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Abstract: A new approach of Fiber Enhanced Raman Spectroscopy (FERS) is described within this
article based on the use of Hydrogel-Core microstructured Polymer Optical Fibers (HyC-mPOF). The
incorporation of the hydrogel only on the core of the Hollow-Core microstructured Polymer Optical
Fiber (HC-mPOF) enables to perform FERS measurements in a functionalized matrix, enabling
high selectivity Raman measurements. The hydrogel formation was continuously monitored and
quantified using a Principal Component Analysis verifying the coherence between the components
and the Raman spectrum of the hydrogel. The performed measurements with high and low affinity
target molecules prove the feasibility of the presented HyC-mPOF platform.

Keywords: Fiber Enhanced Raman Spectroscopy; microstructured Polymer Optical Fibers; liquid-
core mPOF; hydrogel-core mPOF

1. Introduction

New approaches of biosensors that join low-cost, high sensitivity and high specificity
characteristics are widely pursued by the scientific community [1]. There is a wide range
of application fields where the detection and quantification of different substances in low
concentration are indispensable requirements, as well as clinical diagnosis, food safety,
drug discovery or evaluation of hazardous contaminants, among others. Development
of solutions based on polymer optical fibers (POF) in combination with highly functional
matrixes, such as hydrogels, fit well with the aforementioned needs [2,3].

One of the most used spectroscopy techniques by means of biosensors is the Raman
spectroscopy, due to its capability of providing the user with a deep molecular information
about the sample. The inelastic dispersion suffered by the incident beam when it strikes the
sample, describes the intramolecular information as well as the intermolecular interactions
of the target [4,5]. This technique has been widely employed in different fields [6–8],
such as the pharmaceutical drug monitoring [9] or food quality studies [10]. Additionally,
the feasibility of this technique to combine with multivariate analysis based on Principal
Component Analysis (PCA) has improved the boundaries of the technique [11,12].

However, due to its main drawback, i.e., the low efficiency of the Raman effect,
many different approaches have been developed to enhance the dispersed signal. One
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of the most promising techniques is the Fiber-Enhanced Raman Spectroscopy (FERS),
where the use of different microstructured optical fibers enhance the Raman signal. This
improvement is based on the guidance of the scattered light and a much higher interaction
between light and sample, as compared to the traditional Raman measurements [13].
Historically, silica microstructured optical fibers or also called Photonic Crystal Fibers
(PCF) made by silica have been the most ones used [6,14–16]. Taking into account the most
constraining requirement for this type of sensing platform—that is, the low cost—the use of
microstructured Polymer Optical Fibers (mPOF) is a good alternative in comparison to the
silica counterparts which have been employed in other works [17–19]. In order to be able
to measure FERS spectra, the employed mPOFs need to be hollow-core mPOFs (HC-mPOF)
which will be lately filled selectively with the solution of interest, creating liquid-core
mPOFs (LC-mPOF), and therefore ensure the guidance of the incident and scattered lights.
This technique has been already employed for glucose monitoring purposes [20]. However,
in order to employ LC-mPOFs in complex solutions, functionalized matrixes, such as
hydrogels, could be added to their core, which selectively discriminate between desirable
and non-desirable molecules. This fact makes the platform more feasible and opens up a
wide range of application possibilities [21].

More concretely, hydrogels present a high affinity for metal cations, dyes and many
other molecules, being successfully employed as superabsorbent materials for the reme-
diation of contaminants from water [22–26]. Heavy metals present in water could be
responsible for many health issues in human beings and aquatic organisms directly or
indirectly when coming in contact [27]. For example, nickel could cause lung embolism,
heart disorders, respiratory failure or birth defects, among other health problems [28].
Evaluating the presence of metals in water is a key factor to select an adequate remediation
strategy to effectively recover polluted water [29] or to prevent future health issues in
humans. Among the possible hydrogels capable to efficiently remove heavy metals from
the water, anionic hydrogels, such as poly(acrylic acid) [30], poly(methacrylic acid) [31]
or sodium alginate [32], present the highest affinity due to their capability to coordina-
tive interaction between metal and carboxylic acids present in these polymers. In this
work, sodium alginate was used for hydrogel formation. It is important to notice that
the monomer must fill the hollow core in the first instance in order to form the hydrogel
in the hollow core of the fiber, and then, the crosslinking process must be carried out.
There are several options available for this kind of approach. However, the most common
crosslinking processes, usually by thermal or photopolymerization, are not adequate in
this case since the temperature requirement in the first case and the UV light in the second
case could produce undesired variation on the POF. In order to overcome these drawbacks,
sodium alginate is a highly suitable choice due to its crosslinking capability with calcium
cations that forms a stable Ca-alginate hydrogel [33], allowing its complexation once the
hollow core of the fiber is filled.

