1.4 Transcription correction

To prepare the data for its use in singing synthesis, automatic segmentation pro-
cesses must be applied. For these segmentation processes to get good results, it

is crucial that the transcription matches the actual content of the recording. The
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original transcriptions in the BDB database do not match the recording due to two
sources of problems: encores and errors in the transcriptions. A transcription mod-
ification procedure has been developed to tackle these problems.

Encores are very common in bertsolaritza but the transcribed lyrics are saved
without them because the encores are a musical ornament more than a poetic fig-
ure. In some cases the original orthographic transcriptions provide an indication
of the line of the lyrics where the encore is made, but other transcriptions do not
have this indicator present. The type of encore is never signaled, so the number of
lines that are repeated and other musical humming effects used in encores are not
known. We manually determined all the encores listening to the recordings and
then labeled the type of encore to create an accurate orthographic transcription of
the singing voice.

As our goal is to work with singing synthesis of closed structure melodies, we
saved the intermediate files generated in the transcription correction process for
analysis. Faithful orthographic transcriptions are important in order to achieve

three goals:

« Structure detection: As we have already mentioned, not every recording
is labeled with the corresponding melody or structure in the original BDB
database. Knowing the meter reduces the set of possible melodies a bertso-
lari may be singing in a recording, making the process of structure detection

easier.

« Note alignment: When singing, and even more frequently in bertsolaritza,
the text sung inside a note corresponds usually to one syllable. Knowing the
transcriptions allows getting syllable information and can make the align-

ment of the notes in the audio easier.

« Phoneme alignment: To train the synthesis systems the phonetic tran-
scription must be aligned with the audio data. A reliable orthographic tran-
scription is crucial to get an accurate alignment between phonemes and the

audio signal.
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The process designed to get the accurate orthographic transcription is com-

posed of three steps. In Figure 3.1.3 we can see the three different types of or-

thographic transcription we generate during this transcription correction process.

Irufiea aldera oren erdian
joan naiteke bizi-bizi
errepidea azkenaldian

bihurtu baita notizi;
merkatura ere oren laurdenez
auto batean iritsi.
Aurrerapenak badatoz ainitz
beren bide eta guzi

baina hobe dut traktorez joan
eta lasai-lasai bizi. (bis)

Irufiea aldera oren erdian.
joan naiteke bizi-bizi.
errepidea azkenaldian.
bihurtu baita notizi.

merkatura ere oren laurdenez.

auto batean iritsi.
Aurrerapenak badatoz ainitz.
beren bide eta guzi.

baina hobe dut traktorez joan.
eta lasai-lasai bizi.

Irufiea aldera oren erdian.
joan naiteke bizi-bizi.
errepidea azkenaldian.

bihurtu baita notizi.

merkatura ere oren laurdenez.
auto batean iritsi.
Aurrerapenak badatoz ainitz.
beren bide eta guzi.

baina hobe dut traktorez joan.
eta lasai-lasai bizi.

baina hobe dut traktorez joan.
eta lasai-lasai bizi.

(c) Transcription with
encores

(a) Original transcription (b) Meter transcription

Figure 3.1.3: Transcription types

The transcription represented in Figure 3.1.3a is the format of the original tran-
scription provided in the BDB database. It is written in a literary way using punctu-
ation marks, cites and encore marks (bis). The encore indicators do not define the
number of lines that are repeated. This number is usually defined in the melody
used to sing the bertso, but the use of melodies is irregular in bertsolaritza and on
occasions the number of lines repeated is not respected and has to be manually
revised. The intermediate orthographic transcription shown in Figure 3.1.3b adds
no new lines to the original transcription but cleans all punctuation marks and "bis”
references. We also add periods in the end of each line, because our intention is to
split the recordings in bertso lines and consider each line as an utterance.

After this initial cleaning process, the final version of the orthographic transcrip-
tion displayed in Figure 3.1.3c adds the encores. In some cases the encores repeat
only one line and in other cases, two contiguous lines in the lyrics are repeated.
The line duplication can occur at any line of the lyrics but usually happens in the
final and middle lines. Finally, the humming is added. Each melody has an associ-
ated humming but this standard humming can have small variations from bertso to

bertso and sometimes bertsolaris might avoid using them. To make the annotation
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process less time consuming, we standardized the transcription of the humming
and we wrote the same line every time that it is sung. We manually revised the
position and verified the use of humming in every recording. We have observed
two different types of humming in the BDB database. The first humming is used
before a encore of a single line and adds the transcription “Larai larai larai larai” as
seen in Figure 3.1.4a. The second type of encore creates a new line in the original

transcription with the text "Ai ai ai ai” as seen in Figure 3.1.4b.

bidasoan han doa erreka. zarzuelan urduri.
harria eta hondarra. antzean dabiltza.
oraindik ez da guztiz aldatu. antieju beltzakin.
xalbador zenan oharra. hala da bizitza.
bitan zatitzen bitan puskatzen. erregian gerua.
baitu gure herri zaharra. hain degu bortitza.
ta gaur erreka ikusi dut nik. hobe luke handikan.
haundia eta azkarra. ai ai ai ai.

mendiek ez ezik geronek ere. urrun joan balitza.

egiten degu negarra.
larai larai larai larai.
egiten degu negarra.

(@) Humming type 1 (b) Humming type 2

Figure 3.1.4: Humming types

In addition to these corrections, we manually corrected all the orthographic
transcriptions that did not match with the corresponding recording. The final ver-
sion of the orthographic transcription is the one that matches the singing voice in
the recording. This final transcription is the one we are going to use for the pho-

netic alignment.

3.1.1.5 Metadata completion

Aswehave already commented, many recordings in the original database lack meta-
data. To properly extract the labels needed to train the synthesis system, metadata

should be as complete as possible. We have developed some procedures to deal
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with this missing metadata problem.

+ Meter detection: We created a meter detection algorithm to label the tran-
scriptions in an automatic way. This procedure will be explained with detail

in the next Section 3.1.1.6.

« Host detection in point exercises: In the point exercises, the host sings
the first point of the bertso. As our objective is to match the singing voice
of the recordings with the lyrics transcriptions, the identity of all the singers

has to be defined. This host identification has been manually made.

« Recordingerrors: Some recording files have errors or are very noisy. These

recordings are manually detected and properly labeled.

3.1.1.6 Meter detection

To generate the proper labels for singing synthesis, we need to associate the lyrics
sung in the bertsos with the corresponding music information. Some of the record-
ings have information about the meter used in the bertsos. We have analyzed the
provided meter labels: the total number of sung bertsos is 37830 and 3140 of them
have a meter or melody annotation. Thus, only the 8.3% of the bertsos provide
some music information. In addition, we observed that some annotations are not
coherent with the real length of the sung bertsos. Therefore, the information pro-
vided in these cases must be discarded and the final number of bertsos with correct
annotation reduces to 2945, 7.78% of the total number of bertsos. This is a very
small number, so we need to devise a method to complete this information and
automatically add meter information to the recordings.

As we have previously commented, bertsolaritza is a singing style that uses
predefined melodies and syllable structures when singing called neurria (meter).
Breaking these rules makes the improvised verses worse and usually bertsolaris
try not to break them in order to get the maximum score. However, in practice it

is very difficult to improvise bertsos that fit perfectly in the predefined melodies.
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Therefore, it is common practice to use more than one note in a syllable or to in-
clude more than one syllable in one note. We analyzed our database to find how
often and in what way singers use syllable adjustments to fit in melody structures.
We developed an automatic measure classifier algorithm based on syllable count
and measure use, applying Expression 3.1 to perform the classification.
z= arg’;nin |, — | (3.1)
i=1

where n is the number of possible meters with the same number of lines of the
sung bertso, y is the vector with the number of syllables in each line of the sung
bertso and «; is the vector with the number of syllables in each line of the meter i
(i.e., «; is the reference vector). We call ‘syllable distance’ to the distance between
each x; and y.

The melody part of the BDB original database contains 157 different meters.
However, only 29 of them are associated to some recording. The meter annotator
we have developed only considers these 29 meters and automatically selects for
every bertso the candidate meter with the same number of lines and the smallest
syllabic distance, as defined in Equation 3.1. Bertso recordings are built with a vari-
able number of bertsos that ranges from 1 to 9. The number of lines that a bertso
can contain varies between 4 and 20. We considered bertsos with length of 4, 6, 8,
9,10,11,12,13, 14 and 16 lines. Taking into account that in the annotated bertsos
having 4, 6 and 9 lines only 1 structure is used for each of them, we only applied
our automatic measure classifier in bertsos with 8, 10, 11, 12, 13, 14 and 16 lines.
The meter annotator uses the syllabic distances to compare between candidates
and this method may produce ties between candidates.

In order to evaluate the performance of the meter annotator, we have calculated
the accuracy of the algorithm. As the method may produce ties between candi-
dates and there is no other available information to untie the candidates, we have
left the tied cases out of the evaluation. We manually labeled a total of 2751 bert-
sos and use them to evaluate our proposed algorithm. The results can be seen in
Table 3.1.1.
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Bertso length | Possible structures | Bertsos | Ties | Accuracy (%)
8 6 1259 | 180 90.79

10 2 997 0 100.00

11 2 25 0 100.00

12 S 148 8 100.00

13 3 11 1 9091

14 S 108 3 99.07

16 3 184 2 100.00

All 26 2751 | 194 95.71

Table 3.1.1: Automatic meter classification results

We can observe that bertsos with 8 and 10 lines are very popular as they repre-
sent the 82% of the total. The classification of these bertsos is good, although we
obtain many ties in the cases of bertsos with a length of 8 lines. These ties appear
because there is more variety in possible structures in bertsos with length 8. The
annotation in bertsos with other lengths has good scores with few ties. We con-
sider that this algorithm is good enough and have used it to complete the meter

information in our database.

3.1.1.7 Database size

After the cleaning and the correction of the transcriptions we measured the size
of the raw database. The Bertso database contains 2095 audio files and has a total
duration of 59 hours, 10 minutes and 40 seconds. As many speakers and singers
are recorded in the database, we defined the following terminology to refer to each

subgroup:

« Participants: The term relates to all the persons whose voice is included in

the database.

« Hosts: It refers to the persons that do not sing a whole bertso in all the

database. It usually corresponds to the presenters of the shows.
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« Bertsolaris: It applies to the persons that sing at least one whole bertso in

the database.

In the database there are 187 different bertsolaris of which 32 are female and 156
male. There are multiple hosts too, but in the raw database there is no information
to measure the total number and genre.

If we consider each line of bertso lyrics an utterance, the database has 45055
utterances. From now on, we will use the term utterance to refer to a bertso line.
As the database explained in this section is not segmented and labeled, we are not
going to show any distributional information. More detailed information of the

singing voice in the database is given in Section 4.5.1.

3.1.2 NUS database

The NUS database is an English speech and singing voice recording database pre-
pared for Speech-to-Singing voice conversion [37]. Music scores are sung and read
by the same speaker to use them as parallel information for conversion. The singer
are part of the NUS Choir and the amateur vocal community at NUS. As there are
not many open access singing voice databases, we used the singing voices from this
database to compare different analysis with the results obtained in Bertso database
and to evaluate the algorithms developed in this thesis. The singing recordings
of the NUS database provide speaker information and phoneme alignments, but
there is no music information. As some of the sung melodies are popular, we
searched the music scores of these songs and with them created the theoretic
phoneme representation of the music scores. The phoneme alignments provided
in the database have been corrected to represent the phonemes actually sung by
the singers in a faithful way. This correction creates different phonetic representa-
tions of the same words, as each singer may have uttered a different pronunciation
of the same word in the lyrics. This creates a problem to match the theoretic pho-
netic transcription of the music score and the phonemes labeled in the recording.
This is why we manually modified the phonetic music scores of each recording to

adjust them to the sung phonemes. From the 20 different music scores sung in the
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database we only have been able to find 16 of them. We have not considered the
recordings where the sung music score has not been located.

The resulting music score aligned database includes 12 singers and 39 songs and
the total singing voice recording duration is 75 minutes. The recording duration
in lines and in minutes per speaker is shown in Table 3.1.2. As each singer sings
different music scores and we only obtained 16 music scores out of 20, the amount
of recording data for each singer is different. The total duration for each singer

varies between 4 and 9 minutes and there are six female singers and six male singers.

Singer | Duration (min) | Lines | Gender
ADIZ 5.69 89 F
JLEE 891 | 88| M
JTAN 543 77 M
KENN 3.93 53 M
MCUR 4.10 S3 F
MPOL 8.75 104 F
MPUR 5.94 116 F
NJAT s26| 77| F
PMAR 8.41 88 F
SAMF 5.53 92 M
VKOW 6.69 76 M
ZHY 6.36 115 M

Table 3.1.2: Recording duration for each speaker in NUS database

The duration of the notes for each speaker are shown in Figure 3.1.5. The im-
age shows the boxplot that represents the range between the 25 and 75 percentiles
with a colored rectangle. The red line corresponds to the median of the data. The
total range of the data is represented with whiskers. We can observe that most val-
ues are concentrated in the range below 1 second for all speakers, although longer
notes are used in some cases and values as high as 4 seconds are observed. These
long notes are usually used at the end of songs and are common in bertsolaritza
style too. The note pitch ranges cannot be analyzed because the notes in the pho-

netically aligned music scores may not be the ones sung by the speakers. Different
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speakers can sing the same score in different octaves and we have not manually
annotated the actual sung notes. A method to automatically label the musical in-
formation knowing the music score is proposed in Section 4.4.2 and the analysis

of the resulting note labels in NUS database is presented in Section 4.5.2.
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Figure 3.1.5: Note duration boxplot distribution per speaker in NUS
database.

3.1.3 NITech database

The Nagoya Institute of Technology (NITech) singing database consists of
Japanese children’s songs sung by a female singer and has been previously used
in the evaluation of HMM and DNN-based singing synthesis systems [109][63].
This database contains 70 songs sung by a female singer but only 31 of these songs
can be publicly accessed. The database provides the singing voice recordings with
note alignments and musical labels. We have used the alignments and the labels to
create structured music scores.

The reduced version of the database of 31 songs contains 28 minutes of voice
distributed in 392 music lines. The distribution of note duration and pitch values

can be seen in Figures 3.1.6 and 3.1.7 respectively.
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Figure 3.1.6: Note duration distribution in NITech database
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Figure 3.1.7: Note pitch distribution in NITech database

The duration values provided in the labels are not continuous, because they
have been discretized to represent a musical score with the most commonly used
symbols. In the pitch distribution, we can see that the range of the singer goes from

5700 cents to 7700 cents, which are equivalent to A; and F; respectively.
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3.2 Software

In this thesis new software has been created to analyze, annotate and synthesize
singing voice, but many open source external software tools have been used as well
as a base for many functionalities. These tools have constituted a valuable assis-
tance in the development of this thesis and they must be properly acknowledged,

addressed and referenced. This section list and briefly describes these tools.

3.2.1 HTK

Hidden Markov Model Toolkit (HTK) is a portable toolkit for building and using
HMM [164]. Originally created for speech processing, it has been used in many
areas that need HMM processing like Deoxyribonucleic acid (DNA) sequencing.
The tool has scripts for audio feature extraction, HMM model training, decod-
ing and evaluation. We used the HTK toolkit to force align the phonemes in the

singing voice recordings in the single singer method presented in Section 4.3.1.

3.2.2 Kaldi

Kaldi is a speech recognition package that provides facilities to develop HMM
and Neural Networks based applications [115]. Audio feature extraction, model
training, decoding and evaluation tools can be used. A large online community is
available for support of Kaldi’s users. We used the Kaldi toolkit to force align the
phonemes in the singing voice recordings of Bertso database with singer adapta-

tion in Section 4.3.2.

3.2.3 Merlin

Merlin is a Neural Network speech synthesis toolkit [163]. The toolkit includes

feature and linguistic label normalization tools and pipelined neural networks for
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training, synthesis and evaluation. The DNN synthesis system we created in Sec-

tion 5.7 is a modified versions of this toolkit.

3.2.4 Sonic Visualizer

Sonic Visualizer is a music audio file annotation Integrated Development Envi-
ronment (IDE) [23]. Its command line tool Sonic Annotator has multiple signal
processing and feature extraction libraries that include Tony note annotation algo-
rithm [93] and YIN pitch extraction algorithm among others. The Tony algorithm
uses HMMs with fixed transitions and a note grammar with threes states to detect
notes from the f; curve. In Section 4.4 we compare our note detection algorithm

with Tony algorithm in different ways.

3.2.5§ Ahocoder

The Ahocoder parametrization [43] uses autocorrelation method [ 19] with Quasi
Harmonic model refinement to calculate the f; of an audio signal. Using the har-
monics of the f; in each analysis frame, Maximum Voiced Frequency (MVF) is de-
fined using Sinusoidal Likeness Measure (SLM) [120]. The MVF is the higher har-
monic frequency of fy in which the similarity of the harmonic with a pure sinusoid
is higher than an empirical threshold. After defining MVF, cepstral coeflicients
are calculated. In signal reconstruction fo, Mel-cepstral Coefficients (MCEP) and
MVF are used. The spectrum envelope is reconstructed using the f, and the MCEP
and in the aperiodic part of the spectrum, above the MVF, white noise is added to

the spectrum.

3.3 Chapter conclusion

In this chapter, we characterized the Bertso database and described all the open
access singing voice databases that can help us in this work, the NITech and the

NUS databases. In the Bertso database, we adapted and normalized the audio, text
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and music score files to standardize the data parameters. We also designed an al-
gorithm to automatically detect the meter of bertsos with very good results. In
external databases, format adaptation and data analysis have been done too. Both
external databases provide phoneme alignments but only one of them has note an-
notation information. This is why we analyzed note duration in both of them but
pitch analysis has been performed only in NITech database. The missing analy-
ses are going to be obtained in Section 4.5 after the automatic annotation phase
explained in Chapter 4. Finally, we defined the most important software we have
used in this work as a base for the development and preparation of our own tools.

The preparation of the Bertso database has been published in [128].
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Data labeling

In the previous chapter we explained the problematic due to the presence of speech
from different hosts, applause and environment sounds in the recordings of bertso-
laritza. In the available transcriptions only the singing voice is transcribed, there-
fore, non-singing segments must be removed for proper processing and labeling.
We have developed and compared different audio segmentation and classification
systems in a data-set specifically created and labeled for this purpose, as explained
in Section 4.1.

Once the new audio files containing only singing voice have been obtained, the
labels to train the singing voice synthesis system must be created. These labels
must combine linguistic information and music information. For the linguistic
part, we propose a method to segment the database into utterances in Section 4.2
and into phonemes in Section 4.3 using forced alignment with the phonetic tran-

scriptions. For the music related component, musical annotation methods using
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and without using bertso melodies have been developed and tested in Section 4.4.
The whole structure of the labeling procedure developed can be seen in Figure
4.0.1. After using the segmentation and labeling systems, we annotated the Bertso
database and NUS database and analyzed the general characteristics of the labels
in these databases in Section 4.5. We finalize the chapter drawing the main conclu-

sions in Section 4.6.
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Figure 4.0.1: Overview of the data labeling procedure
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4.1 Audio segmentation

The final objective of the database preparation procedure is to align the phonetic
transcription of the lyrics with the audio recordings. However, the bertso audio
recordings contain not only the singing voice, but also other acoustic elements like
applause, speech and music. Therefore, the first step in the database preparation
procedure must be the location and separation of the segments containing singing
speech. Examining some sample audio files from the database, we found the fol-
lowing types of content: singing voice (sn), speech (sp), silence(sl), applause(a)
and music (m). Applause also appears combined with other types of audio: we
found applause overlapped with the singing voice (sna), with speech (spa) and

with music (ma). Observing the audio files we took these decisions:

« We excluded the recordings with background music because they are very
scarce and the continuous music background can cause errors in the align-

ments.
« We decided to remove all the speech segments that appear in the recordings.

« We kept the singing parts that overlap with applause.

We manually excluded the recordings with background music at the beginning
of the process. After that, we created and automatic segmentation system to seg-

ment the audio files and extract the segments of interest.

4.1.1 Proposed segmentation system

The architecture of our speech/singing segmentation system is shown in Figure
4.1.1. In the first step, a GMM-HMM VAD is applied to theMel Frequency Cep-
stral Coeflicient (MFCC) features to locate the segments that contain voice. Then,

the pitch contour is extracted and a smoothing process is applied on it to remove
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vibrato effects. We identify the segments of the smoothed pitch contour that corre-
spond to musical notes using our algorithm described in Section 4.4.3.1 and, mak-
ing use of this information, we calculate the voicing and note percentages in each
segment. Finally, a statistical classifier is used to assign the correct class to these

percentage parameters.

Pitch extraction
& smoothing

Note detection
Note
labels

Calculation of .
By Pich relaes | el
parameters ry

PV & PN Singing  Speech

Figure 4.1.1: Structure of the proposed speech/singing voice segmentation
system.

4.1.1.1 GMM-HMM based VAD

In the VAD of the proposed system, three possible classes are defined as output in
each acoustic frame: voice, applause and silence. Considering that we manually ex-
cluded the recordings with background music, the only overlap of classes that can
be found in the recordings are the singing voice with applause or speech with ap-
plause. We considered these overlaps as voice. We decided to split applause and si-
lence into two separate classes because applause is common in our Bertso database
and the acoustic nature of both classes is very different. The classification of the
recordings is made using a frame-level GMM with an HMM post-smoothing [61].
We used 13 MFCC values with A and A* values calculated applying a 25 ms win-

dow and 10 ms frame period. For the initial frame classification, independent
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GMMs are trained per each class using Expectation Maximization [33]. The op-
timal number of gaussians will be selected with a VAD experiment described in
Section 4.1.1.5. Frames are classified using these GMMs, but this frame level clas-
sification can create fast label changes that do not fit well to the data. To avoid this,
we have used an ergodic HMM of three states, one per class. This HMM forces the
frame labels to remain in the same class for a minimum duration depending on the
likelihood values of the GMMs. We used a probability of 0.0001 outside the tran-
sition matrix diagonal for this purpose. To classify the segments, the likelihood of

observation provided by each model is calculated using expression (4.1):

’Sl ZW’] |Hl]’ ’] (41)

where o is the MFCC vector, w;, Wi % are the weight, mean and diagonal covari-

ance of the component j of the state s; and M is the number of Gaussian compo-

nents. A representation of the proposed VAD method can be seen in Figure 4.1.2.
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MFCC
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« Voice
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* Applause

Figure 4.1.2: Scheme of the proposed VAD system
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4.1.1.2 Speech/singing classification

In our Bertso database, the separation of speech and singing voice segments is clear,
i.e., there are no adjacent boundaries between the two classes. This is why we ad-
dress the problem as a binary classification of the voice segments detected by the
VAD. The pitch parameters we propose for the classification of each segment are:
proportion of voiced frames (PV) and percentage of voiced pitch frames labeled
as a musical note (PN).

The pitch curve has been calculated using PRAAT autocorrelation method [ 19]
with a frame period of 10 ms. Voiced/unvoiced segments are obtained directly
from the pitch curve where the relative value of maximum autocorrelation is used
to take this decision. Stable musical note segments are found using our algorithm
explainedin Section 4.4.3.1. The features for classification are calculated according

to expressions (4.2) and (4.3):

N

pv =2 (4.2)
Nr
N

PN = £, (4.3)
Nyr

where Nyp is the total number of voiced frames, Ny is the total number of frames
labeled as a musical note and N7 is the total number of frames, all of them calcu-
lated within the segment to be classified.

