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SUMMARY 
 
 
 
 
 
 
A series of waterborne polyurethane urea dispersions were prepared to study their viability 

as inks for direct ink writing 3D-printing. In this context, waterborne polyurethane urea 

dispersions were successfully synthesized using a hydrophilic polyethylene glycol (PEG) and 

a hydrophobic polycaprolactone (PCL) as soft segment to ease the physical gelation of the 

inks. The PCL/PEG ratio as well as the molecular mass of the PEG has been modified and 

the resulting dispersions, as well as the films prepared from the dispersions, were 

characterized from the physicochemical, mechanical, thermomechanical and morphological 

viewpoints to select the better formulation that fulfils with the required end-use properties, 

particularly for 3D-printing process. Once the selection of the composition of the 

waterborne polyurethane urea was stablished, inks with different solid content were 

prepared, analysed by means of rheology and subsequently printed so as to establish 

relationships between the rheological behaviour and the 3D-printing performances. 

To pilot the rheological behaviour and the printing performances, cellulose nanocrystals were 

used as viscosity modulator. Different cellulose contents were added to the waterborne 

polyurethane urea ink using two different methods called the in situ and the ex situ methods 

which differ in the moment of the addition of the nanoentities. The composites prepared 

from both methods were analysed from the rheological viewpoint and printed in the aim to 

select the best compositions, as well as to compare both incorporation methods. 

Additionally, the physicochemical, mechanical and thermomechanical properties of the 

printed pieces were studied to ensure the successful reinforcement of the cellulose 

nanocrystals into the composites. It was seen that the different addition methods resulted in 

different disposition of the cellulose nanocrystals leading to the obtain of nanocomposites 

presenting different rheological, mechanical and thermomechanical properties. 

Two potential applications were studied to demonstrate their viability. In the first one, shape 

customized scaffolds were prepared via 3D-printing and freeze drying using a previously 

developed waterborne polyurethane urea ink with in situ addition of different contents of 

cellulose nanocrystals, as well as crosslinking by immersion in CaCl2 before freeze drying. 

The morphology, mechanical and physicochemical properties of the prepared scaffolds were 

evaluated and tested as an absorption material against cationic methylene blue dye presenting 

an interesting absorption capacity. For the second application, inks based on a waterborne 



polyurethane urea with Salvia extracts incorporated by in situ method and different contents 

of ex situ added cellulose nanocrystals were developed in order to prepare scaffolds with 

antimicrobial properties. The antimicrobial activity of the scaffolds was tested successfully 

against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. Additionally, the 

influence of the inclusions of Salvia extracts on the rheological properties of the inks and the 

properties of the dispersion were studied.  



RESUME 
 
 
 
 
 
 
Une série de dispersions de polyuréthane urée en phase aqueuse ont été préparées pour 

étudier leur utilisation comme encres pour l'impression 3D par écriture directe. Dans ce 

contexte, ces dispersions aqueuses de polyuréthane urée ont été synthétisées avec succès en 

utilisant un polyéthylène glycol hydrophile (PEG) et un polycaprolactone hydrophobe (PCL) 

comme segment mou pour faciliter la gélification physique des encres. Le rapport PCL/PEG 

ainsi que la masse molaire du PEG ont été modifiés et les dispersions résultantes, ainsi que 

les films préparés à partir de celles-ci, ont été caractérisés du point de vue physico-chimique, 

mécanique, thermomécanique et morphologique afin de sélectionner la meilleure 

formulation répondant aux propriétés requises pour l'utilisation finale, en particulier pour le 

processus d'impression 3D. Une fois le choix de la composition en phase aqueuse arrêté, des 

encres avec différents taux de solides ont été préparées, analysées au moyen de la rhéologie 

et ensuite imprimées afin d'établir les relations entre le comportement rhéologique et les 

performances d'impression 3D. 

Pour adapter le comportement rhéologique et les performances d'impression, des 

nanocristaux de cellulose ont été utilisés comme modulateur de viscosité. Différentes teneurs 

de nanocristaux ont été ajoutées à l'encre polyuréthane en utilisant deux méthodes différentes 

dites in situ et ex situ, qui diffèrent par le moment de l'ajout des nanocharges durant la 

préparation. Les composites préparés à partir des deux méthodes ont été analysés du point 

de vue rhéologique et imprimés dans le but de sélectionner les meilleures compositions, ainsi 

que de comparer les deux méthodes d'incorporation. En outre, les propriétés physico-

chimiques, mécaniques et thermomécaniques des pièces imprimées ont été étudiées pour 

mesurer l’efficacité du renforcement des nanocristaux de cellulose. Il a été constaté que les 

différentes méthodes d'addition ont entraîné une dispersion différente des nanocristaux de 

cellulose, ce qui a permis d'obtenir des nanocomposites présentant des propriétés 

rhéologiques, mécaniques et thermomécaniques différentes. 

Deux applications potentielles ont été étudiées pour démontrer leur capacité finale. Dans la 

première, des pièces de forme personnalisée ont été préparées par impression 3D suivi d’une 

lyophilisation à l'aide d'une encre polyuréthane urée aqueuse préalablement mise au point, 

avec addition in situ de différentes teneurs en nanocristaux de cellulose, ainsi qu’une 

réticulation par immersion dans du CaCl2 avant lyophilisation. La morphologie, les propriétés 



mécaniques et physico-chimiques des pièces préparées ont été évaluées et nous avons 

également démontré leur capacité comme matériau d'absorption en utilisant le marqueur bleu 

de méthylène cationique. Pour la seconde application, les encres additionnées d’extraits de 

sauge par méthode in situ et différentes teneurs en nanocristaux de cellulose ajoutés ex situ ont 

été développées afin de préparer des pièces à propriété antimicrobienne. L'activité 

antimicrobienne des pièces a été testée avec succès contre Staphylococcus aureus à Gram 

positif et Escherichia coli à Gram négatif. En outre, l'influence des inclusions d'extraits de 

sauge sur les propriétés rhéologiques des encres et les propriétés de la dispersion ont été 

étudiées. 
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INTRODUCTION 

 

 

 

 

 

 

Motivation 

The demand for the development of new fabrication techniques, which can satisfy the actual 

demand of advanced materials for multiple applications, is one of today’s big challenges. Not 

only those new fabrication techniques must be able to process new materials successfully but 

also they have to respect the increasing environmental awareness, which represent a boost 

on the development of more environmentally friendly manufacturing techniques. In the last 

years, the 3D-printing, also known as additive manufacturing, has gained increasing interest 

due to the possibility of the direct production of customized complex components from a 

wide variety of materials such as polymers, metals and ceramics among others. Is by 

definition a versatile layer-by-layer fabrication technology of 3D objects through progressive 

adding of materials directly guided by predefined digital models. It comprises a number of 

fabrication techniques which can be used depending the raw material and the application 

field so as to obtain the desirable end use material.  

One example of this type of more environmental friendly fabrication technique is that of the 

direct ink writing 3D-printing (DIW 3D-printing). This advanced manufacturing technique 

represents an interesting alternative to other 3D-printing based conventional techniques due 

to the possibility of obtaining complex 3D designs using aqueous based viscous systems, 

resulting into an eco-friendlier fabrication technique, representing an approach more in line 

with the actual environmental awareness policies. In this context, the development of suitable 

inks for this novel technology can be considered as an important challenge, since the printing 

process requires inks which must fulfill a specific rheological behaviour. Taking this into 

account, the rheology plays a major role as far as the design of the ink is concerned. 
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Despite many type of materials can be used as printing inks for DIW 3D-printing, regarding 

the water based materials, the waterborne polyurethane urea dispersions (WBPUU) have 

taken increasing importance during the last years. The possibility of obtaining polyurethanes 

being synthesized by a solvent free method which implies low amount of organic compounds 

compared with the traditional methods is a key point for an environmental friendly approach. 

Waterborne polyurethane urea dispersions represent a promising material for DIW 3D-

printing, presenting an important advantage during printing due to the absence of volatile 

organic compounds, enabling the obtaining of polyurethane urea pieces with a customized 

design by a more environmental friendly way.  

Furthermore, the possibility of dispersing hydrophilic nanoentities into the WBPUU inks 

represents an interesting approach so as to provide new functionalities to the potential inks 

as well as to modulate their rheological properties so as to improve the printing performance. 

Indeed, some water dispersible nanoentities, such as environmental friendly nanocellulose 

represent a suitable candidate in order to pilot the rheological properties of the inks, 

modifying the printing performance, as well as providing a modification of the properties of 

the printed pieces. Additionally, other hydrophilic, environmental friendly compounds such 

as plant extracts, will provide to the WBPUU systems new functionalities such as 

antimicrobial properties. In this way, the different incorporation routes of the nanoentities 

and compounds as well as their content in the WBPUU based formulation can result into a 

different modification of the properties of both inks and system printed from the inks, 

leading to a modulation of the final properties of the end use material towards the desired 

application. 

Therefore, in this work a series of WBPUU inks based on the combination of hydrophilic 

polyethylenglycol (PEG) and hydrophobic polycaprolactone diol (PCL) will be synthesized. 

Different ratios of both polyols will be studied so as to select the best combination that will 

favour the sol-gel transition. Once the WBPUU ink composition is determined, the influence 

of the solid content into the printing performance will be studied in order to study its 

influence and determine the parameters which gives the best printing performance. Apart 

from that, cellulose nanocrystals (CNC) will be added in different amounts and by different 

strategies to the WBPUU ink, and their influence into both the printing performance of the 

inks and the properties of the final material will be studied. In the last part two potential 

applications of the prepared WBPUU inks will be proposed: (i) the preparation of WBPUU 

scaffolds for cationic dyes absorption and (ii) the addition of Salvia extract to the WBPUU 

inks so as to obtain materials with antimicrobial properties.  
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General objectives  

The principal objective of this work was the design of a suitable waterborne polyurethane 

urea ink for DIW 3D-printing. For that purpose, the ratios of reactants as well as the solid 

content of the synthesized inks were studied. Moreover, the ink was posteriorly modified 

with the addition of nanoentities such as cellulose nanocrystals or active compounds from 

plant extracts at different steps of the synthesis leading to the formation of composite inks 

with different rheological behaviour. In the last part of the work two potential applications 

were studied so as to analyze their viability, the absorption of cationic dyes and the obtaining 

of an ink presenting antibacterial properties. 

Hence, apart from the Chapter 1 and 2, which contain the state of art and the specifications 

of the reactants and characterization methods, respectively, the work has been divided as 

follows: 

- In Chapter 3, different WBPUU dispersions are synthesized varying the soft segment 

composition (PCL/PEG) so as to study its influence on the obtained dispersions and 

films properties. Additionally, the influence of the molecular mass of the used 

polyethylenglycol into dispersions and films is also analyzed.  

 

- In Chapter 4, WBPUU based dispersions with different solid contents are prepared 

and analyzed from the rheological viewpoint and subsequently printed in order to 

study the ideal solid content percentage for a successful DIW 3D-printing.  

 

- In Chapter 5, WBPUU-CNC nanocomposites based inks are synthesized by in situ 

method, that is, adding CNC during the phase inversion step, analyzed from the 

rheological viewpoint and subsequently printed. The influence of the loaded CNC 

content on the rheological properties of the inks as well as on the properties of the 

printed pieces is studied. 

 

- In Chapter 6, WBPUU-CNC nanocomposites based inks are prepared by ex situ 

method, by loading the CNC to the previously synthesized WBPUU, and analyzed 

from the rheological viewpoint and subsequently printed. The influence of the loaded 

CNC content on the rheological properties of the inks as well as on the properties 

of the printed pieces is studied. Additionally, a comparison of the results obtained in 

this chapter with the ones obtained by in situ method in Chapter 5 is stablished. 
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- In Chapter 7, WBPUU-CNC nanocomposite based inks prepared in situ are printed 

and subsequently freeze dried in order to prepare porous scaffolds. The influence of 

different amounts of CNC on the properties of the scaffolds is studied. Additionally, 

some printed pieces are immersed in CaCl2 so as to promote a chemical crosslinking 

and modify the properties of the scaffolds. The scaffold that presented the best 

results are tested as an absorption material for the cationic methylene blue dye. In 

the second part of the chapter, WBPUU-Salvia and WBPUU-CNC-Salvia 

nanocomposites based inks are prepared and printed. The WBPUU-Salvia inks were 

prepared by adding a 3 wt% Salvia extract in situ and posteriorly different CNC 

contents were added by ex situ method to the prepared WBPUU-Salvia inks. The 

rheology of the obtained inks as well as the antibacterial properties of the printed 

pieces are evaluated in order to study their viability as antimicrobial material. 

 

- In Chapter 8, the main conclusions of the work as well as the proposed future work 

lines are presented. 
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1. STATE OF ART 

 

 

 

 

 

 

1.1 Polyurethanes and polyurethane ureas 

Polyurethanes and polyurethane ureas are a family of polymers whose properties can be 

modulated by their composition and, thus, can be used in a wide range of applications fields 

such as automotive, textile, adhesive, electronics, coatings, membranes, and biomedicine 

among others [1–8]. 

The polyurethane chemistry consists on the formation of urethane groups, which are formed 

by the polycondensation of isocyanate and hydroxyl groups. Additionally, in the case of 

polyurethane urea, urea groups are also formed by the reaction of isocyanate and amine 

groups. Both groups formations are represented in Figure 1.1.  

 

 

Figure 1.1 Scheme of the formation of urethane and urea groups 

 

The principal difference of both groups is the different ability of forming hydrogen bonding. 

The extra secondary amine group of the urea group comparing to the urethane single one 

results in stronger interactions and hence in stiffer materials [9]. Additionally, this higher 
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hydrogen bonding capacity results in an increase of the thermal stability compared to 

urethanes [10]. 

The composition of polyurethane and polyurethane urea is usually segmented in two 

alternating blocks; the hard segment (HS), composed by the isocyanate and the chain 

extender both with hydroxyl or amina groups, respectively, and the soft segment (SS) which 

is formed by a polyol. These two segments are thermodynamically incompatible, which result 

in the separation of phases and the formation of microdomains. Generally, the hard segment 

provides stiffness to the material whereas the soft segment confers flexibility. However, 

depending on the reagents and the composition of the system, both hard and soft segments 

can form amorphous and crystalline ordered domains piloting the properties of the final 

material. 

1.2 Waterborne polyurethanes and polyurethane ureas (WBPU and WBPUU) 

Since classic polyurethane and polyurethane urea are hydrophobic, organic solvents are 

necessary for their synthesis, manipulation and processing. This fact confronts against the 

increasing environmental awareness, which boosts the finding of more environmentally 

friendly alternatives. In this context, the development of waterborne polyurethane and 

waterborne polyurethane urea dispersions has resulted to be a viable alternative, since the 

use of organic solvents can be avoided by the addition of an internal emulsifier, thereby 

enabling the substitution of the aforementioned organic solvent by water, which is more 

environmentally friendly [2,11]. The presence of an internal emulsifier, covalently bonded in 

the polymer backbone, gives stability to the particles formed during the addition of water in 

the phase inversion step. 

1.2.1 Reactants 

The versatility of the waterborne polyurethanes and polyurethane ureas arises from the wide 

range of combination of reactants that can be used for their formulation and are mainly 

composed by a polyol, an isocyanate, a chain extender and an internal emulsifier. The choice 

of the appropriate composition would determine the mechanical and thermal properties as 

well as its hydrophobic/hydrophilic behaviour and its biodegradability. 

1.2.1.1 Polyols 

Polyols, which are the main compound of the soft segment, are medium size molecular mass 

macromolecules containing hydroxyl groups. Among others, functionality and molecular 
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mass are the main selecting criteria and will influence the properties of the final WBPU or 

WBPUU. 

Taking into consideration the functionality of the polyol, different types of polyurethane and 

polyurethane ureas can be obtained. The use of difunctional polyols, which are the most 

commonly used in WBPU and WBPUU synthesis, result in single chained thermoplastic 

polyurethanes [12]. Contrary, polyols presenting higher functionality, result in thermoset 

polymers presenting a crosslinked network [13]. Moreover, different molecular masses of the 

polyols result in different viscosities of the final dispersion [14], and the microstructure 

formed by the SS can also been affected [15]. 

Focusing on their nature, different types of polyols can be used for the synthesis of WBPU 

and WBPUU, polyethers, polyesters and polycarbonates are the more common ones. 

Polyesters generally present outstanding resistance to light and aging, becoming a good 

choice for outdoors applications [16] and they also exhibit higher strength comparing to 

polyethers [16,17]. Those latter ones are more sensitive to light and oxygen but improve the 

chain flexibility as well as the dispersion in water. Polycarbonates, conversely, are claimed to 

present lower oxidation sensitivity compared to polyethers [18], better hydrolytic stability 

than polyesters [19], and in general better mechanical properties [20]. 

Additionally, apart from the aforementioned polyols, which have a synthetic source, in the 

last year the use of polyols coming for renewable sources has gained increasing interest. In 

this context, polyols coming from vegetal oils such as Castor oil [21,22] or Tung oil [23] are 

used in order to obtain more environmental friendly WBPU or WBPUU. 

Although most of the polyols used in this synthesis are generally hydrophobic, the use of 

hydrophilic polyols, that can act also as internal emulsifier, in WBPU and WBPUU synthesis 

has been also reported in the literature, mainly, in order to obtain hydrogels. It has been 

observed that dispersions containing polyethylenglycol (PEG), also known as polyethylene 

oxide) (PEO), with high solid content (above 30 wt%) tends to form physical gels [24,25]. 

However, in the last years the use of more than one polyol as SS has drawn increasing 

interest. The combination of different polyols allows to modify the properties of the final 

material as well as to incorporate new functionalities [26]. Concretely, in the case of the 

combination of a hydrophobic and a hydrophilic polyol the possibility of obtaining 

WBPU/WBPUU based hydrogels but maintaining the properties of hydrophobic polyols 

has been studied in the literature as a potential material, principally for biomedical 

applications [27,28]. 
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1.2.1.2 Isocyanates 

For among the wide range of isocyanates, diisocyanates are the most common ones for the 

synthesis of WBPU and WBPUU. Depending on their structures, they can be divided into 

two main categories: aromatics and aliphatics. The structure of the diisocyanate is an 

important factor for the polymer design, affecting the crystallinity of WBPU and WBPUU 

and therefore to the mechanical properties of the final material [29]. Additionally, the 

diisocyanates also affect the reactivity in the synthesis, but also the biodegradability and the 

biocompatibility [30,31] of the end use material. 

Aromatic diisocyanates, which are usually used in the synthesis of industrial polyurethane 

and polyurethane ureas, present limitations for the synthesis of WBPU and WBPUU. Their 

higher reactivity with water and the higher resulting viscosity when are used, makes the 

dispersion process in water difficult [32]. Taking this issue into account, aliphatic 

diisocyanates result to be a better option for the WBPU and WBPUU synthesis. Moreover, 

this type of diisocyanates present better resistance against thermal and hydrolytic attack 

comparing with aromatic ones [33]. 4,4’-Dicyclohexyl methane diisocyanate (H12MDI) and 

1,6-hexamethylene diisocyanate (HDI) are examples of aliphatic diisocyanate reported in the 

literature for the synthesis of WBPU and WBPUU, but among others, isophorone 

diisocyanate (IPDI) is probably one of the most used. This diisocyanate presents low 

reactivity with water, which allows to obtain a more controllable process and thus a more 

stable final product [32,33]. Additionally, its cyclic and asymmetrical structure leads to less 

ordered structures and thus, eases the diffusion of water during the dispersion step [34]. 

1.2.1.3 Chain extender 

Regarding the chain extenders, usually they are low molecular mass diols or diamines [35], 

which lead to the formation of WBPU and WBPUU respectively. Nevertheless, chain 

extenders presenting higher functionalities than two can be used in order to obtain 

crosslinked WBPU or WBPUU dispersions.  

The most commonly used diols include ethylene glycol (EG) and 1,4-butanediol (1,4-BD), 

whereas the most used diamine is the ethylene diamine (EDA) [34]. As explained before, the 

use of diamine leads to the formation of urea linkages, which leads to an improvement of 

both mechanical properties and thermal stability due to the stronger hydrogen bonding 

interaction of the extra amine group [36]. 
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1.2.1.4 Internal emulsifier 

The internal emulsifier plays a major role in the formation of WBPU and WBPUU since its 

inclusion allows the formation of stable dispersions in water. Depending on their nature, 

internal emulsifier can be divided into non-ionic and ionic. The former consists on the 

inclusion of a hydrophilic segment such as PEG into the polymer backbone so as to stabilize 

the dispersion [37]. This strategy involves some limitations because its weaker hydrophilic 

behaviour compared to ionic emulsifier hinders the dispersion in water [38].  

In turn, the ionic emulsifiers can be classified into cationic and anionic, depending on the 

functional group that confers hydrophilicity to the system. These ionic groups, completely 

or partially neutralized by the presence of counterions, can be cationic like quaternary 

ammonium groups and anionic like carboxylated or sulfonated groups [1,37,39]. Generally, 

the use of anionic emulsifiers has been more reported in the literature, however, the use of 

cationic emulsifier has also been reported for many applications. The most commonly used 

internal emulsifiers are 2,2-bis(hydroxymethyl) propionic acid (DMPA) and N-

methyldiethanolamine (MDEA) as anionic and cationic internal emulsifiers, respectively [40–

42]. 

1.2.1.5 Catalyst 

In order to improve the reactivity of the WBPU and WBPUU reactants during the synthesis, 

catalysts are used in the first step of the reaction with the aim of accelerating the reaction 

between hydroxyl and isocyanate groups at lower temperatures. The most widely used 

catalysts in WBPU and WBPUU synthesis are tertiary amines such as 1,4-diazabicyclo octane 

(DABCO) and organo tin compounds as dibutyltin dilaurate (DBTDL) [43]. However, some 

authors reported the use of less harmful catalyst such as zirconium based compounds [32,44]. 

1.2.2 Synthesis procedure 

The synthesis procedure of WPBU and WPBUU is a complex process which classically 

comprises two steps. In the first one, the formation of the prepolymer backbone is carried 

out, by reacting firstly the polyol and the diisocyanate (usually in presence of a catalyst) and 

posteriorly with the internal emulsifier. Besides the second one comprises the chain 

extension of the prepolymer backbone to form the final polyurethane or polyurethane urea 

chain. Figure 1.2 shows a general scheme of WPBU and WPBUU synthesis process. 
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Figure 1.2 WBPU and WBPUU synthesis procedure 

 

Notwithstanding, in the case of WBPU and WBPUU an additional step named phase 

inversion is required so as to obtain the desired dispersion. Depending when this step is 

carried out, the dispersion in homogeneous medium (chain extension before phase 

inversion), or the dispersion in heterogeneous medium (chain extension after phase 

inversion) can be performed [45]. Normally this phase inversion step is carried out with 

deionized water, but in a recent work, Fang et al. synthesized successfully a series of WBPU 

of different compositions using snow as dispersant [46]. The chain extender’s nature plays 

an important role in the selection of the most appropriate medium for phase inversion. In 

general, diol chain extensions are performed before phase inversion so as to avoid side 

reactions owing to its lower reactivity with isocyanates comparing with water. Contrary, 

diamine chain extenders, which show higher reactivity than diols and also than water, can 

be added before or after the phase inversion, leading thus to a dispersion in homogeneous 

and heterogeneous media, respectively. 
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The stabilization of the ionic WBPU and WBPUU particles is produced by the electronic 

double layer mechanism produced by the ionic emulsifier and a counterion added before the 

phase inversion in order to maintain the electrical neutrality of the ionic center [47]. Contrary, 

in the case of non-ionic emulsifiers, the stabilization mechanism is based on entropic 

repulsion. The hydrophilic segments of the polymer chain are situated towards the water, 

and thus, when particles are approaching each other, the mobility of this segment is reduced, 

decreasing the entropy and hence, stabilizing the dispersion. When the dispersion is formed, 

the ionic groups of the particles, surrounded by the counterions forming the electrical double 

layer [48], as well as the non-ionic hydrophilic domains are arranged in the surface forming 

the shell of the particle [49,50]. Conversely, hydrophobic domains will be situated in the 

center of particles forming the core of the particles [51]. Figure 1.3 illustrates the formation 

mechanism of ionic WBPU and WBPUU dispersions. 

 

Figure 1.3 Formation mechanism of the WBPU and WBPUU particles 
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1.3 Cellulose nanocrystals 

Cellulose is one of the most common renewable materials in the world, and due to its 

availability, low toxicity, biocompatibility and biodegradability, it has been extensively 

explored for producing new materials, especially in the form of micro or nanoscale with 

different morphology and crystallinity. Cellulose is a high molecular mass homopolymer 

composed of D-glucose units linked by (1,4) glyosidic bonds, as can be observed in Figure 

1.4. 

 

Figure 1.4 Chemical structural unit of cellulose 

 

Cellulose nanocrystals (CNC), which represent the crystalline region of the cellulose, have 

been widely used as reinforcement for nanocomposites in many applications fields such as 

tissue engineering [52], food packaging [53], water filtration [54] or electronics [55] among 

others. 

This crystalline fraction, is extracted from cellulose through different methods such as acid 

hydrolysis, combined mechanical shearing, and enzymatic hydrolysis in which the 

amorphous or disordered regions of cellulose are hydrolyzed, and the crystalline regions with 

higher resistance to acid attack remain intact and result in CNC [56,57]. The source of the 

cellulose, as well as, the hydrolysis conditions influence the final properties of the CNC 

[58,59]. Regarding those properties, the most remarkable ones are the high aspect ratio and 

high specific mechanical properties such as a high tensile strength and modulus [60,61]. 

Different types of polymers have been used as matrices to prepare composites reinforced by 

CNC. Due to its hydrophilic nature, surfactants or a modification of the CNC are needed so 

as to obtain homogeneous dispersions of the particles in non-polar polymers [62]. In this 

context the use of polymers dispersed in water allows to overcome this limitations, facilitating 

a good dispersion of the nanoentities without the addition of surfactant or chemical 

modifications [63]. 



State of art 

17 

Focusing on WBPU and WBPUU, the possibility of easily dispersing CNC into the water 

medium has earned increasing attention for the preparation of WBPU/CNC and 

WBPUU/CNC composites [64–66]. In this case, the addition of the nanoentities can be 

done in different steps, resulting in composites with different properties. Usually, the 

addition of CNC is carried out after the synthesis of the WBPU and WBPUU adding the 

nanoentities to the polymer dispersion by mechanical stirring, which is known as ex situ 

method and leads to the formation of physical bonding between the CNC and the polymer 

matrix. However, it has been also reported the option of adding the CNC dispersed in water 

during the phase inversion as a part of the synthesis itself. As a result, the CNC could react 

chemically with the free isocyanate groups of the polyurethane prepolymer, stablishing a 

chemical bonding that modifies the properties of the final composite. This preparation route 

is known as in situ method [67,68]. 

1.4 Plants extracts 

The use of water dispersible plant extracts in order to be incorporated into WBPU and 

WBPUU represent and interesting strategy so as to provide to the final composite particular 

enhanced properties related principally to the antibacterial and antimicrobial properties. In 

this context, this extracts obtained from natural sources can be added to the dispersion easily 

following the same methodology as was used for the cellulose nanocrystals, representing an 

example of the use of environmental friendly additives to functionalize the matrix. 

Different methods can be used so as to make the extraction of this compounds such as the 

decoction or infusion among others [69], by using different solvents [70], and depending the 

conditions of this process the composition of the obtained extracts can be varied.  

Regarding the addition process, as happened with the CNC addition, the literature showed 

two principal methods, the in situ and the ex situ method. The former takes advantage of the 

dispersability of the extracts in the water to add them during the synthesis of the WBPU and 

WBPUU, specifically in the phase inversion previously dispersed in the water. The latter 

comprise the mixing of the extracts and the synthesized dispersion by vigorous mechanical 

stirring [71]. 

The use of medicinal plants in order to obtain valuable extracts for their use in potential 

antibacterial applications has been exhaustively studied in the literature [72]. Extract obtained 

from Salvia officinalis L., represents an example of these aforementioned water dispersible 

plant extracts presenting in this case antibacterial, antioxidant and anti-inflammatory 
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properties [73,74]. These properties can be attributed to the bioactive compounds of the 

plants which comprise normally alkaloids, flavonoids, tannins and phenolic compounds 

among others, and whose composition depends on the type of plant and the growing 

conditions [75–77]. 

1.5 3D-printing 

3D-printing, also known as additive manufacturing (AM), is a fabrication technique based 

on the principle of layered manufacturing, which allows the fabrication of a wide range of 

structures and complex geometries from three dimensional (3D) model data [78,79]. 

Despite the first early developments of this fabrication technique dating back to the early 80s 

[80,81], in the last decade, the 3D-printing industry has exploded due to the reduced 

manufacturing costs of 3D printers and to their improved printing precision and speed. 

Likewise, this increasing interest in AM has led to the development of new techniques and 

more interesting materials allowing to widen the application fields of this fabrication 

technique such as, energy storage [82],  tissue engineering [83], automotive [84] or sensors 

[85] among others.  

Although stereo lithography (SLA) is the oldest 3D-printing technique, nowadays from the 

different developed methods for 3D-printing, fused deposition modelling (FDM) is the most 

popular one. However, many different techniques have been developed during the years, 

with different working principles, materials and applications. Apart from FDM and SLA, the 

main printing techniques englobe the selective laser sintering (SLS), selective laser melting 

(SLM), liquid binding in three dimensional printing (3DP), direct ink writing (DIW), direct 

energy deposition (DED) and laminated object manufacturing (LOM).  

Every method presents their advantages and drawbacks as well as material limitations. In the 

Table 1.1 a synthesis of the main methods for additive manufacturing is displayed.  
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Table 1.1 Summary of the main methods for additive manufacturing 

Method 
Working 

principle 
Materials Benefits Drawbacks Applications References 

Fused deposition 

modeling 

(FDM) 

Extrusion 

and 

deposition 

Filaments, 

principally of 

thermoplastic 

polymers 

High speed 

Low cost 

Weak 

mechanical 

properties 

Material 

limitation 

Prototyping 

 
[86–88] 

Stereo 

lithography 

(SLA) 

Laser 

scanning and 

UV induced 

curing 

Resin with 

photoactive 

monomer 

High 

resolution 

High quality 

High cost 

Material 

limitation 

Cytotoxicity 

Biomedical 

Prototyping 
[89,90] 

Selective laser 

sintering 

(SLS) 

Laser energy 

to sinter 

powder 

material 

Metals 

Polymers 

Good 

strength 

Slow printing 

Expensive 

Biomedical 

Electronics 

Aerospace 

[91,92] 

Liquid binding 

in 3D-printing 

(3DP) 

Joining of 

powder 

particles by a 

binding 

agent 

Ceramic 

Polymers 

High 

resolution 

High porosity 

in the binder 

method 

Biomedical 

Electronics 
[93] 

Direct ink 

writing 

(DIW) 

Pressurized 

o 

mechanized 

syringe 

extrusion 

Polymers 

Hydrogels 

High 

resolution 

 

Low 

mechanical 

strength 

Biomedical 

Electronics 
[94,95] 

Direct energy 

deposition 

(DED) 

Melting of 

the 

deposited 

material 

Metals 

Ceramic 

Polymers 

Controlled 

microstructure 

Low surface 

quality 

 

Aerospace 

Biomedical 

 

[96,97] 

Laminated object 

manufacturing 

(LOM) 

Layer-by-

layer cutting 

and 

lamination 

of sheets or 

rolls of 

materials 

Polymer 

composites 

Ceramics 

Metal rolls 

Low cost 

Wide range of 

materials 

Manufacturing 

of larger 

structures 

Inferior 

surface quality 

Limitation in 

manufacturing 

for complex 

shapes 

Paper 

manufacturing 

Electronics 

Smart 

structures 

[98] 
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1.5.1 Direct ink writing 3D-printing 

The extrusion based direct ink writing (DIW), so called extrusion based 3D-printing, has 

gained in the last years an increasing interest in several fields due to the possibility of 

designing complex devices overcoming drawbacks of the classic 3D-printing, among others, 

the use of volatile organic compounds or crosslinkers. This printing technique, mostly 

referred in the bibliography as micro-extrusion, has evolved from the conventional fused 

deposition modeling, and consists on the extrusion of the material through a needle pushed 

by pneumatic pressure [99], a piston, or a rotating screw [100]. Figure 1.5 illustrates the 

different extrusion mechanism for DIW. Depending on the physicochemical parameters of 

the ink, the printing device and the needle diameter, a thread with a width range of diameters 

from 45 m [101] to 1200 m [102] can be printed with high precision. Additionally, curing 

reactions can be performed by dispensing two reactive components using mixing nozzles or 

being induced either by heat or UV light [103]. 

 

Figure 1.5 Graphical illustration of the extrusion mechanism for DIW 3D-printing: I) 

pneumatic pressure based, II) piston based and III) rotating screw based 

 

The pneumatic extrusion system uses compressed gas as driving force for the extrusion, 

which is normally air or N2 in the case of printing of biological inks [104]. This type of system 

is more complicated to build and operate than motor driven systems since it involves the use 

of compressed gas, but it presents some advantages such as its capacity of extruding a wide 

range of viscoelastic inks [105], and its faster response time due to the quick pressurization 

and depressurization of the syringe cartridge. 

Contrary, the motor driven piston system provides better control of the extrusion rate since 

there is constant volume displacement. However, its time delay in the set up to start and stop 
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the extrusion process may result in an inaccurate print [106]. Finally, regarding rotating screw 

system, its design allows a continuous printing due to the possibility of continuous 

alimentation. Additionally, the use of the screw during printing also helps to mix the material 

avoiding phase separation or inhomogeneity in systems with more than one component 

[107]. Nevertheless, there are also some important drawbacks such as the possibility of cross 

contamination since the materials are not stored separately, as well as the impossibility of 

using delicate materials such as cells since shear force would damage the cell membrane [108]. 

Despite some noteworthy advances that DIW presents compared with other printing 

technologies such as the possibility of printing biomaterials with high viscosities as well as 

its room temperature process this technology still presents some drawbacks such as its low 

printing speed or the need of specific matching of materials densities to preserve intricate 

shapes [109]. One of the major challenges of this novel technology involves the development 

of clear technical parameters which can lead to its optimal use. Since its recent development, 

multiple contradictions have appeared between authors about the ideal parameters, and 

hence, it is difficult to establish the best protocol. 

1.5.1.1 Materials for direct ink writing 3D-printing 

As was aforementioned, one of the most critical parameters and hence, limitation of the 

DIW 3D-printing is the need of materials (also called inks in the 3D-printing field) that match 

with the special requirements of this AM technology. Concretely, the extrusion mechanism 

requires inks that reduce their viscosity as a result of an applied stress so as to successfully 

pass through the needle and then, recover their initial stage in order to support the designed 

multilayered complex design. 

Taking those limitations into account, different approaches have been proposed in the 

literature. Principally, inks can be divided into three categories: hot melt extrusion inks, cold 

extrusion inks and gel forming inks. 

The former, which is also known as phase change inks [110], englobes materials which 

requires an initial heating step to allow the ink to flow out of the nozzle followed by a cooling 

step to solidify the ink. This behaviour is similar to the one observed in the filament of FDM, 

however, in this case the temperatures are much lower, just enough to maintain the ink above 

its gel point before printing. After the printing performance, contrary, the bed temperature 

is below the gel point, allowing to the sol formation. Gel points below room temperature 

require the use of ice bath or a Peltier device to reduce the temperature. 
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Gel forming inks englobe all those systems which use the chemical or physical crosslinking 

of the inks before or after the printing process. In contrast to hot melt extrusion inks, in this 

case instead of the temperature, the addition of anionic compounds or UV light is used for 

provoking the gelation of the printed ink. 

