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Identification of the stress and relaxation level in people, based on the study and the

advanced processing of physiological signals related to the activity of the autonomic

nervous system

by Unai ZALABARRIA

The World Health Organization refers to stress as the health epidemic of the 21st century.

This fact is reflected in the statements of the European Commission in 2017, where it was

reported that more than the half of the workers in the European Union work in stressful

conditions, among which four out of ten cannot handle such stress properly. This activa-

tion state can lead to both physical and mental exhaustion, where the immune system is

among the most affected. Consequently, people suffering from stress are more likely to get

ill, being common certain chronic diseases such as cardiovascular diseases, diabetes and

cancer, among others. This fact emphasizes the necessity of developing and implement-

ing new methodologies to estimate the level of stress and relaxation in people, helping to

regulate the pace of life in today’s society and highlighting the importance of both physical

and mental well-being to avoid further diseases.

The objective of this thesis is the development and implementation of intelligent algo-

rithms for the real-time processing of non-invasively acquired physiological signals to au-

tomatically predict the continuous level of stress and relaxation in people. Thus, be able

to identify the activity associated with the autonomic nervous system, responsible for the

alterations caused in the homeostatic balance within the body. This goal resulted in a so-

lution that goes from the analysis and processing of physiological signals to the design of

an algorithm for real-time prediction of the level of stress and relaxation, which has subse-

quently been implemented in a functional low-cost hardware prototype. More precisely,

the physiological records used to carry out this development are the electrocardiogram,

the galvanic skin response and breathing due to their relation with the activity of the au-

tonomic nervous system and the possibility of being acquired non-invasively.

The proposed methodology focuses on four main aspects. The first is the processing of

physiological signals in short-term sliding windows, which contributes to improve the
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techniques used for the extraction of heart period through the design of novel algorithms

focused on the robust analysis of the electrocardiogram and blood pressure signals. In the

second, the analysis, normalization and labeling of the extracted physiological parameters

is carried out using original and validated methodologies. In the third aspect, the resulting

data are subsequently employed for the design and training of intelligent systems through

the implementation of supervised and unsupervised learning techniques in order to carry

out a robust prediction of the level of stress and relaxation. Among the validated methods

fuzzy logic, fuzzy rule-based supervised learning systems and artificial neural networks

stand out. Finally, the development is successfully implemented in a portable low-cost

hardware solution consisting of a physiological signal acquisition module and a server

that processes and transfers the information to the client safely in real-time.

The proposed research resulted in a promising methodology for the quantification of au-

tonomic nervous system activity in terms of stress and relaxation. Thus, validation results

yielded a sensitivity of 98.02% and a specificity of 98.30% in the estimation of stress and

relaxation level through the application of 21-fold cross-validation. These results support

the effectiveness and robustness of the proposed methodology, which can lead to future

research lines by applying the proposed solutions in different areas of biomedical engi-

neering such as the estimation of emotional states based on the analysis of physiological

signals.
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Identificación del nivel de estrés y relajación en personas basada en el estudio y

procesamiento avanzado de señales fisiológicas relacionadas con la actividad del

sistema nervioso autónomo

por Unai ZALABARRIA

La Organización Mundial de la Salud calificó el estrés como la epidemia de salud del si-

glo XXI. Este hecho quedó reflejado en las declaraciones llevadas a cabo por la Comisión

Europea en 2017, en donde se afirmó que más de la mitad de los trabajadores de la Unión

Europea trabajan en un ambiente estresante, entre los cuales cuatro de cada diez no pue-

den gestionar ese estrés de manera adecuada. El estado de activación causado por el estrés

puede dar lugar a un desgaste tanto físico como mental, en donde el sistema inmunoló-

gico es uno de los más afectados. Este factor da lugar a que las personas que sufren de

estrés sean más propensas a enfermar, siendo comunes algunas enfermedades crónicas

como las cardiovasculares, la diabetes y el cáncer, entre otras. Estos hechos resaltan la ne-

cesidad de desarrollar e implementar métodos de relajación que ayuden a regular el ritmo

de vida de la población en la sociedad actual, dando especial importancia al bienestar tan-

to físico como mental de las personas, con el fin de evitar la aparición de enfermedades

asociadas al estrés.

Teniendo en cuenta estas consideraciones, se ha definido como objetivo principal de esta

tesis doctoral el desarrollo e implementación de algoritmos inteligentes capaces de pro-

cesar y predecir, de forma automática y en tiempo real, a partir de señales fisiológicas

adquiridas de forma no invasiva, el nivel continuo de estrés y relajación en personas. De

este modo, poder identificar la actividad asociada al sistema nervioso autónomo, que es

uno de los principales responsables de las alteraciones causadas en el equilibrio homeos-

tático del organismo. Dado que el estrés y la relajación están estrechamente ligados a la

actividad del sistema nervioso autónomo, es importante estudiar en profundidad las reac-

ciones fisiológicas debidas a esta actividad. El estudio llevado a cabo a lo largo de esta tesis

ha dado lugar al diseño de soluciones novedosas, que van desde el análisis y procesamien-

to de señales fisiológicas hasta el desarrollo de algoritmos capaces de medir el nivel de

estrés y relajación en tiempo real. Concretamente, se ha llevado a cabo el desarrollo de
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algoritmos basados en técnicas de computación inteligente enfocados al procesamiento

de señales fisiológicas adquiridas en entornos reales y no necesariamente controlados, los

cuales han sido posteriormente implementados y validados en un prototipo hardware de

bajo coste. El desarrollo ha concluido con la implementación de la solución propuesta en

una plataforma hardware portable para la monitorización fisiológica del nivel de estrés y

relajación, demostrando que es posible modelar la activación del sistema nervioso autó-

nomo mediante el modelado de patrones fisiológicos utilizando técnicas de computación

inteligente.

Con el fin de lograr el objetivo propuesto, esta tesis se compone de cuatro bloques prin-

cipales u objetivos parciales, a lo largo de los cuales se lleva a cabo el procesamiento sis-

temático de los registros fisiológicos, el análisis y etiquetado de los parámetros extraídos,

el estudio comparativo de los diferentes algoritmos inteligentes seleccionados y la imple-

mentación hardware de los algoritmos resultantes de todo el estudio realizado. El desarro-

llo propuesto se centra principalmente en el análisis de tres señales fisiológicas: el periodo

cardíaco, la respuesta galvánica de la piel y la respiración. Estas señales han sido cuidado-

samente seleccionadas debido a su estrecha relación con la actividad del sistema nervioso

autónomo y por la posibilidad de ser adquiridas de forma no invasiva.

El primer bloque está enfocado al desarrollo de algoritmos para la extracción robusta del

periodo cardíaco. Tal y como queda reflejado en el estado del arte, el tiempo entre latidos

se puede obtener mediante el procesado de diferentes bioseñales. En ocasiones, estas se-

ñales están afectadas por artefactos que dan lugar a mediciones erróneas del periodo car-

díaco, falseando la estimación de la actividad del sistema nervioso autónomo. Con el fin

de robustecer la extracción del periodo cardíaco, en esta tesis se presentan dos algoritmos

novedosos: uno para el procesamiento del electrocardiograma y el otro para el procesa-

miento de la presión arterial, siendo también aplicable este último algoritmo durante el

procesamiento de señales pletismográficas.

El algoritmo desarrollado para la extracción del periodo cardíaco a partir de las señales

electrocardiográficas está basado en la detección robusta de picos R. Esta tesis propone

una metodología original para llevar a cabo una primera detección de los picos R me-

diante la medición del área por encima del complejo QRS. Los picos R detectados son

posteriormente procesados de forma iterativa por tres novedosas máquinas de estados

que corrigen los errores cometidos durante la primera detección mediante la inserción y

eliminación de los picos R faltantes y sobrantes, respectivamente. Cada máquina de esta-

dos está compuesta por un conjunto de condiciones que evalúan la veracidad del periodo

cardíaco en cada instante. Además, el algoritmo propuesto ha sido diseñado para llevar

a cabo el procesamiento del electrocardiograma utilizando una ventana deslizante de 20

segundos, siendo así implementable en sistemas con funcionamiento en tiempo real. Los

resultados obtenidos alcanzan una sensibilidad del 99.54% y una precisión del 99.60%,

con un gasto computacional adecuado para su implementación en plataformas de ba-

jas prestaciones. Estos resultados también avalan la fiabilidad del algoritmo a la hora de

procesar ventanas de corta duración, ya que un pequeño error durante la detección de los
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picos R puede dar lugar a alteraciones indeseadas en los parámetros derivados del periodo

cardíaco. Este desarrollo ha dado lugar a una publicación en la prestigiosa revista Applied

Mathematics and Computation (JCR: 3.472 - Q1) bajo el título de “Online robust R-peaks

detection in noisy electrocardiograms using a novel iterative smart processing algorithm.”

El algoritmo propuesto para la extracción del periodo cardíaco a partir de señales de pre-

sión arterial se basa en la estimación de la posición de los valles de la señal que preceden

a cada latido para identificar cuando estos ocurren. Para ello, se han desarrollado algu-

nas técnicas de procesamiento avanzado como el “método del cálculo diferencial de la

interpolación móvil” y el “método mejorado del cálculo del valor máximo de la segunda

derivada” para la eliminación robusta de la línea de base y la detección precisa de todos

los valles presentes en la señal de presión arterial. Estos valles son posteriormente clasi-

ficados en valles correspondientes y no correspondientes a latidos del corazón a través

del procesamiento inteligente de cinco parámetros característicos de la morfología de la

señal. La clasificación se ha llevado a cabo utilizando una red neuronal artificial cuida-

dosamente optimizada, la cual combina a la entrada los cinco parámetros extraídos pa-

ra clasificar los valles detectados y determinar si corresponden a latidos cardíacos. Este

desarrollo se ha llevado a cabo utilizando registros de presión arterial de 10 segundos, al-

canzando una sensibilidad del 99.17% y una especificidad del 99.21% en la detección de

latidos del corazón. Debido a la similitud que existe entre la morfología de los registros

de presión arterial y las señales fotopletismográficas, el algoritmo propuesto es potencial-

mente aplicable para procesar este segundo tipo de señales. Al igual que ocurre con el

algoritmo de procesamiento del electrocardiograma, la capacidad de procesar ventanas

de corta duración hace que el algoritmo desarrollado sea implementable en sistemas de

ejecución en tiempo real. El trabajo realizado ha dado lugar a una segunda publicación en

la conocida revista Computer Methods and Programs in Biomedicine (JCR: 3.632 - Q1) bajo

el título de “Diagnosis of atrial fibrillation based on arterial pulse wave foot point detection

using artificial neural networks.”

En el segundo bloque se proponen varias metodologías novedosas para la normalización

y etiquetado de los parámetros fisiológicos extraídos a partir del periodo cardíaco, la res-

puesta galvánica de la piel y la respiración. Este bloque empieza proponiendo un etique-

tado binario (0-1) parcial de los intervalos claramente identificables como estados de es-

trés y de relajación, para posteriormente llevar a cabo una innovadora normalización y

etiquetado completo y continuo de los registros. Con el fin de obtener unos parámetros

fisiológicos normalizados que supriman las diferencias fisiológicas interpersonales, se ha

diseñado una metodología original para la selección del método de normalización que

mejor se ajusta a la naturaleza de cada parámetro. Para ello, se han evaluado algunos mé-

todos de normalización existentes junto a otros propuestos en esta tesis mediante una

función de coste especialmente diseñada para diferenciar estados de estrés y de relaja-

ción, siendo los métodos con el coste más pequeño los mejor adaptados para llevar a cabo

la normalización del parámetro en cuestión. Además, se ha realizado una selección de los

https://doi.org/10.1016/j.amc.2019.124839
https://doi.org/10.1016/j.amc.2019.124839
https://doi.org/10.1016/j.cmpb.2020.105681
https://doi.org/10.1016/j.cmpb.2020.105681
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parámetros más representativos de los estados de estrés y de relajación mediante un estu-

dio exhaustivo de su distribución. Posteriormente se ha llevado a cabo un análisis de los

componentes principales con el fin de eliminar la redundancia entre los parámetros más

relevantes. Los componentes principales han sido finalmente implementados, junto a las

etiquetas parciales (binarias), en un algoritmo de aprendizaje semisupervisado, dando

como resultado un pseudoetiquetado continuo y completo de cada uno de los registros.

Los resultados obtenidos se han validado frente a un segundo etiquetado parcial realizado

por personal experto en el análisis de señales fisiológicas. Este segundo etiquetado no ha

sido previamente utilizado durante el desarrollo propuesto en este bloque, únicamente

se ha utilizado para llevar a cabo la validación de la metodología propuesta, alcanzando

un 98.41% de sensibilidad y un 99.32% de especificidad en el pseudoetiquetado de los

registros.

En el tercer bloque se hace uso de los componentes principales y del pseudoetiquetado

completo y continuo obtenidos en el bloque anterior con el fin de entrenar y configurar

diferentes algoritmos inteligentes basados en aprendizaje supervisado y no supervisado,

y comparar la capacidad de predicción de cada uno de ellos a la hora de estimar el nivel

de estrés y relajación para cada registro. Entre las técnicas validadas están la lógica difusa,

las redes neuronales artificiales y varios sistemas de aprendizaje supervisado basados en

reglas difusas, como son: Wang and Mendel’s technique, dynamic evolving neural-fuzzy in-

ference system, hybrid neural fuzzy inference system y heuristics and gradient descent met-

hod. Para evaluar cada uno de los métodos propuestos, en esta tesis se ha llevado a cabo

un procedimiento original basado en el mapeo de los posibles valores de cada uno de los

hiperparámetros de cada técnica mediante la implementación de una validación cruzada

de 21 iteraciones. Los resultados obtenidos han dado lugar a una sensibilidad del 97.93%

y una especificidad del 97.92% para las redes neuronales artificiales, las cuales presentan

los resultados más estables y los tiempos de entrenamiento e inferencia más pequeños.

Además, se ha llevado a cabo la evaluación de todas las posibles combinaciones de las

tres señales fisiológicas utilizadas, demostrando que el periodo cardíaco y la respuesta

galvánica de la piel combinadas obtienen los resultados más prometedores. La respira-

ción, por su parte, ha demostrado que contribuye en la mejora de los resultados que cada

una de las otras dos señales obtienen por separado.

El cuarto y último bloque describe la implementación hardware de los algoritmos desa-

rrollados y validados a lo largo de esta tesis. Para ello, se ha diseñado una plataforma de

adquisición portátil y con funcionamiento en tiempo real combinando de forma original

distintos componentes de bajo coste fácilmente asequibles en el mercado. Además, se ha

llevado a cabo la implementación de los algoritmos propuestos en un servidor de bajo

coste y prestaciones, como es la plataforma Raspberry Pi. El servidor recibe las señales

fisiológicas adquiridas de forma inalámbrica (Bluetooth) al mismo tiempo que extrae y

procesa los parámetros fisiológicos a través de la red neuronal artificial previamente en-

trenada para finalmente obtener una medida continua del nivel de estrés y relajación. Los

resultados obtenidos son enviados al cliente a través de la red (cable o Wi-Fi) utilizando el
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protocolo gRPC, el cual permite implementar mecanismos de encriptación y autentifica-

ción para una mayor seguridad y protección de los datos. La concurrencia del sistema ha

sido validada sometiendo tanto a la plataforma de adquisición como al servidor a pruebas

de funcionamiento en tiempo real y obteniendo los tiempos que así lo avalan.

Tanto la implementación en el tercer bloque del modelo de lógica difusa para la estima-

ción continua del nivel de estrés y relajación, como la implementación de los algoritmos

propuestos en plataformas de bajo coste, han dado lugar a una tercera publicación en la

conocida revista IEEE Access (JCR: 3.745 - Q1) bajo el título de “A low-cost, portable solu-

tion for stress and relaxation estimation based on a real-time fuzzy algorithm.”

En definitiva, esta tesis aborda, a través de cuatro bloques bien definidos, la metodología

para llevar a cabo el desarrollo completo de un sistema inteligente capaz de realizar una

estimación continua del nivel de estrés y relajación en personas con distintas fisiologías

mediante el procesamiento de parámetros extraídos a partir de señales fisiológicas adqui-

ridas en tiempo real y de forma no invasiva. Durante el proceso, se han utilizado métodos

del campo de la inteligencia computacional, entre los que se encuentran varios algorit-

mos de análisis supervisado, semisupervisado y no supervisado. Además, se han aporta-

do nuevas metodologías tanto para el procesamiento de señales fisiológicas como para el

normalizado, análisis y etiquetado de los parámetros extraídos de las mismas. También se

ha hecho un uso original de los algoritmos de análisis semisupervisado para llevar a cabo

el pseudoetiquetado de los registros, demostrando que es posible convertir unas etiquetas

binarias y parciales en un etiquetado completo y de dominio continuo. Otra aportación

realizada es la función de coste para la selección del mejor método de normalización. Ade-

más, también se ha propuesto otra función de coste customizada para el entrenamiento

de la red neuronal artificial utilizada, la cual ha sido específicamente diseñada para este

contexto. Tienen un peso relevante los resultados obtenidos durante la predicción del ni-

vel de estrés y relajación para las distintas combinaciones de señales fisiológicas, ya que

aportan información útil sobre la relación que guardan con la actividad del sistema ner-

vioso autónomo. Por último, se ha hecho un esfuerzo considerable para llevar a cabo la

implementación hardware del sistema, donde se han combinado distintos componentes

para dar lugar a un dispositivo basado en tecnología IoT capaz de adquirir señales fisioló-

gicas en tiempo real y de ejecutar los algoritmos propuestos de forma concurrente.