Figures 4.1.3a,b show the distribution of the proposed classifying features PV
and PN in Bertso and NUS databases described in Sections 3.1.1 and 3.1.2 respec-
tively. In both cases, speech presents a more scattered distribution than singing
voice. However, good discrimination can be achieved when considering both pa-
rameters at the same time. As a final step of the proposed algorithm, a classifier
has to be trained with the vector containing these two parameters to obtain the
final speech/singing classification. In the proposed system we have used an SVM
[132,148].
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Figure 4.1.3: Distribution of PV and PN parameters. (a) Bertso database
(b) NUS database

4.1.1.3 Used databases

There are very few publicly available datasets that contain monophonic singing
(MIR-1K [67] and the Singing Voice Audio Dataset [ 18] for instance) and even
fewer datasets that contain both spoken and singing speech. In fact we have only
found the NUS Sung and Spoken Lyrics Corpus [37], that is not completely suit-
able for our task because the files it contains are mono-class, i.e, they contain ei-
ther speech or singing. Although the NUS database contains recordings with only
singing voice or speech, as we focused our problem on voice segment classification,
the database may be used for our experiment. Therefore, we have two databases to
test our algorithms, the Bertso database explained in Section 3.1.1 and the NUS
database explained in Section 3.1.2. The Bertso database is a large database, there
are no open source singing voice databases with this size. As the manuallabeling of
the databases is highly time consuming, we prepared and labeled an smaller repre-
sentative excerpt of the Bertso database. We named this excerpt as Bertso excerpt
database and used it to train a first version of our speech and singing voice segmen-
tation system. We used this first version to help us in the labeling of the whole
Bertso database. The main characteristics of each database are summarized in the

next sections.
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4.1.1.3.1 Bertso excerpt database

The Bertso excerpt database is a subset of the Bertso database with 20 audio files
from 19 bertsolaris with a total duration of 60 minutes and 40 seconds. These
audio files contain 32.8 minutes of singing voice and 2.87 minutes of speech. In
this excerpt the singing voice has longer durations than speech. The mean duration
of singing segments and speech segments are 3.69 and 1.51 seconds respectively.
The 20 files were selected to cover the variability of the original Bertso database,
considering recordings from different decades and gender.

Table 4.1.1 shows the distribution of bertsolaris and hosts by gender in the

Bertso excerpt database.

Bertsolaris Hosts Hosts who sing Total

Female 7 6 2 I
Male 12 6 2 20
Total 19 12 4 |

Table 4.1.1: Number of hosts and bertsolaris in Bertso excerpt database

The distribution of the proposed classifying features PV and PN in the Bertso
excerpt database can be seen in Figure 4.1.4. The behavior is very similar to that ob-
served in Figures 4.1.3a and 4.1.3b with speech more scattered than singing voice.

For the experiments, we split the Bertso excerpt database into 10 subsets for
cross-validation tests. All the partitions considered include different participants

in the train and test subsets.

4.1.1.3.2 NUS database

The NUS database has been described in Section 3.1.2, but the description only in-
cluded the analysis of the singing voice. In addition, only the singing voice record-
ings with available music score have been analyzed there. For the speech/singing

discrimination task no original music score is needed. In this database, each record-
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Figure 4.1.4: Distribution of the classes in the Bertso excerpt database

ing contains either speech or singing voice and we used the VAD defined in Sec-
tion 4.1.1.1 to obtain the voice segments and labeled them with the type of the
recording. The number of segments of each class and their duration are presented

in Table 4.1.2.

Segment type | N. of segments | Total duration (min)
Singing 1437 92.51
Speech 1283 40.80
All 2720 133.31

Table 4.1.2: Quantity and duration of voice segments in NUS database

The duration distribution of the speech and singing voice segments in the NUS
database can be seen in Figure 4.1.5b. The average duration and standard deviation
of the singing voice and speech are 3.83 £ 2.21 and 1.92 = 1.06 seconds respec-
tively. Considering that in the NUS database the linguistic content is the same in
singing and speech segments, we can clearly see that singing voice segments are

longer than speech segments.
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4.1.1.3.3 Bertso database

The Bertso database contains 2095 Basque audio files from 187 different bertso-
laris and has a total duration of 59 hours, 10 minutes and 40 seconds. To label the
database, we first trained the system proposed in Section 4.1.1.2 with the Bertso
excerpt database and used it to segment the whole Bertso database. After the au-
tomatic segmentation, the segmentation errors have been manually corrected so
that a bigger gold standard is available to measure the performance of our proposed
segmentation algorithm.

In fact, we have no need to create a segmentation system once we already have
the whole database manually segmented. However, all the tools produced in this
thesis are prepared to process new bertso recordings that will be created in the fu-
ture. We think that the evaluation of the proposed systems in a bigger and more
diverse database provides better information about the limitations and advantages
of the algorithms. The number of segments of each class and their duration in
Bertso database are shown in Table 4.1.2 and the length distribution of each class

is visualized in Figure 4.1.5a.

Segment type | N. of segments | Total duration (hours)
Singing 35419 53.55
Speech 1283 5.80
All 44463 59.35

Table 4.1.3: Quantity and duration of voice segments in Bertso database

The metadata provided with the recordings include information about all the
bertsolariidentities, but the host identity is only annotated if he or she also sings to
introduce the topic for the verses. It was not feasible to manuallylabel the identities
of the rest of hosts, therefore we decided to use an approximate method to create
host identity labels for the missing metadata. The recordings are separated into
sessions that correspond to different places and dates. We decided to assign the
same host identity to all the recordings of the same session, as usually there is only

one host in each bertsolaritza show.
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We also classified the genre of the hosts by applying a threshold to the average
value of the f; in such a way that hosts with an average f, value higher than the
threshold are considered female and male otherwise. The optimal threshold to
define the genre of a host has been defined using the hosts whose identity was
available in the metadata (31 different hosts in 54 sessions, with a total duration of
15 minutes and S seconds). Table 4.1.4 shows the classification results obtained
using different thresholds, where 250 Hz is the value that gets better F-score, so we
have used this value to automatically label the missing genre of hosts.

The genre classification and host identification algorithms have been used to
process the audio files with missing metadata to complete the information. The
final database contents are shown in Table 4.1.5. In most cases participants either
sing or act as host in each file, but as we have already commented sometimes the
hosts give the first foot for the improvised verses singing as well. We also can find
bertsolaris acting as host in some recordings. This is why we created two different
categories for hosts that have singing segments and bertsolaris that have speech

segments in the database.

Threshold (Hz) | Precision | Recall | F-score
100 0.13 0.5 0.21
150 0.66 0.63 0.44
200 0.77 0.84 0.77
250 0.88 0.77 0.81
300 0.9 0.64 0.67
350 0.37 0.5 0.43

Table 4.1.4: Results of the automatic genre classification

The duration distribution of the speech and singing voice segments in the Bertso
database can be seen in Figure 4.1.5a. The average duration and standard deviation
of the singing voice and speech are 5.03 &£ 2.67 and 2.30 &= 1.74 s seconds respec-
tively. In the Bertso database the speech and singing voice do not contain the same

linguistic content, but we can observe that the distributions follow a similar pattern
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Bertsolaris Hosts Bertsolaris who host Hosts who sing Total

Female 33 43 1 9 86
Male 140 528 13 28 709
Total 173 571 14 37 |

Table 4.1.5: Number of hosts and bertsolaris in Bertso database

to the one found in the NUS database.
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Figure 4.1.5: Distribution of singing and speech segment durations

4.1.1.4 Other speech/singing discrimination methods

To compare our algorithm with other methods we have selected methods that
are suitable to work with segments of different duration as it is the case of Bertso
database. On the one hand, we have trained GMM classifiers with the parameters

suggested in [105] (Afp) and [150] (DFT-fy). On the other hand, we have also
built a GMM classifier based on MFCC parameters. These baseline methods are

explained with more detail in the following subsections.

4.1.1.4.1 DFT-,

As commented before, fo provides very useful information to discriminate between

speech and singing. The histogram of f; gives information about the range and the
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distribution of f, values, which for singing voice will be concentrated around the
frequencies corresponding to musical notes. In [150] GMMs are used to model
the DFT of the f, distribution and detect the deviation of the instantaneous pitch
value from its mean. f, values in Bertso database range from 75 to 500 Hz. A 100
bin histogram is calculated, therefore each segment corresponds to approximately
0.027 octaves. The histogram is normalized to have unit area and then modeled

using 8 component GMMs for singing voice and speech.

4.1.1.4.2 Delta-f,

The dynamics of f, are another feature that has been considered in speech and
singing voice discrimination. In [105] the Afy distribution of voiced segments is
modeled with GMMs to discriminate speech and singing voice. We calculate the
Afy using a Savitsky-Golay filter [ 131] with a window of 50 ms. An histogram of
100 bins is made from -50 to 50 Hz. The distribution of Afy in each voice segment

is normalized to have unit area and then modeled with 16 component GMMs.

4.1.1.4.3 MFCC

In [105] short-term spectrum features are used motivated by the presence of an
additional resonance characteristic of singing speech as addressed in [143]. We
calculated 13 MFCC coefficients and their A with a frame period of 10 ms and a
window of 25 ms applying a Cepstral Mean and Variance Normalization (CMVN)
file-wise normalization. MFCC frames of speech and singing voice are modeled
using 32 component GMMs. Each voice segment is assigned the class that gets the
higher sum of log-likelihood for all the frames of the segment. We chose GMMs
to model MFCC parameters due to the high dimensionality of the parameters.

4.1.1.4.4 Tony

Our proposed singing/speech classification method includes the use of our own
note detection algorithm. To assess the effect of the note detection method, we

decided to test our proposed speech and singing voice discrimination system using
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an alternative note detection algorithm. The alternative note annotator we have
selected is Tony, a state of the art note detection algorithm [93]. In summary, this
new discrimination method is identical to the proposed one but Tony is used for

note labeling instead of the algorithm explained in Section 4.4.3.1.

4.1.1.5 Results
4.1.1.5.1 Results of GMM-HMM VAD

We tested the VAD only in the Bertso database excerpt. The metric used to assess
the VAD is the voice detection F-score defined as indicated in Equation 4.4.
2TP
F — score = (44)
2TP + FP + EN

where TP is the duration of speech classified as speech, FP is the duration of

non-speech classified as speech and FN is the duration of speech classified as non-
speech.

Table 4.1.6 shows the results for different number of Gaussian components. All
of them get good results, over 0.96, and the number of components does not affect
the performance significantly. We have selected the VAD with 32 components for

the classification experiments.

Gaussians F-Score
2 0.965 +/- 0.005
4 0.967 +/-0.006
8 0.969 +/-0.007
16 0.972 +/-0.008
32 0.973 +/-0.008
64 0.974 +/-0.008

Table 4.1.6: Results of the GMM-HMM VAD for different number of Gaus-
sian components
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4.1.1.5.2 Results of speech and singing discrimination

We compared the proposed system with the ones explained in Section 4.1.1.4. To
assess the generalization capability of the algorithm two difterent experiments have
been performed: Bertso excerpt experiment and Bertso experiment.

In the Bertso excerpt experiment we split the Bertso excerpt database in 10 sub-
sets for cross-validation tests. The final result is obtained joining all the test results.
All the partitions considered include different participants in the train and test sub-
sets. The NUS database is classified using the algorithms trained with the whole
Bertso excerpt database. In this experiment we did not include the version of the
proposed system with Tony note detection.

In the Bertso experiment we have used the Sx2cv paired ¢ test [35] in the Bertso
database with the structure shown in Figure 4.1.6. To achieve this, we first split
the Bertso database into 10 sections with the only condition that all the segments
corresponding to one specific participant must be in the same section. After this,
we made five iterations of splitting the database into two blocks of 5 sections each,
chosen randomly, and with no repetition of sections within the blocks. In each of
the iterations, we obtained a first score by using one block as train and the other as
test. A second score is calculated by rotating test and train: training set becomes
test set and vice versa. This gives us 10 scores which are averaged to calculate the fi-
nal score. The procedure ensures that no participant is present both in the training
and test block in any iteration.

In the experiments, no model adaptation has been used to classify the segments
from the NUS database. The performance of the classifiers has been measured
using unweighted Precision, Recall and F-score, defined as the macro-averaged
measure parameter for each of the classes. We have used the unweighted mean
of the score because our Bertso database is heavily imbalanced, with more singing
segments than speech segments as seen in Section 4.1.1.3.1. Macro-averaging con-
siders all classes equally and is more convenient in the case of imbalanced data-
sets [141].

The results of the Bertso excerpt experiment for the classification of the Bertso
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Figure 4.1.6: 5x2cv test structure

excerpt with cross-validation and the NUS database are shown in Table 4.1.7. The
proposed method gets the best results and can compete with MECC coefficients
classified by a GMM. The methods that use pitch derived parameters as distribu-
tion of Delta-f, and DFT-f, get poorer results due to the short duration of the
segments to classify. Although in other works they have proved useful, they are
not suitable for the characteristics of the Bertso database. The experiment in the
NUS database shows similar results proving the validity of our method with pro-
fessional singers and a different style. The MFCC method results got worse for
NUS database, probably because the audio files used to generate the models con-
tain both speech and singing and the files in NUS database belong to one class.
Therefore the normalization process affects both databases differently.

The results of the Bertso experiment for the Sx2cv test of the Bertso database
and the NUS database have been separated in two tables. Table 4.1.8 shows the



Method Precision Recall F-score

B.excerpt NUS B.excerpt NUS B.excerpt NUS

Afo[l()S] 0.78 0.76 0.83 0.74 0.80 0.74
DFT—fO[150] 0.73 0.77 0.77 0.76 0.75 0.77
MFCC[105] 095 075 085 066 089 064

Proposed 091 0.89 0.93 0.89 0.92 0.89

Table 4.1.7: Results of speech/singing classification in the Bertso excerpt
experiment

results of the singing voice segment classification and Table 4.1.9 presents the re-
sults of the speech segment classification. The method using MFCC coefhicients
classified by GMM is the best method for the classification of Bertso database in
both singing voice and speech segments, although differences in results with our
proposed method are not statistically significant (see Table 4.1.10). This MFCC
method also gets very good results for the singing class in the NUS database, com-
parable to our method. In the Bertso database, singing and speech are mixed in
the same file, while, in the NUS database, each file contains only one type of voice.
In the MFCC method, file-wise mean and variance normalization is applied for
the calculation of the MFCC:s. If there are enough data with high participant vari-
ability in the training database, the MFCC method can learn the characteristics of
both classes and generalize to other databases. However, if data are not enough,
like in the Bertso excerpt experiment, this generalization is not good as it can be
seen in Table 4.1.7. This bias is due to the unbalance in favor of the singing class in
the training data.

The pitch-based methods, Delta-f, and DFT-fy, do not get good results com-
pared with our system in both experiments. As commented before, this is due to
the presence of short voice segments in the database. These pitch based methods
are suitable when long voice segments are present.

Regarding the use of a different note detection algorithm, Tony method gets
worse F-score values than the proposed method in the Bertso and NUS databases.

Tony only gets higher scores than the proposed method in the NUS database re-
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garding recall for singing and precision for speech. The note detection algorithm
of Tony is designed to analyze singing voice and not speech. Therefore, it is likely

that it has a strong bias towards identifying notes even in speech.

Method Precision Recall F-score

BertsoDB NUS BertsoDB NUS BertsoDB NUS

Afo[105] 095£0.00 079 0.85+0.03 073 090+001 0.76
DFT-f,[150] 0.93+£0.00 0.76 0.83+0.01 0.77 088+001 0.76
MFCC[105] 0.99+0.00 088 0.97+0.00 0.97 0.98+0.00 0.92

Tony 097+£0.00 083 0.924+0.01 095 094+0.01 0.88

Proposed 098+0.00 0.92 0.964+0.00 092 097+£0.00 0.92

Table 4.1.8: Results of singing classification in the Bertso experiment

Method Precision Recall F-score

BertsoDB  NUS BertsoDB NUS BertsoDB NUS

Af[105]  0.58+£0.04 072 0814001 078 0.68+003 0.75
DFT-/,[150] 0.53+£001 073 0.76+001 072 0.63+0.01 0.73
MFCC[105] 0.90+£0.01 0.96 0.97+0.00 0.85 0.9340.01 0.90

Tony 073004 093 0.88+000 078 0.80+0.02 0.85

Proposed  0.87+£0.02 091 0944000 0.91 0904001 0.91

Table 4.1.9: Results of speech classification in the Bertso experiment

To assess the statistical significance of the results, we have calculated the p-value
for the results of all the alternative systems when compared with our proposed
system. Table 4.1.10 shows the p-values for speech and singing detection. Con-
sidering these values and a significance level of @ = 0.0S, the differences in per-
formance of the proposed system are statistically not significant comparing to the

MECC system and they are significant comparing it with the rest of the systems.
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Method p (Singing)  p (Speech)

Afo[105] 8.099 x 105 2.858 x 10~°
DFT-f,[150] 0.010 0.001
MFCC[105] 0.084 0.063
Tony 0.004 0.001

Table 4.1.10: p-value of the results of the proposed algorithm compared with
the rest of the systems

4.1.1.5.3 Analysis of computation time

We measured the time needed by each speech/singing discrimination method to
train and classify the Bertso database using 5x2cv cross-validation. The processes
have been run in an Intel Xeon CPU ES-2660 v2. The results obtained are shown
in Table 4.1.11.

We can see that all processing times are comparable, except for the one of the
GMM built with MFCC. We can see that the slightly better results achieved by the
MEFCC system are produced at the expense of bigger dimensionality and computa-

tion time. In consequence, the proposed system is the best classification method

overall.
Method Time for training (h:mm:ss) Time for classification (h:mm:ss)
Af,[105] 0:04:03 0:03:59
DFT-,[150] 0:04:15 0:03:51
MFCC[105] 7:12:33 0:17:04
Tony 0:04:31 0:04:13
Proposed 0:04:08 0:03:46

Table 4.1.11: Computation times for training and classifying in the Bertso
experiment

4.1.2 Analysis of the segmented Bertso database

In this section we have described the method proposed for the labeling of the

singing and speech segments in the Bertso database. The aim of singing voice de-
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tection is to remove all the elements that are not singing voice from the audio files.
The isolation of singing voice segments is essential to obtain phonetic and note
alignments in an automatic way because only the singing voice segments are tran-
scribed in the database. However, although the singing voice segments are sepa-
rated in the database, each segment does not correspond to an utterance. There-
fore we cannot separate the recordings into utterances using the identified singing
segments. We decided to develop a method to clean the audio files in an automatic
way, so that they are valid to be used in the next processing phase. The new clean
version of each recording is the segment that starts from the beginning of the first
singing segment and ends at the end of the last singing segment of the recording.
Before the cleaning we decided to define certain conditions of the recordings to
simplify future steps and create a more coherent dataset. The conditions of the

recordings for the cleaning are the next ones:

« Singing continuity: There can be no speech segment between the first

singing segment and the last singing segment in the file.

« Bertsolari continuity: The bertsolari that improvises has to be unique in

all improvised singing segments.

« Singing host continuity: As explained in Section 2.8.4, in some exercises
the host sings the first or last foot of the bertso and the bertsolari has to
improvise the rest of the bertso. In this type of recordings only a unique

host that sings is accepted.

« Melody continuity: Every bertso in the recording has to be sung with the

same melody.

« Meter continuity: Every bertso in the recording has to have the same me-

ter.

The selected recordings will then have a unique bertsolari, unique meter, unique
melody and in case it appears, a unique singing host. We also removed from the

selection some recordings with good quality but with incoherent transcriptions or
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recordings that are cut before the end of the improvisation. If we consider the per-
formance types explained in Section 2.8.4, in the selection we have only solo per-
formances that have no multiple melodies, metrics and bertsolaris in the recording.
The resulting database contents are presented in Table 4.1.12.

At this point we still do not know if each singing segment corresponds to a bert-
solari or to a singer host. To estimate the recording times, we have used the propor-
tion of utterances. The total time is proportionally divided between both bertsolari

and singer host in the same proportion as are the utterances.

Singer type N. of singers N. of utterances Voice segment dur. (min)
Male | Female | All | Male | Female | All Male | Female All
Bertsolari 147 29 | 176 | 35152 5237 | 40389 | 2483.42 | 385.23 | 2868.65
Singing host 114 30 | 144 922 286 | 1208 62.20 19.53 81.73
All 261 59 | 320 | 36074 5523 | 41597 | 2545.62 | 404.76 | 2950.38

Table 4.1.12: Number of singers, number of utterances and total duration
(min) of the selected voice segments.

4.2 Utterance segmentation

As explained in Chapter 3 each of the recordings of Bertso database contains a
single song structured in bertsos (strophes) and utterances. Having recordings
of different length and with length of several minutes makes the processing and
the indexing of information inefficient. In speech, it is possible to divide the ortho-
graphic transcriptions into syntactical sentences, but in singing lyrics sentences are
not clearly defined. The singing voice prosody is mainly defined in the music score,
although each singer can interpret a music score with variations. The structure of
lyrics, divided in utterances in western music, gives the singer a rhythm structure
and also a break to breath between the utterances. In bertsolaritza, this silence be-
tween utterances is even clearer than in popular music. Taking this into account,
we decided to segment the recordings into utterances defined by transcriptions.

Doing this in the first place creates a database closer to standard speech databases,
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making it easier to use utterance centered speech processing software. In addition,
this division of the singing signals into utterances makes the database more flexible
for recurrent and parallel processing.

We used the phoneme segmentation in audios with multiple utterances to de-
fine the utterance segmentation. The phoneme segmentation may be used to de-
fine utterance segmentation marks between the end of the last phoneme from each
utterance and the start of the first phoneme of the next utterance.

As the database contains singing voice, we considered the differences between
the phoneme alignments of speech and singing voice. In the original BDB database,
every recording comes with the corresponding orthographic transcription of the
lyrics. In the Bertso database the 33.32 % of the recordings has the melody labeled,
but we do not consider this melody as the gold standard music score of the record-
ing. Bertsolaritza is a improvised art, lyrics are created live with the only restric-
tion of meter and the singers choose one of many predefined melodies with the
predefined meter to sing the created lyrics. The bertso scenario creates different
distortions in the original melodies. First, the improvisation produces meter mis-
matches and different interpretations of the same melody. Second, the fact that
the majority of bertsolaris are not professional singers creates tuning errors. Fi-
nally, although the note durations follow some standards, the singing is a cappella
and the tempo precision is not needed; therefore it is not easy to predict the du-
ration of each note. The relation between the music scores and recordings in the
Bertso database is analyzed in a deeper way in Section 4.4.2.

Knowing that the provided music score information is not a gold standard in-
formation, our approach of the phoneme segmentation is very similar to the one
used in speech, both at system and feature levels. Nevertheless, we tested different
phoneme groupings considering words and syllables.

We used Kaldi [115] to align the phonemes. The procedure of segmentation

consists of four phases:

« Monophone training: Acoustic features are modeled for phonemes without

context.
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« Triphone training: Models from the monophone training are used to gen-

erate models for triphones, using side context in each phoneme.

« Linear Discriminant Analysis (LDA) and Maximum Likelihood Linear
Transform (MLLT) training: LDA transformation and MLLT model-

adaptation are applied to the features and new triphone models are created.

« Singer-adapted triphone models: New models are created using Feature
space Maximum Likelihood Linear Regression (fMLLR) transformation

for the features of each singer.

The acoustic parameters used for modeling are 13 MFCCs extracted with a 25
ms window and a 10 ms frame rate. Singer-wise Cepstral Mean and Variance Nor-
malization is also applied. Delta and Delta-delta features are used in the first steps.

The phonetic transcription of the utterances uses word context rules to take into
account co-articulations. In the alignment, we used position-dependent phonemes
with different configurations. The position-dependent phonemes have four alter-
native models for each phoneme depending on the relative position within specific
phoneme groups called tokens. In speech recognition, the tokens used as reference
are words because of the way speech is constructed [ 140]. The four models created
for each phoneme with position information are the Begin, End, Internal and Sin-
gle phonemes. The single position is used for the tokens with a single phoneme,

singletons.

« Begin: Phoneme is located at the begging of a token.
« Internal: Phoneme is located inside a token.
« End: Phoneme is located at the end of a token.

« Single: Phoneme is a token itself.