This article reports a novel FERS platform based on the use of Hydrogel-Core mi-
crostructured Polymer Optical Fibers (HyC-mPOF). First, all the materials and methods
are explained, starting from the fabrication of the probe and following with the later data
processing. Afterwards, experimental measurements of the creation of the hydrogel within
the core of the HC-mPOF and their use for FERS measurements are displayed and their
discussion developed. Finally, the main conclusions obtained from the previous sections
are summarized in the last section.

2. Materials and Methods
2.1. HC-mPOF Fabrication and Modification

The fabrication process of the HC-mPOFs employed in this work is well divided in
three different steps. The first one corresponds to the fabrication of the fiber preforms,
which were done using a computer numerical control machine for drilling 60-mm-wide
poly(methyl methacrylate) (PMMA) rods. Afterwards, an annealing process was carried
out in order to remove all moisture vestige. Then, the preforms were ready for the second
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fabrication step as it was drawn to the pursued diameter. During this process, a PMMA
cane was added to the fibers to reinforce them and to protect the microstructure. The
chosen microstructure followed a 6-ring pattern surrounding a central hollow-core, as can
be observed in Figure 1. The central diameter of the mPOFs was 100 µm and the external
diameter was 1 mm, with a core-cladding ratio of 0.47. These two-fabrication processes are
further explained in our previous work [20].
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Figure 1. Cross-section microscope photograph of the HC-mPOF (microstructure. The central
diameter of the microstructure is 100 µm, the diameter of the cladding 217.76 µm and the external
diameter of the fiber is 1 mm.

Finally, in the third step, the fabricated HC-mPOFs were cut in 10-cm-length probes.
Then, one of the end-faces of the probes were modified in order to fill selectively the core
by means of capillary effect. With the aim of collapsing the cladding holes, but leaving
open the central hollow-core, a widely reported method was carried out [34,35]. One of
the two unmodified end-faces were immersed for two seconds in a 1/4 v/v NOA 65 in
isopropyl alcohol solution and cured using a UV lamp afterwards. At this stage, due to
the different capillary-filling speeds in the cladding holes and in the central core, the fiber
probes were cleaved in the section where the core was still collapsed but the cladding holes
remained opened. By immersing again these end-faces in the same solution for 10 s, the
solution reached more height in the cladding holes than the remaining cured material in the
core. Therefore, cleaving them between the two heights, the pursued modified end-faces
were obtained, i.e., with the central core opened but the cladding holes sealed. Thus, the
modified end-faces were the lower ones that would be immersed in different solutions
and the unmodified end-faces were the upper ones that would be focused with the Raman
microscope. In all cases, the final length of the fiber probes was 5 cm.

2.2. Alginate Hydrogel Formation in the Core of the mPOF

Sodium alginate (SA) powder and calcium chloride (CaCl2), used as crosslinking
agent, were purchased from Sigma Aldrich (St Louis, MO, USA) and Panreac (Madrid,
Spain), respectively.

In order to fill the hollow core of the HC-mPOFs, the surrounding pores were previ-
ously blocked. Then, the 5-cm-long fiber probes were immersed on 1% wt SA in aqueous
solution, and left to fill the core by capillarity. Once the cores were filled, the fibers were
dried, to improve the subsequent absorption of the Ca2+ solution (0.5 g/L), which acted
as a crosslinker. The swelling process of the alginate eased the diffusion of the cations
through all the area and increased the homogeneity of the formed hydrogel. Each step
of the process was monitored by Raman microscopy. A microscope image of the upper
end-face once the hydrogel was created is shown in Figure 2a. Additionally, an illustration
of the upper end-face has been added for the sake of clarity in Figure 2b.
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Figure 2. (a) Cross-section microscope photograph of a HyC-mPOF end-face. The presence of the hydrogel is observed as
the blurred circle on the hollow of the microstructure. A HyC-mPOF end-face image obtained from the microscope; (b) a 3D
illustration of the upper end-face of a HyC-mPOF.

2.3. Experimental Set-Up

All the Raman spectra were recorded employing the same experimental set-up, which
consisted of ad-hoc fiber holder on a motorized xyz stage. This set-up enabled the accurate
focus on the upper (unmodified) end-face, as well as the correct immersion of the lower
(modified) end-face in different solutions. Depending on the process and the solution
properties, there was a high variability on the time the solution needed to arrive at the
upper end-face towards capillary effect. However, as all the measured processes were
measured for several hours and using fiber probes with the same length, this rising time
was negligible.

