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Introduction

Computational physics is the scientific discipline that creates, develops and
implements numerical algorithms to solve problems in Physics for which a
quantitative theory already exists.

The fundamental physical theory which describes the behavior of matter
at the microscopic scale is quantum mechanics. The problem of determining
a given property of a material, once its chemical composition is known, can be
formally traced back to the problem of solving the corresponding many-body
Schrédinger equation for the interacting electrons and nuclei. In this respect,
the fundamental theory underlying any many-body problem exists and is
known.

Both the difficulty and the beauty in this kind of problems lie in its many
constituents. Most of the properties that we observe result from the interac-
tions among the huge number of electrons and nuclei by which a macroscopic
piece of any material is formed. Nonetheless, it is its microscopic atomic
composition what ultimately shapes its behavior. Therefore, a completely
general method which aims to predict the characteristics of any material
has to begin from the quantum mechanical description of its underlying
atomic structure, that is, from first principles. However, even if a complete
understanding of the isolated atom is at hand, it is hopeless to try and
deduce from that knowledge only, for instance, whether the corresponding
elemental solid will be an insulator, a metal or a superconductor at a given
temperature. The interactions among the atomic constituents have to be
included in the theory, and this makes the direct solution of the problem
impossible.

In this context, it is the task of computational condensed-matter physi-
cists to develop theoretical schemes in which these many-body interactions
are converted into tractable problems, and to provide algorithms which
numerically solve these problems as efficiently as possible. From the practi-
cal implementation and execution of these algorithms, insight into already
measured experimental phenomena can be gained, new interesting emergent
physical effects can be predicted, and eventually novel materials with inter-
esting properties can be virtually designed on a computer, before they are
actually synthesized in a laboratory.
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The enormous progress that this field has witnessed during the last
years can hardly be overstated. This is mainly due to the outstanding
methodological advances that have been put forward to describe materials
properties at the quantum-mechanical level, together with the exponential
increase of computing power provided by the modern hardware and software
technologies. At present, first principles calculations are routinely performed
on a daily basis, providing accurate predictions about complex properties of
diverse materials. However, the more intricate the interactions in the system
one wants to analyze are, the more challenging the prediction of its properties
is, since it becomes more difficult to adopt simplifying assumptions that
account for those interactions while maintaining a quantitative accuracy.

In this respect, a detailed description of the coupling between the electrons
and the atomic vibrations — i.e. the electron-phonon interaction — stands
for one of the biggest challenges in the history of computational condensed-
matter physics. The crucial role played by the electron-phonon interaction
in diverse observable phenomena such as the temperature dependence of
carrier mobility and the optical absorption in semiconductors, or the electrical
resistivity and even the conventional superconductivity in metals, has led
to a persistent effort to model this physical process ever since the early
days of the quantum theory of solids [1, 2]. However, although a rigorous
field-theoretical formalism accounting for this many-body interaction was
already developed more than half a century ago [3-6], it has been only very
recently possible to include electron-phonon interactions in quantitative first
principles calculations of complex materials properties [7], owing to the large
computational effort required to accurately model this process.

The efficient numerical methods developed during the last years [8—11]
have boosted tremendously the accuracy of theoretical studies on electron-
phonon driven phenomena measured in experiments, such as quasiparticle
renormalization signatures in angle resolved photoemission spectra [12-14],
non-adiabatic corrections to phonon dispersions [15-18], or gap anisotropy
in phonon-mediated superconductors [19, 20]. However, as the comparison
between theory and experiment gets more refined, and with the ambition of
exploring novel effects involving electron-phonon interactions in increasingly
complex materials, new theoretical and methodological advances are still
much needed in this field.

In this thesis, we develop and implement several numerical methods to
solve, from first principles, different many-body problems related to the
electron-phonon interaction in solids. Our methods allow us to get detailed
physical insight into existing experimental results, and occasionally even
to predict new effects, at a remarkably reduced computational effort as
compared to state-of-the-art approaches. Most importantly, as the range
of applicability of the developed techniques goes beyond what is explored
in this thesis, this work opens interesting prospects in different branches of
computational many-body physics.



The main part of this thesis is organized as follows. Chapter 1 reviews
the general theoretical framework on which the developed methods and the
discussed physics are based, namely the self-consistent many-body theory
of electron-phonon interactions through Green’s function techniques and
Density Functional Theory. Short notes on the extension of the formalism to
describe the superconducting state are given in Appendix A.

From this many-body formalism it appears clear that the self-consistent
response of the electron density to the atomic displacements plays a crucial
role in the theory of the electron-phonon interaction. In Chapter 2, we
analyze in more detail several generally overlooked aspects of the electronic
response. For that purpose, we implement an interpolation technique to
efficiently compute the density-response function at surfaces and low dimen-
sional systems, focusing on the real-space structure of the possible electronic
collective excitations that may exist in the system. Our scheme allows us
to study numerically, for the first time, the general spinorial structure of
the electronic response induced by the spin-orbit coupling at surfaces with
strong relativistic corrections. Moreover, by applying our methodology to
the T1/Si(111) surface, we show the existence of a novel coupled spin-charge
plasmon localized at surfaces with spin-polarized states.

In Chapter 3, we dig into the subtleties of the renormalization of electron
quasiparticles driven by their interaction with phonons. We start from a
rigorous account of the definition of quasiparticles within the Green’s function
formalism, showing the mathematical complexities of the determination of
their renormalized energies and spectral weights on the complex-energy plane.
Then, starting from simplified models, we extend existing approaches by
which the analytic continuation of a general self-energy can be numerically
obtained, a necessary step to properly solve the quasiparticle equation. We
apply our methodology to the doped monolayer MoS2, and unambiguously
identify strongly renormalized quasiparticles that underpin the intricate spec-
tral features reported in very recent experimental measurements performed
on this system.

The electron-phonon interaction is usually anisotropic in momentum
space, but is restricted to a narrow energy window around the Fermi surface.
This poses a particularly challenging problem from a numerical point of view,
since conventional techniques require samplings of up to millions of points
in the Brillouin zone to accurately describe this many-body interaction. In
Chapter 4, we demonstrate the potential of the Helmholtz Fermi Surface
Harmonics basis set to reduce, in several orders of magnitude, the computa-
tional effort to solve electron-phonon problems defined on the Fermi surface.
In the first part of the chapter, we implement a numerical procedure to
incorporate the symmetries of the crystal in the basis set. In the second part,
we apply the methodology to solve the anisotropic Eliashberg equations of
superconductivity in this new representation, showing that the anisotropic
superconducting gap and transition temperature of phonon-mediated super-
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conductors can be accurately determined by a handful of symmetric elements
of the set. The results reported in this chapter pave the way towards the
application of the Helmholtz Fermi Surface Harmonics basis set in diverse
problems involving many-body interactions on the Fermi surface.

On a final note, in Chapter 5 we review the main results obtained in this
thesis and draw the most important conclusions. We also outline a number
research directions opened by combining the methodologies developed in the
different chapters and beyond.



Chapter 1

Theoretical background

In this first chapter, we introduce the general theoretical concepts and
methods on which the next chapters rely. The theoretical formulation of the
electron-phonon problem has a long history of development, and has been the
subject of several authoritative books and review articles [6, 7, 21, 22]. It is
not our aim here to add new pieces to the existing formulation, but to cover
the main points as comprehensively and concisely as possible. More detailed
derivations and discussions can be found in the references cited above.

Following the spirit of this thesis, we will start from the most general
presentation of the problem, and go through the necessary steps and approxi-
mations to get to the final expressions, which will be ultimately implemented
in the actual calculations presented in the next chapters.

1.1 General Hamiltonian for solids

The most general non-relativistic Hamiltonian for a system of interacting

electrons and nuclei can be written as',

A

ﬁ:Te+Tn+ﬁee+ﬁnn+Uen 9 (11)

where the separate contributions are: ) the electronic kinetic energy,

A

7, — —;/dx B (x) V2 () | (1.2)

i1) the nuclear kinetic energy,

T 7_2 1 872 (1.3)
n et 2M, (“)T,%pa ’ '

1Unless otherwise stated, Hartree atomic units will be used throughout this thesis, i.e.
me =¢=h=4mey = 1.
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ii1) the electron-electron interaction,

~ 1

Use = 5/alr dr’ e (r) [Ae(r) — 6(r — 1')] v(r, 1) , (1.4)
iv) the nucleus-nucleus interaction,

N 1 N N
Unn = 92 Z Lyl U(ngp + ATHI”TS/P' + AT“/pl) ’ (1.5)
K'p' #Kp

v) and the electron-nucleus interaction,
Uen :/dr dr’ Ao () hy (o (r, ') . (1.6)

In the above expressions, v(r,r’) = 1/|r — r’| is the Coulomb interaction,
the integrals [dx = Y, [dr denote sum over spin and integration over
space, and the spatial integrals are over the entire crystal. « represents a
spatial coordinate, and x denotes a nucleus in the unit cell p, whose atomic
number is Z,. The equilibrium coordinates of the nuclei are represented by
T,gp, and the displacement of nuclei with respect to the equilibrium positions
is considered as a dynamical variable, whose quantization yields the operator
AT. The electronic field creation and destruction operators are represented
by @T(r) and \il(r) respectively. Finally, the electron and nuclear density

operators are defined, respectively, as,

fe(r) =Y W(r)¥(r), (1.7)
n(r) = =", Zid(r = 78, = Atiy) - (1.8)

We now introduce the first important approximation used throughout
this thesis, in which it is assumed that the displacements of the nuclei with
respect to the equilibrium positions are small. In this way, we can expand
the delta functions in Eq. (1.8) to second order in the displacements A7,
so that the nuclear density operator of Eq. (1.8) takes the form,

An(r) ~ n(r) + anzn Aty - Vo(r —70)

1 . N
= 5D, O A VVO(r = 7)) - Afig, (L)
where nY(r) is the density of nuclear point charges at the classical equi-

librium positions T,gp. Plugging this expression into Eqgs. (1.5),(1.6), we
obtain the complete electron-nuclei Hamiltonian in the so-called harmonic

approximation.
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1.2 Many-body theory: electron and phonon
Green’s functions

The Hamiltonian presented in Eq. (1.1) contains the whole many-body
problem of solids. If one was able to solve its corresponding Schrédinger
equation, all the information about the system under study would be in
principle contained in its eigenfunctions and eigenvalues. Unfortunately,
it is well-known that this problem is impossible to solve directly except
for extremely simple systems. Moreover, even if the complete many-body
wave functions were available, emergent properties such as phonon modes or
the superconducting state would be hopelessly hidden in the complicated
solution.

The development of many-body physics has shown that it is much more
convenient to work with the Green’s functions drawn from quantum field
theory, as they contain most of the relevant information related to observable
properties in experiments. For example, the ground state energy, the spin
and charge densities, and the excitation spectrum of the system can be
directly determined from the single-particle Green’s function [23].

The time-ordered one-electron Green’s function is formally defined at
zero temperature as,

G(xt,x't") = —i(T W (xt)¥T(x't")) , (1.10)

where brackets indicate an average over the many-body ground state, and
T is the time-ordering operator, so that Eq. (1.10) can be separated in two
contributions [23],

G(xt,x't") = —if(t — ') (U (xt) ¥l (x't)) (1.11a)
+i0(t — ) (U (X)) B (xt)) . (1.11b)

Physically, Eq. (1.11a) gives the probability amplitude for finding an
electron in the position x and time t, after having added an electron in
position x" and time ¢'. Similarly, Eq. (1.11b) describes the propagation of
an extra hole from position x to x’ in the time lapse from ¢ to ¢'.

The exact Green’s functions are not easier to determine than the original
wave functions. However, it is much simpler to make physically transparent
approximations — and in particular perturbative expansions — for their
practical calculation. In this thesis, we follow the functional differentiation
technique [24], applied for the first time to the interacting electron-phonon
problem in the seminal works by Hedin [25] and Baym [4], and reviewed in
Ref. [6] and more recently in Ref. [7].

The main idea behind this technique is to add an external probing field
to the system which will be set to zero at the end of the derivation. The
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Description

Expression

Equation of
motion, electrons

Electron
self-energy

Vertex function

Screened
Coulomb,
phonons

Screened
Coulomb,
electrons

Electronic
polarization

Electronic
dielectric matrix

i0/0t + V2(1)/2 = Viau(1)] G(12)

- /dS £(13)G(32) = 6(12) (1.12)

$(12) = z’/d(34) G(13)T(324)

X [We(41) + Wpn(41))] (1.13)

T'(123)=38(12)5(13)+ /d(4567)
x [0(12)/0G(45)] G(46)G(T5)T(673)  (1.14)

Won(12) = d(34)e; 1 (13) V3,0 Vie(rs — Tp)

kap,r’a’p’
X Dliap,li’a’p’ (t3t4)
X € (24) Vo Vi (ta — To) (1.15)

We(12) = v(12)+/d(34) v(13) P.(34)We(42) (1.16)

P.(12) = —ih Z/d(34) G(13) G(417)T'(342)
" (1.17)

e(12) :6(12)—/d(3)v(13)Pe(32) (1.18)

Table 1.1. Hedin equations for electrons in a vibrating lattice. Additional
equations for the displacement-displacement correlation function D are
needed to obtain the full self-consistent Hedin-Baym equations. Adapted

from Ref. [7] .
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functional derivatives with respect to the probing field, however, may be
nonzero, and appear very useful to derive a set of coupled nonlinear equations
starting from the equation of motion for the electron and displacement
operators. The derivation is rather lengthy and will not be followed here.
Instead, we summarize in Table 1.1 the set of equations which determine
the electron Green’s function?. In Eq. (1.12), Viet(1) = [d2v(12) (A(2))
is the total electrostatic potential, where (1(2)) = (fc(2)) + (n,(2)) is the
expectation value of the total density operator.

The phonon contribution to the electron self-energy, a central theme
in this thesis, is contained in Eq. (1.15). Here, Vi(r) = —Z./|r| is the
bare Coulomb potential of a nucleus k. Most importantly, we introduced a
displacement-displacement correlation function,

Dﬁpa’n/p/a/(t,t,) = —’i(TAﬁgpa(t) Aﬁi/p/a/ (t/)> , (1.19)

which provides all the relevant information about the phonon excitations in
the system. In order to obtain a full self-consistent set of equations for the
coupled electron-phonon system, an equation of motion and a self-energy
have to be introduced for D, similar to Eqgs. (1.12),(1.13) for G [4, 26]. As
the focus of this thesis is put on electronic properties, we will not pursue
this full self-consistency, and an adiabatic approximation will be used for the
determination of D.

Within this approximation, the phonon self-energy is equivalent to the
interatomic force constants one obtains through the Hellman-Feynman theo-
rem [8]. As a result, the Fourier transform of the adiabatic displacement-
displacement correlation function takes a particularly simple form in terms
of the eigenvalues wq, and the eigenvectors e, qv of the dynamical matrix

(6],

dq DE,.(w) ia-(Ro—R./
Dl @) = 5 [ G T g ) ) (120)

where R, denotes the lattice vector of the unit cell p, and where we have

defined,

2wqy

2 2
w* — wg,

Dy (w) =

quv’

Sy - (1.21)

Finally, the inverse Fourier transform of Eq. (1.21) can be directly identified
with a phonon Green’s function, similar to Eq. (1.10),

Do () = =i(T [y, (H)aqu (t') + G—qu()al 4, ()])30nr (1.22)

where dg,, and aq, are the phonon creation and annihilation operators,
respectively [27].

2A compact notation has been used, where (xt) or (rt) — 1, (x't') or (r't') — 2,
(rt+n) — 17, and so on.
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1.3 The phonon contribution to the electron
self-energy

The Hedin-Baym Egs. (1.12)—(1.18) summarized in Table 1.1 incorporate the
effects of the electron-electron and the electron-phonon interactions on the
electron Green’s function on an equal footing. For the sake of clarity, it is
convenient to separate both contributions. This can be achieved by setting
D =0 in a first step, which corresponds to considering the nuclei as classical
particles rigidly fixed in their equilibrium positions, so that (fi,(r)) ~ n9(r).
The equation of motion for the electron Green’s function at such rigid-nuclei
configuration reads

Lot 2

- thj;(l)] G™(12) — /d3 SI(13)G™(32) = §(12) , (1.23)

where X" represents the electron-electron self-energy evaluated at rigid
nuclei,

%(12) = i/d(34) G™(13) T™ (324) W™ (417) . (1.24)

Combining Eqs. (1.23),(1.24) with Eqgs. (1.14),(1.16), one recovers the
set of equations originally derived by Hedin [25], which neglected nuclear
displacements altogether. Their implementation in actual calculations almost
invariably assume I'™(324) ~ 6(13)6(23). This leads to the so-called GW
method, which is the most common procedure to incorporate dynamical
electron-electron interactions in first principles calculations [28-30].

The complete equation of motion Eq. (1.12) can be retrieved by means
of the following Dyson equation,

G(12) = G™(12) +/ d(34) G™(13) XP(34) G(42) , (1.25)
where G™ plays the role of the non-interacting Green’s function. All the

electron-phonon interactions are encoded in the self-energy X°P, which is
conveniently separated in three terms [7]:

P — $FM | yDW | 37dGW (1.26)
where the first term is the so-called dynamical Fan-Migdal self-energy,
»fM(12) = in / d(34) G(13) T'(324) Wy (417) | (1.27)
the second term is the so-called static Debye-Waller self-energy,

»PW(12) :/d3v(13) [(A(3)) — (A™(3))] 6(12) , (1.28)
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and the third term is the correction to the electron-electron self-energy of
Eq. (1.24) due to the fact that the full G, I and W, are different from those
evaluated in a situation where ions constitute a rigid crystal,

»dEW(12) = £, (12) — £I2(12) . (1.29)

This last term has not been investigated in this thesis, nor in any other
work in the literature to the best of out knowledge [7]. As an original
contribution of this thesis, some new aspects of the Debye-Waller term
Eq. (1.28) related to the polaron problem will be discussed in Chapter 3. In
the following, we focus on the dynamical Fan-Migdal self-energy, Eq. (1.27),
which is responsible for most of the physical phenomena related to the
electron-phonon interaction that are discussed in this thesis.

1.4 Practical approximations

The equations presented so far determine the electron Green’s function
exactly within the harmonic approximation. However, the full self-consistent
solution of these equations is still not feasible in practice. In order to arrive
to computable expressions, several approximations have to be made, which
are briefly described in this section.

1.4.1 Migdal approximation

First of all, it is convenient to transform Eq. (1.15) from the canonical xkpa
coordinates to the normal mode coordinates qv as in Eq. (1.20), so that we
have [7],

dw dq _ 4t
»FM(12) = / = d(34)e"w(tamt)
ZZ 27 Qpy

X G(13) ['(324) ggp (r4, w) Dguu (W) gqu (r1,w) (1.30)

where the momentum-integral is over the Brillouin zone whose volume is
Qpz, and where we have defined [6],

1 ,
Jav(r,w) = Z W /dr’ e (r, 1), w)
Kp K% qu

X enqn V'Vi(t' — 10, — Ry) e Rr (1.31a)

1
goo (r,w) = 7/dr' e tr, v, w
q ( ) %; (2anqy 1/2 e ( )

x e V'Vt =71, —Ry) e 4R (1.31Db)

HQV

Writing the self-energy in the form of Eq. (1.30) makes its intepretation in
terms of Feynman diagrams more transparent, as represented in Fig. 1.1(a).



14 Chapter 1. Theoretical background
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Figure 1.1. Diagrammatic representation of the approximations used for the
electron-phonon self-energy. (a) Migdal approximation. (b) Dyson equation
with the final approximated self-energy. Bold (thin) lines represent full
interacting (non-interacting) propagators.

In this picture, Egs. (1.31) represent the probability amplitude for an electron
to emit or absorb a phonon, and the Fan-Migdal self-energy includes all the
possible processes of this kind. In particular, all the multi-phonon processes
are contained in the vertex function I' of Eq. (1.14).

This interpretation also leads us to an important approximation we will
use thorughout this thesis: the so-called Migdal approximation [3]. The
essence of this approximation is to consider only the lowest-order diagram in
the Fan-Migdal self-energy, so that I'(123) ~ §(13)d(23), as shown schemat-
ically in Fig. 1.1(b). This approximation corresponds to a second-order
expansion in perturbation theory. It is equivalent to the GW method dis-
cussed in the context of electron-electron interactions. However, in this case
the approximation is justified in most cases, since as Migdal showed [3], all
the higher-order terms are smaller than the lowest-order term by a factor
of wp/ep for normal metals, where wp is the so-called Debye frequency
—typically a few meV—, and e is the Fermi energy —typically a few eV.

Certainly, some interesting cases lie outside the range of validity of this
approximation [22]. Unfortunately, the computational workload associated
with the self-consistent calculation of the vertex function Eq. (1.14) has
turned the numerical exploration of new physics beyond this approximation
extremely challenging so far. To the best of our knowledge, it has never been
achieved in the context of first principles calculations, and it has not been
pursued in this thesis either.
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1.4.2 Static electronic screening

As can be inferred from Eq. (1.31), the potential induced by an atomic
displacement as a result of a phonon excitation will be screened by the
electrons through the dielectric function €, !(r, v/, w).

It is noteworthy that the frequency dependence of D (see Eq. (1.21)) will
show structures only at small energies of the order of phonon frequencies
Wquv, Which are much smaller than the typical electronic energies at which
the frequency dependence of €, !(r,r’,w) becomes important. As a result,
it is usually a good approximation to assume e, '(r,r’',w) ~ ¢ }(r, ', 0) in
Eq. (1.31). Physically, this corresponds to assuming that the electrons re-
spond instantaneously to the slow atomic displacements induced by phonons.

This approximation is almost invariably used in practical electron-phonon
calculations, and will be adopted in this thesis as well. Nonetheless, given
the key role that the electronic screening plays in the many-body theory of
the electron-phonon interaction, in Chapter 2 we will analyze in more detail
several aspects of the dielectric function €, !(r,r’, w), and explore systems in
which its frequency dependence might become important.

1.4.3 Density functional theory

Density Functional Theory (DFT) [31, 32] has been one of the most important
methodological developments of the last decades towards the solution of
many-body problems in actual materials from first principles. Along the
same lines, it has also marked an extremely fruitful path from the early
theoretical formulations of the electron-phonon problem in idealized models
[33—-35], to their application in realistic systems.

In the following, we briefly review the main aspects of DFT which
make the general expressions derived in this chapter amenable for practical
calculations. Detailed discussions related to the foundations of DFT, and
more practical aspects involving actual calculations within this approach can
be found, for example, in Refs. [36-38].

DFT is a mean-field theory, which effectively translates the problem of N
interacting electrons into a set of Schréodinger equations for N independent
electrons immersed in an effective potential incorporating in principle all
the electron-electron interactions. The single-particle states — so-called
Kohn-Sham (KS) states— obtained in this way provide a legitimate basis
in which the equations presented in the previous sections can be rewritten.
Due to the periodicity of the crystal lattice, the single-particle KS states
can be labeled with the crystal momentum index k, and the band index n.
Born-Von Karman boundary conditions will be used, considering a generic
supercell of N, unit cells. In this way, the single-particle KS energies will be
denoted by e,k and the wave functions will obey the Bloch theorem [39],
eik~r

k(1) = unk(r) : (1.32)
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where u, () has the periodicity of the crystal lattice.

Although DFT is strictly a ground-state theory, experience has shown
that in the majority of cases KS states also provide a good representation of
the excitation spectra at rigid nuclei. Corrections beyond this approximation
can be incorporated, for example, through Eqgs. (1.23),(1.24). Significant
deviations have been found mainly in the band structure of strongly-correlated
systems such as oxides or heavy-fermion materials, and in the band-gap
of semiconductors and insulators, which are aspects that have not been
studied in this thesis. We have therefore used GODFT as the non-interacting
Green’s function in the Dyson equation Eq. (1.25), making the approximation
G™ ~ G pp. Moreover, it can be shown [6] that the Fourier transform of
GODFT takes a particularly simple form in the basis of the KS states,

6nn’ 5kk’

PErETSE (1.33)

GODFT,nn/kk/ (w) =
where the positive and negative signs correspond to occupied and unoccupied
states, respectively, being n = 07.

Similarly, the extension of DFT to treat external perturbations, namely
Density Functional Perturbation Theory (DFPT) [8], has proven to be an
extremely efficient and accurate method to describe lattice dynamics in real
materials. We have used this method to compute phonon frequencies wgq,,
and thus the adiabatic phonon Green’s function Eq. (1.21), throughout this
thesis. In fact, as discussed in Sec. 1.2, non-adiabatic renormalization effects
on phonons have not been explored in this thesis, so that we have effectively
used the approximation D = D%FPT throughout the dissertation.