In singing voice, the notes have more phonetic relevance than words and the

syllables are closely related to notes [59][78][40]. In bertsolaritza, the meter is
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an initial condition for improvisation and it is important to adjust the syllables
to the meter to adjust the created lyrics to the predefined melodies. Considering
this relation we decided to analyze the phoneme alignment system using three dif-
ferent tokens as reference for position-dependent phonemes: word, syllable and
phoneme. In the alignment with the phonemes as reference token, each phoneme
is considered a singleton and therefore it is equivalent to an alignment without

position-dependent information.

Train data Monophone

. GMM Monophone Monophone
monophone model alignment

\ \
mmma Delta & delta-delta ‘m
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Figure 4.2.1: Multi-singer phoneme alignment process

The Kaldi phoneme alignment method is inspired in state-tying trees [ 165] and

94



uses top-down binary clustering instead of manually prepared questions to model
data using a limited number of leaves and gaussians. The global structure of the
phoneme alignment method can be seen in Figure 4.2.1.

With the phoneme sequence and acoustic features, monophone alignment is
made using 40 iterations and 1000 gaussians for modeling. We split the iterations
into 4 blocks of 10 iterations. In the first 10 iterations, realignment is made in
each iteration. In the second block the realignment is made only in even iterations
and in blocks 3 and 4 the realignment is made every 3 iterations. Using the ob-
tained monophone models, tied state triphone models are created and the dataset
is aligned again in 40 iterations. The use of triphones does not guarantee high
improvement in alignment as seen in [111] and [22]. Then, the feature space is
transformed using LDA followed by MLLT estimation. LDA compresses 9 frame
context windows into 39 features and MLLT computes a diagonalizing transform
over multiple alignment operations. This alignment phase uses fMLLR as a feature
space transform to adapt acoustic features of each singer to the global model.

To align the audio files from the test set, the LDA+MLLT transform matrix is
applied to the features and the singer adaptive model is used to align the phonemes.

The final phoneme segmentation has to be post-processed to define utter-
ance segmentation. As we have already determined the beginning and ending
phonemes of transcription utterances, the utterance segmentation marks are de-
fined in the center of the silence between the last phoneme of each utterance and
the first phoneme of its contiguous utterance. If there is no silence between these

phonemes, the segmentation mark is set in the boundary between the phonemes.

4.2.1 Dataset

The proposed utterance segmentation system has been tested over a subset of the
bertsolaritza singing voice recordings obtained in Section 4.1.2. Without the time
marks of the utterances, multiple singer normalizations cannot be applied in the
same recording. This is a problem in the recordings where the host sings and there-

fore more than one singer appear in the same recording. This is why we used only
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the recordings with a single singer for this experiment. The manual labeling of all
utterance boundaries is time consuming, therefore we aligned a subset of the utter-
ances of the singer 0030b to use it as the test set. We also separated singer 0113b
from the train database because we use it later in Section 4.3.1 as a test singer. The
recordings of all the remaining singers are used as training data. The distribution of
the train and test data for this utterance segmentation experiment is shown in Ta-
ble 4.2.1. The duration provided for the data subsets corresponds to the duration
of the voice segments found by the proposed VAD.

Bertsolaris Utterances Duration (min) Phonemes
Male | Female | Male | Female Male | Female Male | Female
Train 141 29 | 30672 4776 | 2248.55 | 365.18 | 552129 | 87909
Test 1 0| 1239 0 86.25 0| 22840 0

Table 4.2.1: Data used in the utterance segmentation experiment

4.2.2 Segmentation comparison and results

We have evaluated three types of models to make the phoneme alignments depend-
ing on the tokens used for the alignment. We used phoneme, syllable and word
tokens. The tokens are the phoneme groups where transitions between phonemes
cannot pass through silence states, forcing all the phonemes inside the token to
be contiguous in time. Word token means that short pauses can be included only
between words; syllable token means that short pauses can be included between
syllables and words; and finally, phoneme token means that a short pause can be
inserted between any pair of phonemes.

When syllable and phoneme tokens are used, we post-process alignments to
remove intra-word short-pauses from the final alignment. In speechis very unusual
to break words with short-pauses but in singing voice these rules are more flexible.
Nevertheless, we observed that in Bertsolaritza singing style that it is a extremely

uncommon practice.
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For the evaluation of the utterance segmentation we separate utterance bound-
aries in two groups. The first group includes the utterance boundaries with a si-
lence between the utterances in the reference. The second group comprises the
utterance boundaries that in the reference have no silence in between. The evalua-
tion of each group is made in a different way. When we have a silence between the
utterances any position inside this silence can be accepted as the utterance bound-
ary because no phonemes would be lost from any utterance. This is why we evalu-
ate these boundaries as a binary label, the marks inside the silence are correct and
the ones that are outside it are incorrect. For boundaries without silence, we evalu-
ate these boundaries with the absolute time difference between the actual and the
predicted mark. In the database there are 1268 utterance boundaries if we do not
count the start and the end of the recordings. From these 1268 boundaries, 95 %
contain a silence and the other 5 % have no silence. A graphic explanation of the
evaluation is shown in Figure 4.2.2. It can be seen that the evaluation type depends
on the presence of silence in the reference manual segmentation used to evaluate
the system. The prediction of the silence in utterance boundaries is evaluated in

Section 4.2.3. The results obtained in both evaluations are shown in Table 4.2.2.

Predicted d
segmentation Utterance 1 Silence Utterance 2 Utterance 3 Silence Utterance 4

evaluation

T2 | T2 | TJ2 | TJ2
Binary evaluation: Binary evaluation: Time difference

Correct mark Incorrect mark D,
1

Reference p p
S Le (I Utterance 1 Silence | Utterance 2 = Silence Utterance 3 Utterance 4

Figure 4.2.2: Utterance segmentation evaluation

We can see in the result table that the phoneme token obtains the best results
in silence boundaries and the word token obtains the best results in the silenceless

boundaries.
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Token type Silence boundaries | Silenceless boundaries
accuracy (%) time difference (ms)
Phoneme 98.40 26.0 £19.15
Syllable 97.60 25.63 +21.03
‘Word 98.20 21.46 £17.79

Table 4.2.2: Utterance segmentation results

4.,2.3 Silence detection

As utterance segmentation is a previous step to the phoneme segmentation, look-
ing at the good results obtained, we decided to define the intra-utterance and inter-
utterance silences with the alignments obtained in this step. We compared again
the silence prediction score obtained using phoneme, syllable and word tokens.
In the automatic phoneme segmentation, silences that did not appear at the initial
transcription can be generated to optimize the phonetic models. These silences are
created when the alignment with trained phonetic models cannot obtain an opti-
mal phoneme sequence in the recording. They may appear because of two main
reasons: either a silence that was not in the transcription exists in the recording or
the pronounced phonemes differ from the average models of these phonemes ob-
tained with the training data. These new silences contain important information
that we can use in our database. There is no initial information of silences in any
transcription of the database. We decided to use minimum length thresholds to
decide if the silences generated in the phoneme segmentation have to be included
in the transcription. We also compared different minimum lengths values to adjust
this feature to the characteristics of our recordings.

To score the silence detection, we assign a binary label to each word. This label
represents whether the word is followed by a silence. We exclude the initial and
the last silence in each recording. Last words of utterances are classified separately
from all the other words to score separately the intra-utterance and inter-utterance
silences. We did this because the silences between utterances are very common

while intra-utterance silences are scarce. Scoring separately these silences provides
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a more accurate information of how well the method is performing.

As seen before in Section 4.2.2, the number of evaluated inter-utterance bound-
aries is 1268 and 95 % include a silence. In the case of intra-utterance silences,
we have 4783 word boundaries and only 3 % include silence. We have used the
F-score to evaluate the method because of the class unbalance. The score with dif-
ferent minimum duration thresholds can be seen in Figure 4.2.3. Table 4.2.3 and

Table 4.2.4 present the final results.

—— Phoneme
Syllable 0.7

— Word
0.6
0.5

—— Phoneme
Syllable
—— Word

200 400 600 800 200 400 600 800
Min duration (ms) Min duration (ms)
(a) Detection of inter-utterance si-  (b) Detection of intra-utterance si-
lences lences

Figure 4.2.3: Silence detection plots using different thresholds for the dura-
tion of the silence

Token type Best score Second best score
Duration (ms) | F-score (%) | Duration | F-Score (%)
Phoneme 150 S1.75 200 48.58
Syllable 150 52.63 200 50.22
Word 150 64.77 200 61.53

Table 4.2.3: Results of inter-utterance silence detection

We can observe that the word token obtains the best results in both inter-

utterance and intra-utterance silence detection. We think that the intra-utterance
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Token type Best score Second best score
Duration (ms) | F-score (%) | Duration | F-Score (%)
Phoneme 150 69.06 200 67.46
Syllable 200 67.69 150 68.77
Word 200 76.06 150 75.23

Table 4.2.4: Results of intra-utterance silence detection

silence is more important than the inter-utterance silence due to the effect this has
in the phoneme segmentation. The intra-utterance silences affect to the phonetic
transcription of the utterances because of the coarticulations. Having silences in
the edges of the utterances is a common feature in the speech or singing databases
and therefore errors at the edges can be easier to fix in a future manual revision.
We could use different minimum duration threshold to detect each type of silence,
but we have preferred to define a single threshold for all silences to simplify the

system. These are the reasons why we set the threshold in 200 ms.

4.2.4 Analysis of the utterance segmented database

In the previous section, we have analyzed different systems for utterance segmenta-
tion and the resulting best system uses word tokens with a minimum threshold for
the silence detection of 200 ms. Using this system, we also segmented the record-
ings with foot based exercises where also the host sings. In the alignment of multi-
singer recordings, we labeled utterances of the host as they would have been sung
by the main bertsolari in the recording. Despite this wrong labeling we empirically
observed that the model can generalize enough to segment utterances. The result-
ing database has similar properties of the data characterized in Section 4.1.2, but

now it includes time marks for each utterance in the recordings.
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4.3 Phoneme segmentation

Speech forced alignment is the process that aligns the phonetic transcription of the
speech with the voice audio. State of the art algorithms use HMM topologies with
different acoustic modelings to predict the alignments. Most common acoustic
features are MFCCs and are modeled using GMMs or DNNE.

In the previous section we have exposed how we made the utterance segmenta-
tion of the database. To obtain the phoneme alignments we aligned each utterance
as an independent segment with the respective singer label.

Phoneme alignments present a harder challenge than the utterance segmen-
tation for multiple reasons. The main reason is that the precision needed for
phoneme alignment is higher than in utterance segmentation given the silence
margins that we have between utterances. Another motivation is that obtaining
manually labeled phoneme alignments is more time consuming than manually set-
ting utterance boundaries. The ideal option would be to manually create multiple
singer reference phoneme alignments and evaluate a multi-singer aligner. How-
ever, manually creating a large volume of multiple-singer phoneme alignments is a
highly time consuming work. The solution we propose to this problem is to man-
ually create alignments for a pair of singers, and evaluate the difference of aligning
them with a model trained using only data from the same singer and with a multi-

singer model in which they have not been part of the training.

4.3.1 Single singer phoneme alignment

Two bertsolaris, a male (0030b) and a female (0113b) have been selected for the
first phoneme segmentation experiments. Using the transcriptions and part of the
recordings, phoneme alignments have been obtained using triphone-based forced
alignment in HTK. Recordings equivalent to 1000 phoneme labels including the
silences have been separated from the training material and reserved for testing
purposes. The reference alignments have been manually created for these 1000

reserved labels as well as for another 1000 labels from the training set in order to
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check the influence of including data used during the training to test the system.

The amount of data used for the experiments is shown in Tables 4.3.1 (for bertso-

lari singer 0030b) and 4.3.2 (for bertsolari singer 0113b) .

Utterances | Phonemes | Duration (min)
Train data with no labeled reference 1138 23565 92.46
Train data with labeled reference 44 980 3.42
Test data 49 982 3.77

Table 4.3.1: Dataset of bertsolari 0030b

Utterances | Phonemes | Duration (min)
Train data with no labeled reference 1572 32982 137.70
Train data with labeled reference 41 908 3.63
Test data 49 954 3.50

Table 4.3.2: Dataset of bertsolari 0113b

We can observe in the tables that the female singer (0113b) has more available
data for the training. The experiment will also allow us to compare the variability
of the result with the amount of data available for training.

We have evaluated the quality of the alignments by calculating the percentage of
the marks that are closer to the reference mark than a threshold. These percentages

are shown in Table 4.3.3 and Table 4.3.4 for the male and female singer respectively.

Seenduring | <Sms | <10ms| <20ms | >20ms
training

Yes 23.12% | 25.23% | 34.37% | 65.63%
No 23.43% | 26.61% | 38.96% | 61.04%

Table 4.3.3: Percentages of marks within a certain distance from the refer-
ence for 0030b singer
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Seenduring | <Sms | <10ms| <20ms | >20ms
training

Yes 34.32% | 36.62% | 43.21% | 56.79%
No 35.74% | 36.72% | 41.56% | 58.44%

Table 4.3.4: Percentages of marks within a certain distance from the refer-
ence for 0113b singer

There are no differences in the results between using the recordings to train the
phoneme segmentation system and aligning new recordings not seen during train-
ing. Therefore, the models created can be applied to segment future new recording
of the same singer without quality loss. The results are better for the female singer
probably because there was more speech material available to train the models.

For read speech, the state of the art in phoneme level segmentation is around
80% within 20 ms from the reference segmentation [56]. The results achieved
in our experiment are still far from this value, but are good enough to make the

process of manual segmentation easier.

4.3.2 Multi-singer phoneme alignment

For multi-singer phoneme alignment each utterance extracted in Section 4.2.4 is
aligned with the same system used in that section. This time, as utterance time
marks in the recordings are defined, the singer adaptation can be applied in a bet-
ter way because different utterances in the same recording can have been sung by
different singers. This means that the singer adaptation in fMLLR is applied in a
more precise way. Differences on the phoneme alignment considering different
types of token have been tested again: phoneme, syllable and word tokens have
been taken into account. The dataset used to test the system is the same one used
in Section 4.2.1 with the difference that we manually aligned the phonemes in the
test recordings for the evaluation of this experiment. For the manual alignment,

we used the system explained in Section 4.3.1 as initial help.
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4.3.2.1 Results

The percentage of labels with a distance to the reference smaller than a certain value

calculated using different tokens is shown in Table 4.3.5.

Token type | <Sms <10ms | <20ms | <25 ms
Phoneme 10.63% | 21.40% | 40.45% | 48.81 %
Syllable 11.59% | 23.33% | 45.01 % | 54.85 %
Word 10.46 % | 20.64 % | 39.13% | 46.53 %

Table 4.3.5: Phoneme segmentation results

In the table we can observe that the syllable token alignment is the one that
obtains the best result. We have to compare these results with the results obtained
in Section 4.3.1 (Tables 4.3.3 and 4.3.4). The results in the 5 and 10 ms range are
better in single singer alignments, but in the 20 ms range there is no clear optimal
system. In the results of the bertsolari 0030b in Table 4.3.3 we can observe that
the results in 20 ms are better in all variations of the multi-singer system. If we
compare it with the alignments of bertsolari 0113b in Table 4.3.4, only the syllable
token system obtains better results than the single singer results. We have to take
into account that the the agreement between human aligners is not of 100 % in
small ranges. It has been proven in databases of different languages and sizes that
human aligners need a range of 20 ms to obtain agreements higher than 90 % [65].
As the reference labels have been created using the single singer system as help, the
bias towards that system is an important factor in small error ranges. We think that
the 20 ms range is a good measure to compare these systems.

Considering the 20 ms range, the results show the advantages of aligning singing
voice with syllable tokens. This can be because phonemes placed in note bound-
aries share properties. We also can observe that the multi-singer syllable model
improves the <20 ms” results obtained for single singer training in Tables 4.3.3
and 4.3.4. From this we can conclude that the resulting alignment when including

all the material in the training set and using the syllable tokens is equal or better
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than the alignments obtained from single singer models.

4.3.3 Alignment refinement with novelty features

Considering that HMM alignment results do not reach the level of the state of the
art systems of phoneme segmentation in singing voice, in part because of the lack
of previous musical information [ $8][84], we considered the application of a post-
processing to get an improvement in the results. We propose to use audio novelty
feature [46] for this phoneme segmentation refinement. This feature has been pre-
viously used for text free phoneme boundary detection [9]. The novelty uses the
signal itself without an external model and searches for self-similarity between pa-
rameter frames.

The parametrization we used for self-similarity search is MFCC features because
itis the standard in phoneme segmentation. Once we have the parametrization we
calculate a 2 dimensional representation of the cosine of the angle between all pairs

of parameter vectors using Equation 4.5.

S(i, j) (4.5)

|v|r H il

where v; and v; are parameter vectors in frames i and j. The resulting matrix S of
a sample utterance of the Bertso database can be seen in Figure 4.3.1.

We can observe that the maximum value of the matrix is at the main diagonal
because the diagonal represents the similarity of each vector to itself. Similar seg-
ments in the signal create bright squares with high similarity to near frames and
dark areas correspond to different contexts.

We apply an analysis window to detect boundaries between self-similar areas in
this similarity matrix. The analysis window or kernel is slid in from the diagonal
of the matrix. This kernel increases value to its position if the areas in either side
of the center of the window are self-similar. It will reduce the value if the cross-
similarity is high. The base kernel that fits these condition is defined in Equation
4.6.
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Figure 4.3.1: Similarity matrix of a sample utterance from Bertso database

10 01
Cs = (0 1) a (1 0) (+6)

But the kernel has to be flexible to segment different levels of information, there-
fore we use the Kronecker product of the base kernel with a matrix of ones as

shown in Equation 4.7

Cn == CB ®]n (47)

where J, is a nxn square matrix of ones defined in Expression 4.8.

1 - 1

A Kernel of n = 64, which can be considered of size of 0.64 seconds if we apply
it to features calculated at 100 frames per second, can be seen in Figure 4.3.2a. To

avoid edge effects, the kernel is multiplied by a 2D gaussian of the same size shown
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Figure 4.3.2: Kernel construction elements

in Figure 4.3.2b.

The final Kernel we have used is shown in Figure 4.3.3.
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Figure 4.3.3: Chess Kernel multiplied with 2D Gaussian

The novelty feature is calculated applying Expression 4.9.

L/2 L/2

NG = > Y Cumn)S(i+m,i+n) (4.9)

m=—L/2n=—L/2

where L is the width of the kernel, C is the final kernel and S is the similarity
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matrix. It can be seen that values in the similarity matrix further from the main
diagonal than the kernel length are unused. Also the similarity matrix is symmet-
ric, therefore both sides of the kernel create a repeated value that is summed to the
result. As the novelty feature is a relative similarity value, removing this repeated
values from the equation will not change the information of this feature. Taking
into account these two factors, we propose to use limited similarity matrix and ker-
nels. This optimizes the size and the computation of the similarity matrix and also
the computation of the novelty feature. The final formula we propose to calculate

the novelty feature is presented in Equation 4.10.

L)2 L2
NG = > > Culm,n)S(i+m,i+n) (4.10)
m=—L/2 n=m

The novelty feature represents the level of change that is happening in a parame-
ter frame. In Figure 4.3.4 we can see that there is a strong correlation between high
values of the novelty feature and phoneme onsets. Although all relative maximum
values in the novelty curve do not correspond to a phoneme onset, all phoneme
onsets are located in a local maximum or very close to a local maximum value in
the curve of novelty. We can observe too that the last phoneme boundary is dif-
ferent and it is not associated with a clear relative maximum in the novelty curve.
We observed that this absence of relative maximum is very common on the bound-
aries between silence and phonemes. The transitions from voice to silence tend to
be slower and therefore there is no clear novelty in any area.

Considering this correlation between phoneme boundaries and novelty local
maximum values, we decided to refine the phoneme boundaries located by the
method described in section 4.3.2, searching maximums near the predicted bound-
aries. Considering that in the boundaries between silence and phonemes there is
no clear maximum we decided not to refine these boundaries. The shift area for
each boundary extends from halfway to the previous boundary to halfway to the
next boundary. To exclude the noise of maximum values that are not related to

phoneme boundaries we define a minimum value to consider a maximum as a po-
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Figure 4.3.4: Novelty feature and phoneme onsets

tential phoneme boundary. To decide if a phoneme has to be shifted, we search for
the potential boundaries with the highest novelty value in the shift area. If there
are no potential shifts in this area, the boundary is not moved. This algorithm is

defined in Algorithm 1.

We tested the improvement of the alignment using different values for the con-
figuration parameters. We defined two trainable parameters for the configuration
of the refinement process based on the novelty feature: kernel size and minimum
value for potential shifts. The kernel size defines the analysis window used in each
frame to define the novelty value and is related to the length of the segments we
want to detect. The minimum value is related with the level of noise in novelty
signals and undesired maximums.

We chose the optimal value for the kernel size and minimum value of potential
shifts selecting the values with the best result in a subset of the data available for
the test singer presented in Section 4.2.1. We evaluated the optimal values for the
algorithm in the rest of this test singer data. The information of the data used for
this experiment of segmentation refinement is described in Table 4.3.6. The differ-

ences in the figures presented now compared with the ones given in Section 4.2.1
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Algorithm 1: Segmentation shift.

Data: Segmentation marks and novelty feature
Result: Refined segmentation
1 begin

2 M < List of frame position of time marks M = {S,, Sy, ..., Sk };
3 N < Novelty feature;
4 d < Minimum value for potential shift;
s M’ < Empty refined segment list;
6 fori=1toK— 1do
; T, =S — (S — Si.1)/2;
8 Ty = Si+ (Sit1 — Si) /2%
9 n = max(N(j)) where T, <j< Ty
10 if (n > d) and (S; is not a boundary of a silence) then
11 j = argmax; N(j) where T, <j < Ty;
12 addjto M
13 end
14 else
15 ‘ add S; to M’
16 end
17 end
18 end

are due to the fact that here we calculated the actual phoneme durations, without
taking silence into account. We randomly selected 100 utterances from the dataset
and tested the percentage of labels within 25 ms from the reference label with dif-

ferent values for the configuration parameters.

Singers | Utterances | Total length (min) | Total phonemes
Train 1 100 6.53 1924
Test 1 1090 76.63 20166

Table 4.3.6: Data for the segmentation refinement experiment

The results of the optimum configuration parameter search grid are shown in

Figure 4.3.5. The image shows the segmentation mark percentage with an error
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below 25 ms obtained with each parameter configuration.
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Figure 4.3.5: Segmentation score with a 25 ms margin and different refine-
ment parameters

The best configuration parameters for our proposed method in this data-set are
a kernel length of 0.5 seconds and a minimum novelty threshold for maximum
values of 0.03. Using these parameters we calculated the new alignment results.

After defining the optimal values for the parameter we compared the results of
the phoneme alignment refinement in the remaining 90 % of the manually aligned
data. The alignment results before and after the refinement are shown in Table

4.3.7.

Segmentation | <Sms <10ms | <20ms | <25 ms
Base 11.68 % | 23.48% | 45.34 % | 54.97 %
Refined 19.63 % | 3542 % | 59.09% | 67.01 %

Table 4.3.7: Results of refined phoneme segmentation

The results show that we improved the alignment score with the novelty refine-

ment method by 12 points. We have analyzed the segmentation improvement by
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Figure 4.3.6: Analysis of the effect of segmentation refinement by phoneme

phoneme to ensure that the improvement is general and we are not getting a distor-
tion in the mean scores with an improvement of certain phonemes and the degrada-
tion of others. The comparison is shown in Figure 4.3.6. Most of the phonemes im-
prove the alignment result. We have a small degradation of the result in phonemes
/]/, /D/ and /x/. A possible explanation of the degradation of the /J/ and /D/
phonemes is that these phonemes are the shortest ones, and therefore the selected
kernel size has not enough temporal precision to detect the boundaries of these
phonemes. In the case of the /x/, it is also a short duration phoneme, but we think
that the main reason for the big difference with the original agreement is that this
phoneme has very few appearances in the database. With few appearances the re-

sult of its alignment is highly volatile and not statistically significant.