The Raman equipment employed for performing the Raman measurements was
a Renishaw (Gloucestershire, UK) inVia confocal Raman Microscope. The excitation
wavelength of the laser was 785 nm and the power launched to the sample was of 27.61 mW
for 10 s each measurement. With this power and time exposition, any thermal effect on
the sample or fiber-probe was discarded. The spectra were recorded from 100 cm−1 to
3200 cm−1 using a 20 X objective with a 0.4 NA from Leica (Wetzlar, Germany).

2.4. Data Processing

All the spectra recorded in different measurements were processed in first instance
with a script developed in R software. First, the recorded spectra employing a hyperspec
object [36], were smoothed implementing a Savitzky-Golay filter, and then, the baselines
were removed using the 4S Fill Peaks algorithm [37,38].

For the peak tracking, different single wavenumbers were taken as the representative
peak for each target molecule. On the one hand, the chosen peak for the nickel nitrate
was the one placed at 1050 cm−1, which is extensively used in bibliography [39] and it
corresponds to the v3(NO3

−) band. On the other hand, the band placed at 2140 cm−1

was employed for the case of potassium ferricyanide (K3[Fe(CN)6]), whose unique peak
placed at this wavenumber is commonly used for peak tracking. In order to normalize
their intensity with an internal standard, they were normalized with a well-known PMMA
reference peak placed at 810 cm−1 as this material is the subtract material and appears
significantly in the FERS measurements.

The PCA models were created by a specifically developed commercial software called
SIMCA (Sartorious Stedim Data Analytics AB, Umeå, Sweden). This software was basically
employed for determining the state of the hydrogel formation as the tracking of a single
peak for this aim was not enough.
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3. Results

The results are divided in two different sections. The first measurements were focused
on the creation of the hydrogel within the core of the fibers, to obtain HyC-mPOF probes.
Afterwards, these HyC-mPOFs were tested for measuring whether high affinity or low
affinity target molecules in order to verify their feasibility as sensing platform.

3.1. HyC-mPOF Creation and Hydrogel Creation State Quantification

As a way to confirm the creation of the hydrogel, and therefore, the creation of a
HyC-mPOF probe, several measurements were performed following the next steps: Firstly,
a Raman measurement focusing the hollow-core of the HC-mPOF probes was recorded
to ensure the correct state of the fiber. Secondly, the lower end-face of the probes was
immersed in a 1% wt alginate in deionized H2O solution, and another Raman spectrum
was recorded. Finally, the lower end-face of the probes were removed from the alginate and
immersed in a 0.5 w/v (g/L) calcium solution for three hours and a Raman measurement
was taken every five minutes. The progression of the obtained spectra showed the creation
of the hydrogel within the core; besides, they were used for creating a PCA model to verify
the state of the creation and therefore, to classify the probes.

3.1.1. Raman Spectra Progression

The measured progression of the hydrogel creation is plotted in Figure 3. Regarding
these spectra, background peaks corresponding to PMMA appear in first instance. These
spectra modify as the immersion time increases and peaks corresponding with the hydrogel
tend to prevail.
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As it can be noted regarding the spectra of Figure 3, many peaks alter the initial
PMMA background signal. This means that the tracking of a single peak is not a correct
method to guarantee the characterization of the hydrogel formation. As a way to overcome
this issue, all the spectra recorded in this step were the input to create a PCA model and
obtain principal components able to describe an accurate state of the hydrogel creation.

3.1.2. PCA Model of the Hydrogel Creation

The PCA model consisted of 180 spectra corresponding to five different measurements
joined to create the database. Each measurement consisted of 36 spectra recorded every
5 min once the lower end-faces were immersed in the alginate solution and kept them for
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three hours. The first two components of the built PCA model and a score progression
of the second component of an example HyC-mPOF creation are shown in Figure 4a,b,
respectively:
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model that describes the hydrogel creation; (b) The temporal evolution of the scores corresponding to the PC nº2.

Analyzing the components of the model, it could be seen that the second one (red) fits
accurately with the Raman spectrum of the hydrogel [40], since the main prominent peaks
of this component fits with the main peaks of the Ca-alginate, such as the glycosidic ring
breathing mode located at 1088 cm−1 or the symmetric carboxylate stretching vibration
placed at 1433 cm−1. Measuring the scores of the component, for different measurements,
their values are increased chronologically as it is shown in Figure 4b. Therefore, it may
be concluded that regarding this second component, an accurate state of the hydrogel
formation is obtained, in the sense that if the score of a HyC-mPOF probe follows this
pattern, it is considered a correct probe for forthcoming measurements.