Regarding the addition of anionic species, many authors reported the use of divalent ions 

such as calcium or monovalent such as potassium to crosslink anionic biopolymers like 

alginate or carrageenan in order to obtain printable gels [111,112], mainly for biomedical 

applications due to the biocompatibility of the resulting inks. Additionally, also the 

combination of alginate with other compounds has been reported in the literature as 

potential inks. Alginate/gelatin [113], gelatin/hyaluronic [114,115], 

gelatin/alginate/hepatoyle [116], alginate/Pluronic F127 [117], and 

alginate/chitosan/polyelectrolyte complexes [118] are examples of successful combinations 

of compounds to prepare gel forming inks. However, the poor mechanical properties of the 

printed materials have led to the use of reinforcements as well as to improve the printing 

performance and the mechanical properties of the printed material. In this context, cellulose 

derivatives have been extensively studied as fillers to improve the printability as well as the 

interfacial adhesion of the inks, in the form of nanofibers [119], nanocrystals [120], 

carboxymethyl cellulose [121] and methylcellulose [122] among others. Other works are 

focused on improving the mechanical properties of the resulting piece by adding to alginate 

based inks carbon derived entities such as graphene oxide [123,124] or carbon nanotubes 

[125], resulting not only in a mechanical reinforcement but also in some cases in an 

interesting electrical conductivity. 

As far as UV cured inks is concerned, photopolymers such as gelatin methacrylate [126] or 

resins with UV initiators [127,128] are examples of inks that can be cured by UV after being 

printed. As the UV light and the intermediate free radicals can kill cells, this approach 

presents some limitations which are well known and studied to avoid this type of problems.  

Cold extrusion inks, contrary, comprise all those which their printing processes do not 

require the application of temperature and only rely on the ink’s rheology for the printing. 

The ink must be able to be extruded but at the same way to form self-supporting layers [129]. 

The addition of additives or thickeners and the modification of the composition are usually 

used in order to adapt the rheology and allow a successful printing process. The use of this 

type of inks presents an important advantage against other types of inks, that is the absence 

of extra processing of the ink such as the application of temperature, crosslinkers or UV 
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light. However, this absence of “second” processing step also represents a greater limitation 

of the materials, due to the special conditions that the ink has to fulfil to be successfully 

printed. Numerous formulations have been developed during the last years to achieve this 

special conditions such as polycaprolactone/starch blends [130], hydroxyapatite [131], 

mesoporous bioactive glass/polyvinyl acetate [132], polylactic acid/polyethylenglycol in 

chloroform [133], poly (hydroxymethylglycolide-co--caprolaptone) [134] and graphene 

dispersion [135] represent examples of development of suitable cold extrusion inks. 

In this context, regarding polyurethane based inks, waterborne polyurethane and 

polyurethane ureas with different compositions have been proposed as suitable inks, mostly 

as cold extrusion inks. Polycaprolactone [136], polycaprolactone/polyether block amide/ 

hyaluronic acid [137], polycaprolactone/polyethylenglycol [138], 

polycaprolactone/polylactic acid/poly(-L-lactic) acid [139], polycaprolactone/polyether 

block amide [140], peptinucleic acid/carbon nanotubes [141], polycaprolactone/polyether 

block amide, polycaprolactone/polyether block amide/polyethylenglycol [142], 

polycaprolactone/poly(L-lactide)/poly(ethylene oxide) [28] represent examples in the 

literature for the development of inks based on different formulations of waterborne 

polyurethanes and polyurethane ureas. 

1.5.1.2 Impact of rheology on DIW 3D-printing 

Although the DIW 3D-printing represents an interesting fabrication technique, the correct 

development of suitable materials is still an important challenge in order to ensure the 

viability of this AM. The extrusion rate, printing speed and printer resolution are some 

important 3D-printing parameters, which are directly linked to the rheological properties of 

the ink.  

Overall, the materials suitable for DIW 3D-printing are required to decrease their viscosity 

in order to flow easily under pressure, and posteriorly be able to recover the initial stage so 

as to retain their shape quickly for a long time, and maintain sufficient integrity after 

fabrication. In the Figure 1.6 a graphical illustration of the different stages of the DIW 3D-

printing process is displayed. 
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Figure 1.6 Graphical illustration of the different steps of the DIW 3D-printing at their 

rheological correspondence 

 

In general terms, so as to determine the suitability of the inks, authors agree to explore (i) 

the processability of the ink, also known as “printability” and ii) the printing fidelity and the 

strength of the printed construct to self-sustain a 3D structure post printing, according to 

the rheological properties of the inks.  

Normally, the analysis of the rheological parameters is carried out for cold extrusion inks, 

measuring the viscosity as a function of the shear rate and determining the elastic and viscous 

components by oscillatory measurements in order to obtain the desired parameters. The 

Figure 1.7 propose a tentative of the relationship between rheological parameters and 3D-

printing process.  
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Figure 1.7 Scheme of the rheological analysis of the inks for DIW 3D-printing 

 

For gel forming inks that undergo phase transition, contrary, the rheology is measured as 

function of time and temperature in order to determine the conditions under which the phase 

change occurs. This will help to determine the optimal printing conditions such as printing 

temperature. 

1.5.1.2.1 Printability of the inks 

The printability is commonly defined as the capacity of an ink to be extruded successfully 

forming a continuous and homogeneous thread. Figure 1.8 illustrates the ideal extrusion 

process as well as the undesired under-extrusion and over-extrusion phenomena. The 

former, happens when not enough ink is extruded or the printing speed is too fast and as a 

result, an inhomogeneous thread is obtained, whereas in the latter, too much ink is being 

extruded or the speed is too low, resulting in a too big thread, which can result in problems 

to represent the details of the 3D design as well as the possibility of dragging already printed 

areas.  
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Figure 1.8 Different examples of printability of the inks: i) desired extrusion, ii) under-

extrusion and iii) over-extrusion  

 

One can notice that some authors define the “printability” of an ink as the overall ability of 

a material to make a 3D object by layer-by-layer deposition and to support its structure once 

printed [129] without discussed the end use properties. 

The viscosity is defined as the ratio of the shear stress over the shear rate. Depending on the 

variation of the viscosity as a function of the shear rate, the materials can be divided into two 

categories: Newtonian and non-Newtonian fluids. The viscosity of a Newtonian fluid is 

constant whatever the shear rate (the shear stress varies linearly with the shear rate). For non-

Newtonian fluids, contrary, the shear stress varies non-linearly with shear rate and one can 

define pseudoplastic materials and dilatant ones, depending the decreasing (shear thinning) 

and increasing (shear thickening) tendency of the viscosity as the shear rate increases 

respectively. Additionally, Bingham, plastics are defined as a material that behaves as a rigid 

body at low stresses but flows as a Newtonian fluid at high stresses. In the Figure 1.9 a 

representation of the different behaviors is displayed.  

The viscosity of a polymer solution is predominantly determined by the polymer 

concentration and molecular weight [23] thus, these two parameters have to be taken into 

consideration in order to design printable materials by DIW 3D-printing. 

For DIW 3D-printing, pseudoplastic materials are the ones that are recommendable. Their 

capacity of decreasing their viscosity as the shear rate increases gives them the ideal behaviour 

for the micro-extrusion process. At high shear rates (printing state) the viscosity decreases 

drastically up to the point that becomes easily extruded forming a continuous nozzle, whereas 

at low shear rates (steady state) the high viscosity of the ink allows to maintain the given 

shape. 
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Figure 1.9 Representation of the different materials divided by their behaviour against 

the shear rate. Shear stress (left), viscosity (right).  

 

During the shear process, the macromolecules are more or less oriented in the shear direction 

(in this case the extrusion direction). The resistance to flow is lower when the orientation is 

more significant. In the case of the polymer chains, which are entangled in steady state, the 

applied shear rate unravels the polymer chains, up to the point that at high rates the chains 

are not in contact with each other. For dispersions, contrary, the applied shear rate causes 

particles orientation in the flow direction. Additionally, a shear load can also break 

agglomerates or change the particles network. This type of behaviour leads to a decrease of 

the resistance to flow which is traduced in lower viscosity and a better properties for printing 

[143].  

Generally, the viscosity influences the shape fidelity of the printed piece, being higher as the 

viscosity increases. However, it also influences the printability, since high viscosities require 

high shear stresses which can lead to extrusion problems.  

In the Table 1.2 the viscosity values in steady and printing state of different systems observed 

in the literature are displayed. As can be observed, a wide range of viscosity values allows to 

possible extrusion, however, a shear thinning behaviour is observed in all of them, presenting 

much lower viscosities when are extruded. 
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Table 1.2 Viscosity and shear rate values of inks during and after extrusion in literature  

Extrusion 

viscosity 

(Pa s) 

Extrusion 

shear rate 

(s-1) 

Newtonian 

or steady 

state 

(Pa s) 

Newtonian 

or steady 

shear rate 

(s-1) 

References 

10-100 50 10000 0.01 [144] 

28.6 26 400 0 [145] 

2.72 96 15 0.1 [142] 

35 28 2560 0.14 [146] 

10-100 100 10000 0.1 [147] 
 

 

For non-Newtonian fluids, the nonlinear variation of the shear stress as a function of the 

shear rate can be described by the power law (Equation 1.1) and the Herschel Bulkley model 

(Equation 1.2) 

τ=K γ̇
n
                           (1.1) 

        τ=τy+K γ̇
n    

                  (1.2)        

where τ is the shear stress (Pa), γ̇ is the shear rate (s-1), K is the consistency index (Pa sn), n is 

the flow index (dimensionless), and τy is the yield point. 

The n index, defines the nature of the variation of the shear stress as a function of the shear 

rate. Values of n>1 are related to materials with shear thickening behaviour, whereas n<1 is 

characteristic of materials that present shear thinning behaviour. Low values indicate a strong 

shear thinning behaviour, which eases the extrudability of the inks, leading to improve its 

printability [145,148,149]. Conversely, the K index is related to the apparent viscosity of the 

fluid at a shear rate of 1 s−1 [150], where high values can lead to the extrudability problems 

of the ink. Some authors suggest the possibility that the consistency index reflects individual 

structural characteristic, whereas flow index reflects the structural property of the whole 

suspension [151]. 

The power law model allows to describe the behaviour of the shear stress as a function of 

the shear rate for most of the non-Newtonian fluids. However, in order to describe the 

behaviour of the inks that are solid at rest and only starts to flow after a certain applied stress 

the inclusion of more parameters is needed. In this context the Herschel Bulkley model, 

which takes into consideration this applied stress under the name of yield point represents a 

more accurate model. 
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The yield point, also called yield stress is by definition a measure of the stress at which the 

network structure of the material starts to break down and hence starts flowing. The 

determination of this parameter is of the major importance for the evaluation of the 

capability of the printability of the material because the DIW 3D printer must apply a stress 

higher than the τy so as to start extruding the material through the nozzle. High τy values will 

result in inhomogeneous, non-continuous flow or even lead to the impossibility of extruding 

the material. Anyway, since the ink has to be extruded through the nozzle, its diameter plays 

also a major role in the printability, resulting more difficult to extrude successfully as the 

diameter of the nozzle decreases. Apart from the influence on the printability, the yield point 

also influences the ability of the material to keep its shape under gravity and under the stresses 

generated by material layers deposited on top of it [152,153]. Thus, an ink suitable for 3D-

printing should possess a yield point low enough to ensure its correct extrusion but not too 

low after the printing to avoid spreading of the printed object under its own weight. 

The determination of the yield point which is carried out in a stress ramp is a process that 

does not present a consensus in the consulted literature, since many authors propose their 

own interpretation of the yield point determination. Generally, all methods are related with 

the deviation of the storage modulus from the constant plateau observed at low shear stresses 

and only differed on the stress value where the τy is taken. In the Table 1.3 some of the 

different yield point determination methods based on the stress ramp observed in the 

literature are enlisted. As well, in Figure 1.10 an example of the different yield point 

calculated from the mentioned methods are represented in a stress ramp. 

Table 1.3 Different yield point determination methods  

Author Determination method References 

Lille et al. and Cyriac et al. 
Deviation of the G’ from 

linearity 
[152,154] 

Shih et al. Intercept between G’ and G’’ [155] 

Sharma et al. 
10% of deviation of the G’ from 

linearity 
[156] 

De Graef et al. Onset of the drop of the G* [157] 
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Figure 1.10 Representation of the different enlisted methods for the determination of 

yield point  

 

As can be observed, the different interpretations of the determination of the yield point lead 

to very different τy values, which can represent and issue as far as a correct correlation with 

the printing performance is concerned. For that reason, for comparing the different values 

provided in the literature, the determination method as well as the capacity of the DIW 3-

printer to apply the stress must be taken into consideration. Anyway in the Table 1.4 the 

printable yield point ranges of inks observed in the literature are enlisted observing a wide 

variety of yield point ranges.  

Table 1.4 Some example of yield point values of inks in the literature 

Yield point range 

(Pa) 
Type of ink References 

419-1419 Yeast extracts [158] 

1-10 Geopolymer paste [159] 

99-160 Poly(ethylene glycol) diacrylate [160] 

8-80 Graphene oxide solution [161] 
 

 

Apart from the yield point, most of the authors reported the flow stress, or flow point (𝜏𝑓), 

as the crossover between G’ and G’’ in order to reflect the point where the ink starts flowing 

like a liquid. Additionally, the flow transition index, (FTI) is proposed as a dimensionless 
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parameter, which consist on the ratio between the flow point and the yield point ( 𝜏𝑓/𝜏𝑦) 

[161], and is used in order to characterize the breaking behaviour of the inner structure of 

the ink, which illustrates the brittle behaviour of the soft material as FTI approaches to 1 

[143]. 

In conclusion, the most important characteristics that a suitable ink must have for a good 

printability is having a shear thinning behaviour, a low enough viscosity and a yield point 

lower than the limitations of the DIW equipment but high enough not to compromise the 

shape fidelity. 

1.5.1.2.2 Shape fidelity of the inks 

Contrary to printability, the shape fidelity comprises other parameters and requires other 

type of tests even if some of the parameters mentioned for the printability have their 

influence on the shape fidelity and vice versa. In this case, oscillatory measurements allow to 

determine the storage and loss moduli and as consequence the capacity of the printed piece 

of maintaining the given shape as well as to avoid the collapse of the structure due to their 

own weight. 

The storage and loss moduli obtained by spectromechanical analysis are the key parameters 

in order to determine the capacity of the ink of maintaining the given shape as well as to 

support multiple layers without collapsing for its own weight. Generally, for cold extrusion 

inks a G’ over G’’ is desired, indicating a elastic behaviour. In the case of gel forming inks, 

contrary, the systems usually present G’’ over G’ before gelation and G’ over G’’ after the 

gelation of the ink which will ease initially the printing process and once printed stablish a 

solid structure. Focusing on the moduli values, systems presenting low values of storage 

modulus, normally exhibit a less structured network compared with the ones with higher G’ 

values, which are correlated to highly structured systems Thus, the latter ones are desirable 

in order to obtain inks with good shape fidelity which can also support multiple layers 

without collapsing. According to Li et al., empirically, a storage modulus above 103 Pa is 

necessary to support highly stable 3D structure of multiple layers [162]. 

In addition to the storage modulus, the yield point has also influence on the capacity of 

maintaining the shape since a very low value can lead to the flow of the lower layers as a 

result of the own weight of the 3D construction. Additionally, the relationship between the 

storage and loss moduli, which is known as the tangent of the phase angle 

tanG''/G'gives useful information about the structuration of the network of the 
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inks. High values of tan  represent a more viscous behaviour, leading to systems that cannot 

maintain the given shape and are not able to support layers, whereas lower values of tan are 

desirable so as to obtain inks with good shape maintaining properties owing to their elastic 

behaviour. However, very low values of tan can result in a too high elastic behaviour, 

avoiding good adhesion between each layer and leading to problems of cohesion between 

layers as well as difficulties in printing corners due to material drag. In the Table 1.5 an 

example of different storage modulus and tan  values for printable materials are displayed. 

Figure 1.11 illustrates the storage modulus and tan  of printable and not printable materials 

of cold extrusion and gel forming inks observed in the literature. 
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Figure 1.11 Comparison of the storage modulus and tan  of different printed systems 

in the literature. (…) Good shape fidelity lower limit proposed by Li et al., green region 

represents the ideal storage modulus and tan  values square obtained from the 

consulted literature data [28,152,164,166–169]. 
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Table 1.5 Storage modulus and tan  values of inks in the literature 

Storage modulus 

(Pa) 
tan  Type of ink Reference 

2000-3000 0.20-0.30 Mashed potatoes [163] 

1500 0.19 Cellulose nanofibers/alginate [164] 

1500 0.18 Protein and fiber paste [152] 

3000 0.30 Polylactide-co-glycolide/graphene [165] 
 

 

Analysing the Figure 1.11, one can observe that all the reported systems presenting a good 

shape fidelity exhibit a storage modulus values in the range 900-3000 Pa and tan values 

between 0.06-0.3. Out of these values, systems presenting lower values of storage modulus 

showed bad shape fidelity, whereas inks presenting upper values showed cohesion problems 

between layers. Apart from that, posteriorly crosslinked systems presented storage modulus 

values in the range of the latter, however, since the crosslinking process happens after the 

printing process there is not any cohesion problems between layers.  

Apart from the structuration of the inks, their capacity of recovering their initial state has to 

be studied in order to ensure that the ink is going to be able to maintain their structure after 

being processed. For that, in the literature, many tests, named as “shape recovery test” have 

been proposed so as to study this phenomenon. The principal one, is shown in Figure 1.12. 

The variation of the viscosity as a function of time by applying different shear rates simulates 

the different steps of the printing process: i) the shear rate is fixed to 1 s-1 to simulate the 

steady state of the ink, ii) the shear rate has been increased to 100 s-1 simulating the printing 

conditions and iii) the shear rate is reduced again until 1 s-1 simulating the recovery of the ink 

after being printed. The ratio between the viscosity measured in the first step and the one 

measured in the last one will indicate the recovery capacity of the system. Obviously, high 

values of structure recovery are needed so as to obtain inks which maintain their properties 

after the printing performance. In fact, according to the literature, Peak et al. reported that 

recovery percentages above 80% are significant for 3D-printing applications[147]. 

In this context, in Table 1.6 the recovery values of different systems are displayed for 

comparative purposes. Apart from this test, other authors propose an alternative recovery 

test which is based on the variation of G’ and G’’ as a function of time applying different 

shear stresses. The mechanism of the test follows the same way of the displayed one in the 

Figure 1.12, and presents a G’ over G’’ at low rates and G’’ over G’ at the printing stage, 

illustrating the flow of the ink during its extrusion [170,171].  
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Figure 1.12 Scheme of the structure recovery test 

 

Table 1.6 Structure recovery percentage values observed in the literature 

Structure recovery 

(%) 
Type of ink Reference 

85.5 
Calcium alginate/ 

Graphene oxide 
[124] 

90-95 Laponite/alginate [172] 

>80% PEG/laponite [147] 

66% Cellulose nanofibers/alginate [164] 

>80% Calcium alginate/carrageenan [169] 
 

 

In conclusion, regarding the shape fidelity, suitable inks for DIW 3D-printing have to present 

high enough storage modulus and low enough tan  to support successfully the 3D-printing 

design and not collapse by their own weight, and also must present significantly high 

percentages of viscosity recovery so as to be able to recover their initial step. 
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1.5.1.3 Applications of DIW 3D-printing 

As mentioned previously, the DIW 3D-printing presents multiple fields of application due 

to the aforementioned advantages compared with other advanced manufacturing techniques. 

Mainly they can be divided in the following categories: tissue engineering, wound dressing, 

functional materials, and others. The Figure 1.13 shows the multiple application fields of 

this fabrication technique.  

 

Figure 1.13 Graphical illustration of the principal application field of DIW 3D-printing 

 

The materials used for the design of the inks used in DIW 3D-printing are usually 

biocompatible. In this context, the use of this technique in the tissue engineering field has 

been extensively studied in the literature: carbon nanotubes/agarose based ink for the 

printing of conductive scaffolds for biosensors or organ printing [173], nanocrystalline 

hydroxyapatite/alginate/gelatin based ink for the printing of scaffolds which promotes 

osteogenic differentiation for bone tissue engineering [174], nanocrystalline 

hydroxyapatite/collagen based ink for the internal microchannel generation for vascularized 

tissue engineering scaffolds [175], nanocrystalline hydroxyapatite/chitosan based ink for 

improve the cell viability, proliferation and osteogenic differentiation in bone tissue 

engineering [176] and nanocellulose/alginate gelatin based ink for printing scaffolds with 



Chapter 1 

36 

controlled pore size for tissue regeneration [177], represent among others examples of a 

promising use of DIW 3D-printing in this field. 

Regarding the wound dressing applications, Leppiniemi et al. printed a nanocellulose/alginate 

hydrogel whose absorbing water capacity in moist conditions suggests its potential in wound 

dressings [178]. Moreover, Maver et al. combined DIW 3D-printing and electrospinning to 

design a carboxymethyl cellulose based scaffold which contained lidocaine and presented a 

good drug release [179]. Reese et al. also proposed a nanocellulose based compound, 

concretely, carboxymethylated periodate oxidized nanocellulose, as a 3D-printing construct 

which presented a potential to carry and release antimicrobial components not showing 

bacterial growth in the printed scaffold [180]. Finally, Intini et al. fabricated a chitosan based 

scaffold which exhibited excellent biocompatibility and cytotoxicity toward two different 

skin associated human cell lines, being a promising material for wound dressing applications 

[181]. 

Moreover, in the literature, DIW 3D-printing has also been reported as an advanced 

manufacturing technique for the printing of functional materials. Zhong et al. designed a 

printable and conductive ink containing graphene for the fabrication of self-sensing 

composites [182], whereas Wu et al. used DIW 3D-printing in order to fabricate a 

polybutylene succinate/graphene composite which presented self-healing properties for its 

application in autonomous structures [183]. 

The water treatment, desalinization and membrane separation fields also presented 

developments based on the DIW 3D-printing. For example, Appuhamillage et al. developed 

an ink based on chitosan and diacrylated Pluronic F-127 to construct hydrogels for heavy 

metal ion removal (Cu2+, Pb2+, Cd2+, Hg2+) [184], whereas Li et al. printed a highly porous all 

in one evaporator for high efficiency solar steam generation [185]. Finally, many soft and 

flexible graphene foam structures can be fabricated by DIW 3D-printing [186]. These 

structures demonstrate a great potential in energy storage field owing to their large superficial 

area, high electrical conductivity and lightweight features. Moreover, some interesting soft 

sensors [187] and robots can also be developed by DIW 3D-printing [188]. 
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2. MATERIALS AND METHODS 

 

 

 

 

 

 

2.1 Objective  

In this chapter, the reactants employed for the synthesis of the different WBPUU, 

WBPUU/CNC and WBPUU/CNC/plant extract systems are described. Additionally, the 

characterization techniques carried out to analyse the different dispersions, films, inks and 

printed pieces are also specified. Finally, the DIW 3D-printing equipment used in this work 

is displayed. 

2.2 Reactants 

Waterborne polyurethane urea hydrogels were synthesized using a difunctional 

polycaprolactone diol (PCL) and a difunctional polyethylenglycol (PEG) (molecular mass in 

number from the supplier Mn=2000 and 1000 g mol-1 respectively) as soft segment (SS), 

both provided by Sigma-Aldrich. 2,2-Bis (hydroxymethyl) propionic acid (DMPA, 98% 

purity) and ethylene diamine (EDA, 99% purity), used as internal emulsifier and chain 

extender respectively, provided also by Sigma-Aldrich, and isophorone diisocyanate (IPDI, 

99.5% purity), kindly supplied from Covestro, were used as hard segment (HS). Dibutyl tin 

dilaurate (DBTDL), provided by Sigma-Aldrich, was used as catalyst. The polyols and the 

DMPA were dried under vacuum at 60 °C for 4 h prior to their use. Triethylamine (TEA, 

99.5% purity) was used as neutralizer of the carboxylic groups of DMPA (provided by Fluka) 

whereas butanone (supplied by Panreac) was used to transfer the neutralized DMPA into the 

reaction medium and also adjust viscosity. For the study of the variation of the molecular 

weight of the PEG, difunctional polyethylenglycol of 400 and 1500 g mol-1 were also used, 

all provided by Sigma Aldrich. 

For the preparation of the composites, cellulose nanocrystals (CNC) provided by the 

University of Maine (USA) were used (2018-FPL-CNC-117 with a sulphur content of 1.0 
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wt% from the supplier) and for obtaining the plant extract, Salvia officinalis L. from Soria 

Natural were employed as dry material obtained in a herbalist.  

Finally, methylene blue (MB) (82% purity) provided by Panreac has been used for the dye 

absorption process.  

2.3 Characterization techniques 

2.3.1 Dispersions characterization 

2.3.1.1 Dynamic light scattering  

The particle size of the polyurethane urea dispersions was measured by dynamic light 

scattering (DLS). This technique allows to measure the diffusion speed of particles by means 

of the dispersed light in the system, leading to the determination of the particle size 

distribution profile by the hydrodynamic radio. The measurements were carried out using a 

BI-200SM goniometer, from Brookhaven. The intensity of dispersed light was measured 

using a luminous source of He–Ne laser (Mini L-30, wavelength = 637 nm, 400 mW) and a 

detector (BI–APD) placed on a rotary arm which allows measuring the intensity at 90°. 

Samples were prepared mixing a small amount of the synthesized WBPUU aqueous 

dispersion with ultrapure water. Six measurements were performed per system and the mean 

is calculated as well as the standard deviation. 

2.3.1.2 Zeta potential 

The stability of the WBPUU dispersions was analysed by zeta potential (Z potential) using a 

ZetaSizer Nano Series ZEN3600, from Malvern Instruments. This technique measures the 

Z potential of the dispersion by applying an electric field across the dispersion. Particles 

within the dispersion with a Z potential will migrate toward the electrode of opposite charge 

with a velocity proportional to the magnitude of the Z potential, allowing to determine the 

stability of the dispersion. Samples were prepared diluting the WBPUU dispersions with 

ultrapure water.  

2.3.1.3 Solid content 

Solid content of different dispersions and WBPUU and WBPUU/CNC inks was calculated 

by drying 2 mL of each one in an oven at 100 °C for 8 h. The solid content, calculated by 

duplicate, was taken as the ratio between the weight of the dispersion and the weight of the 

dried sample following Equation 2.1. 
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Solid content (%)=
dried sample weight

weight of dispersion
 X100          (2.1) 

2.3.1.4 Transmission electron microscopy 

In order to study the morphology of the dispersion and inks particles, transmission electron 

microscopy (TEM) measurements were performed on a TECNAI G2 20 TWIN operated at 

80 kV and equipped with LaB6 filament. Samples were diluted in water. A drop of suspension 

was spread into a TEM cooper grid (300 Mesh) covered by a pure carbon film and dried at 

room temperature. The grid was glow discharged before put the drop of suspension. 

So as to obtain clear images of the particles for both the WBPUU dispersions and 

WBPUU/CNC inks, the studied systems were diluted in a 1 wt% of solid content in 

deionized water. 

2.3.1.5 pH 

The pH of the dispersions was measured using a pH meter GLP22 of Crison, which was 

calibrated with pH 4 and 7 buffer solutions standards. Measurements have been carried out 

per triplicate. 

2.3.2 Physicochemical characterization  

2.3.2.1 Gel permeation chromatography 

Molar masses in weight (Mw) and dispersity index (Ð) of the prepared polyurethane urea 

films were determined by gel permeation chromatography (GPC) using a Thermo Scientific 

chromatograph, equipped with an isocratic Dionex UltiMate 3000 pump and a RefractoMax 

521 refractive index detector. A mobile phase carries the sample thought a stationary phase 

packed in a column, which consist on a microporous packaged gel. Depending on the size 

of the different molecules, the retention time of the macromolecules, on in other words, the 

time that the macromolecule requires to complete the whole column will be different. The 

smaller macromolecules will result in bigger retention times becoming entrapped in the pores 

whereas the bigger ones will complete the column more rapidly. By this way, the 

macromolecules of the sample will be separated according to their sizes due to the different 

retention times. The separation was carried out at 30 °C within four Phenogel GPC columns 

from Phenomenex with 5 μm particle size and 105, 103, 100, and 50 Å porosities, respectively, 

located in an UltiMate 3000 thermostated column compartment. Tetrahydrofuran (THF) 

was used as mobile phase at a flow rate of 1 mL min−1. Samples were prepared dissolving in 
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THF at 1 wt% the obtained films of the WBPUU dispersions and filtering the obtained 

solutions with nylon filters with 2 μm pore size. Mw and Ð were reported as weight average 

polystyrene standards. 

2.3.2.2 Proton nuclear magnetic resonance 

The chemical structure of WBPUUs was analysed by proton nuclear magnetic resonance (1H 

NMR). This technique is based on the application of an electromagnetic field and posterior 

analysis of the frequencies of proton resonance which depend on the surrounding atoms of 

each proton nucleus. The measurements were carried out in a Bruker Avance 500 

spectrometer, equipped with a BBO probe with gradient in z axis and using a resonant 

frequency of 125.77 MHz. Acquisition times were established at 3 s averaging 64 K scans, 

using an interpulse delay of 2 s. A time domain of 64 K was used in a spectral width of 10000 

Hz. The solvent employed in all cases was deuterated DMSO. 

2.3.2.3 Carbon nuclear magnetic resonance 

Carbon nuclear magnetic resonance (13C NMR) spectra of CNC were recorded with an 

Advance Bruker equipped with BBO z-gradient probe. Experimental conditions were as 

follows: 125.5 MHz, number of scans 14000, spectral window 25000 Hz and recovery delay 

2 s. The solvent employed in all cases was deuterated DMSO. 

2.3.2.4 Fourier transform infrared spectroscopy 

The characteristic functional groups of the different WBPUUs and WBPUU/CNC prepared 

systems as well as the hydrogen bonding interactions were analysed by Fourier transform 

infrared spectroscopy (FTIR). This technique consists on the irradiation of the sample with 

an infrared light source. This absorbed light is reflected in the spectrum at different 

wavenumbers, which correspond to the different functional group, allowing to recognise 

them. For this purpose, the FTIR measurements were carried out using a Nicolet Nexus 

spectrometer provided with a MKII Golden Gate accessory (Specac) with a diamond crystal 

at a nominal incidence angle of 45° and ZnSe lens. Spectra were recorder in attenuated total 

reflection (ATR) mode between 4000 and 650 cm−1 averaging 64 scans with a resolution of 

8 cm−1. 

2.3.2.5 X-ray diffraction 

X-ray powder diffraction pattern of the CNC and WBPUU films was collected by using a 

Philips X’pert PRO automatic diffractometer operating at 40 kV and 40 mA, in theta-theta 
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configuration, secondary monochromator with Cu-K radiation (λ = 1.5418 Å) and a PIXcel 

solid state detector (active length in 2θ 3.347°). Data were collected from 5 to 75° 2θ (step 

size 0.026 and time per step = 80 s) at room temperature. A fixed divergence and 

antiscattering slit giving a constant volume of sample illumination were used. 

2.3.2.6 Density measurements 

The density of the printed and freeze dried scaffolds was obtained as the ratio between the 

weight and volume of a cylindrical specimen (12 mm diameter x 5 mm height), and values 

were averaged for five specimens. 

2.3.3 Thermal characterization 

2.3.3.1 Thermogravimetric analysis 

The thermal stability of the WBPUU films and the WBPUU/CNC printed pieces was 

determined by thermogravimetric analysis (TGA) using a Mettler Toledo TGA/DSC 3+ 

equipment. This technique consists on controlling the degradation process of the sample by 

measuring the weight of the sample in a microbalance during a heating scan. Between 5 and 

10 mg of samples were introduced in ceramic pans. The samples were heated from 25 to 800 

°C in nitrogen atmosphere at a scanning rate of 10 ºC min−1. From the weight loss and its 

derivative curves, the initial degradation temperature (T0) as the loss of 5% of the initial 

weight, and the maximum degradation temperature (Td) as the minimum of the degradation 

peak in the derivative thermogravimetric curve were determined. 

2.3.3.2 Differential scanning calorimetry 

The thermal properties of the WBPUU films and different WBPUU/CNC printed pieces 

were determined by differential scanning calorimetry (DSC) using a Mettler Toledo DSC 3+ 

equipment provided with a robotic arm and an electric intracooler as refrigerator unit. This 

technique is based on the heat provided to the analysing sample and a reference, and consist 

on the comparison of both thermograms. When the sample undergoes a thermal transition, 

the required heat will be different between the sample part and the reference one reflecting 

in the thermograms. Between 5 and 10 mg of the samples was encapsulated in aluminium 

pans and heated from −50 to 200 °C at a scanning rate of 10 °C min−1 in nitrogen 

atmosphere. The inflection point of the heat capacity change observed was chosen as glass 

transition temperature (Tg). Moreover, melting temperature of both soft and hard segment 

(TmSS and TmHS) was settled as the maximum of endothermic peaks taking the area under 

the peak as melting enthalpy (ΔHm). 



Chapter 2 

66 

2.3.4 Mechanical characterization  

2.3.4.1 Tensile tests 

Tensile analysis was performed for the WBPUU films and the different WBPUU/CNC 

printed pieces in an Instron 5967 universal testing machine provided with a 500 N load cell 

and pneumatic grips to hold the samples. This technique consists on applying a constant 

elongation rate of the samples until failure. By this, the equipment is able to record the force 

and elongation strain values of the sample in order to build a stress-strain curve, where the 

different mechanical properties of the material can be determined. For the WBPUU films, 

samples were cut in strips of 2.8 mm in width and 0.5 μm in thickness, whereas in the case 

of the printed WBPUU/CNC composites, strips were printed with 2.8 mm in width and 0.5 

mm in thickness before drying, decreasing the thickness up to 0.4 μm after the drying 

process. All samples were tested at a constant elongation rate of 20 mm min−1 at room 

temperature with an initial distance between clamps of 10 mm. Young modulus (E), stress 

at break (σb), and strain at break (εb) were averaged from stress–strain curves of at least five 

specimens of each series. 

2.3.4.2 Compression tests 

For the compression testing of prepared WBPUU/CNC scaffolds, cylindrical specimens of 

25 mm diameter x 30 mm height were prepared by freeze drying technique, and tested at 

room temperature in an Instron 5967 universal testing machine. The compression force was 

applied in the layer by layer printing direction. Samples were compressed at a fixed length of 

22 mm at a crosshead speed of 10 mm min-1. The average value of compression modulus 

was calculated as the slope of the stress-strain curve at low deformations. The compressive 

strength was taken as the stress reached at the compressive yield point that occurred below 

10% deformation for all samples and the densification strain was taken as the strain at the 

intersection point between the stress plateau and a line extrapolated from the densification 

line. Compression values were averaged for three specimens. 

2.3.5 Rheology  

2.3.5.1 Thermomechanical characterization  

The thermomechanical behaviour of the WBPUU films and printed WBPUU/CNC 

nanocomposites was determined by using an Eplexor 100 N analyser Gabo equipment. This 

analysis, which was performed in order to analyse the viscoelastic properties of films and the 

printed pieces, consists on the application of a sinusoidal stress as the strain response is 
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measured while the temperature is linearly varying. By this way, the phase difference between 

the stimulus and the response can be used to determine the storage modulus (E’) and the 

loss modulus (E’’), and the tangent of phase angle (tan ). The variation of tan with the 

temperature allows to determine the glass transition temperature (Tg) of the sample 

manifested with a maximum in tan  curve, which also can be observed as a drop in the curve 

related to E’. The measurements were carried out in tensile mode from −100 to 150 °C at a 

constant scanning rate of 2 °C min−1 and a fixed frequency equal to 1 Hz. The constant strain 

was established at 0.05% to keep the linear viscoelastic behaviour whatever the temperature. 