4.3.4 Analysis of the phoneme segmented database

Considering the results obtained in this Section, we used the multi-singer align-
ment and the novelty refinement in all the database defined in Section 4.2.1. In
the process 263 utterances have not converged to obtain an alignment. Consid-

ering that the total number of utterances is 41597, these utterances represent the
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0.006 % of the total utterance. We observed that this happens because of errors in
the transcriptions or high levels of noise in the recordings.

After the alignment, we split the multi-utterance audio files into utterances us-
ing the boundaries of the edge phonemes in each utterance. We added silence
segments of 200 ms to all the new utterance files at the beginning and the end of
the audio file because it is important for some speech modeling processes. We
saved also the alignment of the HMM states of the phonemes in parallel with the
phoneme alignment. The resulting database has similar properties to the one de-

fined in Section 4.2.1 without the 263 utterances that could not be aligned.

4.4 Musical labeling

In the previous section we have described the process designed to obtain phoneme
alignments without using musical information. This was necessary to define the
linguistic part of the labels. In this section we will present the method proposed
to create the corresponding musical information that will be combined with the
phoneme alignments to obtain musical scores.

In Section 4.4.1 we analyze the selection of f, extraction algorithm consider-
ing that this parameter is fundamental in the representation of note pitch of the
music score and general expressiveness of the singing voice. Then, in Section
4.4.2 we define a method to annotate a recording using the music scores of bertso
melodies. Considering the improvisation nature of bertsolaritza and the variations
of melodies that happen in live sessions we proposed a method to evaluate the
similarity of the bertso musci scores and the recordings. We have also created a
musical labeling method to label the recordings without music score information
that is presented in Section 4.4.3. In Section 4.4.4 we explain the vibrato label-
ing and parameter extraction that we created to evaluate the use of vibrato in the
Bertso database. Finally, in Section 4.4.5 we explore different methods to obtain
the bertso melody from the recordings knowing that multiple variations occur in

the improvisation.
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4.4.1 fp calculation

For the musical labeling many different analysis over the musical pitch values and
sung pitch values must be made; this is why the calculation of the fundamental
frequency is a key part in the analysis of the recordings. We used a comparative
study of algorithms for singing voices to decide what fundamental frequency ex-
traction method to use [11]. In the study four algorithms are compared and each
of them gets the best results in one of the four different error measures applied to

fo detection. The analyzed errors are the next ones:

+ Gross Pitch Error (GPE): Errors higher than a semitone in f, calculation.

« Fine Pitch Error (FPE): Standard deviation of error in f; values that have

no GPE in f; calculation.

« Voicing Decision Error (VDE): The proportion of frames in which the

Voiced/Unvoiced decision has been incorrect.

« fo Frame Error (FFE): Overall performance measure taking into account
frames with the GPE and VDE errors.

The autocorrelation method obtained the second best overall score and the best
voicing decision score. This is why we decided to calculate f, in our databases ap-
plying the autocorrelation method. The range of possible f; values is also an im-
portant configuration parameter that can reduce the errors in the f; calculation.
This is why we empirically analyzed the range of the fundamental frequency in the
whole Bertso database, searching for the upper and lower limits. Our conclusion is
that the range of f; values of this database goes from 75 to 580 Hz. This frequency
range in notes goes from ¥ /ESto Cfé /D" in English notation or 39 to 73 in MIDI

numbers.
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4.4.2 Musical labeling using music scores

The Bertso database provides the melody label in 33.32 % of the recordings, mean-
ing that the melody the bertsolari used to create the improvised bertso is recog-
nizable. The melody is selected by the singer that has to choose among all the
melodies suitable for the meter set by the host. Each melody having its own meter,
it cannot be used with any lyrics; the meter of the improvised bertso has to adjust
to the meter of the melody to sound correct. Ideally, a recording with a labeled
melody would have the same number of utterances in each bertso as the music
score and the same number of syllables in each utterance of each bertso as notes
are in the music score. If this ideal condition would be filled the assignation of
the notes would not be a problem, because the pairing would be straight forward.
To test this first affirmation we compared the recording transcriptions with their
respective melodies. From the number of recordings with the same amount of ut-
terances per bertso, the utterances with the same number of syllables as notes in
the score are 21.44 % of the total number of utterances. This low percentage shows
that if we want to use the music scores of the standard melodies, more work has to
be done.

New melody transcriptions and adaptations should be done by music experts.
The standard melodies are traditional Basque melodies or melodies that bertso-
laris created and sung in a improvisation session. The variants of each melody are
a complicated issue, because new utterances or encores improvised by bertsolaris
need to be identified and transcribed. For these reasons, we have focused our ef-
fort on utterances that match the exact number of syllables of the corresponding
standard melody.

The theoretical interpretation of the notes of a music score is a staggered curve
representing the duration values and pitch values derived from the musical score.
This direct interpretation lacks naturalness in singing voice and the staggered curve
suffers distortion in the actual interpretation. This distortion affects the duration
of notes, the square form of the transitions between pitch values and the constant

value of the pitch inside each note. Additionally, each singer has his or her own
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vocal range, and needs to shift the melodies to her his own range. We named this
shift as singer dependent conversion. Figure 4.4.1 shows how singer dependent

conversion shifts the theoretical melody range to their own vocal range.

Bertso melody

IR

Melody range

Singer 1 conversion Singer 2 conversion

M A b MG

Singer 1 range Singer 2 range

Shifted melody for singer 1 Shifted melody for singer 2

A bR

Range of the Melody Range of the Melody
sung by Singer 1 sung by Singer 2

Figure 4.4.1: Singer dependent melody conversion

To compare the notes in the music score and the real interpretation, we can
compare the f; of the actual singing voice and theoretical note assigned to each
phoneme. This means that we have to create a frame level representation of the
notes in the music scores. From the music score we know the note pitch value of
each phoneme and from the phoneme alignments we can determine the frames
that correspond to each phoneme. Combining these two elements, we can create
a frame level representation of the musical score that is parallel to the real singing
signal. We named this representation of the notes in the music score as "full pitch
projection”. We call it "full” because this representation assigns pitch values to the
unvoiced frames too. In the case of assigning pitch values only to voiced frames

we named it "pitch projection”. An example of singer dependent conversion can
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be seen in Figure 4.4.2, where we can observe the full pitch projection of a music
score and the f; of the singing voice. In the figure, we used the new term "phonetic
boundaries” of the notes. We call phonetic boundaries of a note to the boundaries
of the segment defined from the beginning of the first phoneme of the note to the
end of the last phoneme in the same syllable of the lyrics. The segments without
pitch signal are silences. In the figure we can observe all the phenomena that hap-

pens in a music score interpretation with singer dependent conversion.

« The boundaries between notes are not a step function.
« The value of f, inside a note is not a constant.
« The duration of each note cannot be exactly determined.

« The singer has adapted the range of the melody to his or her own vocal range.

TT I I I I T
—— Full pitch projection
9000 f0 P pro)
80001 —— Phonetic boundaries of notes
1 7000/ - —
C
(0]
© 60001
5000+
40001
0 1 2 3 4 5 6 7

time (s)

Figure 4.4.2: Comparison of the pitch projection and the f; of the real inter-
pretation with singer dependent conversion

With these observations about the interpretation of theoretical music scores,
we decided to use the melodies to label the note of each voiced frame of the f;.

This labeling is made by aligning the pitch projection with the f;. We defined the
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music score alignment as a problem of alignment in two axes: time axis and fre-
quency axis. In the time axis, the locations of note transitions change considering
phoneme boundaries and the transitions and stable areas of notes suffer modifica-
tions compared to a staggering sequence. In the frequency axis, the range of the
melodies shift to the vocal range of the singer. To solve this problem we propose
a novel algorithm for score alignment (Algorithm 2). The algorithm removes all
the unvoiced frames from the f; and pitch projection, saving the position of the
voiced frames in the original signal. After that, the voiced frames are aligned apply-
ing two iterations of mean conversion and DT'W. We decided to apply only two
iterations observing the value of the mean shift in each iteration. After the second
iteration this value starts to be very small. With no mean shift the signals that are
compared with DTW are very similar and therefore the same result would be ob-
tained in every ulterior iteration. After the alignment, the new values in the voiced
pitch projection are relocated to the original positions of the voiced frames. We

named the new aligned values of the pitch projection as "aligned pitch projection”.

Algorithm 2: Score alignment.

Data: f; and full pitch projection
Result: Alignment in time of the notes in the score with the f; curve

-

begin

fo < Fundamental frequency of the singing voice;
PP < Full pitch projection;

V <= Voiced values of fy;

VPP < PP values in voiced frames;

VF <— Save positions of all voiced frames;
VPP = VPP — mean(VPP) + mean(V);
VPP = DTW(VPP, V);

VPP = VPP — mean(VPP) + mean(V);
VPP = DTW(VPP, V);

APP < Use VF to relocate the aligned VPP;
12 end
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The visualization of the process can be seen in Figure 4.4.3. In the top graphic
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the full pitch projection (orange) and the actual fy curve (blue) are represented. In
the middle graphic, the unvoiced segments are removed from the staggered and f,
curves and the aligned pitch projection for the voiced frames (green) is calculated
applying Algorithm 2. In the bottom plot the final stage of the algorithm is applied
and unvoiced frames are reinserted into place. We can see that in this example the
note labeling of each frame (orange) is adjusted to the sung notes (blue). There is
only a mismatch from second 0 to 0.2, but it is due to the microprosody generated

by a consonant in the note that goes from 0 to 1 seconds.
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Figure 4.4.3: Representation of score alignment process
This method obtains good note labeling results when the interpretations are

close to the music score. However, we know that the melodies are modified in im-

provisation sessions. Three scenarios can happen in the alignment depending on
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the modifications of the melodies: correctlabeling, out of tune labeling and wrong
alignment. Figure 4.4.4 shows an example of a good labeling. We can observe that
the initial form of the pitch projection and the sung f, have the same structure. Fig-
ure 4.4.5 presents an out of tune alignment. The structure of the melody and sung
fo are similar and therefore there is no modification of the position of the notes af-
ter the alignment. But from second 0 to 0.5 the cent level of the f; and the aligned
pitch projection are not the same. This happened either because the bertsolari has
lost the tuning in that note or because a variation of the melody has been sung. In
Figure 4.4.6 we can observe what happens when the sung melody and the score
are completely different. The note pitch values of the pitch projection have been
displaced because the alignment is impossible. This happens when the singer sings

a completely different variation of the music score.

—— voiced fO
7500+ voiced pitch projection
—— aligned voiced pitch projection
7000+
2
C
3 65001
6000 A N
5500+

0 1 2 3 4 5
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Figure 4.4.4: Correct labeling of notes using the proposed score alignment
algorithm
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Figure 4.4.5: Alignment with correct note onset detection and note devia-

tions
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Figure 4.4.6: Alignment of different melodies

We observed in the previous figures the three main scenarios that are produced
in the note alignment process. Even if the process produces an alignment as output,
the quality of the alignment cannot be guaranteed. As we do not know beforehand
what recording has strong deviations from the music score, we propose a method

to evaluate these alignments a posteriori. The out of tune scenario is acceptable
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because the positions of the notes are correct and the pitch label could be corrected
with postprocessing. The melody difference is the scenario that we want to detect
and avoid, because the resulting labeling is not easy to fix.

We propose a method to evaluate the similarity of the sung melody and the mu-
sic score that compares the position of the pitch projection frames before and after
the alignment. We want to measure if the pitch projection values maintained the
original note position after the alignment. With this purpose, we create a new in-
dex projection of the notes, similar to the pitch projection. In the index projection
the value given to each frame is a number corresponding to the position of the note
in the utterance. If the same note is repeated in the music score, the index of the
first note in the sequence is given to all the consecutive frames corresponding to
the syllables assigned to these notes in the lyrics. We apply the DTW alignment
procedure proposed in Algorithm 2 to the index projection, but without applying
the mean shift. After the alignment, majority vote of aligned index projection is ap-
plied inside phonetic boundaries to obtain the new index value in each note. The
majority vote assigns an aligned index value to each note.

The result of the method can be seen in Figure 4.4.7. In the upper part of the
figure, using the melody alignment proposed in Algorithm 2 we obtain the aligned
pitch projection. In this case the aligned pitch projection and f, are well adjusted,
but the melody has not been properly sung, as the fourth note had to have the same
value as the previous ones according to the music score. To compensate for this
early change of note, the bertsolari has repeated the sixth note although it was not
repeated in the music score. In the lower plot of Figure 4.4.7 we have visualized
the result of the index projection alignment. The first three notes in the aligned
index projection are assigned the same index (1) because they correspond to the
same tone (6100 cents). The same happens with the four first notes in the index
projection obtained from the music score. We can also see in the Figure that index
S appears one note before in the aligned index projection than in the index pro-
jection calculated from the music score. Similarly, indexes 6 and 7 of the aligned
index projection also occur one note before. This means that the melody and its

interpretation used different pitch values in the same note positions. This misalign-
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ment should not happen in an art where respecting the meter is very important.
When a bertsolari creates a bertso with a specific meter he or she uses predefined
melodies of that meter to define the pitch of each syllable in a simple way. With our
proposed alignment procedure, we can measure if the pitch values in the melodies

and the sung melodies coincide.
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Figure 4.4.7: Alignment of the note index

Our proposal is to compare the theoretical indexes and the aligned indexes to
evaluate if the sung f; adjusts to the structure of the music score and in which notes
the differences have taken place. This measure can serve as a score of similarity
between the music score and the improvised singing recording, i.e., the results ob-
tained with the alignments provide information about the similarity of the score
and the singing voice.

We have defined two evaluation measures for the melody similarity: percentage
of notes with the same index before and after the alignment (Correct notes) and

percentage of singing utterances where all the notes have the same index before
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and after the alignment (Correct utterances).

To compare the results of our proposed algorithm in our database with results in
other singing voice databases, we used the NITech and NUS databases, described
in Sections 3.1.2 and 3.1.3 respectively. In the NITech database we used the note
boundaries instead of the phonetic boundaries because phoneme alignments are

not provided. We can observe the note alignment results in Table 4.4.1.

Database Correct utterances % | Correct notes %
NUS database 68.66 91.32
NITech database 93.11 98.69
Bertso database 30.95 77.14

Table 4.4.1: Note alignment accuracy

The results in the NITech database, with a professional singer and manual la-
bels are very good: the alignment adjusts well to the labeled score. We have to
take into account that the labels of the NITech database are note based and not
phoneme based, this makes the majority vote inside the evaluated region optimal
for the alignment. The NUS database, with amateur and choir singers and external
theoretical musical scores gets lower scores. Finally, the Bertso database has the
lowest scores. This does not mean necessarily that bertso singers are bad singers,
but that theoretical melodies and the real singing do not coincide. Taking into ac-
count the improvisation nature of bertsolaritza, two scenarios can be problematic
in our database to consider the proposed similarity measure. The first one is the
one observed in Figure 4.4.5: the alignment can be correct because the melody
structure is similar but the pitch values are not the same. The second problem is
the one observed in 4.4.7: shifting one note affects to the alignment of many sub-
sequent pitch values even when the pitch values have been correctly sung. We are
aware of these issues, but even so, this evaluation can provide information about
the distortion of the melody interpretations and the potential use of these melodies
to create the pitch labeling of the database.

To analyze the accuracy of the interpreters with respect to the duration of the
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notes, we have to compare the length difference between the ideal and real notes
in the recordings. As the music scores of Bertso database do not provide tempo
information, we have a missing variable to calculate the ideal duration of the scores.
Given that music durations are a referential system and there is no standard tempo
to interpret a music score, we decided to assign the tempo that minimizes the error

between ideal and real durations to every score. We used Equation 4.11

1 < |d: — di]
| = — _ 11

where [is the error, n is the number of notes in the recording, d; is the duration
of the voiced phonemes in the ith note and gli is the ideal duration of ith note calcu-
lated with Equation 2.4. Optimizing the tempo to minimize this equation in each
recording gives us the optimal tempo of the song and also the duration distortion
in reference to this optimal tempo. The distortion results for the Bertso and NUS
databases are shown in Table 4.4.2. We did not calculate the duration distortion in
the NITech database due to the lack of phonetic alignment. The note alignments
included in this database cannot be used to evaluate the difference between the
actual duration of the syllable corresponding to the note in the lyrics and the dura-

tion of the note as indicated by the music score.

Database | Distortion per recording (%)
NUS 31.99 +11.13
Bertso 30.38 4+ 7.17

Table 4.4.2: Time distortion in note durations

As the time distortion calculation requires the optimization of the tempo with a
given symbol pairing, we first obtained the tempo distributions in both databases.
Although the distortion in Table 4.4.2 shows us that these tempos combined with
note symbols do not define perfectly the real durations, these optimal tempos can
give us an idea of where the tempos of these databases are located. The distribu-

tions are shown in Figure 4.4.8. We can see that the tempos used in Bertso database
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are concentrated between 75 and 180 while the NUS database exhibits a wider rep-

resentation of different tempos.
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Figure 4.4.8: Optimal tempo distribution

Asthe distortion results in Table 4.4.2 show, NUS database and Bertso database
have similar duration coherence in reference to the musical scores. In [ 123], Saino
etal. observed that the phoneme durations and positions are not coherent with the
exact projection of the music symbols in time. Forcing the durations and positions
of the phonemes to the duration of musical symbols resulted in unnatural results.
They fixed these misalignments modeling the delays of the phoneme boundaries
with Gaussians and decision trees. Measuring this distortion, if we use the NUS
database as the unique reference, we can consider that the duration distortion of
the Bertso database is better by a small margin. Although this distortion is rela-
tively small, the "natural” distortion and not having a real gold standard create too
many unknown variables that cannot justify the use of the durations in the scores
and tempo alignments to calculate the delays defined in [123]. In addition, the
strict use of the tempo is not a primary problem in bertsolaritza. Given that there
are no instruments in the background there is no need to synchronize with them.
Also the improvisation factor can create distortion of the tempo during the record-
ing.

Given the results of music score coherence analysis in the Bertso database, we

consider that it is complicated to use the music scores to obtain the music labels
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of the recordings in the Bertso database. This is why we have to devise a labeling

procedure without taking into account the music scores.

4.4.3 Musical labeling without musical score back-
ground

We have seen in Section 4.4.2 that the music scores of the melodies from our database
cannot be used as reference to create the labels of the recordings. Without the mu-
sic scores, there is no initial note structure to align and to define note boundaries;
in addition, there is no note symbol reference to detect the tempo of the record-
ing. The only information known when we have to create the musiclabeling on the
database is the phoneme alignment, and therefore the initial information available
to obtain the musical labeling without using the music score is the phonetic bound-
ary of each note. With phonetic boundaries, the pitch of each note can be labeled
analyzing the f;. Nevertheless, the symbols, tempo, key and measures are challeng-
ing to label. Music knowledge is needed to label measures and key of singing voice
recording, and even having this knowledge, the manual labeling of all the database
would be highly time consuming. Our proposed automatic labeling procedure is
to create music score structures but without key and measures.

The key information is needed in the reading of the music score for the inter-
pretation of the positional information of the notes, but if we label the notes in
cent level directly using the fundamental frequency of the voice we can simplify
this step. Without the measure, our labels may miss the music structure informa-
tion. Theoretically, the first note of a measure defines the beat and therefore has
more power than the rest of the notes inside the measure. Loosing this informa-
tion can create a more plain synthesis, but as we have no original scores and we are
not confident about these prosody structures in the bertso improvisation style, we
decided to avoid using it. In this way, we have defined the labeling of the pitch and
duration of the notes like independent problems: the labeling of these two types

of information are not related and we used independent methods to define each of
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them.

The labeling of the note pitch without musical score can be defined as the pro-
cess of assigning a musical note pitch value to the section of the recording inside
a note phonetic boundary. Knowing that f; is closely related to the musical pitch
values, this appears to be a simple problem. Measuring the closest note pitch to
the f; values inside the phonetic boundaries of the note could be an option to label
it. Saino et al. showed in [123] that note boundaries and phonetic boundaries in
singing voice are not aligned. We consider that the phonemes in each syllable of
lyrics constitute a note, but this does not mean that the calculation of the pitch of
these notes can be done using f, inside these phoneme boundaries. In addition,
there are many musical phenomena that create distortion in the stability of the
notes, for example vibrato and portamento. Therefore we consider that it is im-
portant to create a note detection method that does not depend on the phoneme

alignments.

4.4.3.1 Note detection algorithm

Our algorithm to detect note uses the premise that music is a sequence of pitch
values that need a minimum stability and duration to be noticed as such.Under
this premise, our main goal will be to find stable areas of f, where a note can be

found. The devised method has two well defined steps:

« Finding stable areas in the f;, curve

« Calculating the note value inside the area

Compared with a state-of-the-art algorithm like Tony [ 93], our method is much
simpler, but, Tony has parameters that have been tuned with observations of man-
ually annotated data. As we do not have any manually annotated data, we needed
to devise a method that required the minimum supervision.

The first step in our proposed algorithm is to map the pitch curve to cent scale [ 12,

42], taking as origin the lowest note that we consider may appear in the recordings.
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We use expression (4.12) to do the mapping:

foo = 1zoolog2(f—”) + 6900, (4.12)

ref
where f,.¢ is 440 Hz, the frequency of A4 note.

Once we have the curve in cent scale, a smoothing is applied to the pitch curve
to neutralize vibrato variation within the notes. For this smoothing we used the
local maximum and minimum points. Interpolating all maximum points a curve
of maximums is created and the same process is applied to the minimum values.
The smoothed curve is created averaging maxima and minima curves. The process

is visualized in Figure 4.4.9
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Figure 4.4.9: Vibrato smoothing process

With the smoothing of the f; we obtain a curve that is closer to the staggered
curve that represents the melody. Our objective is to define the stable areas in this
staggered signal to define the notes. When the singing is well tuned, these stable
areas are located in the correct representation levels of the note pitch values that
can appear in a music score. In our cent scale tuned with the 440 Hz A, note, the
cent values that represent the note pitch values are all the multiples of the number

100. The natural f, signals are not limited to these pitch values: the possible gener-
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ated frequency values are defined in a continuous space inside the singers natural
range. We consider that if we represent the value of each frame of the f; as the clos-
est note pitch in the A, scale we can obtain a good approximation of the staggered
curve that the singer is trying to sing. We can observe this process in Figure 4.4.10.
As a result of this process, the real smoothed f, curve (in blue) is substituted by
the discretized curve (in orange). Looking at the figure we can observe that the
discretization of the f; in the cent scale shows that sung frequency maintains the
pitch around the cent levels of 6500, 6300 and 6200 in different moments of the
signal. These values represent the notes with the MIDI number 65, 63 and 62 re-
spectively. These MIDI numbers are the equivalent of the notes F;, D#5 and Ds.

65001 ————— -—— f0in Cent scale
\ Semitone discretization

64001 ------- \ -----

63001 ---—---- \

Cents

62001 - \\"7/ """""" N

6100{ ------ e —
0.0 02 0.4 0.6 0.8 1.0 12

Figure 4.4.10: Discretization of a f; curve

Our objective is to detect these “stable” areas around note pitch values. In a
perfectly tuned voice, we could search for sequences of a unique pitch value, but
the perfect tuning is complicated even for professional singers. Considering that
the standard properties of the notes are a limited range of 100 cents and a mini-
mum duration of 150 ms in Western music [21 ], we search for sequences of frames
in the fy curve that meet these requirememts. To search sequences with minimal
duration and maximum range we use an algorithm that uses subsequence search

techniques [ 75, 100]. We search sequences in the discrete curve that fulfill the min-
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imum conditions of length and stability defined in expressions (4.13) and (4.14):
Len(s) > L, (4.13)

max(s) — min(s) <R, (4.14)

where s is the note pitch subsequence, R is the maximum amplitude range and L
is the minimum length allowed. The detailed steps of the proposed algorithm are
defined in Algorithm 3.