Besides phonon frequencies, DFPT also provides the self-consistent varia-
tion of the effective KS potential with respect to the atomic displacements
induced by a phonon mode, that is,

1 oVKS

M) 2 o Gy |, g, Pl By) - (139

r—hy

A, VES(r) = Z

Kpo

This variation of the potential can be identified in Eq. (1.31) after
approximating the many-body electronic screening of Eq. (1.18) by the one
obtained within DFT, that is e, !(r, ', 0) ~ eB%T(r, r’,0), since one can show
that OVES /07, = eppp OVie/OTwa (see, for example, Ref. [7] Sec. I11.4).

Finally, the matrix elements of Eq. (1.31) in the single-particle KS basis
are usually referred to as the electron-phonon matrix elements,

g;/nn(kv Q) = <90mk+q|AquvKS|90nk> ) (135)

which gives the probability amplitude for the scattering of an electron from
the KS state nk to the KS state mk 4+ q through the emission or absorption
of a phonon mode qv.
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1.4.4 One-shot Green’s function and diagonal self-energy

Another important approximation that we will adopt is to replace G by
G9pr in the electron self-energy Eq. (1.30), relaxing in this way the self-
consistency between Eq. (1.25) and Eq. (1.30). This approximation amounts
to neglecting all the non-crossing multiple-phonon diagrams in the Dyson
equation, as represented in Fig. 1.1(b), and it is sometimes referred to as
the one-shot Migdal approximation. We note that the nature of the Dyson
equation itself still results in a summation of an infinite amount of single-
phonon diagrams. The full self-consistency of the Green’s function on the
electron self-energy will be accounted for in the study of superconductivity,
as discussed in Appendix A. This numerically challenging condition can be
mitigated efficiently by the method described in Chapter 4.

Assuming that the crystal periodicity has to be maintained in the electron-
phonon processes, the electron self-energy has to be invariant under spatial
translation, so that X(r + R,,r' + R,) = X(r,r’) for all values of p. As a
result, its off-diagonal k # k’ Fourier components vanish, and the Dyson
equation becomes a diagonal matrix equation in k-representation. Deviations
from this assumption in relation with the polaron problem will be discussed
in Sec. 3.4.

As a last approximation, if we neglect the possibility of band hybridization
induced by the electron-phonon interaction, the electron self-energy — and
thus the Dyson equation — takes a diagonal matrix form in the KS basis.
In this way, we arrive at the final expression for the electron self-energy most
commonly used in the literature,

dq v 1- fmk
Enk(w) = Z/Q]% |gmn(k7 q)|2 X [ W= Emkiq — :;q +i77
my meTa v

" fmicta ) 36)
W — Emk4q T Wqv — 1)

where n — 07, and f,,i is the Fermi-Dirac occupation factor for the KS state
nk. Since up to now we are working strictly at zero temperature we have
fox = 1 for occupied KS states and zero otherwise?.

Finally, by rewriting the Dyson Eq. (1.25) in the KS basis the matrix
inversion becomes trivial, and the electron-phonon driven renormalization
of the non-interacting KS states can be obtained through the self-energy of
Eq. (1.36),

Grulw) = (W= g £in) — Tpk(w) - (1.37)

3The extension of this expression to finite temperatures involves the use of the Matsubara
formalism [27] followed by an analytic continuation from the discrete imaginary Matsubara
frequencies to the real-axis [40]. In this way we arrive to an expression for the so-called
retarded self-energy [23], which is similar to Eq. (1.36) but with a positive sign in the
infinitesimals at both denominators, and inluding bosonic phonon occupation factors in
the numerators [7].
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The solution of Egs. (1.36)—(1.37) form the basis to study most of the
physical effects introduced by electron-phonon interaction in solids from
first-principles. In Chapter 3 we will analyze in detail the renormalization of
electron quasiparticles driven by this interaction. In Appendix. A, we derive
the extension of these equations needed to describe the phonon-mediated

superconducting phase transition, which are efficiently solved numerically in
Chapter 4.



Chapter 2

Coupled spin-charge
plasmons at surfaces
with strong relativistic
effects

The spin is an intrinsic angular momentum degree of freedom and a fundamen-
tal property of the electrons. The possibility of controlling an manipulating
spin currents and densities in solid-state systems gives rise to the field of
spintronics [41].

A necessary condition for reaching this goal is to lift the spin degeneracy
of electronic states present in most solids. Traditionally, this has been
achieved through the breaking of time-reversal symmetry by the exchange
interaction in magnetic systems [42]. A novel direction in spintronics exploits
the relativistic spin-orbit coupling in non-magnetic materials, because in
crystals without inversion-symmetry, such as surfaces or interfaces, the
electronic energy-bands are spin-split by this interaction [43]. This gives rise
to a plethora of novel effects, the study of which has just started [44].

On the other hand, as a matter of fact, the external perturbations in
solids are screened by the electrons. This becomes apparent in the equations
presented in Table. 1.1, where the many-body interactions of Egs. (1.15)—
(1.16) are mediated by the screened Coulomb potentials. In particular, the
electron-phonon interaction, a central topic in this thesis, takes place through
the change of the potential induced by the atomic displacements, which is
screened by the electronic response (see Eq. (1.34) and discussion below).
Thus, it appears crucial to understand the effects of the spin-orbit interaction
in the electronic response if one aims to understand the dynamics of spins in
a many-body environment.

In this chapter, we will implement a Wannier interpolation procedure
to compute efficiently the density-response function at surfaces from first

19
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principles. This will allow us to study, for the first time, the effects of
the spinorial nature of the electrons in the response properties of complex
relativistic surfaces. In particular, we will analyze the effects introduced
by the spin-orbit coupling in the self-sustained collective modes that might
exist in the system. As we will show, the electronic response of systems with
spin-orbit coupling will be of a mixed spin-charge character, giving rise to a
novel collective excitation which we name coupled spin-charge plasmon. We
will illustrate the existence of this new excitation in realistic materials by
performing first principles calculations in the T1/Si(111) surface.

2.1 Spin-orbit coupling in the electronic response

In this section, we will review the main aspects needed to compute the
electronic response function from first principles, and we will incorporate the
spinorial nature of the electron wave functions in the formalism. Moreover, we
will outline a procedure to characterize the real space and spin-charge struc-
ture of self-sustained collective modes from the knowledge of the generalized
dielectric response function.

2.1.1 Linear response theory and TDDFT

We are interested in studying the response of the electronic density to a
small external potential, 6V, In this regime, the change in the density, dn,
can be considered to be linear and given by:

Sn(r,t) = / dt’ / & (vt — 1) SVt | 2.1)

where y is the so-called density-response function, which is only finite for
positive time differences.

The formalism used in this thesis to compute the density-response function
has been the Time-Dependent Density Functional Theory (TDDFT) [45-47].
As in ordinary DFT, the problem of the many-body interacting system is
solved using an auxiliary non-interacting system. In this case, the response
of the full interacting system can be related to the response of the non-
interacting Kohn-Sham system by the following Dyson equation [46, 47],

X(I‘, I',,t — t,) = XKS(I', I',,t — t/) + /dtl dtQ /dS’I“l d31"2 XKS(I‘, r, t— tl)
0(ty —t2)

+ fX(ry,r, 1 — t2)} x(re, v to — 1), (2.2)
ry —1ro

where x5 is the so-called non-interacting Kohn-Sham response function, and
fxc 18 the so-called exchange-correlation kernel evaluated at the ground-state
density,

. 5VXC(I‘1, tl)

fX(ry,ro,t1 — t2) = Sn(ra. o) , (2.3)

n=ngs
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being 0V *¢ the exchange-correlation potential [36, 37].

Similar to the exchange-correlation potential in regular DFT, the exact
form of the kernel in Eq. (2.3) is not known, and approximated expressions
have to be used. In this thesis, we have adopted the Adiabatic Local Density
Approximation (ALDA) of fx [47, 48].

In order to study the excitation energies of periodic solids, it is convenient
to consider the Fourier transform of Eq. (2.2) to frequency and momentum
variables,

XG,G’(qa ) = XG G/ q, Z XG .G1 q,
G1,G2

4m
x [waeheg + 1,000 xealaw)  (24)

where the non-interacting response is given by the well-known expression in
terms of the single-particle KS states as [49-51],

1BZ

Eolaw = gg D5 o fwicta)

= o W+ (Enk — Emktq) TN

X (ol e 1ATEI| o 1) <<Pmk+q‘ei(q+G,)r‘90nk> . (2.5)

being Ny the number of points in the first Brillouin zone (1BZ), Q the volume
of the unit cell, f,x are the Fermi-Dirac occupation factors for the KS states,
G represents a reciprocal lattice vector and n — 07.

Within the framework of TDDF'T, the dielectric response function of
Eq. (1.18) can be obtained as,

€G,G’ (q, = 5G G — Z XG .G/ (17 FéC//,G/ (q, W), (26)
G

where F*¢ is the term within brackets in Eq. (2.4). The dielectric function
relates the external potential and the total change in the self-consistent
potential (§V¢ = sVt 4 §VKS) by,

eXt q,w Z €G,G’ q7 5VCS-}C’ (q7 CU) 5 (27)

where §V S is the change in the Kohn-Sham potential induced by the external
perturbation.

From Eq. (2.7) it can be deduced that self-sustained oscillations (V¢ # 0
and 6V = () can exist only if the following condition is satisfied:

det [6(;7(;/((1,(«})] =0. (2.8)

Thus, the q and w for which solutions of Eq.(2.8) are found define the
dispersion relation of the collective excitations in the system.
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2.1.2 Spinorial structure of the response function

Under the presence of the spin-orbit interaction, the KS states have to be
generalized to two-component spinors,

! r
wo-(l). e

where cp£ ,(r) and (pt ,,(r) represent the up/down components for a given

direction. The components of the spinor wave function satisfy a set of two
coupled KS equations [52] in which the effective scalar potential (VES) is
replaced by a spin-dependent one (Volfﬁs), and the ordinary electron density
becomes a four component spin-density matrix,

occ

—Zwkn ) (elnm)" (2.10)

By extension, the relation given by Eq. (2.1) has to be generalized to
account for the spin-density response. The KS response function of Eq. (2.5)
is directly generalized to a 4 x 4 matrix by,

1BZ

XIC(;S(;IBQ’Q/( @ w Q Z Z fnk - fmk—l—q)

= G Wt (Enk — Emktq) TN

— G G/ !/
X <9075Lk|e ilat r|(pmk+q> <(pmk+q’€ (at r‘¢nk> )
(2.11)

and the Dyson equation of Eq. (2.4) is now given by a matrix inversion in
both space (G, G’) and spin (af) variables, which formally reads

x = [1 = xks Fxe| ™" Xks - (2.12)

A clearer physical interpretation can be obtained by means of the Pauli

matrices o = (o, 0%, 0Y,07%),
n =" ohn’* (2.13)
Z O'ga 04,3(1/,3’ //Bl s (214)
aBa’ B

where n* represents the four-component density vector n* = (p, mg, m,, m.),
p being the scalar charge-density and m the vectorial spin-density. In this
way, we arrive at the generalized linear spin-charge density response equation,

ont(r,w) /d?’r’x“”(r ', w) SVVED (W) (2.15)

which relates the induced charge and spin densities, and the external electro-
magnetic field, V(&) = (5V(eXt) 5B, 5B(eXt) 5B,
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2.1.3 Coupled spin-charge plasmons in real space

Similar to Eq. (2.15), the relation of Eq. (2.7) can be generalized to relate
4-component external and total self-consistent potentials,

SV G (ext) _ Z ZE,U,V,GG’ SV G’ (sc) , (2.16)
v G’

where e"'GG' is obtained from Eq. (2.6), Eq. (2.11) and Eq. (2.14).

In this case, the plasmon condition of Eq. (2.8) holds provided that the
determinant is evaluated accounting for both the space and the spin degrees
of freedom. Indeed, we can express Eq. (2.16) as an eigenvalue equation, in
a similar way as in Ref. [53] but including spin,

% GG (q,w) sV (qw) = g(q,w) 6VC(q,0) , (2.17)
v G’

so that the condition imposed in Eq. (2.8) is satisfied for the solution of
Eq. (2.17) with a vanishing eigenvalue (¢;(q,w) = 0).

The eigenvector corresponding to such a solution will be composed by
four elements for each reciprocal lattice vector G,

SVE

0,G | 0B (q,w
§B%(q,w)/,

and the real space representation of the oscillation can be then obtained by
a Fourier transformation,

SV riquw) = e O syiSiq ) (2.19)
G

where dV/'(r; q,w) describes the real space structure of the self-sustained
spin-charge oscillations with momentum q at the resonance frequency w .

2.2 Wannier interpolation

The formalism described in Sec. 2.1 provides a general roadmap to com-
pute the dispersion and the real space structure of the possible spin-charge
collective excitations that may exist in a given system.

However, the energy scale of plasmons at surfaces and two-dimensional
materials is known to be much smaller than in conventional three-dimensional
crystals [54]. This poses a practical challenge from the computational point
of view, as can be deduced from the expression for the KS response given by
Eq. (2.5). The (epx — €mk+q) energy difference on the denominator shows
that the frequency resolution that one can obtain will be limited by the
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density of k-points considered in the 1BZ sum. A possibility is to choose to
converge the sums faster by considering a larger smearing parameter 7, but
in that case the possible spectral features of similar order of magnitude to
1 would be blurred. In fact, in order to be able to distinguish low-energy
features in the response function, one should choose 7 as small as possible
and sample the 1BZ as densely as possible.

This issue is well-known in the electron-phonon problem, where the
low-energy scale of phonons makes an extremely fine sampling of the 1BZ
mandatory to obtain converged self-energies through Eq. (1.36). A strategy
to solve this issue which has proven to be extremely successful in this field has
been the so-called Wannier interpolation technique [9, 10]. This technique
will be applied in Chapter 3 and Chapter 4 to interpolate the electron-phonon
matrix elements of Eq. (1.35).

In this thesis, we have implemented a similar procedure for the efficient
interpolation of the k-dependent matrix elements entering the 1BZ sum in
Eq. (2.5). For simplicity, we will describe the scalar case, as the application
to the spin-generalized case of Eq. (2.11) is straightforward.

2.2.1 Maximally localized Wannier functions

We start by briefly reviewing the general aspects of the Wannier functions
[55] in the context of first principles calculations. Detailed derivations and
discussions can be found, for example, in Refs. [56-58]

The general relation between a set of Bloch functions, such as the KS
states of Eq. (1.32), and the corresponding Wannier functions at the cell R,
is given by the following generalized Fourier transform [56],

mep Z e iRy Z Unmnk Sonk ) (220)

and inversely by,

Pr(r) =Y e Z ke WmR, (T) (2.21)

where U,k is an arbitrary unitary matrix. The arbitrariness in the definition
of the Wannier functions can be exploited in the following way: it is a basic
property of Fourier transforms that the smoother a reciprocal-space object is,
the sharper (more localized) the transformed real space object is. Inversely,
if one is able to construct Wannier functions which are localized in space,
the corresponding Bloch functions given by Eq. (2.21) will be smooth — and
therefore amenable for interpolation — in k-space.

The most popular procedure to obtain such maximally localized Wannier
functions was put forward in Ref. [56], and generalized to deal with entangled
bands found in metals in Ref. [57]. The main idea is to minimize the quadratic
spread functional of the Wannier functions in real space, starting from an
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inital set of Bloch states with arbitrary phase as obtained from a conventional
DFT calculation. In this way, one is able to obtain the Wannier functions
that are maximally localized in real space, and from there deduce the unitary
matrices U,k with which the initial Bloch states have to be multiplied in
order to obtain the so-called maximally smooth Bloch functions, which we
will denote by,

(Pnk Z Umnk (Pnk( ) (222)

For a single isolated band, Eq. (2.22) corresponds to choosing a gauge in
which the phase of the wave functions changes smoothly in k-space. Note
that in the case of multiple bands, in general the ¢, functions will not be
eigenstates of the original Hamiltonian.

2.2.2 Interpolation of the electron band structure

From the knowledge of the unitary matrices needed to obtain the maxi-
mally smooth Bloch functions over the Brillouin zone, we can obtain the
Hamiltonian in the so-called Wannier gauge,

Ij[?i(nsm(k) - <¢mk‘ﬁKS’¢nk> - [Uli HKS(k) Uk]nm ) (2-23)

where HXS (k) = ,16,m is a diagonal matrix composed by the KS energies
in the initial mesh of k-points. We can Fourier transform Eq. (2.23) to obtain
the representation of the Hamiltonian in the basis of the maximally localized
Wannier functions,

1BZ
HYS(Ry) = (Wmol H*S|thnr,) = — Z e kR XS (k) (2.24)

Due to their localization property, the Hamiltonian in the basis of the
Wannier functions will decay rapidly with R,,. Thus, an accurate interpolation
of HXS (k') can be obtained to k’-points outside the inital mesh by the Fourier
transform,

S (k) = 3 B K8 (R,) (2.25)
P

Finally, HXS(k’) can be diagonalized to obtain the interpolated electron
energies as,

[Pli/ﬁKS(k,)Pk’]mn = Omn Enk’ - (2'26)

In this way, very fine samplings of the energies and occupancies entering
Eq. (2.5) can be obtained.

Similarly, the interpolation of the electron velocities — given by the k-
derivatives of the energies — that we will need in Chapter 4 can be obtained
by taking the derivatives analytically in the right-hand side of Eq. (2.25),

NP
S () =Y iRy ™ B XS (R,) (2.27)

nma
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and diagonalizing the resulting matrix [59],
vnk/@é = [Plz’T ﬁgs(k/) Pllc)’]nn . (228)

2.2.3 Interpolation of the matrix elements

We now extend the procedure described in the previous section in order to
interpolate the matrix elements appearing in Eq. (2.5),

Zk,mn(q7G) <90mk-i-q|6 (a+6) r’sonk) (2'29)

which are the major bottleneck in the computation of the response function.

For that purpose, we can use the unitary matrices Uy, of Eq. (2.22) to
rotate the original matrix elements computed in a coarse mesh of k-points
as,

Zenn (@, G) = (O] Z1c(a, G) UiJomn (2.30)

Similar to Eq. (2.25), a reliable Fourier interpolation of Zy ,,(q, G) can
now be performed,

Zk’ ,mn q, Z eZk/ Ry — Z € ik Rka mn(qa G) ) (231)

from which the interpolated matrix elements can finally be obtained using
the unitary matrices of Eq. (2.26),

Z1 n (@, G) = [P, Zir (4, G) Pirlyn - (2.32)

By following this procedure, we are able to obtain very dense samplings
of all the k-dependent quantities entering Eq. (2.5) — and thus converged
summations for small values of n — for a given q at a reasonable cost, in
which the expensive explicit computation of the matrix elements and energies
is limited to an initial coarse mesh.

Finally, in order to obtain a smooth q-dependent momentum disper-
sion of the response matrix, we can directly interpolate the smooth Bloch
wave function of Eq. (2.22) in its real space representation to an arbitrary
k' = k + q’ point,

1 el ~
cpnk—‘rq Ze (eta) Nk” Ze Ry @nk”(r) : (233)

Then, after computing the matrix elements,

Zk,mn(q/7 G) = <¢mk+q"ei(q/+G).r’¢)nk> ) (2'34)

we can follow the very same procedure for the interpolation in k through
Egs. (2.31)—(2.32), as Z is maximally smooth now.
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In the case of the electron-phonon matrix elements of Eq. (1.35), the
change in the potential is periodic in momentum-space, AcHG’VVKS =
Aq,VVKS, so that one can compute its Fourier transform to obtain the phonon
counterpart of the Wannier functions [10]. In this way, a simultaneous Fourier
interpolation on both k and q variables can be performed [9], allowing for
very dense samplings of the Brillouin zone at a reasonable cost.

2.3 Coupled spin-charge plasmon at T1/Si(111)

After the first measurement of the spin-orbit induced splitting on the surface
states of Au(111) [60], there have been many instances of this effect in clean
surfaces of heavy-element crystals [61-63], and in heavy-atom adlayers on
semiconducting substrates [64—66].

Moreover, the development of spin-resolved photoemission (SARPES) has
permitted the characterization of intricate spin-textures on these spin-split
surface states [67-69], beyond the simplified picture of the Rashba model
in which the spin-polarization is restricted to be circular on the surface
plane [43]. In this respect, fully relativistic DFT calculations have been
proven to provide accurate spin-textures in diverse systems in agreement
with experimental results [70-74].

Among the different materials mentioned above, the T1/Si(111) surface
stands out as a perfect candidate in which the effects of the spin-orbit
coupling can be studied and exploited. It presents a giant spin-splitting in
both occupied and unoccupied surface states, clearly located at the band-gap
of the semiconducting bulk substrate [72]. Due to the particular symmetry
of the interface, the spin-polarization of the occupied surface states acquire a
complex Rashba-like circular polarization around the T-point and an out-of
plane polarization at the K-point [67, 72]. Moreover, the unoccupied states
form oppositely polarized valleys at the K, K’ points [72, 75], which can be
doped to obtain a fully spin-polarized Fermi surface so that the backscattering
is strongly supressed [76, 77].

The interplay between the electron-phonon scattering and the complex
spin-texture of the surface states in this system has been analyzed in detail
in Ref. [78]. In this thesis, we study the effects of the non-collinear spin-
polarization in the response properties of this surface, applying for the first
time in first principles calculations the full 4 x 4 formalism described in
Sec. 2.1.

2.3.1 Ground-state calculations

The T1/Si(111) surface was simulated considering a slab system consisting
of 10 Si layers with a Tl adlayer and a vacuum space of 27 A between
the repeated slabs. On the other side of the slab a hydrogen adlayer was
introduced in order to saturate the dangling bonds. The ground state
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Figure 2.1. Ground state electronic structure of the T1/Si(111) surface.
(a) Calculated band structure. Energies are given with respect to Fermi
energy, which is represented by the dashed line. The dotted line shows the
shifted Fermi level used in the response function calculations. The light gray
background represents the bulk band projection. The inset shows a zoom
of the ST and SI surface bands near the T' point. (b) and (c) Momentum
dependent spin polarization of the two occupied surface states Sf and SL
respectively, over the whole first surface Brillouin zone. Arrows represent the
in-plane spin polarization components, whereas the color code represents the
out-of-plane spin polarization component. The Fermi contour corresponding
to the Fermi level shifted by —0.03 eV is represented by the black solid line
in (c).

calculations were performed using the all-electron LAPW method [38] as
implemented in the ELK code [79], considering a 24x24x1 k-point grid and
the non-collinear LSDA approximation for the exchange-correlation energy
[48]. Spin-orbit interaction has been included self-consistently in all the
ground state calculations.

We show in Fig. 2.1 the essential information about the electronic band
structure and spin polarization of the T1/Si(111) surface, as obtained by
means of our relativistic ground state calculations. In Fig. 2.1(a), the solid
black lines correspond to the slab bands, while the continuous grey back-
ground represents the projected band structure of bulk silicon. Fig. 2.1(b)—(c)
display the calculated momentum-dependent spin textures of the occupied
surface bands Sf and SI, defined as the expectation value of the Pauli
matrices,

m, (k) = é / Prut (r)o Uu(r) (2.35)

where €2 represents the volume of the unit-cell. Our results for the non-
collinear spinor structure compare well with previous spin DFT calculations
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based on the pseudopotential method [72], as well as with angle and spin
resolved photoemission experiments [67, 75].

In order to study possible plasmon excitations in the system, we consider
a moderate hole-doping of 30 meV (see dotted-line in the inset of Fig. 2.1(a)).
This results in a fully spin-polarized Fermi surface with chiral spin texture,
with only the upper spin-split subband SI crossing the Fermi level. However,
since the splitting of bands SI and Sf remains almost constant in the vicinity
of the T point, the band structure of this surface near this point deviates
substantially from that of the pure Rashba-like systems.

2.3.2 Spin-charge density-response matrix

We now move to the computation of the generalized spin-charge response
matrix, following the procedure described in Secs. 2.1.1-2.1.2. The non-
interacting 4x4 component response function has been obtained evaluating
the summation of Eq. (2.11) over a dense 840x840 k-point grid, in which
all the k-dependent elements have been interpolated using the Wannier-
interpolation technique, as described in Sec. 2.2. This procedure allows
to achieve converged results considering a damping parameter as small as
1n = 1 meV, and permits to obtain a smooth q-dependent map of the response
functions.

In Fig. 2.2 we show the macroscopic contributions (G = 0,G’ = 0) of
all the 16 elements of the generalized non-interacting spin-charge density
response matrix at the hole-doped (—30 meV) T1/Si(111) surface. For the sake
of simplicity, we have focused on a momentum q along the I' — M direction,
which corresponds to the y axis in our coordinate system. Therefore, from
now on we refer to the coordinate x as the transverse direction.