2.3.5.2 Spectromechanical analysis  

Rheological characterization was performed using a R101 model rheometer (Antoon Paar), 

provided by a temperature chamber and solvent trap. Flow test were performed at 22.5 °C 

using a plate-plate geometry of 50 mm as a shear rate sweep from 0.01 to 120 s-1. Regarding 

the yield point determination dynamic oscillatory test were performed in a shear stress range 

of 0.09-1500 Pa at 22.5 °C in a plate-plate geometry of 25 mm. Strain sweep test were 

performed at 22.5 °C in a plate-plate geometry of 25 mm at a fixed frequency of 1 Hz varying 

the strain from 0.01 to 200%. Moreover, frequency sweep test was performed at 22.5 °C at 

a fixed strain, corresponding to the linear domain of 1%, in a plate-plate geometry of 25 mm 

varying the frequency from 0.01 to 10 Hz. Finally, structure recovery tests were performed 

at 22.5 °C in a three stage test in a plate-plate geometry of 25 mm, i) in the first one the 

viscosity is measured at 1 s-1 during 10 s, ii) in the second the shear rate is fixed at 100 s-1 and 

the viscosity is measured during 10 s, iii) in the last stage, the shear rate is fixed again at 1 s-1 

and the viscosity is measured during 3 min. 

2.3.6 Morphological characterization 

2.3.6.1 Scanning electron microscopy 

So as to study the morphology of prepared WBPUU/CNC in situ scaffolds, scanning electron 

microscopy (SEM) measurements were performed by a Field Emission Gun Scanning 

Electron Microscopy (FEG-SEM) Hitachi S-4800N, at a voltage of 5 kV. 

Prior to the test, and in order to analyse the cross section of prepared scaffolds, the samples 

were cryofractured in liquid nitrogen so as to avoid the deformation of the scaffolds during 

the cutting process and sputter coated with a thin layer of gold (∼ 10 nm) in a Emitech 

K550X ion sputter. 
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In addition, energy dispersive X-ray spectroscopy (EDS) was carried out by means of a 

ULTRAplus scanning electron microscope (SEM) from Zeiss Company equipped with a 

Gemini column and with an energy dispersive X-ray spectrometer from OXFORD INCA 

Synergy microanalysis system. The EDS microanalysis permits to evaluate the elemental 

composition of materials. 

2.3.6.2 Atomic force microscopy 

The morphology of the different WBPUU films and CNC was analysed by atomic force 

microscopy (AFM). This microscopy technique is based in the interactions between the 

nanometric tip of the microscope and the sample. The attractive-repulsion forces created a 

deflection in the tip depending on the morphology and the images are created by mapping 

those deflections in each point of the sample in tapping mode, using a Nanoscope IIIa 

scanning probe microscope (MultimodeTM Digital Instruments) with an integrated force 

generated by cantilever/silicon probes, applying a resonance frequency of about 180 kHz. 

The cantilevers were 125 μm long and had a tip radius of 5–10 nm. Samples were prepared 

by drying a drop of WPUU dispersion on glass supports via spin coating (Spincoater P6700) 

at 200 rpm for 130 s. Height and phase images were taken simultaneously. 

In the case of CNC the height and diameter of the nanoentities were also determined. The 

average dimensions of the CNC were obtained after measuring 50 samples. The samples 

were prepared following the same methodology detailed previously for the WBPUU 

dispersions.  

2.3.7 Superficial characterization  

2.3.7.1 Static water contact angle 

Static water contact angle (WCA) of the surface of the film was measured using a Phoenix-

300 goniometer of SEO. This technique is based on the deposition of a deionized water drop 

into the surface of the film so as to study the water contact angle value at the equilibrium in 

the system air-water-film. For the measurement, drops of deionized water of 0.1 μL have 

been used. Ten measurements were performed per sample. 

2.3.7.2 Water absorption  

The evolution of the water absorption of the prepared WBPUU and WBUU/CNC scaffolds 

was carried out by weight difference measurements in order to analyse the capacity of the 

scaffolds for absorbing water. For this study, samples of around of 10-15 mg were immersed 
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in 5 mL of deionized water at 25 °C. Samples were weighted at different times for one week. 

In order to study the influence of the pH in the absorption capacity of the scaffolds, different 

pH values of 1, 7 and 12 were used. For this purpose, hydroclorydric acid (HCl 0.1 M) and 

sodium hydroxide (NaOH) were used to adjust the pH to 1 and 12 respectively. The water 

absorption percentage was determined from weight increase by means of the Equation 2.2: 

Swelling (%)=
Wt-W0

W0

 ×100                         (2.2) 

where Wt is assigned to the weight at time t, whereas W0 is referred to the initial weight of 

the sample. Three measurements were averaged for each sample. 

2.3.9 Study of the methylene blue absorption capacity by UV-vis spectroscopy 

Quantitative analysis of the adsorption capacity of methylene blue (MB) was measured by 

UV-vis spectroscopy. Before the absorption test samples of 10 mm of diameter and 5 mm 

of height were printed and subsequently freeze dried. Furthermore, a solution of 500 mg L-1 

of MB in deionized water was prepared. The samples were immersed in the solution for 24 

h, and the remaining concentration of MB in the solution was tracked by UV-vis in order to 

determine the adsorption capacity of the scaffolds by studying the intensity of the peak 

located at 655 nm. This peak is the one characteristic of MB and used in the literature to 

study its presence [1]. 

The UV-vis measurements have been carried out in a UV-3600/3100 spectrometer from 

Shimadzu, in the range of 250-800 nm. Standards of known MB concentrations were 

prepared in order to perform the calibration curve. For this purpose, the initial solution of 

500 mg L-1 was diluted in deionized water to give 0.5, 2, 5, 10, 15, 20, 25 and 30 mg L-1 

solutions. The calibration curve of MB is displayed in Figure 2.1. 

The removal efficiency (R) was calculated from Equation 2.3 

R=
C0-C24

C0

 ×100                 (2.3) 

where C0 and C24 are the initial concentration and the concentration of MB in the solution 

after 24 h expressed in mg L-1, respectively. 
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Figure 2.1 Calibration curve of MB (up), standards of different concentration of MB 

used for the construction of the calibration curve (down) 

 

2.3.10 Antibiotic disc-plate antibacterial test 

The testing of the micro biocidal activity of the systems was carried out by means of the 

antibiotic disc-plate technique, also known as disk diffusion test. This technique consists on 

the deposition, onto an agar surface of a Petri plaque, previously inoculated with the 

microorganism which is going to be the object of the study, of paper discs impregnated with 

the different antibiotic of biocide agents. As soon as the impregnated disc with the biocide 
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agent is putted into contact with the wet agar surface, the filter absorbs the water and the 

biocide agent spread through the Agar. Then, the biocide agent spreads radially through the 

thickness of the Agar forming a concentration gradient. In this case, the impregnated disc is 

substituted by a printed disc which contains the biocide agent. After depositing the disc with 

the biocide agent on the plaque, previously inoculated with the microorganism, the samples 

were incubated at 37 ºC for 24 h. The prepared pieces with potential antibacterial properties, 

the antibacterial extracts as well as a control piece without the biocide agent were tested 

against Escherichia coli (CECT 405) and Staphylococcus aureus (CECT 239). All the performed 

tests were carried out by duplicate so as to confirm the results.  

2.4 3D-printing equipment 

The DIW 3D-printing process used in this work concerns a modified conventional FDM 3-

printing machine. This machine, which has been provided by Tumaker (Spain), has been 

modified by the addition of a piston and a motor in substitution of the extruder and the “hot 

end” so as to be able by using a syringe with a nozzle to extrude inks. By this way, the inks 

are loaded into a disposable syringe and are extruded through the nozzle as a result of the 

pressure applied by the piston. An image of the 3D-printing equipment used in this work is 

displayed in Figure 2.2.  

  

Figure 2.2 General overview of the DIW 3D-printing equipment (left), modified 

head of the printer for DIW 3D-printing (right) 
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3. SYNTHESIS OF WATERBORNE POLYURETHANE UREA. STUDY 

OF THE INFLUENCE OF THE SOFT SEGMENT COMPOSITION  

 

 

 

 

 

 

 

3.1 Objective  

The objective of this chapter is to study the influence of the variation of the ratio of a 

hydrophobic diol like PCL and a hydrophilic diol like PEG in the properties of waterborne 

polyurethane urea dispersions, as well as in the films prepared from the synthesized 

dispersions by doing a comprehensive analysis of the influence of low PEG content (from 

0.05 to 0.20 molar ratio). It is expected that the addition of PEG will increase the 

hydrophilicity of the film, as well as modify its morphology and thus its mechanical, 

thermomechanical and thermal properties due to the different nature of PEG compared to 

the more hydrophobic PCL. However, it is important to determine at which PEG content 

the effect in the properties of the systems are modified. The properties of the colloidal 

dispersions as well as the physicochemical, thermal, mechanical, and thermomechanical 

properties, morphology, and hydrophilicity of the films were evaluated and compared to the 

properties of similar materials reported in the literature. Additionally, in a second part of the 

chapter, the influence of the PEG molecular mass in the properties of the synthesized 

dispersions and films prepared from the dispersions were studied. 

3.2 Effect of the PCL/PEG ratio in the properties of WBPUU dispersions 

and films 

3.2.1 Experimental part 

3.2.1.1 Synthesis of waterborne polyurethane urea dispersions 

The synthesis of the WBPUU has been carried out using a 250 mL four-necked flask 

equipped with a mechanical stirrer, thermometer, condenser, and nitrogen inlet within a 
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controlled temperature bath. The synthesis consists on a two-step process where in the 

former the formation of the prepolymer is carried out, whereas the latter consists on the 

phase inversion and the chain extension. In the first step of the reaction, PCL, PEG, and 

IPDI were reacted in bulk at 80 °C for 3 h using a 0.1 wt% of DBTL, and then, the reaction 

is cooled until 50 °C where DMPA previously neutralized with TEA diluted in 5 mL of 

butanone was added. After 1 h, the system is cooled until room temperature, where the phase 

inversion step was carried out by adding deionized water drop by drop, under vigorous 

stirring. The decrease of the temperature before the phase inversion leads to avoid the 

reaction of the isocyanate with water. Finally, the chain extender (EDA) dissolved previously 

in deionized water was added drop by drop at 35 °C at which the chain extension reaction 

between the isocyanate groups of the nanoparticles and the diamine type chain extender is 

promoted, and left to react for 2 h to form the final WBPUU. Each step reaction progress 

was evaluated by dibutylamine back titration method according to ASTM D 2572-97. Once 

the reaction was completed, the remaining solvent was removed by vacuum distillation at 60 

°C. The pH of the dispersion was measured after the synthesis, obtaining values in the range 

of 7–8 for all samples. Additionally, ionic strength has been calculated for all systems, 

obtaining values in the range of 0.075–0.078 mol L−1.  

Systems with different soft segments (SS) compositions were prepared varying the molar 

ratio of PEG from 0.05 to 0.2. The theoretical solid content was fixed at 25 wt% in order to 

guarantee stable dispersions. All systems were prepared maintaining constant the molar ratio 

of polyol/diisocyanate/emulsifier/chain extender of 1/3.5/1/1.5. The hard segment (HS) 

content, which is calculated as the percentage of the diisocyanate, emulsifier and chain 

extender, and the emulsifier percentage remain almost the same for all the synthesized 

WBPUU.  

The scheme of the reaction is displayed in Figure 3.1, whereas the composition of the 

synthesized WBPUUs in terms of molar ratio of reactants and content (in wt%) of PEG, 

hard segment, carboxylic group and emulsifier is displayed in Table 3.1. The dispersions 

were stored at room temperature and no presence nor of aggregates nor of deposited material 

have been observed during time. 
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Figure 3.1 Scheme of the waterborne polyurethane urea synthesis, synthesis condition 

and chemical structure of the reagents 
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Table 3.1 Molar ratio of reactants and contents (in wt%) of PEG, hard segment 

carboxylic group and emulsifier 

System PCL100 PCL95PEG5 PCL90PEG10 PCL85PEG15 PCL80PEG20 

M
o

la
r 

ra
ti

o
 

PCL 1 0.95 0.90 0.85 0.80 

PEG 0 0.05 0.10 0.15 0.20 

IPDI 3.5 3.5 3.5 3.5 3.5 

DMPA 1 1 1 1 1 

EDA 1.5 1.5 1.5 1.5 1.5 

PEG 

(wt%) 
0 1.7 3.4 5.2 7.1 

Hard segment 

(wt%) 
36.5 37.1 37.7 38.3 39.0 

COOHtot 

(wt%) 
1.5 1.5 1.6 1.6 1.6 

Emulsifiertot 

(wt%) 
4.5 4.6 4.7 4.8 4.9 

 

 

3.2.1.2 Films preparation 

The dispersions were cast in Teflon molds, dried in a climatic chamber at 25 °C with a 50% 

of relative humidity for 1 week and followed by 3 days in a vacuum oven at 25 °C (400–420 

mbar). After this time, polyurethane urea films with a thickness of about 0.5 mm were 

obtained from WBPUU dispersions. In Figure 3.2 an image of the obtained PCL/PEG 

based WBPUU films is displayed. 

 

Figure 3.2 Digital image of the prepared PCL/PEG based WBPUU films 
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The solid content of the prepared dispersion and film size have been taken into account in 

order to ensure the desirable thickness of the film. The prepared films are homogeneous and 

showed a high transparency as can be observed in Figure 3.2. The films have been storage 

at room temperature in a desiccator in order to keep them away from humidity. 

3.2.2 Results and discussion  

3.2.2.1 Dispersion characterization  

Table 3.2 summarizes the particle size of the synthesized WBPUU dispersions and 

polydispersity measured by DLS, the Z potential values as well as the real solid content. 

Table 3.2 Characterization of the WBPUU dispersions. Particle size, polydispersity, Z 

potential and solid content 

System 
Particle size 

(nm) 
Polydispersity 

Zeta potential 

(mV) 

Solid content 

(wt%) 

PCL100 86±1 0.05±0.02 -44.2±0.3 25.0 

PCL95PEG5 97±1 0.16±0.01 -48.7±0.9 23.3 

PCL90PEG10 115±2 0.26±0.03 -41.6±0.2 25.2 

PCL85PEG15 105±5 0.23±0.03 -44.1±0.9 24.5 

PCL80PEG20 112±15 0.13±0.05 -42.7±0.6 26.2 
 

 

DLS reveals a particle size of 86±0.1 nm for the PCL100 system, with a polydispersity equal 

to 0.05±0.02. These results are similar to those reported by other authors, which reported 

values in the range between 70 and 100 nm [1]. Comparing this obtained particle size with 

those of the dispersions containing PEG, an increase of both particle size and polydispersity 

can be observed. The hydrophilic nature of PEG allows the swelling of the particles by 

interactions with water. Thus, the particles present not only higher particle size, but also 

higher polydispersity with all systems presenting monomodal distributions with the absence 

of aggregates. This increase of the particle size leads to the reduction of the specific surface 

area [2–4], which can affect to the stability of the dispersion. However, in this case, no 

modification of the stability was observed as the particle size increased. 

As far as the stability of the dispersions is concerned, all the systems present Z potentials 

below −30 mV. Hence, the stability of the prepared dispersions is proved since stable 

dispersions have a Z potential above +30 mV and below −30 mV [5]. The solid content was 

also determined by the aforementioned method. The synthesized WBPUUs showed a solid 

content close to the theoretical, suggesting that all the reagents were adequately integrated in 
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the stable nanoparticles. The WBPUU dispersions were stored under room temperature and 

no presence nor of aggregates nor of sedimented material has been observed during time. 

Despite all samples presented solid content values under a 27 wt%, samples containing 

higher PEG content presented higher viscosities, resulting in a physical gelation with solid 

contents above ~30%. This phenomenon, which was not been observed for PCL100 system, 

will represent an advantage as far as its potential use as 3D-printing inks, thus, will be taken 

into consideration in the choice of the WBPUU formulation. 

The dispersions were also analysed by TEM. Images of the WBPUUs with different PEG 

contents are shown in Figure 3.3. The obtained images confirm the higher particle size of 

the WBPUUs containing PCL/PEG in their SS compared with the WBPUU based on just 

PCL. Additionally, the hydrophilic PEG in the SS tends to arrange at the nanoparticle shell. 

As can be observed in the inset of each image, at the intermediate PEG content the core and 

the shell start begin to differentiate and at the highest PEG content, a more defined core–

shell structure seems to be observed in PCL80PEG20 system, suggesting that the addition 

of PEG promotes structural changes into the nanoparticle. 

 

Figure 3.3 TEM images of different WBPUU systems. ×2500 magnification. Evolution 

of particle size and structure with the PEG content 

3.2.2.2 Film characterization 

The molecular mass of the synthesized polyurethane urea was determined by gel permeation 

chromatography. Films obtained by casting of the obtained dispersions were used for that 

purpose The obtained results are displayed in Table 3.3. Results showed that PCL100 is the 

WBPUU with the higher molecular mass. The addition of PEG results in lower molecular 

mass, probably owing to the lower molecular mass of PEG polyol (992 g mol−1) compared 

with PCL polyol (1957 g mol−1). This decrease of molecular mass is noticeable and greater 

in systems with higher amounts of PEG. Similar molecular mass values are reported in the 

literature for waterborne polyurethanes containing PEG in their SS, obtaining values 
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between 25000 and 15000 g mol−1 with different contents of PEG [6]. Despite this decrease, 

the aforementioned measured pH range of 7–8, confirmed that the reaction has been 

performed successfully. Regarding dispersity index, all system present similar values with the 

addition of PEG but higher compared with systems only containing PCL. 

Additionally, the hydrophilic–hydrophobic nature of the surface of the prepared films has 

been determined by WCA measurement (Table 3.3). Analysing the obtained values, the 

addition of hydrophilic PEG to the WBPUUs resulted in a decrease of the contact angle as 

expected from the hydrophilic PEG shell observed for the particles. In films with higher 

amount of PEG it tends to arrange in the shell of the particle, showing more affinity with 

water compared with systems based only on PCL or with small amounts of PEG. 

Table 3.3 Weight average molecular mass and dispersity index of synthesized 

WBPUU with different ratios of PEG/PCL and WCAs of the films 

System 
𝑴̅𝒘 

(g mol-1) 

Dispersity index 

(𝑴̅𝒘/𝑴̅𝒏) 

Contact angle 

(°) 

PCL100 35240 1.3 90±3 

PCL95PEG5 25795 1.5 83±3 

PCL90PEG10 24314 1.7 78±3 

PCL85PEG15 23196 1.7 76±2 

PCL80PEG20 21813 1.8 72±4 
 

 

The characteristics functional groups of PUs were studied by FTIR. Figure 3.4 shows the 

FTIR spectra of the WBPUU synthesized with only PCL in the SS (PCL100) and the 

WBPUU synthesized with the highest content of PEG (PCL80PEG20). Both spectra 

showed a band in the 3350–3320 cm−1 interval, where hydrogen bonded and non-hydrogen 

bonded N─H of urethane and urea groups appear [7]. In this case, the observed signal, 

situated at 3330 cm−1 suggests that most of the N─H groups are involved in hydrogen bonds. 

The peak around 1735 cm−1 corresponds to the C=O vibration of PCL and of urethane 

group [8], whereas a signal situated at 1640 cm−1 is attributed to hydrogen bonded C=O of 

urea groups [9]. The band situated at 1550 cm−1 in Amide II region is assigned to the C─N 

stretching vibration and N─H bending of urethane groups. The band located around 1460 

cm−1 corresponds to ─CH2─ bending band and the signal situated at 1024 cm−1 is assigned 

to C─O stretching vibration.  

Additionally, the absence of bands in the 2260–2280 cm−1 interval (─NCO group) confirmed 

that the diisocyanate had completely reacted during the synthesis, and thus, means that the 
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polymerization reaction has happened successfully [10]. Comparing both spectra, no 

differences were observed, neither shifting of existing bands nor apparitions of new signals 

have been observed despite of their different SS compositions. 
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Figure 3.4 ATR-FTIR spectra of PCL100 and PCL80PEG20 

 

The chemical structure of the prepared WBPUUs was also analysed by 1H NMR. Spectra 

displayed in Figure 3.5 showed differences between PCL100 and PCL80PEG20 WBPUUs. 

Spectrum of PCL100 showed typical chemical shifts related to the different protons of PCL 

polyol at 4.06 (Ha), 2.4 (Hb), 1.67 (Hc), and 1.36 (Hd) ppm. The spectrum of PCL80PEG20, 

in addition to peaks of PCL, showed a peak at 3.6 ppm, which is assigned to the methylene 

protons of the backbone of PEG (He). The presence of this new signal confirms the 

incorporation of the PEG. A peak related with methylene protons of DMPA at 3.9 ppm (Hf) 

is also observed in both spectra.  

Taking into account the molecular mass of both polyols and the areas of Ha peak of PCL 

and He peak of PEG, the PEG content in PCL80PEG20 WBPUU is determined, obtaining 

a value of 0.22 (22 wt%) which is similar to the theoretical value of 20 wt%. 
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Figure 3.5 1H MNR spectra of PCL100 and PCL80PEG20  

 

Thermal behaviour of the films has been studied by DSC. The thermograms of synthesized 

WBPUUs and neat polyols for comparison purposes are displayed in Figure 3.6 and the 

values of the measured transitions are displayed in Table 3.4. 
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Figure 3.6 DSC thermograms of synthesized WPUU films and pure polyols. 

Inset: X-ray diffractograms of WBPUUs 

 

Table 3.4 Measured thermal transitions of WBPUU films 

System 
TgSS 

(°C) 

TmHS 

(°C) 

ΔHm 

(J g-1) 

PCL100 -55.9 79.5 16.5 

PCL95PEG5 -56.8 78.0 15.8 

PCL90PEG10 -56.5 74.2 6.1 

PCL85PEG15 -55.6 73.5 5.5 

PCL80PEG20 -55.1 72.8 3.4 
 

 

A transition was observed in all samples around −55 °C, which is related with the glass 

transition of the SS (TgSS). Comparing to the glass transition temperature of pure polyols, 

an increase was observed respect to PCL Tg situated at −66.7 °C (no Tg was observed for 

PEG in this interval), due to mobility restrictions when they were integrated in the PU 

structure. In addition, no melting peaks of SS were observed, which indicates that this 

integration prevents PCL or PEG rich domains crystallization. Neat PEG and PCL showed 

a melting peak at 42.7 and 46.7 °C, respectively. X-ray diffraction analysis has been 

performed in order to confirm the lack of SS crystallization. The obtained results that are 

displayed in the inset of Figure 3.6 did not show any sign of crystallization in all studied 
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WBPUUs agreeing with DSC results, showing all diffractograms wide diffraction peaks 

presenting low intensity. The two diffraction peaks observed at 18º and 43º are the 

characteristic peaks of the SS in segmented polyurethanes [11]. 

Regarding the HS, an endothermic transition can be observed in all samples in the 70–80 °C 

interval attributed to the short range ordered HS domains (TmHS) [12]. This endothermic 

transition temperature measured for PCL100 is in the range of the values reported previously 

for other WBPUUs containing only PCL in the SS [13]. The temperature of this transition 

seems to decrease with the addition of PEG. Additionally, the enthalpy assigned to this 

phenomenon also seems to be lower with the addition of PEG. The tendency of PEG to 

arrange in the shell of nanoparticles as observed by TEM could hinder the ability of 

interactions between urethane and urea groups in the HS, thus resulting in a decrease of both 

melting temperature and enthalpy. This decrease is more appreciable starting from a 3.4 wt% 

of PEG (PCL90PEG10). 

The thermal stability of WBPUU has been studied by TGA. The thermal degradation of 

polyurethane ureas is considered as a depolycondensation process which starts above 200 °C 

with the degradation of HS, and finished with the degradation of the SS [14]. In general, it 

consists on a first two degradations corresponding to urea and urethane linkages around 250 

and 300 °C, respectively, and a third one around 350–400 °C assigned to the SS [15]. 

However, the temperature of the different degradation steps can be modified since the 

thermal stability of the polyurethane ureas is highly depending on the composition of the HS 

and SS, the type of diisocyanate, the ionic group content, as well as the microphase separation 

and crystallinity of the phases [16]. The TGA and DGT curves of the WBPUUs and polyols 

are displayed in Figure 3.7. The degradation temperatures taken from the curves are gattered 

in Table 3.5. 

Analysing the obtained results, PCL based WBPUU showed one degradation step around 

300 °C, whereas WBPUUs containing PEG also showed a second degradation step around 

375 °C. Comparing with the TGA and DTG curves of neat PCL and PEG, a higher 

degradation temperature of PEG compared with PCL was observed, so, the second 

degradation appeared in PCL/PEG containing WBPUUs seems to correspond to the PEG. 

The obtained behaviour did not correspond with the aforementioned general behaviour, 

since the steps assigned to urea and urethane linkages and PCL polyol are overlapped in a 

single degradation process.  
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Figure 3.7 Variation of the weight (up) and the derivated weight (down) of 

the WBPUU as a function of the temperature. Weight of polyols (inside 

up) and derivated weight of polyols (inside down) have been included for 

comparative purposes 
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Table 3.5 Initial degradation and maximum degradation temperatures of system 

prepared from PEG with different PCL/PEG ratio 

 

System T0 (°C) Td (°C) 

PCL100 257 301 

PCL95PEG5 257 300 

PCL90PEG10 259 303 

PCL85PEG15 260 303 

PCL80PEG20 260 307 
  

 

Studying the influence of the increase of the PEG content into the polymer backbone, a 

slight increase of the initial degradation temperature (T0) and the main degradation 

temperature (Td) were observed (Table 3.5). This slight increase of the thermal stability can 

be attributed to the increase of the PEG content in the WBPUU film as observed in Table 

3.1. The higher thermal stability observed in Figure 3.7 of the PEG diol compared with the 

PCL one provides to the WBPUU systems with higher content of the former higher thermal 

stability. Thermal stability of this WBPUU films is an important parameter in order to 

determine the potential applications of this material. All systems were stable until 250 °C 

where the first degradation process happens. However, the endothermic transition observed 

at 70–80 °C in the DSC thermograms for all systems, limits clearly the operational stability 

below this temperature. The prepared materials could be reuse by reprocessing the films 

above their melting temperature. 

Regarding the thermomechanical properties, the evolution of storage modulus (E’), loss 

modulus (E’’) and tan δ with temperature of the different WBPUUs are presented in Figure 

3.8. The PCL100 WBPUU showed the higher storage modulus at glassy state. The decrease 

in E’ and the maximum of tan δ and E’’ observed at low temperatures are related to the glass 

transition temperature of the SS. For all the synthesized WBPUUs, the addition of PEG did 

not significantly change the TgSS as also observed by DSC. Notwithstanding, a flattening and 

broadening of the tan δ peak is observed at the highest PEG content, owing to the 

restrictions in the molecular mobility from PEG chains assembled in the nanoparticles shell. 

Above TgSS all systems showed a decreasing tendency of the E’, presenting PCL100 and 

PCL95PEG5 higher modulus at room temperature. Similar behaviours were observed in the 

literature with maximum tan δ values, which is related with the TgSS, in the same interval 

[13,17,18]. 
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Figure 3.8 Storage and loss moduli (left axis) and tan δ (right axis) as a function of 

temperature for PCL/PEG WBPUU systems. Frequency = 1 Hz and scanning 

rate = 2°C min−1 

 

As far as the thermomechanical stability is concerned, the addition of PEG seems to decrease 

the thermomechanical stability compared to the PCL based polymer (PCL100). Both 

PCL100 and PCL95PEG5 showed higher stabilities whereas the other systems containing 

more amount of PEG experienced a significant decrease, showing a progressive drop of their 

E’ and E’’ at lower temperatures. The assembly of the PEG into the shell of the particles 

seems to hamper the formation of short range interactions between urethane–urea groups, 

thus, decreasing their thermal stability. 

Mechanical properties of the WBPUUs were evaluated by tensile testing. Figure 3.9 shows 

the stress–strain curves of the different systems, whereas mechanical parameters such as 

Young modulus, tensile stress, and elongation at break are summarized in Table 3.6. 

The behaviour of the different systems agreed with previous DSC and thermomechanical 

analysis results. A decrease of the urethane and urea short range ordering in the HS with the 

addition of PEG resulted in lower tensile modulus and stress at break, but higher strain at 

break. Similar thermal and mechanical behaviours were found for PCL100 and PCL95PEG5 
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WBPUUs. Comparing these values with those reported in previous works, one can notice 

higher values of Young modulus (23±2 MPa against 6.4±0.4 MPa), as well as similar strain 

at breaks (842±102% vs. 891±51%) [19]. The other systems presenting higher amount of 

PEG, exhibited similar Young modulus values as well as similar strain at break suggesting 

that the addition of only 3.4 wt% is enough to modify the behaviour of the WBPUU. 

Moreover, it is important to indicate that no remarkable differences were observed at higher 

PEG content. 
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Figure 3.9 Stress–strain curves of WBPUUs at room temperature. Elongation 

rate = 20 mm min−1 

 

Table 3.6 Mechanical properties of WBPUU films 

System 

Young modulus 

(E) 

(MPa) 

Stress at break 

(𝛔𝐛) 

(MPa) 

Strain at break 

(𝛆𝐛) 

(%) 

PCL100 21±2 29±8 842±102 

PCL95PEG5 19±2 25±3 1063±114 

PCL90PEG10 14±2 24±8 1080±41 

PCL85PEG15 14±2 15±5 1106±122 

PCL80PEG20 14±2 12±5 1312±84 
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AFM analysis was carried out in order to analyse the morphology of films formed from the 

dispersions. Figure 3.10 shows the phase and three dimensional representation of height 

images of different WBPUU systems. High dissipating soft domains give dark contrast while 

stiffer phases appear brighter due to the different energy dissipation by the cantilever, 

enabling the possibility of differentiate the different domains [20]. 

 

Figure 3.10 AFM 3D height reconstruction and phase images of PCL100, 

PCL90PEG10, and PCL80PEG20 WBPUUs 

 

Analysing the obtained images, separated microphase segregation can be observed in 

PCL100 system. These phases, which are formed by the coalescence of the nanoparticles and 

presenting a spherical microstructure, are formed by dark domains corresponding to the core 

PCL and lighter zones, which are composed by the HS and represent the shell of the particles. 

The formation of these microdomains leads to better mechanical properties as well as higher 

thermomechanical stability as was obtained in mechanical testing and DMA. The addition of 

PEG to the WBPUU, however, seems to result in a modification of the morphology which 

can be observed with the addition of very small quantities of PEG (3.4 wt%). Above this 

quantity, no remarkable differences are observed in the morphology confirming the 

mechanical behaviour described previously. Due to its hydrophilic nature, the PEG tends to 

arrange at the shell of the particle, becoming slightly thicker, as was also observed by TEM. 
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As can be observed for the WBPUU with the highest amount of PEG, the thick of the 

particles shell increases whereas the dark domains corresponding to the PCL decrease their 

size, leading to the formation of a slightly different microstructure to that observed in 

PCL100. Hence, PCL90PEG10 and PCL80PEG20 present similar morphology as was also 

observed by TEM, both due to the arrangement of PEG in the shell of the particles. The 

analysed microstructures corroborate that hydrophilic PEG act as non-ionic emulsifier 

facilitating the formation of the nanoparticles. 

It can conclude that the morphology changes observed by AFM as well as the core–shell 

morphology highlighted by TEM both confirm the assembly of PEG in the shell of the 

particle. This result in a hamper of the formation of short range ordering between urea and 

urethanes, which leads to systems with different mechanical, thermal, and thermomechanical 

properties. Above this modification of the properties, it was observed that when increasing 

the solid content of PCL100 system it maintains as a stable sol like dispersion, whereas 

PCL80PEG20 system tends to form a gel. 

3.2.1.3 Conclusions 

In this chapter, stable WBPUU dispersions varying PCL/PEG molar ratio in the SS were 

successfully synthesized. The increase of the PEG content in the WBPUU resulted in an 

increase of the particle size and polydispersity, obtaining values of 112±15 for PCL80PEG20 

compared with the 86±1 of PLC100. Moreover, Z potential measurements confirmed the 

stability of all dispersions. The particle morphology analysed by TEM revealed that the 

addition of PEG led to a more segregated core–shell structure which is not observed in 

PCL100 particles. 

Regarding film properties, PCL100 system showed higher Young modulus, 

thermomechanical stability, and higher enthalpy assigned to the short range ordering of hard 

domains due to the microstructure observed in that system. Systems containing PEG in their 

SS, however, showed higher elongation at break owing to the observed microstructure where 

PEG hampers the formation of short-range ordered domains between urea and urethanes. 

Concretely, the elongation at break increased 500% comparing the PCL100 system with the 

one containing the higher amount of PEG. Additionally, films containing hydrophilic PEG 

present also higher affinity with water obtaining decreasing WCAs when PEG is added, from 

90±3 of PCL100 to 72±4 of PCL80PEG20. Finally, a low amount of 3.4 wt% of PEG is 

enough to modify the properties and higher PEG content does not result in a noticeable 

variation of the properties of films. Taking into consideration the observed physical gelation 
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for system containing PEG at high solid contents, PCL80PEG20 was selected so as to be 

the composition of the WBPUU ink, presenting the other systems more difficulties to form 

a physical network. 

3.3 Effect of the molecular mass of PEG into the WBPUU dispersions 

and films 

3.3.1 Experimental part 

Based on the previously prepared PCL80PEG20, new WBPUUs were synthesized using 

PEG with different molecular mass in order to study its influence in the dispersions but also 

in films prepared from the dispersions. All systems were prepared following the same 

stoichiometry that was used for PCL80PEG20, that is 0.8/0.2/3.5/1/1.5 of 

PCL/PEG/IPDI/DMPA/EDA but using PEGs with different weight molecular mass of 

400, 1000 and 1500 g mol-1. In the Table 3.7 the composition of the different prepared 

WBPUUs is displayed. 

Table 3.7 Composition of the different prepared WBPUUs with different PEG 

molecular mass 

System 
MwPEG 

(g mol-1) 

PEG 

(wt%) 

Hard segment 

(wt%) 

COOH 

(wt%) 

Emulsifier 

(wt%) 

PCLPEG400 400 2.8 40.6 1.6 5.1 

PCLPEG1000 1000 6.7 38.9 1.6 4.8 

PCLPEG1500 1500 9.8 37.7 1.5 4.7 
 

 

Films were also prepared by casting the dispersions in Teflon molds and drying in a climatic 

chamber at 25 °C with a 50% of relative humidity for 1 week, followed by 3 days in a vacuum 

oven at 25 °C (400–420 mbar). After this time, polyurethane urea films with a thickness of 

about 0.5 mm were obtained from WBPUU dispersions. The solid content of the prepared 

dispersion has been taken into account in order to ensure the desirable thickness of the film. 

The films have been storage at room temperature in a desiccator in order to keep them away 

from humidity. In the Figure 3.11 an image of the different films prepared from the 

aforementioned WBPUU is displayed. Despite PCLPEG400 and PCLPEG1000 presented a 

homogeneous appearance showing high transparency, the film prepared from PCLPEG1500 

showed a non-homogeneous appearance, presenting multiple bubbles as well as non-

homogeneous thickness of the film.  
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Figure 3.11 WBPUU films containing PEG with different molecular mass 

 

3.3.2. Results and discussion  

3.3.2.1 Dispersion characterization 

Just as in the previous part, the particle size of the synthesized WBPUU dispersions and their 

average diameter measured by DLS, the Z potential measurements as well as the real solid 

content are summarized in Table 3.8. 