Figure 4.4.11 shows the application of the algorithm with configuration param-
eters 100 cents and 150 ms to an example signal. We can see how a note detected
by the algorithm would look (green line) and how the rest of the f; sequence is
split into two smaller sequences. These two new sequences will be added to the se-

quence list to be analyzed recursively if they meet the minimum duration require-

ments.
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Figure 4.4.11: Detected musical note and new split sequences

With this method, the stable areas are correctly detected but the proximity of

131



Algorithm 3: Note detection.

Data: Sequence of K voiced sequences of discretized values
Result: Note list

1 begin
2 S <~ Sequence of K voiced sequences of discretized values
S = {Sl, Say ey SK};
3 L < Minimum note length;
4 R <~ Maximum tone variation;
s N < Empty Note list;
6 while length(S) > 0 do
7 S« empty New sequences list;
8 for S;in Sdo
9 Find longest s that fits Len(s) > L and
max(s) — min(s) < R;
10 Save sin N;
11 Spi < Sequence left to s in S;;
12 Sri < Sequence right to sin S;;
13 if Len(Sy;) > L then
14 ‘ Include S;;in &’
15 end
16 if Len(Sg;) > L then
17 ‘ Include Sg; in &’
18 end
19 end
20 S« S
21 end
22 end

adjacent note pitch values can create problems obtaining note boundaries. In Fig-
ure 4.4.12 we can observe what can happen with contiguous notes that have one
semitone of distance between them. In the top graphic of the figure we can observe
the fy curve of two notes: the first one goes from second 0.1 to 0.4 and the second
note goes from second 0.4 to second 1.2 approximately. In the middle plot of the
figure a discretization of f, considering note pitch values has been applied. With

note pitch discretization, the stability analysis cannot detect the note separation
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in the second 0.4. In the bottom graphic a discretization of higher definition has
been used, with a separation of half a semitone between different pitch values. In

this case the stability analysis is correct and both note areas are detected separately.
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Figure 4.4.12: Stable sequence detection with different discretization defini-
tion

As the distance between note pitch values in a music scale is a semitone, we
name the discretization definition level as “steps per semitone”. The steps per semi-
tone define how many equally spaced discretization levels are defined to shift a

semitone. If we use one step per semitone, the discretization levels are the note
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pitch values of A4 tuned music scale. If we use two steps per semitone, a discretiza-

tion level is created halfway between all note pitch values, and so on. The steps per

semitone can be increased until all the possible values of the f; are considered as

discretization levels. We named that particular case as infinite steps per semitone.

After the stability regions are defined, the new note pitch values have to be de-

fined for each region. Asin bertsolaritza the tuningis difficult to define, we decided

to define each region with a continuous frequency value instead of a discrete note

definition. The frequency to define each region is calculated with the median of

the smoothed f; in the region in cents. In Figure 4.4.13 we can see an example of

the detection of the pitch in stable regions using infinite discretization values.

60501

6000+

Cents

59001

5850+

59501

—— Smoothed f0

Stable area 1
—— Stable area 2
—— Tones

<

0.0 0.2 0.4 0.6 0.8 10
Time (s)

— f0

NN

VVVV“

0.0 0.2 1.0
Time (s)

Figure 4.4.13: Tone definition in stable sequences

This system has no ability to define the note boundaries between two contigu-

ous notes with the same pitch. This can be a problem if the result of this algo-

rithm would be our only reference when musically analyzing the recordings. Our
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intention is to consider also the phoneme boundaries to define the potential note

boundaries and solve the problem of consecutive notes with the same pitch.

4.4.3.1.1 Analysis of the parameter sensitivity of the note detection algo-

rithm

The note detection algorithm we have proposed in this Section offers some flexibil-
ity with respect to the characteristics of the notes it must detect, namely different
length and range values can be taken into account. In addition, we defined another
parameter that defines how many steps are considered between note pitch values
in the discretization. The algorithm in Tony uses three steps between note pitch
values in the detection of note levels [93]. In order to check if these configuration
parameters have an important impact in the detected notes, we devised an experi-
ment to test the sensitivity of the results to these parameters.

In Section 4.1 we used frame level note detection information to discriminate
speech and singing voice. As good note detection is related to the performance of
the speech and singing voice discrimination algorithm, we think that note labels
obtained with optimal note detection parameters will obtain the best discrimina-
tion scores. In this experiment we applied our note detection algorithm with dif-
ferent minimum length, maximum range and steps per semitone to later discrimi-
nate speech and singing using the detected notes. We considered maximum ranges
from 100 to 600 cents with intervals of S0 cents and minimum lengths from 50 to
450 ms with intervals of 50 ms. The data-set used is a Bertso database excerpt that
was defined in Section 4.1.1.3.1. To evaluate the classification, we used a 10-fold
cross-validation with a joint F-score test. The F-score results with different note
detection parameters are shown in Figure 4.4.14. We also tested the method with
infinite discretization values. The F-scores obtained with this method are shown

in Figure 4.4.13.
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Figure 4.4.14: Speech/singing classification F-score for different number of
steps per semitone in note detection algorithm. (a) one step per semitone;
(b) two steps per semitone; (c) three steps per semitone; (d) four steps per
semitone; (e) five steps per semitone; (f) six steps per semitone
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Figure 4.4.14 shows that, when the note algorithm parameters get close to the
values common in Western music (minimum duration in the range of 100-200 ms
and maximum pitch range between 100 and 150 cents [21]), the discrimination
between singing and speech improves. This means that the optimum value for the
parameters has a strong relation with the style of singing that we want to discrim-
inate from normal speech. The vertical resolution in Figure 4.4.14a is half of the
resolution shown in the rest of the cases because one step per note pitch value does
not allow for having different results between pitch values.

We also tested the parameter setting where the possible pitch steps are infinite.
The results obtained with continuous pitch steps are shown in Figure 4.4.15, where a
similar pattern to the one observed in the case of using the discretized f, curve can
be seen: the best F-score is obtained for the common values of minimum duration

and maximum pitch range in Western music.
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Figure 4.4.15: Speech/singing classification F-score for continuous f,

The parameter combination that provides the best discrimination results for
each of the different semitone step number is presented in Table 4.4.3. F-score
improves as we use more semitone steps and the best result is obtained with contin-
uous fo, which corresponds to a situation where infinite steps are considered. Nev-
ertheless, the differences in F-score are slight and, providing that the maximum

pitch range and minimum note length have values suitable for Western music, the
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Steps per Minimum Duration Maximum Range

Semitone  (s) (Cents) E-Score
1 0.15 100 0.882
2 0.20 100 0.896
3 0.15 150 0.902
4 0.15 100 0.902
S 0.15 100 0.900
6 0.15 150 0.905
Continuous 0.20 100 0.908

Table 4.4.3: Best result of each semitone step division level

number of steps considered has a small influence in the results.

4.4.3.1.2 Comparison with a standard note detection algorithm

We have compared our note detection system with Tony, a state-of-the-art algo-
rithm that uses HMM:s with three states per note (onset, stable and offset) to
detect notes in multiple pitch tracks calculated emphasizing different frequency
ranges. As our speech/singing discrimination algorithm only uses the 'note/no
note’ decision, we have compared precisely this aspect between the two algorithms.
With this purpose, we have used the Bertso database explained in Section 3.1.1.
We have labeled 10 ms spaced frames with a binary label (note/no note) with
both algorithms and calculated the agreement between systems using the kappa
score [28] in each audio file. We used our note detection algorithm with one step
per semitone, 150 ms minimum note duration and 100 cent maximum amplitude.
The histogram of these scores is shown in Figure 4.4.16.

We can observe that the agreement between both note detection systems is

strong for most files in the database, with a mean kappa of 0.73 £ 0.08.

4.4.3.1.3 Parameter selection for final labeling

Observing the results of the different experiments performed with our note detec-

tion algorithm, we decided to use a minimum duration of 100 ms and a range of
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Figure 4.4.16: Histogram of kappa score between notes detected by Tony
and our algorithm

100 cents to detect notes. We noticed that 100 cents is the optimal range to define
note boundaries correctly. In respect to the minimum duration, we know that 150
ms is a theoretical definition of a note [21] and the results in Table 4.4.3 confirm
that it is optimal for speech and singing discrimination. Nevertheless we realized
that we are analyzing only the stable state of the notes and that the attack and the
offset of the notes are included in the theoretical 150 ms measure. This makes it
difficult to detect short notes and therefore we decided to reduce the minimum du-
ration of the notes from 150 ms to 100 ms. We think that in our speech and singing
voice discrimination experiment these small notes have not affected to the discrim-
ination F-score because there are not many in the database. Now that we use our
algorithm to annotate exclusively singing voice, we think that using a more conser-
vative threshold is the best option. Changing this threshold does not change the
detection of notes longer than 150 ms, but in addition to these notes more short

notes are going to be detected.
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4.4.3.1.4 Phoneme and note combination

We have devised an algorithm that identifies notes in a f, curve, but our final objec-
tive is to create the music scores of the bertso recordings. This means that we have
to relate the phoneme alignments obtained in Section 4.3 with the notes detected
with our algorithm. Our supposition is that as in bertsolaritza the metric is an im-
portant aspect, and therefore each syllable can be associated with as a note when
bertso melodies are interpreted. As we use voiced phoneme f; to detect notes, we
refer to the boundaries of the segment that starts in the beginning of the first voiced
phoneme of the syllable and ends in the end of the last voiced phoneme of the syl-
lable as voiced phonetic boundaries. Considering the voiced phonetic boundaries
of each syllable, we can use the notes detected inside these boundaries to define the
pitch of the syllable. This would be easy if the notes and voiced phoneme bound-
aries would fit perfectly, but the note and syllable onsets are not aligned in singing
voice [123]. This is why multiple note regions corresponding to different pitch
values may appear inside the voiced phoneme boundaries of each note. To de-
fine the note pitch in this situation, we decided to select the pitch with the highest
number of frames inside the voiced phoneme boundaries of the syllable. In Figure
4.4.17 we can see that notes can be shared between contiguous syllables. In the
/n/ phoneme between 1.0 and 1.3 seconds and /m/ phoneme between 2.8 and
3.0 seconds we can see that the tonal transition between notes can occur inside
the phonetic boundaries of the syllable. We can also see that the note between
1.5 seconds and 2.8 seconds is unique although it corresponds to 4 notes with the
same pitch value. The note boundaries are not detected by the note detection al-
gorithm, but each syllable can be labeled with the correct pitch using phoneme
boundaries.

In Figure 4.4.18 we can see the final labeling of the notes using phonetic bound-
aries of the syllables and the notes detected by our algorithm. We can clearly see

that the the natural f; has strong variations around the sung melody.
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Figure 4.4.18: Defined note in phonetic syllables using majority vote

4.4.3.1.5 Note generation problematic

In the previous section we used the combination of the phoneme alignment and
detected notes to label the pitch values in the recordings. We observed that some
phoneme boundaries do not contain detected notes or have a small ratio of note
frames in voiced f, frames. This means that these syllables do not include voiced f,

areas with enough stability to be considered a note. The number of syllables with
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a small note ratio is small in the database, but as we use f; normalization in the
singing synthesis as explained in Section S.2.1, this error can limit the database in
a considerable way. In the f, normalization process, f, curves are normalized using
the note pitch values to model only the difference between the ideal pitch and the
natural fy. If we cannot annotate a pitch in a note or if we obtain a low confidence
annotation, a good normalization cannot be applied to the fy. In these cases, the
normalized f; signal would not be suitable for the training database. This is why
having notes with no pitch label in a utterance makes the utterance being discarded
from the training data. Considering this, each of these notes with no pitch reduces
the database in a considerable way. This is why we decided to analyze these notes
and propose a secondary pitch definition method for these notes.

In the database with the phoneme alignments defined in Section 4.3.4 there are
347068 notes. From these notes, 164 do not include any voiced frame inside the
voiced phonemes which represents the 0.04 % of the total notes. We show the
distribution of the ratio of note frames and voiced f, frames in Figure 4.4.19. We

have not included the 164 notes with no voiced frames in the figure.
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Figure 4.4.19: Histogram of note percentage in voiced phonemes

Observing the data we defined 0.2 as the minimum note ratio to accept the la-

beled notes as a reference to define the pitch. We analyzed the notes with a note
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ratio lower than 0.2 and we observed two cases: general f, instability and porta-
mento. With these considerations the unlabeled notes may be obtained due to

three different reasons:

« Missing voiced frames: The f; of the voiced phonemes has no voiced

frames.

« Portamento: We observed that in the initial note of the utterances and in
some intra-utterance notes, the bertsolaris often sing notes that are almost
entirely a transition either from a low pitch to the initial note or from one

note to another. Neither of these cases present any stable area.

« Instability: Some notes contain unstable f, values that do not fit in the por-

tamento structure.

The first phase of this secondary note annotation is to determine which of the
three defined types of unlabeled notes corresponds to each note. The detection of
notes with missing voiced frames can be made with a simple voiced frame count.
The portamento and the unstable notes are notes with potential note analysis, there-
fore they are not distinguishable with a simple voiced frame count. We know that
the portamento is a slow transition between two pitch values, therefore the pitch
in portamento constantly increases or decreases. This is why it is difficult for our
algorithm to detect the pitch in these notes and we propose to detect it using the
derivative of the fy. We observed that in bertsolaritza the portamento is mainly re-
alized increasing the pitch, therefore we define an unlabeled note as portamento if
the 70 % or more of the derivative of the f; is positive. The rest of unlabeled notes
with voiced frames are classified as unstable.

We defined a solution to each of the causes of unlabeled notes to create the final

pitch labeling.

« The notes with missing voiced frames are impossible to label and therefore
we decided to leave them without pitch. As previously said, these notes

represent only the 0.04 % of all notes and as the utterances containing these
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notes cannot be used for synthesis, we will discard them. A total of 148

utterances with no voiced frames notes are thus excluded from the database.

« In the unstable and portamento cases we devised a secondary note detec-
tion method to define the note pitch that uses the raw f; in contrast with

the smoothed f; used in the note detection algorithm.

- In the unstable notes, we calculate the median f, value of the voiced
frames and search for the longest sequence of voiced frames in the
range of 200 cents around the median. The final pitch is the median
value of this sequence. The process of detecting notes in unstable
notes has been visualized in Figure 4.4.20. The note between 1.5 and
1.8 seconds has no clear stable area. Using the median of f; inside this
note we set the 200 cent range denoted as secondary stable range and
highlighted it in green in the Figure. Then, we calculated the median
value of the sequence of pitch values in this range and we obtained
5700 cents, which is the assigned note in the secondary note detec-

tion procedure.

- Inthe portamento case considered, the trend of f; is ascendant within
the sung note. This is why we defined the labeling pitch as the maxi-
mum f value of the voiced frames in the note. The secondary note de-
tection in portamento is visualized in Figure 4.4.21. The first note that
goes from 0 to 0.5 seconds has ascendant f, values. We set the pitch
of the note to the maximum value of the f; inside the note, which in

this case is 5800 cents.
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Figure 4.4.20: Note definition in unstable notes
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Figure 4.4.21: Note definition in notes with portamento

There are 6977 notes with lack of stability or portamento, representing the 2 %
of all the notes. From this group, we detected that the 73 % corresponds to notes
with portamento and the remaining 27 % to notes with no stability. We analyzed
the position of the notes with portamento in the utterance in Figure 4.4.22. The

majority of portamento appears in the first note of each utterance.
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Figure 4.4.22: Distribution of the position in the utterance of the notes with
portamento

4.4.3.1.6 Applied note annotation in Bertso database

Using the phoneme alignments, the note detection algorithm and the secondary
note detection method, we assigned a pitch label to each note containing voiced
fo frames in the Bertso database. The final pitch is not an integer number defining
the MIDI number of the note, but a float number in cent units that can be located

between two note pitch values in the A4 scale.

4.4.3.2 Duration definition

Given the dynamic nature of the tempo parameter, the creation of the duration
labels without the music score is a more complicated problem than that of the
note pitch labeling. In the note/frequency relation, the A, reference is a common
ground in music, although the singers do not use exact semitones of this scale. In
Section 4.4.3.1 we defined the notes as continuous values in a frequency space, but
the cent base that helps to define pitch changes is based on a static reference that
corresponds to assigning 440 Hz to the A4 note. Using a unique tempo to define
a whole music system creates big flexibility issues considering the limitations of

the duration symbols frequently used in music scores. As shown in Figure 4.4.8a,
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our database needs a wide range of tempos to be defined with low temporal distor-
tion. Although multiple dots and ties can be used to define the duration with more
precision, these symbols are not commonly used in music scores and can produce
unnatural music scores.

If we consider creating an almost continuous representation of musical dura-
tions, we should use a continuous tempo definition too. Using two continuous
values to define the duration of a note may create too much complexity to be cov-
ered in statistical modeling. We can see in Figure 4.4.8a that the tempos in the
edges of the distribution will pose difficulties to be modeled due to the lack of
samples. Considering these conditions, we decided to create a discrete musical
temporal system that can define a wide variety of durations and tries to minimize
the complexity of information.

The simplest solution to solve the tempo complexity is to use the same tempo
reference to label all note durations in the Bertso database, in the same way as we
use the A4 pitch as a tuning reference for note pitch labeling. The problem of time
precision can be solved using a short note symbol unit and defining any duration
as a multiple of this small unit. To fill these two conditions we need a tempo that
represents in an optimal way the Bertso database and a short note symbol that can
give us enough precision to define the note durations in time.

In 2006, Saino et al. addressed the problem of the unalignment between the
note boundaries and music score tempo [123]. As we do not have the score tempo
and we have seen the distortion between the music score durations and the record-
ings of our database, we decided to analyze the correlation between the duration
of each syllable and the duration of the phonemes inside the syllable. Figure 4.4.23
plots the correlation and the slope of the linear regression curve between the phoneme
durations and the duration of their corresponding syllable by phoneme. Vowels
have strong correlation and high slope. The /n/ and /b/ phonemes present no-
table correlation too with medium slope values. The remaining consonants are
grouped in the low correlation and low slope group. The /x/ phoneme also seems
to be an outlier among unvoiced phonemes, but as we explained in Section 4.3.3 it

isa phoneme with a too reduced representation in the database to be able to extract
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Figure 4.4.23: Correlation level and linear regression slope of phoneme dura-
tion with syllable duration, separated by phoneme

conclusions. Considering this chart and that music pitch is highly correlated with
the presence off, in the singing voice, we decided to use only the voiced phoneme
durations. From now on, every time we refer to the duration of phonemes in a
note, we will be considering the duration of voiced phonemes only.

To calculate the optimal tempo for the representation of the whole database
we decided to align the distribution of the duration of voiced phonemes and the
distribution of musical symbols of all notes in the music scores in the parallel data
defined in Section 4.4.2. These two distributions are shown in Figure 4.4.24.

In Figure 4.4.24a, we can observe that the distribution of voiced phoneme dura-
tions has a clear peak around 300 ms, it is not gaussian and at the right of the 300
ms peak a change in the slope can be seen around 500 ms duration. The musical
symbol distribution in Figure 4.4.24b shows that the most used note symbol is the
eighth note with a duration of half when expressed in quarters. The second most
used symbol is the quarter note. In a third level we can see the sixteenth and dotted
eighth and finally the dotted quarter and the half note. The distribution of symbols

is very common and shows that bertsolaritza music scores use symbols commonly
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Figure 4.4.24: Distributions in Bertso database

used in the music scores in Western music.

For the alignment of these two distributions, we propose a distribution align-
ment algorithm. As this algorithm is going to be used again later in this work to
align other distributions, we will explain it in a generic way. In the distribution
alignment problem we define two sample sets, a static set A and a dynamic set B. If

we define an integer value space I with a specific range for the set A in Expression

4.15
I € [min, max| N Z (4.15)
we can define a function f with n independent variables that transforms the set
B to the space I applying expression 4.16
(o1 yeeeyn)
g L o (4.16)

Any sample set from the value space I can be represented as a frequency distribu-
tion vector of length L = max — min. We can obtain the Probability Distribution
Function (PDF) of the sample distribution vector of the static set A by normaliz-
ing it with the total area of the distribution. Using the PDF of set A we can define
the probability per sample of the set C with Equation 4.17.
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Do Palsi
pc= 1N (s (4.17)
where P, is the PDF of the set 4, s; is the sample number i of the set C and N
is the total number of samples in set C. The solution of the distribution alignment
problem can be obtained by maximizing the probability per sample of the trans-
formed dynamic sample set C by optimizing the ftransformation function applied
in B to obtain C.
In the specific case of the quarter duration and real note duration alignment, f

function corresponds to Expression 2.4 and the independent variable of the func-

tion is the tempo. The result of the alignment is shown in Figure 4.4.25.
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Figure 4.4.25: Alignment of voiced duration PDF of the database and time
representation of notes in parallel music scores

The optimal tempo to represent the Bertso database taking into account the dis-
tribution of real duration values and note symbols is 100. In Table 4.4.4 we can see
the temporal value of different symbols when the tempo value is 100.

The symbol with a duration closest to the standard frame analysis period in
speech signal processing is the S12th. Speech analysis standard framerate is 5 ms

and using the S12th duration as basic unit, the precision to define a duration of
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Symbol Duration with optimal
tempo value (ms)
quarter 600.00
eighth 300.00
16th 150.00
32nd 75.00
64th 37.50
128th 18.75
256th 9.38
512th 4.69

Table 4.4.4: Duration values for each music symbol with optimal tempo

voiced phonemes in a note would be maximum. But using this precision would
augment the complexity of the representation of the note duration. We decided to

use the 64th symbol to reduce this complexity.

4.4.4 Vibrato labeling

The vibrato is a fundamental characteristic in singing voice. It consists in the mod-
ulation of the f; of the voice.

We propose to detect the vibrato using every local minimum and maximum in
the stable areas detected by our note detection algorithm. First, a Savitzky-Golay
filter is applied to every voiced segment of the f; using a Window length of 75 ms
and a second degree polynomial. After this filtering, we detect all the local maxima
and minima. We define any minimum or maximum as a pair of values made up
by the value of f; and the instant where the minimum or maximum is located, as

expressed in Equation 4.18.

m; = (x;,t;) (4.18)

where x; is the value of f; in cents and ¢; is the time in milliseconds. With this

definition we can define the sequence M of maxima and minima as
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M= (my,m,,...,my) (4.19)

We can see in Figure 4.4.26 that the segment of f; between a maximum and
the consecutive minimum can be considered as half a period of a sinusoid. We
detect the positions of maxima and minima in the smoothed curve, however the
frequency values are not directly taken from the smoothed curve. We consider that
we may loose information about the modulation amplitude when we smooth the
curve. Therefore, we take the frequency value of the original unsmoothed f0 in the
detected maxima and minima positions. We define the half-period sinusoids using
the distance in time and amplitude between contiguous maximum and minimum
values. From the sequence in Equation 4.19 we can obtain the amplitudes A and

frequencies F of all the intervals between all the maxima and minima.