Cabe destacar que las diferencias fisiológicas entre individuos aún suponen un reto a la

hora de normalizar los parámetros extraídos y poder diseñar algoritmos genéricos capa-

ces de procesar estos parámetros de forma simultánea. Cada persona es diferente y esto

se observa en las reacciones que tenemos cada uno ante la misma clase de eventos, tanto

en el tipo como en la intensidad de la reacción. Esta tesis ha sabido abordar este reto de

una forma original, ya que algunas señales pueden diferir en gran medida de otras debido

a su morfología. El etiquetado de señales fisiológicas ha sido otro de los principales re-

tos, para el cual cada señal se ha estudiado de forma individual tanto para llevar a cabo el

etiquetado parcial de forma manual como para lograr el etiquetado completo y continuo

mediante algoritmos de pseudoetiquetado.

https://doi.org/10.1109/access.2020.2988348
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1 Introduction

1.1 Motivation

In recent years, more and more people and medical centers are using physiological records,

mostly acquired non-invasively, to monitor the health status in real-time [1, 2]. These de-

vices range from wearable gadgets (e.g., wrist-bands, T-shirts and watches) to standalone

systems, very common in hospitals [3, 4]. In many cases, this follow-up can be critical to

identify states that may be decisive to prevent various diseases such as those related to

stress [5]. Relaxation is equally important as it is directly involved in therapies focused on

the prevention of stress-related pathologies [6]. This fact is leading to the development of

algorithms centered on the analysis of physiological parameters for the prediction of both

stress and relaxation states [7, 8, 9, 10].

“Stress” was dubbed the “health epidemic of the 21st Century” by the World Health Organi-

zation (WHO) and it is estimated to cost American businesses up to $300 billion a year [11].

According to a statement from the European Commission in 2017, work-related stress is

one of the most challenging and growing occupational safety and health concerns. Over

half of European Union workers report that stress is common in their workplaces, and 4

out of 10 think that it is not well handled [12]. Moreover, it can cause various diseases

including chronic illnesses (e.g. cardiovascular diseases, diabetes and some forms of can-

cer). All these circumstances increase economic costs, especially in developed countries

[5].

The WHO defines Health as a state of complete physical, mental and social wellness, to-

gether with the absence of disease [13]. Considering the new paradigms focused on the

search for people’s wellness by means of positive psychology, many research lines have

changed the focus on how people relax [14, 15]. Thus, the understanding and strengthen-

ing of the factors that allow individuals to prosper is proposed as a method to improve the

quality of life of communities and societies. Therefore, pathologies caused by adverse liv-

ing conditions can be prevented [16]. Relaxation techniques are, among others, the most

widely used techniques to achieve a state of wellness [6, 17, 18].

In the literature, stress is defined as a general adaptation syndrome consisting of physio-

logical and psychological components [11, 19, 20]. The term was first introduced by Hans

Selye, the “father of stress”, who noticed that patients with various diseases (i.e., hyperten-

sion, nephrosclerosis and the rheumatic diseases) may represent effects of the endocrine
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reactions, present in the general adaptation syndrome [21, 5, 22]. Walter B. Cannon in-

troduced and popularized the concepts of homeostasis and “fight or flight” that by now

are well known and widely accepted [23, 22]. He asserted that not only physical emergen-

cies but also psychological emergencies evoke release of adrenaline into the bloodstream,

preparing the body to “fight” or “flight” [24, 11]. Benson introduced the concept of re-

laxation response, which refers to the physiological response during a state of relaxation

[25]. Homeostasis, defined as the stability of the internal state, is the result of the activ-

ity of the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal axis,

that respond to stress as an attempt to relax or reestablish the balance on a psychophysi-

ological level [26, 19, 27]. Thus, the relaxation response appears not only during states of

relaxation, but also when the stressful event is over. This involves changes in cardiac ac-

tivity, sweat gland activity and breathing [19]. Therefore, physiological signals, including

heart period, galvanic skin response and chest measurements can provide insights into

ANS activity and are considered reliable indicators of stress and relaxation [11, 28].

The possibility of quantifying ANS activity by observing variations in physiological signals

has given rise to innovative areas of study, allowing researchers to directly assess the user’s

internal state. Moreover, the increasing availability of inexpensive and sophisticated mea-

surement systems establishes the basis for novel research ideas and developments. Some

of these areas have focused their effort on developing algorithms and methodologies to

extract relevant physiological information in relation to the ANS activity [28, 29, 9]. Ros-

alind W. Picard introduced the concept of Affective Computing, which lays the founda-

tions for physiological signal processing according to changes in the ANS [30]. Recent

advances in the development of smaller and more precise sensors, which do not require

gels, have made it possible to apply a wide range of wireless patient monitoring systems

in conventional environments [31]. Some research lines have integrated these technolo-

gies in the development of low-cost portable devices capable of carrying out physiological

signal processing for the detection of events related to ANS activity [3, 32, 2].

However, there is still a gap in research efforts moving from laboratory studies to real-

world settings. Some of these challenges are related to the differences among the physio-

logical signals of different individuals in the same stress and relaxation situations, includ-

ing dispersed distributions and sample imbalance. This makes it difficult to generalize an

algorithm that works properly with signals collected from different individuals [33]. Addi-

tionally, devices are increasingly becoming connected through IoT technologies. This has

tremendous potential to make healthcare accessible to everyone and with reduced costs.

Nevertheless, it also provides the opportunity for technology criminals to hack these de-

vices. Thus, it is essential to consider security issues, as medical devices collect and ex-

change personal health data [34].

This thesis proposes an original solution based on the study and processing of physiolog-

ical signals for the estimation of ANS activity in people in terms of stress and relaxation

through the development and implementation of innovative algorithms based on com-

putational intelligence. Several human physiological signals (i.e., heart period, galvanic
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skin response and breathing) were studied with the aim of extracting parameters suitable

for implementation in regression algorithms for advanced modeling of patterns related to

the activity of the ANS, thus achieving an accurate estimate of the stress and relaxation

level at each time. For this purpose, a novel framework for real-time ANS activity recogni-

tion based on patterns extracted from peripheral physiological signals was implemented,

along with the design of a low-cost wireless prototype with reliable data communication

that integrates the developed software. To this end, the author focused on three main as-

pects. First, existing physiological signal preprocessing techniques were improved. More

precisely, an innovative algorithm for robust and real-time extraction of heart period in

electrocardiographic and blood pressure signals was developed. Second, an original phys-

iological signal processing methodology was proposed, where extracted parameters were

studied with the aim of reducing the errors caused by individual differences and improv-

ing the regressive performance of stress and relaxation recognition algorithms. Finally,

due to the efficiency, safety and versatility required from medical devices, a robust low-

cost prototype based on IoT technologies was developed considering the safety measures

needed to protect client information. A more detailed explanation of the proposed meth-

ods is covered further on in the following chapters.

1.2 Objectives

The main objective of this thesis is the development of an intelligent and integrated solu-

tion to predict the level of stress and relaxation in people based on advanced processing of

parameters extracted from physiological signals closely related to the activity of the ANS

(i.e., heart period, galvanic skin response and breathing). This solution covers the analysis,

development and implementation on a hardware platform of the proposed methodology.

To achieve this goal, the following partial objectives are defined:

• Design of accurate and computationally efficient algorithms for the preprocessing

of signals extracted from the cardiovascular system in order to carry out a robust

measurement of the heart period and the parameters derived from it.

• Analysis, normalization and labeling of the parameters extracted from non-invasively

acquired heart period, galvanic skin response and breathing signals, according to

their correlation with the activity of the ANS.

• Identification of patterns related to the activity of the ANS based on a comparative

study of intelligent computing techniques.

• Implementation of the proposed algorithm in a low-cost portable hardware solution

that fulfils the real-time concurrency and security requirements in order to validate

the proposed methodology and apply the conducted study to real use cases.

1.3 Contributions

The development of this thesis resulted in the publications presented below.
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1.3.1 Publications with impact factor

JCR: Web of Science
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1.4 Thesis structure

Below, an overview of the thesis structure is presented, explaining in general terms the

content of each chapter.

Chapter 2 is the state of the art, which is divided into five subsections to present the pre-

vious work that supports the current thesis. First introduces the principal mechanisms

of human psychophysiology that influence the activity of the ANS, explaining how the

body reacts against different events leading to states of stress and relaxation. This chap-

ter also describes the experiment conducted for the collection of physiological records,

which were used during the development and validation of the algorithms. In addition,

the soft computing techniques employed during this thesis and the hardware used for the

implementation of a final prototype are also included. Finally, the used evaluation tools

are described.

Chapter 3 presents the proposed algorithms for an advanced extraction of the heart pe-

riod during the preprocessing of electrocardiographic and blood pressure signals. Several

new methodologies are presented to robustly process these signals, further improving the

results obtained by existing methods. The proposed algorithms were designed to carry

out the processing in relatively small context windows compared to other works, which

makes them suitable for implementation in real-time systems.

In chapter 4, an original partial labeling of the physiological signals is performed together

with the extraction of the parameters derived from such signals, which are representative

of the ANS activity. A parameter normalization is also carried out by applying the most

appropriate standardization techniques. For this purpose, a novel analysis comparing dif-

ferent normalization methods is performed, from which a selection of the most significant

parameters is also conducted. The redundancy among the selected parameters is finally

eliminated through the extraction of the principal components. These principal compo-

nents are later used to complete the partial labeling through an original implementation

of semi-supervised learning techniques.

Chapter 5 addresses the design, training and validation of a set of methods based on su-

pervised and unsupervised learning techniques. Validated methods include fuzzy logic,

artificial neural networks and fuzzy rule-based supervised learning systems, where a new

customized loss function is proposed for the training of artificial neural networks. To per-

form an optimal training, a mapping of the hyperparameters of the supervised learning

methods is performed, thus achieving a robust validation of each method through the

application of cross-validation. The whole process is carried out in duplicate, using the

normalized and unnormalized physiological parameters in order to compare the perfor-

mance associated with the previously designed normalization mechanism.

Chapter 6 describes the implementation of the previously developed algorithms into an

advanced IoT-based low-cost hardware prototype. On the one hand, a portable hardware

for real-time acquisition of physiological signals and wireless transmission of the data is
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presented. On the other hand, a server for the processing of the acquired physiological

signals is introduced, in which the estimation of the stress and relaxation level is also per-

formed. The whole process is embedded in a secure client-server connection, which is

performed by means of communication protocols that guarantee the transmission of en-

crypted data.

Finally, chapter 7 discusses the conclusions of the solution presented in this thesis, as well

as the resulting contributions. It also includes the future lines that may be carried out

considering potential contributions that could be addressed in future developments.
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2 State of the art

To introduce the preliminary works around which this thesis is built, the state of the art

is divided into five subsections. In the first subsection, an introduction to human psy-

chophysiology is conducted, explaining the different physiological reactions of the hu-

man body and its relationship with the autonomic nervous system. The second subsec-

tion presents the soft computing methods involved in the development of the proposed

methodologies. The third subsection focuses on the data sets used for both the design and

validation of the implemented algorithms. In the fourth subsection, the hardware devices

used for the development of a functional prototype that executes the previously designed

algorithms are introduced. Finally, the fifth subsection presents the evaluation tools used

to validate the proposed algorithms. Next, the foundations of psychophysiology on which

this study is supported are presented.

2.1 Foundations of psychophysiology

From the moment people began to experience themselves as an object of their own aware-

ness, they have had the intuition that bodily changes were related to their moods, feelings

and emotions. Psychophysiology was born as a branch of psychology dealing with the

physiological basis of these psychological processes. Additionally, it is closely related to

the experience and behaviour of organisms in the physical and social environment [44].

Rose [45] differentiated at least two components of the nervous system related to psycho-

logical states and physiological events, as illustrated in Figure 2.1: The central nervous

system, consisting of the brain and spinal cord, and the peripheral nervous system, which

its main function is to connect the central nervous system to the limbs and organs through

the nerves and ganglia [46].

The peripheral nervous system is divided into the somatic nervous system and the auto-

nomic nervous system (ANS), where the ANS exerts influence over the organ systems of

the body to upregulate and downregulate various functions.

2.1.1 Autonomic nervous system

The ANS is also known as the vegetative nervous system, as it acts unconsciously and

regulates bodily functions such as the heart period, digestion, respiratory rate, pupillary

response, urination, and sexual arousal [47]. It is divided, in turn, into the sympathetic

nervous system (SNS) and parasympathetic nervous system (PNS) [48]. The sympathetic
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FIGURE 2.1: Schematic representation of the central nervous system in
yellow and the peripheral nervous system in orange.

Source: openstax.org

system is associated with the “fight or flight” response, and parasympathetic activity is

known as “rest and digest” [49]. The two aspects of the ANS can be considered as opposing

functions that act to achieve homeostasis, which is regulated by the hypothalamus [26, 19,

50]. The activity of the SNS and PNS results in the physiological responses shown in Figure

2.2.

Sympathetic nervous system

During stressful situations, the SNS reacts by activating different effector organs in a co-

ordinated manner. As the body prepares for “fight or flight”, more oxygen needs to be

inhaled and delivered to skeletal muscle. The respiratory, cardiovascular, electrodermal

and musculoskeletal systems are all activated together. Additionally, sweating protects

the body from the excess heat that comes from muscle contraction that causes the body

to overheat [20, 19]. The digestive system shuts down so that blood is not absorbing nutri-

ents when it should be delivering oxygen to skeletal muscles [51]. To coordinate all these

responses, the connections in the sympathetic system diverge from a limited region of the

central nervous system to a wide range of ganglia that project to the effector organs simul-

taneously. This phenomenon is illustrated in the diagram in Figure 2.3 [50]. The activation

of the SNS causes a reaction commonly known as stress.

https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
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FIGURE 2.2: Physiological responses due to sympathetic and parasympa-
thetic activity.

Source: Geo-Science-International

Stress

The first and most generic definition of stress is that proposed by Hans Selye: “Stress is

the nonspecific response of the body to any demand” [5]. The terms of stress, “general

adaptation syndrome” and “general alarm reaction” are synonymous. They all indicate a

physiological response that occurs due stressful stimuli, helping the body to adapt to the

situation through the activation of the ANS [21, 52].

In the book “Stress in health and disease”, Selye underscored the fact that stress is part

of everyday life and it is associated with a variety of diverse problems, such as emotional

arousal, fatigue, mental or physical effort, burns, surgical trauma, fear, pain, frustration,

concentration, the loss of blood, intoxication with environmental pollutants or drugs, or

any kind of event that requires reformulating one’s lifestyle [5].

Selye also established that some stress is essential and healthy, but too much stress can be

harmful [53, 54]. Therefore, it is accepted that there are two types of stress, as described

below [52].

• Eustress: it is considered as good stress because it is not harmful and it is essential

for life, growth and survival. This type of stress allows organisms to face and adapt

to changes and different situations.
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FIGURE 2.3: Connections of sympathetic branch of the ANS.
Source: opentextbc.ca

• Distress: it is considered a bad stress because it is harmful, pathological, destroys

the organism, is accumulative, kills hippocampal neurons, contributes to produce

mental pathologies, accelerates the aging process, etc.

In a healthy person, the performance level increases during eustress but decreases rapidly

in the distress stage as illustrated in the human function curve in Figure 2.4 developed by

Nixon [55]. In total, five stages of stress are differentiated:

1. Alarm stage: The organism prepares to “fight or flight”.

2. Resistance stage: Consists of continued sympathetic stimulation. The body is at-

tempting to maintain homeostasis in the presence of the stressor which initiated

https://opentextbc.ca/anatomyandphysiology/chapter/15-1-divisions-of-the-autonomic-nervous-system/
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the alarm reaction.

3. Recovery stage: As the stress is brought under control, normal body function re-

turns.

4. Adaptation stage: If the body does not proceed through to the recovery stage, the

distress becomes chronic. At this stage the body prepares for a period of stress that

can result in chronic diseases.

5. Exhaustion stage: The exhaustion stage occurs when the body finally gets drained

due to the incapacity to recover from continuous stress.

FIGURE 2.4: The human stress-performance curve.
Source: nutritionalbalancing.org

Parasympathetic nervous system

The parasympathetic division has the opposite role, counteracting the activity of the SNS.

It restores the body to a state of calm and relaxation. When the external environment does

not present any immediate danger, the body goes into rest mode and the digestive system

is more active. It slows the heart rate, increases intestinal and gland activity and relaxes

sphincter muscles in the gastrointestinal tract [49].The parasympathetic system can also

be referred to as the craniosacral system because the preganglionic neurons are located

in nuclei of the brainstem and the lateral horn of the sacral spinal cord, as illustrated in

the scheme in Figure 2.5 [48, 50]. The activation of the PNS causes a reaction commonly

known as relaxation.

Relaxation

Considering the new paradigms of positive psychology, many research lines have changed

the focus in this area, looking for solutions centered on the wellness of people and analyz-

ing how people relax [14, 15, 51, 56]. The idea of relaxation in psychology was popularized

https://nutritionalbalancing.org/center/htma/conditions/articles/distress.php
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FIGURE 2.5: Connections of parasympathetic division of the ANS.
Source: opentextbc.ca

by Dr. Edmund Jacobson in his book “Progressive Relaxation” [57]. The feeling of the ef-

fect that PNS has on the organism is what it is feels as relaxation. This phenomenon is

associated with a decrease in heart rate, blood pressure and breathing rate, normaliza-

tion of blood sugar levels, increase of blood flow to major muscles, reduction of the activ-

ity of stress hormones and reduction of the muscle tension and chronic pain [49]. These

changes that take place in the organism produce what Benson called a relaxation response

[25].

https://opentextbc.ca/anatomyandphysiology/chapter/15-1-divisions-of-the-autonomic-nervous-system/
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2.1.2 Response systems

The body response is usually understood as the body’s ability to react properly to the in-

fluence of both external and internal factors. The body response can range from a relaxing

(“rest and digest”) to a stressful (“fight or flight”) response, affecting the physiology of the

electrodermal, cardiovascular and respiratory systems [19, 49, 27]. Therefore, it is essen-

tial to study these systems to understand their responses to different stimuli, both stress-

ful and relaxing, and determine which objective measures can be extracted to quantify the

level of activity in each case.