Table 3.8 Characterization of the WBPUU dispersions synthesized with PEG of 

different molecular mass. Particle size, polydispersity, Z potential and solid content 

System 
Particle size 

(nm) 
Polydispersity 

Z potential 

(mV) 

Solid content 

(%) 

PCLPEG400 42±5 0.13±0.02 -46.3±0.8 23.2 

PCLPEG1000 112±15 0.13±0.05 -42.7±0.6 26.2 

PCLPEG1500 308±29 0.22±0.03 -34.9±0.9 24.8 
 

Analysing the obtained results, an increase of the particle size was observed as the molecular 

mass of the PEG did. The PCLPEG400 presented the lowest particle size, around a 50% 

lower than the PCLPEG1000, whereas the system containing the higher molecular mass of 

PEG showed almost three times higher particle size than PCLPEG1000. This particle size 

increase matches with the higher PEG content. Regarding the polydispersity, both 

PCLPEG400 and PCLPEG1000 showed similar values despite their different particle size. 

Contrary, PCLPEG1500 presented higher polydispersity, resulting in a wider distribution of 

particle sizes. The stability of the dispersions, which was studied by Z potential, showed 

values in the range of the stability (above +30 mV and below −30 mV) [5], presenting values 

below -30 mV for all systems. However, the values obtained for the PCLPEG1500 are very 

close to the limit of the range, and would present stability problems. This decrease of the 
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stability was observed in the dispersion where deposited material at the bottom of the bottle 

after 24 h as well as the presence of agglomerates was seen. The presence of this agglomerates 

can explain the aforementioned inhomogeneous appearance of the PCLPEG1500 film. 

Additionally, it was observed that for an 80/20 ratio of PCL/PEG, the increase of the 

molecular mass of PEG (or in other words, the increase of the PEG content) favours the 

physical gelation of the WBPUU. 

3.3.2.2 Films characterization  

The measurements of molecular masses are reported in Table 3.9 and showed similar Mw 

comparing PCLPEG1000 and PCLPEG1500 despite the lower molecular mass of the PEG 

diol in the former. The PCLPEG400 contrary, presenting much lower values of molecular 

mass due to the lower molecular mass of its PEG diol. Both PCLPEG400 and PCLPEG1000 

presented similar dispersity, whereas PCLPEG1500 presented higher values, confirming a 

higher distribution of the molecular mass of the molecules. Additionally, the hydrophobic or 

hydrophilic behaviour was estimated by water contact angle. The water contact angle values 

displayed in Table 3.9 showed a decrease of the contact angle as the molecular mass of the 

used PEG increased. As the molecular mass of the PEG increased the same does the PEG 

content resulting in a decrease of the contact angle due to the hydrophilic nature of the PEG 

as was previously observed in Table 3.3. 

Table 3.9 Weight average molecular mass and dispersity of synthesized 

WBPUU with PEGs with different molecular mass and water contact angle of the films 

System 
𝑴̅𝒘 

(g mol-1) 

Dispersity 

(𝑴̅𝒘/𝑴̅𝒏) 

Contact angle 

(°) 

PCLPEG400 13904 1.8 77±2 

PCLPEG1000 21813 1.8 72±4 

PCLPEG1500 21928 2.4 66±1 
 

 

The characteristics functional groups of polyurethane ureas were studied by FTIR. The 

results, which are displayed in Figure 3.12 showed similar spectra compared with the ones 

observed for the variation of PCL/PEG ratio. All systems presented the aforementioned 

characteristic bands of the polyurethane ureas but nor apparition of new ones nor 

displacement of the existing ones are reported with the variation of the PEG molecular mass. 

The inset of the Figure 3.12 confirmed the absence of displacement of the bands related to 

the characteristics C=O stretching vibrations of the urethane and urea groups. The absence 
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of the absorption peak related to the –NCO at 2260-2280 cm-1 corroborated that isocyanate 

reacted completely [21]. 
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Figure 3.12 ATR-FTIR spectra of systems containing PEG with different molecular 

mass. Inset: magnification of the 1800-1600 cm-1 region 

 

The thermograms of synthesized WBPUUs are shown in Figure 3.13, whereas the measured 

thermal transitions are displayed in Table 3.10. As happened previously for the study of 

variation of the PCL/ PEG ratio, all systems presented a transition around -55 ºC, which is 

assigned to the glass transition of the SS (TgSS) and did not show any remarkable variation 

with the modification of the molecular mass of the PEG. Regarding the melting of the SS, 

PCLPEG400 and PCLPEG1000 did not show any melting peaks of SS, despite both neat 

PEG400 and PEG1000 presented a melting peak (TmSS) at 1.7 and 42.7 °C, respectively. In 

this case, as was suggested for the variation of the PCL/PEG ratio, the incorporation of this 

polyols to the polymer backbone result in a restriction of the mobility of the chains avoiding 

the crystallization of the SS. The X-ray spectra of both PCLPEG400 and PCLPEG1000 

displayed in Figure 3.14 confirmed the lack of crystallization on the films. Contrary, 

PCLPEG1500 presented a melting peak at 51.4 °C, which is situated at the same temperature 

as the melting transition of neat PEG1500 diol and can be assigned to the melting transition 

of the SS. In this case, the X-ray spectra of PCLPEG1500 displayed in Figure 3.14 showed 
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crystallization peaks confirming the crystallization of the SS for the film containing the PEG 

with the higher molecular mass. The higher molecular mass and amount of PEG of the 

PCLPEG1500 compared with the other WBPUUs allowed to the arrangement of rich PEG 

domains which crystalized. Hard segment wise, all systems presented an endothermic 

transition situated in the 70-80 ºC interval which is assigned to the short-range ordered HS 

domains and are situated in the same interval as was observed previously for the WBPUUs 

with different PCL/PEG ratios. Despite the temperature of this transition did not show any 

important variation with the increase of the molecular mass, and the corresponding enthalpy 

assigned to this phenomenon seems to be lower as the molecular mass of PEG increase. 

As can be observed in the Table 3.6, the PCLPEG1500 presented higher PEG content in 

the polymer backbone, which in accordance to the results obtained for the systems with 

different PCL/PEG ratio, can lead to hinder the ability of interactions between urethane–

urea groups in the HS, resulting in a decrease of both melting temperature and enthalpy. In 

addition, the HS content decreases as the PEG molecular mass increases. 
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Figure 3.13 DSC thermograms of synthesized WPUU films containing PEG with 

different molecular mass and pure polyols 
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Table 3.10 Calculated thermal transitions of WBPU films containing PEG with different 

molecular mass 

System 
TgSS 

(°C) 

TmSS 

(°C) 

TmHS 

(°C) 

ΔHm 

(J g-1) 

PCLPEG400 -55.6 - 73.1 3.8 

PCLPEG1000 -55.1 - 72.8 3.4 

PCLPEG1500 -55.4 51.4 71.2 3.1 
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Figure 3.14 X-ray patterns of the WBPUUs prepared with PEG of different molecular 

mass 

Additionally, the thermal degradation of the systems prepared varying the molecular mass of 

PEG was studied so as to evaluate the influence of the molecular mass of the PEG. The 

degradation curves are shown in Figure 3.15 whereas the derivated weight curves are 

displayed in the inset of the figure. Analysing the obtained results, an increase of the thermal 

stability was observed as the molecular mass of the PEG increased. Presenting the main 

degradation peak higher temperature values for PCLPEG1500 system than PCLPEG1000 

and PCLPEG400, which presented slightly lower values as can be observed in Table 3.11, 

where the degradation temperature of the 5% of the weight and the temperature of the main 

degradation peak in the derivate is displayed. The increase of the thermal stability of the films 

as the molecular mass of the PEG increased can be attributed to the higher PEG content 

contained in PCLPEG1500. As was observed in the insets of Figure 3.7, the degradation 
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curve of the PEG polyol, presented higher degradation temperature compared with the PCL 

one. Thus, the higher PEG content observed as the molecular mass of the used PEG 

increased explained this increase of the thermal stability of the films. Moreover, the intensity 

of the peak observed at 375 ºC related with the degradation of PEG increased as PEG 

content did. 
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Figure 3.15 Variation of the weight and the derivated weight (inset) of 

the WBPUU containing PEG with different molecular mass as a function of the 

temperature 

 

Table 3.11 Initial degradation and maximum degradation temperatures of WBPUU 

system prepared from PEG with different molecular mass 

System T0 (°C) Td (°C) 

PCLPEG400 259 299 

PCLPEG1000 260 307 

PCLPEG1500 263 309 
 

 

Regarding the mechanical properties, the films of WBPUU containing different PEG 

molecular masses were evaluated by tensile testing. Figure 3.16 shows the stress–strain 
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curves of the different systems, whereas the calculated mechanical parameters such as Young 

modulus, tensile stress, and elongation at break are summarized in Table 3.12. 

A decrease of the Young modulus was observed as the molecular mass of the PEG increased 

resulting in a decrease of the stiffness of the films. In this case, maintaining the PCL/PEG 

ratio fixed, the increase of the molecular mass of the used PEG resulted in an increase of the 

PEG content in the WBPUU as can be observed in Table 3.6. This increase of the PEG 

content as far as mechanical properties is concerned leads to the obtaining of films with 

lower Young modulus. Contrary, the elongation at break showed an increase when the PEG 

molecular mass, and thus the PEG content, increased resulting in films with deformation 

ratio at break around 2000%. This behaviour is in line with the one observed for the variation 

of PCL/PEG ratio as well as with the observed one in the literature [22]. The increase of the 

PEG content in the WBPUUs particles lead to decrease of the urethane and urea short range 

ordering in the HS, resulting in lower tensile modulus and stress at break, but higher strain 

at break.  
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Figure 3.16 Stress-strain curves of WBPUU containing PEG with different molecular 

mass at room temperature. Elongation 

rate = 20 mm min−1 
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Table 3.12 Mechanical properties of WBPUUs films containing PEG with different 

molecular mass 

System 

Young modulus 

(E) 

(MPa) 

Stress at break 

(𝛔𝐛) 

(MPa) 

Strain at break 

(𝛆𝐛) 

(%) 

PCLPEG400 18±3 13±2 851±31 

PCLPEG1000 14±2 12±5 1312±84 

PCLPEG1500 3±2 2±1 2061±241 
 

 

3.3.3 Conclusions 

In this subsection, the influence of the molecular mass of the PEG into the previously 

prepared PCL/PEG based waterborne polyurethane urea was studied. For this purpose, 

different WBPUU dispersions were prepared, maintaining the PCL/PEG ratio to 0.8/0.2 

and modifying the molecular mass of the used PEG to 400, 1000 and 1500 g mol-1. The 

dispersions were subsequently used so as to prepare films by casting in order to study the 

influence of the molecular mass of the PEG in the films. 

Regarding the dispersions, the increase of the molecular mass of the used PEG resulted in 

an increase of the particle size obtaining also a higher polydispersity, which also affects to 

the dispersion stability, obtaining Z potential values near to -30 mV, illustrating a decrease 

of the stability of the system, which was confirmed visually in the PCLPEG1500 system. 

This decrease of the stability leads to ease the physical gelation of the WBPUU at a solid 

content ~25 wt%. 

Despite the film of the system containing a PEG with 400 g mol-1 presented a higher Young 

modulus compared with the other systems due to its lower PEG content, the dispersion 

presented a very high stability as well as a lower particle size, which can result in posterior 

problems to obtain the physical gelation which is required for the obtain of printable inks. 

The WBPUU prepared with a PEG of 1500 g mol-1 contrary, presented a higher particle size 

and lower stability, which can ease the physical gelation. However, the obtained film from 

this system presented a low homogeneity and very poor mechanical properties. Taking the 

aforementioned into account, the system synthesized using a PEG of 1000 g mol-1, that is 

PCLPEG1000, which is the previously studied PCL80PEG20, represented the most accurate 

choice, obtaining a stable dispersion but with high particle size compared with PCLPEG400 

but also a better mechanical properties of the film than the PCLPEG1500. 
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4. INFLUENCE OF THE SOLID CONTENT ON THE RHEOLOGY 

AND PRINTING PERFORMANCE OF WBPUU INKS 

 

 

 

 

 

 

4.1 Objective 

Based on previous results, increasing the solid content of PCL80PEG20 system or increasing 

the molecular mass of PEG with a PCL/PEG of 0.8/0.2 favours the gelation of the system. 

Therefore, the aim of this chapter is to study the influence of the variation of the solid 

content on the printing performance of the aforementioned PCL/PEG based WBPUU. The 

different systems were studied from the rheological viewpoint and subsequently used in the 

printing by DIW 3D-printing of different pieces in order to demonstrate the relationship 

between the rheological properties of the inks and their printing viability, stablishing an 

optimal window of compositions of the inks. 

For that purpose, different WBPUUs with a solid content from 27 to 46 wt% were prepared 

maintaining a PCL/PEG ratio of 0.8/0.2. By studying the obtained rheological parameters 

for all inks and analysing their corresponding printing performance, a correlation between 

the former and the latter can be made, leading to the establishment of designing criteria as 

far as solid content of the WBPUU is concerned. These criteria may help to optimize the 

ideal solid content of the synthesized WBPUU in order to achieve the best possible printing 

performance. 

4.2 Experimental part 

WBPUUs with different solid contents and with a PCL/PEG ratio of 0.8/0.2 have been 

synthesized according to the methodology displayed in the Chapter 3. The synthesis consists 

on a two-step reaction where the former consist on the formation of the prepolymer from 

PCL, PEG, DMPA and IPDI, whereas the latter involves the chain extension with EDA in 

heterogeneous media, once the phase inversion was carried out. The molar ratio of 
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PCL/PEG/DMPA/IPDI/EDA reagents was 0.8/0.2/1/3.5/1.5. The solid content of the 

prepared WBPUU was varied from 27 to 46 wt% by adding different contents of water 

during the phase inversion step. During the chain extension step and with solid contents 

above 27 wt% it was observed that the WBPUU formed a gel by means of a physically 

crosslinked network. 

The different prepared systems are enlisted in Table 4.1 whereas in Figure 4.1 the influence 

of the increase of the solid content on the final synthesized inks is shown. Systems presenting 

low solid content result in liquid dispersions as was observed in the Chapter 3, or viscous 

inks, which still flow but presented higher structuration. Contrary, an increase of the solid 

content result in elastic gels, and in the case of solid contents above 36 wt% one can observe 

a solid behaviour. 

All the synthesized inks were printed by direct ink writing 3D-printing technology using a 

Voladora 3D-printing machine, provided by Tumaker (Spain) and modified in order to allow 

the use of extrusion based DIW technology. Samples were loaded in a syringe of 6 mL and 

printed at a printing speed of 6 mm s-1 using a needle of 0.8 mm of diameter. Prior to the 

printing, all samples, loaded into the syringes, were centrifuged for 3 min at 3000 rpm to 

remove the existing bubbles. The maximum shear rate on the needle wall is calculated from 

the equation 4.1, and is equal to 19 s-1 [1]. 

ẏ
max

=
4 Q̇

π r3
        (4.1) 

where r is the needle internal radium and Q̇ the flow rate calculated as Q̇=Sr2 with S as the 

printing speed in mm s-1. All samples were printed in dog bone shape according to ISO 527. 

Table 4.1 Designation and calculated solid content of prepared WBPUU 

System 
Calculated solid content 

(%) 

WBPUU27 27 

WBPUU29 29 

WBPUU32 32 

WBPUU36 36 

WBPUU46 46 
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Figure 4.1 Illustration of the effect of the variation of the solid content of the WBPUU in 

the behaviour of the final material 
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4.3 Results and discussion 

4.3.1 Rheological characterization of inks 

Flow tests were performed for the different prepared WBPUUs. The obtained viscosity 

curves are displayed in Figure 4.2, whereas the calculated viscosity values at different shear 

rates for the different systems are summarized in Table 4.2. As can be observed, all the 

prepared systems showed shear thinning behaviour in the range between 0.01-100 s-1. It is 

assumed that as the shear rate increased, the network of the hydrogel weakens leading to the 

decrease of the viscosity. This important property to obtain a printable materials was also 

observed for similar systems in the literature [2–6]. Comparing systems with different solid 

contents, it can conclude that despite all systems presented the aforementioned shear 

thinning behaviour, the viscosity measured at low rates (0.01 s-1) is higher as the solid content 

of the ink increases. The same behaviour was observed in the viscosity calculated at the 

maximum shear rate value during the printing (19 s-1) and at the maximum shear rate of 100 

s-1. This results are in agreement with the observed ones in the literature for the increase of 

the solid content in other systems [7]. 

Comparing the viscosity values at the different shear rates displayed in Table 4.2, a higher 

viscosity difference was observed at low rates compared with the ones obtained at higher 

rates. 

Additionally, WBPUUs with low solid content present a Newtonian plateau at very low shear 

rates (between 0.01 and 0.1 s-1 for WBPUU27 and 0.01-0.03 s-1 for WBPUU29), which is 

reduced and suddenly disappeared completely with the increase of the solid content (see 

Figure 4.2). 

Table 4.2 Viscosity values measured at different shear rates for the synthesized WBPUU 

with different solid content 

System 
Viscosity (Pa s) 

η at 0.01 s-1 η at 19 s-1 η at 100 s-1 

WBPUU27 569 5 2 

WBPUU29 3851 12 4 

WBPUU32 7274 18 9 

WBPUU36 18777 52 13 

WBPUU46 74515 158 45 
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Figure 4.2 Viscosity as a function of shear rate (T = 22.5 °C) of WBPUUs with different 

solid contents. (----) Printing shear rate (19 s-1) 

 

In order to determine the yield point of the inks, spectromechanical analysis was performed 

with increasing shear stress (Figure 4.3). Even if it is not the ideal method, the yield point 

was determined according the method proposed by Cyriac et al., where the yield point is 

calculated as the stress at which the storage modulus is deviated from the linearity [8]. 

Additionally, the flow point of the inks was calculated as the crossover between G’ and G’’ 

in order to study the behaviour of the material during its breakdown. For that purpose, “flow 

transition index” (FTI) was determined as the ratio between flow point and yield point [9]. 

Analysing the results, which are displayed in Table 4.3, an increase of both yield point and 

flow point as the solid content increases was observed. As explained by Ketel et al. [10], the 

yield point of a colloidal system arises from the interparticle strength, exhibiting a power law 

dependence on particle spacing and resulting in a scaling of the yield point with the decrease 

of the water content [11,12]. As the particle concentration increased, the interparticle space 

decreased, leading to a reduction in the interaction volume between the particles and thus, 

to an increase of the yield point [13]. This increase of the yield point with the particle 

concentration has been observed in the literature [14,15], and will result in printability 
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problems if the high yield point values difficult a smooth and continuous flow through the 

nozzle [10], obtaining a discontinuous extrusion [16]. 

Regarding the FTI index, there was a decrease when the solid content was increased, 

suggesting a transition from a weak network to a stiffer material presenting a brittle behaviour 

with the increase of solid content [9]. This parameter is indicative of the ability of the 

structure to yield, breakdown and similarly to rebuild during the printing process. 

Additionally, the yield point also has influence on the shape fidelity of the printed piece as 

was explained in the introduction. Concretely, low values of yield point, as was observed for 

WBPUU27 and WBPUU29 could result in systems which flowed easily after being printed, 

losing the given shape and collapsing due to the weight of the upper layers. Systems 

presenting higher yield points, contrary, would not flow after being printed, due to their 

higher yield points, allowing to maintain the given shape as well as supporting the weight of 

the multi-layered 3D construct without collapsing. 
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Figure 4.3 () Storage and (----) loss moduli as a function of shear stress. Yield point 

and flow point determination of WBPUU inks with different solid contents (T = 22.5 

°C). (   ) Yield point and (   ) flow point 
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The experimental data of the flow curves were adjusted to the Herschel Bulkley model so as 

to determine “K” and “n” index (Figure 4.4). The selection of this model to adjust the 

experimental data, which will be also used in the following chapters, has been carried out in 

Appendix A (pages 245-258), where the suitability of the Herschel Bulkley model has been 

tested in opposition of other rheological models typically used to describe the behaviour of 

non-Newtonian fluids.  
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Figure 4.4 Adjustment to the Herschel Bulkley (HB) model of WBPUU29 flow curve 

 

Comparing the experimental data with the predicted model, a good correlation was observed 

for all systems obtaining R2 values above 0.84. The results, which are also displayed in Table 

4.3, showed an increasing value of the “K” index with the increase of the solid content, 

meaning higher consistency of the material for systems presenting higher solid content, 

which could difficult the extrusion of the material during 3D-printing or result in poor 

extrudability [17,18]. Regarding “n” index, all system showed values under 1, which confirms 

the aforementioned non-Newtonian shear thinning behaviour [19] and is desirable for 3D-

printing. According to some authors, an increase of the yield point and values of the “n” 

index under 1 indicates stronger mechanic strength and better ability of shape retention [20]. 
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Table 4.3 Yield point, flow point, flow transition index and parameters obtained from 

the adjustment to Herschel Bulkley model (σ-σy=kẏn) of WBPUU inks with increasing 

solid content 

System 
Yield point 

(Pa) 

Flow point 

(Pa) 
FTI 

Herschel Bulkley model 

K 

index 

(Pa s n-1) 

n 

index 
R2 

WBPUU27 17 282 16 72 0.24 0.97 

WBPUU29 44 562 11 115 0.21 0.92 

WBPUU32 195 1755 9 238 0.14 0.84 

WBPUU36 354 2608 7 303 0.37 0.98 

WBPUU46 921 2857 3 1032 0.20 0.94 
 

 

Oscillatory strain sweep tests were performed for the different WBPUUs in order to 

determine the linear viscoelastic region (LVR) of the prepared gels (Figure 4.5). 
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Figure 4.5 G’ (●) and G’’ (○) as a function of strain (T = 22.5 °C) of WBPUU inks with 

different solid content at 1 Hz 
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Analysing the obtained results, it was noticed that at low strain values both the storage and 

the loss moduli were independent of the strain. In all samples, G’ remains higher than G’’, 

confirming that the material is highly structured [21]. However, the smaller difference 

between G’ and G’’ at LVR for WBPUU27 suggests a weaker structure for this gel, despite 

the low G’ values also justify this weaker structuration of the ink. At strains above 2%, all 

systems presented a drop of their G’ as a result of the structural deformation of the gel, 

leading to the transition from elastic to viscous behaviour when G’’ overpass G’ and due to 

the complex phenomena linked to the non-linear rheological behaviour. These phenomena 

are not explored in the present work.  

Frequency sweeps were also performed in the LVR to analyse the structural integrity of the 

inks during the process. The measured G’ and G’’ and tan  as a function of the frequency 

are displayed in Figure 4.6 whereas values measured at 1 Hz of G’, G’’ and tan  are 

displayed in Table 4.4. 

Analysing the obtained results, systems containing higher solid content presented higher 

values of both storage and loss moduli as was observed in the literature [22], showing a more 

structured network. All systems showed G’ over G’’ in all the studied range, indicating a 

predominant elastic behaviour or gel like structure [23]. It has been showed that inks with 

higher G’ facilitate stronger shape retention for the deposited layers [24]. According to the 

literature, empirically, a storage modulus above 103 Pa is necessary to support high stable 3D 

structure of multiple layers [25], so, except WBPUU27, all the systems are good candidate 

for printing. Regarding tan  all systems with the exception of WBPUU27 presented values 

in the range between 0.1 and 0.3, showing a more elastic behaviour compared with 

WBPUU27. This system, which presented a tan  of 0.52 at 1 Hz, showed a less elastic 

behaviour, which could lead to problems retaining the shape since, the material could flow 

after printing as will be observed later. The tan  experienced a decrease as the solid content 

increased, which could lead to systems presenting a better shape fidelity. 

For comparative purposes of the shape fidelity with the systems analysed in the next 

chapters, the storage modulus and tan  of WBPUU27, WBPUU29, WBPUU32, WBPUU36 

and WBPUU46 are represented in the supplementary material (Appendix C, Figures SC.6-

SC.7, pages 273-274). From the aforementioned systems only WBPUU29 and WBPUU32 

are situated in the area delimited by the printable systems observed in the literature. Contrary, 

WBPUU27, WBPUU36 and WBPUU46 are located out of this area.  
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Figure 4.6 G’ (●) and G’’ (○) as a function of frequency of WBPUU inks with different 

solid contents (up) and tan as a function of frequency (down) (T = 22.5 °C) 
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Table 4.4 Storage modulus, loss modulus and tan  values at 1 Hz, and structure recovery 

percentage of inks with different solid content 

System 
Storage modulus 

(Pa) 

Loss modulus 

(Pa) 
Tan  

Structure 

recovery 

(%) 

WBPUU27 206 106 0.52 63 

WBPUU29 1033 296 0.29 84 

WBPUU32 1618 359 0.22 83 

WBPUU36 9966 1865 0.19 40 

WBPUU46 38738 6630 0.17 - 

 

The structural integrity and shape fidelity of the printable inks were tested by determining 

their recovery capacity in order to predict their performance during printing. It was not 

possible to study the behaviour of WBPUU46 system due to its high elastic behaviour. The 

obtained curves are displayed in Figure 4.7. 
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Figure 4.7 Structure recovery test of WBPUU based inks with different solid contents 

(T = 22.5 °C) 
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Analysing the obtained results, the WBPUU29 and WBPUU32 showed recovery values of 

84 and 83% respectively, showing and increase compared with WBPUU27 (63%). Peak et al. 

reported that an initial viscosity recovery of 80% is significant for 3D-printing [26], 

confirming the viability of these inks for DIW 3D-printing. However, systems containing 

solid content above 32 wt% experienced a decrease of the recovery obtaining values of 40%. 

This decrease happened due to a slip of the material during the high shear rate period, which 

can be noticed by the observed decrease of the viscosity measured at 100 s-1. The calculated 

recovery values are displayed in Table 4.4. 

Analysing the evolution of the rheological parameters with the increase of the solid content 

(Figure 4.8) a clear tendency was observed in all studied parameters. All ones linked to the 

printability of the material (viscosity, yield point and consistency index) increased as the solid 

content of the ink did. The values measured for high solid content inks resulted in systems 

that required more pressure to be extruded and which can show uniformity problems during 

printing or even lead to systems that cannot be extruded due to the small inner diameter of 

the nozzle. 

Regarding the other parameters, which are linked to the shape fidelity, the increase of the 

solid content resulted in an increase of the storage modulus but also in a decrease of the tan 

, meaning a more structured elastic behaviour, obtaining systems with more structured gel 

network. In this case, systems presenting higher solid content should present better shape 

fidelity, according with the rheological analysis. The structure recovery percentage, seems to 

maintain over a desirable 80% for WBPUU29 and WBPUU32, however, at solid contents of 

36 wt%, there was a decrease of the recovery due to the highly elastic behaviour of the inks. 

In this case, the ink flips from the plates of the rheometer instead of absorb the applied shear 

which is reflected in a lower capacity to recover when the applied shear rate is removed. 

For comparative purposes with systems studied in other chapters, the rheological properties 

of WBPUU29 and WBPUU32 system are represented with the other systems which 

presented the best printing performances for every chapter (Appendix C, Figures SC.1-

SC.5, pages 268-272). 
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Figure 4.8 Evolution of the rheological parameters with the increase of the solid 

content of the inks. Parameters related to the printability (up) and to the shape fidelity 

(down) 
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4.3.2 DIW 3D-printing of WBPUU systems 

All systems were printed by DIW 3D-printing in order to correlate rheological parameters 

and printing performance. The digital images of the printed pieces are displayed in Figure 

4.9. Systems presenting low yield points were printed successfully, forming the ink a 

continuous and homogeneous thread when were extruded, whereas the ones with high yield 

point values, as well as storage modulus, were unable to be printed (WBPUU36 and 

WBPUU46). Regarding the shape fidelity, from among the printable systems, WBPUU32 

presented clearly the best results. Moreover, this ink has shown the highest storage modulus 

and lower tan  of all printable systems, confirming the results predicted by the rheology. 

The high recovery value of this ink after applying a stress confirmed the building of a strong 

structure that can support multiple layers, as well as maintain the shape designed by the 

software. However, the WBPUU32 system presented not good enough surface finish as was 

expected. Taking this issue into account, the inclusion of nanoentities could be an option so 

as to improve the final appearance of the printed piece.  

  

 

Figure 4.9 Printed pieces of WBPUU gels with different solid contents 

 

4.4 Conclusions 

In this chapter, the influence of the variation of the solid content on the printing 

performance of a novel waterborne polyurethane urea based ink synthesized with a 

combination of hydrophobic PCL and hydrophilic PEG in the soft segment was studied. In 

order to establish the optimal conditions for the printing performance, an extensive 

rheological analysis was performed for the different inks formulations, which were 

subsequently used to print different pieces so as to study their final appearance and shape 
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fidelity and hence, the correlation between the rheological analysis and the printing 

performance. 

All the studied inks showed a shear thinning behaviour, confirming their suitability for DIW 

3D-printing. The increase of the solid content of the ink resulted in an increase of both yield 

point and viscosity, which resulted in printability limitations for inks presenting high solid 

contents. Regarding the shape fidelity, the storage modulus increased and the tan  decreased 

as the solid content of the systems increased, leading to more structured and elastic inks, 

which can maintain better the shape and support multiple layers. Finally, the structure 

recovery test showed that the increase of the solid content lead to the obtaining of inks with 

better capacity of recovering their initial stage. However, systems presenting solid contents 

of 36 wt% presented a decrease of the recovery percentage due to their so solid behaviour 

which difficult the recovery capacity. In this case, the WBPUU32 showed the best printing 

performance. However, their poor surface appearance requires more adjustment of WBPUU 

based ink formulation.  
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5. IN SITU ADDITION OF CELLULOSE NANOCRYSTALS TO 

ENHANCE THE PRINTING PERFORMANCE OF WBPUU BASED 

INKS 

 

 

 

 

 

 

5.1 Objective 

The objective of this chapter is to study the influence of the addition of cellulose nanocrystals 

on the printing performance of the aforementioned PCL/PEG based WBPUU. As was 

observed in the literature, the addition of nanoentities can pilot the rheological behaviour of 

the ink [1–3], so it is expected that the addition of the CNC modify these rheological 

properties and hence the printing performance. For this aim, the CNC was added in different 

amounts to the WBPUU, previously dispersed in deionized water during the phase inversion 

step, taking into advantage of the hydrophilic nature and water dispersability of the CNC. 

The different gels were studied from the rheological viewpoint and subsequently printed by 

DIW 3D-printing. 

Different WBPUU/CNCis nanocomposites with a CNC content from 0 to 2 wt% were 

prepared maintaining a PCL/PEG ratio of 0.8/0.2, and the solid content on 29 wt%. By 

studying the obtained rheological parameters for all inks and the corresponding printing 

performance, a correlation between the former and the latter can be made, leading to the 

establishment of design criteria. These criteria may help to optimize the ideal CNC content 

of the WBPUU/CNCis nanocomposites in order to achieve the best possible printing 

performance, as well as to study the influence of the addition of nanoentities on both the 

rheological properties and the printing performance.  

Additionally, as was observed in the literature, nanoentities have been extensively used as 

mechanical reinforcement and it is expected that the CNC can enhance the mechanical 

properties of the final printed piece [4–6]. The printed pieces from WBPUU based inks with 

different amounts of CNC were also characterized from the physicochemical, thermal, 
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mechanical and thermomechanical viewpoints in order to study the influence of CNC as 

reinforcement, apart from in the rheology as viscosity modulator. 

5.2 Experimental part 

A WBPUU with a PCL/PEG ratio of 0.8/0.2 has been synthesized according to the 

methodology proposed in Chapter 3. The molar ratio of PCL, PEG, DMPA, IPDI and EDA 

was 0.8:0.2:1:3.5:1.5 and the solid content of the prepared WBPUU was fixed to 29 wt%. 

Different amounts of CNC previously dispersed in water, were added during the phase 

inversion step, so as to obtain WBPUU/CNC nanocomposites in situ. Taking into account 

that CNC were added during the WBPUU synthesis, it is expected the reaction between 

some –OH groups of CNC and –NCO of the prepolymer. In the Table 5.1 the different 

prepared WBPUU/CNCis nanocomposites are enlisted as well as their CNC content. 

Concretely they were named as WBPUUXis, where X is the added CNC content.  

Table 5.1 Designation and CNC content of prepared WBPUU/CNCis 

nanocomposites 

System CNC (wt%) 

WBPUU 0 

WBPUU0.25is 0.25 

WBPUU0.5is 0.5 

WBPUU1is 1 

WBPUU2is 2 
 

 

All the synthesized inks were printed by DIW 3D-printing technology using the equipment 

described in Chapter 2. Regarding the printing conditions, the samples were printed 

following the conditions used in Chapter 4. As in Chapter 4, all samples were printed in dog 

bone shape according to ISO 527 so as to study the printing performance of the different 

inks. Additionally, in order to perform the mechanical and thermomechanical analysis, strips 

were also printed with 2.8 mm in width, 0.5 mm in thickness and 50 mm in length. Printed 

pieces were dried at room temperature for 48 hours before physicochemical, thermal, 

thermomechanical and mechanical characterization. As a result, all samples showed a 

decrease of their height due to the water removal. 

Regarding the addition method, as was explained in the introduction, the in situ method will 

result in a different disposition of the CNC in the matrix comparing to other methods like 

the ex situ one, which will be studied in following chapters. Concretely, as was proposed by 
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Chen et al. [7] the addition of CNC during the phase inversion step, prior to the chain 

extension will lead to the reaction between some free -NCO groups, preserved for the 

posterior reaction with the diamine leading the urea, and the -OH groups of the CNC. An 

illustration of the CNC integration mechanism is displayed in Figure 5.1.  

 

 

Figure 5.1 Illustration of the proposed CNC integration mechanism in the WBPUU/CNCis 

nanocomposites produced by in situ addition method  
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This inclusion of the CNC into the WBPUU backbone can lead to a different disposition of 

the particles in the ink, leading to a variation of the rheological parameters, but also of the 

mechanical and thermomechanical properties of the printed pieces. 

5.3 Results and discussion  

5.3.1 Physicochemical characterization of CNC, WBPUU and WBPUU/CNCis 

nanocomposites 

The WBPUU, CNC and WBPUU/CNCis nanocomposites were characterized in order to 

study the effect of the CNC into the matrix. CNC physicochemical properties and 

morphology were analysed in order to understand their effect over the nanocomposites 

performance. The crystallinity of the CNC was analysed by X-ray diffraction. 

Figure 5.2 shows the obtained diffractogram, where CNC presented the classical 

crystallography pattern for cellulose I [8], with characteristic diffraction peaks at 14.6, 16.8, 

20.2, 22.7 and 34.7 °, related to (11̅0), (110), (102), (200) and (004) crystallographic planes 

[9–11]. The crystallinity index (CI%) of the nanocrystals was calculated following the 

equation 5.1 proposed by Segal et al. [12] 

CI (%)=
(I200-Iam)

I200

X 100       (5.1) 

where I200 is the intensity corresponding to the (200) plane, whereas Iam is the amorphous 

contribution and was obtained from the broad peak observed around 18° [10]. For the CNC, 

a crystallinity index of 82% was obtained, which agrees with the values reported for sulphuric 

acid isolated CNC [13]. Additionally, the crystallite size (β) was measured from the 

diffractogram using the Scherer’s equation (equation 5.2) [14] 

β=
κ λ

τ cosθ
x100       (5.2) 

where κ represents a dimensionless shape factor of 0.9, λ is the wavelength, τ is the line 

broadening at half of the maximum intensity, and θ the Bragg angle. The crystallite size was 

calculated as 6.4 nm for CNC. This result is in agreement with the observed values in the 

literature for native cellulose [15]. 
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Figure 5.2 X-ray pattern of the CNC 

 

The morphology of CNC was analysed by AFM. The height AFM image of CNC is displayed 

in Figure 5.3 

 

 

Figure 5.3 Height AFM image of CNC 
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The results confirmed the nanometric dimensions of the crystals, obtaining length values 

from height image and diameter values from height profile of 215±37 nm and 5±1 nm 

respectively. The average dimensions were obtained from 50 measurements of the total CNC 

population. 