We note that in non-magnetic systems with spin-degenerate bands and
negligible spin-orbit coupling, only the diagonal elements (x00, Xazz> Xyy>
Xzz) are non-zero. In the case of collinear magnetic systems, and taking the
magnetization axis as the z-coordinate, only the diagonal elements and the
transverse-spin/transverse-spin elements (Xzy, Xyz) are non-zero [80]. In sys-
tems with pure Rasba-like spin-orbit coupling and completely in-plane chiral
spin texture, taking the momentum transfer vector q in the direction of the y
coordinate, we would have eight non-zero elements (x00, X0e=Xz0s Xzz:» Xyy:
Xyz=-Xzy> Xzz) [81]. Therefore, the charge/spin correlations only appear due
to the non-collinear nature of the wave functions in systems with significant
spin-orbit coupling. However, the response matrix still appears decoupled
into charge/transverse-spin and longitudinal-spin/perpendicular-spin block
matrices.

Fig. 2.2 shows that in the case of the T1/Si(111) surface, the response
roughly follows the case of a pure Rashba-like system. Nevertheless, due to
the anisotropy of the Fermi surface and the non-zero perpendicular component
of the spin-polarization of the surface states, we can appreciate a non-zero
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Figure 2.2. First-principles calculation of the 16 components of the non-
interacting spin-charge density response matrix at the hole-doped T1/Si(111)
surface in the w € (0,400) meV energy and |q| € (0,0.12) a; ' momentum
range, with q along the I' — M direction (cartesian  axis in our coordinate
system). The color code represents the imaginary part of the macroscopic
contribution (G = 0,G’ = 0) of the response in atomic units.

(though considerably smaller) intensity in the off-diagonal X{,(os, X&S, X500

X2, Xay s Xya» Xae and xIP responses.

In general terms, colored regions in Fig. 2.2 define the regions of the (q, w)
space where the possible collective modes of the system may suffer from
damping due to single-particle excitations [82]. The intraband single-particle
excitation continuum can be noticed in all the components of the non-
interacting response matrix. Moreover, the interband excitation continuum
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Figure 2.3. Selected components of the interacting spin-charge response
matrix on the T1/Si(111) surface. (a),(b),(c) Calculated charge/charge,
transverse-spin/charge and transverse-spin/transverse-spin response func-
tions, respectively, for q along the I' — M direction (corresponding to y in
our coordinate system).

— also called “Rashba” continuum [81] — is also visible in the Im(x%)
and Tm(xKS) components. Interestingly, we find that interband transitions
carry a change of sign in Im(xX$) with respect to the intraband transitions,
originating from the opposite spin orientation of the two spin-split subbands.
Finally, we note that interband transitions in Im(xgzs) and Im(XffyS) will
not allow for collective excitations to exist in this response channels. In the
following, we focus on the most significant xoo, X0z=Xz0 and Xz components.

The full interacting response has been obtained by direct inversion of

Eq. (2.12), keeping the local field effects from which the most important
contributions correspond to the G-vectors perpendicular to the surface plane.
We use the LSDA approximation of the exchange-correlation kernel [48],
and we consider a truncation of the Coulomb potential in the direction
perpendicular to the surface in order to avoid artificial interaction between
the slabs [83].

Fig. 2.3 shows our results for the interacting spin-charge response matrix.

A prominent peak on the charge/charge response component Im(xoo) is
observable in Fig. 2.3(a), which lies well above the single-particle excita-
tion continuum up to |q| ~ 0.08 ag 1. The dispersion of this peak clearly
resembles the w, ~ /g dispersion of a quasi-2D charge plasmon [54, 84, 85].
Remarkably, the spin-charge interplay in the response introduced by the spin-
texture of the surface states becomes manifest when we evaluate Im(x o) and
Im(xzz), as in both of these functions a similar peak is observed with exactly
the same dispersion (see Fig. 2.3(b)—(c)), together with the single-particle
excitation background in the case of Im(x4y).

As for Im(x40), we observe a sign change and an intensity enhancement
for low values of q. This effect comes from the aforementioned sign change
of the Im(XxO ) function, and is in principle also present in conventional pure
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Figure 2.4. Plasmon dispersion on the T1/Si(111) surface. (a),(b) Real and
imaginary parts of the determinant of the spin-charge dielectric response
matrix, respectively, which are relevant for determining the presence of
possible collective modes and their real space details (see Egs.(2.16)—(2.19)
and discussion therein).

Rashba-like systems. However, when considering the response of a realistic
surface such as T1/Si(111) from first principles new features arise. The almost
constant splitting between the subbands near I' (see inset of Fig. 2.1(a)),
makes the interband continuum to remain at low energies in the considered
momentum range, allowing for a well-defined collective excitation — free
from decaying into single-particle excitations — in the region of interest. In
addition, for larger momentum transfers, another almost constantly dispersive
peak starting at |q| ~ 0.03 a5 appears in Im(x.0) (see Fig. 2.3(f)), coming
from the low-energy interband transitions as well. For the sake of conciseness,
from now on we will focus on the w, ~ ,/q dispersing mode.

2.3.3 Two-dimensional coupled spin-charge plasmon

In order to get further insight in the nature of the excitation, we compute
the real space structure of the eigenmode giving a zero eigenvalue for each
(q,w) point in which det[e] = 0 is fulfilled, as described in Sec. 2.1.3,

Firstly, we show in Figs. 2.4(a)—(b) the calculated imaginary and real parts
of det[e"GG'|(q,w), respectively, in the same momentum and frequency
range as in Fig. 2.3(a)—(c). We can recognize the peaks in Im(xo0), Im(xz0)
and Im(xzz) as zeros of the function Re(det[e(q,w)]) which lie in regions
with vanishingly small Im(det[e(q,w)]). This unambiguously identifies the
excitation as a well defined self-sustained collective oscillation.

Next, we show in Fig. 2.5 the real space structure of the self-sustained
oscillation as a function of q and z, being the latter the real space coordinate
perpendicular to the surface. The ordinary charge part (6Vp) and transverse-
magnetic component (0 B;) of the oscillation are represented in Fig. 2.5(a) and
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Figure 2.5. Real space configuration and q dependence of the coupled spin-
charge collective oscillation at the T1/Si(111) surface. (a) Magnitude of the
induced charge potential oscillation and (b)—(d) induced magnetic field oscilla-
tion of the self-sustained excitation, where [§A|* = [, d*r 3, (6¢(r)*)*d¢(r)".
The z coordinate corresponds to the direction perpendicular to the surface,
with negative values indicating penetration into the bulk. Orientative posi-
tions of the first thallium and silicon atomic layers are represented by big
gray and small yellow spheres, respectively.

Fig. 2.5(b), respectively. The longitudinal (§By) and surface perpendicular
(6B,) magnetic components are negligible in comparison, and are shown in
Fig. 2.5(c) and Fig. 2.5(d), respectively. For simplicity, we keep only the z
dependence by averaging the amplitudes in the surface-plane directions.

The quasi-2D character of the mode is confirmed as both components
remain localized within the first five atomic layers (~12 ag) close to the
surface area. Most importantly, this figure reveals that the amplitude of
the transverse-magnetic component § B, is of a similar order of magnitude
and even larger than the amplitude of the charge part over the considered
momentum range. We also observe that the real space configuration of this
mode is almost independent of the momentum except for the q—0 limit,
where we find a strong enhancement of the magnetic component relative to
the charge part.

These results explicitly demonstrates the mixed spin-charge character of
the collective excitations at surfaces with strong spin-orbit coupling.
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2.4 Conclusion

In conclusion, in this chapter we have presented a new first-principles treat-
ment of the generalized spin-charge density response tensor, and applied
our methodology to the T1/Si(111) surface. An efficient calculation of the
response matrix has been performed through the implementation of Wannier
interpolation methods.

Our calculations demonstrate the appearance of a coupled spin-charge
collective mode localized at the first few atomic layers close to the surface,
which, as a direct consequence of the chiral spin texture of the Fermi contour,
is composed by a transverse-spin density oscillation in addition to the usual
charge density oscillation. We resolve the real space details of this collective
mode and show that the order of magnitude of both amplitudes is similar.
This coupled spin-charge plasmon should be understood as a general phe-
nomenon, as long as the relevant electron band structure is circularly spin
polarized. Moreover, the first principles character of our approach allows to
explore other surface systems with more complex Fermi surfaces and spin
textures, setting the ground to find novel types of collective spin-charge
excitations in realistic materials.



Chapter 3

Complex quasiparticle
renormalization driven by
the electron-phonon
interaction

The quasiparticle concept, introduced by Landau [86], encompasses all the
elementary excitations of condensed matter systems that can be somehow
rationalized as particles with definite effective properties such as energy,
momentum or mass. Some quasiparticles, such as phonons, do not have
analog isolated particles outside the many-body environment. Some others
do, but due to their interactions with all the other quasiparticles present in
the system, their properties are said to be renormalized with respect to the
free non-interacting particles. The notion of quasiparticles has been extremely
useful providing a more intuitive understanding of emergent phenomena in
many-body physics.

In this chapter, we analyze in detail the renormalization of the electron
properties due to their interaction with phonons. We pay particular attention
to the energy-momentum dispersion relation of electronic excitations, that
is, to the electron quasiparticle band structure. We will see that in order
to properly account for the lifetime and spectral weight of quasiparticles
under the electron-phonon interaction, an analytic continuation of the self-
energies and Green’s functions from real to complex energies is required.
This poses a challenging problem also from the computational point of view.
We review the existing methods developed in the literature to achieve this
task, introducing some improvements that increase their numerical stability
and expand their range of operation. As an application, we rationalize the
recently measured photoemission spectra of doped monolayer MoSy [87]
in terms of long-living electron quasiparticles with strongly renormalized
properties. Finally, as an outlook, we present a Green’s function formulation

35
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for the description of the phonon-mediated localization of electrons, giving
rise to polaron quasiparticles.

3.1 Quasiparticles within the Green’s function for-
malism

In most experiments on materials properties one excites the sample in
one way or another and measures its response. For example, in Angle
Resolved Photoemission Spectroscopy (ARPES) electrons are ejected from
the material upon irradiation with light. By measuring the kinetic energy
of the photoemitted electrons for different emission angles, one can access
the momentum-resolved one-electron removal spectra of the material under
study [88].

The Green’s function formalism presented in Sec. 1.2 provides a solid
mathematical framework in which this spectra can be described and inter-
preted from a theoretical point of view. In Chapter 1 we have reviewed a
procedure by which the Green’s function of an interacting electron-phonon
system can be calculated. In this section, we describe how to identify the
quasiparticle excitations from the knowledge of such a Green’s function. A
thorough analysis of the mathematical concepts involved in this section can
be found in Ref. [89].

To start with, by introducing a complete set of eigenstates s of the
(N + 1)-particle and (N — 1)-particle many-body system, that is |V + 1, s)
and [N —1,s), in Eq. (1.11a) and Eq. (1.11b), respectively, and by performing
a Fourier transform from time to frequency variables, we arrive to the so-called
Lehmann representation of the Green’s function [6, 90],

fs(x) f2(x)
Gx,xw) = , .
( ) ; w— [es +insgn(p — )] (31)

where,
fsx)=(N|¥(x)|N+15) for e >pu, (3.2a)
fs(x) = (N -1,s|U(x)|N) for e,<p, (3.2b)
and,
es=FEnt15s— EN for es>pu, (3.3a)
es=En—En_15 for es<p, (3.3b)

being En+1,s is the energy corresponding to the [N £ 1, s) eigenstate, and
Ey the ground state energy. Inspecting the denominator of Eq. (3.1), we
see that the poles of the Green’s function in the Lehmann representation,
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which lie infinitesimally close to the real axis, give the electron addition and
removal energies of the many-body system.

Using the identity (w #in)~! = P(w™!) £ ind(w), where P denotes a
Cauchy principal value, the so-called spectral function can be defined from
Eq. (3.1) [6],

A(x, x'sw) = %sgn(u —e5) Im [G(x,x;w)]

=Y L0 ) b — <) (3.4)

which can be interpreted as a local density of states. Due to the periodicity of
the crystal lattice, its spatial Fourier transform will be diagonal in momentum
k, and indeed it can be shown that Ay(w) defines the one-electron removal
spectra that one can probe with ARPES [88].

Let us assume for a moment that our many-body state is formed by
non-interacting single-particle states, like for example, the Kohn-Sham states
discussed in Sec. 1.4.3. In that case, the electron addition and removal
energies are just the KS eigenvalues e,, the amplitudes of Eq. (3.2) are the
KS orbitals ¢,k (x), and we recover the non-interacting Green’s function of
Eq. (1.33). In this scenario, the spectral-function A)(w) will be just a delta
function for each of the KS energies, and the Green’s function will have a
simple pole at the real axis, as shown schematically in Fig. 3.1(a).

In the general case, however, the many-body system will be formed
by interacting particles. Therefore, the single-electron excitations, such as
é}; |N), will not be eigenstates of the system, and their evolution involves
overlaps with all the possible excited states with N 4+ 1 electrons. Given
that G(w) is the sum over the possible s configurations in the Lehmann
representation — see Eq. (3.1) —, this gives rise to a set of singularities on
the real axis, as shown schematically in Fig. 3.1(b). In turn, the spectral
function Ag(w) is composed by a superposition of delta functions at the
excitation energies. In the thermodynamic limit (N — oo), the singularities
form a branch-cut in the real axis and the spectral function takes a continuous
structure, as represented by the dashed line of Fig. 3.1(b).

Intuitively, one can still recognize prominent peaks in the spectra of
many interacting systems. This motivates the search for an alternative
interpretation of the spectral function, not as a combination of an infinite
amount of many-body configurations, but as the excitation of an emergent
quasiparticle. Formally, this interpretation can be achieved through the
Dyson equations (see Egs. (1.23),(1.25)). It can be shown [89, 91], that the
Green’s function admits an alternative representation to Eq. (3.1), which is
the so-called biorthonormal representation,

_ Vi (%; 2) P (X5 2)
G(x,x';2) = ; B : (3.5)
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Both the Lehmann and the biorthonormal representations are exact and
therefore give the same spectral function. In Eq. (3.5), ¢, ¢, and E,, are
the m-th right-eigenvector, left-eigenvector and eigenvalue, respectively, of
the non-hermitian so-called quasiparticle Hamiltonian,

HP(z) = H + 3(z) , (3.6)

where H? is the hamiltonian defining the non-interacting Green’s function G°
in each case, and ¥ the corresponding self-energy giving the full interacting
Green’s function through the Dyson equation. In our case, H° will be the
DFT hamiltonian corresponding to a rigid arrangement of the nuclei, and )y
will be the electron-phonon self-energy of Eq. (1.36), where a proper analytic
continuation to complex frequencies z has to be considered, as discussed in
the next section.

From Eq. (3.5) it is recognized that the poles of the Green’s function
in the biorthonormal representation are given by the complex frequencies

fulfilling z = E,,(z), that is
det (z[ . — f}(z)) =0. (3.7)

Equation (3.7) is sometimes referred to as the quasiparticle equation. As
discussed in Sec. 1.4.4, in the most common approximation one assumes that
the self-energy is diagonal in the single-particle KS basis. In this way, the
quasiparticle equation Eq. (3.7) takes a simpler form, and the quasiparticle
energies E%p = e —iI'® can be obtained from the self-consistent solution
of the following equation on the complex plane [92, 93],

5%}3 —&nk — Re (ink(g%) - ZF%))) =0
TP+ Tm (Syae(ed — i T3P) ) = 0
(3.8)
Two aspects of this equation are noteworthy, which are the possibility of
finding more than one solution as a result of its non-linearity, and the complex
nature of its solutions as a result of the complex self-energy.

From the solutions of Eq. (3.8) the quasiparticle approximation follows.
This approximation assumes that the interacting Green’s function can be
described by the sum of the first order Laurent expansions around the simple
poles at the quasiparticle energies, so that,

EP — e — S (EP) =0 —

~ s
G )= qu Z) = — 3.9
nk( ) nk( ) %: L Efg’ ) ( )
~ ~ -1
where ZP = (1 -X (E,‘}f)) is the so-called renormalization factor, given
by the residue of each pole. The real part of ZI reflects the spectral weight of
each quasiparticle state, and its imaginary part rotates the ideal Lorentzian
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Figure 3.1. Schematic representation of the complex-plane analytic structure of
(a) the non-interacting Green’s function, (b) the interacting Green’s function in the
Lehmann representation and (c) the quasiparticle approximation of the interacting
Green’s function in the biorthonormal representation. The quasiparticle energies
(6/”) and inverse-lifetimes (I'\") are identified in (c). The projections on the vertical
planes represent the spectral function Ay (w) corresponding to each case.
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shape of the contribution of each pole on the spectral function [93]. The
analytic structure of Eq. (3.9) and its corresponding spectral function are
shown schematically in Fig. 3.1(c), for the case of a single quasiparticle pole.

Physically, Eq. (3.9) can be more easily interpreted by taking the Fourier
transform to time variables, which for a single pole reads

Gt~ 1) =~ TR R TRED 310

clearly describing the propagation of a particle with energy %P that decays
with a lifetime 7 = (2I'%)~!. In the next section, we discuss numerical
methods to determine accurately the quasiparticle energies and lifetimes for
interacting electron-phonon systems.

3.2 Analytic continuation of the electron-phonon
self-energy

The self-consistent solution of Eq. (3.8) determines the energies and lifetimes
of electron and hole quasiparticles given by ng = i — 4P All the
many-body interactions are encoded in the self-energy, which is in general
a complex function of complex arguments. From Eq. (3.10) follows that a
physically meaningful decaying quasiparticle should have T'%® > 0 !, that
is, the poles of the Green’s function in Eq. (3.9) should be located in the
lower-half of the complex plane.

However, a closer inspection of Egs. (1.36) and (1.37) reveals that simply
replacing w — z to account for complex arguments in these expressions gives
functions with the reflection property X(z*) = ¥*(2) and G(z*) = G*(z),
which are bounded except for possible branch-cut discontinuities along the
real-axis (see Fig. 3.1(b)). This, in turn, implies that no solution of the
quasiparticle equation Eq. (3.8) can be found in this way which satisfies
causality [89].

Thus, the solution of Eq. (3.8) requires the analytic continuation of
the self-energy accross the branch-cut from the upper-half to the so-called
unphysical Riemann sheet on the-lower half of the complex plane [89], which
we will denote by i(z) However, the analytic continuation process is well-
known to be an extremely difficult problem from the numerical point of view.
In this section, we review and improve on the existing numerical methods
to achieve this task within the electron-phonon problem. We will start
from simple models [5], which form the basis for the more general methods
able to determine the complex quasiparticle energies in realistic materials.

'For simplicity, we only consider positive time differences ¢ —¢' > 0. This implies the use
of the so-called retarded Green’s functions [23], which are related to the spectral function
by G*(w) = fooo ‘12“;’ %. In practice, this means that the sign of the infinitesimals

in in Egs. (1.33),(1.36) and (1.37) are set to +, so that the poles of the Green’s functions
lie in the lower-half of the complex plane for both occupied and unoccupied states.
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Moreover, we generalize existing approaches [93] in order to treat more
complicated systems beyond the approximations considered in conventional
electron-phonon problems.

3.2.1 The Einstein model

The Einstein model is the simplest and most fundamental scenario in the
context of electron-phonon interactions. It describes the coupling between
free electrons and a single optical phonon with a fixed frequency wg, through
a constant electron-phonon matrix element gg. It is further assumed that the
electrons disperse linearly close to the Fermi energy, so that the electronic
density of states is constant. This simple model was analyzed in detail by
Engelsberg and Schrieffer in their seminal work [5], which represents one
of the first applications of field-theoretical methods to study the electron-
phonon problem. As we will see in the next sections, this simple model
results extremely helpful to develop general procedures able to describe the
quasiparticle properties of complex systems. Moreover, it serves as a simple
example to illustrate the concepts discussed in the previous sections.

Under the assumptions mentioned above, a closed analytical expression
for the electron self-energy within the Einstein model can be obtained directly
from Eq. (1.36) [2, 5, 27]. However, in order to obtain a proper analytic
continuation of the self-energy which is continuous across the real-axis, it is
useful to perform the integral of Eq. (1.36) at finite temperature and then
take the T'— 0 limit at a later step. Defining A = %, the final result reads
[93]

SE Awp . . . . .

X (z,wp) = N [—im 4 Log (iwg — iz ) — Log ( —iwy — iz )] (3.11)
whose real and imaginary parts on the real axis z — w + in are shown for
A = 1 in Fig. 3.2(a) and (b), respectively. Its analytic structure on the
whole complex plane is shown in Figs. 3.2(c¢) and (d), where it is appreciated
that indeed SE(z) represents the analytic continuation of $¥(w) which is
continuous across the real axis. The branch-cuts at —wg and wy will be
discussed further in Sec. 3.2.3.

The spectral function corresponding to the Einsteing model can be easily
obtained from Egs. (1.37),(3.4),(3.11),

AE() = —~1m (GE())

) —(1/7) Tm (P (w, wp)) o)

[w —e) —Re (iE(w,wo))r + [Im (iE(w,wg)ﬂz ’

where ) o (k| — |kp|) are the bare electron energies. We show in Fig. 3.3(a)
the spectral function for 5& = 1.5wq, where a prominent peak and a broad
structure can be recognized.
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Figure 3.2. Electron-phonon self-energy in the Einstein model. (a),(b) Real and
imaginary parts of the self-energy f)E, respectively, evaluated at the real-energy axis
z = w+in. (¢),(d) Real and imaginary parts of the analytic continuation of the
self-energy to the non-physical Riemann sheet on the complex plane z.

The closed expression for the self-energy given by Eq. (3.11) allows us to
represent —Im (C:’E(;;)) on the whole complex plane by simply substituting

w — z in Eq. (3.12), as shown in Fig. 3.3(b). Clearly, the main contributions
to the spectral function can be identified to have their origin in two different
poles, in line with the quasiparticle interpretation discussed in Sec. 3.1.

To formalize this interpretation, we can solve Eq. (3.8) for a set of k-
points, as shown in Fig. 3.4. For example, for the k-point shown in Fig. 3.3
we find two solutions at the two poles of GE(z). In Fig. 3.4(a), we show the
real part of each quasiparticle pole 533(, which gives the quasiparticle energy
with respect to momentum k. The spectral weight, that is, the real part of
the residue ngk of each pole is represented by the length of the bars, and
the imaginary part of the residue is represented by the rotation of the bars
with respect to the vertical line, Im (Z¥) ) = 1 giving a rotation of § = 7
radians. Finally, the imaginary part of the quasiparticle poles Fgfk, which
gives quasiparticle lifetime broadening, is shown in Fig. 3.4(b) with respect
to the quasiparticle energy sgfk. In this way, Fig. 3.4 represents the full
complex quasiparticle band structure within the Einstein model.

The quasiparticle picture facilitates the understanding of the effects
driven by the electron-phonon in the electronic band structures, which even
in the case of the simplest Einstein model are profound. From Fig. 3.4
we infer that the spectral weight corresponding to a single electron band
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Figure 3.3. Electron spectral function in the Einstein model. (a) Spectral function
AE(w), given by Eq. (3.12), for € = 1.5wp. (b) Analytic structure of GE(z) on the
complex plane z, whose imaginary part evaluated at the real axis gives the spectral

function. The color code represents —Im (éE(z)) in arbitrary units.

splits into two separate quasiparticle bands. Below the phonon frequency
wo, the electrons do not have sufficient energy for emitting any phonon, and
therefore they appear infinitely long lived. However, they are allowed to
emit and reabsorb phonons in virtual processes, which produces a phonon
cloud around electrons having the effect of augmenting their effective mass
and flatten their dispersion. For electrons above wg, on the other hand, the
emission of real phonons is energetically allowed, which leads to a decrease of
their lifetime. The probability of virtual emission and absorption processes is
smaller for energies far from wg, so that the dispersion of the quasiparticles
resembles the one of the non-interacting electrons. For bare electron energies
close to wy both processes are possible, and the total spectral weight splits
into the two states.

In the next sections, we will see that this idealized picture qualitatively
holds in the general case where more intricate electron band structures,
phonon dispersions and electron-phonon interactions are present.

3.2.2 The Debye model and piecewise polynomial method

The simplifications adopted in the previous section allowed us to obtain a
closed expression for the electron-phonon self-energy also in the non-physical
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Figure 3.4. Quasiparticle band structure in the Einstein model. (a) Real part of
the quasiparticle poles, that is, the quasiparticle energies P, for different values
of the magnitude of the momentum k with respect to the Fermi momentum kp.
The bare electron energy Eﬁ is represented by the dashed black line, and the two
solutions for the quasiparticle equation Eq. (3.8) are represented by the blue and
orange lines, respectively. The length of the bars represents the real part of the
residue of each pole, Re (Z2), which gives the spectral weight corresponding to each
quasiparticle. The imaginary part of the residues is represented by the rotation
of the bars, Im (Z) = 1 giving a rotation of § = 7 radians. (b) Negative of the
imaginary part of the quasiparticle poles, that is, the inverse quasiparticle lifetime
' with respect to the quasiparticle energies. The color code is the same as in (a).