Electrodermal system

Electrodermal activity, also named galvanic skin response (GSR), is one of the most used

physiological signal in the field of psychophysiology [19]. It consists in the measurement

of the continuous variations in the conductance of the skin, which fluctuates with the state

of sweat glands [58].

There are two different types of sweat glands, as illustrated in Figure 2.6: eccrine glands,

which open by a duct directly onto the skin surface, and apocrine glands, which open

into the hair follicles. While eccrine glands produce sweat for thermal regulation, apoc-

rine glands are related to hormone production. Although both types are almost all over

the body, the eccrine gland concentration is bigger in the feet soles, hand palms and fore-

head. Furthermore, the glands located in the feet soles and hand palms are more related

to psychological changes rather than thermal regulation [59].

Figure 2.6 shows the basic mechanisms involved in the electrodermal activity. The ex-

treme outer layer of the skin, the epidermis, consists of a layer that serves to protect the

internal organs. Below, the dermis contains the follicles, oil glands and sweat glands. Just

below the dermis is the subcutaneous fat. The eccrine sweat gland consists of a compact

coiled body, which is the secretory portion of the gland, and the sweat duct, the long tube

which is the excretory portion of the gland. The sweat duct remains relatively straight and

opens on the surface of the skin as a small pore [60].

As noted above, human body sweating, which is predominantly cholinergic, is regulated

by the ANS. More specifically, palmar sweat gland activity increases when the sympathetic

branch of the ANS is highly aroused, which in turn increases skin conductance. This is

directly related to the fact that in a stress situation the secretory activity of the palms in-

creases to provide a flexible adhesive surface that facilitates tactile acuity and grip of ob-

jects [62]. Hence, the GSR is a measure of the human SNS responses, which are directly

related to some mental states, such as stress. Next, the most common GSR acquisition

methods are presented, along with properties inherent to the signal itself.

Measurements

There are currently two predominant methods for GSR acquisition: measuring changes

in electrical potential between two electrodes placed on the skin without applying any
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FIGURE 2.6: Anatomy of the sweat glands.
Source: Hu et al. [61]

external current as reported by Tarchanoff [63], or by applying a low electrical potential

between the two electrodes [64]. Lykken and Venables [65] strongly recommend the direct

measurement of skin conductance with a constant voltage system. Currently, most of the

GSR recording systems on the market include constant voltage systems. Among these,

there is a wide variety of new wearable healthcare devices, e.g., bracelets and watches [3].

Thus, this measure is usable in research activities, also in non-laboratory settings [7, 66,

1].

Due to the correlation between the activity of the SNS and the sweat glands of the hands,

it is very common to acquire the GSR using sensors located in the palms as illustrated in

Figure 2.7. It is usual to place the sensors in the distal phalanges of the non-dominant

hand [19]. In this way, the dominant hand is available to carry out tasks if necessary.

In contrast to other physiological signals, GSR is cumulative. The moisture generated by

sweat glands does not dissipate at the same rate at which it emanates, since it depends on

the physical and environmental conditions. Therefore, under the same stress and relax-

ation states, the measured conductivity may vary the value depending on when the mea-

surements are performed. Figure 2.8 illustrates this phenomenon, where the level of the

GSR at the beginning and at the end of the signal (blue background) has different values,

even belonging to an identical state of relaxation.
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FIGURE 2.7: The three more common electrode placements for recording
GSR.

Source: Cacioppo et al. [19]
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FIGURE 2.8: Electrodermal activity recorded during the relaxation-stress-
relaxation stages of the experiment. Relaxation periods correspond to the

blue background and stress periods to the red background.

The cumulative characteristic of the GSR signal results in the differentiation of two main

components: the tonic component, that corresponds to the baseline or skin conductance

level (SCL), and the phasic component, that refers to the variations around the baseline or

skin conductance response (SCR) [19]. The tonic component is associated with the long-

term variations of the moisture. On the contrary, the phasic component correspond to the

short-term sweat bursts as a consequence of SNS activity. Thus, it is common to see a GSR
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signal full of phasic components when the person goes into an alert state. This results in

the following GSR features extraction.

Feature extraction

Considering the large variance in the raw GSR, it is necessary to normalize the signal both

in an intrapersonal and interpersonal context. Analyzing the raw GSR, the distribution of

the amplitude of the SCR and the SCL is positively skewed. Venables and Christie propose

the standardization of the signal by calculating the logarithm according to equation 2.1

[67]. Figure 2.9 shows the difference between the original GSR signal in blue and the nor-

malized GSR (GSR ′) in purple. After normalization, the slope of the GSR during relaxation

states is equalized regardless of the level of humidity.

GSR ′ = log (GSR+1.0) (2.1)

0 200 400 600 800
Time (sec)

9

10

11

12

13

14

15

S

2.2

2.3

2.4

2.5

2.6

2.7

lo
g 

S

GSR
GSR'

FIGURE 2.9: Electrodermal activity before (blue) and after (purple) apply-
ing equation 2.1.

Another issue is the standardization of GSR among different individuals, since signal val-

ues can vary significantly among different subjects. Lykken et al. proposed a method to

fix the interindividual variance by ranging the signal between the maximum and the min-

imum value according to equation 2.2 [68].

GSR ′′ = GSR ′−GSR ′
mi n

GSR ′
max −GSR ′

mi n

(2.2)

The achievement of a homogeneous variance of the GSR across several individuals results

in the extraction of high quality parameters for the design of generic algorithms. Typi-

cal features of the GSR are given in Table 2.1 for SCL and Table 2.2 for SCR, and shown

graphically in Figure 2.10 extracted from [19].
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TABLE 2.1: SCL features and definitions.

Feature Definition

Mean SCL
Mean value of electrical conductivity of skin in a fixed win-
dow.

SCL slope Slope of the SCL measured in a fixed window.
Standard deviation Standard deviation of the SCL in a fixed window.

SCL amplitude
Difference between the maximum and minimum point in
a fixed window.

TABLE 2.2: SCR features and definitions.

Feature Definition
SCR frequency Number of SCRs in a fixed window.
SCR amplitude Phasic increase in a SCR.

SCR latency Temporal interval between SCRs in a fixed window.
SCR rise time Time between SCR initiation and SCR peak.

SCR half recovery
time

Time between SCR peak and 50% recovery of SCR ampli-
tude.

SCR slope Rate of change of SCR amplitude.

FIGURE 2.10: Graphical representation of principal GSR components.
Source: Cacioppo et al. [19]

Circulatory system

The circulatory system, also called the cardiovascular system, is essential for life. It trans-

ports nutrients through the bloodstream to every cell in the body and helps fight diseases

and maintain homeostasis. It consists of the heart, which is a special cardiac muscle with

properties different from skeletal muscles that pumps blood, and a closed system of ves-

sels called veins, arteries and capillaries. While arteries are blood vessels responsible for

transporting oxygenated blood from the heart to the rest of the body, the veins carry de-

oxygenated blood from the body back to the heart for reoxygenation. The heart provides

a continuous flow of oxygen-rich blood by sending it into the lungs and then to the rest of

the body, as illustrated in Figure 2.11 [19].

The cardiovascular system has a vital role in maintaining homeostasis, which depends

on the continuous and controlled movement of blood through the thousands of miles of
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FIGURE 2.11: Body and pulmonary blood circulation scheme.
Source: quora.com (modified)

capillaries that reach every cell in the body [69]. There are numerous control mechanisms

to help regulate the various tasks of the cardiovascular system that supply blood to specific

areas of the body as needed. Those autoregulatory processes are associated with ANS and

hormonal control [19].

The circulatory system is under control of both the sympathetic and parasympathetic

branches of the ANS [19]. These control the heart period, dilatation of blood vessels and

force of heart contraction and constriction [69]. Heart is partially controlled by the va-

gal tone, which is a fundamental component of the parasympathetic branch of the ANS

that refers to the activity of the vagus nerve. While the neurons of both the sympathetic

and parasympathetic system secret acetylcholine, the SNS release norepinephrine, which

innervates cardiac activity [70]. The autonomic innervation of the heart is illustrated in

Figure 2.12, extracted from [19].

Measurements

A wide variety of measures are used to assess the state of the cardiovascular system includ-

ing cardiac cycle, blood flow, blood pressure (BP), vascular resistance and cardiac output

[19].

https://www.quora.com/What-is-the-function-of-the-circulatory-system
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FIGURE 2.12: Scheme of the autonomic innervation of the heart.
Source: Cacioppo et al. [19]

One of the most commonly used parameter to estimate the activity of the ANS is the car-

diac cycle, also known as heart period (HP), which is directly related to the sympathetic

and parasympathetic branches of the ANS. This is defined as the performance of the hu-

man heart from one beat to the next. It consists of two periods: The first during the relax-

ation of the heart muscles, where the heart refills with blood (diastole). This is followed

by a second period of robust contraction and pumping of blood (systole) [71]. This phe-

nomenon is illustrated in the Wiggers diagram in Figure 2.13, which includes a graphic

representation of various cardiovascular measures commonly used in the field of cardiac

physiology.

There are different methods for the extraction of the HP, all based on the detection of

events related to the appearance of beats in cardiovascular records. The most commonly

used signals to perform this task are the electrocardiogram (ECG), BP and blood volume

records, which not only include the HP but are also analysed to detect a wide variety of

heart diseases [72, 73].

An important disadvantage of BP measurements is the limited acquisition time. The record-

ing usually takes a few seconds. Furthermore, it is necessary to apply an external pres-

sure to the body limb where the measurement is performed, which makes it an invasive

method. To achieve a continuous monitoring and avoid the external invasive pressure,

the assessment of blood volume based on a plethysmographic acquisition is among the

most used methods for non-invasive acquisition [74].

Below, the main non-invasive techniques used in the acquisition of the ECG and the plethys-

mography, which are normally used in continuous monitoring, are presented.
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FIGURE 2.13: A Wiggers diagram showing the cardiac cycle events.
Source: Wikimedia (modified)

Electrocardiogram

Each heartbeat is caused by an electrical impulse that is normally generated in special-

ized cells of the upper right heart cavity (sinoatrial node cells). The ECG is a signal that

records this electrical activity during the myocardial contraction of the heart [75, 76]. It is

frequently used to detect heart problems and monitor the heart status in many situations.

The electrical activity is measured from the patient’s body surface using a set of electrodes.

The ECG is normally represented by the “standard 12-lead ECG”, which gathers informa-

tion from 12 different areas of the heart. Commonly, a total of 10 electrodes are used to

form the 12 leads, as shown in Figure 2.14. The electrodes are placed on the skin of the

chest and sometimes the limbs. Electric activity is recorded as waves on a graph, with dif-

ferent patterns corresponding to each electrical phase of the heartbeat [76]. An example

of this type of graph is illustrated in Figure 2.15.

Among the most used non-invasive electrode configuration, the Einthoven’s triangle stands

out, which is illustrated in Figure 2.16. By convention, electrodes are located on the left

arm (LA), right arm (RA) and left leg (LL). Even so, it can also be placed closer to the heart

if necessary, around the chest, maintaining the same configuration with the heart at the

centre.

In total, the following three leads are distinguished [77]:

• Lead I goes from the RA to the LA, with the negative electrode placed on the right

https://commons.wikimedia.org/wiki/File:Wiggers_Diagram_2.svg
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FIGURE 2.14: Location of the 10 electrodes in a standard 12-lead ECG.
Source: pinterest.com

FIGURE 2.15: A standard 12-lead ECG example.
Source: Wikipedia

shoulder and the positive electrode placed on the left shoulder. It is calculated ac-

cording to equation 2.3.

I = LA−RA (2.3)

• Lead II goes from the RA to the LL, with the negative electrode on the right shoulder

and the positive one on the LL. It is calculated according to equation 2.4.

II = LL−RA (2.4)

• Lead III goes from the LA to the LL, with the negative electrode on the left shoulder

and the positive one on the LL. It is calculated according to equation 2.5.

III = LL−LA (2.5)

https://www.pinterest.ch/pin/28921622588151138/
https://it.wikipedia.org/wiki/File:12_lead_generated_sinus_rhythm.JPG
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FIGURE 2.16: Einthoven’s triangle.
Source: Klabunde [78]

For normal heart function, the ECG signal has the characteristic shape shown in Figure

2.17, where each heartbeat is composed of PQRST complexes. The R-peak located in the

QRS complex is the most characteristic waveform and is usually employed as a reference

for the heartbeat position [76]. The R-R interval extracted from two consecutive heart-

beats corresponds to one HP.

FIGURE 2.17: R-R interval measured between two PQRST complexes.
Source: kindpng.com

Numerous algorithms for ECG analysis based on different computing techniques have

been developed during the last decades [79]: artificial neural networks [80], support vec-

tor machines [81], Hilbert transform [82], genetic algorithms [83], digital filters [84, 85, 86,

87, 88], k-means [89], wavelets [90, 91, 92, 93, 94, 95, 96], derivatives [97, 98], combined

threshold methods [99] and moving averaging methods [100], among others.

https://www.kindpng.com/imgv/iihJbJb_ecg-rr-interval-hd-png-download/
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Plethysmography

Plethysmography is defined as the measurement of volume changes in an organ or the

entire body. Several techniques are used for the non-invasive analysis of the venous sys-

tem. One of the most used is photoplethysmography (PPG). PPG is based on the use of a

transducer, that emits infrared light from a led into the dermis, and a photodetector, that

measures the scattered light and displays it as a line tracing. The amount of scattered light

varies with the red blood volume [101].

Among the different measurements, finger PPG is a non-invasive method to record changes

in blood flow. [102]. The pulsatile blood supply comes from the radial and ulnar artery

over the palmar arch. The venous return is an almost laminar flow. The light is partly ab-

sorbed by arterial blood, which changes according to the heart activity. The photodetector

receives the non-absorbed light on the other side of the finger and therefore produces a

continuous pulse signal as illustrated in Figure 2.18.

FIGURE 2.18: Finger PPG measurement scheme.
Source: cnsystems.com (modified)

The most commonly used reference to measure the HP in plethysmographic signals, as

well as BP signals, is the foot point [103, 104]. From these, the foot to foot interval (F-F

interval) is calculated as illustrated in Figure 2.19, which is equivalent to the HP measure-

ment.

Several approaches have been proposed to locate foot points in both plethysmographic

and BP signals, such as those reported in Kazabicus et al. [104]. Some of those methods

include the bottom straight-line and forefront tangent intersection method, the second

derivative maximum method, the wave foot polynomial approximation method and the

tangent intersection foot-to-foot method, among others. For these methods, accuracy of

the foot point estimation decreases proportionally to the signal-to-noise ratio.

https://www.cnsystems.com/history-of-vascular-unloading-technique
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FIGURE 2.19: F-F interval measures in a plethysmographic signal.

Feature extraction

From previously extracted heartbeat references, both the R-R interval and the F-F interval

are used to calculate the HP according to equations 2.6 and 2.7, respectively. rpeaks and

fpoints correspond to the location on the temporal axis of the detected R-peaks and foot

points, respectively. Figure 2.20 illustrates an example of the HP extracted from an ECG

record.

HPi = rpeaksi+1 − rpeaksi (2.6)

HPi = fpointsi+1 − fpointsi (2.7)
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FIGURE 2.20: HP extracted from an ECG signal.

Traditionally, HP (in seconds) is generally converted to heart rate (in beats/minute or

bpm). Those two parameters are not linearly related to each other. Berntson et al. [105]

reviewed literature showing that the relationship between changes in the activity of the

sympathetic and parasympathetic branches of the ANS and HP are more nearly corre-

lated.
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Heart rate variability (HRV) is also widely used in cardiovascular psychophysiology and

is calculated according to equation 2.8. It represents the variation in the time interval

between consecutive heartbeats. This phenomenon is illustrated in the top graph in Fig-

ure 2.21. HRV is reported to be an index of the influence of both the SNS and PNS. The

parasympathetic influence is mediated by the release of acetylcholine by the vagus nerve,

which is reflected in the high frequency band of HRV. The sympathetic influence, in con-

trast, is mediated by the release of norepinephrine and epinephrine reflected in the low

frequency band of HRV as illustrated in the bottom graph in Figure 2.21 [106].

HRVi = HPi+1 −HPi (2.8)
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FIGURE 2.21: HRV obtained from previously calculated HPs (top graph)
and the corresponding frequency correlation (bottom graph).

A wide range of parameters have been developed to assess a measure of HRV, including

temporal-domain, frequency-domain and nonlinear metrics illustrated in Tables 2.3, 2.4

and 2.5, respectively [107, 108, 109].

Respiratory system

In psychophysiology, the respiratory system is often underestimated, but is remarkably

complex and sensitive to a variety of psychological states. It consists on a series of organs
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TABLE 2.3: HRV temporal-domain features and definitions.

Feature Definition
SDNN Standard deviation of the HP intervals.

SENN
Standard error of the mean, is an estimate of the standard deviation of
the sampling distribution of means.

SDSD Standard deviation of differences between adjacent HP intervals.
RMS Root mean square of the HP intervals.

RMSSD Square root of the mean squared successive HP differences.

IRRX
Irregularity index, which is the standard deviation divided by mean HP
lying between the ath and bth percentile.

NN50
Number of successive differences of HPs which differ by more than
50ms.

pNN50 NN50 divided by the total number of HPs.