A= (d\,d)y,...;a;_,) (4.20)

where .
a = EI (4.21)
F=(f.f,,-fi1) (4.22)

where .
f = % (4.23)

As our references are the positions of the maximum and minimum values, we
define the frequency and amplitude of each of these positions by averaging the fre-
quency and amplitude of the sinusoids at both sides of the position. As the firstand
last positions in the sequence only have one sinusoid no averaging is needed and
the frequency and amplitude of this sinusoid is assigned directly. The frequency

and amplitude of each maximum and minimum point is thus defined as
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Having the frequency and amplitude values for each minimum and maximum

point, we interpolate the values to obtain frequency and amplitude values for each

153



frame of the signal. All the process is visualized over a natural signal in Figure

4.4.27.
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Figure 4.4.27: Frequency and amplitude signals in a natural segment of
singing speech

Using the signal of the modulation amplitude and frequency of stable notes we
detected the vibrato areas. The modulation is only analyzed if the length of the
note is S00 ms or more. The vibrato areas are sequences in time inside detected
notes that fill the condition of having a modulation frequency between S and 8 Hz

and a modulation amplitude higher than 30 cents. We also set a minimum dura-
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tion condition for the sequences that fill the amplitude and frequency condition:

the length of the sequences has to be 400 ms or more. The detection of these se-

quences has been visualized in Figure 4.4.28. We can observe in the first plot that

the modulation analysis is only made in the notes with duration greater than 500

ms. These notes are denoted as potential notes. In the second plot the modula-

tion frequency condition is shown and in the third plot the condition about the

modulation amplitude. We can observe that the note between seconds 2 and 3

contains a small segment that fills the modulation amplitude and frequency con-

ditions. This segment cannot be classified as vibrato because it does not fill the

minimum vibrato duration condition set at 400 ms.
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Figure 4.4.28: Vibrato detection using continuous amplitude and phase mod-

ulation parameters

155



The final amplitude and frequency modulation signal is created removing all
the values that are outside the vibrato areas. Therefore, the existence of values in
frequency and amplitude modulation signal indicates the existence of vibrato in

the frame, in a similar way as happens with the voiced/unvoiced decision in f,.

4.4.5 Melody detection

In Section 4.4.2 we have analyzed the differences between the bertso melodies and
the actual performances of bertsos. In Section 4.4.3 a method to get the actual
musical labeling of these bertsos without using music scores has been proposed.
Although we observed differences between the performances and the melodies in
the database, the melodies are recognizable in the recordings and therefore the
melody label is a valuable metadata information in the structure of the database.
In consequence, it would be interesting to evaluate the possibilities to detect the
base melody of a recording taking into account that the interpretation introduces
changes compared to the original music score. If we consider the limited possible
melodies that a bertso may use as base, we can define a method to decide which of

the potential melodies is the most similar to the sung bertso.

4.4.5.1 Dataset

As explained in Section 4.4.2, some recordings with melody label do not contain
the same number of utterances in each bertso as the respective melodies, therefore
we will only consider for this melody detection experiment the recordings with the
same number of utterances as their melody. The data that fill the utterance condi-
tion is characterized in Table 4.4.5. To compare the three classification systems, we
need fully labeled utterances in musical and phonetic level. Many utterances have
been discarded because the impossibility of labeling and this creates a problem
when classifying bertsos with unlabeled utterances. As the comparison of bertsos
with music scores is made utterance by utterance, we decided to include the bert-

sos with missing utterances in the experiment. The classfification of these bertsos
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is made comparing only labeled utterances. For this reason, the total number of
bertsos and the total number of utterances are not coherent taking into account

the utterance number the bertsos

. Total number | Total number . .
Utterances in bertso Potential melodies
of utterances | of bertsos
8 1399 245 6
10 451 49 8
16 1804 121 2
All 3654 418 16

Table 4.4.5: Melody prediction experiment data

4.4.5.2 Classification method

Aswe segmented the bertso utterances, our approach is to create a method to com-
pare the recordings utterance by utterance with the music scores. We use DTW to
align different sequence representations of the bertso utterances and utterances in
the music score. Then we calculate the distance between these sequences and se-
lect as the predicted melody utterance the candidate with the lowest distance. We

considered three different representations of an utterance to align them applying
DTW:

« fo sequence: the voiced part of the f; of the utterance in cents is aligned
with the representation of the pitch values of the music score. This DTW
alignment needs to apply the mean shift alignment used in Algorithm 2. An

example can be seen in Figure 4.4.29.

« Note sequence: the labeled notes in the utterance are aligned with notes
on the music score utterance. This DTW alignment also requires to apply
the mean shift alignment used in Algorithm 2. An example can be seen in
Figure 4.4.30.

« Differential of notes sequence: the differential of the note sequence is used

to align with the differential of the notes in score utterance. The differential
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has been calculated using expression 4.26

diffli] = n[i + 1] — nli] (4.26)

where diff is the differential sequence and 7 is the note sequence. Differ-
ential does not require to apply mean shift alignment, because it uses a se-

quence of relative values. An example can be seen in Figure 4.4.31.
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Figure 4.4.29: Alignment of sung f, and music score f,

We observed that it is common to obtain ties between different melodies in
aligned sequence distances when applying the last two methods, i.e., note and dif-
ferential comparisons. This is why we included another parameter to select the
most similar music score. We are considering the distance between the original
sequence and the aligned one, but we do not take into account if the the original
unaligned music score was similar to the sung melody. One way of estimating this
similarity is to use the alignment path of the DTW. One example of alignment path

can be seen in Figure 4.4.32.
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Figure 4.4.31: Alignment of sung note differential and music score note dif-
ferential

In Figure 4.4.32 we can see that at the beginning of the sequences an adjustment
had to be done to optimize the alignment. Our objective is to evaluate how diag-
onal the resulting alignment is; we consider that the more diagonal the alignment,
the closer is the melody to the sung voice. In a DTW alignment there are only 3
possible transitions, so we count how many of these transition have been diagonal.

We calculate a diagonality ratio of the alignment with the next equation
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Figure 4.4.32: Alignment path of sung notes and music score notes

rg = t?d (4.27)

where r, is the diagonality ratio, ¢, is the total number of diagonal transitions

and t is the total number of transitions. In case of ties, the melody with the higher
diagonality ratio is the one selected as the prediction.

As the main objective of the system is to classify whole bertsos, we also created a

method to combine the melodies assigned to all the utterances in a bertso to obtain

the melody of the bertso. We propose two methods to make this combination:

« Majority vote: Each utterance is classified independently and a majority

vote is applied to obtain the melody of the bertso.

« Distance sum: In this methods we calculate the alignment distance of each
bertso to all the potential melodies and select the smallest distance melody
as prediction. The alignment distance of a bertso to a melody is calculated
summing up the alignment distances between all utterances in the bertso

and the parallel utterances in the melody.
In the bertso classification methods we observed that no ties occur and there-
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fore we have not applied the diagonality ratio.

4.4.5.3 Results

The accuracy obtained in each of the methods in the utterance and bertso classifi-

cation is shown in Table 4.4.6 and Table 4.4.7 respectively.

Utterances in | Number of | Possible Accuracy (%)
Music score | utterances | musicscores | f0 | notes | Diff
8 1399 6 | 40.03 | 48.32 | 55.54
10 451 8 | 64.75 | 53.88 | 65.41
16 1804 2| 71.56 | 74.33 | 85.42
All 3654 16 | 58.65 | 61.85 | 71.51

Table 4.4.6: Accuracy results in utterance classification

Utterances in | Number of Possible . Accuracy (%) .
music score bertsos music scores Majority vote Distance sum
f0 Notes | Diff. fo Notes | Diff.
8 245 6| 63.67 | 71.84 | 74.29 | 73.88 | 82.86 | 80.00
10 49 8| 89.80 | 89.80 | 87.76 | 85.71 77.55 | 77.55
16 121 219339 | 98.35| 99.17 | 95.87 | 100.00 | 100.00
All 415 16 | 75.42 | 81.69 | 83.13 | 81.69 | 87.23 | 85.54

Table 4.4.7: Accuracy results in bertso classification

With the results we can draw these conclusions:

« Bertso classification obtains better results than utterance level classification.

« The optimal method to classify a single utterance is the differential sequence

alignment distance.

« Inbertso classification, the distance sum method obtains better results than
the combination by majority vote. In bertsos of 10 utterances we can see

that the majority vote is a better system but in bertso of length 8 and 16 the
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distance sum is better. In the overall results the distance sum also obtains

the best scores.

« The optimal method to classify a bertso is using the sum of note sequence

distances.

4.5 Resulting databases

In this chapter we created different methods to label the Bertso database. After
the singing voice detection, utterance segmentation, phoneme segmentation and
musical labeling we obtained a properly labeled singing voice database. We dis-
carded several recordings and bertso utterances in this labeling process to improve
the uniformity and the quality of the final database. In the process we developed
multiple systems for music labeling and we used the melody alignment system to
align the melodies of the NUS database to the recordings. In this Section we ana-
lyze the characteristic of this final version of the Bertso database we created, as well
as the singer range characteristics of the recordings aligned in the NUS database.
We have also labeled the singing utterances of the hosts in the Bertso database, but
we do not consider these recordings part of the final database. This is why this

description of the database considers only the bertsolari recordings.

4.5.1 Bertso database

The Bertso database obtained is a multi-singer dataset, featuring 176 singers. The
general properties of the database considering the gender of the Bertsolaris are

shown in Table 4.5.1.
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Gender Number ?f Utterances | Total length (min)
Bertsolaris

Male 145 34880 2561.53

Female 31 5270 403.60

All 176 40150 2965.13

Table 4.5.1: Number of singers and utterances and total durations per gen-
der in the labeled final Bertso database

There are 176 singers in the database and these are too many to characterize
each of them in a detailed numeric way. This is why we decided to use anony-
mous general characteristics of the database for the analysis, as in Section 4.1.2.
We have visualized the characteristics of the recordings of each bertsolari ordering
the representation with the value of each parameter in increasing order. This type
of visualization means the Bertsolaris in the horizontal axis are in different order in
each plot, but this representation provides a clearer information about the general
characteristics of the database. In Figure 4.5.1 we show the total duration of all the
aligned phonemes for each bertsolari and in Figure 4.5.2 we can see the number
of utterances for each bertsolari. In the figures we represent the number of utter-
ances and recording duration of each bertsolari and singing host but we have not
displayed any names in the horizontal axis. We avoid writing the singer names in
the horizontal axis because they are too many and it would be impossible to see
the value of each name.

In the figures we can observe that the majority of the bertsolaris in the database
have a small amount of recordings, but there are multiple bertsolaris that have
more than one hour of recordings. The female bertsolaris have less recordings and
only a single female performer is above the one hour duration threshold.

We also analyzed the distribution of the year in which the recordings where re-
alized. Figure 4.5.3 shows the distribution of the years of the recordings for each
singer with a boxplot. We can observe that the database covers the span of 35 years

of bertsolaritza and different singers have recordings in different time spans. The
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Figure 4.5.2: Distribution of number of utterances per bertsolari

moment when female bertsolaris were introduced in the competitions and public
performances can be clearly seen in the figure.

The analysis of the note characteristics for each bertsolari is visualized in a box-
plot with the note duration analysis in Figure 4.5.4 and the note pitch analysis in
Figure 4.5.5. The majority of note duration values used by each bertsolari belong
to the zero-one seconds duration interval. We can observe that the distribution
in male and female bertsolaris is very similar. Regarding the pitch distributions,

the first observation is that female bertsolaris use higher pitch values than male
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Figure 4.5.5: Distribution of note pitch values for each bertsolari in the
Bertso database

In addition, we have analyzed the use of vibrato in the recordings. Figure 4.5.6
shows the percentage of notes where we have identified the use of vibrato in the
recordings of each bertsolari. The majority of the bertsolaris make a small use of
vibrato in their performances: multiple singers do not have even a single vibrato
note detected. We can observe also that a small group of male singers use it in a
more generalized way. There is no female bertsolari that reaches the maximum
level of vibrato use observed in the male recordings. In Figure 4.5.7 we visualize
in a boxplot the vibrato amplitude modulation in cents measured across all the
vibrato segments realized by each bertsolari. The empty values represent the bert-
solaris that have no vibrato segments detected. We can observe that some bertso-
laris use higher modulation amplitudes than others and the total range of the value
goes from 30 cents to 140 cents. The minimum value is easy to explain because 30
cents has been the minimum threshold used to detect it. We can also observe that
female singers have been labeled with smaller modulation values. Observing these
two figures we can say that vibrato is not a generalized singing technique applied

in bertsolaritza and that it is harder to find it in female recordings.
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Figure 4.5.7: Average amplitude of vibrato per bertsolari

4.5.2 NUS database

We have applied the automatic melody alignment explained in Section 4.4.2 to the
NUS database to obtain the pitch shift made by each singer in every music score
utterance. We applied the pitch shift from each utterance to the original notes in

the music scores to calculate an approximation of the sung notes in each utterance.
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In this way, we obtained the approximation of note pitch values sung by the singers
in the database. The note range used by each singer is shown in a boxplot in Figure

4.5.8.
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Figure 4.5.8: Range of note pitch values used by singers in NUS database

We can observe in the image that female singers made a higher pitch interpreta-

tion of the songs, as expected.

4.6 Chapter conclusion

In this chapter we have devised several methods to segment, align and annotate the
recordings of the Bertso database. In the segmentation phase, we have proposed
systems to separate singing voice from bertsolaris and speech from the hosts of
the bertso session. The proposed segmentation system has obtained good results
comparing to other speech/singing classification systems and has been published
in [129] and [130]. In addition, an utterance segmentation system has been de-
signed with good results in our database. For phoneme segmentation, we have ap-
plied a common triphone HMM system as the base system, but added three novel

characteristics to the system to improve alignments. One addition is the use of
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multiple bertsolaris in the training data to create more stable models. We also com-
pared alignment methods using different phoneme groupings: single phonemes,
notes and words. Finally, a postprocessing of the alignment has been designed
using novelty features over MFCCs. The improvement of the alignment with the
added methods has been proved and the final results are good considering that we
have no prior information about note durations.

For the musical labeling, we designed different strategies to automatically label
the whole database. We considered the problem of musical labeling knowing the
original music score of the recordings and the problem of musical labeling without
music score information. We also considered phenomena like portamento and vi-
brato in the note annotation systems. We have achieved good results and devel-
oped new tools for the automatic analysis of bertsolaritza.

Using the proposed automatic annotation systems, we annotated the whole
Bertso database creating an annotated singing voice database that is bigger than
many state of the art singing voice databases. This database can be used to train
singing voice recognition and synthesis models and to perform general singing
style analysis. The automatic segmentation, alignment and labeling systems are
prepared to annotate more bertso recordings that are generated every year and

compiled by Xenpelar documentazio zentroa.
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Synthesis system

In this chapter we will use the database labeled in Chapter 4 to train different
singing synthesis systems and evaluate the results. First, the general structure of
the synthesis systems developed is presented in Section 5.1. Then, in Section 5.2
we explain the adaptation techniques we used in note pitch and durations to obtain
more flexibility and better quality in our synthesis models. The process proposed
for the reconstruction of the vibrato is explained in Section 5.3. Next, the difficul-
ties of synthesizing any music score with a specific singer model is addressed and
we propose a solution to the problem in Section 5.4. After that, the preprocessing
and preparation of the linguistic labels, musical labels and acoustic parameters for
statistical prediction training is explained in Section 5.5. Then, the particularities
of the HMM and DNN-based synthesis systems proposed are defined in Sections
5.6 and 5.7 respectively. After explaining the systems we evaluate and compare

them with objective and subjective tests in Section 5.8. We finalize the chapter
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with the main conclusions in Section 5.9.

5.1 General architecture of the proposed
singing synthesis system

We have created three singing voice synthesis systems to evaluate the suitability of
different synthesis technologies for generating bertsolaritza signals. Two of them
are HMM-based synthesis systems and the remaining one is a DNN-based synthe-
sis system. Each system has unique characteristics but all of them share the main
structure and multiple modules. In this section we explain the general architec-
ture shared by all the developed systems. The particularities of each system will be
explained with detail in their respective sections (Sections 5.6 and 5.7).

The general architecture is represented in Figure 5.1.1. It is is divided into two
parts: the training phase and the synthesis phase. In the training phase labeled
recordings of the databases are used to create models that can predict acoustic fea-
tures from the labels. In the synthesis phase music scores that were not seen in the
training phase are used to predict acoustic features and generate synthetic singing

voice signals.

5.1.1 Training phase

In the training phase, the labels defined in Chapter 4 for the Bertso database are
converted to phoneme-based context-dependent labels and adapted to accommo-
date them to the special needs of each synthesis system. The label adaptation mod-
ule is different in HMM-based and DNN-based systems. Also the acoustic param-
eter extraction and preparation is different because it depends on what techniques
are used by the synthesis system. The basic acoustic parameter extraction extracts
three different acoustic parameters with Ahocoder [43]: MCEP, f, and MVF. The
pitch curve is further processed to obtain a normalized version and to calculate pa-

rameters to encode vibrato when necessary. Delta and delta-delta parameters are
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calculated for all the parameters. Finally, the phonemes with context-dependent
information and the prepared parameters are used to train a statistical model. The
three systems use separated models for the phoneme duration prediction and the
frame level acoustic parameter prediction.

The labels defined in Chapter 4 are also used to obtain the distribution of notes
corresponding to each singer, so that the new music scores that will be synthesized

can be converted to the range of the singer before generating the synthesis labels.

5.1.2 Synthesis phase

In the synthesis phase, music scores that were not in the training material are con-
verted to context-dependent phoneme labels and these labels are used to predict
acoustic parameters.

The music scores to be synthesized are first adapted to the range of the modeled
singer and the adjusted tempo. After that, the adapted music scores are separated
into utterances. Then each utterance is converted to a phoneme sequence with
context-dependent labels. The context-dependent labels are prepared in a differ-
ent way for each developed synthesis system. These context-dependent labels are
used to predict the duration of each phoneme applying the corresponding statis-
tical duration model. The context-dependent labels completed with duration in-
formation are used as input for the acoustic parameter model to predict the frame
level acoustic parameters. The predicted delta and delta-delta features are used in
the Maximum Likelihood Parameter Generation (MLPG) algorithm to generate
smoothed features. The pitch value is denormalized and vibrato is reconstructed
from the predicted modulation features if needed. In all the systems, after the
MLPG and pitch postprocessing modules we obtain the three acoustic features
that will be used to build the synthetic waveform applying Ahodecoder: f,, MVF
and MCEP.
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5.1.3 Summary of systems built

As we have already commented, we have developed three systems in total: two
HMM-based systems and a DNN-based system. In Figure 5.1.1 we have repre-
sented the modules that are not shared by all the systems with a discontinuous
line. These modules correspond to two techniques that we have introduced to im-
prove the quality of the singing voice generation: pitch normalization (explained
in Section 5.2.1) and vibrato reconstruction (explained in Section 5.3). We also
proposed a technique to control the tempo of synthesized music score, explained
in Section 5.2.2. To test the effect of these techniques we have used them differ-
ently in each of the three synthesis systems built. Table 5.1.1 shows what improve-

ment technique is applied in each of the singing synthesis systems we have created.

Technique Synthesis systems

HMM | HMM-pitch normalization | DNN
Pitch normalization No Yes Yes
Vibrato reconstruction | No No Yes
Tempo adaptation Yes Yes Yes

Table 5.1.1: Use of the proposed modeling improving techniques in each of
the built singing synthesis systems

5.2 Techniques for gaining flexibilityin the
synthesis

A statistical singing voice synthesis system has to model the relationship between
the information in a music score and the singing voice. In statistical synthesis sys-
tems, the quality of the synthetic voice depends on the data used to train the statis-
tical models. The data have to be diverse enough to cover all contextual factors of
the elements we want to synthesize afterwards. The number of contextual factors
is very large in singing synthesis because of the complexity of the music scores, e.g.,

key, tempo, lyrics, duration... Nevertheless, we explained in Section 4.4.3 that as
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we do not have the original scores of the recordings and it is highly time consum-
ing to obtain these scores, we simplified the musical representation of these record-
ings to be able to obtain them automatically from the sung signal. For each note
we only take into account the representation of the pitch in cents and the duration
representation expressed in units of 64th. We obtained a precise representation of
the notes but we have to train flexible models with these data. We have to be able
to synthesize the lyrics in multiple levels of duration and pitch dimensions with
limited training data. We have devised two techniques to obtain flexible and good
quality synthesis models. The first is pitch normalization and adapts note pitch
values. The second technique is called tempo adaptation and transforms the note
duration to the reference tempo of our labeling. Both techniques are explained in

the next sections.

5.2.1 Pitch normalization

As we explained in Section 4.4.3.1, the notes sung in our recordings are not ad-
justed to the standard A, tuning that we want to define for our synthesis system.
A solution to this problem could be to label all the stable pitch segments as the
nearest note in the A, tuned scale, but this would create high variance models for
the pitch of each note. We propose a pitch normalization method to model only
the variation of the pitch around the sung notes. This pitch normalization proce-
dure contributes to the reduction of the pitch variance inside note values and to
the improvement of the tuning of the excitation feature.

In the f, normalization module, a base melody is generated using the phonemes
with musical labels obtained in Chapter 4. We subtract this base melody from the
fo curve to obtain the deviation of the singer from the base melody and train the
statistical models to learn the relation between the contextual labels and this pitch
deviation. At synthesis time, the base melody is derived from the music score and
the predicted phoneme duration values. Then, this base is added to the f, deviation
predicted by the acoustic model.

We propose to obtain the base melody taking into account the boundaries of the
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phonemes in the notes. A staggered curve is not suitable because the natural pitch
curve is not stable when a transition between different notes is produced. Based on
the observation of the dynamics of natural pitch curves, we have defined two kinds
of pitch transitions between notes, depending on the kind of phoneme where the
transition takes place (see Figure 5.2.1). As we can see in the figure, two types of
transitions have been considered: transitions contiguous to unvoiced phonemes
and transitions contiguous to voiced phonemes. In the unvoiced phoneme tran-
sitions, we define the transition area as the segment including all contiguous un-
voiced phonemes. In this area we define a staggered pitch transition between the
notes that is positioned in the middle of the transition area. We took this deci-
sion because we observed that unvoiced phonemes create a pitch boundary be-
tween notes and we do not want to distort the pitch in transitions. In the voiced
phoneme transitions, the transition area is defined around the phoneme bound-
aries of the notes. A 25 ms space is taken at both sides of the phoneme boundary
and spline interpolation is used to create a smooth transition between pitch levels
corresponding to the two notes involved in the transition. As explained in Section
2.1.1, multiple studies have proposed to set the voiced note onset transition in the
beginning of the first vowel in the note, but we preferred to use the first voiced
phoneme. We have took this decision because of the high complexity and the con-
text dependency of voiced transitions. We designed the voiced rule based transi-
tion to interfere with the smallest possible number of frames in the natural tran-
sition and to create a smooth reconstruction. A more complex rule-based voiced
transition model would need a deeper analysis of bertsolaritza singing voice.
Expressions 5.1 and 5.2 define the value of the base melody in the transitions

with voiced and unvoiced phonemes respectively.

N, ifx<T,.
My(x) = < flx), T, <x<T, (5.1)
N, if Ty < x.
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Figure 5.2.1: Transition model of the base melody

My (x) — N, ifT,<x<(T,—T,)/2+ T, (52)
Ny, (T, —T,)/24+ T, <x<T,.

Where N, and N;, are the pitch values of the previous and next notes in the tran-
sition, T, and T}, are the time positions of the beginning and end of the transition
area we have defined and f(x) is a cubic spline interpolation between N, and N,
values.

An example of the result of the base melody subtraction can be seen in Figure
5.2.2. We can see that before and after the voiced transition areas located at sec-
onds 1.10 and 1.50 we obtain a f, with a mean value close to zero. This modulation
around the zero value represents the natural modulation of the signal around the
note pitch, known as fine fluctuations. In the unvoiced transitions located around
0.25 and 0.6 s, we can observe that the normalized f, before the transition is around
the zero value and the onset of the note after the transition has a deviation until be-
coming stable. These are melody dynamics of note onset and offsets. The big nega-
tive spike observed in the transition at second 1.10 is the microprosody generated
by the /d/ phoneme. Our statistical models will learn these natural variations of

fo around a base melody and we will be able to reconstruct any melody afterwards
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using a new base melody.
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Figure 5.2.2: Transitions in the normalized f,

5.2.2 Tempo adaptation

The duration labels we created for the Bertso database have a unique tempo ref-
erence. Using a unique tempo labels to train a singing voice model may create
problems when trying to synthesize musical scores with different tempos, but we
defined a conversion system to be applied before synthesis to convert the scores
to the tempo of our model. Each note is converted to 64th units using tempo con-

version according to Equation 5.3.

u=[5] (53)

Where u is the number of 64th units of the optimal tempo (100) in the note,
d is the duration of the note calculated with the tempo of the score to be synthe-
sized and D is the duration of the 64th symbol in the optimal tempo which in our
definitive system equals 37.5 ms.