Riemann sheet, which provided the proper analytic continuation needed to
determine the complex quasiparticle energies. However, the Einstein model
represents a highly idealized situation, and in the general case complicated
phonon dispersions and electron-phonon coupling matrix elements have to
be considered.

Still, for most metals, some reasonable approximations can be made to
simplify Eq. (1.36). Given the notable difference between the electronic
energy scales (~ eV) and the energy scale of phonons (~ meV), the strongest
renormalization of electronic states driven by the electron-phonon interaction
will happen on a narrow window around the Fermi energy. The density of
states can be considered to be constant within this narrow window, and,
moreover, the energy-dependence of the electron-phonon matrix elements
can be neglected while keeping the momentum dependence [22]. In this way,
the electron-phonon self-energy for an electronic state nk can be rewritten
as [22, 93],

Sn(z) = / a2 Fpe(w) [—im + Log (iw — i) — Log ( —iw — iz)] |
" (3.13)
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Figure 3.5. Schematic representation of the integral of Eq. (3.13). The color code
represents the imaginary part of the integrand on the complex w-plane for different
values of z in which the self-energy is evaluated. (a) For Im (z) > 0, the contour
along the real-axis allows for a direct numerical evaluation of the integral. (b) For
Im (2) < 0, the numerical integral along the real-axis is not well defined, as the
branch cut of the integrand crosses the real-axis.

where we have defined the so-called Eliashberg function [2],
2p _ dq  , 2
@F) = 3 [ 3L 160006 P 8ersc — Emba) 8o — )+ (314)

Remarkably, the Einstein self-energy of Eq. (3.11) can be recognized in the
term within brackets of Eq. (3.13). Thus, the general self-energy may be
interpreted as the superposition of effective Einstein modes of frequency w,
where a? Fy,) (w) represents the interaction strength of the state nk with each
effective mode [93].

Given that the analytic structure of the term within brackets is known,
and since the Eliashberg function of Eq. (3.14) can be numerically computed
from first principles (see Sec. 1.4.3), Eq. (3.13) provides a way to obtain
the analytic continuation of the electron self-energy from the upper to the
lower half of the complex plane for any arbitrary system. Nevertheless, a
close inspection of the integrand shows that the branch-cut discontinuities
introduced by the logarithm terms make the direct numerical integration
(i.e. a Riemann summation) of Eq. (3.13) inappropriate for values of z
with Im(z) < 0, as shown schematically in Fig. 3.5. A possible strategy to
overcome this difficulty is to solve the integral analytically.

The simplest case in which this can be done — beyond the Einstein
model a?FE(w) = 205(w — wy)) — is the so-called Debye model [2, 5],
which describes the coupling of electrons to a linearly dispersing acoustic
phonon mode through a constant matrix element. Thus, the corresponding
Eliashberg function is defined to be proportional to the phonon density of
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Figure 3.6. Electron-phonon self-energy in the Debye model. (a),(b) Real and
imaginary parts of the self-energy -, respectively, evaluated at the real-energy

axis z — w + 7. (c),(d) Real and imaginary parts of the analytic continuation of
the self-energy to the non-physical Riemann sheet on the complex plane z.

states,
Aw?
o?FP(w) = 5 0(wp —w) , (3.15)
2wh
where 0 is the Heaviside step function, and wp is the so-called Debye frequency,
giving the maximum frequency of the acoustic mode. The polynomial
character of the Eliashberg function allows for the analytical integration of

Eq. (3.13) by parts. For completeness we give the result, which reads [93]

3 iz
~ Aw , z 2z°Log(—3
D

+ (1 — j;)) Log (;(wp — z))
_ <1 + j;;;) Log <—;(wD + z))

We represent in Fig. 3.6 the analytic structure of the electron self-energy
within the Debye model, given by the evaluation Eq (3.16). As it is appreci-
ated in this figure, Eq. (3.16) indeed gives the analytic continuation of the
self-energy which is continuous across the real-axis.

Most importantly, the Debye model provides a roadmap for a possible nu-
merical strategy to obtain the proper analytic continuation of the self-energy.

(3.16)
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If the frequency-dependence of the Eliashberg function is approximated by a
piecewise-polynomial function, the integral of Eq. (3.13) can be split into
intervals, and solved analytically for each interval [93]. The sum of the ana-
lytic contributions of each interval will give the proper analytic continuation
of the full self-energy. A practical implementation of this procedure will be
detailed in Sec. 3.3.

3.2.3 Deformed contour integral and multiple Riemann
sheets

As discussed throughout this chapter, the electron self-energy is a multivalued
function on the complex plane. As shown in Secs. 3.2.1 and 3.2.2, it is possible
to obtain the analytic continuation of the self-energy which is continuous
across the real-axis to the so-called unphysical Riemann sheet, which does
provide solutions of the quasiparticle equation Eq. (3.8) on the lower-half
of the complex plane. However, from Fig. 3.2 it appears clear that the
self-energy still displays branch-cut discontinuities on the lower-half of the
complex plane, which make the quasiparticle band structure discontinuous
(see Fig. 3.4). These discontinuities may in turn reproduce themselves in the
general self-energies through the evaluation of Eq. (3.13), as it is appreciated
in Fig. 3.6 for the Debye self-energy. Nonetheless, it is not obvious how one
could have access to all the Riemann sheets that may give a contribution to
the spectral function on the real-axis.

One possible approach can be deduced from the interpretation of Eq. (3.13)
as a line integral over the real-axis on the complex w-plane, as shown
schematically in Fig. 3.5. Instead of restricting the line integral to the real-
axis, and the values of the integrand to its principal branch, one can deform
the integration contour to move continuously through the different sheets of
the multivalued integrand.

We illustrate this procedure in the Debye model. In Fig. 3.7(a) we
show the imaginary part of the integrand in Eq. (3.13), that is basically the
FEinstein self-energy of Fig. 3.2 composed by multivalued logarithm terms.
Thus, at the ending point of the integral, which is the Debye frequency
wp on the real-axis of the w-plane, the integrand can take multiple values.
As already discussed in Fig. 3.5, considering only the principal branch of
the integrand makes the integration on the real-axis impossible for values
of z with Im(z) < 0, as a branch cut crosses the real-w-axis in this case.
However, taking into account its multivaluedness, it is possible to define
different deformed integration contours which, although finishing at the same
point in the w-plane — wp in this case —, move continuously through the
different sheets of the integrand. For example, two contours passing below
and above the branch-point at w = z( are represented by C%O,wp} and C{QOWD},
respectively, in Fig. 3.7(a).
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Im(y, ) e

Figure 3.7. Multiple Riemann sheets in the self-energy. (a) Imaginary part of
the multivalued term within brackets of the integrand of Eq. (3.13) on the complex
w-plane. Two possible contours which are continuous from w = 0 to w = wp through
the different sheets are represented by C%O,wo y and Cfowa}, respectively. (b) The

corresponding multivalued self-energy ¥(z), obtained through the evaluation of
Eq. (3.13) on the complex z-plane. The different Riemann sheets corresponding to
the contours Cy, , + and C; , » are represented by Si and S, respectively. Each
sheet is continuous across a particular region of the real-z-axis, highlighted by the
black line.

Clearly, the evaluation of Eq. (3.13) through the different contours will
result in multiple values of 3(z) for the same z. We illustrate in Fig. 3.7(b)
the multivalued self-energy obtained in the Debye model from the contours
C%O,wp} and C%O,wp} of Fig. 3.7(a), where the corresponding different Riemann
sheets are denoted by &1 and Ss, respectively. As it can be appreciated in
this figure, both sheets are continuous towards the upper-half plane across a
region of the real-z-axis, highlighted by a black line in Fig. 3.7(b). The upper
S sheet is continuous for Re(z) < wp, and the lower Sy sheet is continuous
for Re(z) > wp. By picturing the integrand for changing values of Im(z)
from positive to negative, one sees that indeed the contours C{lo,wD} and
C%O#UD} are the ones that keep the value of the integrand at wp on the same
sheet as in Im(z) > 0 for each case. We note that for each region of Re(z),
the corresponding continuous sheet to the lower-half of the complex plane
gives the same result as obtained by the analytical integration of Eq. (3.16)
(see Fig. 3.6).

Considering only the branch of the self-energy which is continuous across
the real-axis, as in Figs. 3.2 and 3.6, will be typically sufficient to obtain
a good approximation of the spectral function through the solutions of the
quasiparticle equation Eq. (3.8) sought in this branch. However, in some
cases, looking for extra poles in the multiple Riemann sheets discussed above
will be useful to obtain a continuous quasiparticle band structure.

One of such cases within the Debye model is shown in Fig. 3.8. In
Fig. 3.8(a), we represent the full spectral function for e, = 0.8wp by a gray
line, which displays a clear peak at w ~ 0.5wp and a bump at w ~ 1.1wp.
In Fig. 3.8(b), we show the analytic continuation of the Green’s function
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Figure 3.8. Contribution to the spectral function from the poles at the multiple
sheets. (a) The full spectral function within the Debye model for ey, = 0.8 wp. The
contributions from the two separate poles coming from the different Riemann sheets
are represented by the blue and orange shaded areas, respectively. Each pole only
contributes to the region on the real-z-axis on which its Riemann sheet is continuous.
(b) Analytic continuation of the Green’s function for the branch which is continuous
across the real-axis, as given by Eq. (3.16). (c),(d) Analytic continuation of the
Green’s function for the two §; and S; Riemann sheets of Fig. 3.7, respectively.
The pole of Gy, (z) on Sy clearly recognized in (d) is hidden in the branch which is
continuous across the real-axis, shown in (b).

which is continuous across the real-axis, as given by Eq. (3.16). Clearly, the
origin of the main peak on the spectral function can be recognized to come
from a pole very close to the real-axis. However, no pole can be found strictly
in this branch which may account for the bump at w > wp. Still, from the
colormap one can deduce that it is hidden below the branch-cut.

The analytic continuation of the Green’s function for the two sheets S;
and Sy are shown in Figs. 3.8(c) and (d), respectively. As expected, another
pole can be found in the lower Sy sheet, clearly recognized in Fig. 3.8(d).
We represent the separate contributions of each pole to the spectral function
through each sheet [see Eq. (3.9)] by the blue and orange shaded areas
in Fig. 3.8(a), respectively. Each pole only contributes to the region on
the real-w-axis on which its Riemann sheet is continuous. As compared
to the single-pole contribution that one could find only in the continuous
branch across the real-axis, represented by the solid blue line, a much better
approximation to the full spectral function can be obtained in this way. Still,
the simple summation of both contributions does not account for the full
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spectral function, meaning that the self-energy introduces fine details on the
Green’s function beyond the standard quasiparticle approximation.

3.2.4 Extension to general self-energies

The procedure reviewed in Sec. 3.2.2 is valid for the analytical continuation of
the electron-phonon self-energy in most of the cases in which this interaction
is relevant, namely for electrons close to the Fermi surface in conventional
metals. However, for some interesting cases, like the one we will present in
Sec. 3.3, the approximation of constant density of states and particle-hole
symmetry needed to get to Eq. (3.13) does not hold, and the more general
self-energy of Eq. (1.36) has to be used in order to obtain correct spectral
functions.

Following the essence of Eq. (3.13), we will try to look for an expression of
the self-energy which is composed by a function whose analytical continuation
is known — such as the logarithm —, and a more complicated function which
can be computed numerically on the real-axis.

The starting point for our derivation is the Kramers-Kronig relation for
the retarded self-energy on the real axis [27],

Re (Xk(w)) = iP/O:Odw’ W . (3.17)

Recalling that (w' +in)~! = P(1/w') £ ind(w’), the full self-energy can be
retrieved from the knowledge of its imaginary part on the real axis only,

/ d’w_w( )). (3.18)

+in

We can now integrate by parts, getting

1 7% dIm (S (w”
an(w):—;/ dw'w Log(w —w +1in) +C , (3.19)

W =w’

where,

(Znk (@)

o dI
C:iIm(Enk(w—>oo)):i/0 d mdw” (3.20)

WN :(lJ/

The analytic continuation of the self-energy similar to Eq. (3.13) can now
be obtained by substituting w — z, and choosing the proper sheet of the
logarithm term by summing —*F + Log(7) = 0 in the integrand,

. :_7/ d,dlmd ()

(—Z;T + Log(iw' — zz)) +C,
(3.21)

(.AJ//:UJI
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where the infinitesimal  — 0% has been absorbed into z in the logarithm
term.

If particle-hole symmetry is present, and under the same approximations
leading to Eq. (3.13), we have that [22],

1dIm (3,x(w"))

T d w/, W=

1dIm(XxW")) 9 ,
= —— = F
12 T dw// @ nk(w) ’

—w w!=w’

(3.22)
and Eq. (3.13) can be retrieved from Eq. (3.21).

Nonetheless, Eq. (3.21) is much more general and goes beyond these
approximations. Indeed, as this expression originates from the general
Kramers-Kronig relation of Eq. (3.17), it is in principle applicable to any self-
energy, including, for example, the electron-electron self-energy. In Sec. 3.3
we will use this expression together with the piecewise-polynomial method
to identify the complex quasiparticle poles in the intricate spectra of doped
monolayer MoSs. In this system, the electron-phonon self-energy lies outside
the range of validity of the approximated Eq. (3.13), and the full self-energy
of Eq. (1.36) has to be used.

3.3 Complex quasiparticle band structure
in the doped monolayer MoS,

In the previous section, we have discussed different methods to obtain the
analytical continuation of the electron-phonon self-energy to the unphysical
Riemann sheet in a general way. In this section, we put the procedures
discussed above into practice, and determine the complex quasiparticle band
structure of a realistic system starting from first principles calculations.

The system we will study is the doped monolayer MoSs [14], where the
possibility of systematic doping together with high resolution photoemission
experiments has allowed to uncover a genuine many-body electron spectrum
[87]. Being a doped semiconductor, its density of states close to the Fermi
energy is far from being constant. Moreover, its complicated band structure
composed of spin-split valleys at high-symmetry points of the Brillouin
zone, makes the electron-phonon interaction particularly unconventional
in this system [18, 94-96]. Thus, the full self-energy of Eq. (1.36) has to
be evaluated explicitly for a proper description of the measured spectral
function. This makes the use of Eq. (3.21) derived in Sec. 3.2.4 mandatory
for the analytic continuation of the self-energy. In this thesis, we will focus
in the determination of the quasiparticle properties of the system. All the
details about the first principles calculations can be found in [14].

In Fig. 3.9 we show the spectral function Ay (w) of MoSs considering a
doping carrier density of n = 9 x 103cm ™!, for which the conduction-band
minima at K are filled with a binding energy of Ex = 118 meV, while only
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Figure 3.9. Electron spectral function for doped MoSs along the high-symmetry
points of the Brillouin zone, calculated from first-principles including elec-
tron—phonon interaction effects [14]. The solid black lines represent the non-
interacting electron bands. The dashed rectangle highlights the area of the Brillouin
zone where the strongest renormalization of the electronic bands occur. The dotted
line on the inset shows the momentum k = ky in which the self-energy is evaluated
in Figs. 3.10-3.12.

the lower spin-split states are populated at Q with a binding energy of
Eq = 22 meV. The spectral function has been calculated directly on the
real axis in a similar way as in Eq. (3.12), but using the full self-energy
of Eq. (1.36), in which all the components have been computed from first
principles DFT and DFPT calculations (see Sec. 1.4 for a brief description
of the adopted approximations).

The agreement with the experimentally measured ARPES spectra is
remarkably good [87]. This indicates that carefully considering the details of
the electron-phonon interaction within the Migdal approximation already
accounts for the observed strong renormalization of the electronic bands. We
show a zoom on the region of the Brillouin zone in which this renormalization
is strongest in the inset of Fig. 3.9. Notably, the electron-phonon interac-
tion is stronger in the outer spin-split band, owing to the interplay of the
electron-phonon matrix-elements with the out-of-plane spin-polarization of
the electronic bands at different valleys [14]. For completeness, we represent
the non-interacting DFT bands by black solid lines in Fig. 3.9.

In order to illustrate the practical numerical workflow for the analytic
continuation of the self-energy, we first focus on the outer spin-split band,
and on a single k-point close to the Fermi-momentum at the K valley,
represented by kg and a dotted line in the inset of Fig. 3.9. We will use
the piecewise-polynomial method described in Sec. 3.2.2, together with the



3.3. Complex quasiparticle band structure
in the doped monolayer MoSs 53

— 0
>
E
Z -104

» [nitial data

1st spline
-30 T T
-150 -100 -50 0
w (meV)
(b)
10
3 +  Data from 1st spline
T 61|— 2nd spline
—~
3 27
N—r
E
3
-10 T T
—-150 -100 -50

w (meV)

Figure 3.10. Spline interpolation of the electron-phonon self-energy. (a) The
imaginary part of the self-energy at k = k¢ is evaluated on a regular grid of {w;}
points in the real-axis through Eq. (1.36), as represented by the black crosses. A
spline interpolation, represented by the gray line, is performed over this set of
data. (b) The first spline interpolation is used to generate an accurate derivative
in a denser grid {w;}, shown by the gray crosses. A second spline interpolation
is performed over the dense data set, as represented by the blue line, in order to
define a piecewise-polynomial function approximating the continuous derivative of
the self-energy on the real-axis. (c) Zoom over a particular region of the w-axis.

formula Eq. (3.25) derived in Sec. 3.2.4 valid for the analytical continuation
of a general self-energy.

Our first goal will be to interpolate the derivative of the imaginary part
of the self-energy, %, as a piecewise-polynomial function. With the
aim of obtaining an accurate and smooth derivative, we will follow a two-step
cubic spline interpolation process, as shown in Fig. 3.10. Usually, what is
computed from first principles is the imaginary part of the self-energy on a
regular grid of real frequencies {w;}, as represented by the black crosses in
Fig. 3.10(a). We compute the derivative of the self-energy by interpolating
{Im (X, (w;))} through a cubic spline, and evaluating its first derivative on
another grid of real frequencies {w;}, which can be finer than the initial
grid if needed. Then, the coefficients of the piecewise-polynomial function
approximating the derivative of the self-energy, which will be used to integrate



Chapter 3. Complex quasiparticle renormalization driven by

54 the electron-phonon interaction
(a) Re (X4, (2)) (arb.u.) (b) Im(%y,(2)) (arb. u.)
HE 2 . |
min 0 max min 0 max
1 1
__ 0] o
> >
21 21
T2 -2
E E
_3— _3_
2100 -80 -60 -40 -20 0 2100 -80 -60 -40 -20 0
Re(z) (meV) Re(z) (meV)

Figure 3.11. Analytic continuation of the electron-phonon self-energy in MoS,.
(a),(b) Real and imaginary parts of ¥y, (z), respectively, evaluated through Eq. (3.25)
on a region of the complex z-plane. The function is continuous across the real-axis
from the upper to the lower half of the complex plane.

Eq. (3.21), are obtained by interpolating this finer data points by a second
cubic spline. Explicitly, we have that [97, 98]

f1(w —wp) , wo S w < wq
dIm (X, (w ‘
(dk()) = f(w) ~ fj(w — wj—l) ) wj-1 S w < wj )
w
fn(w—wn-1) ; WN-1 Sw S Wy
(3.23)
where
filw) =djw +cjw* +bjw+a; (3.24)

and the coefficients a;, bj, ¢; and d; are determined by forcing the continuity
of the function and its first and second derivatives over the intervals, together
with the boundary conditions f”(wg) = f”(wn) = 0.

In this way, we can apply the method reviewed in Sec. (3.2.2), and perform
the integral of Eq. (3.21) analytically on each interval. For completeness, we
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give the general result, which reads

N, .
Z dw' fj(w —wj_1) <—Z;T + Log(iw" — zz)) +C
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— 8(2+ 3im) (W' — 2)%(cj + 3dj(z — wj—1))

— 9i(2r — i)d;(w' — 2)3)]:5 + C. (3.25)

This expression, although rather lengthy, allows to approximate the
numerical evaluation of the analytic continuation of a general self-energy as a
simple summation. We illustrate this in Fig. 3.11, where we show the analytic
continuation of the numerically evaluated electron-phonon self-energy for
MoS; at k = kq. Clearly, the self-energy for this realistic case is much more
complicated than the self-energy of the Einstein model shown in Fig. 3.2.
However, the important aspect is that this function is continuous across the
real-axis, demonstrating that Eq. (3.25) actually gives the proper analytic
continuation of the self-energy needed to solve Eq. (3.8) on the complex
plane. Solutions of this equation on the multiple Riemann sheets as discussed
in Sec. 3.2.3 will not be sought, as the poles found on the branch which is
continuous across the real-axis will already give a proper account for the
spectral function, as we will see below.

We illustrate this point more explicitly in Fig. 3.12. For completeness, we
show in Fig. 3.12(a) the spectral function for k = kg on the real-energy axis,
where two clear peaks and a small bump can be observed for energies around
—15meV, —45meV and —65meV, respectively. By plotting the imaginary
part of the analytical continuation of the Green’s function on the complex
plane (see Fig. 3.12(b)), obtained by substituting w — z and £(w) — 2(z)
in Eq. (1.37), we recognize the origin of the two strongest peaks in two
clear poles close to the real-axis. Similarly, the origin of the bump can be
traced back to a pole with a smaller residue deeper in the imaginary axis at
Re(z) ~ =70 meV.

Finally, we represent graphically the real and the imaginary components
of the quasiparticle equation Eq. (3.8) by the blue and orange contours in
Fig. 3.12(c), respectively. This figure demonstrates that the poles of Gy, (2)
can be determined by the self-consistent solutions of Eq. (3.8), that is, by
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Figure 3.12. Spectral function and complex quasiparticle poles in MoSy. (a)
Spectral function at k = k( evaluated on the real-energy axis. (b) Imaginary
part of the analytic continuation of the Green’s function on the complex z-plane,
—Im (Gy, (2)), obtained by substituting w — z and $(w) — X(z) in Eq. (1.37).
Three poles can be identified as the origin of the peaks on the real-axis. (¢) Graphical
solution of the quasiparticle equation Eq. (3.8). The real and imaginary components
of the equation are shown in blue and orange, respectively. The crossing points
correspond to self-consistent solutions, that is, quasiparticle energies.

the crossing points of the two contours in Fig. 3.12(c). In practice, these
solutions have been found by a complex version of the Newton root-finding
method [93].

Following the same procedure for all the k-points on the Brillouin zone,
we can obtain the full quasiparticle band structure of the system. We
show in Fig. 3.13(a),(b) the results for the outer spin-split band of doped
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Figure 3.13. Complex quasiparticle band structure of doped monolayer MoS,.
(a) Dispersion of the three quasi-particle poles found for the outer spin-split band.
The real part of the poles, that is the quasiparticle energies EIP for different values
of the modulus of the momentum k are shown by the blue (m = 1), green (m = 2),
and red (m = 3) dots, respectively. The bare electron energy el is represented by
the dashed black line. The length of the bars represent the spectral weight of each
pole, given by the real part of their residues, Re (Z%), while the imaginary part
of the residues are represented by the rotation of the bars, Im (Z%) = 1 giving a
rotation of § = 7 radians. (b) Negative of the imaginary part of the quasiparticle
poles, that is, the inverse quasiparticle lifetime I'%?, with respect to the quasiparticle
energies. The color code is the same as in (a). (c) Spectral function of the outer
spin-split band on the area highlighted in Fig. 3.9. (d) Contribution to the spectral
function coming from each complex quasiparticle pole (see Eq. (3.26)), shown by
different colors following the same convention as in (a). (e) Three dimensional
representation of (c).

MoSa,, in the region of the Brillouin zone highlighted in Fig. (3.9), where
the same notation as in Fig. 3.4 has been used. For ease of comparison, the
separated contribution to the spectral function for this band is shown in
Fig. 3.13(c). By comparing Figs. 3.13(a) and (c), it is clearly appreciated that
the most important spectral features can be indeed identified as elementary
quasiparticle excitations. Qualitatively, the behavior of these quasiparticles
is similar to the one described in the simple Einstein model of Sec. 3.2.1.
However, the peculiar structure of the self-energy in this system results in
up to three different solutions for some regions of the Brillouin zone.