TABLE 2.4: HRV frequency-domain features and definitions.

Feature Definition
HF HRV power spectrum high frequency band (0.15 – 0.4Hz).
LF HRV power spectrum low frequency band (0.04 – 0.15Hz).

VLF HRV power spectrum very low frequency band (0.0033 – 0.04Hz).
ULF HRV power spectrum ultra low frequency band (<0.0033Hz).

TABLE 2.5: HRV nonlinear features and definitions.

Feature Definition

SD1
First standard deviation of the Poincaré plot, is related to the fast HP
variability.

SD2
Second standard deviation of the Poincaré plot, is related to the long-
term HP variability.

responsible for inhaling oxygen and exhaling carbon dioxide as illustrated in Figure 2.22.

The primary organs of the respiratory system are the lungs, which consist of a pair of air-

filled organs located on either side of the thorax. The trachea conducts inhaled air into the

lungs through its tubular branches, called bronchi. The bronchi are divided into smaller

and smaller branches, called bronchioles. The bronchioles eventually end in clusters of

microscopic air sacs called alveoli [110].

The lungs work together with the circulatory system to pump oxygenated blood to all cells

in the body. The blood, then, collects carbon dioxide and other waste products and trans-

ports them back to the lungs according to the previously shown in Figure 2.11.These ma-

terials are finally pumped out of the body when the person exhales [111].

The breathing or respiratory action (RSP) is partially influenced by the sympathetic and

parasympathetic branches of the ANS and affects many other systems of the body [112]. It

is mostly coupled to the cardiac output, changing heart period as a function of the respira-

tory cycle. This phenomenon is called respiratory sinus arrhythmia and is closely related

to the cardiovascular system. In fact, the degree of dissociation between RSP and heart

period is often used as an index of the vagal control of the heart [113].
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FIGURE 2.22: Anatomy of the respiratory system.
Source: Wikimedia

Measurements

Almost all measurements of lung function in medical settings are made using spirometry.

The problem with this technique is that the patient is usually nose clipped and breathes

through a tube placed into the mouth, which is psychologically invasive because it often

centers the subject’s attention on the process of breathing [114].

In research, it is common to use a respiratory belt to assess a continuous measurement of

the volume of the thorax while the tasks of interest are performed. This method has the

advantage of not invading the psychological dimensions of the task [19]. Nowadays, the

most commonly used respiratory belt consists of a piezoelectric device. These are robust

electromechanical systems that react to compression, providing reliable signals that can

be incorporated into most electrophysiological recording systems. Figure 2.23 shows the

placement in the chest of a common piezoelectric belt.

Piezoelectric sensors show almost zero deflection, giving an excellent linearity over a wide

range of amplitude. As the subject inhales air, the volume of the chest increases and con-

sequently stretches the device. The opposite occurs when exhaling air, resulting in the

signal plotted in Figure 2.24.

https://commons.wikimedia.org/wiki/File:Lung_and_diaphragm.jpg
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FIGURE 2.23: Piezoelectric belt placement.
Source: Bifulco et al. [115]
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FIGURE 2.24: RSP signal recorded using a piezoelectric belt

Feature extraction

The extraction of features is mainly based on the analysis of the inspiration and exhala-

tion periods. Exhalation peak is defined as the minima of the RSP waveform between two

cycles and is labeled as “a” on the graph in Figure 2.25, extracted from [19]. Inspiration

peak is the maxima and is labeled as “b.”

Table 2.6 shows the main parameters extracted from RSP, in which the respiratory rate in

addition to the inspiration/exhalation volume and period are studied [19]. Furthermore,

the frequency components of the signal have also been considered.
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FIGURE 2.25: Inspiration and exhalation representation in a RSP signal
extracted from a piezoelectric belt transducer.

Source: Cacioppo et al. [19]

TABLE 2.6: Features extracted from a RSP signal and definitions.

Feature Definition
Breathing rate Number of peaks per minute in a fixed window.

Inspiratory volume Integration of the breathing signal during inspiration.
Expiratory volume Integration of the breathing signal during exhalation.

Inspiration/Exhalation
ratio

Relation between inspiration and exhalation volume.

Inspiratory duration Duration of the inspiration.
Exhalatory duration Duration of the exhalation.

Duration ratio Relation between inspiration and exhalation duration.

Complexity
Spectral analysis combined with examination of the am-
plitudes of nondominant frequencies.

2.2 Soft computing

Soft computing is a field of artificial intelligence that includes methodologies based on

ideas inspired by biology, psychology and linguistics to find solutions to problems with

incomplete, uncertain or inaccurate information. These problems are characterized by

the need to interact efficiently with complex systems when the available information is

not enough. Soft computing is commonly used to control, analyze, and model complex

systems, such as communications, robotics and healthcare applications. The scheme in

Figure 2.26 illustrates the techniques and methods used throughout this thesis.

To present the algorithms used for the development of this thesis, subsection 2.2.1 fo-

cuses on the principal component analysis technique, implemented to reduce parameter

dimensionality. In subsection 2.2.2, semi-supervised pseudo-labeling techniques are in-

troduced, applied to carry out a continuous labeling of the records. Finally, subsections

2.2.3, 2.2.4 and 2.2.5 describe the algorithms used to carry out the predictions, i.e., fuzzy

logic algorithm, fuzzy rule-based supervised learning methods and artificial neural net-

works.
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FIGURE 2.26: Schematic representation of the soft computing techniques
and methods used throughout this thesis.

2.2.1 Principal component analysis

Principal component analysis (PCA) is a statistical technique used to identify the underly-

ing dependencies of a data set. This technique significantly reduces the dimensionality of

the data set by finding a new set of uncorrelated variables, smaller than the original one.

PCA is commonly used for the compression of input data when there is redundancy due

to the correlation of multiple features. During the process, most of the sample informa-

tion is retained. The new set of uncorrelated variables, called principal components (PCs),

should be able to explain most of the variance of the original variables [116]. Figure 2.27

depicts each step of the PCA that is explained in detail below.

Since PCA is frequently employed to reduce a multivariate data set while maintaining most

of the information of the original data, it can also be implemented as a preprocessing

approach of a soft computing method. However, since this process is irreversible, the

reduction of the data should be done only for the inputs and not for the target variables.

1. Subtraction of the mean from the data

In this first step, the mean (x) is subtracted to each sample in the data set (x(i ) ={
x(i )

1 , x(i )
2 , . . . , x(i )

p
}
) to carry out the normalization. Mean value is calculated accord-

ing to equation 2.9, where n is the number of examples for a given data set. This

results in a shift of data in all its dimensions, which now has an average of zero. The

graph in Figure 2.28 shows the resulting normalized data for a hypothetical two-

variable (x1 and x2) data set.
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FIGURE 2.27: Steps of the PCA.

x = 1

n

n∑
i=1

x(i ) (2.9)

FIGURE 2.28: A two-variable random data set after mean subtraction.

2. Covariance matrix

The variance is a measure of the dispersion that represents the variability of the
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data in relation to its mean. The covariance, however, is a measure that reflects the

degree of combined variation of two different variables in relation to their respective

means according to equation 2.10.

Σ j k = 1

n

n∑
i=1

(
x(i )

j −x j
)(

x(i )
k −xk

)T (2.10)

The resulting matrix is used to determine the linear dependencies between the dif-

ferent features to later reduce the dimensionality of the data set. The values cor-

responding to the diagonal of the covariance matrix represent the variance of each

variable. Besides, the off-diagonal values represent the covariance between each

pair of variables. If the covariance is positive for a given pair of variables, the value

of both increase and decrease together, but if it is negative, then when the value of

one variable increases the value of the other decreases, and vice versa.

3. Eigenvectors and eigenvalues

Eigenvectors represent a particular case of multiplication between a matrix and a

vector, resulting in a multiple of the original vector whose direction remains un-

changed. The length of the vector can not remain the same after the transforma-

tion, which results in a factor called eigenvalue. Each eigenvector has an eigenvalue

associated with it.

Eigenvectors represent the directions in which the data has more variance and eigen-

values determine the amount of variance that the data set has in that direction. The

number of eigenvectors or PCs that can be calculated for each data set is equal to

the dimension of the data set.

Let v be a vector and λ a scalar that satisfies Σv =λv , then λ is the eigenvalue asso-

ciated with the eigenvector v of square matrix A. The eigenvalues of A are roots of

the characteristic equation 2.11, where I is the identity matrix.

det(A−λI ) = 0 (2.11)

Eigenvectors are subsequently calculated according to equation 2.12 once eigenval-

ues have been calculated. For each eigenvalue λ, we have:

(A−λI )x = 0 (2.12)

where x is the eigenvector associated with eigenvalue λ.

According to the two-variable example of the graph in Figure 2.29, the vector that

determines the first PC (z1) is the one that has the direction in which the observa-

tions have the largest variance. The projections of the observations on that direction

correspond to the values of the first PC.
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The second PC (z2) also looks for a maximum variance, satisfying the condition of

not being correlated with the first PC. The non-correlation between the PCs means

that they are orthogonal to each other.

FIGURE 2.29: Eigenvector (or PC) representation.

4. Principal components

To carry out the reduction of the number of variables, it is necessary to perform a

selection of the main eigenvectors, also known as PCs. The selection criterion is

based on the amount of information that must be retained from the original data

set, which is usually defined as a percentage. This criterion requires the definition

of the cumulative explained variance (π) according to equation 2.13, which depends

on the total variance of the data set (denominator) and the sum of the relative vari-

ance of each eigenvector up to the desired number of PCs (k) (numerator). The

variance is determined by the eigenvalues, where p is the total number of eigen-

values/eigenvectors. The graph in Figure 2.30 shows an example of the cumulative

explained variance depending on the number of PCs.

πk =

k∑
i=1
λi

p∑
j=1
λ j

·100 (%) (2.13)

A common way to select the number of PCs is to establish the amount of informa-

tion that needs to be kept, considering that if the selected number of PCs decreases,

the amount of saved information will be also reduced.

5. Reduction of data dimension
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FIGURE 2.30: Cumulative variance chart.

Once the desired number of PCs is selected, the data is projected through the pro-

jection matrix (W ) according to equation 2.14, where W is constructed from the

eigenvectors selected in the previous step. The variance information lost during this

process due to discarded components is irreversible, which means that the original

data can not be recovered from the projection.

x(i )′ = x(i ) ·W (2.14)

2.2.2 Pseudo-labeling

Pseudo-labeling is a branch of semi-supervised learning commonly used to classify the

samples of a partially labeled data set. Among the most used methods, label propagation

and label spreading stand out. The difference between both lies in the design of the transi-

tion matrix. Label propagation uses the graph Laplacian matrix while label spreading uses

a modified version of the original graph and normalizes the edge weights by computing

the normalized graph Laplacian matrix.

To further introduce both methods, N labeled points (denoted by -1 and +1) and M unla-

beled points (denoted by 0) will be considered, being a sample label y (i ) ∈ −1,+1,0). The

data set is defined according to equation 2.15. G = {V ,E } is the undirected graph based on

a measure of geometric affinity among samples, where V = v (1), v (2), . . . , v (N+M) is the set

of vertices. Each vertex v (i ) corresponds to a unique data point x(i ). Further, each edge

(v(i ), v( j )) ∈ E of this graph is associated with a non-negative weight wi j ≥ 0, which mea-

sures the similarity between the nodes v(i ) and v( j ), and is computed using an appropriate

kernel function. The affinity matrix W = (wi j )i , j=1,2,...,N+M depends only on the sample

values denoted by X , not on the labels. The graph in Figure 2.31 illustrates an example of

a partially labeled data set with the corresponding affinity parameters [117].
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X = {
x(0), x(1), . . . , x(N ), x(N+1), . . . , x(N+M)

}
where x(i ) ∈Rk

Y = {
y (0), y (1), . . . , y (N ),0,0, . . . ,0

}
where y (i ) ∈ {

0,+1,−1
} (2.15)

FIGURE 2.31: Example of a partially labeled data set with the correspond-
ing affinity parameters. Labeled data is denoted by -1 and +1 and unla-

beled data by 0.

Label propagation

Label propagation belongs to the family of semi-supervised algorithms based on a graph-

ical representation of the data set. The basic principle behind the label propagation al-

gorithm is that a single label can rapidly become dominant in a group of densely con-

nected nodes. In contrast, labels will have trouble crossing sparsely connected areas.

[118]. Densely connected groups of nodes will end up with the same label, being con-

sidered part of the same community as illustrated in Figure 2.32.

FIGURE 2.32: Connected group of nodes. Each color represents a label.

An interesting feature of label propagation is the possibility of assigning preliminary labels

to the nodes. This fact provides the algorithm with clues to generate the groups, reducing

the range of available solutions. Consequently, it allows the manual selection of some

initial communities so that the rest of the communities can be found by means of a semi-

supervised procedure.
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As proposed by Zhu and Ghahramani [119], the steps of the label propagation algorithm

are represented in the schematic in Figure 2.33, which are introduced below.

FIGURE 2.33: Steps of the label propagation algorithm.

1. Affinity matrix selection

The affinity matrix is generally a square, symmetric matrix, whose dimensions have

a size of N +M . The two most common methods used to obtain the weights of the

affinity matrix are the K-nearest neighbors (kNN), according to equation 2.16, and

the radial basis function kernel, according to equation 2.17.

wi j =
{

1 if x(i ) ∈ kNN
(
x( j )

)
0 otherwise

(2.16)

wi j = e−γ‖x(i ) −x( j )‖2
(2.17)

2. Degree matrix computation

To describe the basic label propagation algorithm, it is necessary to introduce the

degree matrix (D), which is a diagonal matrix where each non-null element repre-

sents the degree of the corresponding vertex according to equation 2.18.

D = diag

(∣∣∣∣∑
j

wi j

∣∣∣∣ ∀ i = 1 .. N +M

)
(2.18)

3. Initialize labeled and unlabeled nodes → Y (0)
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This step refers to the initialization of Y at t = 0 according to the partially labeled

and unlabeled nodes according to equation 2.19, where Y was previously defined in

2.15.

Y (0) = Y = {
y (0), y (1), . . . , y (N ),0,0, . . . ,0

}
(2.19)

4. Define labeled nodes → YL

The labeled nodes correspond to a subsection of Y , which contains only the nodes

with defined labels as follows:

YL = {
y (0), y (1), . . . , y (N )} (2.20)

5. Iterate until convergence

At every iteration, a propagation step is performed with both labeled and unlabeled

data according to 2.21. The first command of 2.21 spreads each label from a node

across its outgoing edges. For this purpose, the affinity matrix, which is normalized

by the degree matrix, increases or decreases the effect of each weight. The second

command of 2.21 resets all labeled samples to their original value to avoid changing

the predefined labels.

Ỹ (t+1) = D−1W Ỹ (t )

Ỹ (t+1)
L = YL

(2.21)

The algorithm reaches convergence when each node has the majority label of its

neighbours. It stops when convergence is achieved or the maximum number of

iterations defined by the user is reached. The final labels are obtained according to

equation 2.22 (this equation is only applicable if the labeling is binary).

YF i nal = sign
(
Ỹ (tend )) (2.22)

Label spreading

Label spreading algorithm was first proposed by Zhou et al. [120] and is closely related to

label propagation algorithm. The steps of the label spreading algorithm are represented

in the schematic in Figure 2.34, where steps 1, 2 and 4 are identical to steps 1, 2 and 3 of

label propagation. In addition, label spreading uses the standardized Laplacian graph in

step 3 defined in equation 2.23.

L = D−1/2W D−1/2 (2.23)
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FIGURE 2.34: Steps of the label spreading algorithm.

Below, the additional steps 5 and 6 are presented. These stand out as the major difference

between this method and label propagation.

1. Define α

Label spreading includes a clamping factor α for the labeled samples. If α = 0, the

algorithm will always reset the labels (YL) to the original values (as in label propa-

gation). If alpha is in the range (0, 1], the percentage of labels that are reset to their

original values decreases progressively until α = 1, where no labels are reset any-

more.

2. Iterate until convergence

At every iteration, a propagation step is performed according to equation 2.24.

Ỹ (t+1) =αL Ỹ (t ) + (1−α)Y (0) (2.24)

The algorithm reaches convergence when each node has the majority label of its

neighbours. It stops when convergence is achieved or the maximum number of

iterations defined by the user is reached. The final labels are obtained according to

equation 2.22, previously defined in label propagation.
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2.2.3 Fuzzy logic

The fuzzy logic concept was first introduced in the fuzzy set theory by Zadeh [121], accord-

ing to the premise that people make decisions based on imprecise and non-numerical

information. However, human ability to make accurate statements based on such inaccu-

rate information decreases as the analyzed system becomes more complex, requiring the

implementation of intelligent methods capable of dealing with fuzzy data. While classical

computer frameworks are better suited to traditional logic, some situations require intel-

ligent systems to adapt to fuzzy, context-based concepts. This adaptation is very similar

to the paradigm of human reasoning.

Fuzzy logic is a branch of soft computing based on the concept of “grade of belonging”,

which is defined through membership functions or fuzzy sets. Figure 2.35 illustrates a

common example of fuzzy sets where “cold”, “warm”, and “hot” linguistic variables are

represented by trapezoidal membership functions that determine the degree in which the

temperature value belongs to each of these states.

FIGURE 2.35: Example of “cold”, “warm”, and “hot” trapezoidal member-
ship functions for a temperature input.

Source: Wikimedia

Thus, this methodology makes possible to handle vague or inaccurate information to ob-

tain the status of a specific system. The kernel of this method consists of a set of rules

extracted from expert knowledge. Unlike other methods, the knowledge implemented in

fuzzy logic models is already known, since it has been previously defined by experts in

the field. This fact makes the algorithm an unsupervised method that does not require

labels to be tuned, thus being an advantage when using information that has not been

previously labeled.