The chemical structure of the CNC was also analysed by 13C MNR. Spectra displayed in 

Figure 5.4 showed typical chemical shifts related to the different carbons of CNC. The peak 

observed between 60 and 70 ppm is assigned to C6 of the primary alcohol group. Regarding 

the broad peak appeared between 70 and 80 ppm, it is attributed to the carbons C2, C3 and 

C5. Finally, the C4 signal appeared at as peak located between 80 and 95 ppm, whereas the 

signal around 100 ppm correspond to the anomeric carbon C1. The obtained result 

corresponded to the ones observed in the literature obtaining similar values for all carbons 

[16]. 
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Figure 5.4 13C MNR spectra of CNC 

 

The main functional groups of neat components and the hydrogen bonding interactions 

between CNC and WBPUU matrix in the nanocomposites were studied by FTIR. Figure 

5.5 shows the spectra of nanocomposites and neat components. In the nanocomposites, a 
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single band was observed in the 3600-3100 cm-1 interval, which is also observed in the 

WBPUU matrix and is assigned to the N-H stretching vibration of urethane group [17]. This 

band also englobes the observed one for the CNC, which is attributed to O-H stretching 

vibration. Regarding the carbonyl region, which is situated between 1800-1600 cm-1 and is 

shown in the inset of Figure 5.5, a displacement towards lower wavenumber in the 

stretching vibration of C=O group can be observed. In the case of the WBPUU matrix the 

C=O band appeared at 1735 cm-1, but in the WBPUU/CNCis nanocomposites this band is 

displaced towards lower wavenumbers as the CNC content increased, suggesting the 

existence of hydrogen bonding interactions between WBPUU and CNC [18]. 
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Figure 5.5 FTIR spectra of WBPUU, CNC and WBPUU/CNCis nanocomposites. Inset: 

magnification of the 1800-1600 cm-1 region 

 

The thermal stability of the CNC, WBPUU and WBPUU/CNCis nanocomposites was 

studied by TGA. The thermogravimetric weight as well as the derivative weight curves are 

displayed in Figure 5.6. 
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Figure 5.6 Variation of the weight (up) and derivated weight curves (down) of WBPUU 

and WBPUU/CNCis nanocomposites 
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The WBPUU matrix showed a two-step degradation process, as was observed in the Chapter 

3 for the films with the same composition, which can be observed also in all the 

WBPUU/CNCis nanocomposites. Studying the initial degradation and the maximum 

degradation temperatures, which are displayed in Table 5.2, a significant increase of both 

values was observed in the nanocomposites, attributed to the increase of thermal stability 

with CNC addition, due to the stabilization of urethane groups by interactions of the 

WBPUU matrix and the CNC, as also observed by FTIR. 

Table 5.2 Initial degradation and maximum degradation temperatures of WBPUU 

matrix and nanocomposites 

System T0 (°C) Td (°C) 

WBPUU 250 312 

WBPUU0.25is 256 320 

WBPUU0.5is 264 339 

WBPUU1is 277 361 

WBPUU2is 281 364 
 

 

5.3.2 TEM analysis of the WBPUU and WBPUU/CNCis inks 

In order to study the integration of the CNC reinforcement in the WBPUU particles, as well 

as to understand the resulting interactions, the WBPUU/CNCis composites were analysed 

by TEM. Images of the WBPUU and WBPUU2is are shown in Figure 5.7. The presence of 

agglomerates of particles in the case of the WBPUU2is system as well as the absence of free 

cellulose nanocrystals could suggest that the nanoentities are embedded into the particles (for 

a clearer observation see TEM image of WBPUU2es in Figure 6.4 at page 164 where CNC 

were added ex situ). WBPUU matrix contrary showed a homogeneous distribution of 

particles, with no presence of agglomerates. This observation could confirm the proposed 

integration of cellulose nanocrystals into the polyurethane particles, where the CNC reacts 

with the polyurethane prepolymer in an early stage of the synthesis, concretely during the 

phase inversion, resulting in a chemical bonding between the aforementioned CNC and the 

polymer backbone. This inclusion of the nanoentities in the polyurethane particles will 

modify the rheological properties of the WBPUU/CNCis inks in a different way to the 

addition carried out after the synthesis (studied in Chapter 6), resulting as well in the 

obtaining of a final material with different thermal, mechanical and thermomechanical 

properties. 
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Figure 5.7 TEM images of WBPUU (up) WBPUU2is (down) inks. The images 

where taken in a 1% dilution of the original inks 
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5.3.3 Rheological characterization of inks with different CNC contents 

In order to study the viscosity of the prepared WBPUU/CNCis based inks, flow test was 

performed at increasing shear rate. The obtained curves are displayed in Figure 5.8, whereas 

in Table 5.3 the measured viscosity values of the inks at different shear rates are enlisted.  
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Figure 5.8 Viscosity as a function of shear rate and the printing shear rate (19 s-1) (---) of 

prepared WBPUU and WBPUU/CNCis nanocomposite inks (T = 22.5 °C)  

 

Table 5.3 Viscosity values measured at different shear rates for the synthesized WBPUU 

with different CNC content 

System 
Viscosity (Pa s) 

η at 0.01 s-1 η at 19 s-1 η at 100 s-1 

WBPUU 3851 12 4 

WBPUU0.25is 11434 32 7 

WBPUU0.5is 13939 32 7 

WBPUU1is 15737 35 7 

WBPUU2is 25101 62 10 
 

 

As can be observed, the incorporation of CNC resulted in an increase of the viscosity as the 

CNC content increased. However, a more gradual variation of viscosity was observed with 
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the addition of CNC, compared with the observed behaviour in Chapter 4 for the variation 

of the solid content. WBPUU/CNCis inks presented a viscosity range of 11434-25101 Pa s 

at 0.01 s-1 in contrast with the 3851 Pa s obtained for WBPUU matrix. Contrary, at the shear 

rate corresponding to the printing performance (19 s-1) the composite inks showed a viscosity 

in the range of 32.2-62.4 Pa s whereas the matrix presented a 19.3 Pa s showing smaller 

differences between the WBPUU matrix and the WBPUU/CNCis nanocomposites 

compared with the ones observed at 0.01 s-1. The smaller increase of the viscosity of the 

composites with the addition of CNC compared with the obtained with the variation of the 

solid content lead to a more accurate modification of the viscosity compared with the one 

observed for the variation of the solid content analysed in Chapter 4. Additionally, the 

addition of CNC resulted in a decrease of the Newtonian plateau which was observed on the 

matrix at low shear rates, which is progressively decreasing as the CNC content increases 

until to its completely disappearance at CNC contents above 1 wt%. 

Inks containing CNC also showed a decrease of the viscosity as the shear rate increase, or in 

other words, a shear thinning behaviour, which was observed also in Chapter 4 for the 

WBPUU inks with different solid contents. Taking into account the similar obtained flow 

curves of the WBPUU matrix and WBPUU/CNCis nanocomposites, it can conclude that the 

inclusion of CNC did not influence the shear thinning behaviour previously showed by the 

WBPUU inks, that is, according to the literature, desirable for a successful printing 

performance [19,20]. 

In order to study the influence of the CNC in the printability of the inks, the yield point and 

flow point of the different systems were calculated using the same methodology used in 

Chapter 4. The determination of both yield and flow point is displayed in Figure 5.9 by 

analysing the variation of the storage and loss modulus as a function of the shear stress. 

Analysing the obtained results, which are displayed in Table 5.4, an increase of both yield 

and flow points with the increase of the CNC content was observed. The yield point 

presented a constant increase as more amount of CNC was added to the composite, however, 

above 1 wt% of CNC the inks showed a higher increase of the yield point compared with 

other composites presenting lower quantities of CNCs. This greater increase of the yield 

point produced by the addition of higher quantity of CNCs can lead posteriorly to problems 

of extrudability of the ink. Nevertheless, as was explained in the introduction, the yield point 

is not the only parameter who rules the printability of the system, so it is possible to present 

bad printability even if the yield point appears to be in the printable range. Despite high 



In situ addition of cellulose nanocrystals to enhance the printing performance of WBPUU based inks 

139 

values of yield point can difficult the extrusion process of the inks, also played an important 

role as far as shape fidelity is concerned. Systems presenting very low values of yield point, 

as in the case of WBPUU, flow easily when are extruded, but also after being printed, losing 

their given shape and collapsing due to the weight of the 3D multi-layered construct as 

observed in Chapter 4. WBPUU/CNCis composites contrary, presented higher yield point 

values, which resulted in higher difficulties to extrude but at the same time retain better the 

given shape, being able to support successfully the 3D design without collapsing. Regarding 

the FTI index, no difference between different contents of cellulose was observed, and 

comparing with the matrix a small decrease is observed, suggesting that the addition of CNC 

did not has a strong influence in the brittleness of the ink, at least with low CNC content. 
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Figure 5.9 G’ () and G’’ (----) as a function of shear stress of WBPUU and 

WBPUU/CNCis nanocomposites and the measured yield point (   ) and flow point (   ) 

(T = 22.5 °C) 

 

The experimental data of the obtained WBPUU/CNCis nanocomposites were adjusted to 

the Herschel Bulkley model so as to describe the experimental data and study the influence 

of the CNC in the inks. An example of the adjustment of the experimental flow curve to the 
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proposed model is displayed in Figure 5.10, whereas the obtained values from the 

adjustment are enlisted in Table 5.4. 
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Figure 5.10 Adjustment to the Herschel Bulkley (HB) model of WBPUU0.5is flow curve 

 

Regarding the adjustment of the experimental data to the Herschel Bulkley model, the flow 

curves of both matrix and WBPUU/CNCis nanocomposites showed a good correlation with 

the model obtaining R2 values above 0.9 for all systems, with a maximum of 0.97 for 

WBPUU2is.  

The result showed a similar tendency to the observed in Chapter 4 for the variation of the 

solid content, obtaining an increase of the consistency index as the CNC content was 

increased, leading to higher consistency of the material for systems presenting higher CNC 

content, which can hence, result in extrusion problems of the material during 3D-printing or 

result in a poor printing performance [21]. 

In addition, the flow index kept similar for all systems with values between 0.1-0.2, but lower 

in general if compared to the observed ones for the solid content variation, confirming a 

more accused shear thinning behaviour [22]. 
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Table 5.4 Determination of yield point, flow point, FTI index and parameters obtained 

from the adjustment to Herschel Bulkley model (σ-σy=Kẏn) of WBPUU inks containing 

CNC 

System 

Yield 

point 

(Pa) 

Flow point 

(Pa) 
FTI 

Herschel Bulkley model 

K 

index 

(Pa s n-1) 

n 

index 
R2 

WBPUU 44 562 13 177 0.15 0.92 

WBPUU0.25is 70 1056 12 277 0.12 0.94 

WBPUU0.5is 94 1061 11 335 0.18 0.90 

WBPUU1is 114 1344 12 369 0.17 0.91 

WBPUU2is 150 1689 11 606 0.19 0.97 

 

 

Oscillatory tests of the inks with different CNC content were also performed in order to 

study the shape fidelity of the synthesized WBPUU/CNCis inks. Initially, the variation of 

both the storage and loss moduli were studied as a function of the strain at a fixed frequency 

of 1 Hz (Figure 5.11) so as to determine the linear viscoelastic region (LVR). 

The results showed that all systems presented a similar behaviour. The moduli were 

independent of the strain amplitude, being G’ higher than G’’, suggesting a highly structured 

gel network [23]. At strains above 8% for all system, a decrease, and finally a crossover 

between G’ and G’’ illustrate the end of the LVR resulting in the disruption of the structured 

network leading to the transition from elastic to a viscous behaviour. Studying the addition 

of CNC, an increase of both G’ and G’’ was observed as the CNC content increases. 

Concretely, the WBPUU/CNCis nanocomposites presented a bigger difference between G’ 

and G’’ compared with the matrix which showed a smaller one, reflecting the lower 

structuration of the matrix compared with the nanocomposites. 

Additionally, a phenomenon called “weak strain overshoot” can be clearly observed in 

systems containing higher CNC content. In those systems, the structure of the gels resists 

against deformation up to a certain strain where G’’ increases when G’ starts decreasing. 

Then, at higher strains the complex structure is destroyed over the critical strain and G’’ start 

decreasing [24]. This phenomenon, which did not appear on the WBPUU matrix, is observed 

in the nanocomposite with the smaller quantity of CNC (0.25 wt%) and results more 

remarkable as the CNC content increased. This type of behaviour is classically observed in 

filled rubber material and linked to the Payne effect [25–28].  
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Figure 5.11 G’ (■) and G’’ (□) as a function of strain (T = 22.5 °C) of WBPUU and 

WBPUU/CNCis inks with different CNC contents at 1 Hz (T = 22.5 °C) 

 

Moreover, the variation of both storage and loss moduli as a function of the frequency was 

studied by fixing the strain value to 1%, which was determine in Figure 5.11 as part of the 

LVR for WBPUU and WBPUU/CNCis based inks. The representation of both G’, G’’ and 

tan  as a function of the frequency is displayed in Figure 5.12, whereas the measured values 

for comparative purpose at 1 Hz are enlisted in Table 5.5. 

Analysing the obtained results, an increase of both G’ and G’’ was observed as the CNC 

content of the ink increased, presenting all studied systems G’ over G’’, which according to 

the literature is desirable for DIW 3D-printing since viscous inks cannot be shaped by using 

this additive manufacturing technique [29,30]. This increase of the storage modulus leads to 

a more structured network for systems containing higher amount of CNC as was observed 

in oscillatory strain test. As was previously indicated, according to the literature, empirically, 

a storage modulus above 103 Pa is necessary to support high stable 3D structure of multiple 

layers [31], highlighting the requirement of suitable G’ values to promote an adequate shape 

retention [32]. Additionally, Álvarez-Castillo et al. presented a printability map for a plasma 

protein based doughs where systems having both viscoelastic moduli below 103 Pa and over 
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105 Pa would be too weak to keep the shape or too stiff to be properly extruded, respectively 

[33]. Taking this values as a reference, all system presents an appropriate storage modulus 

for their use as inks for DIW 3D-printing. Regarding the loss modulus, however, all studied 

systems presented G’’ values under 103 Pa, which according to Álvarez-Castillo et al. could 

present problems to promote an adequate shape maintaining.  

The inclusion of CNC in the WBPUU based ink resulted in a decrease of the tan from 0.29 

to 0.20 at 1 Hz, illustrating a turn towards a more elastic behaviour for the composites. 

However, comparing the different prepared WBPUU/CNCis compositions, the addition of 

higher amounts of CNC do not affect considerably the tan , obtaining for all systems tan  

values between 0.17-0.2. Despite the behaviour with the addition of CNC follows the same 

tendency as the one observed in Chapter 4 for the modification of the solid content (an 

increase of the modulus and a decrease of the tan  with the solid content), the modification 

produced by the addition of CNC seems more accurate compared with the one produced 

with the increase of the solid content. 

Additionally, the WBPUU, WBPUU0.25is, WBPUU0.5is and WBPUU2is systems were 

mapped in Figure SC.6 and SC.7 at pages 273-274 of the supplementary material facing 

their storage modulus with the tan  The results showed that WBPUU0.25is and 

WBPUU0.5is are situated in the area of successful printing performance, whereas WBPUU 

is located under the lower limit, illustrating a bad shape fidelity. This observation indicates 

that the solid content is not the once parameter to consider but the structure of the solid 

part within the matrix is the key factor. Moreover, WBPUU2is is mapped over the 

aforementioned area suggesting cohesion problems due to a too elastic behaviour. 

Table 5.5 Storage modulus, loss modulus and tan  values at 1 Hz and structure 

recovery percentage of inks with different CNC added in situ 

System 

Storage 

modulus 

(Pa) 

Loss  

modulus 

(Pa) 

Tan  

Structure 

recovery 

(%) 

WBPUU 1033 296 0.29 84 

WBPUU0.25is 2073 339 0.20 91 

WBPUU0.5is 2218 409 0.18 88 

WBPUU1is 2710 468 0.17 85 

WBPUU2is 4663 681 0.18 74 
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Figure 5.12 G’ (■) and G’’ (□) as a function of frequency of WBPUU and 

WBPUU/CNCis nanocomposites (up) and tan  as a function of frequency (down)  

(T = 22.5 °C) 



In situ addition of cellulose nanocrystals to enhance the printing performance of WBPUU based inks 

145 

Finally, the recovery of the prepared inks was studied by a structure recovery test which 

have been presented in the Chapter 2. The results of the tests are reported in Fig 5.13, 

whereas the recovery values are displayed in Table 5.6. The evolution of the recovery 

followed the same tendency as the study of the variation of the solid content studied in 

Chapter 4. At low content of CNC, values around 90% of recovery were obtained, 

presenting the WBPUU0.25is a maximum value of 91%, which resulted in higher values 

compared with the 84% of recovery of the WBPUU matrix. According to the literature, 

an 80% of recovery is desirable for 3D-printing [34], so both the matrix and all composites 

with CNC content under 1 wt% present a theoretical adequate recovery for their 

application of DIW 3D-printing. Regarding the composites presenting CNC contents 

above 1 wt%, contrary to the behaviour observed for nanocomposites with lower CNC 

content, a drastic decrease of the recovery is observed, up to 74% due to the slipping of 

the material out of the geometry of the rheometer during the test because of its so elastic 

behaviour. 
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Figure 5.13 Evolution of viscosity with time at different shear rates of WBPUU and 

WBPUU/CNCis nanocomposites. (T = 22.5 °C) 
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Finally, in Fig 5.14 the variation of the previously studied rheological parameters as a 

function of the CNC content is displayed for comparative purposes.  
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Figure 5.14 Variation of the studied rheological parameters with the addition of CNC in 

situ. Parameters related to the printability (up) and to the shape fidelity (down) 



In situ addition of cellulose nanocrystals to enhance the printing performance of WBPUU based inks 

147 

Analysing the evolution of the studied rheological parameters with the inclusion of CNC in 

situ, a clear tendency was observed. The results showed a similar behaviour if we compare 

this evolution with the observed one for the increase of the solid content studied in the 

Chapter 4. All parameters related to the printability increased as the CNC content did. The 

increase of the yield point and initial viscosity could result in extruding problems such as 

discontinuous extrusion, lack of homogeneity, or even impossibility to print the ink through 

the nozzle. Thus, it will be important to work with systems that may allow a continuous and 

homogeneous flow of the thread.  

The dependence of the yield point with the increase of CNC content can be explained by 

power law τy=k Φ p, where τy is the yield point, Φ the volume fraction of CNC, k is a constant 

that depends on the interparticles interaction and particle size, whereas p exponent depends 

on the microstructure of the particle network. The observed power law (τy=122.16 ϕ0.316) is 

often interpreted in terms of the underlying microstructure of the load bearing particle 

network [35]. In the case of spherical like particles, the network is normally formed by fractal 

like agglomerates which connect with each other to fill up the volume of the suspension [36]. 

Regarding the other parameters, which are assigned to the shape fidelity, an increase of the 

storage modulus was observed as the CNC content increased. The inclusion of the 

nanocrystals acted as a reinforcement of the gel network, leading to systems that can maintain 

better the shape. The addition of CNC to the WBPUU based ink, decreased the tan  leading 

to a more elastic structures. The evolution of the tan with an increasing amount of CNC, 

however, was different if compared with solid content, since no big differences were 

observed for the different systems containing CNC, presenting all of them a highly elastic 

behaviour. This low tan  which is correlated with highly elastic behaviour can lead in 

cohesion problems between layers resulting in a poor printing performance. Finally, the 

percentage of recovery followed a similar behaviour compared to the evolution of the solid 

content, showing an increase of the recovery above 80% in all systems. Moreover, the system 

WBPUU0.25is showed recovery values up to 92% showing a better recovery capacity 

compared with the WBPUU matrix.  

Analysing this results, the addition of small amounts of CNC to the ink seems to improve 

the shape fidelity of the systems, increasing its recovery capacity as well as decreasing the tan 

 slightly increasing the parameters related to the printability (viscosity, yield point and 

consistency index). Nevertheless, the addition of bigger amounts of CNC (above 1 wt%) 

seems to increase considerably the parameters related to printability such as the yield point 
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and viscosity, which can lead to printability problems. So, taking this analysis into account, 

the addition of very low quantities of CNC to the WBPUU based ink will help to improve 

the printing performance, but probably higher amounts of CNC could be counterproductive 

due to the decrease of the printability. 

For comparative purposes the rheological properties, WBPUU0.5is system is included in 

Figures SC.1-SC.5 of the Appendix C of the supplementary material at pages 268-272 

represented with systems studied in other chapters. 

Additionally, with the aim of ease the comparison between the influence of the in situ method 

and the ex situ one studied in the Chapter 6, the evolution of the rheological properties as a 

function of the CNC content obtained from both addition methods are displayed 

simultaneously in Appendix B (pages 245-258). 

5.3.4 DIW 3D-printing of inks with different in situ added CNC contents 

WBPUU matrix as well as WBPUU/CNCis nanocomposites have been printed by DIW 3D-

printing, obtaining dog bone shaped pieces for all the systems until 1 wt% of CNC (Figure 

5.15). Systems containing more amount of CNC presented so high storage modulus that 

were not able to be printed with the printer, despite presenting yield point values in the range 

of reported to printing. WBPUU1is was printed, but presented homogeneity problems in the 

printed thread, due to its so elastic behaviour, showing also a poor cohesion capacity as was 

also observed in the literature for very low values of tan  [37]. However, WBPUU0.25is and 

WBPUU0.5is presented good printability and better appearance if compared with the 

WBPUU matrix, especially as far as shape fidelity is concerned. Despite the matrix presented 

good printability, the shape fidelity was not still acceptable, concretely in the borders of the 

piece. The addition of CNC strongly participates keeping the given shape. The increase of 

the rheological parameters such as viscosity and storage modulus resulted higher compared 

to the values observed in the literature for WBPU/CNC systems prepared ex situ for such a 

small amount of CNC. In this case, the early addition of CNC, could lead, as was proposed 

by Chen et al. [7], to the formation of a chemical bonding between the CNC and the WBPUU 

prepolymer, through some of the -NCO free groups of the prepolymer which were 

formulated for the posterior extension by EDA. Notwithstanding, the temperature during 

the phase inversion is reduced in order to avoid side reactions with water, and hence, also 

with the -OH of CNC. However, with high amounts of CNC this reaction could happened 

easier, leading to a greater increase of rheological parameters such as viscosity and storage 

modulus than was expected.  
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Figure 5.15 Printed pieces of WBPUU and WBPUU with different CNC contents added 

in situ 

 

5.3.5 Mechanical and thermomechanical characterization of printed pieces 

The influence of the cellulose nanocrystals on the mechanical properties of the printed pieces 

was studied by tensile test. Strip shape printed pieces of WBPUU, WBPUU0.25is and 

WBPUU0.5is were analysed. Young modulus and stress and strain at break determined from 

stress-strain curves are reported in Table 5.6. Systems with CNC content higher than 0.5 

wt% did not result in recognizable strip pieces. 

Table 5.6 Mechanical properties of WBPUU and WBPUU/CNCis printed pieces 

System 
Young Modulus 

(MPa) 

Stress at break  

(MPa) 

Strain at break 

(%) 

WBPUU 14±1 16±2 1303±35 

WBPUU0.25is 17±1 15±1 1120±49 

WBPUU0.5is 120±6 10±1 979±40 
 

 

The results showed that the incorporation of CNC in the WBPUU matrix contributed to 

increase the stiffness of the printed pieces. The Young modulus of the final material 

increased up to almost ten times when 0.5 wt% of CNC is added to the ink, concretely from 

14 to 120 MPa. Contrary, the elongation at break decreased with the increase of CNC 

content, more noticeably for the system containing 0.5 wt% of CNC, which experienced a 

decrease of the elongation at break from 1303 to 979%. Comparing these results with the 

ones observed in the literature for ex situ prepared similar WBPU/CNC systems, to obtain a 

similar increase of the Young modulus, Liu et al. reported a CNC content of 5 wt% [38], 

WBPUU0.25is 

WBPUU0.5is WBPUU1is 

WBPUU 
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whereas other authors obtained a smaller increase of the Young modulus with similar 

quantities of cellulose derivated reinforcements [7,18,39]. 

Regarding the thermomechanical properties, the evolution of storage modulus and tan δ with 

temperature of the different WBPUU/CNCis nanocomposites are reported in Figure 5.16.  
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Figure 5.16 Storage modulus and tan δ as a function of temperature for WBPUU and 

WBPUU/CNCis nanocomposites. Frequency = 1 Hz and scanning 

rate = 2 °C min−1 

 

As can be observed, the addition of CNC resulted in an increase of the E’ in the whole 

temperature interval owing to the reinforcement effect of the nanocrystals [40]. In the glassy 

state, between -80 and -60 °C, E’ modulus exhibits higher values, around 2600-2800 MPa 

for nanocomposites whereas for WBPUU is 2100 MPa, and maintained almost constant, due 

to the reinforcing effect of CNC. At higher temperatures, a decrease for E’ was observed, 

usually reflected by a peak in tan δ curve, which is related with the material’s Tg [41]. Tan δ 

peak shifted slightly to higher temperature and decreased in intensity with the increase of 

CNC content, indicative of the effective interactions between matrix and CNC, as were also 

observed by FTIR, which hinder chain mobility [42]. At higher temperatures, 
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nanocomposites, especially the WBPUU0.5is, showed higher E' and its decrease, associated 

with the disruption of intermolecular associations and starting of the flow [7], shifted clearly 

to higher temperatures, reflecting an enhancement of the thermomechanical stability. This 

reinforcing effects and chain mobility restrictions corroborate that CNC interacts effectively 

with the matrix in agreement with FTIR, TGA and mechanical properties results. 

5.4 Conclusions 

In this chapter, a series of nanocomposites based on WBPUU loaded with different contents 

of CNCs (from 0.25 to 2 wt%) were prepared by adding the nanoentities during the synthesis 

of the WBPUU matrix, concretely during the phase inversion step, previously dispersed in 

deionized water. The different prepared WBPUU/CNCis nanocomposites were studied from 

the rheological viewpoint and subsequently printed so as to study the influence of the CNC 

in the printing performance as well as to study the viability of this inks for DIW 3D-printing. 

Moreover, the different WBPUU/CNCis nanocomposites were also analysed mechanically, 

thermomechanicaly and chemically in order to study the influence of the CNC reinforcement 

into the properties of the matrix. Additionally, so as to analyse the interaction of the CNC 

added during the synthesis with the matrix, TEM microscopy was used to study the prepared 

inks. 

The TEM showed the interaction mechanism between CNC and the WBPUU matrix, where 

the early addition of the CNC reinforcement favoured the formation of a chemical bonding 

between the prepolymer and the CNC which resulted in the inclusion of the CNC into the 

particles. This was confirmed by the absence of free CNC in the TEM images and the 

presence of agglomerates at 2 wt% of CNC, suggesting that the CNC were embedded into 

the particles, resulting in a different disposition of the reinforcement in the ink and thus, 

obtaining a different rheological, mechanical and thermomechanical properties than if the 

reinforcement were free in the ink. 

The rheological analysis of the WBPUU/CNCis nanocomposites showed that all prepared 

system presented a shear thinning behaviour, confirming their suitability for DIW 3D-

printing. The increase of the CNC content of the ink resulted in an increase of both yield 

point and viscosity, which resulted in printability limitations for inks presenting higher CNC 

contents. The storage modulus increased and the tan  decreased as the CNC content of the 

systems increased, leading to more structured and elastic inks, which can maintain better the 

shape and support multiple layers. This behaviour is similar to the one observed in Chapter 
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4 for the increase of the solid content, however, in this case, the modification of the studied 

rheological parameters resulted to be more accurate.  

Regarding the influence of the CNC in the properties of the matrix, the addition of those 

nanoentities resulted in a remarkable increase of the stiffness and thermomechanical stability 

of the final printed pieces, acting as a reinforcement of the final material. This increase is 

higher compared with the one obtained in the literature for ex situ added reinforcements, 

requiring in those cases much more quantity of CNC to obtain similar increases. Hence, this 

remarkable increase of both stiffness and thermomechanical stability compared with the ones 

observed in the literature can be justified due to the aforementioned chemical bonding 

between the CNC and the WBPUU backbone. 
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6. EX SITU ADDITION OF CELLULOSE NANOCRYSTALS 

TO ENHANCE THE PRINTING PERFORMANCE OF WBPUU 

BASED INKS 

 

 

 

 

 

 

6.1 Objective 

This chapter focused on the study of the influence of the addition of CNC after the synthesis 

of the WBPUU, which is known as ex situ method, in contrast with the in situ method studied 

in the previous chapter. In this context, cellulose nanocrystals were used to reinforce and to 

improve the printing performance of a novel PCL/PEG based polyurethane urea ink. For 

that, different amounts of CNC were added to a previously synthesized WBPUU by vigorous 

mechanical stirring. The different prepared WBPUU/CNCes nanocomposites inks have been 

analysed from the rheological viewpoint and subsequently printed to evaluate the effect of 

the CNC in the printing process as well as in the printed pieces. Additionally, the mechanical 

and thermomechanical properties as well as the thermal stability of the printed pieces were 

analysed in order to study the influence of the CNC reinforcement. It is expected that the ex 

situ addition of CNC will not only improve the shape fidelity of the ink, which leads to a 

better printing performance, but also acts as a reinforcement which can enhance the 

mechanical properties of the printed pieces. Although some works in the literature have 

compared the properties of nanocomposites prepared from in situ and ex situ methods [1], 

few research is done in the comparison of both methods rheological wise, and hence as far 

as printing performance is concerned. In the present chapter the obtained rheological 

analysis results of ex situ method of CNC incorporation have been compared with the ones 

obtained in the previous chapter for in situ method in order to determine the advantages and 

drawbacks of every method. Additionally, the mechanical and thermomechanical properties 

obtained from both CNC addition methods were compared to study the influence of the 

CNC integration route in the properties of the printed pieces. 
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6.2 Experimental part 

A WBPUU with a PCL and PEG ratio of 0.8/0.2 has been synthesized according to the 

methodology described in Chapter 3. The ratio of PCL/PEG/IPDI/DMPA/EDA was 

1/3.5/1/1/1.5 and the solid content of the inks was fixed to 29 wt%. 

The WBPUU/CNCes nanocomposites were prepared by mixing different amounts of CNC 

with the synthesized WBPUU. The mixing has been carried out by vigorous mechanical 

stirring, using an ultraturrax stirrer at 12000 rpm during 5 minutes. As a result, homogeneous 

white coloured inks were obtained. WBPUU/CNCes nanocomposites with 0.5, 1 and 2 wt% 

of CNC were prepared. The different systems were named as WBPUUXes, where X is the 

added CNC content. In Table 6.1 the different synthesized WBPUU/CNCes composites are 

enlisted. As a result of the vigorous stirring, the CNC was successfully dispersed in the 

WBPUU dispersion. The Figure 6.1 illustrated the formation process of the 

WBPUU/CNCes nanocomposites.  

Table 6.1 Designation and CNC content of prepared WBPUU/CNCes nanocomposites 

System  CNC (wt%) 

WBPUU 0 

WBPUU0.5es 0.5 

WBPUU1es 1 

WBPUU2es 2 
 

 

 

 

 

Figure 6.1 Illustration of the formation process of the WBPUU/CNCes nanocomposites 

by ex situ method 

 

The different prepared WBPUU/CNCes inks were printed using the equipment displayed in 

Chapter 2, following the printing conditions explained in Chapter 5. 
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6.3 Results and discussion  

6.3.1 Physicochemical characterization of WBPUU and WBPUU/CNCes 

nanocomposites 

The interactions between the WBPUU and CNC of the printed pieces were studied by FTIR. 

Figure 6.2 showed the spectra of both WBPUU and WBPUU/CNCes nanocomposites. 

Analysing the obtained results, both matrix and composites showed similar spectra with no 

apparition of new bands in the case of nanocomposites. Regarding the carbonyl region in 

the range 1800-1600 cm-1, a shift towards lower wavenumbers is observed in the band 

situated at 1735 cm-1 for the matrix as the CNC content increased, which can be observed in 

the inset of Figure 6.2.  
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Figure 6.2 FTIR spectra of WBPUU and WBPUU/CNCes nanocomposites. Inset: 

magnification of the carbonyl region 1800-1600 cm-1 

 

The displacement of this band, which is related to C=O of PCL and urethane in WBPUU, 

can be attributed to the hydrogen bonding interaction between WBPUU and CNC, 

suggesting a successful interaction between the CNC and the WBPUU [2]. This shift of the 

carbonyl band, resulted smaller comparing to the one observed in Chapter 5 for in situ 
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addition of CNC, confirming a less strong interaction between the polymer and the 

nanoentities in the ex situ method. 

The thermal stability of the matrix and WBPUU/CNCes nanocomposites prepared by ex situ 

method have been studied by TGA. The different TGA and DTG curves of WBPUU and 

WBPUU/CNCes nanocomposites are displayed in Figure 6.3. 

Analysing the obtained degradation curves, a two-step degradation can be observed for the 

WBPUU matrix, in accordance to the degradation of PCL80PEG20 based system observed 

previously (Chapter 3). The addition of ex situ incorporated CNC seems to decrease the 

second degradation step as was observed also for in situ reinforced WBPUU/CNCis 

nanocomposites (Chapter 5). Studying the initial degradation and the maximum degradation 

temperatures, which are displayed in Table 6.2, a significant increase of both values was 

observed in the nanocomposites, resulting in systems with higher thermal stability as a result 

of the CNC reinforcement. 

Table 6.2 Initial degradation and maximum degradation temperatures of WBPUU and 

WBPUU/CNCes nanocomposites 

System T0 (°C) Td (°C) 

WBPUU 250 312 

WBPUU0.5es 252 335 

WBPUU1es 258 339 

WBPUU2es 262 348 
 

 

However, comparing this increase of the thermal stability with the observed one in the 

previous chapter for the in situ addition of CNC, a lower increase of both T0 and Td is 

observed, requiring more amount of CNC reinforcement added by ex situ method so as to 

reach the values obtained for nanocomposites containing small amounts of in situ added 

CNC. In fact, WBPUU0.5is presented higher T0, and thus higher thermal stability than 

WBPUU2es, confirming the weaker interactions between WBPUU and CNC when the 

nanoentities are added after the synthesis of the ink. 
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Figure 6.3 Variation of the weight (up) and derivated weight curves (down) of WBPUU 

and WBPUU/CNCes nanocomposites obtained by ex situ method 
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6.3.2 TEM analysis of the WBPUU/CNCes inks 

In order to study the interactions between the WBPUU particles and the CNC 

reinforcement, the WBPUU/CNCes nanocomposites obtained via ex situ method were 

studied by TEM. Images of the WBPUU (shown in Chapter 5) and WBPUU2es are shown 

in Figure 6.4. 
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 Figure 6.4 TEM images of WBPUU (up) and WBPUU2es (down) inks. The images 

where taken in a 1% dilution of the original inks 

The images showed that the cellulosic reinforcement has been successfully incorporated to 

the WBPUU based ink showing a good dispersion of the CNC. Despite the images presented 

few agglomerates, the results confirmed the viability of the mechanical stirring as the 

dispersing mechanism for the addition of CNC to the aqueous based inks. The WBPUU 

matrix contrary, only showed particles in its corresponding images, presenting similar particle 

sizes than WBPUU2es but with the absence of the aforementioned CNC reinforcement. The 
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presence of some CNC agglomerates in the dispersion can be justified due to the big amount 

of reinforcement incorporated to the ink. Regarding the interaction between the WBPUU 

particles and the CNC, as can be observed in the images, despite some nanoentities are in 

contact with the particles, the CNC did not appear embedded in the particles as was the case 

of the in situ prepared nanocomposites in Chapter 5 (Figure 5.7, page 136). Indeed, the CNC 

were observed in their complete dimension. This results, confirmed the ones obtained by 

other authors for ex situ addition of nanoentities into a WBPU matrix [1,2]. 