3.2. High and Low Affinity Molecule Detection

The next step for proving the feasibility of the HyC-mPOFs as selective sensors was to
test them with different solutions, containing high affinity molecules, nickel nitrate, or low
affinity ones, potassium ferricyanide. Once the probes had the hydrogel created within
their cores, the lower end-faces of the probes were immersed in different solutions for
several hours and Raman spectra was recorded every 5 min.
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3.2.1. High Affinity Molecule Detection

Nickel nitrate has a prominent peak placed around 1050 cm−1, so by tracking it
during the immersion time, the concentration of the solution can be determined. All the
measured probes were immersed in a solution containing 0.1 mol/L nickel nitrate in H2O.
In Figure 5a, a Raman spectra progression is shown, together with the ratio of the main
nickel nitrate peak (at 1050 cm−1) normalized with the main PMMA peak (at 810 cm−1) in
Figure 5b.
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Figure 5. (a) Raman spectra progression during 3 h in a nickel nitrate detection measurement. The inset shows the spectral
evolution around 1050 cm−1 in more detail; (b) The average values together with their corresponding error bars of the nickel
nitrate peak ratio of different measurements. The inset shows the mean value of nickel nitrate peak ratio measurements for a
log-log chart and the red line corresponds to its linear fitting with a slope of 3.5 (coefficients of determination of R2 = 0.994).

Figure 5a describes how the HyC-mPOF sensor is able to detect the target molecule
as the peak located in 1050 cm−1 arises substantially. In order to parse these results, in
Figure 5b, the average of peak ratios of three different measurements are shown. In this last
graph, a clear exponential tendency is observed. This behavior can be explained as follows:
on the one hand, during the first seconds of the experiments, the swelling of the hydrogel
takes place, in which the detection capacity is still low. As the hydrogel is completely swell,
around 1500 s afterwards, the nickel nitrate molecules are diffused through it more easily
and can be coordinated with the carboxylic group, increasing the acquired Raman signal.
Moreover, the target molecules also need a certain time to reach the Raman active length of
the probe, some few centimeters. The five-centimeter length of the probes is the minimum
for the correct manipulation of the probes, so the time that passes without any detection is
acceptable considering the overall benefits.

Besides, the obtained measurements were also compared to a simple solution mea-
surement in a cuvette and a LC-mPOF measurement. The obtained results are shown in
Figure 6.

Comparing the HyC-mPOF acquisition to the cuvette measurement, a strong en-
hancement of the nickel nitrate peak detection appears by means of FERS, showing the
advantages of the technique. Additionally, the difference between LC-mPOF and HyC-
mPOF is not very noticeable, as the basis of the techniques are the same and the light
transmission is similar through the core of the probes filled by liquid or hydrogel. However,
the selectivity offered by the presented platform makes this technique favorable for high
affinity molecule detection.
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3.2.2. Low Affinity Molecule Detection

HyC-mPOFs were then tested for low affinity molecules, in this case, potassium ferri-
cyanide. This target molecules show low affinity since the monovalent cations, K+, do not
coordinate with –COOH groups of the alginate, and the [Fe(CN)6]4− is a highly voluminous
anion that is repelled by the deprotonated carboxylic groups of the alginate present at water
pH (pH = 6). The performed measurements were replicated from the previous sections,
the lower end-faces of the probes were immersed in a 0.1 mol/L potassium ferricyanide
solution in H2O for several hours and their Raman spectra recorded. The obtained results
are shown in Figure 7.

If the recorded spectra are compared, after the probes are immersed for 6 h in the
solution, it could be noted that LC-mPOF shows a high peak nearby 2140 cm−1, where
the potassium ferricyanide has its unique peak, whereas in the HyC-mPOF, an extremely
weak peak appears in this wavenumber. That means that the HyC-mPOF does not let
the potassium ferricyanide to access the Raman active volume of the HyC-mPOF through
the hydrogel, and therefore, it shows the already mentioned and desired selectivity of the
presented platform. Various measurements were carried out, three for each platform in
order to assure the phenomena.
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4. Conclusions

A new FERS platform has been described by creating a functional hydrogel selectively
within the core of an ad-hoc fabricated HC-mPOF. The fabrication and modifications
suffered by the HC-mPOF have been described, as well as the creation of the hydrogel and
its monitorization due to a PCA model. The reliability of the second component in order to
quantify the hydrogel creation process has been proved. Afterwards, the sensing platform
has been demonstrated for high and low affinity molecules, nickel nitrate and potassium
ferricyanide respectively. Results show that the implemented HyC-mPOF is able to detect
nickel nitrate, whereas the potassium ferricyanide keeps undetectable even for six hours of
measurement. The selective behavior of the platform offers several advantages compared
to cuvette or to LC-mPOF measurements. Moreover, the presented platform shows high
potential for further development in which high selectivity and specificity but low-cost
platforms are required.
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