This method is divided into two main branches according to the methodologies proposed

by Mamdani and Assilian [122] and Sugeno [123], respectively. While Mamdani systems

have a more intuitive rule base suitable for applications where the rules are created from

human expert knowledge, the defuzzification process of a Sugeno system is more com-

putationally efficient, using a weighted average of a number of data points, rather than

calculating the centroid of a two-dimensional area such as in the Mamdani method.

Figure 2.36 shows the basic scheme of a fuzzy algorithm where the system architecture

consists of three main stages: fuzzification, inference and defuzzification.

https://commons.wikimedia.org/wiki/File:Fuzzy_logic_temperature_en.svg
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FIGURE 2.36: Basic scheme of a fuzzy algorithm.

1. Fuzzification

Fuzzification is a process that consists of determining the possibility or degree of

belonging of one variable to each of the membership functions of a fuzzy set. The

degree of membership is within a range [0, 1], where zero is a null degree of mem-

bership to a linguistic variable and one is a total degree of membership. The mem-

bership functions can take any form (gaussian, triangular, sigmoid, step, and so on)

depending on the data set and the context. Figure 2.37 illustrates an example of a

set of triangular membership functions where the degree of membership is defined

according to the value of each variable on the horizontal axis and the morphology

of the corresponding membership function.

FIGURE 2.37: Example of triangular fuzzy membership functions.
Source: Nebot & Mugica [124] (modified)

2. Inference system

In this step, several procedures are implemented to combine the degree of member-

ship of the different variables and take decisions in a similar way to what is known as
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logical reasoning. In fuzzy logic, the degrees of membership are combined through

IF-THEN rules in order to reach a conclusion. This conclusion can result in an out-

put fuzzy set, for the Mamdani method, or a discrete value, for the Sugeno method.

The set of rules is provided by experts in the field where the system is being applied

by means of linguistic information. For this purpose, input fuzzy sets are combined

using the logical operators AND, OR and NOT, as illustrated in Figure 2.38.

FIGURE 2.38: Fuzzy logic operators.
Source: quantdare.com

Figures 2.39 and 2.40 illustrate IF-THEN rules structure for the Mamdani and Sugeno

methodologies, respectively. While in the Mamdani method the consequence is a

fuzzy set, in the Sugeno method the consequence is a function of the variables used

in the premise.

FIGURE 2.39: Mamdani rule structure.

FIGURE 2.40: Sugeno rule structure.

In Sugeno method, each rule generates two values: The first is the ith rule output

level (ui ), which is either a constant value or a linear function of the input values

according to equation 2.25. x j represents the jth input value and a(i )
j the associated

factor for the ith rule. The second value is the rule firing strength (wi ), derived from

the rule antecedent according to equation 2.26, where F (i )
j (x j ) is the membership

function for input x j in the ith rule.

ui = a(i )
1 x1 +a(i )

2 x2 + . . .+a(i )
k xk +a(i )

k+1 (2.25)

https://quantdare.com/fuzzy-logic/
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wi = AndMethod
(
F (i )

1 (x1),F (i )
2 (x2), . . . ,F (i )

k (xk )
)

(2.26)

3. Defuzzification

In this last step, the fuzzy sets (Mandami) or discrete values (Sugeno) generated in

the inference engine are combined to obtain a final numerical output value. In the

Mamdani method, the most used technique to obtain this value is the calculation of

the center of mass (centroid) of the area corresponding to the output fuzzy set ac-

cording to equation 2.27, where f (zr ) refers to the output fuzzy set, which depends

on zr . R refers to the selected resolution for the discrete calculation of the centroid.

outM =

R∑
r=1

zr · f (zr )

R∑
r=1

f (zr )

(2.27)

In the Sugeno method, the weighted average over all rule outputs is calculated ac-

cording to equation 2.28, where Nr is the number of rules. Figure 2.41 illustrates all

the stages followed to implement the Sugeno and Mamdani fuzzy logic methods.

outS =

Nr∑
i=1

ui ·wi

Nr∑
i=1

wi

(2.28)

2.2.4 Fuzzy rule-based supervised learning methods

Fuzzy rule-based systems (FRBSs) are methods that address complex real-world prob-

lems by applying concepts of fuzzy logic and supervised learning techniques. They are

commonly used for classification and regression tasks. FRBSs are based on the fuzzy set

theory, proposed by Zadeh [121] and previously explained in subsection 2.2.3. FRBSs are

capable of generating the fuzzy rules and fuzzy sets automatically from labeled data by

means of supervised learning techniques in situations where it is not possible to manu-

ally set up the fuzzy rules due to the absence of specialized knowledge. In this subsection,

several fuzzy rule-based supervised learning methods are presented.

Among the methods proposed to perform the learning task throughout this thesis, Riza

et al. [126] provide the appropriate tools to easily train and validate FRBS regression al-

gorithms. Those methods, explained below, are Wang and Mendel’s method (WM) [127],

dynamic evolving neural-fuzzy inference system (DENFIS) [128], hybrid neural fuzzy in-

ference system (HyFIS) [129] and heuristics and gradient descent method (FS.HGD) [130].
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FIGURE 2.41: Diagram of Mamdani and Sugeno fuzzy inference systems.
Source: Cavallaro [125] (modified)

Wang and Mendel’s method

This fuzzy rule-based space partitioning method was first proposed by Wang and Mendel

[127]. The WM method consists of the following five steps:

In step 1 the input and output spaces of the given numerical data are divided into 2Nfr+1

fuzzy regions, where Nfr is a positive integer. Nfr and the length of the regions can differ

among variables. Figure 2.42 shows an example for two input variables with Nfr = 2 and

Nfr = 3 respectively, and Nfr = 2 for the output space. All fuzzy membership functions are

symmetric triangular fuzzy sets where the top vertex lies at the center of the region and

the other two vertices lie at the centers of the two neighboring regions.

In step 2 fuzzy IF-THEN rules are generated from the given data set according to the fol-

lowing actions: first, the degree of membership to each membership function of the input

and output data pairs is calculated; second, the linguistic value corresponding to the re-

gions with maximum degree is assigned to each data value; third, an AND type rule is

generated for each input-output data.

In step 3 a degree is assigned to each generated rule. Due to the large number of rules,

which is equal to the amount of data, some rules may conflict. The proposed solution

consists in selecting just the rule from the conflict group with the largest degree, thus,

resolving the conflict and reducing the resulting number of rules.

In step 4 a combined fuzzy rule base is created, which mixes the previously obtained rules
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FIGURE 2.42: Fuzzy regions for input and output spaces and correspond-
ing triangular membership functions.

Source: Wang & Mendel [127]

with those generated manually by expert staff. These rules have a degree that reflects the

expert’s conviction in the significance of the rule. If more than one rule from the combined

fuzzy rule set has the same parameters, the rule with the largest degree is chosen.

In step 5 the defuzzification is performed to determine the output value. The defuzzifica-

tion of the centroid is carried out according to previously defined equation 2.27.

Dynamic evolving neural-fuzzy inference system

This fuzzy rule-based clustering method was proposed by Kasabov and Song [128] and

it is composed of several stages. During the first stage of the DENFIS method, the input

data is grouped into clusters, where the centers of these clusters are determined using

the evolving clustering method (ECM), which is a distance-based connectionist clustering

method. Distances are calculated according to general Euclidean distance defined in 2.29,

where x and y represent two data vectors. From clusters, new parameters are extracted for

the consequent training of the fuzzy rule-based model.

‖x − y‖ =
√√√√ 1

k

k∑
i=1

|xi − yi |2 (2.29)
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The ECM algorithm is determined by a threshold value (Dthr). This parameter influences

the amount of clusters that are created. When a new cluster is created, the first instance

from the data stream is set as a cluster center, and the cluster radius (Ru) is initialized to

zero. As more data is processed, some new clusters are created and others are updated

by changing the positions of their centers and increasing their radiuses. When Ru reaches

the Dthr value, it will not be updated anymore. All cluster centers are definitively obtained

after evaluating the full data set. This process is illustrated in Figure 2.43.

FIGURE 2.43: A brief clustering process using ECM.
Source: Kasabov & Song [128]

The values of the radiuses and centers of the resulting clusters are fixed to carry out the

next stage, which consist of a Sugeno type fuzzy inference engine [131]. The fuzzy mem-

bership functions used at this stage are triangular type functions according to 2.30, where

b is the value of the cluster center and d is a value in the range [1.2, 2], being a = b−d ·Dthr

and c = b +d ·Dthr.

Ri j = Triangular(x; a,b,c) =



0 if x ≤ a
x −a

b −a
if a ≤ x ≤ b

c −x

c −b
if b ≤ x ≤ c

0 if c ≤ x

(2.30)
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First-order Sugeno type rules are employed, where linear functions ( f ) are created and up-

dated by a linear least-squares estimator. Equation 2.31 shows an example of the structure

of the implemented rule set, where R refers to the fuzzy set.



if x1 is R11 and x2 is R12 and . . . and xq is R1q , then y is f1(x1, x2, . . . , xq )

if x1 is R21 and x2 is R22 and . . . and xq is R2q , then y is f2(x1, x2, . . . , xq )

· · ·
if x1 is Rm1 and x2 is Rm2 and . . . and xq is Rmq , then y is fm(x1, x2, . . . , xq )

(2.31)

During prediction, the fuzzy rules that constitute the inference system vary according to

the location of each sample in the input space. This phenomenon is illustrated in the ex-

ample in Figure 2.44, where for two different samples, the fuzzy sets of the clusters closest

to each sample are considered, along with their corresponding rules.

FIGURE 2.44: Two groups of fuzzy rules are formed to perform the infer-
ence of two input samples.

Source: Kasabov & Song [128]

Hybrid neural fuzzy inference system

This neuro-fuzzy inference method was proposed by Kim and Kasabov [129] and uses the

Mamdani rule structure for learning. It consists of a two-phase framework, as illustrated

in the schematic in Figure 2.45 extracted from [129]. First, fuzzy rules are generated in the

knowledge acquisition module to find the initial structure of the neuro-fuzzy model. Sec-

ond, backpropagation is used during parameter learning stage to tune the membership

functions of the input-output linguistic variables.

Knowledge acquisition module

In the knowledge acquisition module, fuzzy rules are extracted by using the strategy pro-

posed by Wang and Mendel previously seen in subsection 2.2.4 [127]. This is a one-step

procedure that performs a fast generation of fuzzy rules from numerical input-output

training data.
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FIGURE 2.45: General diagram of the HyFIS model.
Source: Kim & Kasabov [129]

Parameter learning phase

Once the fuzzy rules are set, the entire network structure is established. In this stage,

parametric tuning is performed, i.e. the tuning of the membership functions parameters

and the tuning of the fuzzy rules weights. Among the different existing learning methods,

in HyFIS algorithm the supervised learning backpropagation strategy is commonly used.

HyFIS architecture

The full model is divided into five layers as illustrated in the schematic in Figure 2.46 ex-

tracted from [129].

Layer 1: It consists of input nodes, which directly transmit input signals to the next layer.

Layer 2: This layer contains the membership functions, which represent the terms of the set

of linguistic variables. All the membership functions consist on bell-shaped (Gaus-

sian) functions as defined in equation 2.32, whereσ refers to the standard deviation

and µ represents the mean.

y (2)
i = Gaussian(x;µ,σ) = e−(x −µ)2/σ2

(2.32)

Layer 3: Each node in this layer represents the IF-part of a fuzzy rule, where every rule is im-

plemented according to the logical operator AND. Hence, the operation is defined

according to equation 2.33, where I j is the set of indices of the layer 2 nodes con-

nected to the jth node in layer 3.
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FIGURE 2.46: HyFIS layer structure.
Source: Kim & Kasabov [129]

y (3)
j = min

i∈I j

(y (2)
i ) (2.33)

Layer 4: This layer contains the THEN-parts of the fuzzy rules. Each node of this layer inte-

grates all the rules related to the same linguistic output variable by performing the

logical operator OR according to equation 2.34, where Ik is the set of indices of the

layer 3 nodes connected to the kth node in layer 4.

y (4)
k = max

j∈Ik

(y (3)
j w2

k j ) (2.34)

Layer 5: This is the output layer where defuzzification is performed. The centroid of the re-

sulting two-dimensional area derived from the output membership functions is cal-

culated according to equation 2.35, where Il is the set of indices of the layer 4 nodes

connected to the node l in layer 5. σlk and clk are the width and the centroid of the

membership function of the kth output linguistic variable in layer 4, respectively.

y (5)
l =

∑
k∈Il

y (4)
k σlk cl k∑

k∈Ik

y (4)
k σk

(2.35)
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Heuristics and gradient descent method

This heuristic fuzzy-rule based method was first proposed by Ishibuchi et al. [130]. The

FS.HGD method consists of two stages: in the first stage, the heuristic method is employed

for determining the initial consequent part of each fuzzy IF-THEN rule, and in the second

stage, the learning method is implemented to tune these consequent parts. A simple fuzzy

grid is used to perform the fuzzy partitioning of the input space, where all fuzzy member-

ship functions are symmetric triangular fuzzy sets which intersect each other at the level

of 0.5, as illustrated in Figure 2.47.

FIGURE 2.47: An example of fuzzy partition for a 2-dimensional input
space and 5 fuzzy sets for each feature.

Source: Ishibuchi et al. [130]

For the modelling of a n-input and single output system, the IF-THEN rules have the for-

mat of equation 2.36, where x(p)
i is the ith input variable of the input sample x(p), R is

the fuzzy set, w j is a real number, y is an output variable and Nr is the number of fuzzy

IF-THEN rules.

If x(p)
1 is R j 1 and x(p)

2 is R j 2 and . . . and x(p)
n is R j n , then y is w j , j = 1,2, . . . , Nr . (2.36)

The estimated output o(x(p)) is calculated according to equation 2.37, where µ j (x(p)) is

the grade of the compatibility of x(p) with the jth fuzzy IF-THEN rule.

o(x(p)) =
Nr∑
j=1
µ j

(
x(p)) ·w j (2.37)

The grade of the compatibility is defined according to equation 2.38.

µ j (x(p)) = R1 j
(
x(p)

1

)×R2 j
(
x(p)

2

)×· · ·×Rn j
(
x(p)

n
)

(2.38)
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Heuristic method

In this stage, the antecedent part (IF-part) is generated using techniques of space parti-

tioning. w j is determined for each IF-THEN rule according to the heuristic method of

equation 2.39, where the consequent part of each rule is determined by the average of y (p)

weighted by the grade of the compatibility of the given training data set.

wHM
j =

m∑
p=1

µ j
(
x(p)

) · y (p)

m∑
p=1

µ j
(
x(p)

) , j = 1,2, . . . , Nr . (2.39)

Learning method

The gradient descent method is used to tune the value of the consequent part where the

total error is defined in equation 2.40.

E = 1

2

m∑
p=1

(
o
(
x(p))− y (p))2 (2.40)

The learning procedure consists on the following steps:

Step 1: The initial value of w (i ni t )
j , the learning rate and the maximum number of iterations

are specified.

Step 2: For each input vector, w j is adjusted according to the gradient descent method.

Step 3: Repeat step 2 until the maximum iteration number is reached.

2.2.5 Artificial neural networks

An artificial neural network (ANN) is an algorithm based on the behavior of the brain that

performs a large number of small calculations as the data is propagated throughout it.

It consists of a set of units, called artificial neurons, that emulate the behavior and mor-

phology of real neurons as illustrated in Figure 2.48. Each neuron is connected with other

neurons, where the value of the connection is modulated by a weight. These weights can

increase or decrease the enervation of adjacent neurons. Furthermore, each neuron has a

nonlinear activation function, which modifies the resulting value.

The first step toward ANNs began with McCulloch and Pitts [132], who modeled an ANN

with electrical circuits. This idea was promoted with the backpropagation algorithm pro-

posed by Werbos [133], which enabled multilayer network training, distributing the error

term across the layers and modifying the weights at each node.

The basic training of an ANN consists of three iterative stages: a forward propagation

stage, in which the outputs are obtained; a backpropagation stage, in which the error with

respect to the reference value is used to calculate the gradients layer by layer; and an op-

timization stage, where weights and biases are updated. Figure 2.49 illustrates a standard
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FIGURE 2.48: Real neuron (a) and artificial neuron (b) illustration where
xi represents an artificial neuron input, wi the corresponding weight, f

the activation function, and y the output value.

example of an ANN, consisting of layers of neurons such as an input layer, an output layer,

and one or more hidden layers.

FIGURE 2.49: Standard ANN example.
Source: medium.com

https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4
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Forward propagation

The process of passing the data through the ANN is known as forward propagation. For

each neuron, input values (x j ) are multiplied with their corresponding weights (w j ). A

weight represents the strength of its corresponding input value and determines how much

influence the given input has on the output of the neuron. The resulting values are added

together with a bias (b), resulting in equation 2.41, where nx is the number of inputs to

each neuron.

z =
nx∑
j=1

x j ·w j +b (2.41)

Activation functions are used to introduce nonlinearity into the output of the neurons.

Without the nonlinearity the neuron is just a linear function. Sigmoid function (denoted

by σ), also known as logistic function, is a standard among activation functions and is

defined according to equation 2.42. The output of the network is known as the predicted

value (ŷ).

σ(z) = 1

1+e−z (2.42)

Backpropagation

This method for supervised learning is based on the calculation of the gradient of the loss

function with respect to the weights. The average loss of the full data set is called the cost

function (C ). In equation 2.43 a cost function corresponding to the mean square error is

presented, which is a standard in ANN training.