Comparing the obtained image with the one observed in Chapter 5 for the in situ addition of 

the CNC, it can be observed a good particle dispersion and the presence of free CNC. In 

this case the addition of the CNC after the formation of the WBPUU particles for the ex situ 

method, promote different interactions between the particles and the nanoentities observed 

in in situ method. Additionally, these physical interactions are removed more easily when the 

inks are diluted resulting in an effective separation between particles and reinforcement, 

whereas the chemical bonding produced in the in situ method resulted in the apparition of 

agglomerates even with a 1% of dilution.  

6.3.3 Rheological characterization of WBPUU/CNCes inks  

Flow test were also performed to the ex situ obtained WBPUU/CNCes nanocomposites. The 

viscosity curves, which are in Figure 6.5, showed a shear thinning behaviour desirable for 

DIW 3D-printing [3–5]. According to the literature, a shear thinning behaviour is beneficial 

in printing to allow a rapid structural recovery [6] The viscosity values of the inks at different 

shear rates are enlisted in Table 6.3. and showed a decrease of the viscosity from 3000-9000 

Pa s at 0.01 s-1 to 10-50 Pa s at the printing rate of 19 s-1. Comparing the viscosity of the 

prepared systems with the increasing ex situ added CNC content, an increase of the viscosity 

values is observed in all shear rates when CNC content increases. However, comparing these 

results with the ones obtained for the same system but in situ method, a much lower increase 

of the viscosity was observed, presenting WBPUU0.25is nanocomposite higher values at 

0.01s-1 rate than WBPUU2es ink. For comparative purposes between in situ and ex situ 

method, the variation of the viscosity at 0.01 and 19 s-1 as a function of the CNC content of 

both methods are represented in the supplementary material (Appendix B, Figures SB.1 and 

SB.2 at pages 260-261). 
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Figure 6.5 Viscosity as a function of the shear rate of WBPUU and WBPUU/CNCes 

nanocomposites. (---) Printing shear rate 19 s-1 (T = 22.5 °C) 

 

Table 6.3 Viscosity values measured at different shear rates for the synthesized WBPUU 

and WBPUU/CNCes nanocomposites 

System 
Viscosity (Pa s) 

η at 0.01 s-1 η at 19 s-1 η at 100 s-1 

WBPUU 3851 12 4 

WBPUU0.5es 5074 26 10 

WBPUU1es 5438 37 16 

WBPUU2es 8453 44 19 
 

 

Additionally, contrarily to that observed for the increase of the solid content in Chapter 4 

and the in situ addition of CNC in Chapter 5, the Newtonian plateau at low rates in WBPUU 

seems to stay similar with the ex situ addition of CNC, presenting a zone of constant viscosity, 

which is related to the zero shear viscosity from 0.01 to 0.02 s-1. 

The influence of the CNC on the printability of the inks was studied trough the yield point 

and flow point of the different systems using the same methodology as used in Chapter 4 
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and 5. The determination of both yield and flow point is displayed in Figure 6.6 by analysing 

the variation of the storage and loss moduli as a function of the shear stress. 
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Figure 6.6. () G’ and (---) G’’ as a function of shear stress of WBPUU and 

WBPUU/CNCes nanocomposites (T = 22.5 °C). Determination of (   ) yield point and  

(   ) flow point 

 

Results are displayed in Table 6.4. An increase of both yield and flow point with the increase 

of the CNC content was observed, presenting all systems at low shear stress much higher G′ 

than G″, illustrating the ability for the inks to maintain the shape at rest state [7]. The yield 

point presented a constant increase as more amount of CNC was added to the 

nanocomposite. However, above 1 wt% of CNC the inks showed a higher increase of the 

yield point compared with other composites presenting lower quantities of CNCs. Anyway, 

the obtained low yield point values should not make ink extrusion more difficult since in the 

literature materials presenting similar values are usually printed easily [8–10]. Finally, 

regarding the FTI, the decreasing observed values as the CNC content increase suggests a 

more brittle behaviour for nanocomposites compared with the matrix, as well as with 

prepared in situ systems in Chapter 5. 
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Regarding the comparison between in situ and ex situ method, the variation of the yield point 

as a function of the CNC content are represented in Figure SB.3 at page 262 of Appendix 

B for comparative purposes. In this case, as observed with the viscosity, the ex situ addition 

of CNC resulted in a lower increase of the yield point compared with the in situ method, 

presenting the WBPUU1es lower yield point values than WBPUU0.5is. 

The flow curves of the matrix and different WBPUU/CNCes compositions were adjusted to 

the Herschel Bulkley model using the previously calculated yield point values. The proposed 

model fitted with the experimental data obtaining high R2 values. The parameters obtained 

from this adjustment can be observed in Table 6.4, whereas an example of the adjustment 

of the experimental flow curve is displayed in Figure 6.7. 
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Figure 6.7 Adjustment to the Herschel Bulkley (HB) model of WBPUU0.5es flow curve 

 

Regarding the consistency index, higher values as the CNC content increased were observed. 

Nevertheless, comparing this values with the obtained ones with the in situ prepared inks, a 

smaller increase was observed, meaning a lower influence of the ex situ added CNC in the 

consistency of the ink than the in situ ones. The increase of the K index is usually related to 

a decrease of the printability, obtaining in some cases of very high values an inhomogeneous 



Ex situ addition of cellulose nanocrystals to enhance the printing performance of WBPUU based inks 

169 

and very poor extrusion of the ink. Contrary, the flow index (n), remained in similar values 

in both addition methods, obtaining in all systems values under 1 which confirms the shear 

thinning behaviour of the systems [11,12]. 

Table 6.4 Determination of yield point, flow point, FTI index and parameters obtained 

from the adjustment to Herschel Bulkley model (σ-σy=Kẏn) of WBPUU and 

WBPUU/CNCes nanocomposites 

System 

Yield 

point 

(Pa) 

Flow 

point 

(Pa) 

FTI 

Herschel Bulkley model 

K 

index 

(Pa s n-1) 

n 

index 
R2 

WBPUU 44 562 13 194 0.19 0.95 

WBPUU0.5es 63 643 10 197 0.17 0.99 

WBPUU1es 82 820 10 203 0.18 0.98 

WBPUU2es 123 877 7 211 0.18 0.98 
 

 

The variation of both storage and loss moduli as a function of the frequency have been 

studied so as to analyse the influence of the WBPUU/CNCes obtained inks in the printing 

shape fidelity. The strain has been fixed to 1% as a result of a previous test were both storage 

and loss moduli were plotted as a function of strain in order to determine the linear 

viscoelastic region (LVR) (Figure 6.8).  

The obtained curves showed a LVR presenting a plateau of both storage and loss moduli, 

with G’ over G’’ illustrating an elastic behaviour for all systems [13]. At higher strain values, 

the network is destroyed as a result of the increasing strain resulting in a decrease of both G’ 

and G’’ up to the crossover of both moduli, illustrating the sweep to a predominant viscous 

behaviour and the flow of the ink [14]. The lower difference between G’ and G’’ observed 

for WBPUU represents a less structured network, as was observed previously, compared 

with the nanocomposites, which as a result of the CNC addition resulted in more structured 

inks.  

Additionally, as described in the previous chapters, at the end of the LVR region, a 

phenomena called “weak strain overshoot” can be observed in systems containing higher 

CNC content, where the loss modulus experienced an increase and a local maximum prior 

to the drop of both G’ and G’’ as a result of the destroy of the structured network [15]. 
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Figure 6.8 G’ (▲) and G’’ (Δ) as a function of strain (T = 22.5 °C) of WBPUU and 

WBPUU/CNCes nanocomposites with different CNC contents at 1 Hz 

 

Once the LVR region was determined, the variation of both storage and loss moduli as a 

function of the frequency has been studied so as to analyse the influence of the 

WBPUU/CNCes inks in the printing shape fidelity. The results are shown in the Figure 6.9, 

whereas, the measured values of storage modulus, loss modulus and tan  at a fixed frequency 

of 1 Hz are displayed in Table 6.5. 

Table 6.5 Storage modulus, loss modulus and tan  values at 1 Hz and structure 

recovery percentage of WBPUU and WBPUU/CNCes nanocomposites 

System 

Storage 

modulus 

(Pa) 

Loss 

modulus 

(Pa) 

Tan  

Structure 

recovery 

(%) 

WBPUU 1033 296 0.29 84 

WBPUU0.5es 1776 330 0.19 83 

WBPUU1es 2313 334 0.14 84 

WBPUU2es 2736 395 0.13 85 
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Figure 6.9 G’ (▲) and G’’ (Δ) of WBPUU and WBPUU/CNCes nanocomposites (up) 

and tan (down) as a function of the frequency (T = 22.5 °C) 
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The results showed an increase of both storage and loss moduli as the CNC content 

increased, leading to more structured materials which probably will present better shape 

fidelity properties. Both matrix and WBPUU/CNCes nanocomposites presented G’ over G’’ 

in all the frequency range which according to the literature represented an elastic gel or gel 

like structure [16]. Regarding the storage modulus values, which determines the mechanical 

strength of the inks [17,18], all nanocomposites presented higher values compared with the 

matrix, presenting an increase from 1033 Pa for WBPUU to 2736 Pa for WBPUU2es at 1 Hz. 

Higher values of G’  indicates that the ink exhibits stronger mechanical strength and could 

self-support better its own weight after printing [19]. All systems presented G’ values higher 

than the 103 Pa, which are, as already discussed, the lower limit proposed in the literature in 

order to achieve the capacity of supporting multi-layered constructs without collapsing. 

Analysing the tan a decrease can be noticed comparing the values of the ex situ prepared 

WBPUU/CNCes nanocomposites with the one of the WBPUU, illustrating the higher elastic 

behaviour of the inks containing CNC, and thus resulting in a higher capacity of retaining 

the given shape. The increase of the reinforcement content led to the obtaining of lower tan 

, which is correlated to a more pronounced elastic behaviour and hence, lead to the 

obtaining of more strong and structured inks [20,21].  

As observed with other rheological parameters, the increase of both G’ and G’’ is lower 

compared with the one observed in the systems with CNC added in situ, obtaining similar 

values with 0.5 wt% in situ and 2 wt% ex situ. The tan  values of ex situ systems were also 

lower compared with the ones observed for in situ method. For comparative purposes, the 

evolution of both storage modulus and tan  of in situ and ex situ method as a function of the 

CNC content are represented in Figures SB.5 and SB.6 at pages 264-265. 

For comparative purposes with systems proposed in other chapters, the storage and loss 

moduli as well as the tan  of WBPUU2es as a function of frequency is represented in Figure 

SC.3 and SC.4 at pages 270-271 of the Appendix C of the supplementary material. 

Additionally, WBPUU1es and WBPUU2es are mapped as a function of their storage modulus 

and tan in Figure SC.6 and SC.7 at pages 273-274, situating both systems containing CNC 

in the area delimited by the literature for systems presenting good shape fidelity. 

The structure recovery capacity of the inks was tested in order to analyse the capacity of the 

inks of recovering their initial viscosity after a high shear rate appliance, which can be 

correlated with the printing performance where high shear rates are applied during the 
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extrusion. As happened in Chapter 4, all systems presented a rapid and reversible viscosity 

response making this inks suitable for 3D-printing as they could be easily extruded out while 

rapidly recovered enough mechanical strength necessary to support the next extruded layer 

[22]. The recovery curves are shown at Figure 6.10 whereas recovery values are displayed in 

Table 6.5. 
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Figure 6.10 Structure recovery test of WBPUU and WBPUU/CNCes nanocomposites as 

a function of time (T = 22.5 °C) 

 

The results showed similar values of recovery for both matrix and nanocomposites, obtaining 

values above 80% for all system, which is recommendable for 3D-printing applications 

according to the literature [23]. The comparison of the recovery values of in situ and ex situ 

method as a function of the CNC content are represented in Figure SB.7 at page 266 for 

comparative purposes. Comparing the structure recovery results obtained from both in situ 

and ex situ methods, the recovery capacity is different depending the CNC content, 

presenting at lower CNC contents a better recovery for in situ method. Contrary, at higher 

CNC content, systems prepared by ex situ method presented better recovery values, 

observing an inversion of the behaviour at 1 wt% of CNC.  
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The variation of the previously studied rheological parameters as a function of the ex situ 

added CNC content is displayed in Figure 6.11 
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Figure 6.11 Variation of the studied rheological parameters with the addition of CNC ex 

situ related to the printability (up) and to the shape fidelity (down) 
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Observing the evolution of the parameters related to the printability of the inks, the addition 

of CNC by ex situ method resulted in an increase of all parameters. However, in this case, 

the ex situ prepared inks presented a lower increase of the viscosity, yield point and 

consistency index compared with the prepared ones via in situ, as can be observed in Figures 

SB.1-SB.4 at Appendix B (pages 260-263). This lower modification of these parameters 

suggest a successful extrusion of all inks prepared via ex situ (until a 2 wt% of CNC content), 

in opposition to the in situ prepared inks that presented extrusion problems for systems 

containing CNC contents above 0.5 wt%. Regarding the parameters linked to the shape 

fidelity, the addition of CNC by ex situ method increased the storage modulus and decreased 

the tan maintaining the structure recovery in similar values for all CNC added quantities. 

This results illustrated the increase of the structuration of the inks, swiping from a viscous 

dispersion towards more elastic inks, which are able to maintain successfully the given 3D 

construct and to support the weight of the uppers layers of the multi-layered construct 

without collapsing. 

6.3.4 DIW 3D-printing of inks with different ex situ CNC contents 

Finally, the different ex situ prepared nanocomposites have been printed by DIW 3D-printing 

in order to confirm the result observed in the rheological analysis. The digital images of the 

different printed pieces are displayed in Figure 6.12. Regarding the printability, all prepared 

systems were successfully printed. The lower viscosity and yield point values compared with 

the in situ systems allowed to process inks with higher CNC content. Indeed, the ink 

containing 2 wt% of CNCes was successfully printed in contrast with WBPUU/CNCis inks 

were only up to a 0.5 wt% of reinforcement resulted in printable systems. Conversely, as far 

as shape fidelity is concerned, the lower variation of storage modulus compared with the 

matrix observed in ex situ method resulted in less structured inks compared with the ones 

obtained by in situ methods, which resulted in a worse shape fidelity even having similar 

values of tan . In this case, the lower observed yield point values compared with the ones 

obtained in Chapter 5 for the in situ addition of CNC leads to a lower capacity to retain the 

given shape. This decrease of the shape fidelity resulted in printed pieces which collapse 

owing its own weight leading to the ink spreading and hence, to the loose of the given 3D 

form. As happened for the in situ addition of CNC, the increase of the CNC content resulted 

in printed pieces which better shape fidelity presenting a better appearance after being 

printed. Nevertheless, the good printability observed in WBPUU2es suggests the possibility 
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to increase more the CNC content to enhance more the shape fidelity without compromising 

the extrudability of the ink. 

 

Figure 6.12 Printed pieces from WBPUU and WBPUU/CNCes nanocomposites 

6.3.5 Mechanical and thermomechanical characterization of printed pieces 

The influence of the CNC on the mechanical properties of the WBPUU has been studied by 

testing printed strips from the different prepared samples. The results, which are displayed 

in Table 6.6 showed the Young modulus, strain at break and stress at break and of different 

prepared systems. 

Analysing the obtained results, an increase of the Young modulus was observed as the CNC 

content did, resulting also in an increase of the stress at break. This behaviour is related with 

the effective CNC reinforcement effect which results in stiffer pieces [24]. As a result of this 

reinforcement, the WBPUU/CNCes nanocomposites showed decreasing strain at break as 

the CNC content increases, owing to the restrictions of the WBPUU chains mobility due to 

the CNC addition [25]. Comparing these values with the observed ones for similar ex situ 

systems in the literature, lower increases of Young modulus are observed compared with the 

ones measured in this work but a higher decrease of strain at break as well [1,2]. However, 

this increase of the stiffness of the pieces result lower compared with the one observed in 

Chapter 5 for WBPUU/CNCis system. In this case the increase of the Young modulus for 

WBPUU2es resulted much lower compared to the 0.5 wt% of CNC reinforcement done by 

in situ method, confirming that the different addition methods resulted in different 

arrangements between WBPUU and CNC which leads to different mechanical properties of 

the printed pieces. 
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Table 6.6 Mechanical properties of WBPUU and WBPUU/CNCes nanocomposites 

System 

Young 

modulus 

(MPa) 

Strain at 

break 

(%) 

Stress at 

break 

(MPa) 

WBPUU 18±2 1036±34 9±1 

WBPUU0.5es 30±3 827±64 10±3 

WBPUU1es 41±3 747±38 12±3 

WBPUU2es 55±2 672±39 13±2 

 

 

Finally, the thermomechanical stability of the printed WBPUU and WBPUU/CNCes based 

inks has been studied by DMA. The evolution of the storage modulus and tan as a function 

of the temperature is displayed in Figure 6.13. An increase of the E’ in all the temperature 

range as the CNC content of the composites increased was noticed, confirming the 

successful reinforcement of the WBPUU ink by the nanoentities [26]. In the glassy state, at 

low temperatures, the properties of the polyurethane systems are ruled by the soft phase 

showing a slight but constant decrease of the E’ where the molecular motions were largely 

restricted to vibration and short range rotation. In this case the WBPUU2es presented an 

increase of the E’ of around 10% compared with the WBPUU matrix. At higher 

temperatures, a decrease of the storage modulus was observed in all systems, presented also 

as a maximum peak in the tan  value. This sweep represented the main relaxation process 

of the soft phase in both WBPUU and WBPUU/CNCes nanocomposites, associated to the 

glass transition of the soft segment. The tan  showed a maximum peak at -48 ºC in the case 

of the WBPUU matrix, representing the glass transition temperature (Tg), whereas the 

WBPUU/CNCes nanocomposites presented a maximum at the same temperature but 

showing a smaller peak. The addition of CNC in this case leads to a limitation of the mobility 

of the amorphous macromolecular chains which are close of the reinforcement, as was 

suggested by other authors [27–29], resulting in the aforementioned reduction and widening 

of the peak of tan  assigned to the Tg due to the lower quantity of free polymer chains.  

Above the Tg, the storage modulus kept decreasing upon temperature in all systems, 

presenting the WBPUU matrix a lower E’ compared with the WBPUU/CNCes 

nanocomposites at room temperature, which showed higher storage modulus as the CNC 

content increased. This behaviour confirms the successful reinforcement of the CNC to the 
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matrix, where the presence of the cellulosic reinforcement provokes interactions between 

the filler and the matrix, hampering the molecular mobility and thus promoting the rigidity 

of the nanocomposite. Regarding the thermomechanical stability, the systems containing ex 

situ added CNC presented higher thermomechanical stability compared with the WBPUU 

matrix as a result of the successful addition of the CNC as was also observed by FTIR, TGA 

and mechanical properties results.  
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Figure 6.13 Storage modulus and tan δ as a function of temperature for WBPUU and 

WBPUU/CNCes nanocomposites. Frequency = 1 Hz and scanning 

rate = 2 °C min−1 

Comparing the aforementioned results with the ones obtained by in situ reinforcement in 

Chapter 5, a slightly lower E’ values are observed in ex situ systems. The weaker physical 

interactions produced by this addition method compared with the chemical bonding 

produced by the in situ incorporation of CNC, resulted in nanocomposites presenting lower 

thermomechanical stability and lower E’ values in all the temperature range. Indeed, 

WBPUU2es presented lower E’ values and lower thermomechanical stability compared with 

WBPUU0.5is, which had much lower amount of CNC reinforcement.  
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6.4 Conclusions  

In this chapter, a series of WBPUU/CNCes nanocomposite based inks were prepared by 

mixing a previously synthesized PCL/PEG based waterborne polyurethane urea dispersion 

and cellulose nanocrystals by means of mechanical stirring. So as to study the influence of 

the added nanoentities in the printing performance of the inks, the prepared nanocomposites 

were studied from the rheological viewpoint and subsequently printed by DIW 3D-printing 

so as to confirm their viability for this technology. Additionally, the interaction mechanism 

between the WBPUU particles and the CNC reinforcement was studied as well as the 

thermal, mechanical and thermomechanical properties of the printed WBPUU/CNCes 

pieces. 

Regarding the interactions between the WBPUU and the CNC, the TEM images revealed 

that, contrary to what observed in the Chapter 5 for the in situ addition of CNC, the ex situ 

addition of the CNC did not resulted in a chemical interaction between the particles and the 

reinforcement, but forming a physical interaction which resulted in the modification of 

rheological properties of the ink, but also of the mechanical, thermal and thermomechanical 

properties of the printed piece.  

The rheological analysis of the inks showed a similar tendency as was observed in Chapter 5, 

that is, showing an increase of the viscosity, yield point and storage modulus and a decrease 

of the tan as the CNC content of the inks increasedThis results illustrates the obtaining 

of inks with better shape fidelity as the CNC content of the ink increased, being able to 

support 3D multi-layered constructs without collapsing. Despite the addition of CNC also 

lead to the apparition of limitations of the printability, presenting systems with very high 

viscosity, yield points and storage modulus problems to be extruded successfully through 

such a thin nozzle, in this case all systems were successfully printed, presenting all a 

continuous and homogeneous thread.  

Comparing these rheological parameters with the ones observed in Chapter 5 for in situ 

addition of CNC, the post-synthesis addition of CNC resulted in a slighter modification of 

the aforementioned parameters, presenting a lower increase of both viscosity, yield point and 

storage modulus as can be observed in Figures SB.1-SB.7 (pages 260-266 Appendix B). 

This lower influence in the rheological properties allowed to load more amount of CNC into 

the ink than the in situ method. However, in order to obtain similar rheological properties 

higher amount of CNC added ex situ is needed so as to reach a similar behaviour. In fact, 
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WBPUU2es presented lower rheological parameters compared with WBPUU0.5is , presenting 

the ex situ system a worse printing performance than the in situ one.  

Finally, regarding the study of the WBPUU/CNCes printed pieces, the displacement of the 

carbonyl band towards lower wavenumbers observed at the FTIR spectra, illustrates the 

hydrogen bonding interactions between WBPUU and CNC. The addition of the cellulosic 

reinforcement resulted in an increase of the thermal and thermomechanical stability, as well 

as in the obtaining of stiffer printed pieces with higher Young modulus and lower strain at 

breaks, confirming the successful reinforcement of the CNC. However, as happened with 

the rheology, this increase is slighter compared with the one observed for in situ addition of 

CNC. The different interaction between WBPUU and CNC of both methods leads to the 

obtaining of different types of materials as well as to the obtaining of different printing 

performances. 
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7.1 Objective 

In this chapter, two potential applications of the aforementioned PCL/PEG based WBPUU 

inks were proposed and studied in order to demonstrate their viability. By one hand, the 

preparation of WBPUU/CNCis scaffolds so as to absorb cationic dyes such as methylene 

blue, and the second one, the synthesis of WBPUU containing plant extract based inks in 

order to obtain 3D constructs with antibacterial properties.  

In a first part, scaffolds based on in situ WBPUU/CNC nanocomposites were prepared by 

the freeze drying technique of the printed pieces. As a result of this process, shape 

customized scaffolds were obtained with high porosity. In this context, the prepared 

scaffolds were studied as a potential substrate for absorption of cationic dyes. As was 

mentioned before, the use of polyurethane based scaffolds for water waste removal has been 

extensively studied in the literature. The capacity of this scaffolds to absorb heavy metals 

such as copper [1], lead, or different types of oils represents a cheap alternative compared to 

more expensive treatments. Nevertheless, one of the principal contamination sources that 

affects to the water is that of the dyes. Since the invention of the picric acid in 1771, which 

produced a bright yellow on silk, synthetic dyes represented one of the mayor issues as far 

as water treatment is concerned, with a production of over 105 different dyes with an annual 

production of over 7x105 metric tons [2]. Their toxicity may give rise to eyes and skin 

irritation, weakness and dizziness, becoming an important issue for the human being [3]. 

In the literature, the use of polyurethane scaffolds has been extensively studied as sorption 

materials for dye absorption due to its advantages in terms of cost, flexibility, simplicity, ease 

and insensitivity to toxic pollutants compared with other techniques [4,5]. Polyurethanes 
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have been proved to be a successful remover of many synthetic dyes such as methylene blue 

[6,7], brilliant green [8,9], indigo carmine [10] or congo red [11] among others. Despite some 

works use the polyurethane scaffolds without any charged additive, obtaining good removal 

percentages [12], most of the works explored the use of an active substance, which is also 

known as “carrier” charged in opposition of the dye, to promote a ionic crosslinking between 

the anionic or cationic dye and the anionic or cationic carrier. A wide variety of “carriers” 

have been used in the literature for facilitating the removal of the dyes. Baldez et al. promote 

the absorption of cationic rhodamina B in a polyurethane by the inclusion of anionic sodium 

dodecysulfate [13], Moraes et al., contrary, use chemically modified and unmodified cellulose 

in a polyurethane foam so as to absorb methylene blue and procion red HE-7B. In this last 

case, the addition of the modified and unmodified cellulose increased the absorption capacity 

of procion red HE-7B but did not modify the one corresponding to the methylene blue [6]. 

The absorption capacity of the prepared WBPUU/CNCis nanocomposite scaffolds prepared 

by DIW 3D-printing and freeze drying was tested against cationic methylene blue (MB). MB 

is a cationic dye, which is used commonly for colouring paper and temporary hair colorant, 

and despite not strongly hazardous, it can cause some harmful effects, such as heartbeat 

increase, vomiting, shock, cyanosis, jaundice, quadriplegia, and tissue necrosis in humans, so 

its removal is of the major importance so as to avoid the contamination of the water with 

this pollutant [14]. It is expected that the anionic groups presented in the polymer backbone 

as a result of the addition of DMPA during the synthesis interacted with the cationic ones of 

the MB blue, leading to a successful removal of the dye. According to these elements, the 

synthesis and printing of a series of WBPUU/CNCis nanocomposite based inks with 

different CNC content is proposed. Additionally, a number of the printed systems were 

immersed in a CaCl2 dispersion of 1 M prior to the freeze drying process so as to promote a 

chemical crosslinking between the WBPUU and the Ca2+ ions, which will result in the 

formation of more rigid scaffolds.  

In respect of the experimental method used in the present work, the prepared scaffolds have 

been analysed physicochemicallly, morphologically, and mechanically in order to study the 

influence of both CNC and the Ca2+ crosslinking. It is expected that the addition of the CNC 

to the ink will improve the shape fidelity of the printed samples, as was already observed in 

Chapter 5, as well as modify the morphology of the scaffold and increase their swelling 

capacity. The ionic crosslinking of WBPUU through Ca2+, contrary, will result in a 

modification of the morphology of the printed scaffolds, leading to more rigid pieces as was 

observed by other authors [15]. Finally, the absorption capacity of the system which 
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presented the more interesting properties for the application has been tested against MB in 

order to study its viability as cationic dye absorption material. 

In the second part of this chapter, the viability of a WBPUU/plant extract based system was 

analysed as a potential printable ink with antibacterial properties. As has been mentioned in 

the introduction, some plant extracts presented antibacterial, antimicrobial and anti-

inflammatory properties as a result of the biologically active compounds [16,17]. In this 

context, the incorporation of plant extracts into waterborne polyurethane dispersions has 

been successfully performed in the literature, leading to the obtaining of WBPUU/plant 

extract films prepared from the dispersions, which presented antimicrobial activity [18]. 

In this sense, for this work Salvia officinalis L., commonly known as sage has been selected as 

the bioactive plant extract. This extract has been obtained by infusion method and added by 

in situ method previously dispersed in deionized water during the phase inversion step, so as 

to obtain WBPUU/Salvia dispersions. In order to guarantee a good printing performance, 

different amounts of CNC were added by ex situ method with the aim to obtain printed 

pieces with good shape fidelity. The printed pieces were dried and freeze dried in order to 

obtain solid pieces and scaffolds respectively. The different prepared WBPUU/Salvia/CNCes 

inks were studied from the rheological viewpoint with the aim to analyse the influence of the 

Salvia extract in the WBPUU and WBPUU/CNCes inks. Finally, the prepared pieces were 

tested against some bacterial agents to demonstrate their viability as antibacterial materials. 

7.2 WBPUU/CNCis scaffolds for cationic dye absorption 

7.2.1 Experimental part 

7.2.1.1 Materials 

The selected inks for the preparation of the scaffolds are the WBPUU/CNCis 

nanocomposites synthesized in Chapter 5. The selection was made according to their good 

balance between printing performance and shape fidelity. WBPUU/CNCis inks with 0.25 

and 0.5 wt% of CNC were employed. WBPUU matrix was used for comparative purpose. 

7.2.1.2 DIW 3D-printing of the inks and scaffold preparation by freeze drying 

WBUU and WBPUU/CNCis based inks were printed as cylinders of 12 mm of diameter and 

5 mm of height by extrusion based 3D-printing using the DIW 3D-printing equipment 

displayed in Chapter 2. Regarding the printing conditions, the samples were printed following 

the conditions used in previous chapters. Prior to the freeze drying process, some of the 
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printed samples were immerse in a CaCl2 solution of 0.1 M during 30 or 60 minutes in order 

to crosslink the printed piece. The systems were washed in deionized water so as to remove 

the remaining unreacted CaCl2 from the piece prior to the freeze drying process. Finally, all 

samples were freeze dried at -60ºC and 0.1 Pa during 48 h. The characteristic, composition 

and preparation process of all prepared scaffolds are enlisted in Table 7.1. Additionally, an 

illustration of the preparation process of the shape customized scaffolds is displayed in 

Figure 7.1. 

Table 7.1 Preparation conditions, denomination and density of the prepared WBPUU 

scaffolds 

System 
Time in CaCl2 

(min) 

Density 

(g cm-3) 

WBPUU - 0.225±0.014 

WBPUU0.25is - 0.414±0.003 

WBPUU0.5is - 0.424±0.003 

WBPUU30Ca 30 0.256±0.043 

WBPUU60Ca 60 0.303±0.012 

WBPUU30Ca0.25is 30 0.484±0.010 

WBPUU60Ca0.25is 60 0.491±0.040 

WBPUU30Ca0.5is 30 0.525±0.010 

WBPUU60Ca0.5is 60 0.537±0.007 

a 

 

Figure 7.1 Process of preparation of WBPUU0.5is based shape customized scaffold. 

From left to the right: a) CAD design, b) printed piece and c) final piece after freeze 

drying process 

 

The different prepared systems are denoted as WBPUUXis, where X is the CNC content. 

Additionally, systems which where immersed in CaCl2 are enlisted as WBPUUYCa or 
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WBPUUYCaXis, where Y represented the immersion time of the printed piece into the CaCl2 

solution and X the CNC content. Regarding the measured densities of the prepared scaffolds 

which are displayed also in Table 7.1, systems containing CNC presented higher densities as 

the CNC content increased, due to the increase of the total concentration of the ink 

(WBPUU+CNC). Systems immersed in CaCl2 presented even higher densities due to the 

shrinkage of the piece due to the formed shell at the surface of the piece as well as the loaded 

Ca2+ ions. The calculated density resulted to be higher as the immersion time in CaCl2 was. 

As the result of the aforementioned procedure, scaffolds with the form of cylinders were 

obtained with good reproducibility of the 3D design. However, samples which were 

previously immersed in CaCl2 before the freeze drying procedure presented a loss of 

definition due to the aforementioned shrinkage of the piece compared with the ones which 

were not exposed to CaCl2. The former presented as a result a rigid shell surrounding the 

core of the scaffold, which is able to support up to 50 g of weight prior to the freeze drying 

process, and is formed due to the chemical crosslink produced between the COO- of 

WBPUU particles and the Ca2+. In the Figure 7.2, images of prepared WBPUU, 

WBPUU0.5is and WBPUU30Ca0.5is scaffolds are displayed. Additionally, the capacity of the 

shell produced by Ca2+ crosslinking to support weight prior to the freeze drying process is 

illustrated for WBPUU30Ca0.5is system.  

 
 

Figure 7.2 Images of the preparation of the scaffolds: a) printed piece and b) freeze 

dried sample from WBPUU ink, c) printed piece, d) post crosslinked sample and e) 

freeze dried sample from WBPUU30Ca0.5is, f) printed piece and g) freeze dried sample 

from WBPUU0.5is and h) consistency of the Ca2+ shell on the printed piece prior to 

freeze drying (WBPUU30Ca0.5is) supporting a load of 50g 
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In Figure 7.3 a scheme of the crosslinking of the WBPUU particles and WBPUU/CNCis 

system with the CaCl2 is displayed. 

 

 

 

 

 

 

 

Figure 7.3 Crosslinking process of the WBPUU pieces immersed in CaCl2 (up) and 

WBPUU/CNCis pieces immersed in CaCl2 (down) 
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As was mentioned before, the chemical crosslinking of WBPUU through Ca2+ is produced 

when the samples are immersed into CaCl2 by the ionic interaction of the COO- groups of 

the WBPUU particles and the Ca2+ ions of the CaCl2. This interaction is produced in the 

surface of the printed piece and resulted in the formation of a rigid shell surrounding a non-

crosslinked core. This shell presented high consistency, and as was observed in Figure 7.2 

h) is able to support weight without collapsing prior to the freeze drying process. 

7.2.2 Results and discussions 

7.2.2.1 Influence of the CaCl2 immersion time of the WBPUU based inks 

The crosslinking process magnitude of the sample immersed in CaCl2 solution was tested by 

performing a viscosity test at a fixed shear rate of 1 s-1 during 180 s to a WBPUU ink prior 

and after the immersion, in order to study the influence of the aforementioned crosslinking 

procedure in the structure of the inks. The results are displayed in Figure 7.4. 
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Figure 7.4 Viscosity as a function of time at a shear rate of 1 s-1 for WBPUU before 

(black) and after the immersion in CaCl2 (red) 

 

The results showed a clear increase of the viscosity of the crosslinked system, presenting a 

constant viscosity value of ~300 Pa s for the not crosslinked WBPUU ink in contrast with 
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the ~5200 Pa s of the ink immersed in CaCl2. The crosslinking process produced between 

the Ca2+ and the COO- groups of the WBPUU particles resulted in an increase of the 

viscosity as a result of the ionic network. 

Moreover, oscillatory measurements were also performed in order to study the influence of 

the Ca2+ crosslinking in the structuration of the inks. The storage and loss moduli of both 

crosslinked and non-crosslinked WBPUUs as a function of the time are shown in Figure 

7.5. The crosslinking with Ca2+ resulted in an increase of both storage and loss moduli, 

compared with the non-crosslinked system. The systems studied after the crosslinking 

process presented at 1 Hz an increase of 1897% and a 1360% of storage and loss moduli 

respectively. Additionally, the tan  of the systems tested after the immersion in CaCl2 

solution presented lower values compared with the ones observed for the non-crosslinked 

WBPUU. This sweep towards lower values of tan illustrates the transition between an 

initially viscous behaviour of the non-crosslinked WBPUU and the more elastic behaviour 

observed in the WBPUU after the immersion in CaCl2.  
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Figure 7.5 Storage (■) and loss (□) moduli as a function of time at 1 Hz of the WBPUU 

before (black) or after immersion in CaCl2 (red) 
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7.2.2.2 Characterization of the WBPUU/CNCis prepared scaffolds 

In order to study the morphology of the prepared scaffolds, electron scanning microscopy 

was used so as to obtain images of the structure of the printed scaffolds. The images of the 

obtained cross section images of the scaffolds with different CNC content are displayed in 

Figure 7.6 whereas in Figure 7.7 the corresponding ones to the WBPUU/CNCis scaffolds 

presenting different immersion times in CaCl2 are displayed. 
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 Figure 7.6 SEM images of the WBPUU/CNCis scaffolds with different CNC 

content 
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 Figure 7.7 SEM images of the WBPUU/CNCis/Ca scaffolds with different 

immersion times in CaCl2 

Heterogeneous morphology can be observed for the WBPUU based scaffold. The viscous 

behaviour of this ink is not able to support a multi-layered 3D construct, resulting in the 

collapse of the structure which result in the aforementioned heterogeneous morphology. 