As we used this technique in all the systems, we have not evaluated the result of

using it.
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5.3 Vibrato reconstruction

We explained in Section 4.4.4 how we created a frame level characterization of the
vibrato modulation in the fy. Considering that we have frame level information of
the frequency and amplitude of the vibrato modulation, we can train any singing
voice synthesis system to predict the vibrato in bertsolaritza. In this synthesis sec-
tion we explain how we regenerate the vibrato once our statistical synthesis system
have predicted the frequency and amplitude of the vibrato.

With the frame level information of amplitude and frequency modulation we

create a sinusoid representing this modulation with the formula

v(t) = A(t)sin(2nf(t)t) (5.4)

where A(t) is the predicted amplitude modulation signal and f(t) is the pre-
dicted frequency modulation signal. The resulting signal is added to the base
melody defined in Section 5.2.1. We do not model the phase of the vibrato signal
because we think the condition for the perception of good vibrato is phase conti-
nuity and not keeping the natural values of it. The result of using Equation 5.4 can
create unnatural modulation signals if fast and big frequency changes occur in the
f(t) variable. But we observed that the predicted f() create semi-continuous phase
signals. Vibrato frequency modulation signal is limited between 5 and 8 Hz and
has been calculated in previously smoothed f, curves. This creates slowly varying
curves that produce no abrupt frequency changes in the reconstruction. Also, the
value of the phase must be 0 at the edges to avoid abrupt changes when we add it to
the synthesized fy. The 0 value in the boundaries is a condition that is not naturally
filled in the reconstruction and, therefore, we defined a method to force it.

We used a sin function in the reconstruction with no initial phase to force the
first value in the signal to be 0. After the creation of the vibrato signal, we observe
the position of the last zero-crossing point and delete the signal from this point till

the end. The process can be seen in Figure 5.3.1.
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Figure 5.3.1: Vibrato reconstruction with phase constraints

Model dependent conversion of music

scores

One of the main differences between singing voice and speech is the pitch range

of each singer. Theoretically, any singer that knows how to read can read properly

almost any existing text written in a certain language; conversely, this does not

happen in singing voice. Not any music score can be sung by any singer because
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of physical limitations. This happens because in speech the absolute values of the
pitch values used in the intonation curve are not important to read the text cor-
rectly. The pitch conditions in speech are related with the prosody, and prosody
conditions are related to relative differences of pitch values inside the sentence.
In singing voice, a music score defines explicitly the pitch in specific phonemes in
order to be sung correctly. The human range of pitch values is limited by physiolog-
ical conditions as explained in Section 2.1 and therefore a singer can sing melodies
within his or her pitch range. This is why the choruses have different type of singers
to cover different "Tessitura. Nevertheless, a melody can be shifted to lower the
higher pitch values and still be easily recognized because of the ability of humans to
detect relative difference patterns between notes. When a music score for singing
has been written to be part of a bigger part with multiple voices and instruments, it
would be a bad idea to shift the pitch values, because it would break the harmonic-
ity designed for the whole composition in the first place. But in bertsolaritza the
singers sing mostly a cappella and the pitch level of the melody is closely related
with the physiological limits of the bertsolaris. This is why we defined a method to
adapt any music score to a singing voice model, artificially mimicking the process
of adaptation that is naturally performed by any bertsolari.

In Section 4.4.3.2 we described the method proposed to align different distri-
butions using a transformation function with #n independent variables. We used
the method to set a global tempo in the Bertso database. Here we will apply the
same method, but in this case we will consider the pitch distribution of the record-
ings used to train the model and the pitch distribution of the music score. We use
Expression 4.17, but in this case P, is the PDF of the pitch values of all the record-
ings used to train the model, s; is the ith note of the music score and N is the total
number of notes in the music score. The solution of the distribution alignment
problem comes by maximizing the shift in semitones that we have to apply to the
music score to be sung in an optimal way by the singing model. The representation

of this process can be seen in Figure 5.4.1.
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Figure 5.4.1: Model dependent score adaptation

We can observe in the figure that the original music score contains notes out of
the range of the notes in this specific singer recordings. The problem is that this
issue cannot be fixed recording songs with a wider range for the singer because
each singer has a limited natural range. The interpretation of these notes from this
singer does not “exist” or the singer would interpret them in a poor quality. The
music score has been shifted 13 semitones in order to obtain notes that are within

the vocal range of the singer.

5.5 Datapreparation

Bertso database has been segmented and annotated and the resulting dataset has
been explained in Section 4.5.1. The database has a big size and irregular recording
times and music scores per singer. This is why we have to define what recordings,

contextual factors and features we are going to use to model the singing voice.
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5.5.1 Selection and preparation of the recordings

To train the models we have used the database defined in Section 4.5. In the la-
beled database, we have recordings of 176 singers but all the singers have not the
same amount of recordings. We decided to define a total recording time threshold
to determine which singers to use to generate singing voice models. Considering
previous works in statistical singing synthesis [ 123] [109][63][64], 70 minutes is
a common threshold to create singing voice models. We have 12 bertsolaris that
fill the condition of having a minimum of 70 minutes of recording time. The cor-

responding singing IDs and respective recording times are show in Table 5.5.1.

Singer ID | Recording time (min) | Genre
0030b 94.77 | M
0045b 15545 | M
0051b 89.65 | M
0054b 86.90 | M
0087b 10145 | M
0108b 12835 | M
0111b 79.00 | M
0113b 134.07 | F
0115b 9317 | M
0125b 88.54 | M
0126b 74.82 | M
0151b 12727 | M

Table 5.5.1: Recording duration per singer with more than 70 minute record-
ing

Having selected the singers, we also discarded some recordings from some
singers, in order to eliminate recordings with labeling errors. As we know, the f,
calculation algorithm as well as the note detection algorithm can produce errors.
For examples, harmonics can be labeled instead of the fundamental. In order to
minimize the number of recordings with labeling errors, we have defined a fixed
interval of 20 semitones where the vocal range of the singer must be contained.

The value of 20 semitones was chosen by simple observation. For each singer, the
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PDF of the singer pitch values was obtained, and the 20 semitones interval was
centered to maximize the area in that interval. Figure 5.5.1 shows how the optimal

20 semitone range is selected for bertsolari 0030b.
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Figure 5.5.1: Note distribution and range selection in the recordings of bert-
solari 0030b

Any recording with notes outside the selected range was left out from the final
selection. After the range filtering, the available recording duration of the singers

is downsized, as can be seen in Table 5.5.2.

Singer ID | Recording time (min) | Genre
0030b 90.98 | M
0045b 14732 | M
0051b 85.78 | M
0054b 83.14 | M
0087b 98.54 | M
0108b 125.68 | M
0111b 7427 | M
0113b 134.00 | F
0115b 88.75 | M
0125b 8743 | M
0126b 73.19 | M
0151b 12321 | M

Table 5.5.2: Recording duration per singer after range limitation
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The distribution of recording years, note durations, note pitch values, percent-
age of notes with vibrato and average vibrato amplitude of each singer can be seen

in boxplot format in Figures 5.5.2, 5.5.3, 5.5.4, 5.5.5 and 5.5.6 respectively.
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Figure 5.5.2: Recording year distribution per bertsolari in the selected data
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Figure 5.5.3: Note duration distribution per bertsolari in the selected data
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Figure 5.5.6: Average vibrato amplitude in the selected data
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We split the utterances of each bertsolari into three different sets: train, valida-
tion and test. For the test block, we selected 10 utterances in a random way. We

split 4% of the utterances for validation purposes and 96% as train set. The final

duration of each block for each singer can be seen in Table 5.5.3.

Singer ID | Train recording time | Validation recording time | Test recording time
0030b 84.46 5.85 0.66
0045b 137.09 9.52 0.71
0051b 79.47 5.55 0.77
0054b 77.20 S.21 0.73
0087b 91.47 6.40 0.67
0108b 116.96 8.02 0.71
0111b 68.89 4.63 0.75
0113b 124.27 8.97 0.76
011Sb 82.06 5.90 0.79
0125b 80.87 5.67 0.88
0126b 67.59 4.83 0.77
0151b 114.59 7.86 0.77

Table 5.5.3: Recording duration (min) per singer in train, validation and test
sets

5.5.2 Preparation of the contextual labels

For each annotated bertso recording we created its music score. These music scores
have no measure information because we do not have original music scores of the
recordings and measures are hard to predict. The music scores we created are sepa-
rated in utterances, have information about the phonemes corresponding to each
note and each note has pitch and duration information. Using these music scores,

contextual information added to each phoneme is listed in the following list.

« Phonemes: Including the current phoneme, the identity of the two pre-
vious and two next phonemes are used. The total number of possible

phonemes is 37 including the silence.

« Phoneme subgroup: Additional information is added to each phoneme to

indicate the phonetic subgroups to which it belongs (like plosives, fricatives
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etc.). We defined the phoneme subgroups of the current phoneme, two
previous phonemes and two next phonemes. The total number of possible

subgroupsis 51.

« Note pitch: The previous, current and next note pitch values. In HMM-
based systems the pitch is represented asa MIDI number between 38 and 74
and in DNN-based system with an integer number in cents between 3800

and 7400.

« Pitch distance: The distance in semitones to the pitch of the previous note
and to the next notes. The values of the distance is an integer between 0 and
30 MIDIs in the HMM-based systems and an integer between 0 and 3000
cents in DNN-based.

« Duration: The previous, current and next note durations are used ex-

pressed as multiples of 64ths with a tempo of 100 per quarter note.
« Phonemes in note: Number of phonemes in the current note.

« Position inside note: The position of the phoneme in the note starting

from the beginning and also from the end of the note.
« Notes in utterance: Number of notes in the utterance.

« Note position: The position of the current note in the utterance starting

from the beginning and also from the end of the utterance.

« Closest silence distance: The distance in notes from the current note to

the closest previous and next silences.

The combination of all the labels sums up to 277 context-features added to each

phoneme.
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5.5.3 Acoustic features

The acoustic features we used in our synthesis systems are the ones provided by
Ahocoder, defined in Section 3.2.5. As defined in Section 4.4.1, we had set the
minimum and maximum values of f; in 75 and 580 Hz respectively. We used 40
MCEDPs and all the analysis have been made to audio files with 16000 Hz sampling
frequency.

To train the DNN-based system, apart from the mentioned spectral parameters,
the two parameters representing the vibrato defined in Section 4.4.4 are also used
in the training.

The delta and delta-delta coefficients have been calculated and modeled by the
synthesis systems to apply MLPG algorithms after the parameter prediction. The

delta features of any feature are calculated using Expression 5.5

Ali] = —0.5x[i — 1] + 0.5x[i + 1] (5.9)

where x is the feature. The delta-delta is calculated using Expression 5.6

A*[i] = Ali — 1] — 2A[1] + A[i + 1] (5.6)

5.6 HMM-based synthesis

5.6.1 System structure

The HMM-based system has the same structure explained in Section 5.2.1. As we
explained in that section, the only difference between the developed systems are
the label adaptation module and the parameter modeling and prediction blocks. In
this system, the label preparation block rounds the continuous space of the musical
notes to the closest ideal note using the A4 tuning system. This discretization re-
duces the possible note values and therefore reduces the complexity of the model.

At synthesis time, this model will only synthesize ideal notes in the A4 tuned scale
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and we think that creating a wider range labels would be a sub-optimal solution.
The acoustic parameters of phonemes with different context labels are modeled

using the Equation 5.7

A= argmlaxp(()\W, A) (5.7)

where A is the trained multistream HMM-GMM model, Ois the set of the acous-
tic parameters, W is the set of labels with contextual factors and 1 is the initial
HMM-GMM structure. In the model, Baum Welch equation is used to optimize
the mixtures for each contextual factor. This optimization is combined with a tree-
based context clustering to reduce redundant states and model uncovered states
in the training data. The MDL criterion have been used to control the size of the

decision trees in the clustering. The overall training is summarized in Figure 5.6.1.
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Figure 5.6.1: Training of the acoustic and duration models
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The MCEP parameters, MVF and the respective delta features are continuous
parameters and they are modeled by common HMM models. In contrast the f; pa-
rameter only exists for voiced frames. To model this discontinuity in f, and respec-
tive delta feature values, a Multi-Space Probability Distribution (MSD) HMM
model is used. We have not used the vibrato parameter in this system. At synthe-
sis time, before the f, denormalization process, we apply the MLPG algorithm to
all acoustic parameters using the predicted variances and delta and delta-delta fea-
tures [153]. Global Variance (GV) is also trained and applied in each utterances

of synthesis to avoid oversmoothing [151].

5.6.2 Label preparation

Using the music scores created in Chapter 4 for the Bertso database, we have cre-
ated the context labels defined in Section 5.5.2. The note pitch values determined
by our automatic labeling algorithm define a continuous note space in the cent
scale. Unfortunately, in HMM parameter modeling the contextual features are de-
fined in a discrete mode to use decision trees in model clustering. This is why we
discretized the annotated continuous pitch values to the nearest pure pitch when
creating the synthesis labels. Duration information is also defined as a continuous
space of multiples of 64th note durations. We discretized this parameter to the
nearest integer. We also used this discrete logic to neutralize the pitch and duration
information from unvoiced phonemes. The unvoiced phonemes have no f, value
and therefore predicting pitch information for themis pointless. The note duration
effect in unvoiced phoneme duration has also been analyzed in Section 4.4.3.2 and
showed that a small correlation exists between the duration of unvoiced phonemes

and the duration of the notes .

5.6.3 Trained models

The HMM models have been trained using the material defined in Section 5.5.1.

Two models have been created per singer and the training material used has been
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the combination of train and validation sets. The two different models trained for

each singer have a different f; feature:

« HMM: This model has been trained with the labels defined in Section 5.6.2
and with the Ahocoder features defined in Section 5.5.3.

« HMM-pitch normalization: This model has been trained with the labels
defined in Section 5.6.2 and with the Ahocoder features defined in Section
5.5.3, but we applied the note normalization procedure defined in Section
5.2.1. This normalization allows us to use continuous pitch values to nor-

malize f; although contextual labels are still discrete.

In the models, we made S training iterations in each of context free monophone,
full context phoneme and clustered full context phases. We modeled the MCEP
coefhicients, MVF parameter and duration values in the same way in both models
and we did not include the vibrato features. In all the parameters and systems we
used 1035 questions and a MDL penalty of 1.0 to apply the clustering. The trained

models are evaluated in Section 5.8.

5.7 DNN-based synthesis

5.7.1 System structure

The Neural Network TT'S system has the same structure explained in Section 5.2.1.
As we explained in that section, we only change the label adaptation and parame-
ter modeling and prediction blocks. In this system, the label preparation module
converts every phoneme with its contextual factors into a numerical vector using
questions about the values in these contextual factors. In duration modeling, each
phoneme is vectorized and used as input feature to predict the duration of each
phoneme. In a second acoustic phase, the vector of each phoneme is repeated for

all the frames occupied by the phoneme and positional encoding inside the frame
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is added to each frame vector to predict acoustic parameters. Because of the impor-
tance of the f, in singing voice, we decided to model pitch related parameters and
spectral related parameters with different networks. In the case of neural networks,
the discretization of the notes is not needed because we can represent a pitch in the

continuous space. The system scheme can be seen in Figure 5.7.1.
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Figure 5.7.1: Training of the spectral features, excitation features and dura-
tion models in the DNN-based synthesis system

The neural networks used have 512 neurons in each layer and are visualized in
Figure 5.7.2. They have two fully connected layers followed by two BLSTM layers,
all of them using tanh as activation function.

In the duration prediction the silences from the utterances are included, because
the duration of the silences must be predicted. In the case of acoustic feature pre-
diction networks the frames annotated as silence are removed from the utterances.
The MCEP parameters and the MVF are continuous parameters and are modeled
without any preprocessing. The f, feature only exists in voiced frames and there-
fore we interpolated the unvoiced part of the signal and included a binary signal

in the predicted features with the voiced/unvoiced information in each frame. In
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this model we used pitch normalization and vibrato reconstruction techniques. As
many frames have no modulation information, we used the same method used in
the fy but with vibrato/no vibrato decision. The amplitude and frequency features
are interpolated in the no vibrato frames and the vibrato presence information in
encoded in an extra binary feature. All non binary features are normalized with

zero-mean and unit-variance and the network is trained to predict normalized fea-
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Figure 5.7.2: Neural Networks for the different models

In the feature prediction phase, the duration of each phoneme and silence is
predicted with the duration network. The silences are removed from the predicted
labels saving their position in the utterance. Parameters in non-silence phonemes
are predicted and we apply the mean and variance denormalization and MLPG
algorithm like in HMM-based synthesis systems. The MLPG algorithm in neural

network systems is applied in a different way because no variances are predicted
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for each feature. In Neural Networks the predicted output features from the DNN
are set as mean vectors and pre-computed variances of the features from all train-
ing data as covariance matrices [103]. When all non-silence parameters are pre-
dicted, the silences are created in the saved positions repeating a silence frame that
have been randomly selected from a recording from the Bertso database. When
all frames in the utterance are generated the f, denormalization process is applied

and the vibrato reconstruction is also added to the f; signal.

5.7.2 Label preparation

Using the music scores created in Chapter 4 for the Bertso database, we created
the context labels defined in Section 5.5.2. In DNN-based synthesis systems the
context labels are converted to vectors and used as input of the networks. We rep-
resented the phonemes with one-hot encoding and the phoneme subgroups with
binary encoding because of their non-continuous nature, but the rest of the fea-
tures are represented numerically with integers. DNN-based systems do not use
the questions to cluster features like HMM-based systems. This allows to use big
numerical ranges without increasing the number of questions. This is why we de-
cided to use a higher precision in the definition of the note pitch and pitch distance
in this system than the one used in the HMM-based systems developed. Using the
continuous note pitch labels that we automatically created, we rounded the pitch
value in cents to the nearest integer. This provides a higher precision compared to
the MIDI number used in HMM-based systems. In the frame level prediction net-
works, 3 coarse-coded features and the duration of the phoneme have been added
to each frame [166]. The coarse-coding feature adds information about the posi-
tion of each frame inside the phoneme to the input vector. The positioning infor-
mation is obtained by sampling three gaussian functions of 0.4 standard deviation
that are stretched or compressed to adapt to the duration of each phoneme. This
stretching or compressing process allows representing the same relative position
values inside each phoneme with similar values of the coarse features. The equa-

tion of a gaussian with 0.4 standard deviation and 0 mean value is
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gx) = W

1 o~ /2047

(5.8)

where x is the time axis. The three coarse features are obtained from this gaus-

sian function applying different delays and stretching factors, as indicated in the

next list:

Coarse value

« First coarse feature: The mean of the gaussian (g(0)) is positioned at the

start of the phoneme and the gaussian is expanded so that g(1) coincides

with the end of the phoneme.

Second coarse feature: The mean of the gaussian is positioned at the center

of the phoneme and the gaussian is stretched so that g(—0.5) corresponds

to the beginning of the phoneme and g(0.5) corresponds to the end of the

phoneme.

Third coarse feature: The mean of the gaussian is positioned at the end of

the phoneme and the function is spread so that g(—1) coincides with the

start of the phoneme.

The representation of the gaussians can be seen in Figure 5.7.3.
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Figure 5.7.3: Coarse-coding in contiguous /I/ and /a/ phonemes
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5.7.3 Trained models

The DNN models have been trained using the material defined in Section 5.5.1.
One model has been created per singer. The training set has been used to train the
networks and the validation set has been used to stop neural network iterations us-
ing the validation loss as reference. The numerical features of the input and the all
the output features have been normalized with 0 value in mean and 1 in variance
for the neural training. We used the Minimum Square Error (MSE) to optimize
the networks with Adam optimizer and 0.001 learning rate. In the duration model,
we have used a batch size of 512, input labels of size 456 and output labels of di-
mension 1. In the model of the MCEP and MVF the batch size have been 200, the
input labels size 460 and the output features of dimension 123. In the model of
the fy and the Vibrato the batch size have been 200, the input labels size 460 and
the output features of dimension 11. In these models the f, normalization process
explainedin Section 5.2.1 has been used. The characteristics of the training of each

model can be seen in Table 5.7.1.

Durations MCEP + MVF fo + vibrato
Singer ID | Epochs Val;l;; on Epochs Vall;([l;;l on Epochs Val;ll;gon
0030b 124 0.0560 38 0.5591 11 0.5964
0045b 82 0.0577 26 0.5591 20 0.4339
0051b 71 0.0747 42 0.6065 9 0.3499
0054b 139 0.0489 36 0.6219 13 0.5983
0087b 139 0.0527 29 0.5900 24 0.2944
0108b 103 0.0430 29 0.5912 23 0.5912
0111b 133 0.0375 34 0.5336 8 0.5915
0113b 86 0.0563 40 0.5902 8 0.5408
0115b 91 0.0900 42 0.5233 19 0.6628
0125b 26 0.3222 49 0.4239 25 0.4773
0126b 152 0.0379 28 0.6104 23 0.6104
0151b 94 0.0277 28 0.5121 11 0.6507

Table 5.7.1: Characteristics of DNN training with validation early stopping

The trained models are evaluated in Section 5.8.
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5.8 Evaluation

5.8.1 Objective evaluation

For objective evaluation, we compared the parameters of the 10 utterances reserved
for testing purposes synthesized with the values predicted by the different models
built for the selected singers. The evaluation of phoneme durations and all acous-
tic parameters have been performed in different synthesis utterances in each bert-
solari. The predicted phoneme durations have been evaluated using the original
durations. However, the acoustic parameter evaluations have been calculated in
utterances synthesized forcing the duration to that of the original utterances. In
this way the need for alignment between the synthetic signal and the reference is
eliminated. The error formulas used for each parameter are shown in equations 5.9

to 5.13:

« Duration distortion: The average duration distortion is calculated with

the expression

N .
1 |d; — dy|

D, = — E = - )
N2 4 (5.9)

where N is the total number of phonemes, d is the duration of the original
phoneme and d is the predicted duration for the phoneme. The distortion
calculated per singer can be seen in Figure 5.8.1. We visualized the mean

and standard deviation of each system in all phonemes.

« MCD: The Mel Cepstral Distortion (MCD) is calculated using the expres-

sion

T 40

MCD = m%% 3 \ S 2(melt,i) — mepalt ) (5.10)

t=1 i=1
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where T is the total number of frames, mc is the matrix with the original mel
cesptral parameter frames and ¢, is the matrix with the predicted mel
cesptral parameter frames. The Mel Cepstral Distortion (MCD) calculated
per singer can be seen in Figure 5.8.2. We visualized the mean and standard

deviation per utterance in the test set.

« MVF RMSE: The MVF is a voice parameter with high range of values be-
cause it varies from the maximum periodic frequency in voiced frames to 0
in unvoiced frames. To reduce the distortion value of this feature we eval-
uated it only in the frames that are voiced in the reference and predicted
features. The MVF error in these voiced frames is calculated using the ex-

pression of Root Minimum Square Error (RMSE).

T

1
MWe - ? ;(mvf(tvoiced) - mv];wed(tvoiced))z (511)
where T is the total number of frames, mvf is the original MVF value for
this frame and mvf,,,.q is the predicted value. The MVF error calculated per
singer can be seen in Figure 5.8.3. We visualized the mean and standard

deviation per utterance in the test set.

« V/UV error: The Voice/Unvoiced (V/UV) error is calculated using the

expression

.= w (5.12)
where FP is the total number of unvoiced frames classified as voiced, FN is
the total number of voiced frames classified as unvoiced and T is the total
number of frames. The V/UV error calculated per singer can be seen in
Figure 5.8.4. We visualized the mean and standard deviation per utterance

in the test set.