Close to the Fermi momentum kz, an Engelsberg—Schrieffer-like [5] state
appears with a strongly renormalized dispersion and a very long lifetime,
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which we denote as the m = 1 solution and we represent in blue color.
Far enough from kr, we find a dispersive and damped state, denoted as
the m = 3 solution and represented in red color. Remarkably, for some
intermediate values of the momentum we find an additional solution with
an important spectral weight whose dispersion is practically flat, which we
denote as the m = 2 solution and represent in green color. Its renormalized
flat dispersion indicates that it is a strongly interacting state which tends
to localization. Moreover, this state appears long lived as it lies just in the
energy window where the imaginary part of the self-energy has almost a gap
(see Fig. 3.10(a)). More specifically, the electron—phonon limited lifetime
broadening at this energy range is almost negligible, I''"_, ~ 0.35 meV, as
shown in Fig. 3.13(Db).

An assessment on the validity of the quasiparticle picture can be obtained
by comparing the full spectral function with the so-called quasiparticle
spectral function, which directly follows from Eq. (3.9),

7.dp
AP = - I (3.26)
T m Z— E%p

We represent the separate contributions from each quasiparticle pole in
Fig. 3.13(d), following the same color convention as in Figs. 3.13(a),(b). This
figure shows how the spectral weight is transferred from one quasi-particle
into others as a function of momentum k. For ease of comparison, the full
spectral function, as directly obtained from Eq. (1.36), is represented again
in Fig. 3.13(e), from the same perspective and in the same frequency range
as in Fig. 3.13(d).

The comparison between the quasiparticle and the full spectral function
is strikingly good, indicating that the the threefold band structure observed
in experiment certainly corresponds to quasiparticle excitations and not to
incoherent multi-phonon contributions.

3.4 Outlook: Connection with the polaron
problem

In the previous sections we have analyzed in detail the renormalization of
the electron energy-momentum dispersion as a consequence of the electron-
phonon interaction. From these results it is appreciated that the electron-
phonon interaction tends to flatten the electron bands in some regions of the
Brillouin zone, which corresponds to a reduction of the electron velocity and
an increase of the effective mass. The most clear manifestation of this effect
has emerged in the strongly renormalized intermediate quasiparticle state of
doped MoSs (see m = 2 in Fig. 3.13).

Physically, this increase of the effective mass can be understood to
originate from an effective dressing of the electron states by a virtual phonon
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cloud, which results from the atoms moving from their equilibrium positions
to screen the charge of the propagating electron. The most drastically
simplified version of this phenomenon can be realized in the case of a single
electron added to the conduction band of an ionic insulator. When the excess
electron deforms the crystal lattice so as to create a potential well from
which it cannot escape, it is said to become self-trapped, and the composite
quasiparticle formed by the electron and the polarization cloud is referred to
as a polaron? [99-101].

The advent of first principles DFT methods has opened new possibilities to
obtain accurate microscopic insight into material-specific polaron properties
[102-105]. In this approach to the problem, the regular practice is to perform
a supercell calculation with an extra electron added to the system, and
relax the structure adiabatically to see whether a localized and distorted
configuration is energetically more favorable than the conventional periodic
state. Very recently, this procedure has been formalized in Refs. [106, 107],
tracing back the localization condition within DFT to the solution of a set
of two coupled equations, one for the electronic wave function and one for
the atomic displacements (see Eqgs.(24)-(25) of Ref. [107]). In any case, this
type of calculations gives the localized structure of the polaron state directly
in real space.

In the opposite side, the most recent claims on the experimental detection
of polaron states have come through their signatures in the ARPES spectra,
that is, in momentum space [87, 108-111]. As we have seen in the previous
sections for the case of MoSs [87], in order to describe this signatures from
first principles calculations, one needs to go beyond DFT and apply more
advanced many-body Green’s function methods [14]. Similar techniques give
satisfactory results in the case of the replica bands seen on slightly doped
semiconductors [13, 112].

In this context, one question that naturally comes up is whether one could
obtain the real space structure of localized polarons from the general Green’s
function formalism reviewed in Chapter 1. In principle, this approach could
provide a non-adiabatic description of the polaron formation, from where
the expressions derived in Ref. [107] should be retrieved after applying the
pertinent approximations. Most importantly, it would clarify the hitherto
ambiguous connections between the polaron localization in real space and
its ARPES signatures in momentum space, since this technique is sensible
to extended states. In this section, we briefly outline the preliminar steps we
have made towards the development of such approach, which is still a work
in progress.

2Sometimes in the literature the word polaron is used to name interacting electron-
phonon quasiparticles in general. In this thesis, we limit the use of this term to describe
self-trapped quasiparticles.
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3.4.1 Quasiparticle equation in real space

The formal definition of quasiparticles within the Green’s function formalism,
as described in Sec. 3.1, allows for the determination of their real space
structure through the solution of Eq. (3.7) directly in real space [93],

HO(r) 9P () + / dr’ $(r, 1, EP) pP(r)) = EP P(r) . (3.27)

Moreover, the Hedin-Baym equations reviewed in Chapter 1, and in
particular the contributions to the self-energy discussed in Sec. 1.3, incor-
porate the electron-phonon interactions that may happen in any metal or
semiconductor in a general way. Thus, provided that H? describes the ef-
fects of electron-electron interactions — even approximately, for example
through DFT —, inserting Eqgs. (1.26)—(1.28) in Eq. (3.27) should allow for
the description of the localization of polaron quasiparticles in real space.

However, a crucial assumption adopted in Sec. 1.4.4, namely the assump-
tion of crystal periodicity of the electron self-energy, excludes this possibility.
This assumption permits to label the quasiparticles with a momentum index
k, and thus to obtain a well-defined quasiparticle band structure, as amply
discussed in the first part of this chapter. By extension, a crystal periodic
self-energy in Eq. (3.27) can describe the renormalization of a k-dependent
periodic quasiparticle wave function within the unit cell, but can never give
rise to a localized polaronic state which, by definition, breaks the original
periodicity of the lattice.

In order to generalize our formalism, we have to go back to the full
Hedin-Baym equations of Chapter 1, and see what is the minimal extra
term we should consider in order to obtain non-periodic contributions to the
self-energy.

3.4.2 Finite atomic displacement term on the electron
self-energy

All the electron-phonon physics described within the Hedin-Baym formalism
have their origin in the harmonic expansion of the nuclear density operator
given by Eq. (1.9). As discussed in Sec. 1.3, if one only keeps the zero-order
term in the expansion, so that (fi,(r)) ~ nd(r), one would be describing
a solid with classical nuclei fixed at their equilibrium positions. However,
the quantum nature of the vibrating nuclei allows for a finite value of the
mean square of the displacement operator, which gives a contribution to the
expectation value of the nuclear density through the second-order term in
Eq. (1.9). This translates to a finite displacement-displacement correlation
function Dypq w/prar, Which in turn gives rise to a finite Fan-Migdal self-energy
YFM through the phonon contribution to the screened Coulomb interaction
Won [see Egs. (1.15), (1.20) and (1.27)].
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Curiously, the average of the displacement operator (Afy.qp), coming
from the first-order term in the expansion of Eq. (1.9), has always been taken
to be zero in the literature to the best of our knowledge. This term has
been neglected based on the fact that in a periodic crystal, the atoms are
allowed to vibrate around their equilibrium positions, but, on average, they
have to remain at their initial periodic positions. Interestingly enough, this
reasoning breaks down in a polaronic ground state, where the equilibrium
atomic positions are indeed displaced, translating into a finite contribution
of this term which should be included in the self-energy.

The most evident contribution of a finite atomic displacement term arises
in the Debye-Waller self-energy of Eq. (1.28). This can be seen by expanding
the total-density operator to second order in the atomic displacements,
assuming that the electronic field operators and the nuclear-displacement
operators are uncorrelated, that is (W™ AT.qp) = (W) (ATwap) [113], where
A™ = fe +n, and using the definition Viot(1) = [d2v(12) (2(2)). In this
way, one can write the Debye-Waller self-energy as

m
wPW(12) =6(12) ) avmot(l) (AT ap) (3.28a)

rap 8wacp

1 V(1)

Kap 2 87—/80&1)67_2/0/17’
Koy

The second term, Eq. (3.28b), is the usual Debye-Waller term discussed in
the literature (see, for example Eq. (159) of Ref. [7] and discussion/references
therein).

Most importantly, the first term Eq. (3.28a), which to the best of our
knowledge has not been discussed so far, will give a contribution to the
renormalization of the electron quasiparticles — via Eq. (3.27) — whenever
there are finite displacements of the equilibrium atomic positions in the
ground state, as it happens in a polaronic state. Moreover, assuming that the
total potential at rigid nuclei V;t can be approximated as the KS potential of
DFT, one recovers Eq. (24) of Ref. [107] by only considering this contribution
in the self-energy of Eq. (3.27).

It is noteworthy that this term is static, and that therefore it cannot
give rise to spectral features such as kinks or satellites. This leads to the
important conclusion that although both have their origin in the electron-
phonon interaction, the polaron localization in real space is not directly
related to the momentum-space features observed in ARPES experiments.

+1i6(12) Dyaprrary (i t1) . (3.28b)

3.4.3 Determination of the atomic displacements

The new term arising in the Debye-Waller self-energy, as discussed in the
previous section, accounts for the renormalization of the polaron wave func-
tion due to the possible finite displacements of the atomic positions from
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their equilibrium periodic positions. However, we have not specified what
the magnitude of these displacements would be — if any —, and how we can
determine them.

In order to do so, we move from Green’s functions and work directly
with the displacement operator. We consider a somewhat simplified picture
with respect to Eq. (1.1), and start from a Hamiltonian which describes
well-defined electrons and phonons, and the coupling between them to linear
order in the displacement [2, 7, 27]

H=H.+H,+ H,,
=3 el lne + > wap (@ gy +1/2)

nk qv
_1
+ Ny 2 G (K, @) ) fr(aqn +alg,) - (3.29)

The phonon part of the Hamiltonian can be rewritten in terms of the
displacement operator and its momentum conjugate operator [7 , 27],

A Px
Hy=->" 2!;&10 Z Craprtalp ATeapATirary (3.30)
rer ?
K'a'p

where Cyap r/arpr are the interatomic force constans. Besides, the electron-
phonon Hamiltonian can be rewritten in terms of the displacement operator

7],
ﬁep = Z (| Z o Viot A yap [¢nk) Ink/cnk) (3.31)

nk,mk’ Kap Trap

where |¢nKk) are electronic single-particle basis wave functions. We can
rewrite Eq. (3.31) by means of the field-operators in real-space,

U(r) =D (rlonk) tn, (3.32)
nk

) = > (o) el (3.33)
nk

and insert [ dr|r)(r| =1, so that Eq. (3.31) becomes

& 13, 8Vvtot
Ao = / / drdr' B (1) 3 (0] S0 1) (1) A (3.34)

Kap Trap

Finally, since the total potential is local ((r[wlr’> = Vcn(r)d( )),

OTkap OTkap
and using the definition of the electron density operator of Eq. (1.7), we find
OV ER(r
Aoy = / S 8‘;:@ o(r) Aty - (3.35)

Kap
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Now, using the canonical commutation relations,

[%ﬁaih,f—fﬁ/a/p/] = [ﬁnapaﬁn’a’p’] =0 ) (3'36)
[%napvﬁn’oa’p’] = i5n5’5aa’6pp 5 (3'37)

we can derive the equation of motion for the displacement operator, which
reads

d2

A A 7 N
dt2 ATHap(t) —[[Afwap, H], H] = [ pnp,H]
_ HOépI'{Oép tot
_ g:p Aoy () + 5 / dr %m fe(r) . (3.38)

This equation is a nonhomogeneous differential equation for the time-
dependence of the displacement operator. The general solution of the com-
plementary homogeneous equation — i.e. second term on the right hand side
equals zero — is simply given by a linear combination of the time-dependence
of the phonon eigenmodes [27]. However, the additional second term coming
from ]flep introduces a particular time-independent solution, so that finally
we find

1

ATnocp(t) = qu m eiq-RPeKOL’V (q) (dq,, + CALJLqV) elwat
Ve (r)
Craprtary | g2 aelr). (3.9)
K a! p

In order to determine the value of the atomic displacements, we have to
take the average of the displacement operator over the many-body ground
state, (AT.qp). The phonon creation and annihilation operators in the
first term make the average over this term to vanish. This means that in
the absence of the electron-phonon coupling part of the Hamiltonian, the
atoms vibrate without displacing on average from their equilibrium periodic
positions, as expected. However, the average over the second term gives a
finite constant contribution which depends on the average of the electron
density:

(APpp) = Crapialy / dr OVioi (r) fe(r)) (3.40)

T
nap K a'p!

This expression implies that finite atomic displacements with respect to
the equilibrium positions are possible as a result of the electron-phonon
interaction and a non-periodic electronic density. In this scenario, where
the initial periodic symmetry has been broken, the displacements and the
density have to be determined self-consistently.

In order to link this expression to the polaron problem, the difference
between a ground state of NV electrons — in which the displacement vanishes —
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and a ground state of N + 1 electrons has to be taken. Then one can assume
that the total potential and the force constants do not change due to the
presence of the extra electron, and one obtains an equivalent expression to
Eq.(25) of Ref. [107], where the electron density entering the integral is the
one of the extra localized polaron.

3.4.4 Self-consistent polaron equations

All in all, Egs. (3.27)—(3.28a), the density obtained from the polaron quasi-
particle wave functions, and Eq. (3.40), form a set of self-consistent equations
equivalent to the ones derived within DFT in Ref. [107]. However, in our
case they have been derived within a more general many-body formalism.
This makes the upgrading of the theory to incorporate non-adiabatic effects
in the polaron formation readily available through the addition of the dy-
namical Fan-Migdal term in the self-energy of Eq. (3.27), which has not been
considered in the literature so far.

Although more work is needed to formalize this procedure and make
it amenable for practical calculations, the preliminary results presented in
this section open the path towards a complete first principles many-body
description of polaron quasiparticles.

3.5 Conclusion

In this chapter, we have analyzed in deep detail the renormalization of
electron quasiparticles driven by the electron-phonon interaction.

In the first part of the chapter, we have shown that a proper definition
of quasiparticles within a Green’s function formalism requires the analytic
continuation of the electron self-energy to the lower-half of the complex energy
plane. Based on previous work, we have extended the available numerical
methods to obtain the analytic continuation of general self-energies beyond
the constant density of states approximation. Then, we have described the
application of the implemented procedure to unambigously identify, from first
principles, an intricate strongly interacting electron-phonon quasiparticle
band structure underlying the recently reported ARPES measurements on
the doped monolayer MoS,.

Finally, in the last part of the chapter, we have outlined a procedure which
lays the ground for a full many-body description of polaron quasiparticles in
real space from first principles.



Chapter 4

Symmetric Helmholtz Fermi
Surface Harmonics
for electron-phonon problems

The Fermi surface (FS) is an abstract surface in reciprocal space that sep-
arates the occupied from the unoccupied electronic states of a metal. As
dictated by the Pauli exclusion principle, the low-energy electronic excitations
driven by, say, small external electromagnetic fields or finite temperatures,
are thus restricted to a very narrow window around the FS. This implies
that a detailed knowledge of the specific shape and topology of the F'S, as
well as of the matrix elements defining the scattering processes on it, appears
crucial for a proper understanding of most transport properties of metals
[114].

In this respect, one of the most important scattering source for elec-
trons close to the Fermi surface is their interaction with phonons [2]. As
we have analyzed in detail in Chapter 3, the electron-phonon interaction
yields a strong renormalization of the electronic quasiparticles, modifying
their effective mass and their lifetime. This, in turn, underpins observable
macroscopic phenomena such as the temperature dependent resistivity [1],
or even conventional superconductivity [21, 22], which we will adress in this
chapter.

The delimitation of the relevant many-body processes to the Fermi surface,
although implying a simplification a priori, results in a complication from
the numerical point of view. In a typical electronic structure calculation, the
Brillouin zone in reciprocal space is sampled by a discrete number of k-points,
for which the single-particle electronic energies are computed through Density
Functional Theory methods (see Sec. 1.4.3). The most common procedure
to determine a FS is then to select the k-points for which the electronic
energies lie within a given threshold around the Fermi energy (EF), generally
approximated by a smearing function such as a Gaussian. The smearing
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function should be as narrow as possible, ideally becoming a delta function,
and the finer the details needed on the description of the Fermi surface, the
more the k-points required in the sampling.

Several works have shown that a huge amount of k-points points are
actually needed for accurate calculations of the diverse problems involving
electron-phonon interactions [9-11, 115]. As a rough estimate, typically one
needs around ny ~ 10% points for a faithful description of the Fermi surface
anisotropy, resulting in ny s ~ 10® pairs of points in which the electron-
phonon matrix elements g, .,/ have to be computed for all the different F'S
sheets (n,, ~ 1-10) and phonon branches (n, ~ 1-10). In total, the required
amount of data is of the order of N ~ 10? elements. For electron-phonon
problems in which self-consistent integral equations have to be solved on the
FS, such as the problem of superconductivity that we will discuss in this
chapter, the computational workload gets exceedingly high.

With the aim of alleviating this issue, a promising scheme was proposed by
Allen in Ref. [116]. His approach was based on a transformation of the scalar
quantities defined on the FS into a new basis set composed of polynomials
of electron velocities orthogonalized on the FS, which were called Fermi
Surface Harmonics (FSH). However, the technical difficulties encountered in
the construction of the basis set, which involves several semi-analytic steps
and requires a different procedure for each crystal structure, has turned the
practical application of the method unattainable so far, except for some
recent scarce instances [117, 118].

An alternative definition of the FSH basis set was introduced in Ref. [119],
which overcome the limitations of Allen’s proposal. In this novel approach,
the orthonormal basis functions, called Helmholtz Fermi Surface Harmonics
(HFSH), are obtained by a purely numerical procedure as the solutions of
the Helmholtz equation defined on a triangularly tessellated Fermi surface.

In this chapter, we will introduce some crucial improvements on the
procedure presented in Ref. [119], which will allow to incorporate the crystal
symmetries in the HFSH basis set. This will permit an optimal representation
of physical quantities defined on the Fermi surface in terms of few symmetric
elements of the set.

In the second part of the chapter, the full potential of the method will be
demonstrated in practice for the first time: we will show that the anisotropic
gaps and transition temperatures of phonon-mediated superconductors can
be determined to high accuracy and a much reduced computational cost
from first principles through the solution of the Eliashberg equations of
superconductivity in the HFSH representation.
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4.1 General properties of the HFSH basis set

For completeness, we first review the main properties of the HFSH basis set
introduced in Ref. [119].

The HFSHs are defined as the eigenmodes of a velocity-weighted Laplace-
Beltrami operator on the curved Fermi surface,

v(k) Vidr (k) + wp ®r(k) =0, (4.1)

where wy, are the eigenvalues associated with the eigenfunctions @ (k).
Eq. (4.1) represents a generalized Helmholtz equation, from which, for
example, the ordinary spherical harmonics are recovered in a spherical Fermi
surface with a constant v(k).

The HFSH functions obtained through Eq. (4.1) obey the orthogonality

condition 2 2
Sk _ ) Sk
/U(k) B (K) D (K) = 0y /v(k) , (4.2)

and form a complete basis. Thus, we can represent any anisotropic function
F (k) defined on the Fermi surface by an expansion in the HFSH basis set,

k) =Y Fror(k), (4.3)
L

where the expansion coefficients are given by the following FS integrals:

dsk
. Jsp o (I)j(k)F(k)' (4.4
Js o

Besides, the product of two functions Fj(k) and F5(k) may be conve-
niently represented in terms of the separated HFSH coefficients for each
function Fr, by

Fi(k)Fy(k) = > Eprin, Fr, Fr, ®(k) (4.5)
Lilal

where Zr, 1,1, are the generalization of the Clebsch-Gordan coefficients for
the HFSH basis set:

S 5 @ (k) D1, (K) D1, (K)
fSF d2$k ’

An effective numerical procedure to obtain the HFSH basis set involves
the construction of a triangular mesh defining the Fermi surface as a prior
step. This allows for the numerical solution of a discretized version of Eq. 4.1,
which is transformed into a generalized sparse eigenvalue problem,

(4.6)

ELLiLy =

U(Sk;);QiJ' (I)L(kj) = Wy (I)L(kl) . (47)
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In this expression, ¢ and j are indices for vertices on the triangulated mesh,
k; represents the coordinates of a vertex ¢ in the reciprocal space, and .5; its
control area, defined as the sum of é of its neighboring triangle areas. The
discretized Laplace-Beltrami operator €; ; takes the form

0 — {—5 [oot(asz) +cot(Big)] 177 (48)
’ Zi;ﬁj Qz‘,j 1=

where «; ; and 3; ; are the two opposite angles of the triangles sharing the
edge joining the vertices 7 and j.

The relations given by Egs. (4.3)—(4.6) remain equally valid in the dis-
cretized mesh, given that the FS integrals can be approximated by

d? sy N S
Jy o6 = X vt “9)

This expression shows that, in addition to providing a numerical scheme in
which the HFSH basis functions can be obtained in practice, a high-quality
triangulated F'S — as obtained for example through the procedure described
in the next section — allows for more efficient and accurate Fermi surface
integrals in comparison with the conventional smearing techniques.

4.2 Fully symmetric triangulated Fermi surface

In this section, we describe the numerical procedure we have implemented to
obtain a triangular tessellation of the Fermi surface of any metal which fulfills
all the point group and translational symmetries of its crystal structure.

In principle, a robust method for accomplishing such a task is the lin-
ear tetrahedron method [120]. In its original formulation, a tetrahedral
tessellation of the BZ is performed in the crystal coordinates, where a k-
point grid translates into cubes which can be trivially decomposed in six
tetrahedra. A triangulated Fermi surface can be then obtained from the
linear interpolation of the electronic energies at the corners of each tetrahedra
(see Sec. 4.2.3 below). This approach was used in the original procedure to
obtain the HFSH functions presented in Ref. [119]. However, when analyzing
in detail the resulting triangulated isosurface, one finds that the symmetries
of the crystal are not incorporated in the F'S. In other words, the triangulated
F'S obtained is not invariant under all the symmetry operations of the crystal

— as it should —, due to the broken symmetries introduced by the initial
tetrahedral tessellation of the BZ.

In this thesis, we have developed an alternative approach, which allows
us to find an irreducible isosurface in a previously detected irreducible BZ
in cartesian coordinates. As we will see in the next sections, this variation
provides an effective way of obtaining a fully symmetric triangulated Fermi
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surface, but also poses some technical difficulties, which are nevertheless
overcome by our procedure.

We describe our approach following several steps. First, the irreducible
volume of the BZ (IBZ) is identified. Then a tetrahedral tessellation of the
IBZ is generated, from which a triangulated irreducible Fermi surface (IFS)
is obtained using the linear tetrahedron method. As an optional intermediate
step, different mesh improvement techniques are proposed and implemented
in order to increase the quality of the triangular mesh. Finally, the IFS is
rotated using all the symmetries of the crystal, resulting in a high-quality
and fully symmetric triangulated Fermi surface.

4.2.1 Detection of the irreducible wedge of the Brillouin zone

In any crystal system, an irreducible wedge of the Brillouin zone exists from
which the full BZ can be recovered by applying all the symmetry operations
that the crystal possesses. The first task in our procedure will be to identify
such an irreducible volume of the Brillouin zone, for any system crystallizing
in a given space group.

Geometrically speaking, the BZ is a polyhedron composed of polygonal
faces joined by edges. We first make the observation that, apart from the I'
point that lies in the center of the BZ, the high symmetry points of the 14
types of Bravais lattices always lie either in the center of a face, or in the
corner or the middle-point of an edge [121]. As an illustrative example, we
show in Fig. 4.1(a) the BZ of the FCC lattice (space group Fm3m), in which
all the corners, the centers of the faces and the middle-points of the edges
have been highlighted with blue dots.

Joining each of the points in the edges with the points at their nearest
corners, and these two in turn with the points at the center of their cor-
responding face, we can create a triangular tessellation of the polygonal
faces of the BZ. Moreover, joining all of these points with the I'" point in
the center of the BZ, we can obtain a coarse tetrahedral tessellation of the
whole BZ volume. Given that, by definition, all the non-equivalent high
symmetry points have to be included in the irreducible wedge of the BZ,
we can represent the IBZ as the sum of several of these tetrahedra. We
show in Fig. 4.1(a) the coarse tetrahedral tessellation of the FCC BZ volume
obtained in this way, in which some tetrahedra have been removed for ease
of visualization.