Both WBPUU0.25is and WBPUU0.5is, presented a homogeneous morphology. In this case, 

the printed inks are able to support the weight of the upper layers, allowing to obtain multi-

layered ordered systems which resulted after the freeze drying in a homogenous morphology. 

Comparing the porosity of the scaffolds presenting different CNC content, the pore size 

seems to decrease as the CNC content increases, resulting in system presenting higher 

specific surface. These results are in accordance with the measured density, where the 
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systems containing the higher amount of CNC presented the higher density values. Contrary, 

the WBPUU matrix presented the lower ones. This decrease of the pore size and the increase 

of the density is produced due to the higher concentration of the inks containing higher CNC 

content. Presenting, hence, lower water content, which will result in lower pore size. 

Moreover, the influence of the immersion time of the printed pieces in CaCl2 in the 

morphology of the obtained scaffolds was also studied. According to the images, the 

immersion of the printed scaffolds into CaCl2 prior to the freeze drying process, resulted in 

the formation of a solid compact shell of around 200 m at the surface of the piece for both 

systems immersed 30’ as a result of the chemical crosslinking of the Ca2+. As a result of this 

crosslinking, the porosity observed for the non-crosslinked systems disappeared completely 

at the surface, increasing the rigidity of the scaffolds. Finally, due to the formed shell, the 

previously observed homogeneous morphology in systems containing CNC seems to 

disappear. In this case, the aforementioned shell will hamper the freeze drying process 

resulting in a more heterogeneous morphology. The observed shrinkage, the non-porous 

shell and the Ca2+ ions loaded resulted in an increase of the density of the scaffold, as was 

observed previously in Table 7.1. 

Additionally, in order to confirm the presence of the aforementioned Ca2+ ions in the 

crosslinked scaffolds, EDS analysis has been performed to explore the presence of Ca in the 

composition of the scaffold. The results which are displayed in Table 7.2 and Figure 7.8 

supported the presence of the Ca in the composition of the shell observed in scaffolds 

immersed in CaCl2, confirming their incorporation by the ionic interaction between the Ca2+ 

and the WBPUU particles. 

Table 7.2 Composition of the core and the shell of the WBPUU030Ca20.5is scaffold 

measured by EDS 

Element 
Weight percent (%) 

WBPUU core WBPUU shell 

O 32.79 54.76 

C 73.19 29.68 

Ca - 5.98 

Cl - 0.52 

 



Chapter 7 

198 

 

Figure 7.8 EDS analysis in the core and in the shell of the WBPUU030Ca20.5is scaffold 

obtained by freeze drying once the printed piece was immersed in CaCl2 

 

Concretely, as can be observed in Table 7.2, the shell formed after the immersion in CaCl2 

and theoretically as a result of the Ca2+ crosslinking, presented a weight percent of around a 

6% of Ca, but also a residual Cl which has not been removed successfully when the samples 

were washed after the immersion process. The unreacted core contrary, did not present any 

sign of Ca, noticing only the presence of both oxygen and carbon. 

With the aim of study the effect of the chemical crosslinking produced by the immersion of 

the sample in the CaCl2, FTIR measurements were performed. The spectra of the prepared 

WBPUU/CNCis systems immersed in CaCl2 are displayed in Figure 7.9. As far as the 

influence of the Ca2+ crosslinking is concerned, a displacement of the carbonyl band situated 

around 1699 cm-1 downwards when the carboxylated group was fully ionized by calcium was 

reported in the literature [19].  
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Figure 7.9 FTIR spectra of WBPUU/CNCis/Ca scaffolds. Study of the influence of the 

immersion in CaCl2 (up), magnification of the 2000-1500 cm-1 interval (down) 
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As can be observed in the magnification of the 2000-1500 cm-1 region at Figure 7.9, a new 

band is observed at 1648 cm-1 in WBPUU30Ca0.5is and WBPUU60Ca0.5is scaffolds. This 

band can be assigned to the fully ionized carboxylate groups by calcium ions, which appeared 

at similar wavelengths compared to the ones observed in the literature, confirming the 

successfully performed Ca2+ crosslinking process. 

Furthermore, the influence of the Ca2+ crosslinking in the thermal degradation of the 

different WBPUU/CNCis based scaffolds was tested by TGA. The obtained weight curves 

are shown in Figure 7.10 whereas their derivative are displayed in Figure 7.11.  

Studying the influence of the formation of the Ca2+ crosslink in the thermal stability, the 

results showed similar degradation curves for all systems, however, an increase of the second 

degradation situated around 350 °C is produced as can be observed in the DTG of the curves 

when the immersion time in CaCl2 was increased. Additionally, system immersed in CaCl2 

presented higher residual mass values after the degradation process compared with the 

unreacted ones, probably due to the presence of Ca in the printed scaffold. 
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Figure 7.10 Variation of weight of WBPUU/CNCis with different immersion times in 

CaCl2 
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Figure 7.11 DTG curves of WBPUU/CNCis with different immersion times in CaCl2  

 

In order to study the mechanical properties, compression test was performed to the different 

prepared WBPUU/CNCis scaffolds (Figure 7.12). As can be observed, all systems presented 

typical compression behaviour, showing an initial linear elastic response of stress vs strain 

followed by an extended plateau and a final region of increasing the stress [20–22]. However, 

systems with a 60 min of immersion in CaCl2 did not present the aforementioned plateau, 

presenting a continuous increase of the stress as a function of the strain. Initial bending and 

buckling happened on the walls of the scaffold as the compression force is applied, but some 

cracking initiates at the yield point and the plateau is the result of progressive brittle crushing 

of the cells under the compressive loads. In the final region, densification of the scaffold 

pilots the behaviour of the scaffold becoming closer to that of a non-foamed one. Comparing 

the obtained compression values of the different prepared scaffolds which are displayed in 

Table 7.3 the addition of CNC in the scaffolds resulted in an increase of both the Young 

modulus and the stress at the plateau (σyc). The inclusion of the CNC in the scaffold led to 

the obtain of more rigid scaffolds due to the successful reinforcement effect observed in 

previous chapters for WBPUU/CNCis. A slight decrease of the strain corresponding to the 

densification (ε densification) was also observed in scaffolds containing CNC.  
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Figure 7.12 Stress-strain compression curves of WBPUU/CNCis scaffolds (up), inset of 

the elastic zone (down) 
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Table 7.3 Compression properties of the WBPUU/CNCis prepared scaffolds 

System 
E 

(MPa) 

σyc 

(kPa) 

ε densification 

(%) 

WBPUU 3±1 70±10 6.5±0.5 

WBPUU30Ca 12±3 120±30 6.3±0.2 

WBPUU60Ca 31±2 - 5.8±0.8 

WBPUU0.25 15±1 270±30 6.1±0.3 

WBPUU30Ca0.25 32±3 330±20 5.8±0.7 

WBPUU60Ca0.25 54±4 - 4.4±0.2 

WBPUU0.5 20±2 320±10 6.3±0.2 

WBPUU30Ca0.5 28±4 360±60 5.6±0.3 

WBPUU60Ca0.5 50±6 - 4.3±0.3 

 

 

Regarding the samples immersed in CaCl2, the previously observed rigid and non-porous 

shell, resulted in a high increase of the Young modulus in all immersed samples compared 

with the same formulations without the exposure to CaCl2. Indeed, an increase of even 260% 

comparing the Young modulus of WBPUU0.25is (15±1 MPa) with WBPUU60Ca0.25is (54±4 

MPa) was observed. Additionally, as was previously mentioned, samples immersed 60 

minutes into CaCl2 did not presented the aforementioned plateau increasing the stress as the 

strain increased. In those systems, the rigid shell of the exterior of the scaffold rules the 

compression behaviour.  

Studying the influence of the combination of CNC addition and the Ca2+ crosslinking in the 

mechanical properties, a lower influence was observed in the former compared with the 

latter. In the samples immersed in CaCl2, the influence of the CNC reinforcement was 

overshadowed by the influence of the rigid shell. In fact, WBPUU0.5is presented an increase 

of Young modulus of 570% comparing with the one observed for WBPUU, while the Young 

modulus for the same systems immersed in CaCl2 for 60 min (WBPUU60Ca and 

WBPUU60Ca0.5is) presented a less noticeable increase of 61%. According to the literature, 

the density of the scaffolds seems to have a direct relationship with the densification 

phenomenon [24], where systems presenting higher densities implied lower densification 

values. Analysing the obtaining results, all systems presented densification strain percentages 

of 4-6%, with the lowest value occurring for the scaffolds which presented the highest 
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immersion times in Cacl2, illustrating the rigid compact shell observed in those systems in 

the SEM images. Comparing this values with the observed ones in the literature for other 

polyurethane scaffolds systems, much lower values of εdensification were observed but also higher 

compression modulus [25] illustrating the obtaining of scaffolds with high rigidity, as the 

result of the enhancement by both the effect of the CNC reinforcement and the immersion 

in CaCl2.  

Furthermore, the water absorption capacity of the prepared scaffolds was tested during a 

week by weight difference and expressed as swelling (%) by exposing the scaffolds to water 

with different pH. The swelling as a function of the time of the WBPUU and 

WBPUU/CNCis are shown in Figure 7.13.  
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Figure 7.13 Water absorption capacity of prepared WBPUU/CNCis at different pH 

 

The results showed a variation of the absorption capacity depending on the CNC content 

and the pH of the medium. All the samples, independent on the CNC content and pH of 

the media reach the swelling equilibrium almost in one day. Comparing the CNC content, 

the addition of the CNC resulted in an increase of the swelling in all studied media as the 

CNC content increased, showing a maximum swelling for the WBPUU0.5is system of 629% 

at pH = 7 after 1 week. The incorporation of CNC in the polyurethane contributed to a 

greater capacity of water absorption in the WBPUU/CNCis nanocomposites, taking into 
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account that the water molecules could tend to diffuse where CNC nanoentities are located 

[26] owing to the hydrophilic character of CNC [27]. The hydrophilic nature of the CNC 

leads to an increase of the swelling, obtaining at pH = 7 and 1 week an increase of a 27%, 

from WBPUU to WBPUU0.5is. Additionally, the 3D complex structure that samples 

containing CNC present, as can be observed by SEM, allowed to present a higher surface 

for absorption resulting in an increase of the swelling.  

Regarding the samples immersed in CaCl2, which are displayed in Figure 7.14, a similar 

behaviour compared with the observed ones for the CNC variation was observed, reaching 

the swelling equilibrium almost in one day. The results showed that the water absorption 

capacity decreased as the immersion time increased. The formed chemical bonding induced 

by the Ca2+ addition resulted in a rigid compact shell at the surface of the scaffold as was 

observed by SEM. This compactness justified the reduction of the swelling that was observed 

in all media. Indeed, the WBPUU60Ca0.25is presented a decrease of around 35% respect to 

the WBPUU0.25is at pH = 7. 
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Figure 7.14 Water absorption capacity of prepared WBPUU/CNCis/Ca at different pH 

 

As far as the variation of the pH is concerned, it can be seen also variations water absorption 

capacity wise. The scaffolds immersed in pH = 7 presented the higher swelling compared 

with the ones obtained at other media. Indeed, in WBPUU0.25is system samples immersed 
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in acid and basic media showed a decrease of the swelling of around 59% and 49% at 1 week 

for pH = 1 and pH = 12 respectively compared with the swelling obtained a pH = 7. In the 

case of the basic medium, the decrease observed in the swelling after 2 days which was 

observed in all samples suggests a degradation of the scaffold due to the exposure of the 

basic medium. This degradation, confirmed by visual examination, is not observed for the 

samples exposed to both acid and neutral media. 

Finally, the absorption capacity of the printed pieces for the cationic methylene blue (MB) 

was carried out. Taking into account the swelling results, WBPUU0.5is system was selected 

due to its higher adsorption capacity. The samples were immersed in deionized water at pH 

= 7 for 24 h prior to the absorption test so as to obtain swollen samples and posteriorly 

immersed in a methylene blue solution (12 ppm) during 24 h. The test has been carried out 

per triplicate. The absorption curves of the MB and the remaining concentration of MB are 

displayed in Figure 7.15. 
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Figure 7.15 Removal efficiency of the WBPUU0.5is scaffold as a function of the time 

 

Analysing the obtained results which are displayed in Table 7.4, a decrease of the MB 

concentration in the solution was observed, decreasing from an initial 12 ppm to 8 ppm after 

1 h and finally to a 2 ppm after one day. Visually, as can be observed in Figure 7.16, the MB 
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dilution seems to be less blueish after 24 h compared with the initial dilution. Contrary, the 

swollen scaffold presents a bluing as a result of dye absorption, confirming the successful 

absorption of the methylene blue by the scaffold. According to the Equation 2.3 a removal 

percentage of 34±7% after 1 h of exposure and of 86±2% after 24 h was obtained, 

confirming the high efficiency of the absorption capacity of the WBPUU/CNCis scaffolds.  

Table 7.4 Removal efficiency of the WBPUU0.5is scaffold and the remaining methylene 

blue concentration of the dispersion 

Time 

(h) 

Removal efficiency 

(%) 

Methylene blue concentration 

(ppm) 

0 - 12±0.0 

1 34±7 8±1.0 

6 62±2 4±0.2 

24 86±2 2±0.2 
 

 

  

  

Figure 7.16 Dispersion of methylene blue (12 ppm) at t = 0 h (left) the same methylene 

blue dispersion at t = 24 h (right) (up) and aspect of the scaffold before the immersion in 

MB (left) and after 24 h of immersion in MB (right) (down)  
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7.2.3 Conclusions 

Shape customized scaffolds based on WBPUU/CNCis were prepared successfully with 

different CNC content by DIW 3D-printing and freeze drying technique. As a result, porous 

scaffolds with the desired shape were obtained. Additionally, some of the prepared scaffolds 

were immersed in CaCl2 before freeze drying obtaining a compact rigid shell according to 

SEM images as a result of the ionic crosslinking between the Ca2+ and the WBPUU particles. 

All systems were characterized from the physicochemical, thermal, mechanical and 

morphological viewpoint. The capacity of absorbing dyes was also evaluated in order to 

propose a potential application of this material as absorbing material.  

The results showed that the addition of CNC to the prepared scaffolds provide a more 

homogeneous porous structure, having a smaller pore size as the CNC content increased as 

was observed by SEM. Regarding the water absorption capacity of the WBPUU/CNCis 

scaffolds, the aforementioned homogeneous porous structure provided by the addition of 

CNC as well as the hydrophilic nature of CNC resulted in an increase of the swelling as the 

CNC content increase.  

The pieces immersed in CaCl2, contrary, showed a compact rigid shell surrounding the 

porous scaffold as a result of the ionic crosslinking produced by the reaction of the Ca2+. 

This shell resulted in scaffolds presenting much higher compression modulus and strength 

as well as lower densification strain compared with the non-crosslinked ones. However, this 

external shell hampers the water absorption capacity, showing lower absorption values 

compared with the non-crosslinked systems. 

Finally, the dye absorption capacity of the prepared WBPUU/CNCis scaffolds was tested 

against the methylene blue, a cationic dye. For that purpose, the WBPUU0.5is system was 

selected due to its higher swelling. The results confirmed the efficiency of the prepared 

scaffolds to absorb a cationic dye, presenting a removal efficiency of 86±2 % in 24 h, and 

decreasing the MB concentration of the dissolution from an initial 12 ppm to a much lower 

2 ppm after 24 h. These results confirmed the viability of using the prepared WBPUU/CNCis 

scaffolds as potential materials for the absorption of cationic dyes such as MB. 
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 7.3 WBPUU/plant extract based inks for the 3D-printing of antibacterial 

materials 

7.3.1 Experimental part 

7.3.1.1 Salvia extract  

Plant extract was obtained from commercial Salvia officinalis L. plant by infusion method. 

This extract was chosen due to its recognized antimicrobial activity according to the literature 

[28] as well as for its proven capacity to be incorporated into WBPUU dispersion to prepare 

WBPUU/plant extract films with antibacterial properties [18]. The method consists initially 

in the addition of 20 g of ground plant to 800 mL of boiling distilled water. After 5 min, the 

suspension was filtered by vacuum filtration and freeze dried, obtaining as result extract rich 

in bioactive compounds in powder form. The different intermedia products obtained in each 

step of the infusion method are shown in Figure 7.17. 

  

Raw material Infusion process 

  

Freeze drying process Freeze dried extract 

Figure 7.17 Images of raw material, infusion process, freeze drying process and freeze dried 

extract of Salvia 
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In order to verify the extraction efficiency of the process, the Equation 6.1 was used to 

establish the efficiency percentage.  

Efficency (%)=
Wi-Wf

Wi

                     (6.1) 

where Wi and Wf are the initial weight of ground plants and the weight of the resultant 

extract, respectively. According to this equation, an efficiency of the process of 16±2% was 

obtained for the obtaining process of bioactive Salvia extract. These result are in accordance 

with the ones obtained in a previous work for the obtaining of Salvia extract by infusion 

method [29]. 

7.3.1.2 Synthesis of WBPUU/Salvia inks and preparation of the WBPUU/Salvia/CNCes 

nanocomposites 

Waterborne polyurethane urea dispersion with a PCL/PEG ratio of 0.8/0.2 was synthesized 

following a two-step polymerization process as was previously described in Chapter 3. For 

the addition of the plant extract by the in situ method, the extract was dissolved in the 

deionized water employed in the phase inversion step. In this way, the extract was 

incorporated successfully to the dispersion during the formation of the particles. As a result, 

after the phase inversion step a liquid dispersion with high viscosity was obtained, presenting 

a solid content of 29 wt%. 

Regarding the preparation of the WBPUU/Salvia/CNCes nanocomposite inks, the addition 

of the nanoentities has been carried out by ex situ method as was explained in Chapter 6. 

That is, by adding the cellulose nanocrystals to the previously synthesized WBPUU/Salvia 

dispersion. The nanoentities were successfully dispersed into the WBPUU/Salvia dispersion 

by vigorous mechanical stirring (Ultraturrax 12000 rpm) obtaining an increase of the viscosity 

of the dispersion due to the physical interactions between the CNC and the WBPUU/Salvia 

particles.  

The Salvia extract content has been fixed to a 3 wt% for all systems, which according to the 

literature is enough to provide an antibacterial activity in the WBPUU films [18]. Contrary, 

regarding the addition of CNC ex situ, a 2 and 3 wt% were added in order to reach suitable 

printing performance of the WBPUU/Salvia inks. The samples were coded as WBPUUS for 

systems containing Salvia and WBPUUSXes for the systems containing Salvia and ex situ added 

CNC, where X was referred to the CNC weight content in the polyurethane urea.  
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The different prepared systems are enlisted in Table 7.5 whereas the appearance of neat 

WBPUUS, WBPUUS2es and WBPUUS3es dispersions are shown in Figure 7.18.  

 

 

 

 

 

 

 

 

Figure 7.18 Appearance of the WBPUU, WBPUU/Salvia and WBPUU/Salvia/CNCes 

inks 
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Table 7.5 Designation and composition of the WBPUU/Salvia based inks 

System 
Salvia content 

(%) 

CNC content 

(%) 

WBPUUS 3 0 

WBPUUS2es 3 2 

WBPUUS3es 3 3 
 

 

For comparative purpose, the WBPUU29 ink synthesized in Chapter 4 and denoted as 

WBPUU was analysed together with the inks containing Salvia. The WBPUU matrix 

presented a white and translucent appearance, whereas all systems containing Salvia, that is 

WBPUU/Salvia and WBPUU/Salvia/CNCes presented a browner like aspect. This aspect is 

in accordance with the used Salvia extract, presenting the systems containing the extract the 

same tonality than the extract itself. 

Additionally, the WBPUUS systems seems to present visually lower viscosity compared with 

WBPUU matrix, despite presenting similar solid content percentage. 

7.3.1.3 DIW 3D-printing of WBPUU/Salvia and WBPUU/Salvia/CNCes inks and preparation of 

the scaffolds 

The different prepared inks were printed by DIW 3D-printing using the equipment shown 

in Chapter 2 and following the printing condition displayed in Chapter 4. 

The samples were printed in a “coin” form, presenting 20 mm of diameter and 5 mm of 

height. After the printing some of the pieces were dried at room temperature, resulting in a 

decrease of the volume due to the solvent evaporation whereas the rest of the samples were 

freeze dried. The process, consist on a freezing process of the printed samples during 24 h 

followed by a freeze drying process (-60 ºC and 0.1 Pa during 24 h). As a result, porous 

scaffolds were obtained with the designed form. In Figure 7.19 an illustration of the steps 

of both process is shown, that is, the drying in air of the printed sample and the freeze drying 

process respectively.  
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Figure 7.19 Freeze drying process and drying process (up) and air drying process (down) 

of WBPUUS2es ink 

 

7.3.2 Results and discussion 

7.3.2.1 Characterization of the dispersion 

Taking into account the visually observed decrease of viscosity for the system containing 

Salvia extract added in situ compared with the WBPUU matrix, both the particle size and the 

dispersion stability of the ink were studied by DLS and Z potential so as to analyse the 

influence of the extract into the particles and the dispersion itself. The obtained results of 

particle size and Z potential of both WBPUU and WBPUUS matrices are shown in Table 

7.6. Analysing the obtained results, a decrease of the particle size was observed as the result 

of the addition of Salvia extract. As was explained before, due to the chemical structure of 

some of the bioactive compounds, some extracts can promote their activity as natural 

surfactants [30–32], facilitating the dispersion formation, and thus, contributing to the 

obtaining of smaller particles. These results agreed with the ones observed in previous works, 

where the addition of small amounts of Salvia extract during the phase inversion step resulted 

in a decrease of the particle size of the dispersion [29].  

Regarding the stability of the dispersions, the Z potential of the system containing Salvia 

showed values of -41.45±0.9 mV, which represented an increase of the stability of the 

dispersion compared with the observed one for WBPUU matrix. The lower particle size 

obtained in WBPUUS allowed to a higher stability of the dispersion, however both systems 

showed Z potential values corresponding with stable dispersions [33]. 
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Table 7.6 Characterization of the WBPUU and WBPUUS dispersions. Influence of the 

in situ Salvia addition 

System 
Particle size 

(nm) 
Polydispersity 

Zeta potential 

(mV) 

Solid content 

(wt%) 

WBPUU 113±12 0.16±0.01 -38.7±0.6 29 

WBPUUS 75±10 0.08±0.02 -41.45±0.9 29 
 

Additionally, the influence of the in situ addition of Salvia in the morphology of the WBPUU 

was also studied by AFM. Figure 7.20 shows the phase images of the WBPUU matrix and 

WBPUUS systems. Studying the obtained phase images, it can be observed that despite the 

inclusion of Salvia presented a notorious influence as far as the formation of the dispersion 

is concerned, in the case of the morphology, no noticeable differences were observed, 

obtaining similar phase images in the case of WBPUU and WBPUUS. 

  

Figure 7.20 AFM phase images of WBPUU and WBPUUS 

 

7.3.2.2 Rheological characterization of the WBPUU/Salvia and WBPUU/Salvia/CNCes inks 

So as to study the influence of the Salvia extract in the WBPUU based inks, flow test was 

performed to the different WBPUU/Salvia systems and compared with that without Salvia 

(WBPUU). The viscosity curves showed that the addition of plant extract modify the 

viscosity of the WBPUU based ink, showing lower values the WBPUUS comparing with 

WBPUU (Figure 7.21). This decrease of the viscosity can be attributed to the hydrophilic 
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groups of the phenolic compounds presented in the extract, promoting the dispersion 

formation and posterior stability of the WBPUU particles, acting as surfactant [34]. This 

slight decrease of the viscosity with the in situ addition of small amounts of Salvia into 

WBPUU dispersion was previously observed in a previous work, concretely for an in situ 

addition of 1 wt% of Salvia [29]. 
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Figure 7.21 Viscosity curves of WBPUU, WBPUU/Salvia and WBPUU/Salvia/CNCes 

systems. Printing shear rate at 19 s-1 (----) 

 

Regarding the addition of CNC by ex situ method, as was observed in Chapter 6, it resulted 

in an increase of the viscosity in all shear rate range. In this case, the addition of the Salvia 

extract also modifies the rheological behaviour, presenting WBPUUS2es slightly lower values 

than WBPUU2es analysed in the Chapter 6 (7305 vs 8553 Pa s at 0.01 s-1; 27 vs 44 Pa s at 19 

s-1 and 5 vs 19 Pa s at 100 s-1). Taking into account the lower values obtained for WBPUUS 

compared with WBPUU, the addition of CNC did not modify this behaviour. Finally, the 

addition of the extract did not modify the previously observed shear thinning behaviour of 

the WBPUU based inks, which is an important parameter so as to obtain a successful printing 

performance. 
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For comparative purposes with systems proposed in other chapters, viscosity of WBPUUS3es 

as a function of the shear rate is represented in Figure SC.1 at page 268 of the Appendix C. 

The printability of the inks containing Salvia was studied by determining their yield point and 

flow point studying the variation of the storage and loss moduli as a function of the shear 

stress as in previous chapters. The obtained curves are represented in Figure 7.22 whereas 

the calculated yield and flow point parameters are displayed in Table 7.7. 
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Figure 7.22 G’ () and G’’ (----) as a function of shear stress (T = 22.5 °C). 

Determination of yield point (   )  and flow point (   ) in WBPUU, WBPUU/Salvia and 

WBPUU/Salvia/CNCes systems 

 

Analysing the obtained results, lower yield point and flow points values were observed for 

WBPUUS comparing to the WBPUU confirming the influence of the Salvia extract in the 

rheological parameters. Regarding the addition of CNC, as happened in Chapter 6, the ex situ 

addition of the nanoentities resulted in an increase of both yield and flow point, presenting 

the WBPUUS2es lower values than the same system without Salvia, that is WBPUU2es. 

However, the addition of 3 wt% CNC results in an ink with yield point and flow point values 



Applications of the printed pieces from PCL/PEG based WBPUU inks via DIW 3D-printing  

217 

comparable to the WBPUU/CNC inks in Chapter 5 and 6, that showed the best printing 

performance.  

Table 7.7 Determination of yield point, flow point, FTI and parameters obtained from 

the adjustment to Herschel Bulkley model (σ-σy=Kẏn) of WBPUU inks containing 

CNCes and Salvia 

System 

Yield 

point 

(Pa) 

Flow 

point 

(Pa) 

FTI 

Herschel Bulkley model 

K 

index 

(Pa s n-1) 

n 

index 
R2 

WBPUU 44 562 13 177 0.15 0.92 

WBPUUS 23 173 8 116 0.35 0.98 

WBPUUS2es 104 640 6 208 0.34 0.91 

WBPUUS3es 173 733 4 235 0.18 0.90 
 

 

For comparative purposes with systems proposed in other chapters, yield point of WBPUUS3 

as a function of the shear stress is represented in Figure SC.2 at page 269 of the Appendix 

C. 

In order to analyse the behaviour of the inks as a function of the shear rate, the experimental 

data of the studied WBPUU, WBPUU/Salvia and WBPUU/Salvia/CNCes inks were adjusted 

to the Herschel Bulkley model. The proposed model presents a good correlation with the 

experimental data, showing R2 values over 0.9. From the adjustment of the theoretical model, 

K index, and n index were obtained for the different studied inks. All parameters, are 

reported in Table 7.6. The inclusion of Salvia extract resulted in a decrease of the K index, 

resulting in less structured inks. Additionally, the increase of the flow index illustrates a 

decrease of the shear thinning behaviour which is observed in all systems. Regarding the ex 

situ addition of CNC, as observed in Chapter 6, the inclusion of the nanoentities after the 

synthesis resulted in an increase of consistency of the ink as the CNC content increased. 

However, for the WBPUUS2es ink, the obtained K index and n index, still are different to the 

ones without the plant extract displayed in Chapter 6. However, the addition of a 3 wt% 

CNC, results in an ink (WBPUUS3es) with K and n values comparable to WBPUU2es of 

Chapter 6 and WBPUU0.5is of Chapter 5, that showed the best printing performance. 

Moreover, mechanical spectroscopy was performed with the prepared systems to analyse the 

shape fidelity of the potential inks. For that purpose, initially the storage and loss moduli 

where represented as a function of the strain, maintaining the frequency at 1 Hz, so as to 
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determine the LVR region where both moduli are independent of the strain. The results, 

which are represented in Figure 7.23 showed G’ over G’’ in all systems, presenting a plateau 

which correspond to the LVR region until 1%, and is followed by a decrease of both G’ and 

G’’ until the crossover of both moduli, illustrating the destruction of the structured network. 

Regarding the influence of the Salvia extract, its incorporation modified the behaviour of the 

WBPUU matrix, presenting as expected lower values of both G’ and G’’. 
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Figure 7.23 G’ (♦) and G’’ (◊) as a function of strain (T = 22.5 °C) of WBPUU, 

WBPUU/Salvia and WBPUU/Salvia/CNCes systems at 1 Hz 

 

Moreover, taking into account the LVR limit of 1% for all systems, the storage and loss 

moduli were represented as a function of the frequency with a fixed strain of 1%. The 

obtained G’ and G’’ curves are displayed in Figure 7.24, whereas the measured values of G’, 

G’’ and tan  are displayed in Table 7.8. 



Applications of the printed pieces from PCL/PEG based WBPUU inks via DIW 3D-printing  

219 

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

G
', 

G
'' 

(P
a)

Frequency (Hz)

 WBPUU

 WBPUU
S

 WBPUU
S
 2

es

 WBPUU
S
3

es

 

10
-1

10
0

10
1

10
-2

10
-1

T
an

 

Frequency (Hz)

 WBPUU

 WBPUU
S

 WBPUU
S
2

es

 WBPUU
S
3

es

 

Figure 7.24 G’ (♦) and G’’ (◊) of WBPUU, WBPUU/Salvia and WBPUU/Salvia/CNCes 

(up) and tan (down) as a function of the frequency (T = 22.5 °C) 
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Table 7.8 Storage modulus, loss modulus and tan  values at 1 Hz and structure 

recovery percentage of inks with Salvia and Salvia/CNCes 

System 

Storage 

modulus 

(Pa) 

Loss modulus 

(Pa) 
Tan  

Structure 

recovery 

(%) 

WBPUU 1033 296 0.29 84 

WBPUUS 824 390 0.23 70 

WBPUUS2es 2373 349 0.15 86 

WBPUUS3es 3633 441 0.12 88 
 

 

Regarding the in situ addition of Salvia, as happened with the viscosity and the yield point, 

resulted in a decrease of both G’ and G’’ illustrating a less structured network compared with 

the matrix, which will present problems to maintain the given shape. Regarding the ex situ 

addition of CNC to systems containing Salvia, as happened in Chapter 6 for the ex situ 

addition of CNC, resulted in an increase of both storage and loss moduli as the CNC content 

increased, leading to the obtaining of more structured inks, representing an improvement of 

the shape fidelity. However, this increase of G’ and G’’ is lower comparing the same amount 

of CNC in systems with and without Salvia, presenting WBPUU2es system a storage modulus 

of 2736 Pa at 1 Hz in contrast with 2373 Pa observed in WBPUUS2es at the same frequency, 

illustrating the surfactant effect of the plant extract which resulted in more liquid dispersions. 

However, regarding the tan WBPUUS presented slightly lower values compared with the 

WBPUU matrix, which can be correlated with a system with slightly higher elastic behaviour. 

In the case of the ex situ addition, the clear decrease of the tan illustrates an increase of the 

elastic behaviour compared with the matrix. This inks will show a highly cohesive thread 

when are extruded due to the aforementioned elastic behaviour which resulted in a 

recognizable patter when the DIW 3D-printing performance is carried out. According to the 

criteria proposed by Li et al. of a minimum storage modulus of 103 Pa to obtain inks with 

good shape fidelity [35], both systems containing CNC presented acceptable values, whereas 

regarding the WBPUU and WBPUUS, the former presented values just over the minimum 

whereas the latter showed lower values, suggesting a poor shape fidelity.  

For comparative purposes with systems proposed in previous chapters, the storage and loss 

moduli of WBPUUS3es as well as the tan  as a function of frequency is represented in Figure 

SC.3 and SC.4 at pages 270-271 of the supplementary material. Finally, WBPUUS, 

WBPUUS2es and WBPUUS 3es were represented in Figure SC.6 and SC.7 at pages 273-274 
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so as to compare their shape fidelity with other systems in a storage modulus vs tan  plot. 

The results situated the WBPUUS2es system in the area of appropriate shape fidelity delimited 

by the results observed in the literature, whereas WBPUUS3es is mapped just above the upper 

limit. WBPUUS contrary, is situated under the lower limit, illustrating its poor shape fidelity 

due to its highly viscous behaviour. 

The structure recovery of the Salvia containing inks was also studied, so as to analyse the 

influence of the plant extract addition in the capacity of the inks of recovering their initial 

stage after being printed. For that purpose, a structure recovery test was performed to the 

WBPUU, WBPUUS and WBPUUS/CNCes inks using the procedure proposed in Chapter 2. 

The results of the structure recovery test of the inks are represented in Figure 7.25, whereas 

the calculated structure recovery percentages are displayed in Table 7.8. 
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Figure 7.25 Structure recovery test of WBPUU, WBPUU/Salvia and 

WBPUU/Salvia/CNCes based inks (T = 22.5 °C) 

 

The results confirmed the influence of the Salvia extract observed previously on the 

rheological properties, presenting WBPUUS lower recovery than the WBPUU. The addition 

of CNC ex situ, as happened in Chapter 6 resulted in an increase of the percentage of recovery 
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obtaining values above 85%, which according to the literature is a recommendable value for 

the DIW 3D-printing application [36]. 

Finally, the different Salvia containing inks together with WBPUU were printed by DIW 3D-

printing in a “coin” form. The results displayed in Figure 7.26 showed the different pieces 

after being printed, prior to the drying process 

  

  

Figure 7.26 DIW 3D-printing of the different prepared inks: WBPUU, WBPUUS, 

WBPUUS2es and WBPUUS3es 

Studying the obtained pieces, the addition of Salvia extract during the synthesis of the 

WBPUU matrix did not result in an appreciable modification of the printing performance, 

presenting both system a good printability but a very poor shape fidelity due to their so 

viscous behaviour. Additionally, the low yield point of these inks led to the spread of the ink 

after the printing as well as to the collapse of the 3D construct by its own weight. Regarding 

the ex situ addition of CNC to the systems synthesized with Salvia extract, as happened in 

Chapter 6, the obtained pieces maintain better the shape due to the higher structuration of 

the inks, resulting in pieces that maintain the given 3D multilayered construct without 

collapsing. In the case of the system with a 3 wt% of CNC, despite presenting similar shape 

fidelity compared with WBPUUS2es the printed piece presented a different aspect, owing to 

WBPUU
S
 WBPUU 

WBPUUS2es WBPUUS3es 
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its higher content in CNC. WBPUUS3es presented a higher elastic behaviour, as was observed 

for his lower tan  value, leading to the obtain of an ink with higher structuration. This lower 

tan  resulted in a decrease of the merging capacity of the layers, obtaining a printed piece 

where the printed pattern is clearly recognizable. In contrast, WBPUUS2es presented a better 

cohesion between layers due to its more viscous behaviour, resulting in a homogeneous 

merging of the ink but maintaining a good reproducibility of the CAD construct. 