« fo RMSE: The f; error is calculated using the expression of RMSE
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fOe = ,ll,z_l:(fO(tvaiced) _fOpred(tvuiced))z (513)

where T is the total number of frames, f; is the original fo value and fo,.q is
the predicted f,. We only evaluated the frames that are voiced in both the
original and predicted f;. The f, error calculated per singer can be seen in
Figure 5.8.5. We visualized the mean and standard deviation per utterance

in the test set.
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We can observe in the figures that the DNNs obtain the best result in every cate-
gory and singer. With these results we can say that Neural Networks seem a better
parameter prediction mechanism compared to the HMM-based systems. We are
aware that the objective measures considered have not always correlation with the
subjective evaluation. Nevertheless, these results are a clear proof of the advantage
of Neural Networks in objective evaluation. If we consider the two HMM-based
systems, we can observe that none of them offers a clear advantage over the other.
To analyze this in a deeper way we wrote in Table 5.8.1 the number of times that
each of the HMM-based systems obtains better mean results that the other HMM-

based system.

Measures HMM | . HMM- .
pitch normalization
Duration distortion 4 8
MCD 6 6
fo RMSE 7 )
MVF RMSE 6 6
V/UV error 6 6

Table 5.8.1: Best position of each HMM based synthesis system for different
measures

In the table we can observe there is not a clear advantage of a system in any of
the objective measures considered. In the figures we also visualized the distortion
of the parameter considering the utterances of all the bertsolaris together. In this
evaluation the neural networks obtain the best result in all evaluation parameters
and the HMM-based systems are very close. If we compare the HMM-based sys-
tems, the system with no f, normalization obtain better mean results in duration
distortion, MCD, VUV error and MVF RMSE. The system with no f, normaliza-
tion obtain better mean distortion in the majority of the parameters but the margin

is very small as it can be seen in the figures.
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5.8.2 Subjective evaluation

In the subjective evaluation, we selected multiple original and synthesized record-
ings and tested their quality and similarity using Mean Opinion Score (MOS) and
Similarity Score method. This kind of test is completed by people and therefore
the number of synthetic signals that can be evaluated must be limited. This is why
we made a selection of singers for this test. We decided that taking into account
the time limitation of the test, we could evaluate five singers. Looking at the fig-
ures in Section 5.5, we concluded that it was interesting to include singers from a
diversity of year span, of different genres and level of vibrato. Regarding genre, we
only have one possibility for female singers and therefore singer 0113b has been
included in the test. About the year span, we consider that the best option is to test
modern singers and singers with a high year span in recordings so that we can ana-
lyze session and year variability. Considering this, we included 0045b and 0108b
who have a big year span and 0030b as a modern bertsolari. We consider the fe-
male bertsolari as a modern one too. For the case of vibrato, we selected bertsolari
0054b as he is a clear exception who often uses the vibrato reconstruction tech-
nique with a clear amplitude. About the note pitch and note duration variation,
there are no clear different classes to analyze, only the higher pitch of the female
bertsolari that it is already included in the selection. After this analysis, bertsolaris
0030b, 0045b, 0054b, 0108b and 0113b have been selected to be included in the
subjective test.

The recordings of each of the singers have not been pre-designed to comprise
all the musical spectrum that each of the singers can cover. We also have to take
into account that each of the singers has very different songs in lyrics and melody
among their recordings. Taking into account this variability, we decided to test
sung utterances that have the highest probability considering the note distribution
in the training set of each bertsolari. With this selection we tackle the problem ex-
plained in Section S.4. The recordings of all the bertsolaris are not comparable and
therefore we are interested in evaluating the ceiling quality of the systems trained

with these recordings. If we synthesize songs with a higher note pitch range than

204



the one seen during training, the model will likely synthesize singing voice with
errors in the notes with lack of data. The presence of these errors can be predicted
before the synthesis by observing the range of the training data. The objective of
this test is to imitate the results of models with pre-designed recordings and with
a large musical range cover for each singer. Taking this into account, we used the
method explained in Section 5.4 to adapt the most used 30 music scores in the
melody database to the range of each bertsolari. After adapting the scores, we se-
lected the 20 bertso utterances from these scores that have the best note probabil-
ity in the note PDFs of the training data of each bertsolari.

30 people, most of them with experience in Speech and NLP research areas,

evaluated the quality and similarity of 4 types of recordings in a 5 point MOS scale:

« Original: Original recordings that were included to have an upper refer-

ence to compare the results of our systems.

« HMM: HMM -based system modeling Mel-Generalized Cepstrum (MGC),
MUVEF, fj in cents and respective delta and delta-delta features.

« HMM-pitch normalization: HMM-based system modeling MGC, MVF

and the normalized f; in cents and respective delta and delta-delta features.

« DNN: DNN-based system modeling MGC, MVF and the normalized f, in

cents and respective delta and delta-delta features.

The participants used the MOS evaluation system to evaluate the Quality and
Similarity Score in two separate tests. The mean scores and the 95 % confidence
interval values for the Quality and the Similarity scores are show in Tables 5.8.2

and 5.8.3 respectively.
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Singer ID | Original HMM . HMM- . DNN
pitch normalization

0030b 4.85+0.08 | 2.72+£0.22 2.89+0.22 | 2.88+£0.22
0045b 475+0.11 | 2.61£0.22 2.69+£0.22 | 295+0.18
0054b 477+0.11 | 2.71£0.22 2.68+0.23 | 2.44+0.19
0108b 476 +0.10 | 2.39£0.22 241+£022 | 243+0.19
0113b 4.87+0.07 | 2.68 £0.23 3.02+0.26 | 3.01+£0.20
Total 4.80+0.04 | 2.62+0.10 2.74£0.10 | 2.74 £ 0.09

Table 5.8.2: Results of the subjective evaluation of quality

Singer ID | Original HMM . HMM- . DNN
pitch normalization

0030b 4.34£0.26 | 2.64+£0.31 3241029 | 2.72+0.28
0045b 3.31+£0.37 | 2.79+£0.30 3.18+0.26 | 2.70 £ 0.27
0054b 3.65+£0.35 | 2.43+£0.32 2.57+0.30 | 2.20+0.27
0108b 3.93+£0.35 | 2.81+0.32 2.88+0.28 | 2.34+0.30
0113b 4.37£0.29 | 3.33£0.28 3.72+0.30 | 3.10+0.34
Total 3.92+0.15 | 2.80+0.14 3.12+0.13 | 2.62£0.13

Table 5.8.3: Results of the subjective evaluation of similarity with the origi-

nal voice

5.8.2.1 Analysis of the subjective results

In the results of quality scores, we can observe that the original recordings obtain
a score very close to the maximum score of 5, which indicates that evaluators did
not score the stimuli randomly and that these recordings may indeed be an upper
reference for the subjective measures. The results for the natural recordings in the
similarity scores are not as close to the maximum as happened with quality MOS.
The singers with more modern recordings, 0030b and 0113b, have higher scores
of similarity for the original recordings than the rest. We interpret this as a clear
sign that the bertsolaris with a bigger span of recording years have recordings with
more diversity in quality, environment and bertsolari age. All these factors affected

the perception of voice similarity in the test. We have empirically observed that
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older recordings tend to have worse quality than the modern ones. With respect
to the age, considering big time spans in the recordings creates non uniform data,
because of the change of the voice with the age.

The methods that include f, normalization get the best results for quality MOS
except for singer 0054b. There are two motives for these good results of the meth-
ods with fy normalization. First, the representation in musical labels of the notes
is limited to the notes tuned with the 440 Hz A, and we know that the singers in
the Bertso database do not sing all the notes with this tuning. This dispersion in
the tuning creates problems of definition when we model the f; directly, creating
high variance definition of each note. The variance between all the notes defined
as the same semitone is too high to generate stable notes and therefore, unnatu-
ral notes are created. Second, created notes can be stable but not correctly tuned
and the listeners can detect this lack of tuning. Another clear conclusion is that
the singers with modern recordings, 0030b and 0113b, obtain better scores for
almost all systems. Among the singers with modern recordings, the singer with
the most recordings available to do the training obtains the best score (0113b). It
can be said that obtaining better quality results with tuned notes, more uniform
recordings, more quality in the recordings and more data to train are expected and
intuitive results. If we compare the HMM-based and DNN-based systems that use
pitch normalization, we obtain mixed results. In the modern bertsolaris, the scores
are almost tied with a small advantage for HMMs; in the three remaining singers
with older recordings, DNNs obtain a high advantage for 0045b, HMMs obtain a
high advantage for 0054b and results for 0108b are very close in both systems, with
a small advantage for the DNNs. The singer with vibrato, 0054b, obtains overall
the worst results comparing with the rest of bertsolaris and there is no clear advan-
tage in scores between the DNN-based system that uses the vibrato reconstruction
and the rest of the systems. We observed that the vibrato is not present in many of
the test recordings. This is because these utterances have not many long notes that
are needed for the vibrato to be present. In addition, we have to consider that all
the recordings of this bertsolari are from the 80s and we have seen that the bigger

the amount of modern recordings, the higher is the subjective perceived quality.
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In the similarity scores, the HMM-based systems clearly capture in a better way
the identity of the singing voices. The HMM-pitch normalization system obtains
the best result in every bertsolari and the DNN system obtains the worst result in
every bertsolari except for 0030b. The scores are related to the number of modern
recordings as in the quality evaluation and the note tuning does not seem to be an
important aspect for singer recognition. This means that although the melody is
not properly interpreted in the musical aspect, the listeners are able to detect the

identity of the bertsolari.

5.9 Chapter conclusion

In this chapter we used GMM-HMM and Neural Networks to create three differ-
ent statistical parametric singing voice synthesis systems using automatically anno-
tated bertsolaritza recordings. We defined a method to synthesize tuned singing
voices using fo normalization and defined a phoneme dependent f; normalization
considering the characteristics of singing fo. We included the vibrato reconstruc-
tion technique in neural network synthesis systems that automatically includes vi-
brato in the notes in the voices that uses it in the recordings. A musical score adap-
tation method have been defined to make it easier the data preparation for multiple
bertsolaris with very different singing pitch ranges. The objective results shown a
better parameter prediction have been obtained by Neural networks. The subjec-
tive evaluation of the quality ceiling showed preference for f, normalization and no
clear difference between the HMM and Neural Networks that use it. We evaluated
also the similarity of the synthesized voice with the original recordings obtaining
better results in HMM systems. The similarity evaluation demonstrated also that
bertsolaris with bigger time span in the recordings are harder recognize because

the quality of sessions and the age of the bertsolaris vary more in their recordings.
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Conclusions

In this chapter we summarize the contributions made in this work and comment
on possible future developments and improvements. In Section 6.1 we explain all
the contributions and publications of this work. Next, in Section 6.2 we define

possible improvements and new research areas for the work made.

6.1 Contributions

In this thesis we have explored the possibility of using the bertso recordings com-
piled by Xenpelar Documentation Center for bertsolaritza singing voice synthesis.
For this purpose, we have created diverse tools to label the bertso recordings at mul-
tiple levels of annotation. We have obtained a multi-singer singing voice synthesis
database that is separated in utterances and is labeled at phonetic and musical level.

We have used the database to obtain singing synthesis models of multiple bertso-
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laris with different technologies. The automatic labeling systems and the singing
voice synthesis systems have been evaluated with good results. In this section we
briefly describe the contributions of the work and we list all the scientific publica-

tions derived from it.

6.1.1 Analysis of singing voice and bertsolaritza

We have studied the technologies used for analysis, synthesis, segmentation and
labeling of singing voice, producing documentation and discussing the main ad-
vantages and drawbacks of each of them.

We also have made an in-depth description of the bertsolaritza art creating doc-
umentation defining its history, explaining its structure and addressing all the re-
search made on this art. The documentation reveals the social relevance of this
art in the Basque Country and the need of signal processing research to open new

ways to analyze it.

6.1.2 Singing voice data collection

We have collected, documented and standardized all the available singing voice
data. The bertso recordings of the Xenpelar Documentation Center have been
characterized adapting data formats to make further analysis in audio files, music
scores and transcriptions easier. The preparation of the Bertso database has been
published in [128]. NUS and NITech databases have also been collected and de-
scribed. Phonetic music scores have been added to the NUS database, obtaining
the music scores of the songs and manually correcting differences in phonetic tran-

scriptions and pronounced phonemes.

6.1.3 Automatic labeling of bertso recordings

We have created a pipeline with automatic labeling methods to prepare the bertso

recordings from Xenpelar Documentation Center for singing voice synthesis. We
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have devised several methods to obtain singing voice segments, and to perform
utterance segmentation, phoneme segmentation and musical labeling.

The singing voice segmentation we have developed is a method that uses anovel
note detection algorithm. The segmentation system has been published in [129]
and [130]. The results of our methods have been compared with other systems ob-
taining better generalization for different databases and faster comnputation time.

We have proposed a multi-singer utterance segmentation system that detects
silences that are not present in the transcriptions. The method uses different mod-
els for the phonemes depending on their position inside the word and applies
singer adaptation to be able to segment recordings from new singers without re-
training. This is an advantage as our method can be used in the future to segment
new singers with no need of updating the model. For phoneme segmentation, we
compared mono-singer systems with multi-singer systems that use singer adapta-
tion. We also tested different phoneme modeling strategies considering the posi-
tion of the phoneme in the word and syllable. The best results have been obtained
in the multi-singer system with the syllable level phoneme models. We have also
devised a novel phoneme boundary refinement method that uses audio novelty.
We proved that the use of boundary refinement improves the alignment results
both at a global level and also for every phoneme.

We have analyzed the coherence of the bertso recordings with the melodies and
compared this coherence with other singing voice database to evaluate the results.
Taking into account the results of this analysis, we have considered that bertso
melodies are not suitable to be used to musically annotate the recordings. In con-
sequence, we have devised methods to annotate scoreless singing voice recordings.
We labeled the pitch of the notes using the obtained phoneme alignments and ap-
plying a novel method for note labeling. The proposed note labeling procedure
includes a vibrato detection and characterization method that obtains frame-level
information of the modulation. The duration of the notes has been labeled com-
bining the note distributions of the bertso melodies and the real durations of the
syllables. With this duration labeling system we have created a coherent labeling

for the music scores of bertso melodies that allows flexibility in the tempo.
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Multiple systems that predict the bertso melody of each bertso have been cre-
ated. Although the correspondence between the labeled melody and the interpre-
tation is not perfect, it have been proved that the classification of the recording in
the most similar melody can obtain good results. The system with the best results
uses our automatic musical labeling and the distance between note sequences to

obtain the most similar melody.

6.1.4 Bertso database

After using all our labeling systems we obtained a singing voice database of bert-
sos with all the labels needed for singing synthesis. The multi-singer database has
bigger size that any publicly available singing voice database with more than 49
hours of singing from more than 170 bertsolaris. We have characterized the distri-
bution of pitch values, durations, number of utterances and vibrato use in it. We
observed that there were more utterances and longer recording for males than fe-
males in the database. The use of vibrato is also higher in the male bertsolaris than

in female bertsolaris.

6.1.5 Singing synthesis systems

We have built singing voice synthesis systems that use different techniques to im-
prove the quality of the singing voice synthesis. We have included novel pitch nor-
malization and vibrato reconstruction techniques. We have tested different uses
of these techniques to evaluate the improvements obtained by them. In total two
HMM-based synthesis systems (one applying f, normalization in the modeling
and the other one without f, normalization) and a single DNN-based synthesis
system have been created. We have developed an automatic method for singer
adaptation of music scores to make the process of synthesizing any music score

with synthesis models of different range singers easier.
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6.1.6 Evaluation of singing synthesis systems

We have evaluated the synthesis systems with objective and subjective tests. In
the objective test, DNN-based system obtained the best results in all the proposed
measures and singers. The two HMM-based systems obtained worse results com-
pared to DNN-based system, but there is no clear difference if we compare one
against each other: they get similar results.

In the subjective evaluation, we evaluated the quality of the synthesis and the
similarity of the synthetic voice with the original voice. In the quality test, the
models that have been trained with more modern recordings and pitch normaliza-
tion obtained the best results. The bertsolaris with bigger span in the recording
years have more diversity in the characteristics and quality of the recordings and
this has a damaging effect in the models. The pitch normalization procedure pro-
posed helps to create relative pitch models that contribute to the synthesis of tuned
melodies. Without the pitch normalization, the model of the pitch values has to
deal with high variance values to model, resulting on unexpected melodies as re-
sult.

In the similarity evaluation results have shown that the HMM-based systems
create synthetic singing voices that are easier to identify than those produced with
DNN. The pitch normalization technique does not improve the singer recognition,
this means that a good representation of the melody is not correlated with singer
identification.

The vibrato reconstruction has not produced any clear improvement nor degra-
dation in the results of any evaluation. The main reason for this is the automatic
selection of the evaluation utterances. The vibrato is used exclusively in long notes

and the utterances selected for evaluation have few long notes.

213



6.1.7 Publications

6.1.7.1 Journal publications

Sarasola, X., Navas, E., Tavarez, D., Serrano, L., Saratxaga, I. and Hernaez,
I, 2019. Application of Pitch Derived Parameters to Speech and Mono-
phonic Singing Classification. Applied Sciences, 9(15), p.3140.

6.1.7.2 Conference papers

Sarasola, X., Navas, E., Tavarez, D., Serrano, L. and Saratxaga, 1., 2018.
Speech and monophonic singing segmentation using pitch parameters. In
IberSPEECH (pp. 147-151).

Tavarez, D., Sarasola, X., Alonso, A., Sanchez, ], Serrano, L., Navas, E. and
Hernaez, 1., 2017. Exploring Fusion Methods and Feature Space for the
Classification of Paralinguistic Information. InINTERSPEECH (pp. 3517-
3521).

Sarasola, X., Navas, E. eta Herndez, 1., 2017, Maiatza. Ahots kantatuaren

sintesiaren tzapena bertsolaritzarako, Ikergazte 2017

Sarasola, X., Navas, E., Tavarez, D., Erro, D., Saratxaga, I. and Hernaez, I,
2016, May. A singing voice database in Basque for statistical singing synthe-
sis of bertsolaritza. In Proceedings of the Tenth International Conference

on Language Resources and Evaluation (LREC 2016) (pp. 756-759).

Erro, D., Alonso, A., Serrano, L., Tavarez, D., Odriozola, I., Sarasola, X.,
del Blanco, E., Sinchez, J., Saratxaga, 1., Navas, E. and Herndez, I, 2016.
ML Parameter Generation with a Reformulated MGE Training Criterion-
Participation in the Voice Conversion Challenge 2016. In INTERSPEECH
(pp- 1662-1666).
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« del Blanco, E., Hernaez, 1., Navas, E., Sarasola, X. and Erro, D., 2016. Bert-
sokantari: a TT'S Based Singing Synthesis System. In INTERSPEECH (pp.
1240-1244).

6.1.7.3 Awards and distinctions

« Selected paper "Speech and monophonic singing segmentation using pitch
parameters” in Iberspeech 2018 Conference to be part of "IberSPEECH
2018: Speech and Language Technologies for Iberian Languages” Special
Issue in the Multidisciplinary Digital Publishing Institute Journal.

6.2 Future work

In this work we obtained a multi-singer singing voice database with musical label-
ing. In the speech generation area, multi-singer databases may be used for voice

adaptation and voice conversion techniques. Voice adaptation methods use multi-
singer data to create average voice models and then employ these average voice

models to create synthesis models for one singer by applying adaptation algorithms.
The amount of data required to create a synthesis model for a singer by adaptation

is smaller than the one needed if we train it from zero. Voice adaptation systems

with a good average model need less data for each singer to synthesize their voices,
creating an advantage for the generation of new voices. In singing voice conversion

systems two types of systems can be found: parallel and non parallel conversion.
The Bertso database has no parallel data for any singer. Therefore it is impossible

to work with parallel conversion methods. With this database, non-parallel con-
version systems should be used.

Since 2016, the increasing availability of big speech databases has created new
paradigms for statistical speech generation. Architectures based on neural net-
works like Tacotron and Wavenet have proven to create new ways to model speech
signal and they have achieved better results than the previous systems. Similar

DNN based architectures have been tested for singing voice but the resulting sub-
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jective quality results are not in the level of speech. In this work we have created
a relatively big singing database, but there are not enough recordings from each
singer to train independent Tacotron or Wavenet systems. The only option to do
experiments with these architectures is to adapt them or to use all the database to
build multi-singer models using singer embeddings.

This work also asserted the importance of the f; for singing voice perception.
The expressiveness and naturalness of the singing voice highly depends on f, and
all the phenomena that happens on it. Creating new methods to model the f, curve
after a deeper analysis of bertsolaritza would improve the final quality of the syn-
thetic singing voice in a considerable way. Separating the f; in different elements
(i.e. melody, transitions, vibrato and microprosody) and parametric reconstruc-

tion of these elements is the most used technique.
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Acronyms

ABS Analysis-by-Synthesis. 32, 37

AST Automatic Singing Transcriptions. 43
BDB Bertsolaritzaren Datu-Basea. ix, xiii, 53-59, 61, 92

CGAN Conditional Generative Adversarial Network. 38
CMVN Cepstral Mean and Variance Normalization. 83

CNN Convolutional Neural Network. 38, 43

DFET Discrete Fourier Transform. 41, 82, 83, 87, 89
DNA Deoxyribonucleic acid. 67

DNN Deep Neural Network. iii, vi, xi, xvi, xx, 9, 10, 20, 21, 38, 65, 68, 101, 171,
172,175, 189, 190, 193, 194, 196, 198, 203, 205-208, 212, 213, 215

DTW Dynamic Time Warping. 42, 118, 122, 157, 159
EpR Excitation plus Resonance. 32

FFE fo Frame Error. 114

FM Frequency Modulation. 30, 31
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fMLLR Feature space Maximum Likelihood Linear Regression. 93, 95
FOF Fonction d’Onde Formantique. 32

FPE Fine Pitch Error. 114

GMM Gaussian Mixture Model. ix, x, xix, 41, 73-75, 82-84, 86, 87, 89, 101, 191,
208

GPE Gross Pitch Error. 114

GV Global Variance. 192

HMM Hidden Markov Model. iii, vi, ix—xi, xix, xxi, 3, 10, 20, 37, 38, 42-44, 65,
67, 68, 73-75, 84, 101, 105, 113, 138, 168, 171, 172, 175, 189-193, 195,
196,203,205-208,212,213

HSMM Hidden Semi-Markov Models. 43

HTK Hidden Markov Model Toolkit. 67, 101

IBM International Business Machines Corporation. 38

IDE Integrated Development Environment. 68
KTH Kungliga Tekniska Hogskolan. 18, 30, 34

LDA Linear Discriminant Analysis. 93, 95
LPC Linear Predictive Coding. 31

LSTM Long Short-Term Memory. 20

MAP Maximum a Posteriori. 42

MCD Mel Cepstral Distortion. xvi, 199-201, 203
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MCEP Mel-cepstral Coeflicients. 68, 172, 173, 190, 192-194, 198
MDL Minimum Description Length. 191, 193

MFCC Mel Frequency Cepstral Coefhicient. ix, 73-75, 82, 83, 86-89, 93, 101,
169

MGC Mel-Generalized Cepstrum. 205

MIDI Musical Instrument Digital Interface. 25, 5SS, 114, 130, 146, 189
MIR Music Information Retrieval. 43

MLLR Maximum Likelihood Linear Regression. 42

MLLT Maximum Likelihood Linear Transform. 93, 95

MLPG Maximum Likelihood Parameter Generation. 173, 190, 192, 195
MOS Mean Opinion Score. 204-207

MP3 MPEG-2 Audio Layer III. 55, 56

MSD Multi-Space Probability Distribution. 192

MSE Minimum Square Error. 198

MusicXML Music extensible Markup Language. 56

MUSSE Music and Singing Synthesis Equipment. 30

MVF Maximum Voiced Frequency. xvi, 68, 172, 173, 192-194, 198, 200, 202,
203,205

NITech Nagoya Institute of Technology. xiii, 53, 65, 66, 68, 69, 124, 125,210
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