In order to determine which are the irreducible tetrahedra that we have
to include in order to form the IBZ of a given system, we need to know the
particular symmetry operations belonging to its space group. The procedure
is similar to the one used to detect the irreducible number of k-points within
a regular grid that can form a full mesh in the BZ by applying all the
symmetry operations of a particular system. In a first step, one selects an
arbitrary tetrahedron and applies all the symmetry operations allowed by
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Figure 4.1. Detection of the irreducible wedge of the Brillouin zone. (a) Initial
tetrahedral tessellation of the full BZ, from wich the irreducible BZ volume can be
detected, shown in (b). Irreducible faces at the IBZ boundary are highlighted in
blue.

the point group. In this way, we detect the volume of the BZ connected by
symmetry to the initially selected tetrahedron. We repeat this operation for
all the tetrahedra in the initial tessellation of the BZ volume, constructing
in this way the irreducible volume of the BZ. As an example, the resulting
IBZ volume for the FCC lattice, which is composed by three tetrahedra, is
shown in Fig. 4.1(b).

In addition, we have that as a consequence of the translational invariance
of crystals, at the BZ boundary the Fermi surface possesses extra symmetries
beyond the point group. In this respect, we have to check for further reduction
of the irreducible wedge at the BZ boundary. For this purpose, we repeat
a similar procedure as the one described above, but only for the triangular
facets on the boundary of the IBZ volume. We now apply S + G operations,
where S is a symmetry rotation and G is a reciprocal lattice vector, and check
if any of the facets can be recovered from an irreducible subgroup. Following
with the FCC example, we find that one of the three triangular facets (Fs)
can be recovered in this way from its neighbor facet (Fg). The irreducible
facets of the IBZ (F; and F3) are highlighted in blue in Fig. 4.1(b).

4.2.2 Tetrahedral tessellation of the irreducible wedge of the
Brillouin zone

The next step in our procedure will be to obtain a fine tetrahedral tessellation
of the irreducible wedge of the Brillouin zone identified in Sec. 4.2.1. Ob-
taining a tetrahedral tessellation of a general polyhedron defining the IBZ
in Cartesian coordinates is a nontrivial problem, and the additional S + G
symmetries at the BZ boundaries force us to proceed with care. We describe
the scheme we have implemented for this purpose in the following.

The first task will be to triangulate the faces of the IBZ volume in such
a way that all the § + G symmetries are fulfilled. To this end, in a first step
we triangulate the irreducible facets that are related to the non-irreducible
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Figure 4.2. Tetrahedral tessellation of the irreducible wedge of the Brillouin zone.
(a) The IBZ boundary faces are first triangulated, (b) extra Steiner points are
added within the IBZ volume, and (c) a Delaunay tetrahedralization is performed
constrained by the triangular facets at the boundary.

ones by symmetry (Fy in Fig. 4.2(a)). In a second step, we obtain the
triangulation of the non-irreducible facets by applying the corresponding
symmetry operations (F3 in Fig. 4.2(a)). In a third step, we triangulate all
the rest of the irreducible facets, considering the constraints imposed by the
nodes already present in the facet-joining edges.

For the triangulation of each facet, we first distribute nodes throughout
the facet-plane. This distribution is done in such a way that the projection of
a given mesh of points in the reciprocal-lattice vectors {ng,, ng,, nk, } onto the
facet-plane is approximately matched, setting the condition that the nodes on
each edge are regularly spaced. Then a constrained Delaunay triangulation
is constructed from this nodes using the TRIANGLE code [122], in which
the edges of the facet are maintained. As an example, the triangulation
obtained in such a way for the boundary of the FCC IBZ volume is shown
in Fig.4.2(a), where the facet obtained by symmetry is highlighted in red.

Next, as shown in Fig. 4.2(b), we populate the IBZ volume with a set of
regularly spaced points, selected from the points of the {ng,, ng,, ng, } mesh
that fall within this volume.

Finally, a constrained Delaunay tetrahedralization is constructed using
the TETGEN code [123], in which the boundary triangulation is maintained
and the volume-nodes are added as Steiner points. The resulting tetrahedral
tessellation of the FCC IBZ example is shown in Fig. 4.2(c), in which some of
the tetrahedra on the upper part have been removed for ease of visualization.

4.2.3 Linear tetrahedron method and triangle mesh refine-
ment

Filling the IBZ volume with tetrahedra, as described in Sec. 4.2.1, allows us
to apply the linear tetrahedron method [120] in order to obtain a numerical
representation of the irreducible Fermi surface in terms of a triangle mesh.
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Figure 4.3. High-quality triangulated Fermi surface mesh within the irreducible
wedge of the BZ. (a) The linear tetrahedron method is applied in each of the fine
tetrahedra shown in Fig. 4.2(c). The electronic energies are computed at the four
vertices of each tetrahedra, represented by €1, 4. A linear interpolation among the
values at the corners gives an approximation to the points in which the isosurface
crosses the tetrahedral edges. (b) In this way, a triangulated Fermi surface mesh is
obtained in the irreducible wedge. (h),(i),(j) Several mesh-refinement techniques
are applied to the irreducible Fermi surface, resulting in a high-quality triangulated
mesh.

Following this method, each tetrahedron marks four points in the re-
ciprocal space in which the energies have to be computed, as represented
schematically in Fig. 4.3(a) by (e1,&2,€3,€4). Then we check if the energy
corresponding to the isosurface lies within the values at the corners of the
tetrahedron. In the affirmative case, a linear interpolation among the values
at the corners gives an approximation to the points in which the isosurface
crosses the tetrahedral edges. Depending on the number of edges that the
isosurface crosses, one or two triangles can be formed inside the tetrahedron,
as discussed in detail, for example, in Ref.[119] Appendix A. The simplest
case is shown in Fig. 4.3(a), in which the isosurface (denoted as ep) crosses
three of the tetrahedral edges, directly forming a triangle inside. All the
triangles constructed in this way form a two-dimensional triangle mesh,
representing numerically the Fermi surface within the IBZ.

As an example, we show in Fig. 4.3(b) the isosurface obtained for FCC-Cu
from the tetrahedral tessellation of the IBZ shown in Fig. 4.2(c). A clearer
view of the triangle mesh formed in this example is shown in Fig. 4.3(c).



4.2. Fully symmetric triangulated Fermi surface 73

As it can be noted from this figure, even if a good initial tetrahedral
tessellation is provided, the resulting triangular mesh may be of a low qual-
ity, meaning that the isosurface may present an inhomogeneous density of
vertices which will most likely form a set of triangles with a poor aspect ratio.
Although not strictly necessary, it is highly desirable to incorporate proce-
dures to improve the quality of the mesh, possibly eliminating redundant
and poor-quality triangles. We have implemented two different mesh refine-
ment techniques, namely the mesh-simplification and the vertex-relaxation
procedures [124]. Special care has been taken with the vertices at the BZ
boundary, so that the borders of the irreducible Fermi surface are preserved
and the § + G symmetries are maintained after the refinement process.

In the mesh-simplification procedure, triangles with a poor shape-quality
are detected first, following the criteria that one of their edges is much
shorter than the perimeter of the triangle, up to a given threshold value.
This short edge is collapsed, so that one vertex and one triangle are removed
from the mesh, though maintaining the original topology. This procedure
is repeated iteratively until all poor shape-quality triangles are eliminated.
The simplified mesh obtained after this procedure in the FCC-Cu example is
shown in Fig. 4.3(d).

The so-called vertex-relaxation procedure consists of two steps. First, a
tangential relaxation of the vertices is performed. Each vertex is moved from
its position seeking a homogeneous distance with respect to all of its neighbor
vertices. However, this movement is constrained to the tangential plane of the
vertex, defined by its velocity vector, v, = Ve, /h. Note that this vector for
a k-point at the Fermi surface is, by definition, the normal vector of the Fermi
surface at this point. The Fermi velocities v, at the triangular vertices
are computed efficiently by means of the Wannier interpolation method
[56, 57, 125] (see Sec. 2.2). This procedure is repeated iteratively for all the
vertices in the mesh, resulting in a homogeneous distribution of triangles
with similar areas. Finally, the vertices are relaxed along the direction of
their normal vector. This additional step compensates the error introduced
by the linear interpolation in the regular linear tetrahedron method, so that
the final relaxed vertices are located at ep to a great accuracy [119].

The final refined mesh for the FCC-Cu example is shown in Fig. 4.3(e),
where the improvement in the quality of the mesh is clearly appreciated.
These mesh refinement techniques translate into a considerable accuracy and
efficiency gain in the computation of Fermi surface integrals.

4.2.4 Rotation to a fully symmetric Fermi surface

The very last step in our scheme consists in applying all the symmetry
operations to the irreducible Fermi surface obtained by the procedures
described in the previous sections, in order to get a fully symmetric Fermi
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Figure 4.4. Fully symmetric triangulated Fermi surfaces. (a) The refined irre-
ducible Fermi surface mesh for FCC-Cu is rotated by applying all the point group
symmetry operations of the crystal, so that the complete fully symmetric Fermi
surface mesh is obtained (b). (c)—(d), (e)—(f) and (g)—(h) Show the irreducible
and fully symmetric Fermi surface meshes obtained using the same procedure for
BCC-YHg, HEX-MgB, and RHL-CaCg, respectively.

surface mesh which is invariant under all the symmetry operations of the
crystal up to numerical precision.

The irreducible part of the Fermi surface of the FCC-Cu example is
shown within the full BZ in Fig. 4.4(a). The complete Fermi surface mesh
obtained by rotation of the irreducible part is shown in Fig. 4.4(b). As
it can be appreciated in the figure, our procedure provides a high-quality
triangulated Fermi surface, which fulfills all the symmetries of the crystal.

We note that our procedure is completely general and valid for systems
with different symmetries. As illustrative examples, we show in Fig. 4.4(c)-
(d), (e)—(f) and (g)—(h) the irreducible and fully symmetric Fermi surface
meshes obtained using the same procedure for BCC-YHg, HEX-MgBs and
RHL-CaCg, respectively.

4.3 Symmetries on the HFSH basis set

Clearly, the symmetries of the surface on which Eq. 4.1 is defined translate into
symmetric properties of the HFSH basis set. Provided that the symmetries of
the surface are exactly maintained in the triangulated mesh, these properties
will be preserved in the discretized form of Eq. 4.7. The fulfillment of this
requirement is guaranteed if the mesh is constructed following the procedure
described in Sec. 4.2.
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Figure 4.5. Degeneracies in the HFSH eigenmodes. (a) First nine HFSH basis
functions for FCC-Cu, and (b) their corresponding eigenvalues. The eigenvalues
obtained using the fully symmetric mesh are shown in blue, and the eigenvalues
obtained in Ref. [119] are shown in orange for comparison. (¢) Zoom on the first
non-zero eigenvalues, highlighting the numerical accuracy of the degeneracy in the
symmetric mesh.

In this section, we illustrate two of the most important consequences of
incorporating the symmetries of the crystal in the HFSH basis set.

4.3.1 Degenerate subspaces

A straight consequence of retaining the symmetries on the surface appears
in the degeneracies of the energy levels wy,. For instance, in a perfect sphere,
the full rotational symmetry enforces the 3-fold and 5-fold degeneracies in
the p and d spherical harmonics, respectively. Even though the full rotational
symmetry of the sphere is broken in a realistic Fermi surface due to the
crystal field, the possible discrete rotational symmetries of the crystal may
enforce subspaces within the HFSH basis set which are exactly degenerate.

Continuing with the FCC-Cu example, we show in Fig. 4.5(a) the first
nine HFSH basis functions ®,(k), obtained as solutions of Eq. 4.7 on the
symmetric mesh produced in Sec. 4.2. The corresponding eigenvalues wr,
are shown in Fig. 4.5(b), compared with the eigenvalues obtained on a mesh
in which the crystal symmetries are not explicitly enforced, as in Ref [119].
As discussed in Ref. [119], the 3-fold degeneracy in the p-like harmonics is
maintained, but the energies of the d-like states are split into two subspaces
of 3-fold and 2-fold degeneracies.

However, a closer look reveals that these degeneracies are fulfilled only
approximately on the non-symmetric mesh, as shown in Fig. 4.5(c) for the
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energies of the p-like harmonics. As we can see in this figure, not incorporating
the symmetries exactly on the mesh can introduce errors of ~ 0.15% in the
energies. In contrast, when using the symmetric mesh we obtain equal
energies up to numerical accuracy, with relative differences of the order of
~ 10710 in this particular example. Similar results are obtained for all the
degenerate subspaces of the full HFSH basis set.

4.3.2 Fully symmetric HFSHs

As the triangular mesh in which Eq. 4.7 is solved and in which the @, (k;)
functions are defined is exactly symmetric, we can identify numerically those
functions within the HFSH basis set that are invariant under all the symmetry
operations of the crystal. We will name this subset as the fully symmetric
HFSHs, and label them with the symbol L. Formally, they are identified as
the functions within the HFSH basis set that satisfy the following condition,

O (Snki) = 0z (ki) (4.10)

for all n, where S,, is a symmetry operation of the crystal. As an example,
in the FCC-Cu case, out of the first 400 HFSH functions only 12 satisfy
Eq. 4.10, and are shown in Fig. 4.6(a).

The fact that most of the physical properties defined on the Fermi surface
are invariant under all the symmetry operations of the crystal imposes severe
restrictions on their expansion in the HFSH basis set. As it can be directly
deduced from Eq. 4.3, if a given function F'(k;) is fully symmetric on the FS,
only those coefficients corresponding to the fully symmetric HFSHs can give
a finite contribution in the expansion.

We now demonstrate that this restriction is satisfied in our implementa-
tion up to numerical precision. As an illustrative example, we consider the
squared of the Fermi velocity, F(k) = v?(k), clearly a fully symmetric func-
tion [see inset of Fig. 4.6(b)]. We show in Fig. 4.6(b) the first 400 coefficients
of the expansion of this function in the HFSH basis set (see Eq. 4.4), relative
to the value of the first coefficient, i.e. the FS average v3 = (v2(k))ps.

As appreciated from this figure, the values of the expansion coefficients
decrease rapidly for larger HFSH indices. This trend goes in line with the
fact that HFSHs with higher energies oscillate more intensely, and therefore
only add finer details to the anisotropy of the expanded function. The
more isotropic is the quantity to be transformed, the less are the coefficients
needed for a faithful representation of its anisotropy. In the extreme case of
a constant function, only the first coefficient will be finite.

Most importantly, we see that only those coefficients corresponding to
the fully symmetric HFSHs shown in Fig. 4.6(a) have a finite value, being
all the rest strictly zero up to numerical precision. We show this more
clearly in Fig. 4.6(c), which zooms into the last two finite coefficients of
Fig. 4.6(b). The magnitude of this coefficients is only ~ 0.5% of the average
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Figure 4.6. Fully symmetric HFSHs. (a) First 12 fully symmetric HFSH
basis functions for FCC-Cu, together with their index in the full HFSH
basis set. (b) First 400 expansion coefficients in the HFSH basis set for the
squared modulus of the electron velocity, relative to the L = 0 coefficient.
The magnitude and anisotropy of v?(k) over the FS is shown in the inset in
atomic units. Only the fully symmetric HFSH functions shown in (a) give
finite contributions, as highlighted in (c), where a zoom on the last two finite
coefficients is shown.

value, showing that we can achieve this accuracy in the representation of the
anisotropic function v2(k) of this example by using only 12 coefficients.

All in all, the use of a fully symmetric Fermi surface for the construction of
the HFSH basis set, and the identification of the fully symmetric HFSH subset,
allows us to obtain an extra reduction of at least one order of magnitude
in the computational workload to describe anisotropic quantitites on the
FS with respect to Ref. [119]. Note that this method already introduced a
saving factor of approximately two orders of magnitude with respect to the
conventional k-space representation.

4.4 Application to phonon-mediated
superconductivity

One of the most exciting phenomenon driven by the electron-phonon in-
teraction is the conventional superconductivity [21]. Ever since the first
microscopic theory developed by Bardeen, Cooper and Schrieffer [126], it
was noted that the superconducting pairing must take place in the vicinity
of the Fermi surface when mediated by phonon excitations, due to their low
energy scale.
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This fact allows for an effective separation of the energy and angular
parts in the interaction, and makes the use of the (Helmholtz) Fermi Surface
Harmonics particularly appealing in the theory of phonon-mediated super-
conductivity [116]. Indeed, the seminal work by Allen and Mitrovic [22],
which is considered an unmissable reference in the field, is written entirely in
the language of the FSHs. However, due to the technical difficulties involved
in the definition of the original basis functions, the equations derived in
this reference have only been implemented in practice for isolated cases and
invoking further approximations in the anisotropy of the electron-phonon
interaction [127]. In this section, we present the first practical implemen-
tation of the full Eliashberg equations of superconductivity in the HFSH
representation, showing that their numerical solution yields an efficiency gain
of several orders of magnitude with respect to the conventional representation
in momentum space.

4.4.1 Eliashberg equations of superconductivity

By virtue of the difference between electron and phonon energy-scales, the
many-body description of the phonon-mediated superconductivity can be
reduced to a set of two coupled nonlinear integral equations defined on the
Fermi surface, which are the so-called Eliashberg equations [20, 22, 128],

. wkgT dsy 7. . .
Zp(w;) =1+ —— / R (twir) Mgy (fw; —iwir ), (4.11
k( ]) ijFQBZ ; Sp Ukl k ( 7 ) k.k ( J J ) ( )

Wk?BT / dSk/
S

i (iw;) = Ry (iwyr) [ (iw; — iwyr) — i (we)]

NpSdpz 7 Jsp v
(4.12)
where the following auxiliary definitions have been used:
RE (iw)) = 3CT) : (4.13)
V(@ Zc(i0))? + (i)
and,
R (iw;) = D) (4.14)

\/(ijk(in))2 + uliw;)?

The self-consistent solution of Eqgs. (4.11)—(4.14) determine completely
the so-called renormalization factor Zy and the pair-field ¢y at a given
temperature T'. The resulting pair-field ¢ will be finite only for temperatures
below the superconducting transition temperature (7' < T,). All the ther-
modynamic properties of superconductors, such as the specific heat, can be
fully determined from the knowledge of these two functions [129]. In order to
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deduce the spectral properties of superconductors, such as their ARPES spec-
tra or the tunneling density of states, an analytic continuation iw; — w + in
to the real-axis has to be performed [40]. For completeness, the main points
of the derivation of Eqgs. (4.11)—(4.14) are reviewed in Appendix A.

The nonlinear character of the equations introduces numerical difficulties
to achieve self-consistency for T~ T, where the magnitude of the pair-field
becomes vanishingly small (¢ << Z). In this regime, one can linearize the
equations by dropping the ¢? terms in the denominators of Eqs. (4.13)—(4.14).
After this simplification, Eq. (4.11) can be inserted in Eq. (4.12). In this
way, we are left with a single linear equation for Ay = ?‘, identified as the
superconducting gap [130], which reads [22]

. dsy wkpT o .
Agliws) =3 /S o Ny K= 7) B (4.15)

In Eq. (4.15), we have defined

Kyw(—7") =X k'(iwj - iwj') — w(we)

dSk//
5 , AL 177 L 511 , 4.1
kk NF /SF e Kk (iwj — iw;r) (4.16)
2) .
and dy, is defined as
1 dsy (2)
—_— , T . 4.17
NF /SF ™ kk fk fk ( )

Note that Eq. (4.15) can be identified as a linear eigenvalue problem.
However, in cases where a dense sampling of the FS is needed for a faithful
description of the electron-phonon anisotropy, the matrix Ky s takes a
prohibitively large size to be diagonalized.

Alternatively, one could solve Eqgs. (4.11)—(4.14) self-consistently in a
range of temperatures, and identify the highest T" resulting in a non-vanishing
pair amplitude as T.. However, the dense k-point sampling needed to
converge the integrals, together with the numerical difficulties to achieve
self-consistency for T' ~ T, where ¢ << Z, turn the determination of 7, by
these means extremely involved computationally.

Transformation to the HFSH representation

An alternative representation of the Eliashberg equations of superconductivity
can be obtained by rewriting all the scalar k-dependent quantities as expan-
sions in the HFSH basis set [see Eq. (4.3)]. In this way, Egs. (4.11)—(4.12)
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take the form
7T]<JBT

ZL(in) == 6L0 + Z RL’ zw] )>\L L/(zw] ’in/) s (418)

L(.)] /L/

¢r(iw;) = ”kBTZ Rf'(i%") (AL, (iw; — iwjr) — p*(we) dro,rr0] 5 (4.19)
j/L/

where all the anisotropy of the electron-phonon interaction is encoded in the
coefficients

Js, B fo B g (iw) @1(k) Dp(K)

Vk Ui/
f dsy f dsys )
Sr vk Sr V!

and RZ and R‘ZL5 are transformed from Eqs. (4.13)—(4.14) through Eq. (4.4).
Similarly, the linearized Eq. (4.15) can be rewritten in the HFSH basis
s [22],

>\L7L/(7;w) = (420)

e Ap(iwj) Z L (3, 5) A (iwy) (4.21)
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where,

Kr,(j,5") = Ap,p (iwj —iwjr) — p, 1o (we)

— 5jj/ Z EL,L/L” )\L//,o(iwj — z'wj/) sgn(j) sgn(j") , (4.22)
j//L//

and Zy, 1/~ are the Clebsch-Gordan coefficients of Eq. (4.6). The temperature
at which the maximum eigenvalue € equals unity gives T, since in that case
the linearized Eliashberg equation Eq. (4.15) is fulfilled.

In the case of conventional s-wave superconductors, both Zy and ¢y
must be invariant under all the symmetry operations of the crystal. As a
result, only the fully symmetric HFSH functions {®;} fulfilling Eq. (4.10)
will contribute to their expansions. In this way, Eqgs. (4.18)—(4.19) can be
effectively reduced to this fully symmetric subset. Moreover, if the coefficients
Ar 1 are shown to decay rapidly for increasing indices, a cutoff can be applied
in the sums of Egs. (4.18)—(4.19) and Eq. (4.21) without any loss accuracy.

Due to the complications introduced by the k-dependence in Eqgs. (4.11)—
(4.15), the most popular practice is to neglect the anisotropy of the problem
altogether and approximate the electron-phonon interaction by the double
FS average of Eq. (A.9). This approximation is retrieved from the HFSH
representation by simply considering the I = 0 components in the expansions.
Nevertheless, the modern computational capabilities have allowed to explore
the role of the anisotropy in the superconducting properties through the
direct solution of Egs. (4.11)—(4.15) in momentum space, demonstrating its
crucial role in several cases [19, 20, 131, 132].
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The HFSH representation is the ideal approach to bridge the two ap-
proaches, since it has the ability to incorporate all the anisotropy of the
problem in a few coefficients. This allows for the numerical solution of
Egs. (4.18)—(4.19) and Eq. (4.21) in notably reduced subspaces, which trans-
lates into a computational cost comparable to that of the isotropic approxi-
mation, but with full anisotropic accuracy. In the next section, we provide
benchmark calculations which verify this assertion in practical calculations.

4.4.2 Benchmark calculations in MgB,

As a first example we consider the prototypical anisotropic phonon-mediated
superconductor MgBsy. Its Fermi surface is composed of four different
sheets, two inner cylindrical sections formed by ¢ bands and two outer
three-dimensional sections formed by 7 bands [133]. The distinct orbital
character of the different bands crossing the Fermi level implies that the
electron-phonon coupling varies strongly among the different F'S sheets [134],
and considerably within each FS sheet [10, 20, 135]. As a matter of fact,
MgBs represents the first instance in which a full anisotropic account of the
electron-phonon interaction has been necessary to properly reproduce the
experimentaly measured critical temperature and superconducting gap [19].

The calculation parameters have been chosen with the aim of making
the comparison with previous works as direct as possible. The ground state
calculations have been performed with the QuanTuM ESPRESSO package
[136] within the local density approximation of density functional theory
[137] in a 243 k-point grid, using norm-conserving pseudopotentials and a
kinetic energy cutoff of 60Ry in the plane-wave expansion of valence electronic
wave functions. The lattice parameters have been set to the experimental
values of a = 5.832 Bohr and ¢/a = 1.142 [138]. Phonon properties have
been computed within density functional perturbation theory [8] on a 83
g-point grid. Electron-phonon matrix elements have been computed on a
coarse (8%,83) k and g-point grid, and the Wannier interpolation method
[9, 10, 14, 18, 78] has been used to interpolate the matrix elements to the
triangular vertices (see Sec. 2.2).

Anisotropic mass-enhancement parameter

As a first representative anisotropic quantity related to the electron-phonon
problem, we consider the momentum-dependent mass enhancement parameter
for electron states at the F'S,

d? Sk' |9 (K, K[
A, . 4.23
k= QBZ Z /SF wll:/_k ( )

The A,k parameter is the most meaningful measure of the quasiparticle
renormalization driven by electron-phonon interactions. Its average over the
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Figure 4.7. HFSH representation of the anisotropic mass enhancement
parameter A\ in MgBy. (a) A\x on the Fermi surface of MgBs, separated
in the four different F'S sheets. (b) First four fully symmetric HFSH basis
functions for each F'S sheet. The hexagonal BZ and the corresponding IBZ
is shown in the top left corner. (c¢) First ten expansion coefficients of Ay for
each FS sheet in the fully symmetric HFSH subset. The inset shows the
same result with a logarithmic scale on the y-axis.