C = 1

n

n∑
i=1

(y (i ) − ŷ (i ))2 (2.43)

In the following two steps, the calculation carried out in a single neuron is used to explain

backpropagation. Gradients are used to know how the cost function changes in relation to

weights and biases. The gradient of the cost function is calculated according to equation

2.44, where the chain rule is used to derive all the components between the final cost and

the weights.

∂C

∂w j
= ∂C

∂ŷ
× ∂ŷ

∂z
× ∂z

∂w j
(2.44)

This results in the partial derivatives presented in equation 2.45 for a unique neuron, giv-

ing rise to equation 2.46.
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

∂C

∂ŷ
= 2

n

n∑
i=1

(y (i ) − ŷ (i ))

∂ŷ

∂z
= ∂

∂z
σ(z) =σ(z)× (1−σ(z))

∂z

∂w j
= ∂

∂w j
(z) = x j

(2.45)

∂C

∂w j
= 2

n

( n∑
i=1

(y (i ) − ŷ (i ))

)
×σ(z)× (1−σ(z))×x j (2.46)

The bias is considered to be a constant value, resulting in the gradient of equation 2.47.

∂C

∂b
= 2

n

( n∑
i=1

(y (i ) − ŷ (i ))

)
×σ(z)× (1−σ(z)) (2.47)

Optimization

Finally, optimization is carried out using the gradient descent method, which is a stan-

dard among the optimization algorithms. This algorithm changes the weights and biases,

proportional to the negative of the backpropagation gradients according to equations 2.48

and 2.49, respectively. α corresponds to the value of the learning rate.

w j = w j −
(
α× ∂C

∂w

)
(2.48)

b = b −
(
α× ∂C

∂b

)
(2.49)

2.3 Data sets

This subsection describes the three data sets used throughout this thesis for the design

and validation of the proposed algorithms. In the description of the first data set, the

methodology used for the non-invasive collection of physiological records during the stress

experiments conducted by Dr. Raquel Martinez at the University of the Basque Coun-

try (UPV/EHU) is described. The second data set corresponds to the MIT-BIH arrhyth-

mia database, widely used in the validation of algorithms related to the electrocardiogram

(ECG) processing. In this thesis, this data set is used to validate the proposed algorithm for

the accurate detection of R-peaks in ECG signals. The third data set contains the oscillo-

metric blood pressure (OBP) records acquired by the ECG clinics at Auckland City Hospital

and Greenlane Clinical Centre in Auckland (New Zealand). These records were employed

to develop and validate the proposed algorithm for the robust detection of foot points in

OBP signals.



54 Chapter 2. State of the art

2.3.1 Stress and relaxation experiment

Physiological records have always been used in medicine for the diagnosis of both physical

and psychological disorders. Many of the underlying physiological patterns are derived

from the activity of the autonomic nervous system (ANS), which, in turn, is influenced by

both external and internal factors of the organism itself. ANS activity is strongly reflected

in signals such as the ECG, galvanic skin response (GSR) and breathing (RSP), which can

be acquired non-invasively.

Throughout this thesis, the records extracted during the stress and relaxation experiment

carried out in Martínez-Rodríquez [28] are used to develop most of the proposed algo-

rithms. The experiment was carried out in a controlled laboratory environment. During

the experiments, physiological signals closely related to the activity of the ANS, such as the

previously mentioned ECG, GSR and RSP, were monitored. This experimental procedure

was specifically designed to elicit emotional changes in the participants, resulting in a set

of records related to relaxing and stressful situations.

Experiment design

The purpose of this experiment is to elicit states of stress and relaxation in order to col-

lect physiological records reflecting the activation and deactivation of the ANS. To induce

stressful responses in the participants, this experiment proposed the challenge of solving

3D wooden puzzles. Therefore, it requires participants to have spatial visualization and

geometric measurement skills. During the experiment, four puzzles of different degrees

of difficulty were used to obtain different degrees of stress responses. Figure 2.50 illus-

trates the different varieties of puzzles, where both the final solution and the phases for its

resolution are also presented.

To evaluate the physiological changes during the activation stages of the ANS, it is neces-

sary to compare these changes with a basal state of relaxation. Some experiments often

utilize film clips and pictures to induce different physiological states [134]. In Sokhadze

[135] it is reported that music reduces anxiety, thus it is commonly used to restore the

basal psychological and physiological functioning. In this experiment, the visualization

of videos with relaxing images and music is proposed to bring the subject to a basal state

of relaxation before and after the realization of the puzzle.

Experimental stage

The experiment was carried out in a laboratory with the proper equipment to display the

relaxing video on a screen and carry out the acquisition of the physiological records with

the BIOPAC MP36/150 hardware. The experiment was conducted in pairs, so that the

distractions caused among participants were minimal.

The experiment consisted of a three-phase challenge with an approximate duration of 14

minutes as depicted in Figure 2.51. In the first and third phases, the participant is taken to

a basal state of relaxation by viewing a relaxing video. In the second phase, the participant
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FIGURE 2.50: Final solution and phases of the 3D puzzles.

is induced into a state of stress by asking him/her to solve a three-dimensional puzzle.

During the experiment all events that occurred were noted.

FIGURE 2.51: Phases and duration of the experimental stage for the ac-
quisition of physiological records.

Experiment evaluation tools

The evaluation of the participants’ response was carried out through three categories of

emotional assessment: annotations collected during the experiment, a SAM question-

naire and a final interview.

Annotations

The annotations and marks were taken on the physiological records in real-time during

the experimental stage. These marks indicate specific episodes such as the start of the

experiment, the fall of an object (e.g., a puzzle piece), distractions and noises, among
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others. These marks are intended to associate the different events occurred during the

experiment with the time at which physiological responses are triggered.

SAM questionnaire

To address a dimensional measure of emotional states, Lang [136] proposed a nonverbal

pictographic measure known as self-assessment manikin (SAM). The SAM is a picture-

oriented instrument containing five images for each of the three affective dimensions that

the participant rates: valence, arousal, and dominance. The three dimensions are evalu-

ated in a range from 1 to 9 as shown in Figure 2.52.

FIGURE 2.52: Example of a SAM questionnaire.

Valence represents the degree of happiness or sadness produced by emotional stimula-

tion. Arousal refers to the level of alteration with which the subject responds to emotional

stimulation. Finally, dominance indicates control over the situation.

Interview

Lastly, the participants were asked to participate in a brief interview in which they were

asked how they felt during the different phases of the experiment.

Ethical regulations

To conduct experiments on humans, it is necessary to fulfill several ethical codes and legal

regulations. The two pillars of the regulation in human experimentation are the Nurem-

berg Code (1947) [137] and the Declaration of Helsinki of the World Medical Association

(1964) [138]. These documents summarize the ethical principles of human research. Both

documents establish the obligation to preserve the confidentiality of the collected data

and the existence of an informed consent signed by the participants. This experiment

meets both conditions as explained below.
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Data protection

The processing of personal data by any public or private entity entails obligations in Spain,

both technical and organizational. This is included in the Royal Decree 1720/2010, where

the Organic Law 15/1999 for the protection of personal data is approved [139]. The design

and implementation of this experiment was reviewed and certified by the ethical commit-

tee of the UPV/EHU, more specifically, by the CEISH-UPV/EHU, BOPV 32 (M10_2016_189)

[140].

Informed consent

The informed consent is a key point in human research as it seeks to protect the research

subject from any improper interests. It is not a simple legal requirement or an administra-

tive procedure, since it is a human right and must contain three elements: voluntariness,

understanding and information. The consent form must be signed by both the researcher

and the subject involved in the experiment. In this experiment, this aspect was considered

by signing the informed consent of each participant before the experimental stage.

Data recording

To achieve a reliable data set of physiological records, during the experiment a standard

medical device with its corresponding professional electrodes was used. The data was

collected using both BIOPAC MP36/150 hardware (Biopac Systems Inc., USA) at a 1000

Hz sampling rate and AcqKnowledge 3.7.1 software. Considering the correlation between

certain physiological signals and the activity of the ANS, the ECG, GSR and RSP were mon-

itored using non-invasive sensors.

For ECG acquisition, Einthoven’s triangle electrode configuration was used as explained

in subsection 2.1.2. The electrodes were placed on the chest instead of the limbs, so that

disturbances due to movements resulting from the performed tasks were not coupled.

GSR was collected applying a low electrical potential between the two electrodes located

in the distal phalanges of the non-dominant hand as indicated in subsection 2.1.2. Finally,

a piezoelectric belt was used for RSP measurement as stated in subsection 2.1.2. Figure

2.53 shows the placement of the sensors used to collect these signals through the BIOPAC

MP36/150 hardware.

Participants

In total, 166 participants (125 male and 41 female) between 19 and 45 years of age (mean

= 22.88; standard deviation = 3.1) participated in the experiment in 2014. All subjects

were volunteers of the engineering school at the UPV/EHU, with no exclusion criteria. All

participants met the standards described in subsection 2.3.1.

For this thesis, a selection of the records that best met the criteria of the experiment was

carried out, i.e., those that were not strongly influenced by factors external to the nature

of the experiment. Finally, 42 records were selected to proceed with this thesis.
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FIGURE 2.53: Sensor positioning scheme and collected ECG, GSR and RSP
registers.

2.3.2 MIT-BIH arrhythmia database

The MIT-BIH arrhythmia database (MITADB) is the first standardized and publicly avail-

able data set for the evaluation of algorithms focused on ECG analysis [141]. In this thesis,

the MITADB is used to evaluate the quality of the developed R-peak detection algorithm

during ECG analysis, which is presented later in subsection 3.1.

The MITADB contains 48 half-hour two-channel ambulatory ECG recordings. These were

obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and

1979. Twenty-three recordings were randomly selected from a data set of 4000 24-hour

ambulatory ECG recordings collected from a mixed population of outpatients (about 40%)

and inpatients (about 60%) at Beth Israel Hospital in Boston; the remaining twenty-five

recordings were selected from the same data set to include less common but clinically

significant arrhythmias [141].

The recordings were digitized at 360 Hz per channel with 11-bit resolution in a 10 mV

range. Each record was annotated independently by two or more cardiologists; disagree-

ments were resolved to digitize the reference annotations for each heartbeat included in

the data set [141].

2.3.3 Oscillometric measurements

The OBP data used for the development of the foot point detection algorithm presented in

subsection 3.2 was provided by the ECG clinics at Auckland City Hospital and Greenlane

Clinical Centre, Auckland, New Zealand. The measurements were performed using the

commercially available BP+ device (USCOM Limited, Sydney, Australia) in people who at-

tended as part of usual care, with no other exclusion criteria. Ethics approval was granted

by Auckland District Health Board Ethics Committee. The overall data set consists of 744

records from 569 patients aged between 15 and 93 years (mean (standard deviation) =

63 (16) years) where 59% were males and 41% females. Each record has a duration of 10

seconds and was acquired at 200 Hz. The labeling of the foot points was performed auto-

matically by the BP+ device itself.
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2.4 Implementation tools

This subsection introduces the software and hardware tools used during this thesis, both

for the development and implementation of a functional hardware prototype containing

the developed algorithms. The subsection is divided into two parts: on the one hand, the

software tools used are explored in depth; on the other hand, the technical details of the

hardware platforms used for the development of the prototype are presented.

2.4.1 Software

Python

Python is one of the most popular general-purpose programming languages nowadays. It

was created in the late 1980s by Guido van Rossum at the Center for Mathematics and In-

formatics, in the Netherlands, as a successor to the ABC programming language, capable

of handling exceptions and interacting with the Amoeba operating system [142].

Python is an interpreted programming language made up of high-level built in data struc-

tures, whose philosophy emphasizes the readability of its code. It is a multi-paradigm pro-

gramming language, since it supports object orientation, imperative programming and,

to a lesser extent, functional programming, which makes it a dynamic and multi platform

language.

Its popularity has increased over time, becoming one of the most widely used languages

in the field of research and artificial intelligence, and being one of the main programming

languages in Google. It is an open source language, which means that the interpreter and

the extensive modules and packages are available without charge for all major platforms,

and is freely distributed.

Among the packages available, those shown below stand out in the accomplishment of

this thesis:

Scikit-learn: This is an open source machine learning library that supports supervised,

semi-supervised and unsupervised learning algorithms. Some of these algorithms are

principal component analysis, label spreading and label propagation, among others. It

also provides various tools for data preprocessing, model fitting, model selection and eval-

uation, and many other utilities.

NumPy: This is a fundamental package for scientific computing with Python. It contains

powerful N-dimensional array objects, tools for integrating C/C++ and Fortran code, and

useful linear algebra, Fourier transform and random number capabilities, among others.

Pandas: This NumPy extension is a high-level building block for practical, real world data

analysis in Python. It provides data structures and operations to manipulate numeric ta-

bles and time series, thus being ideal for analyzing any type of complex information.
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Matplotlib: This library is used to generate graphics from data contained in lists or arrays

in the Python programming language. It supports NumPy and Pandas data structures.

This tool extends to large number of third party packages, including several higher-level

plotting interfaces (e.g., seaborn, HoloViews and ggplot) widely used in the scientific field.

Library frbs

Library frbs is an implementation in the CRAN (Comprehensive R Archive Network) repos-

itory of various learning algorithms consisting on fuzzy rule-based systems (FRBSs) for

dealing with classification and regression tasks [126]. Some of these regression algorithms

were previously explained in subsection 2.2.4. The frbs library includes the packages in-

troduced below, which contains the processes needed to run the FRBSs:

The sets package includes the fundamental structures and operators of fuzzy sets (i.e,

class intersection, union, negation and construction, among others). Additionally, it pro-

vides fuzzication, inference, and defuzzification mechanisms based on fuzzy rules and

fuzzy variables [143].

The fuzzyFDR package uses discrete data to determine fuzzy decision rules for multiple

testing of hypotheses.

The fugeR package implements learning in FRBSs through genetic algorithms.

The e1071 package provides algorithms for fuzzy clustering and fuzzy k-means, which is

an enhancement of the k-means clustering algorithm using fuzzy techniques [144].

gRPC framework

The gRPC framework is an open source and high performance remote procedure call

framework developed at Google that can be run in any environment, since it generates

cross-platform connections between client and server for different programming languages.

It uses HTTP/2 and protocol buffers as interface description language and it can efficiently

connect services in and across data centers. It has a pluggable support for authentication,

bidirectional transmission, load balancing, tracing and health checking. Most use cases

include distributed computing to connect devices, mobile applications and browsers to

backend services. The languages and platforms among which gRPC communication can

be carried out are listed in Table 2.7.

2.4.2 Hardware

In this subsection, the devices used for the final prototype of this thesis are presented.

There exist several approaches that combine low-cost and wireless implementation [145,

146, 2, 147]. Considering price, size and popularity, Arduino and Raspberry Pi devices

have proven to be suitable for a robust and low-cost prototyping [148, 149, 4]. While the

Raspberry platform has considerable processing power, the Arduino board is capable of

concurrently acquiring analog signals.



2.4. Implementation tools 61

TABLE 2.7: Languages and platforms officially supported by the gRPC
framework.

Language Platform
C/C++ Linux, Mac, Windows 7+

C# Linux, Mac, Windows 7+
Dart Windows, Linux, Mac
Go Windows, Linux, Mac

Java Windows, Linux, Mac
Kotlin/JVM Windows, Linux, Mac

Node.js Windows, Linux, Mac
Objective-C Mac OS X 10.11+, iOS 7.0+

PHP Linux, Mac
Python Windows, Linux, Mac

Ruby Windows, Linux, Mac

Raspberry Pi

Raspberry Pi is a low-cost computer board developed in the United Kingdom by the Rasp-

berry Pi foundation, with the aim of promoting the teaching of computer science in schools.

It is a tiny motherboard made up of a processor, GPU, GPIOs and RAM. Figure 2.54 shows

a diagram of the different types of inputs and outputs that most of the Raspberry mod-

els have, which can carry out UART (Universal Asynchronous Receiver/Transmitter), SPI

(Serial Peripheral Interface) and I2C (Inter-Integrated Circuit) communications, among

others.

FIGURE 2.54: GPIO pin scheme for the Raspberry Pi model 3 B+ board.
Source: raspberrypi.org

It also has USB and video inputs/outputs to connect several devices, such as a monitor, a

mouse and conventional USB keyboards. It can run different operating systems based on

free software Linux, which integrate the Python programming environment [150]. Table

2.8 compares the technical specifications of two of the most widely used models, which

differ mainly in power.

https://www.raspberrypi.org/documentation/usage/gpio/
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TABLE 2.8: Technical specifications of the Raspberry Pi 3 B+ and the Rasp-
berry Pi 4 B boards.

Raspberry Pi 3 B+ Raspberry Pi 4 B
Operating Voltage 5 V 5 V

SOC Type BCM2837B0 BCM2711
Core Type Cortex-A53 64-bit Cortex-A72 64-bit

No. Of Cores 4 4
GPU VideoCore IV VideoCore VI

CPU Clock 1.4 GHz 1.5 GHz
RAM 1 GB DDR2 4 GB

No. GPIO 40 40
Length 85.6 mm 85.6 mm
Width 56.5 mm 56.5 mm
Weight 45 g 46 g

Arduino

Arduino is an open source development platform, which is based on free, flexible and

easy to use hardware and software for developers. This platform allows creating different

types of microcomputers from a single board, to which the community of developers can

give different types of use. Arduino has an integrated development environment called

Arduino IDE, consisting of a programming environment composed of a set of functions

written in C/C++. It contains all the necessary elements to connect peripherals to the

inputs and outputs of the microcontroller, as illustrated in the schematic in Figure 2.55.