7.3.2.2 Characterization of the printed pieces 

In order to study the influence of the addition of Salvia extract in the WBPUU based inks 

apart from the rheology, the main functional groups of neat components and the interactions 

between Salvia extract and WBPUU were studied by FTIR. The spectra of the neat WBPUU, 

WBPUU/Salvia and WBPUU/Salvia/CNCes systems as well as the one corresponding to the 

Salvia extract are displayed in Figure 7.27 whereas an amplification of the N-H and carbonyl 

region between 4000 and 2000cm-1 and 1800 and 1600 cm-1 respectively is displayed in 

Figure 7.28. 
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Figure 7.27 FTIR spectra of WBPUU, WBPUU/Salvia and WBPUU/Salvia/CNCes inks 

and Salvia extract 
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Figure 7.28 Amplification of the FTIR in the 4000-2000 cm-1 region (up) and 2000-1000 

cm-1 region (down) 
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As was observed in previous chapters, the polyurethane ureas presented two main regions in 

the ranges 3500-3100 cm-1 [37] and 1800-1600 cm-1 [38], corresponding to the N-H and C=O 

of urethane and urea groups respectively. In the case of the neat Salvia, a broad peak is 

observed in the interval between 3500 and 3000 cm-1, related to the hydroxyl groups of the 

bioactive compounds present in the extract, such as phenolic ones [16]. Additionally, the 

band situated around ~1700 cm-1 is assigned to the C=O of the carboxylic groups of phenolic 

compounds, whereas the peak situated around ~1590 cm-1 corresponded to the C=C of 

aromatic rings [39]. 

Analysing the spectra of the WBPUU/Salvia and WBPUU/Salvia/CNCes systems, an 

increase of the intensity of the band situated between 3500 and 3000 cm-1 was observed, 

illustrating the overlapping of the signal of the neat WBPUU with the one corresponding to 

hydroxyl groups presented in the bioactive extract. The band assigned to the C=O of 

urethane and urea groups [38] for the systems containing CNC is translated towards lower 

wavelength in the same way as observed previously with the addition of the nanoentities. 

Regarding the inclusion of Salvia, the band corresponded to C=O at the obtained spectrum 

did not show any displacement with the addition of Salvia, showing a similar wavelength than 

the WBPUU. 

Moreover, the influence of the plant extract in the thermal stability of the printed pieces, was 

studied by TGA. The weight curves and their derivative curves were displayed in Figure 

7.29, whereas the degradation temperatures of the different systems are displayed in Table 

7.9. The degradation curve of the Salvia extract showed a continuous loss of weigh from 30 

ºC. After an initial weight loss corresponding to the humidity loss, most of the weight loss 

occurred between 150 and 400 ºC, assigned to decomposition of polysaccharides, obtaining 

a residue higher than 40% remained after the degradation process, as also seen in other plant 

extracts [40,41]. Contrary WBPUU matrix, the WBPUU containing Salvia and the 

WBPUU/Salvia/CNCes nanocomposites showed a two-step degradation as was observed in 

previous chapters for this type of WBPUU. Despite the addition of CNC by ex situ method 

resulted in an increase of the thermal stability as was observed in Chapter 6, the presence of 

Salvia extract in the WBPUU backbone resulted in an early weight loss of the composites 

due to the aforementioned lower thermal stability of the Salvia extract. Concretely, systems 

containing Salvia extract presented a lower To compared with the WBPUU matrix.  
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Figure 7.29 Weight curves (up) and DTG curves (down) of WBPUU, WBPUU/Salvia 

and WBPUU/Salvia/CNCes nanocomposites  
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Table 7.9 Initial degradation and maximum degradation temperatures of WBPUU, 

WBPUU/Salvia and WBPUU/Salvia/CNCes nanocomposites 

System T0 (°C) Td (°C) 

WBPUU 246 310 

WBPUUS 236 310 

WBPUUS2es 232 355 

WBPUUS3es 241 382 
 

 

Analysing the DTG curves, Figure 7.29 (down), the signal corresponded to the main 

degradation process in systems containing CNC sweeps towards higher temperatures as a 

result of the effective interactions between the matrix and CNC and the stabilizing effect of 

the CNC, being higher the temperature of the peak as the CNC content increased. The 

addition of Salvia, contrary, did not affect the main degradation process, showing WBPUUS 

similar Td compared with the WBPUU matrix. 

7.3.2.4 Antimicrobial properties of the WBPUU/Salvia 

Finally, antimicrobial test has been carried out by the methodology explained in the 2.2.10 

section of Chapter 2. By this way, the prepared WBPUUS3es scaffolds was tested against 

Gram negative Escherichia coli and Gram positive Staphylococcus aureus to demonstrate the 

antimicrobial activity of the ink. For comparative purpose, a scaffold of the WBPUU matrix 

without Salvia extract has been also tested, as well as the Salvia extract in powder form to 

confirm the antimicrobial properties of the pure extract observed in the literature [16,42]. 

The results of the obtained halo of inhibition after 24 h is displayed in Table 7.10, whereas 

the images of the samples after the test are displayed in Figure 7.30 and 7.31 for E. Coli and 

S. Aureus respectively. 

The WBPUU showed an absence of antimicrobial activity against E. Coli, not presenting any 

sign of inhibition halo. Contrary, in the case of the samples tested against S. Aureus, one of 

the studied samples of WBPUU presented an inhibition halo of 1 mm after 1 day of 

incubation, as can be observed in Figure 7.31, suggesting that the WBPUU system can have 

some bacteriostatic properties. However, the absence of inhibition zone observed in the 

other studied samples of WBPUU system suggested that these property was very weak.  
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Figure 7.30 Antimicrobial tests of WBPUU, WBPUUS3es and Salvia extract against E. 

Coli after 1 day of incubation at 37 ºC 
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Figure 7.31 Antimicrobial tests of WBPUU, WBPUUS3es and Salvia extract against S. 

Aureus after 1 day of incubation at 37 ºC 
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Table 7.10 Halo of inhibition of the prepared system after 24 h of exposition to E. Coli 

and S. Aureus 

System 
Halo of inhibition after 24h (mm) 

E. Coli S. Aureus 

WBPUU 0±0 0.5±0.5 

WBPUUS3es 3±0 1.75±0.25 

Salvia extract 3±0 5±0 
 

 

The printed scaffolds containing Salvia extract presented after 1 day of incubation clear 

inhibition halos in all samples, presenting values clearly higher than the WBPUU matrix. 

These results confirmed the increase of the antibacterial and bacteriostatic properties of the 

ink containing Salvia. Comparing the obtained results for both bacteria, the WBPUUS3es 

presented higher antibacterial activity against E. Coli, showing a higher inhibition halo than 

the observed one against S. Aureus. Additionally, the Salvia extract were also tested in the 

form of powder, so as to confirm the antimicrobial and antibacterial properties observed in 

the literature. The obtained results confirmed the antibacterial properties of the plant extract, 

presenting higher inhibition halos than the WBPUUS3es in the case of S. Aureus, and the same 

size in the case of E. Coli. The lower amount of Salvia extract embedded in the WBPUU 

compared to the pure extract explain the lower halos of the former. 

Anyway, according to the literature the extraction method of the extract plays a major role 

as far as the obtaining of the higher amount of polyphenolic compounds is concerned. A 

more effective extraction of the Salvia extract than the used one in the present work could 

lead to the obtaining of extract richer in polyphenolic and other compounds, resulting in an 

increase of the antibacterial properties of both extract and inks containing the extract. 

7.3.3 Conclusions 

In this part, WBPUU/Salvia extract based inks were prepared in order to obtain printable 

inks presenting antimicrobial activity. Additionally, CNC was added ex situ with the aim of 

improving the printing performance of the inks. 

The rheological properties showed a decrease of the viscosity, yield point and storage 

modulus with the addition of the Salvia extract, suggesting that this plant extract acts as a 

surfactant when are added during the formation of the particles, leading to the decrease of 

the rheological parameters. This behavior was confirmed by the DLS and Z potential 

measurements, where lower particle size as well as more stable dispersion were obtained with 
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the inclusion of Salvia extract in the synthesis of the WBPUU. Regarding the addition of 

CNC via ex situ method, as was observed in Chapter 6, the addition of the nanoentities after 

the synthesis resulted in an increase of the shape fidelity, obtaining a final piece with optimal 

appearance. In this case, the WBPUUS3es exhibits the best results. 

Finally, the antimicrobial activity of the WBPUU/Salvia system was tested against Gram 

positive S. Aureus and Gram negative E. Coli, in order to confirm the viability as potential 

inks with antibacterial properties. The performed tests showed an increase of the antibacterial 

activity in the printed pieces from the WBPUUS3es system compared with the WBPUU 

matrix, confirming the successful incorporation of the Salvia extract, which provided to the 

printed pieces with this ink antibacterial properties.  
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8. GENERAL CONCLUSIONS AND FUTURE WORK 

 

 

 

 

 

 

8.1 General conclusions 

This work was dedicated to WBPUU and its capability to be a good candidate for production 

of pieces by using DIW 3D-printing. The scientific aim of this work was to establish a 

relationship between the structure of the WBPUU and properties. The technological 

challenge was to prepare a series of inks suitable for DIW 3D-printing based on a WBPUU 

dispersion and confirmed. The inks were printable and the quality of the printing 

performance was adapted.  

In this way WBPUU with different PCL/PEG molar ratio in their soft segment were 

synthesized and characterized in order to analyse the effect of the inclusion of PEG in the 

properties of the dispersions and films prepared from the dispersions. Regarding the former, 

the addition of PEG resulted in an increase of the particle size as well as in the decrease of 

the stability, observing the apparition of a core shell particle structure in the systems 

containing more amount of PEG. Moreover, the addition of PEG resulted in an increase of 

the elongation at break as well as in an increase of the hydrophilicity of the films, presenting 

however a decrease of the thermomechanical stability. Furthermore, systems containing high 

amounts of PEG showed a physical gelation as a result of the higher particle size and 

hydrophilicity of PEG, resulting more interesting for their application in DIW 3D-printing. 

In addition, the influence of the PEG molecular mass into the WBPUU was also studied 

obtaining that at low molecular mass of PEG (400 g mol-1) the dispersion was too stable 

whereas at the highest molecular mass (1500 g mol-1) the dispersion was not stable obtaining 

very poor properties. As a result of this section the system containing a 20 wt% of PEG with 

a molecular mass of 1000 g mol-1 in its SS was the better candidate and selected. 

Once the WBPUU ink was selected, the influence of the solid content of the dispersion on 

the printing performance of the inks was studied by means of rheological measurements so 
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as to determine the ideal solid content for a successful printing performance. The results 

showed that the solid content variation pilots the rheological properties obtaining inks with 

higher viscosity and higher structuration as the solid content increased. However, systems 

presenting very high viscosity and yield point (WBPUU36 and WBPUU46) were not possible 

to extrude by DIW 3D-printing. Taking into account this limitations, the system containing 

32 wt% of solid content presented the best printing performance. 

Moreover, environmental friendly and water dispersible CNC were used as viscosity 

modulators in order to improve the printing performance of the inks. For that purpose, two 

strategies were proposed to incorporate CNC to the WBPUU based dispersions, the in situ 

addition of CNC and the ex situ one, which differ in the moment that the nanoentities were 

added to the WBPUU ink. In the former, the CNC are added during the synthesis, taking 

advantage of the water addition during the phase inversion, whereas the latter contemplated 

the addition of the nanoentities after the synthesis, dispersing the CNC by vigorous stirring. 

Different amounts of CNC were added to the inks by both methods and the rheological 

behaviour of the obtained nanocomposites was studied, as well as the properties of the pieces 

printed from the inks. The microscopy images of the inks confirmed that the different 

addition methods resulted in different dispositions of the CNC in the WBPUU particles and 

dispersion. In the in situ method the addition of CNC to the WBPUU prepolymer favours 

chemical interactions which resulted in a greater increase of the rheological properties. For 

ex situ addition, the nanoentities are disposed around the particles interacting physically. The 

latter resulted in a slighter modification of the rheological parameters presenting the system 

with 2 wt% CNC added ex situ method lower viscosity and storage modulus than 0.5 wt% 

CNC in situ one. Regarding the increase of the CNC content, as happened with the solid 

content resulted in an increase of all rheological properties, but in a slighter way. In this case, 

the system containing 0.5 wt% of CNC in situ and the one of 2 wt% of CNC ex situ presented 

the best printing performances. Regarding the influence of the addition method on the 

properties of the printed piece, the in situ addition of CNC resulted in pieces presenting 

higher Young modulus a thermomechanical stability as a result of the successful 

reinforcement of the CNC. Contrary, the ex situ addition of CNC presented a slighter 

modification of the mechanical properties and thermomechanical stability due to the lower 

interactions between the WBPUU and the CNC, presenting in this case a lower increase of 

Young modulus as well as a lower increase of the thermomechanical stability compared with 

the in situ method. 
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Two potential applications of the WBPUU inks were proposed and analysed to demonstrate 

their viability. Regarding the former, in order to obtain porous materials for the absorption 

of pollutants, scaffolds were prepared from the WBPUU/CNCis system by freeze drying 

technique. Different amounts of CNC were studied as well as different immersion times in 

CaCl2 previous to freeze dry, resulting in scaffolds presenting a panel of mechanical 

properties and morphologies. The improve of printing performance observed for inks 

containing CNC resulted in scaffolds with homogeneous porosity. Additionally, the inclusion 

of these nanoentities decreases the porous size, and thus increases the water absorption 

capacity as well as the rigidity of the scaffold. The immersion in CaCl2 resulted in the 

formation of a rigid non-porous shell around the scaffold as can be observed by SEM, which 

resulted in the obtaining of scaffolds with a higher rigidity and additionally, a lower water 

absorption capacity. Taking into account the obtained water absorption results, the 

WBPUU0.5is scaffold was tested against the cationic methylene blue dye. The results showed 

that the selected scaffold absorbed successfully the methylene blue dye, obtaining an 

interesting absorption efficiency up to 86% in 24 h.  

In a second part, Salvia extract was added by in situ method to a WBPUU based ink in order 

to obtain printable inks with antibacterial properties. The results showed that the inclusion 

of Salvia extract into the WBPUU ink resulted in a decrease of the particle size as well as in 

a decrease of the viscosity and storage modulus. In this case, the extract acts as emulsifier, 

leading to more stable dispersions presenting lower viscosity as well as lower particle size. So 

as to improve the printing performance of the inks, CNC was added after the synthesis. The 

ex situ addition of CNC gave to the WBPUUS ink the adequate increase of the viscosity, yield 

point and storage modulus which allow to obtain interesting printing performance. In this 

case the WBPUUS3es ink presented the best results. In addition, antibacterial tests were 

carried out to the prepared WBPUUS3es scaffolds against S. aureus and E. Coli bacteria, where 

the enhancement of the antimicrobial activity for both bacteria was observed after 24 h if 

comparing the scaffold containing Salvia extract with the one without it.  

 

8.2 Future works 

Based on this work and with the aim of continuing with the research in this field, different 

proposals are displayed, which can complete this work more thoroughly as well as can lead 

to suitable new outlines for other woks related with this field. 
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 Taking into account the interesting properties observed in the studied inks as well 

as the observed good printability, the study of the biocompatibility of the inks 

could be proposed, so as to analyse their possible implication in the human body. A 

positive result of biocompatibility, cytotoxicity and cellular adhesion studies can 

lead to promote some possible biomedical applications. In this context, the study of 

the viability of the prepared WBPUU/CNC scaffolds so as to promote cellular 

grown in their structure could represent a good way. 

 

 As was observed in Chapter 7, the WBPUU/CNC printed scaffolds were 

successfully used in order to remove the cationic methylene blue dye from an 

aqueous solution, thus, the study of the removal of other cationic pollutants could 

be carried out, such as some metals like cooper, or other cationic dyes such as for 

example malachite green. Additionally, give a greater insight into the absorption 

process of the cationic pollutant by studying the Langmuir isotherm and other 

methods so as to confirm the chemical reaction between the dye and the WBPUU. 

Finally, the absorption capacity of the methylene blue by WBPUU/CNC based 

scaffolds has been studied at neutral pH, so to complete with this study, the 

absorption capacity of the scaffolds at acid and basic medium should be tested.  

 

 Study the influence of the incorporation of Salvia extract by other routes, such as 

for example the ex situ method, that is, after the synthesis of the WBPUU matrix, 

on the rheology and the dispersion formation. Different combination of addition 

methods of both CNC and Salvia extract could lead to different disposition into the 

ink and different final properties of the ink. Additionally, the study of the addition 

of other interesting plants extracts in order to study their potential as additives to 

provide antibacterial or antimicrobial properties to the ink such as Melissa extract, 

or broccoli extract (Sulforaphane) is proposed. 

 

 In this work, the infusion method was used in Chapter 7 in order to obtain the 

extract from the Salvia. Despite obtaining extract presenting antibacterial 

properties, the use of different and more adapted methods could lead to the obtain 

of extract richer in polyphenols that allows to higher antimicrobial activity. 
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APPENDIX A 

ADJUSTMENT OF FLOW EXPERIMENTAL DATA TO 

RHEOLOGICAL MODELS AND YIELD POINT DETERMINATION 

 

 

 

A.1 Objective 

The objective of this appendix is to give a more insight view to the adjustment of the 

experimental data obtained from the flow test of the different inks to theoretical models as 

well as to the different yield point determination methods. So as to select the method that 

fits better the experimental data, four theoretical models were proposed and adjusted to the 

obtained data from the flow test and by means of their R2, the best one will be selected. 

Regarding the determination of the yield point, contrary, as explained in the introduction 

many authors give their own interpretation of the yield point based on the deviation of the 

G’ as a function of the shear stress (σ). In this context, four methods described in Table 1.3 

were selected, and the obtained yield point values were used for the Herschel Bulkley model, 

which contemplate the presence of the yield point. As happened with the models, the 

different R2 values of the adjusted data with the determined yield point values will lead to the 

selection of the method that fits better with the experimental data. 

A.2 Theoretical rheological models 

For this study, four rheological models were selected so as to fit with the experimental data: 

power law model, Herschel Bulkley model, Casson model and Bingham model, which are 

commonly used so as to describe the rheology of non-Newtonian fluids [1]. The equations 

of the different used models are displayed in Table SA.1. 

Table SA.1 Equations of the different studied rheological models 

Model Equation 
Determination 

parameters 
References 

Power law τ=K γ̇n K and n [2] 

Bingham τ=τO+μ
p
 μ

p
 [3] 

Herschel 

Bulkley 
τ=τy+Kh γ̇nh     Khand nh [4] 

Casson τ1/2=kOC
1/2

+kc
1/2γ̇1/2 kOC and kc [5] 
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A.2.1 Power law model  

The power law model also known as the Ostwald de Waele power law, is a mathematical 

model commonly used so as to describe, but only approximately, the behaviour of a real non-

Newtonian fluid. The mathematical expression is showed below: 

τ=K γ̇n              (SA.1) 

where τ is refered to the shear stress (Pa), γ̇ is the shear rate (s-1) , n is the fluid flow behaviour 

index which indicates the tendency of a fluid to shear thin and it is dimensionless, and K is 

the consistency coefficient which serves as the viscosity index of the system in Pa sn. The 

parameters K and n can be determined from a plot of log 𝜏 versus log γ̇ and the resulting 

straight line’s intercept is log K and the slope is n. In Figure SA.1 the graphical determination 

of the n and K parameters of the power law model is illustrated. 
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Figure SA.1 Representation of the graphical determination of power law parameters 

 

The power law model gives a good description of the rheological behaviour of non-

Newtonian fluids, however, it present drawbacks in high shear rate conditions [6]. 
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A.2.2 Bingham plastic model 

The Bingham plastic model is a two parameter model that is widely used in the drilling fluid 

industry to describe the flow characteristics of many type of non-Newtonian fluids. 

Mathematically can be described by the following equation. 

τ=τ0+μ
p
             (SA.2) 

where τ0 is the yield point and 𝜇𝑝 the plastic viscosity. This model is used so as to describe 

Bingham plastics, which presented a yield point and a plastic viscosity independent of the 

shear rate. 

The principal drawback of this model is the poor accuracy that present at very low shear rate 

and very high ones as well as its incapacity of describe the behaviour of fluids which 

presented a viscosity depending on the shear rate. 

A.2.3 Herschel Bulkley model  

The Herschel Bulkley model is an extension of the Bingham model, but considering a shear 

rate dependence of the viscosity. Mathematically is described as following: 

τ=τy+Kh γ̇nh    (SA.3) 

where τ is shear stress (Pa), γ̇ is the shear rate (s-1), τy is the yield point (Pa), Kh is the 

consistency index in Pa sn and nh is the flow index and is dimensionless.  

This model corrects the deficiency of the Bingham model substituting the plastic viscosity 

term in the Bingham model by a power law expression. If the yield point is determined by 

an independent experiment, the Kh and nh can be determined by linearizing the equation 

SA.3. In this case the parameters are determined from the plot of log (τ-τ0) vs log γ̇, being 

the intercept the log Kh and the slope nh. 

The principal drawback of this method is the challenged concept of yield point [7], where its 

incorrect determination by an independent experiment can lead to a poor accuracy of the 

model. 

A.2.4 Casson model 

The Casson rheological model is a structure based model used to describe the flow behaviour 

of viscoelastic fluids, presenting a more gradual transition from Newtonian fluid to the yield 

region. It is described mathematically as the following: 
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τ1/2=kOC
1/2

+kc
1/2γ̇1/2     (SA.4) 

 

where koc is Casson yield stress (Pa s), kc is Casson plastic viscosity in mPa.s, 𝜏 is shear stress 

(Pa) and  γ̇ is the shear rate (s-1) 

The corresponding parameters for the Casson model can be determined from the straight 

line that is obtained from the plot of the square root of the shear stress (τ1/2) against the 

square root of the shear rate ( γ̇1/2) with the slope kc and intercept koc.. The Casson yield 

stress is calculated as the square of the intercept and the Casson plastic viscosity is the square 

of the slope. 

A.3 Yield point determination methods  

As was explained in the introduction, the determination of the yield point, which is a key 

parameter so as to determine the printability of the inks as well as a necessary data in order 

to adjust the experimental data to the Herschel Bulkley model, still imply some contradictions 

in the literature. By definition, the yield point is a measure of the stress at which the network 

structure of the material starts to break down and hence starts flowing. Hence, inks 

presenting a yield point will act as a solid at stresses below this point and will flow at higher 

values.  

Table SA.2 Different yield point determination methods (also showed in Table 1.3) 

Author Determination method References 

Lille et al./Cyriac et al. Deviation of the G’ from linearity [8,9] 

Shih et al. Intercept between G’ and G’’ [10] 

Sharma et al. 10% of deviation of the G’ from linearity [11] 

De Graef et al. Onset of the deviation from linearity of the G* [12] 
 

  

All the methods displayed in Table SA.2 are based on the study of the curve obtained from 

the storage modulus or the complex modulus as function of the shear stress and only differ 

in the determination way of the yield point in that curve. 

A.4 Experimental part 

A.4.1 Yield point determination 

With the aim of selecting the yield point determination method that fits better with the 

experimental data, the experimental values obtained from the WBPUU27 systems were used 

so as to determine the yield point values by the proposed method observed in Table SA.2. 
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In Figure SA.2 the calculated yield points are plotted in the curve whereas in Table SA.3 

the yield point values are displayed as well as the R2 obtained when this values are translated 

to the Herschel Bulkley model. 
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Figure SA.2 Determination of the yield point by different methods presented in the 

literature: (   ) Cyriac et al., (   ) Shih et al., (   ) Sharma et al., (   ) De Graef et al. 

 

Table SA.3 Yield point values determined from the different methods for WBPUU27 

system 

Method 
Yield point 

(Pa) 

R2 of Herschel Bulkley 

model 

R2 of Herschel 

Bulkley model 

(above 1 s-1) 

Cyriac et al. 17 0.97 0.99 

Shih et al. 545 0.50 0.92 

Sharma et al. 245 0.81 0.99 

De Graef et al. 396 0.56 0.93 
 

 

Analysing the obtained results, the method proposed by Cyriac et al. seems to give a better fit 

with the obtained experimental data, showing the curve constructed by Herschel Bulkley 

model with this yield point a better R2 compared with the ones obtained by other methods. 
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The higher amount of valid data obtained by this method, allowed to have more available 

data to perform the linear regression, whereas high values, such as the ones obtained by the 

method proposed by De Graef et al., ruled out a lot of points. The log (-y) used for the 

determination of the K and n index of the Herschel Bulkley model is limited by the y, so 

high values of yield point resulted in multiple negative data whose log cannot be calculated. 

That being said, the method Cyriac et al. allowed to have more points to represent, and in this 

case resulted in a better fit of the experimental data, especially at low shear rates, representing 

better the behaviour of this system of inks as a function of the shear rate.  

A.4.2 Adjustment of the experimental data to the rheological models  

The experimental data obtained from the rheology flow test were adjusted to the proposed 

rheological model. In this case the system named as WBPUU27 and studied in Chapter 4 has 

been selected so as to illustrate the determination of the different parameters and to study 

the accuracy of the adjustment to the experimental data. In the Table SA.3 the experimental 

parameters of the WBPUU27 flow curve are displayed. 

Table SA.3 Experimental values of the WBPUU32 system 
 

Shear rate 
(s-1) 

Shear stress 
(Pa) 

0.0111 4.0934 

0.0154 7.4604 

0.0229 12.861 

0.0345 22.805 

0.0521 39.408 

0.0786 57.533 

0.119 63.234 

0.179 60.985 

0.271 61.481 

0.409 64.702 

0.618 68.622 

0.933 73.067 

1.41 78.311 

2.13 85.194 

3.21 91.994 

4.86 98.71 

7.33 107.33 

11.1 118.75 

16.7 132.5 

25.3 146.02 

38.2 163.45 

57.6 181.68 

87.1 209.41 

132 235.77 
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Regarding the power law model, following the methodology proposed previously, from the 

plot of log 𝜏 and log 𝛾̇ , the regression of the obtained points displayed in Figure SA.3 gave 

the following equation τ=1.79  γ̇0.31 with a R2 of 0.78. As can be observed at low shear rates 

the experimental data is deviated from the linearity affecting to the adjustment. From this 

equation the K and n index were calculated obtaining a value of 0.31 for n and 61.65 for K. 

These parameters were used so as to construct the flow curve proposed by the model which 

is displayed in Figure SA.4, obtaining a R2 of 0.963 in all the shear rate range and of 0.997 

in the range between (1 and 130 s-1). Analysing the obtained results, it can be observed the 

poor capacity of the power law model to fit with the experimental data at low shear rates due 

to the null consideration of this systems of the influence of the yield point. 
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Figure SA.3 Determination of K and n index for power law model 
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Figure SA.4 Experimental data of WBPUU27 and curve proposed by power law model 

 

Regarding the Bingham model, since its equation did not contemplate a plastic viscosity 

dependent of the shear rate, as is the case of this type of systems, the adjustment of this 

model was not carried out since the adjustment will be very poor. 

Taking into account the observed shear rate dependence, the Herschel Bulkley model could 

represent a more accurate model so as to describe the behaviour of the fluid. For the 

determination of the yield point, taking into account the results observed in A.4.1 section, 

the method proposed by Cyriac et al. is used in this case. From this method, a yield point of 

17 Pa was obtained and was used so as to determine the n a K index from the log vs log γ̇ 

plot as can be observed in Figure SA.5. As a result, a value of 0.249 and 61.39 were obtained 

for n and K respectively with a R2 of 0.97. Taking into account the obtained parameters, a 

flow curve was constructed according to the Herschel Bulkley model, obtaining as a result a 

good fit with the experimental data, presenting a R2 of 0.970 in all the shear rate range, and 

a R2 of 0.993 in the range between 1-130 s-1. The curve proposed by the Herschel Bulkley 

model is displayed in Figure SA.6. 
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Figure SA.5 Determination of K and n index for Herschel Bulkley model 
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Figure SA.6 Experimental data of WBPUU27 and curve proposed by Herschel Bulkley 

model 
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Finally, the experimental data was adjusted to the Casson model. For this purpose, according 

to the previously explained methodology, the Casson yield point (Pa s), and the Casson 

plastic viscosity were determined by plotting square root of the shear stress versus the square 

root of the shear stress. From the obtained curve, which is displayed in Figure SA.7, a value 

of 51.98 and 0.688 were obtained for koc and kc respectively. Taking the aforementioned 

parameters of the Casson model into account, a flow curve was construct obtaining a bad 

fitting with the experimental data as can be observed in Figure SA.8, obtaining a R2 of 0.83 

in all the shear rate range, and of 0.91 in the range between 1-130 s-1. 
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Figure SA.7 Determination of koc and kc index for Casson model 
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Figure SA.8 Experimental data of WBPUU27 and curve proposed by Casson model 

 

A.5 Conclusions  

In this appendix, the process of the selection of the most ideal determination method of the 

yield point as well as the selection process of the rheological model is displayed so as to give 

a greater insight into the criteria that has been followed in order to select the used method 

to characterize the synthesized inks. 

For that purpose, several rheological models as well as some yield point determination 

methods observed in the literature were used so as to fit with the experimental data of 

WBPUU27 system, and thus select the ideal methods for this concrete WBPUU based inks. 

Regarding the determination of the yield point, from among all the tested methods, the one 

proposed by Cyriac et al., which takes into account the deviation from the linearity in the G’ 

vs  plot, gave the best fit with the experimental data, resulting in a higher R2. Methods 

which consider higher values of yield point resulted in a lower fitting of the experimental 

data at low shear rate, resulting in a poorer adjustment between the data and the model. 
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Hence, in this work, the aforementioned method has been used in order to determine the 

yield point of the WBPUU inks. 

Moreover, as far as the selection of the rheological model is concerned, despite power law 

model presented a quite good correlation with the experimental data, its null consideration 

of the yield point resulted in a poor fitting at low shear rates. Contrary, the Herschel Bulkley 

model, which includes the influence of the yield point, gave better fitting in all the range, 

obtaining the better fit from among all studied rheological models. Thus, this method was 

used so as to fit all the experimental data obtained from the prepared WBPUU based inks.  

Finally, despite in this case the Herschel Bulkley model gave the best adjustment with the 

experimental data and the yield point determined by Cyriac et al. gave a better fit, the nature 

of the ink rules the selection of the better methods, thus, other systems will be better 

represented by other models and determination methods. 
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APPENDIX B 

INFLUENCE OF THE CNC ADDITION METHOD IN THE 

RHEOLOGICAL PROPERTIES OF WBPUU/CNC INKS 

 

 

 

 

B.1 Objective 

The objective of this appendix is to provide a supplementary information about the 

differences between the in situ and ex situ addition methods of CNC, detailed in Chapters 5 

and 6, respectively, as far as rheological properties is concerned. So as to give a greater insight 

into those differences, in this document the variation of the rheological properties obtained 

using both methods are plotted as a function of the CNC content to ease the comparison.  
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B.2 Comparison between the different evolution of the rheological 

properties when CNC addition by different methods  

 

 

 

 

 

 

0,0 0,5 1,0 1,5 2,0
0

5000

10000

15000

20000

25000

 ex situ addition

 in situ addition

V
is

co
si

ty
 a

t 
1
 s

-1
 (

P
a 

s)

CNC content (%)

 
Figure SB.1 Evolution of the viscosity measured at 1 s-1 of the WBPUU/CNC 

nanocomposites obtained adding CNC by different strategies (in situ and ex situ) as a 

function of the CNC content 
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Figure SB.2 Evolution of the viscosity measure at 19 s-1 of the WBPUU/CNC 

nanocomposites obtained adding CNC by different strategies (in situ and ex situ) as a 

function of the CNC content 
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Figure SB.3 Evolution of yield point of the WBPUU/CNC nanocomposites obtained 

adding CNC by different strategies (in situ and ex situ) as a function of the CNC content 
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Figure SB.4 Evolution of consistency index of the WBPUU/CNC nanocomposites 

obtained adding CNC by different strategies (in situ and ex situ) as a function of the CNC 

content 
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Figure SB.5 Evolution of the storage modulus of the WBPUU/CNC nanocomposites 

obtained adding CNC by different strategies (in situ and ex situ) as a function of the CNC 

content 
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Figure SB.6 Evolution of the tan  of the WBPUU/CNC nanocomposites obtained 

adding CNC by different strategies (in situ and ex situ) as a function of the CNC content 
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Figure SB.7 Evolution of the structure recovery of the WBPUU/CNC nanocomposites 

obtained adding CNC by different strategies (in situ and ex situ) as a function of the CNC 

content 
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APPENDIX C 

RHEOLOGICAL COMPARISON OF SYSTEMS FROM DIFFERENT 

CHAPTERS & SHAPE FIDELITY MAPPING OF THE STUDIED INKS 

 

 

 

C.1 Objective  

The objective of this appendix is to provide additional information of the rheological 

characterization of the inks obtained in the different chapters. In the first part, the rheological 

properties of every system which showed good printing performance in the different 

chapters were represented for comparative purposes. In a second part, Figure 1.11 of the 

introduction has been taken as a reference, to stablish an optimal shape fidelity window. The 

obtained values of the inks studied in this work are displayed in a similar graph where the 

optimal shape fidelity area observed in the literature was showed. Additionally, the different 

performed routes in every chapter so as to modify the shape fidelity are displayed. 
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C.2 Rheological comparison of system presenting good printing 

performance from every chapters 

0,01 0,1 1 10 100
1

10

100

1000

10000

100000

V
is

co
si

ty
 (

P
a 

s)

Shear rate (s
-1
)

 WBPUU29

 WBPUU0.5
is

 WBPUU2
es

 WBPUU32

 WBPUU
S
3

es

 

 

Figure SC.1 Evolution of the viscosity as a function of the shear rate of the systems 

selected as the ideal formulation for every chapter. (T = 22.5 °C) 
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Figure SC.2 Yield point (Cyriac et al.) and flow point (G’ = G’’) determination of the 

systems selected as the ideal formulation for every chapter. (T = 22.5 °C) 
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Figure SC.3 (Solid symbol) storage and (open symbol) loss moduli of the systems 

selected as the ideal formulation for every chapter. (T = 22.5 °C) 
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Figure SC.4 Tan  of the systems selected as the ideal formulation for every chapter. 

 (T = 22.5 °C) 
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Figure SC.5 Structure recovery of the systems selected as the ideal formulation for every 

chapter. (T = 22.5 °C) 
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C.3 Study of the shape fidelity of the inks  
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Figure SC.6 Mapping of the studied systems in the different chapters in a storage modulus 

vs tan  graph. (…) Good shape fidelity downer limit of the storage modulus proposed by 

Li et al., the good shape fidelity area of both storage modulus and tan  obtained from the 

literature data displayed in the Figure 1.11 is delimited by the green coloured area. The 

colour of the samples are referred to the different chapters: solid content variation (black), 

in situ addition of CNC (red), ex situ addition of CNC (blue), Salvia and CNC ex situ addition 

(green). 
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Figure SC.7 Magnification of the Figure SC.6 in the region delimited from the results 

observed in the literature (green zone) 
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Figure SC.8 Comparison between the good shape-fidelity area obtained from literature 

and the one obtained from experimental results in a storage modulus vs tan  plot 
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Figure SC.9 Evolution of the different strategies followed in the chapters for the 

modification of the shape fidelity of the inks. (…) Good shape fidelity downer limit of 

storage modulus proposed by Li et al. 
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