FS is a central parameter in simplified expressions for the critical temperature
of superconductors [139, 140], and its two-index and frequency-dependent
generalization of Eq. (A.11) is crucial in the full Eliashberg theory of super-
conductivity, as it can be appreciated from Eqs.(4.11) and (4.12).

We show in Fig. 4.7(a) our results for the anisotropic mass-enhancement
parameter of MgBs, in which the four different F'S sheets have been separated
for clarity. In agreement with previous works [10, 20, 135], we find that A,
takes considerably large values in the range of 1.00-1.37 on the cylinder-like
FS sheets corresponding to the o bands. In contrast, the FS sheets formed
by the 7 bands couple much less efficiently to phonons, resulting in smaller
Ank values in the range of 0.35-0.47. Apart from the arrangement of the
absolute values of the A\, parameter in two main groups, this figure also
shows that its anisotropy within each FS sheet is sizable.

For the Fermi surface averaged mass-enhancement parameter we obtain
A = 0.73, also in very good agreement with previous calculations [10, 20, 135].
In particular, we find that our results agree very well with the values presented
in Ref. [20], where a systematic convergence test of A with respect to the
k-point sampling was performed. Remarkably, while they showed that ~ 10°
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k-points are needed in the three-dimensional BZ to obtain converged results
when approximating the FS with a smearing function, we already obtain
convergence in the average value and the distribution of Ay with ~ 8 x 103
points in the triangulated Fermi surface.

Now we move on to the HFSH representation. Being a scalar quantity, the
Ank parameter is invariant under all the symmetry operations of the crystal,
as it can be appreciated in Fig. 4.7(a). Therefore, as discussed in Sec. 4.3.2,
its expansion will only have finite coefficients in the fully symmetric HFSH
subset,

Jsp, S35 @, 1() Ak
Jse, S

Note that the HFSH functions for each FS sheet are independent by con-

struction [119] , and that the integrals are performed over the corresponding

sheet Sg,.

We show in Fig. 4.7(b) the first four fully symmetric HFSH functions
for the different F'S sheets of MgBs. The first HFSH function is always the
trivial constant solution with eigenvalue w; = 0, and the following ones
oscillate more and more rapidly in direct analogy with the normal modes of
a vibrating membrane. The first ten >‘n, j coefficients given by Eq. 4.24 are
shown in Fig. 4.7(c). As it can be anticipated from Eq. (4.3) and by looking
at the HFSH functions of Fig. 4.7(b), the L = 0 coefficient gives the average
value of A,k in each FS sheet, and the subsequent coefficients add finer and
finer anisotropic details. It is therefore reassuring to see that the magnitude
of the A, i-s decay very quickly for bigger L-s. What is more remarkable is
the rate at which the coefficients decay. In order to analyze this point further
we plot in the insets of Fig. 4.7(c) the same result but using a logarithmic
scale in the y-axis, revealing that the value of the coefficients decay very
rapidly.

Indeed, this result demonstrates that the transformation from k-space to
the HFSH representation turns out strikingly beneficial, as all the details of
the A\, parameter can be compressed with a relative accuracy of at least
1073 in as few coefficients as 10 A 7-s per F'S sheet. In comparison with the
~ 8000 triangular vertices needed in k-space, this simplification implies a
saving factor of ~ 2 x 10? with no loss of accuracy.

We now extend the same procedure to the two-index mass-enhancement
parameter of Eq. (A.11). For simplicity, we focus on the most anisotropic
outer o sheet. In Fig. 4.8(a), we represent the anisotropic Ak parameter
in a matrix form, computed from first principles on the discrete mesh of
k, k’ points forming the triangularly tessellated Fermi surface. This example
represents a typical scenario where a dense sampling of nj x ng ~ 10 x 10%
points is needed to obtain a converged solution of Egs. (4.11)—(4.14), as Ak k/
varies considerably from point to point on the Fermi surface. In contrast, by
transforming this quantity to the HFSH representation, all of its anisotropic

An L = (4.24)
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Figure 4.8. HFSH representation of the two-index anisotropic mass enhance-
ment parameter Ay i in MgBs. (a) Ak i computed from first principles on a
discretized mesh of triangular vertices on the outer o Fermi surface sheet of
MgBs, unfolded into a matrix representation. In this example, the isosurface
is formed by ~ 3 x 103 vertices. (b) Magnitude, in logarithmic scale, of
the first 10 x 10 fully symmetric HFSH coefficients of the two-index mass
enhancement parameter A i on this Fermi surface sheet. Coeflicients for

larger L-s are smaller than 10~% in magnitude.

details can be described by a handful of coefficients. We show the magnitude
of the first A\; ;, coeflicients, as obtained by Eq. 4.20, are given in Fig. 4.8(b)
in logarithmié scale. All the elements beyond this 10 x 10 matrix are lower
than 1072 in magnitude, and therefore give a negligible contribution to the
sums in Eqgs. (4.18)—(4.19). This implies that these equations can be solved
in such a drastically reduced subspace, with virtually no loss of accuracy.
In comparison, when solving Eqs. (4.11)—(4.14) directly on k-space, the full
Ak k matrix has to be used as no cutoff can be applied in this case.

Anisotropic superconducting gap

In the following, we check the effect of the simplification introduced by
the HFSH representation in the full solution of the Eliashberg equations of
superconductivity. For that purpose, we solve Egs. (4.18)—(4.19) for MgBs
at T = 10 K, using different cutoff values in the sums, which we denote by
nj. We show in Fig. 4.9 our results for the calculated superconducting gap
on the Fermi surface,

o Y op (k)

Azi = n; ny ’
2" ZLL Z; @7 (k)

(4.25)

using nj = 16, four per Fermi surface sheet. The Matsubara frequency cutoft
has been set to ten times the maximum phonon energy, and p* = 0.16 has
been used. The value of the gap at the F'S has been approximated by its
value at the lowest Matsubara frequency (5 = 0).

In very good agreement with previous reported calculations [20], we see
that Ay clusters into two ranges of values of (1.4,2.2) meV and (8.0,9.3) meV
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Figure 4.9. Anisotropic superconducting gap in MgBs through the solution
of the Eliashberg equations in the HFSH representation. (a) Magnitude
of the superconducting gap Aﬁi on the Fermi surface of MgBs at 10 K,
obtained after solving the anisotropic Eliashberg equations in the HFSH
representation, with a cutoff of n; = 16. (b) Average of the absolute error of
Aﬁi for different values nj, with respect to the result obtained by considering
all the symmetric HFSHs in the sums.

for the o and 7 Fermi surface sheets, respectively, varying considerably within
each sheet. The comparison with the experimentally measured two-gap
structure is also very good [141-144].

Fig. 4.9(b) shows the average of the absolute error of Aﬁi for different
values of ny, with respect to the fully converged calulation in which all the
symmetric HFSHs are considered in the sums,

s, dsx AE = A
fSF dSk

We see that the error drops rapidly with the size of the subspace. For a basis
size as small as nj = 16, the error as defined above is ~ 0.025 meV, well
below the current experimental resolution [144]. Besides the negligible loss
of accuracy, the efficiency gain with respect to state of the art approaches is
immense. Taking Ref. [20] as an example, in order to obtain fully converged
calculations of the superconducting gap for the very same system, a Brillouin
zone sampling of ny = 503 = 1.25 x 10° k-points was needed in momentum
space. Our method, in comparison, brings an efficiency gain factor of
nk / ng ~ 104.

Another important advantage of the HFSH representation is that all the
information about the superconducting state is encoded effectively in the few
resulting Z; and ®; coefficients. This facilitates the comparison between
calculations using different meshes and the interpretation of experimental
measurements, in a similar spirit as it is done when comparing Fermi surface
averaged values — simply given by the L = 0 coefficients in the HFSH
representation —, but generalized to full anisotropic detail.

(6e(ApL)) = (4.26)



Chapter 4. Symmetric Helmholtz Fermi Surface Harmonics
86 for electron-phonon problems

4.4.3 Superconducting transition temperature in YHgq

Compressed hydrides have been attracting an enormous interest during
the last years, specially since the prediction and discovery of conventional
high-temperature superconductivity in hydrogen sulfide under high pressures
[145-147]. Developing methods to alleviate the computational cost of cal-
culating superconducting properties appears particularly interesting in this
research field, in which theoretical predictions of new candidates guide the
experimental efforts to find materials with increasingly favorable properties
[148, 149]. YHg represents an interesting case within this class of materials,
as the very recent experimental confirmation of superconductivity in this
system [150, 151] has revealed a sizable deviation in the measured critical
temperature with respect to the theoretical predictions [152-154].

We have considered YHg at 300GPa in the BCC structure, with the lattice
parameter a = 3.369 A as in [154]. Ground state calculations have been
performed in a 123 k-point grid within the generalized gradient approximation
of density functional theory [155], using norm-conserving pseudopotentials of
the Goedecker-Hartwigsen-Hutter-Teter table [156, 157]. Phonon properties
and electron-phonon matrix elements have been computed on a coarse 43
g-point grid, and later interpolated to the triangular vertices forming the F'S
by the Wannier interpolation method (see Sec. 2.2). A tessellation consisting
of ~ 7.5 x 10® vertices has been needed in this case to obtain converged
results. In good agreement with previous calculations [154], we obtain a
Fermi surface composed of three small electron pockets around the I' point,
two bigger and strongy anisotropic sheets, and a hole pocket around the P
point at the BZ boundary.

We show our results for the superconducting gap on the six Fermi surface
sheets at 40 K in Fig. 4.10(a), where a converged cutoff of n; = 48 has been
used in the HFSH expansions to solve Egs. (4.18)—(4.19). The Coulomb
pseudopotential parameter has ben set to pu* = 0.11 as in Ref. [154].

We obtain a continuous range of values of (25,47) meV for Ay, being
its anisotropy particularly large on the biggest sheets. Our results are in
qualitative agreement with the ones reported Ref. [154], while quantitatively
we obtain smaller gap values. We trace back this discrepancy to the finer
Fermi surface integrations provided by our triangulated mesh, which also
reflects in a smaller magnitude of the electron-phonon mass-enhancement
parameter: we obtain a FS averaged value of A = 1.5, where a value of
A = 1.9 is reported in Ref. [154].

The distribution of the gap, p(A), obtained for different temperatures is
represented by the light blue shaded areas in Fig. 4.10(b). The magnitude of
the gap decreases with temperature, and we do not find superconductivity
(¢ # 0) beyond ~ 230 K.

In order to determine the superconducting transition temperature more
accurately, we diagonalize the linearized Eliashberg equation Eq. (4.21) for
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Figure 4.10. Solution of the Eliashberg equations in the HFSH representation
for YHg. (a) Magnitude of the superconducting gap on the six Fermi
surface sheets of YHg at 300 GPa and 40 K. (b) Energy-distribution of the
superconducting gap at different temperatures (light blue shaded areas). The
dark blue dots represent the maximum eigenvalue of Eq. (4.21) in the same
range of temperatures, displaced by -1, and the dashed line is a guide to the
eye. The temperature at which Max[e] — 1 = 0 is fulfilled corresponds to T,
and is represented by the blue diamond.

the same range of temperatures, and represent the maximum eigenvalue
(displaced by -1 for ease of visualization) by the dark blue dots in Fig. 4.10(b).
The dashed blue line is a guide to the eye. As it can be appreciated in
this figure, the temperature-dependence is very smooth, allowing for an
efficient use of root finding algorithms to detect the exact T for which
Max[e(T')] — 1 = 0 is fulfilled. In particular, the secant method has been
implemented in this thesis for this purpose, typically obtaining converged
solutions in less than ten iterations. For n; = 48, we obtain T, = 230.98 K,
as represented by the blue diamond in Fig. 4.10(b). This result is in good
agreement with two very recent experimental measurements, which have
independently reported a superconducting transition temperature of T, =
227K at 237 GPa [151], and T, = 224K at 166 GPa [151].

With the aim of reducing the size of the problem as much as possible,
we analyze in Fig. 4.11 the sensitivity of the predicted T, with respect to
the HFSH expansion cutoff n;. Interestingly, we verify that convergence is
reached very rapidly, obtaining results within 1% of accuracy with as few as
30 HFSHs.

This result demonstrates that the HFSH basis set appears extremely
beneficial for a precise determination of T, with a full inclusion of the
anisotropy, as the problem is reduced to a small matrix diagonalization for
the small number of temperatures involved in the root finding procedure.
We note, in comparison, that the state-of-the-art approach to determine the
transition temperature considering anisotropy is to self-consistently solve
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Figure 4.11. Convergence of T, with respect to the cutoff n; applied on the

HFSH expansion for solving Eq. (4.21). The grey shaded area represents the

values within a 1% of accuracy with respect to the converged value, taken to
be the T; obtained with n; = 54.

the non-linear Eqs. (4.11)—(4.14) in a set of ~ 10° k-points for a range of
temperatures until no solution with ® # 0 is found.

4.5 Conclusion

In conclusion, we have implemented a computational procedure to obtain a
high-quality triangulated Fermi surface mesh, which fulfills all the symmetries
of the crystal up to numerical accuracy. This allows us to identify the fully
symmetric components of the Helmholtz Fermi Surface Harmonics basis
set, which give the only finite contributions in the expansions of physical
symmetric quantities defined on the Fermi surface.

We have applied the procedure in the electron-phonon problem, showing
that the anisotropic mass-enhancement parameter can be described to high
accuracy by a handful of coefficients in the symmetric HFSH representation.
This acts as an extremely effective filter, and allows for the solution of integral
Fermi surface equations in remarkably reduced subspaces.

As the first application of the methodology, we have solved of the Eliash-
berg equations of superconductivity in the HFSH representation, allowing
for an extremely efficient determination of anisotropic superconducting prop-
erties from first principles. We have illustrated the potential of the method
with benchmark calculations in the prototypical anisotropic superconductor
MgBs and the recently discovered compressed YHg, demonstrating that our
procedure introduces an efficiency gain of several orders of magnitude with
respect to state-of-the-art approaches.
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Overview and conclusions

The main goal of this thesis was to develop new numerical techniques to
expand the limits of what can be computed from first principles in the
context of electron-phonon interactions. Throughout this dissertation, we
have presented several methods that go beyond state-of-the-art approaches,
which we summarize in the following:

e We have implemented a Wannier interpolation method for a fine fre-
quency and momentum resolution of the low-energy electronic response
function of surfaces and two-dimensional materials, including the spin-
charge correlations introduced by the spin-orbit coupling.

e We have developed a procedure to analyze the real-space structure of
the coupled spin-charge collective modes through the diagonalization
of the generalized (4 x G) x (4 x G’) dielectric response matrix.

e We have extended the piecewise polynomial method to obtain the
analytic continuation of general self-energies beyond the constant-
density-of-states approximation. This allows for a proper determination
of quasiparticle properties on the complex-energy plane for systems
with complicated electron-phonon interactions.

e We have developed a deformed contour integral procedure to access
the different Riemann sheets of multivalued self-energies.

e We have taken some preliminary but important steps towards a many-
body Green’s function formalism to describe the localization of polaron
quasiparticles in real-space.

e We have implemented a numerical scheme to incorporate the crys-
tal symmetries in the Helmholtz Fermi Surface Harmonics basis set,
through the construction of fully symmetric triangulated Fermi sur-
face meshes of high-quality. This allows for the accurate description of
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anisotropic Fermi surface quantities in terms of few symmetric elements
of the set.

o We have implemented a code to solve the Eliashberg equations of super-
conductivity in the HFSH representation, which efficiently determines
the anisotropic superconducting gaps and transition temperatures of
phonon-mediated superconductors.

From the application of the developed methodologies in practical first
principles calculations we can draw the following general conclusions:

e Relativistic effects introduce a sizable coupling between the charge and
spin components of the electronic response in systems with inversion
asymmetry and significant spin-orbit interaction. If partially populated
spin-polarized bands are present, this coupling leads to a novel plasmon
excitation whose spin and charge oscillations are of a similar order of
magnitude.

e The electron-phonon interaction may drive qualitative changes in the
band structure of doped two-dimensional semiconductors, giving rise to
strongly renormalized quasiparticles with a long lifetime but a greatly
enhanced effective mass.

e The Helmholtz Fermi Surface Harmonics basis set provides a remarkably
simplified description of the electron-phonon interactions on the Fermi
surface, in which even the symmetries and the selection rules can be
incorporated by construction.

The apparently separated problems tackled in the different chapters of
this thesis actually lead to interesting connections among the obtained results,
and open exciting future lines of research. We name a few of them in the
following:

e The nature of the coupled spin-charge response analyzed in Chap-
ter 2 has direct physical implications in the electron-phonon problem.
From the off-diagonal components of the dielectric response matrix, it
appears clear that the self-consistently screened variation of the poten-
tial induced by phonons will also have finite magnetic components in
systems with significant spin-orbit coupling. Indeed, explicit predic-
tions of this effect have been very recently reported in Ref. [158], from
the direct evaluation of the full phonon induced spin-charge potential
within non-collinear spin Density Functional Perturbation Theory in
monolayer WSes. The hitherto unexplored magnetic components of
the phonon induced potential may lead to interesting new effects, spe-
cially in the context of spin and charge transport. Besides, our results
also show that the frequency-dependence of the dielectric function at
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doped semiconductor surfaces might show structures in the meV range.
This can lead to interesting new physics beyond the approximation
discussed in Sec. 1.4.2, such as frequency-dependent electron-phonon
matrix elements, or the appearance of hybrid plasmon-phonon modes
[18, 27].

e One specially interesting aspect of the expression Eq. (3.21) derived in
Chapter 3, is that it is completely general and allows for the analytic
continuation of any physical function fulfilling the Kramers-Kronig
relations. Thus, it is readily applicable to analyze the quasiparticle
renormalization induced by other many-body interactions, such as, for
example, the electron-plasmon coupling [159]. Indeed, the analytic
continuation for the dielectric function itself (see Chapter 2) could be
obtained following a similar procedure. This would permit to determine
the plasmon frequencies through a complex version of Eq. (2.8), when
their decay to electron-hole excitations is not negligible. Along the same
lines, the complex non-adiabatic renormalization of phonon dispersions
has been analyzed recently in Ref. [18] through an approximate analytic
continuation procedure. Another interesting prospect, in connection
with Chapter 4, is the determination of complex Bogoljubov excitation
despersions in the superconducting state [160]. Finally, the preliminary
results for the many-body description of the polaron quasiparticles
outlined in Sec. 3.4 are particularly promising, and a systematic effort
along this line of research is certainly warranted.

e The results presented in Chapter 4 open several exciting possibilities.
In the context of phonon-mediated superconductivity, for example,
the unprecedented simplification introduced by the HFSH representa-
tion should allow for the hitherto unattainable exploration of vertex
corrections beyond the Migdal approximation. Furthermore, the incor-
poration of the crystal symmetries in the set permits the unambiguous
determination of unconventional superconducting gap symmetries be-
yond the conventional s-wave case. Most importantly, the minimal
description of the Fermi surface complexity provided by this basis set
opens the way towards new simplified model-theoretical treatments of
diverse electron-phonon, impurity or transport problems in general.

To conclude, we believe that the methods developed throughout this
thesis will help to advance in the understanding of complex many-body
interactions in solids, and hopefully will make our small contribution towards
uncovering exciting new physics in this thrilling field.
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Appendix A

Derivation of the Eliashberg
equations of
superconductivity

For a quantitative description of the superconducting state amenable to
practical calculations, we will follow the same lines of reasoning of Sec. 1.4,
which lead to a set of equations first derived by Eliashberg in Ref. [128]. A
comprehensible and detailed derivation of these equations can be consulted,
for example, in Ref. [22]. A more recent review of the equations in the
context of ab initio calculations can be found, for example, in Ref. [20]. For
completeness, in this section we outline the main points.

Our starting point will be the non-interacting electron energies e,
obtained by DFT, the adiabatically screened phonon energies wq, obtained
by DFPT, and the electron-phonon matrix elements g%,,(k,q) given by
Eq. (1.35). The major deviation from the equations presented in Sec. 1.4
comes from introducing the Nambu two-component field operator [161],

Uy ) (A.1)

where the band index n has been absorbed into the momentum index k for
simplicity, and éjp (éik i) is the destruction (creation) operator of a spin up
(down) Bloch state with index k (—k). From Eq. (A.1) a generalized Green’s
function in the form of a 2 x 2 matrix follows,

Gi(7) = — (T (1) T} (0)

( <TTék¢(7’)6LT(0)> (T sy (7)1, (0)) ) 7 (A.2)

A

(Trel o (1), (0)) (Trel (1)1, (0))
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where the braces indicate a grand-canonical thermodynamic average, and
T = it is an imaginary time variable [23]. The diagonal elements correspond
to the normal Green’s function of Eq. (1.10) in the basis of KS states, and
contains information about the propagation of single-electron quasiparticles.
The off-diagonal components are the anomalous Green’s functions introduced
by Gor’kov [162], which account for the propagation of Cooper pairs.

Similar to Eq. (1.37) for the normal state Green’s function, the 2 x 2
Green’s function fulfills the following Dyson equation,

Gi(iw;) ™" = Gyliwy) ™" — Se(iw;) (A.3)
where, the generalization of Eq. (1.33) for G° is [22],
Gy (iw;) = ((iwj w7 " ) : (A.4)
0 (iwj + ex)
and wj are the so-called Matsubara frequencies [27],
= (2j + VmkpT | (A.5)

where 7' is the temperature, kp is the Boltzmann constant, and j are integer
numbers.

It is convenient to write the 2 x 2 self-energy in terms of the Pauli
matrices o,

zk(iwj) = 1w 1— Zk(iwj)] 0'0+Xk(iwj)o'3+¢k(iwj)0'1 +gf;k(in)02 , (A.6)

where the four independent functions Z, y, ¢ and ¢ are yet to be determined.
Inverting the Dyson Eq. (A.3), the Green’s function takes the general form,

inZk(iOJj)Uo + [Ek + Xk(iw]')] o3+ gbk(iwj)al + ggk(iw]')dg
Gk(iwj) = .

[iw; Z1c(iw)) — [ = Xac (1)) — Gic(iwy)? — (i)
(A.7)
The Eliashberg theory of superconductivity consists on extending the
Migdal approximation discussed in Sec. 1.4.1 to the superconducting state,
so that the electron-phonon self-energy takes the form [22],

zwj = k’BTZ/

dk’ G ) os| 2 2wy
03 Gy (iwjr) 3 | g .
’ (wj — wjr)? + (Wi _g)?

(A.8)
At this point we introduce the two-index generalization of the Eliashberg
function of Eq. (3.14),

OZQFkk/ (W) = NF Z |gﬁk/]25(w — L(Jll:/_k) y (Ag)
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where N is the density of states at the Fermi level. In this way, Eq. (A.8)
can be rewritten as,

. k T K’
Ekp zw] B4 Z /QBZ o3 Gk’ zw] )0’3 AkK/ (] —7J ) (AlO)
J'v

where we have defined,

ki (4 — "):/oodw 2w o? Fe (w) (A.11)

kk’'\J —J 0 (w; _wj/)Q T2 kk ) .
which effectively describes all the anisotropy and the frequency-dependence
of the electron-phonon coupling.

In order to proceed further, it is useful to separate the three-dimensional
Brillouin zone integral into a one-dimensional integral in the energy variable
€ and a two-dimensional integral in a momentum variable restricted to each
energy-isosurface Se, that is,

/dk /dk/ de (e — ex) / /dsk (A.12)

where vy = |Vek| is usually referred to as the electron velocity.

The small energies of phonons compared to the electronic energy scales
restrict the phonon-mediated superconductivity to a very narrow window
around the Fermi surface. In this window, among the quantities on the
right-hand side of Eq. (A.10), the dominant energy dependence comes from
the explicit ¢’ appearing in the denominator of Eq. (A.7). Therefore, to a
good approximation, we can neglect the implicit ¢’ dependence of Z, x, ¢
and ), and restrict k and k’ to the Fermi surface, so that the energy integral
can be performed analytically [22],

o iwjr Zy (iwjr) oo + Pk (iwj ) oy
/ de' G (€, iwy) = —m 2 . (A13)
e \/[wj/Zk(iwj/)] + ¢k(iwj/)2

The o3 coefficient of the self-energy given by x vanishes automatically under
this approximation when performing the integral. Moreover, the choice of
gauge where ¢ = 0 has been made explicit!.

In order to account for the Coulomb repulsion between electrons counter-
acting the effective phonon-mediated attraction, we follow the most regular
practice and include the so-called Morel-Anderson pseudopotential parameter
(1" (we) in the off-diagonal component of the self-energy, where w, is a cutoff
frequency of the order of 10 times the maximum phonon energy [163].