FIGURE 2.55: GPIO pin scheme for the Arduino UNO board.
Source: arduino.cc

https://store.arduino.cc/arduino-uno-rev3
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Arduino is a project and not a specific model of board, which means that its basic design

is shared by different types of boards. These boards may vary in shape, size and charac-

teristics. Table 2.9 compares the technical specifications of two of the most widely used

Arduino boards, which differ mainly in size.

TABLE 2.9: Technical specifications of the Arduino UNO and the Arduino
Nano boards.

Arduino UNO Arduino Nano
Microcontroller ATmega328P ATmega328

Operating Voltage 5 V 5 V
Input Voltage 7-12 V 7-12 V

Digital I/O Pins 14 22
PWM Output 6 6

Analog Input Pins 6 8
DC Current per I/O Pin 20 mA 40 mA
DC Current for 3.3V Pin 50 mA 50 mA

Flash Memory 32 KB 32 KB
SRAM 2 KB 2 KB

EEPROM 1 KB 1 KB
Clock Speed 16 MHz 16 MHz

Length 68.6 mm 45 mm
Width 53.4 mm 18 mm
Weight 25 g 7 g

Bluetooth module

The HC-05 Bluetooth module is an easy to use Bluetooth serial port protocol module,

designed for transparent wireless serial connection setup. It can be configured as both

master and slave, and it also has many configuration parameters and interrogation capa-

bilities. This module is often used to provide bluetooth communication to devices that

do not have it, such as some versions of Arduino. The serial communication pins (Rx and

Tx) operate at 3.3V as illustrated in Figure 2.56, thus sometimes it is necessary to use a bi-

directional voltage converter to make it compatible with other devices. Table 2.10 shows

the main technical specifications of this module.

TABLE 2.10: Technical specifications of the HC-05 Bluetooth module.

Radio chip CSR BC417143
Operating voltage 3.6 V to 6 V
Operating current 50mA

Range 5-10 m
Frequency 2.4 GHz

Supported baud rate 9600, 19200, 38400, 57600, 115200, 230400, 460800
Protocol IEEE 802.15.1
Profile Bluetooth Serial Port

Transmission power ≤ 4 dBm
Length 27 mm
Width 12.7 mm
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FIGURE 2.56: HC-05 Bluetooth module.

Bi-directional voltage level converter

The SparkFun bi-directional logic level converter (BOB-12009) is a small device that safely

raises electrical signals from 3.3 V to 5 V and reduces them from 5V to 3.3V simultaneously.

It also works with 1.8 V and 2.8 V devices. Each device has the capability to handle 4 pins of

low voltage (LV1-4) and 4 pins of high voltage (HV1-4), which are divided in two inputs and

two outputs for each type, as illustrated in Figure 2.57. To use the device, it is necessary

to power the converter from the two voltage sources: high voltage to the “HV” pin, low

voltage to the “LV” pin and system ground to the “GND” pin.

FIGURE 2.57: SparkFun bi-directional logic level converter (BOB-12009).

Galvanic skin response acquisition sensor

The Grove GSR (galvanic skin response) sensor is a small device equipped with two elec-

trodes as illustrated in Figure 2.58. This device measures the galvanic response of the skin

by means of the measurement of the electrical resistance between the two electrodes. The

electrodes are intended to be placed on the hand, thus measuring the electrical resistance

between two fingers, which is strongly influenced by the sweating of the hand. Table 2.11

shows the main technical specifications of the device.
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FIGURE 2.58: Grove GSR sensor v1.2.

TABLE 2.11: Technical specifications of the Grove GSR sensor v1.2.

Operating voltage 3.3 V to 5 V
Input Signal Skin resistance

Output Signal Voltage, analog reading
Length 24 mm
Width 20 mm
Height 9.8 mm
Weight 29 g

Electrocardiogram acquisition sensor

The heart rate monitor AD8232 illustrated in Figure 2.59 is a fully integrated signal con-

ditioning device for single-lead electrocardiographic measurement applications. It is de-

signed to extract, amplify, and filter small biopotential signals in noisy conditions, such

as those conditions created by remote electrode placement or motion. The AD8232 is

designed to amplify by 100 the acquired electrical potential to transform it into a digital

signal by means of an analog-to-digital converter or an embedded microcontroller. A two

or three electrode configuration can be chosen to carry out the acquisition. Table 2.12

shows the main technical specifications of the device.

FIGURE 2.59: Heart rate monitor AD8232.

2.5 Evaluation tools

In this subsection, the basic components of the most commonly used evaluation metrics

are defined. These metrics summarize the performance of a prediction model according
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TABLE 2.12: Technical specifications of the heart rate monitor AD8232.

Operating voltage 2.0 V to 3.5 V
Operating current 170 µA

Input voltage Up to ±300 mV
Gain 100

Conector Jack 3.5mm
Length 36 mm
Width 28 mm

to the 2x2 confusion matrix shown in Table 2.13, which contains the four possible results:

true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

TABLE 2.13: Confusion matrix.

True condition
Positive Negative Total

Predicted
condition

Positive T P F P T P +F P
Negative F N T N F N +T N

Total T P +F N F P +T N

The terminology positive or negative refers to the assignment to a positive or negative

category, while true or false refers to the assignment as correct or incorrect. Thus, a true

positive is when the model correctly predicts the positive class. Similarly, a true negative is

when the model correctly predicts the negative class. Conversely, a false positive is when

the model incorrectly predicts the positive class. And a false negative is when the model

incorrectly predicts the negative class. This phenomenon is more intuitively reflected in

Figure 2.60.

To achieve an objective validation and comparison of the results obtained according to the

proposed methodologies throughout this thesis, evaluation metric based on the number

of TP, TN, FP and FN are employed. This results in the performance metrics presented

below:

Precision (Pr) or positive predictive value is the number of correct positive results divided

by the number of all positive results, and is calculated according to equation 2.50.

Pr = T P

T P +F P
(%) (2.50)

Sensitivity (Se), also called recall, true positive rate or hit rate, is the number of correct

positive results divided by the total number of samples that should have been identified

as positive, and is calculated according to equation 2.51.

Se = T P

T P +F N
(%) (2.51)

Specificity (Sp), also called selectivity or true negative rate, measures the proportion of

actual negatives that are correctly identified, and is calculated according to equation 2.52.
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FIGURE 2.60: Graphic representation of true positives, true negatives,
false positives and false negatives.

Source: Wikimedia (modified)

Sp = T N

T N +F P
(%) (2.52)

Accuracy (Ac) is the degree in which predictions are close to true values, and is calculated

according to equation 2.53.

Ac = T P +T N

T P +T N +F P +F N
(%) (2.53)

F1 score (F1) is defined in this thesis as the harmonic mean of sensitivity and specificity,

and is calculated according to equation 2.54.

F 1 = 2 · Se ·Sp

Se +Sp
(%) (2.54)

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
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3 Heart period extraction: A new

approach to ECG and OBP processing

Among the physiological signals used in this thesis, those related to the circulatory system

require a more complex preprocessing to carry out the extraction of the heart period (HP),

which is ultimately used for the extraction of cardiovascular parameters. This is mainly

due to the fact that it is essential to identify the position of each heartbeat in order to

extract the underlying HP signal. Each detection error can lead to a significant distortion

in the resulting parameters.

Moreover, to design portable devices that perform continuous physiological recording, it

is necessary to use the least invasive techniques. Among the non-invasively acquired sig-

nals, two of the most used in modern devices (e.g., smart watches and bracelets, heart rate

monitors, etc.) to obtain the HP are the electrocardiogram (ECG) and the photoplethys-

mography (PPG). PPG is morphologically similar to the blood pressure (BP) signal, thus

the algorithms employed to process them are similar in many cases. As previously ex-

plained in subsection 2.1.2, the R-peaks (in the ECG signals) and the foot points (in the

PPG and BP signals) are the most commonly used references to extract the HP.

In this section, two different algorithms are presented, both with the same purpose: the

calculation of the HP. On the one hand, this thesis presents an online robust R-peaks de-

tection method applicable to noisy ECG signals using a novel iterative smart processing

algorithm. On the other hand, a novel method for calculating foot points in BP signals is

also proposed, which is suitable to be applied in PPG signals as well.

3.1 Online R-peaks detection in noisy electrocardiograms

For normal heart function, the ECG has the shape of the wave shown in Figure 3.1. The

R-peak, located in the QRS complex, is the most characteristic waveform and it is usually

employed as a reference for the ECG analysis [76]. Once the locations of the R-peaks are

defined, the HP can be determined.

New technologies are increasingly leading to the acquisition of the ECG using three leads

(Einthoven’s triangle configuration) [38], two leads [151], or even just a single lead [152].

These configurations are vulnerable to artifacts such as baseline wander, electromyogram

noise and power line interference, among others [153, 154, 155, 156, 157]. These artifacts
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FIGURE 3.1: Intervals of the PQRST complex.

are shown in Figure 3.2, where graphs (a-d) correspond to ECG registers from the data set

presented in subsection 2.3.1.

In this subsection, a robust R-peak detection algorithm is presented, where a short length

sliding window (SW) is used for real-time ECG processing. Under these conditions, an

error in the detection of R-peaks can generate an even greater error in the subsequent ex-

traction of temporal, frequency and nonlinear parameters, which makes correct detection

of R-peaks crucial. To achieve this, a novel iterative computing approach for ECG analysis

is proposed in this thesis. In the scheme in Figure 3.3, the different steps of the devel-

oped algorithm are shown: in the first preprocessing step, artifacts are removed, followed

by R-peaks detection by applying a computationally efficient analysis of the area over the

QRS complex. Detected R-peaks are subsequently analyzed through a smart iterative al-

gorithm, which is composed of three sequentially executed state machines (SMs). These

SMs correct all detected false positives (FPs) or surplus R-peaks and false negatives (FNs)

or undetected R-peaks, improving the final result. Furthermore, computational load and

achieved results are discussed and compared with other methods in the literature at the

end of this subsection.

The proposed algorithm was created and validated using two different data sets. The ECG

signals recorded during the experiment presented in subsection 2.3.1 were used for pre-

liminary development. By contrast, this proposal was tested on a large scale, processing

the MIT-BIH arrhythmia database (MITADB) [151] presented in subsection 2.3.2, which is

a gold standard in the validation of ECG processing algorithms.
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FIGURE 3.2: Artifacts present in an ECG signal acquired with Biopac
MP36/150 in a daily situation: a) Baseline wander b) White noise c) Net-
work 50Hz electromagnetic interference d) Loss of sensor conduction re-

sulting in a loss of signal strength.

ECG analysis is divided into two main steps: a first artifact removal step and a second

R-peak detection step. Among the proposed strategies, this method processes ECG by

means of a short length SW. Specifically, a 20-second SW is used, since it contains enough

information for robust real-time parameter extraction [7, 38].

3.1.1 Preprocessing: ECG cleaning

This solution proposes temporal-domain methods to perform, in two stages, the removal

of artifacts that affect the ECG. Due to the distortions generated in the R-peaks positions

when modifying the spectrum and the high computational load, frequency-domain meth-

ods were discarded [79]. Among the aforementioned artifacts, first, baseline wander is
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FIGURE 3.3: Scheme of the proposed R-peak detection method.

eliminated. Second, the artifacts due to electromyogram noise and power line interfer-

ence are removed as illustrated in the example in Figure 3.4.

ECG baseline wander removal

The interaction between the electrodes and the skin can generate a low-frequency artifact

commonly called baseline wander (BW) [156, 154, 94]. Several techniques are proposed

in the literature for the elimination of BW such as wavelet filters, adaptive filters and high

pass filters, among others [156, 157, 155, 158].

In this step, a computationally efficient cubic interpolation of the stepped moving median

filtering is proposed for BW removal. The high amplitude and short-duration of the R-

peaks make them ideal to be filtered using a moving median filter [156, 155, 94, 82, 158].

However, the computational load required to calculate the median value for each sample

can be quite high.
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FIGURE 3.4: MITADB ECG signal frame (record 104) before and after pre-
processing. The resulting signal consists of the normalized R-peaks in the

range [0, 1].

The proposed approach is based on the union of the stepped median points (pi ) by per-

forming the cubic interpolation according to equations 3.1 and 3.2 respectively, where Si
x

is the ECG frame defined by the width of the median filter in the ith processing step.

pi (x) = mediant∈Si
x

{
ECGt

}
(3.1)

BW i+1
i =

(
− 1

2
pi−1 + 3

2
pi − 3

2
pi+1 + 1

2
pi+2

)
x3 +

(
pi−1−

5

2
pi +2pi+1 − 1

2
pi+2

)
x2 +

(
− 1

2
pi−1 + 1

2
pi+1

)
x +pi

(3.2)

To maintain R-peaks intact, the width of the median filter must be greater than twice the

width of the R-peak. However, it should be as small as possible, as the computational load

increases proportionally to the width of the median filter. Considering that the width of a

normal R-peak has an average value of around 60 milliseconds [159], in this development

a 150-millisecond median filter is proposed. Moreover, to set up the width of the step, the

overlap of the median filter window was considered, thus establishing half the width of

the median filter. Figure 3.5 illustrates the ECG signal before and after the BW removal

(ECG′), performed according to equation 3.3.

ECG ′ = ECG−BW (3.3)
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FIGURE 3.5: ECG signal before (top graph) and after (bottom graph) the
BW removal.

Noise elimination

Electromyogram noise and power line interference also generate harmful artifacts that

must be removed. In this thesis, a novel solution based on the processing of signal and

noise intensity values is proposed in order to calculate a dynamic cutting line (CL: black

line in Figure 3.6) according to equation 3.6. The ECG is further processed (ECG′′) ac-

cording to equation 3.7, where the signal is cut keeping R-peaks and eliminating the noise

below the CL. The necessary parameters to calculate the CL are explained below:

• Signal Intensity (SI): It consist of the maximum values of the ECG according to equa-

tion 3.4 (green line in Figure 3.6), where the largest R-peak amplitudes are consid-

ered to generate the SI line. A SW (width: 1 second, step: 0.5 second) is used to loop

through the signal and obtain the maximum values.

SIi (x) = maxt∈Si
x

{
ECG ′

t

}
(3.4)

• Noise Intensity (NI): It consists of the standard deviation of the ECG according to

equation 3.5 (pink line in Figure 3.6), where the value of the resulting standard devi-

ation is multiplied by 2 so that 95% of the noise is below the NI line. A SW (width: 1

second, step: 0.5 second) is used to loop through the signal and obtain the standard

deviation values.

NIi = 2∗
√√√√ 1

fs−1

i+fs/2∑
j=i−fs/2

(
ECG ′

j −ECG ′)2 (3.5)
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• Aggressiveness level (α): This parameter is used to calibrate the aggressiveness level

in the elimination of noise during the cut, where the CL is calculated according to

equation 3.6. Best empirical results were obtained with an α value equal to 5 for

the whole data set. This value should be set according to the quality of the signal

acquired by the device in which the proposed solution is implemented, with 1 the

most aggressive value and 10 the least aggressive.

CLi = NIi + (SIi −NIi ) · 10−α
9

{α ∈R | 1 ≤α≤ 10} (3.6)

ECG ′′
i =

{
ECG ′

i −CLi if ECG ′
i > CLi

0 if ECG ′
i ≤ CLi

(3.7)

Finally, a normalization is carried out (ECG′′′ in the top graph in Figure 3.6) according to

equation 3.8, to keep the signal in the range [0, 1].

ECG ′′′
i = ECG ′′

i

SIi −NIi
(3.8)
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FIGURE 3.6: ECG signal affected by electromagnetic interference (top
graph) and the resulting artifact-free ECG after removing noise below the

CL (bottom graph).

3.1.2 R-peak detection

Two phases are differentiated throughout the R-peak detection step. First, a general de-

tection of R-peaks is performed based on the analysis of the area over the QRS complexes

[152]. Second, erroneous detections are corrected through a new algorithm consisting
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of three SMs, where previously detected R-peaks are evaluated using a set of conditions

based on expert knowledge.

Area-based R-peak detection

Considering the fact that R-peaks are typically narrow and have a large amplitude as pre-

viously shown in Figure 3.1, in the area-based R-peak detection method the neighbors (N)

are defined for each local maximum in ECG′′′, which correspond to half the value of the

duration of the QRS complex (W ). Furthermore, M is defined as the amplitude of the local

maximum [152]. The area-based R-peak detection consists of calculating, according to

equation 3.9, the area over the QRS complex. The resulting area corresponds to the blue

area represented in Figure 3.7.

Essentially, for high, narrow peaks such as R-peaks, the area over the curve is high. The

remaining peaks corresponding to the PQRST complex do not have this morphology, so

the value of the resulting area is small. According to the literature, a QRS complex has

a duration of 100 ms, which was considered in this solution for the implementation of

equation 3.9 [76, 152, 159, 160, 161].

area = 1

2 ·N

N ·fs∑
i=−N ·fs

(
M −ECG ′′′

i

)
(3.9)

FIGURE 3.7: Areas (blue shading) over the PQRST local maxima.
Source: Liao et al. [152] (modified)

To know which area values correspond to R-peaks and which do not, this solution pro-

poses the definition of a cut-off value. This value was configured according to an analysis

performed on all areas of the data set presented in subsection 2.3.1. A total of 321449 ar-

eas were detected, of which 313078 were R-peaks. The result of this analysis is represented

graphically in Figure 3.8, where the logarithmic scale is used to improve visualization. The

highest accuracy was achieved with a cut-off value of 0.55 (black line), which corresponds

to the minimum number of FPs and FNs.
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Iterative smart processing method

Some pathologies, such as the premature ventricular contraction (PVC) illustrated in Fig-

ure 3.9, can cause erroneous R-peak detections due to their morphologies. This may result

in an area different from that of the R-peaks, leading to the appearance of FNs. Something

similar happens when very noisy sections are removed from ECG during the filtering step.