Finally, equating the o coefficients in Eq. (A.6) with the ones obtained
from Egs. (A.10)—(A.13), we arrive at Egs. (4.11)—(4.14) of the main text.

'See, for example, Ref. [22] p.37
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Appendices




Laburpena

Materia atomoz osaturik dago. Egoera solidoan, atomoen nukleoak posizio
kristalografikoetan antolatzen dira, hauen arteko lotura elektroien bitartez
gauzatzen delarik. Eskala mikroskopiko horretan gertatzen diren fenomeno
fisikoak ulertzeko mekanika kuantikora jo behar dugu, eta, beraz, material
jakin baten propietateak lehen printzipioetako kalkuluetatik (ingelesez from
first principles) aurresatea, bere konfigurazio atomikotik abiatuz mekanika
kuantikoak emandako ekuazioak ebaztean datza, beste parametro enpiriko
gehigarririk erabili gabe.

Mekanika kuantikoaren baitan, elkarrekintzan dauden partikula askoz
osatutako sistemak ulertzeko ebatzi behar diren problema fisikoak gorputz
anitzeko problema (ingelesez many-body problem) bezala ezagutzen dira.
Material lagin makroskopiko bat osatzen duen atomo kopurua izugarri handia

— 10?3 ingurukoa — izanik, lehen printzipioetako kalkuluak gorputz anitzeko
problemen adibiderik garbienetakoak dira.

Mota honetako problemak ebaztearen interes nagusia fenomeno emergen-
teak ulertzean dago, sistema osatzen duten elementu isolatuen ezagutzatik soi-
lik ondorioztatu ezin daitezkeenak. Adibidez, atomo isolatu baten erabateko
ezagutzatik abiatuta ere, ezin izango genituzke materialetan gertatzen diren
nukleoen bibrazio kolektiboak (fonoiak, ingelesez phonons) ondorioztatu,
haien arteko elkarrekintzak kontuan hartuko ez bagenitu.

Era berean, elektroien propietateak nabarmen eraldatzen dira materialen
baitan, nukleoen eta beste elektroien bitartez jasandako elkarrekintzen on-
dorioz. Izan ere, elektroien eta nukleoen bibrazioen arteko elkarrekintzak,
hau da, elektroi-fonoi elkarrekintzak (ingelesez electron-phonon interaction),
materialen propietate elektroniko ugari baldintzatzen ditu, hala nola met-
alen konduktibitatea, erdieroaleen xurgatze optikoa, edota supereroaleen
trantsizio tenperatura.

Elektroi-fonoi elkarrekintzarekin lotutako lehen ikerketak metalen erre-
sistibitate elektrikoarentzat teoria kuantiko bat garatzeko motibazioarekin
landu ziren 30eko hamarkadan. Supereroankortasunaren jatorria topatzeko
esfortzuek, halaber, eremuen teoria kuantikoan jorratutako kontzeptu eta
teknikak egoera solidoaren fisikara egokitzea ekarri zuten 50eko hamarkadan.
Hauen bitartez, elektroi-fonoi elkarrekintza barneratzen zuen formalismo
matematikoa guztiz garatua zegoen 60eko hamarkadaren amaierarako. Hala
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ere, garai hartako baldintza teknikoek eredu sinpleetara mugatzen zuten
formalismo honen aplikazioa, eta era honetara hainbat fenomeno fisiko kual-
itatiboki ulertzea lortu zen arren — ohiko supereroankortasuna azaltzen
duen BCS teoria kasu —, material espezifikoen propietateak kuantitatiboki
aurresatea ezinezkoa zen.

60eko hamarkadan garatutako dentsitate funtzionalaren teoria (ingelesez
Density Functional Theory, DFT) aurrerapauso handia izan zen eredu sinplee-
tatik haratago joan eta kalkulu errealistagoetara hurbiltze aldera, materialen
gorputz anitzeko problema ordenagailuan ebatzi daitezkeen algoritmo nu-
meriko moduan berridaztea erraztu baitzuen. Azken urteotan jasan ditugun
aurrerapen teknologiko itzelei esker, DFT-ren aplikazio praktikoan laguntzen
duten hainbat eta hainbat garapen metodologikoekin batera, gaur egun posi-
ble dugu material konplexuen propietate asko zehaztasun atomistikoarekin
aurresatea. Izan ere, helburu honekin sortutako software desberdin asko
garatu dira dagoeneko, eta errendimendu handiko konputazio zentroetan egin
daitezkeen software hauen erabilera masiboak izugarrizko datu base digitalak
sortzea ahalbidetzen ari da. Praktika honen anbiziorik handiena oraindik
ezagutzen ez ditugun material berri interesgarriak diseinatzeko gaitasuna
izatea da, ordenagailuan bere propietateak aztertu eta gero laborategian
sintetizatu zitezkeenak.

Badira, hala ere, DFT-ren aplikazio mugetatik kanpo geratzen diren
hainbat fenomeno fisiko. Funtsean, DF'T oinarrizko egoerako teoria bat da,
eta, beraz, elektroien egoera kitzikatuekin lotutako propietateak aurresateko

— hala nola garraio elektrikoa edo xurgatze optikoa — oinarrizko zailtasunak
ditu. Hauetarako, lehen aipatutako eremu kuantikoen teoriatik ekarritako
ideiak dira erabili beharrekoak, zeintzuk, bestalde, konplexutasun tekniko
eta konputazional izugarria dakartzaten kalkulu atomistikoetara aplikatzer-
akoan. Teoria hauen inplementazio numerikoa erraztuko luketen metodo
konputazionalak garatzeak, beraz, aurresan ditzakegun propietate-sorta izu-
garri zabalduko zuen. Gainera, orain arte eredu sinpleetatik ondorioztatutako
fenomeno fisiko interesgarriak errealitatera ekartzea ahalbidetuko lukete, ma-
terial konkretuetan aurreikuspen kuantitatiboak eginez.

Tesi honetan, elektroi-fonoi elkarrekintzarekin lotutako hainbat propi-
etate aurresateko metodo konputazionalak garatu ditugu, gorputz anitzeko
teoria kuantikoak lehen printzipioetan oinarritutako kalkuluetan aplikatzea
ahalbidetzen dituztenak. Kasu batzuetan, lehendik proposatutako metodo-ak
orokortu ditugu haien jatorrizko aplikagarritasun eremua zabalduz. Beste
batzuetan, aldiz, egungo metodoekin konparatuz efizientzia konputazionale-
an hobekuntza handiak ekartzen dituzten prozedura alternatiboak garatu
ditugu. Gainera, garatutako metodo orokorrak material konkretuetan kalku-
luak egiteko erabili ditugu, propietate ezberdinen azalpen teorikoa lortuz,
eta kasuren batean propietate fisiko berriak iragarriz.
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Erantzun elektronikoa eta plasmoiak spin-orbitadun gainazaletan

Material jakin bat kanpo-eremu batekin perturbatzean, materialeko elek-
troiek era kolektiboan erantzuten dute. Adibidez, kanpo-potentzial elektro-
statiko bati erantzuteko, elektroien dentsitatea berrantolatuko da. Kanpo
potentziala txikia bada, elektroi dentsitatearen aldaketaren eta kanpo po-
tentzialaren artean erlazio lineal bat ezarri daiteke, eta bi kantitate hauek
erlazionatzen dituen funtzioari erantzun funtzioa deitzen zaio. Erantzun
funtzioen kalkuluak esperimentu askoren interpretazio teorikoa lortzen la-
gundu dezake, teorikoki egindako aurreikuspenak neurketetatik lortutako
emaitzekin zuzenean konparatzea ahalbidetzen baitu. Materialen propi-
etateak aztertzeko erabili daitezkeen kanpo perturbazioen artean, X izpiak
edo neutroi sortak dira adibide ezagun batzuk. Kanpo-perturbazioaren maiz-
tasunaren arabera sistema elektronikoaren erantzuna aldatuko da, eta, beraz,
erantzun funtzioa orokorrean maiztasunaren funtzioa izango da. Neurketa
esperimentaletan aztarna garbienak erresonantzia maiztasunetan topatzen
dira. Maiztasun hauetan, elektroi gasak plasmoi (ingelesez plasmon) izeneko
kitzikapen kolektibo bat jasaten du, elektroien karga-dentsitatean uhin bat
dakarrena.

Bada, bestalde, elektroientzat kanpo-perturbaziotzat ulertu daitekeen
baina materialetan intrintsekoki gertatzen den efektu bat ere: nukleoen
bibrazioek eragindako potentzial elektrostatikoaren aldaketa. Nukleoak
haien oreka posiziotik mugitzean, jatorrizko potentzial kristalinoa apur bat
aldatuko da, eta elektroiek erantzun egingo dute aldaketa hau pantailatzeko.
Elektroi-fonoi elkarrekintza aztertzean, beraz, erantzun funtzioak emandako
pantailatze hau modu egokian barneratzeak berebiziko garrantzia izango du
kalkulu teorikoen zehaztasunean.

Erantzun funtzioaren kalkulu konputazionala, tamalez, oso astuna da.
Maiztasunean bereizmen handia lortzeko, erantzun kolektiboa emango duten
elektroi trantsizioen mapa dentso bat behar da momentuen espazioan. Prak-
tikan, honek trantsizio elektronikoekin lotutako matrize-elementu kopuru
oso altu bat kalkulatzera behartzen gaitu, konputazio denbora izugarri hand-
ituz. Arazo hau nabarmenagoa egiten da bi dimentsioko sistemetan edota
gainazaletan, non plasmoi kitzikapenaren frekuentzia oso baxua izan ohi den.

Zailtasun honi aurre egiteko helburuarekin, tesi honetako bigarren kapit-
uluan, Wannier interpolazio teknikan oinarritutako prozedura konputazional
bat garatu eta inplementatu dugu, erantzun funtzioen kalkuluan efizientzia-
irabazi garrantzitsua dakarrena. Teknika honek Wannier funtzioen espazio-
errealeko lokalizazioa eta Fourier-en transformatuaren propietateak erabiltzen
ditu matrize-elementuen interpolaketa efizientea eta fidagarria lortzeko mo-
mentuen espazioan. Modu honetara, plasmoi kitzikapenen momentu eta
maiztasunaren arteko dispertsio erlazioa zehaztasun handiarekin aurresan
dezakegu kostu konputazional mugatuan.
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Bada, gainera, gainazalen erantzun elektronikoa aztertzera bultzatzen
gaituen motibazio berezi bat. Izan ere, solidoaren mugalde honetan hiru
dimentsioko sistema arrunt gehienetan betetzen den simetria garrantzitsu bat
apurtzen da, inbertsio-simetria hain zuzen ere. Honen ondorioz, solidoaren
barnealdean endekatuta egon ohi diren aurkako spin-polarizazioa duten ego-
era elektronikoak banandu daitezke. Banantze honen magnitudea spin-orbita
elkarrekintza (ingelesez spin-orbit interaction) izeneko efektu erlatibistak
zehazten du. Gainazalaren egitura atomiko konkretuaren eraginez, gainera,
gainazal-elektroien spin-polarizazio egitura konplexuak sortu daitezke mo-
mentuen espazioan, eredu sinpleekin ezin daitezkeenak deskribatu. Zentzu
honetan, oso interesgarria suertatzen da elektroien spin-egitura konplexu
honek erantzun elektronikoan duen eragina aztertzea. Orain arte ezinezkoa
izan da efektu hau lehen printzipioetan oinarritutako erantzun funtzioaren
kalkuluan barneratzea, lehen aipatutako zailtasun teknikoen ondorioz.

Tesi honen bigarren kapituluan, erantzun funtzioa kalkulatzeko garatu du-
gun metodo konputazional efizientea erabili dugu elektroien spin-polarizazio
egitura konplexuak erantzun elektronikoan duen eragina aztertzeko. Bereziki,
efektu erlatibista garrantzitsuak erakusten dituzten gainazalen plasmoi
kitzikapenen azterketan zentratu gara, eta T1/Si(111) sistema erabili dugu
kalkulu konkretuak burutzeko adibide bezala. Lortutako emaitzetatik ondo-
rio garrantzitsuak atera ditugu. Izan ere, gure kalkuluek erakusten dutenez,
spin-orbita elkarrekintza handidun gainazaletan, plasmoi kitzikapenak karga-
dentsitate oszilazioez gain, spin-dentsitate oszilazioak ere dakartzate. Kitzika-
pen berri honi akoplatutako spin-karga plasmoia deitu diogu (ingelesez cou-
pled spin-charge plasmon), eta bere momentu-energia dispertsioaren eta
karga eta spin dentsitate oszilazioen balio konkretuak T1/Si(111) gainazalean
aurresan ditugun arren, gure lehen printzipioetako prozedurak fenomeno
orokorra dela erakusten du. Aurkikuntza honek ondorio garrantzitsuak
dakartza elektroi-fonoi elkarrekintzarentzat ere: fonoiek eragindako karga
potentzial aldaketak, akoplatutako spin-karga erantzunaren ondorioz, eremu
magnetiko bat sortuko du spin-orbitadun gainazaletan. Eremu magnetiko
honek elektroi-fonoi elkarrekintza gauzatzeko kanal berriak zabaltzen ditu,
elektroien spin-polarizazio egoeraren menpekoak izango direnak. Efektu hau
tesi honetan aztertu ez den arren, etorkizunerako lerro oso interesgarri bat
zabaltzen du.

Kuasipartikulen birnormalizazioa elektroi-fonoi elkarrekintzaren
bitartez

Elektroien propietateak, hala nola abiadura edo masa, aldatu egiten dira
hau solidoan zehar hedatzean, ingurunearekin duen elkarrekintzen eraginez.
Gorputz-anitzeko teoria kuantikoaren baitan, eraldaketa honi birnormalizazio
(ingelesez renormalization) deritzo. Birnormalizatutako elektroi honekin
lotutako propietate fisikoak eta esperimentuetan uzten dituen aztarnak ik-
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ertzerako orduan, hala ere, nolabaiteko partikula izaera antzeman daiteke,
eta beraz kuasipartikula (ingelesez quasiparticle) bezala sailkatzen da.

Kuasipartikulen propietate bereizgarri nagusienetako bat haien bizi-
denbora da. Material batean elektroi bat kitzikatzerakoan, adibidez, denbora
bat igaro ostean probabilitate jakin bat izango du bere energia ingurun-
earekin trukatu eta oinarrizko egoerara itzultzeko. Energia-trukatze prozesu
hori gertatzeko igaro beharreko batazbesteko denbora elektroi kuasipartikula
horren bizidenbora bezala ezagutzen da.

Elektroiek ingurunearekin izan ditzakeen elkarrekintzen artean, elektroi-
fonoi elkarrekintza da nagusienetakoa. Kitzikatutako elektroiaren energia
fonoiaren energia baino altuagoa bada, elektroi-fonoi matrize-elementuek
zehaztutako probabilitate jakin bat izango du sisteman fonoi bat kitzikatu
eta bere energia galtzeko. Elektroiaren energia fonoiarena baino baxuagoa
bada ere, mekanika kuantikoak, beste mota bateko elkarrekintza bat ahal-
bidetzen du, zeinetan elektroiak birtualki fonoiak kitzikatu eta xurgatu
ditzakeen, bere inguruan elkarrekintza-hodi bat sortuz. Elkarrekintza honen
eraginez, elektroiaren abiadura jaisten da, eta bere masa efektiboa igo. Honek
elektroiaren energia-momentu dispertsio erlazioan, hau da, banda egituran,
aztarna garbiak uzten ditu, esperimentalki neurtu daitezkeenak.

Kuasipartikulak definitu eta aztertzeko esparru teoriko egokia eremuen
teoria kuantikoaren testuinguruan garatutako Green-en funtzioen formal-
ismoa da. Matematikoki, kuasipartikula baten energia eta bizidenbora,
kuasipartikula horri dagokion Green-en funtzioaren polo konplexu batek
plano konplexuan duen kokapenak zehazten du: ardatz errealeko posizioak
kuasipartikularen energia emango digu, eta ardatz irudikariko posizioak bere
bizidenbora.

Elektroi-fonoi elkarrekintzapean dagoen elektroi kuasipartikula bati
dagokion Green-en funtzioa lehen printzipioetatik kalkulatzeko prozedura
ezberdinak garatu dira azken urteotan. Izan ere, arrakasta handia erakutsi
dute material konplexuen espektro elektronikoa aurresaterakoan, neurketa
esperimentalekin konparaketa oso onak lortuz. Hala ere, prozedura hauek
energia errealetan bakarrik lan egiteko daude prestatuta, eta beraz kuasi-
partikulen energia konplexu eta bizidenbora era hurbilduan bakarrik eman
dezakete. Limitazio honek, beraz, esperimentuen interpretazio fisiko egoki
bat lortzea ekiditzen du.

Tesi honen hirugarren kapituluan, metodo numeriko bat garatu dugu
Green-en funtzioaren kontinuazio analitikoaren bitartez kuasipartikula ener-
giak plano konplexu osoan topatzeko. Hemen garatutako prozedurak aurretik
proposatutako metodo bat orokortzen du, elektroi-fonoi elkarrekintza prozesu
konplexuen bitartez bai eta beste gorputz anitzeko elkarrekintzen bitartez
birnormalizatutako kuasipartikulak aztertzea ahalbidetzen duena.

Kapituluaren lehenengo atalean, metodoaren funtsa xehetasun handiz
deskribatzen da, eredu sinpleetatik hasi eta amaierako adierazpen orokorre-
tara iritsi arte. Bigarren atalean, garatutako prozedura praktikan jartzen
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da material konkretu baten kuasipartikulen banda egitura konplexua kalku-
latzeko, atomo geruza bakarreko MoS2 sistemarena hain zuzen ere. Material
honetan orain dela gutxi egin den esperimentu batek, elektroi-fonoi elkarrek-
intzak eragindako aztarna oso bitxiak neurtu ditu elektroien banda egituran.
Tesi honetan garatutako prozedura orokorra erabiliz, aztarna horiek sakonki
birnormalizatutako baina bizidenbora luzedun elektroi kuasipartikula berezi-
etatik datozela erakusten dugu.

Kapituluaren azken atalean, kuasipartikulen espazio-errealeko egitura
aztertzeko prozedura bat garatze aldera emandako lehen pausuak deskri-
batzen dira. Bereziki, elektroi-fonoi elkarrekintzaren bitartez inguruko
atomoak desplazatu eta espazioko zonalde batean lokalizatzen diren elek-
troiak aztertzen dira, polaroi (ingelesez polaron) deituriko kuasipartikulak
hain zuzen ere. Lortutako aurretiazko emaitzak oso itxaropentsuak dira
lehen printzipioteako kalkuluetan oinarritutako polaroien teoria kuantiko bat
garatze aldera.

Fermiren gainazaleko harmonikoen oinarria elektroi-fonoi elkar-
rekintzarekin loturiko problemak ebazteko

Pauliren esklusio printzipioari jarraituz, solidoetako elektroiek energia eta
momentu jakin batekin etiketatu daitezkeen egoera kuantikoak betetzen
dituzte. Egitura atomikoaren arabera, onartutako energia mailek momen-
tuarekiko duten menpekotasuna aldatuko da, material bakoitzari dagokion
banda egitura sortuz. Erdieroaletan, elektroiek banda osoak betetzen dituzte,
libre dagoen ondorengo bandarekin energia-tarte (ingelesez gap) finitu bat
lagaz. Metaletan, aldiz, gutxienez banda bat guztiz bete gabe geratzen
da. Betetako egoera elektroniko energetikoenek Fermiren energia markatzen
dute, eta momentuen espazioan beteta eta libre dauden egoera elektronikoak
banatzen dituen gainazalak Fermiren gainazala definitzen du.

Elektroi bat bere oinarrizko egoeratik kitzikatzerakoan, hala nola kanpo-
eremu bat aplikatuz edo tenperatura finituaren eraginez, hutsik dagoen egoera
batera bakarrik joan daiteke, eta, beraz, energia baxuko kitzikapen elektron-
ikoak Fermiren gainazalaren ingurura mugatuta daude. Arrazoi honegatik,
metal bakoitzari dagokion Fermiren gainazalaren forma eta topologia, bai eta
gainazal honen inguruan elektroiek jasaten dituzten sakabanaketa prozesuak
ezagutzea berebizikoa da bere garraio propietateak ulertzeko.

Fonoien energia oso txikia da ( meV eskalakoa) elektroien energiekin
konparatuz ( eV eskalakoa). Horregatik, elektroi-fonoi sakabanatze proze-
suak, Fermiren gainazalaren ingurura mugatuta daude, eta, beraz, papera oso
garrantzitsua jokatzen dute metalen garraio propietateetan. Honen adibide in-
teresgarri bat da ohiko supereroankortasuna, zeinetan Fermiren gainazalaren
inguruko elektroiak Cooper pareetan lotzen diren fonoien bitartez gauzatu-
tako erakarpen-elkarrekintzaren ondorioz.
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Elektroi-fonoi elkarrekintza Fermiren gainazalaren ingurura mugatze
honek, arazo tekniko bat dakar kalkulu praktikoen ikuspuntutik. Izan ere,
momentuen espazioa numerikoki adierazteko modurik ohikoena sare homo-
geneoetan diskretizatzea da. Beraz, Fermiren gainazalaren inguruan puntu
asko izateko, sekulako sare dentsoak erabili behar dira. Sare dentso hau
osatzen duten puntuetatik, Fermiren energiatik gertu dauden egoera elektron-
ikoak dituzten puntuak bakarrik erabiliko dira elektroi-fonoi sakabanaketa
prozesuak aztertzeko. Esperientziak erakutsi du elektroi-fonoi elkarrekintza
ondo barneratzen duten garraio-propietateen kalkulu konbergituak lortzeko
105 puntu inguru behar direla Fermiren gainazalaren inguruan. Horregatik,
mota honetako kalkuluak oso pisutsuak dira konputazionalki, gaur egun
superordenagailu zentroetan bakarrik burutu ahal direnak.

Tesi honetako hirugarren kapituluan, arazo hau konpontzeko ahalmena
duen prozedura numeriko bat garatzen dugu, Fermiren gainazaleko har-
monikoen oinarrian zentratua dagoena. Fermiren gainazalean ortonormala
den oinarri bat erabiltzeko ideia Allenek 70eko hamarkadan planteatu zuen,
garraio eta supereroankortasuna deskribatzeko ekuazioak oinarri honetan
berridazteak sinplifikazio itzela ekarriko zuela iragarriz. Hala ere, berak
planteatutako oinarri konkretua ezin izan da inoiz praktikara eraman, hain-
bat zailtasun teknikoen ondorioz. Honi aurre egiteko, Eiguren eta Gurtubayk
oinarri berri bat proposatu zuten, eta hau lortzeko prozedura numerikoa
garatu zuten, zeinetan triangulatutako Fermiren gainazal bat eraiki behar
den aurretiazko urrats gisa. Tesi honetan, hobekuntza garrantzitsuak in-
plementatu ditugu triangulatutako Fermiren gainazala lortzeko prozeduran,
kristalaren simetriak guztiz barneratzeko ahalmena ematen duena. Honi es-
ker, Fermiren gainazaleko harmoniko simetrikoak eraiki ditzakegu, zeintzuen
menpe Fermiren gainazalean definituta dauden propietate fisiko gehienak
berridatzi daitezkeen. Kapituluaren hasieran, garatutako prozedura xeheta-
sun handiarekin deskribatzen dugu, edozein simetriadun kristaletara aplikatu
daitekeela erakutsiz, eta Fermiren gainazaleko harmoniko simetrikoen propi-
etate orokorrak azalduz.

Kapituluaren bigarren zatian, Fermiren gainazaleko harmonikoen lehenen-
go aplikazio praktikoa erakusten dugu elektroi-fonoi elkarrekintzarekin lo-
turiko problemak ebazteko. Honetarako aukeratu dugun problema fonoien
bitartez gauzatutako supereroankortasuna izan da. Fenomeno hau gorputz
anitzeko teoria kuantikoaren baitan azaltzen duten Eliashbergen ekuazioak
berridatzi ditugu Fermiren gainazaleko harmonikoen oinarrian, eta hauek
ebazteko kode konputazional bat inplementatu dugu. Honela, ekuazio hauek
harmoniko simetriko oso gutxirekin zehaztasun handiz ebatzi daitezkeela
egiaztatzen dugu, metodo konbentzionalekiko efizientzia-irabazia magnitude
ordenetakoa izanik. Kapitulu honetan deskribatutako emaitzek metodo ho-
nen potentzial itzela erakusten dute, Fermiren gainazalean definitutako beste
hainbat problema ebazteko tresna oso baliogarria izan daitekeela baieztatuz.
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