In this case, the amplitude of some R-peaks is reduced as illustrated in Figure 3.10, where

the value of some areas does not overcome the cut-off value.
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FIGURE 3.9: A premature ventricular contraction in a signal from the MI-
TADB.

To improve and strengthen the detection of R-peaks in ECG signals strongly affected by ar-

tifacts, three sequentially executed SMs are proposed. These SMs are designed to perform

a selective detection and elimination of FP and FN based on a set of predefined condi-

tions. They perform a set of conditional operations that associate the distances between

the detected R-peaks to perform a smart optimization. The constants used to define these
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FIGURE 3.10: Particular case of non-detected R-peaks that do not over-
come the cut-off value: a) Real ECG signal frame, b) ECG with BW filtered
(ECG ′), c) Cut and normalized ECG (ECG ′′′), d) Non-detected peaks in red.

conditions were extracted empirically from the observation of patterns related to the ap-

pearance of FPs and FNs. First, the detection of undetected R-peaks is performed. Sec-

ond, the surplus R-peaks are eliminated according to conditions based on normal HP si-

nus rhythm. Third, the remaining FPs are removed considering variations in HP due to

possible arrhythmias.

To calculate HP, the detected R-peaks are used according to equation 2.6, previously in-

troduced in subsection 2.1.2, where rpeaks is an NH length array composed of the times-

tamps of the detected R-peaks.

In addition, minimum HP (HPmin), maximum HP (HPmax) and median HP (median(HP ))

are used to normalize the conditions of the SMs for different registers.
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SM I - Lost R-peak detection

To effectively remove surplus FPs, first, it is necessary to have enough information by de-

tecting all R-peaks that have not been previously detected. This first SM was created to an-

alyze the distances between the detected R-peaks iteratively looking for abnormal events

that indicate the lack of undetected R-peaks. This process is illustrated in the scheme in

Figure 3.11 and depends on the condition represented in equation 3.10, which considers

the cases in which an FN occurs.

Condition 1 =
(HPi > max(HP ))∩ (HPi > 1.7 ·median(HP ))∩

(1.3 ·HPi−1 < HPi )∪ (HPi > 1.3 ·HPi+1)∩
(HPi > 1.5 ·HPi+1)∩ (HPi > 1.5 ·HPi−1)∩
(1.3 ·HPi−1 < HPi )∪ (1.3 ·HPi−2 < HPi )∩
(1.3 ·HPi+1 < HPi )∪ (1.3 ·HPi+2 < HPi )

(3.10)

The activation of condition 1 refers to the fact that the algorithm detects an FN, leading

to the search for the missing R-peak between the two consecutive R-peaks where it is sup-

posed to be. During this process, the cut-off value is reduced to 0.4, which provides a

greater margin for detecting missing R-peaks that might have been overlooked during the

first search. However, if several peaks are detected with an area over the QRS complex

greater than 0.4, the largest one is taken. If none is detected, the maximum value will be

considered as the missing R-peak.
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FIGURE 3.11: First SM for missing R-peak detection. “area-based R-peak
detection” is the processing carried out in section 3.1.2. “window” is the
signal frame that goes from r peaksi to r peaksi+1. “find local maximum”
looks for the maximum value in “window”. “add new R-peak” is a func-

tion that adds the new R-Peak to the set of detected R-peaks.
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SM II - Extra R-peak elimination: a normal sinus rhythm approach

In the second SM, it is assumed that the HP morphology corresponds to a normal sinus

rhythm in order to perform a search for FPs from the R-peaks obtained from the previous

SM. To attain this, condition 2.1 and 2.2 were defined according to equations 3.11 and

3.12, respectively. These are based on the fact that each HP is related to contiguous HPs,

so certain distances between contiguous R-peaks must be maintained.

Condition 2.1 = (HPi < min(HP ))∪
(HPi < 0.6 ·median(HP ))∪ (Wt < 2.5 ·median(HP ))

(3.11)

Condition 2.2 = (HPi < min(HP ))∪
(HPi < 0.6 ·median(HP ))∪ (Wt ≥ 2.5 ·median(HP ))

(3.12)

Both conditions depend on “window” (Wt ), which consists of a dynamically generated se-

ries of R-peaks, corresponding to consecutive HPs that meet the conditions HPi < HPmi n

and HPi < 0.6∗medi an(HP ). These conditions were deduced empirically from the ob-

servation of patterns related to the appearance of FPs.

On the one hand, the activation of condition 2.1 means that the R-peak related to the

current index “i” is an FP. On the other hand, activation of condition 2.2 means that at

least one R-peak is considered an FP, which results in a selective R-peak elimination. The

full process is illustrated in the scheme in Figure 3.12.
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elimination  in 

 window 

INITIALIZATION
i = 0; R_peaks

i <= length(HP) AND
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i = i + 1
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END

 multiple R-peak 
elimination  in 

 window 
i <= length(HP) AND

CONDITION_2.2

FIGURE 3.12: Second SM for surplus R-peak elimination. “window” is the
signal frame where consecutive surplus R-peaks have been detected. “one
R-peak elimination” removes one R-peak from “window” when condi-
tion 2.1 is met. “multiple R-peak elimination” removes at least one R-

peak from “window” when condition 2.2 is met.
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SM III - Extra R-peak advanced elimination: an arrhythmia approach

Since the second SM only considers normal sinus rhythm situations, arrhythmia situa-

tions could be problematic. The third SM performs a more sophisticated process focused

on FP elimination by considering HP variations during arrhythmia events. Each HP is

analysed in a broader context, considering a wider range of distances between contigu-

ous R-peaks according to conditions 3.1-3.5, which are defined in 3.13, 3.14, 3.15, 3.16 and

3.17, respectively. Since these conditions make the algorithm very sensitive to an excess

of FP, it was necessary to first perform a raw FP elimination in the second SM.

Condition 3.1 =
(1.2 · (HP1 +HP2) > HP3 > (HP1 +HP2)/1.2)∪
(1.2 · (HP1 +HP2) > HP4 > (HP1 +HP2)/1.2)∪

(HP3 > min(HP ))∪ (HP4 > min(HP ))

(3.13)

Condition 3.2 =
(1.2 · (HPi+1 +HPi+2) > HPi > (HPi+1 +HPi+2)/1.2)∪

(1.2 · (HPi+1 +HPi+2) > HPi+3 > (HPi+1 +HPi+2)/1.2)∪
(HPi > min(HP ))∪ (HPi+3 > min(HP ))

(3.14)

Condition 3.3 =
(1.2 · (HPN−1 +HPN ) > HPN−2 > (HPN−1 +HPN )/1.2)∪
(1.2 · (HPN−1 +HPN ) > HPN−3 > (HPN−1 +HPN )/1.2)∪

(HPN−2 > min(HP ))∪ (HPN−3 > min(HP ))

(3.15)

Condition 3.4 =
(1.2 · (HPi+1 +HPi+2) > HPi+2 > (HPi+1 +HPi+2)/1.2)∪
(1.2 · (HPi+1 +HPi+2) > HPi+3 > (HPi+1 +HPi+2)/1.2)∪

(1.1 ·HPi+3 > HPi+2 > HPi+3/1.1)∪
(1.1 ·HPi+2 > HPi+3 > HPi+2/1.1)∪

(HPi+2 > min(HP ))∪ (HPi+3 > min(HP ))∪
(HPi +HPi+1 > min(HP ))∪ (HPi +HPi+1 < max(HP ))

(3.16)

Condition 3.5 =
(1.2 · (HPi+2 +HPi+3) > HPi > (HPi+2 +HPi+3)/1.2)∪

(1.2 · (HPi+2 +HPi+3) > HPi+1 > (HPi+2 +HPi+3)/1.2)∪
(HPi > min(HP ))∪ (HPi+1 > min(HP ))

(3.17)
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Moreover, several irregularities due to arrhythmia events are considered in these condi-

tions as a result of the displacement of the R-peaks in relation to their expected position

in normal sinus rhythm circumstances. The fulfilment of any of these five conditions dur-

ing the analysis of an R-peak implies that the peak is an FP and, thus, must be eliminated.

The full process is illustrated in the scheme in Figure 3.13.

 eliminate 
R_peaks(2) 

INITIALIZATION
i = 0; R_peaks;

Part = 1

i == 1 AND
CONDITION_3.1 AND

Part == 1

 HP calculation 
i = i + 1

i > length(HP) AND
Part == 2

END

 eliminate 
R_peaks(i+2) 

 eliminate 
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1 < i <= length(HP)-3 AND
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[~CONDITION_3.4 AND
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FIGURE 3.13: Third SM for an advanced surplus R-peak elimination.
“second part initialization” initializes the parameters for the execution of
the conditions of the second part of the SM. “eliminate rpeaks(x)” elimi-

nates R-peaks in position x.

As a result of applying the proposed iterative smart processing method, Figure 3.14 illus-

trates the detection of the resulting R-peaks after processing the initially detected peaks

previously shown in Figure 3.10 through the three SMs.
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FIGURE 3.14: Resulting R-peaks detection after running the iterative
smart processing method.
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3.1.3 Results and discussion on R-peak detection

To validate and compare the proposed R-peak detection algorithm, MITADB was used

[151], which is a gold standard in the validation of algorithms related to ECG processing.

In Table 3.1 results obtained are presented according to precision (Pr) and sensitivity (Se)

measures, corresponding to previously defined equations 2.50 and 2.51, respectively. For

this purpose, the number of TPs, FPs and FNs were obtained.

TABLE 3.1: Performance of the proposed algorithm in the MITADB.

Tape No. #annotations TP FP FN Se(%) Pr(%)

100 2273 2273 0 0 100.00 100.00

101 1865 1864 3 1 99.95 99.84

102 2186 2185 2 1 99.95 99.91

103 2084 2084 0 0 100.00 100.00

104 2228 2227 3 1 99.96 99.87

105 2559 2557 9 2 99.92 99.65

106 1978 1970 0 8 99.60 100.00

107 2099 2093 3 6 99.71 99.86

108 1755 1753 73 2 99.89 96.00

109 2521 2519 0 2 99.92 100.00

111 2124 2124 0 0 100.00 100.00

112 2539 2539 0 0 100.00 100.00

113 1795 1795 0 0 100.00 100.00

114 1875 1874 183 1 99.95 91.10

115 1953 1953 0 0 100.00 100.00

116 2393 2390 1 3 99.87 99.96

117 1533 1532 0 1 99.93 100.00

118 2275 2275 0 0 100.00 100.00

119 1958 1953 0 5 99.74 100.00

121 1863 1862 0 1 99.95 100.00

122 2476 2476 0 0 100.00 100.00

123 1516 1515 0 1 99.93 100.00

124 1614 1613 0 1 99.94 100.00

200 2587 2585 8 2 99.92 99.69

201 1806 1783 1 23 98.73 99.94

202 2124 2122 1 2 99.91 99.95

203 2557 2496 24 61 97.61 99.05

205 2627 2622 0 5 99.81 100.00

207 1803 1794 89 9 99.50 95.27

208 2424 2348 4 76 96.86 99.83

209 3004 3003 0 1 99.97 100.00

210 2531 2514 1 17 99.33 99.96

Continued on next page
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Table 3.1 – Continued from previous page

Tape No. #annotations TP FP FN Se(%) Pr(%)

212 2748 2748 0 0 100.00 100.00

213 3212 3206 0 6 99.81 100.00

214 2216 2209 1 7 99.68 99.95

215 3304 3295 1 9 99.73 99.97

217 2207 2206 1 1 99.95 99.95

219 2115 2109 0 6 99.72 100.00

220 2036 2034 0 2 99.90 100.00

221 2405 2401 0 4 99.83 100.00

222 2414 2403 0 11 99.54 100.00

223 2458 2436 0 22 99.10 100.00

228 2042 2040 9 2 99.90 99.56

230 2254 2253 0 1 99.96 100.00

231 1886 1885 2 1 99.95 99.89

232 1136 1043 12 93 91.81 98.86

233 2472 2385 0 87 96.48 100.00

234 2751 2750 0 1 99.96 100.00

Total 106581 106096 431 485 99.54 99.60

The overall results are quite promising considering the high success during the R-peak

detection and the low number of FP, which correspond to a Se and Pr values of 99.54%

and 99.60%, respectively.

It was found that the non-detection of some of the R-peaks is due to their large width,

as occurs in PVC. In these cases, the area over the QRS complex has a small value, which

means that it is not identified as an R-peak during the area-based R-peak detection stage.

Some of the processed records present this phenomenon, i.e., records 114, 207 and 208,

among others.

Moreover, there were difficulties in processing record 207 due to the left bundle branch

block events along with first-degree atrioventricular block, in addition to the multiform

PVCs. In record 114, the large amount of PVCs led to erroneous detections during the

area-based R-peak detection. The amount of undetected R-peaks in register 208 is also

remarkable, mainly due to uniform PVCs and ventricular and normal beat fusions. Sev-

eral R-peaks were not detected during the processing of the SMs in register 232, mainly

due to the ineffectiveness of distance-based conditions on sections affected by long inter-

vals between consecutive R-peaks (up to 6 seconds). Finally, record 208 contains several

multiform PVCs, along with first-degree atrioventricular blocks, which resulted in a con-

siderable amount of FPs.

In Table 3.2, the proposed algorithm is compared with other works in the literature accord-

ing to the Pr and Se obtained in the records from the MITADB. As proposed by Kooler et al.
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[79], the computational load is considered in the comparison, and it is represented as low,

medium and high according to the complexity of the techniques used for the detection of

R-peaks and the generation of signal features.

TABLE 3.2: Performance comparison in the MITADB (first channel).

Method #peaks TP FP FN Se(%) Pr(%) Load [79]
Pan and Tompkins [84] 109809 109208 507 601 99.45 99.54 High

Hamilton and Tompkins [85] 109267 108927 248 340 99.69 99.77 Medium
Saxena et al. [90] 103763 103664 102 99 99.90 99.90 Medium

Martinez et al. [91] 109428 109208 153 220 99.80 99.86 High
Ghaffari et al. [92] 109428 109327 129 101 99.91 99.88 High

Choouakri et al. [93] 109488 108043 3068 1445 98.68 97.24 High
Zhang et al. [162] 109510 109297 204 213 99.81 99.81 Medium

Christov [99] 110050 109548 215 502 99.54 99.80 Medium
Chen et al. [100] 110050 109615 239 435 99.60 99.78 Medium
Afonso et al. [88] 90909 90535 406 374 99.59 99.55 Low

Bahoura et al. [95] 109809 109635 135 174 99.84 99.88 Medium
Li et al. [96] 104182 104070 65 112 99.89 99.94 High

Proposed method 106581 106096 431 485 99.54 99.60 Low

High Pr and Se values were achieved in all works compared in Table 3.2. However, there

are greater differences in computational load, which is particularly important in real-time

processes with tight restrictions. In addition, computational load is also related to energy

expenditure, which is critical in portable devices focused on long-term ECG acquisition

such as medical devices or smart watches and wristbands. The proposed algorithm was

tested on low-cost portable devices such as the Raspberry Pi boards, leading to effective,

real-time detection of the R-peak in real-world conditions.

Moreover, the proposed algorithm was validated on the MITADB, demonstrating that it

is capable of detecting accurately R-peaks in signals strongly affected by both artifacts

and disturbances due to cardiovascular diseases. This robustness is fundamental in the

follow-up of patients suffering from these cardiovascular diseases.

3.2 Pulse wave foot point detection

In this subsection, a novel oscillometric foot point (FPO) detection algorithm is presented.

The FPO is defined as the point of minimum amplitude of the oscillometric BP (OBP)

valley as illustrated in Figure 3.15, and is located between the rear front of the current

wave and the forefront of the subsequent wave.

The OBP data set presented in subsection 2.3.3, which was provided by the ECG clinics at

Auckland City Hospital and Greenlane Clinical Centre, Auckland, New Zealand, was used

for the development and validation of the proposed FPO detection algorithm. OBP mea-

surements were performed using the commercially available BP+ device (USCOM Lim-

ited, Sydney, Australia). The FPOs automatically detected by the BP+ were subsequently
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FIGURE 3.15: Graphical representation of the FPO.

corrected manually due to erroneous detections caused by several types of signal arti-

facts. Some of those artifacts (e.g., noise and baseline wander) are presented in Figure

3.16, where the displayed signals correspond to real OBP records from the data set.

In Kazanavicius et al. [104] some of the most used algorithms in the detection of FPOs are

introduced, i.e., the tangent intersection foot-to-foot method, the OBP foot polynomial

approximation method, the second derivative maximum method and the bottom straight-

line and forefront tangent intersection method, among others. It is proven that in these

methods accuracy decreases the lower the signal-to-noise ratio is. This fact is particu-

larly concerning considering that FPO detection errors during short duration OBP frames

processing generate deviations in the values of the parameters extracted from them.

To perform a robust FPO detection, a method based on several steps is proposed. These

steps are illustrated in the schematic in Figure 3.17, where an accurate FPO detection is

accomplished through two newly developed techniques: the moving interpolation differ-

ence method for BW removal and an improved second derivative maximum method for

local minimum detection. These methods are later used to extract OBP parameters to

train an artificial neural network (ANN) model for FPO detection.

3.2.1 OBP baseline wander elimination

Existing methods have shown good performance for FPO detection in relatively artifact-

free signals. However, they are less efficient at processing registers that are strongly af-

fected by artifacts such as BW and noise [104]. While noise generates minor distortions

that do not critically affect the signal morphology, BW can completely displace the local

minima of the valleys in OBP signals, resulting in false FPO locations, as illustrated in the

example in Figure 3.18.

Looking closer, two trends are distinguished in OBP signals. The first due to short-term

variations, corresponding to changes in the OBP signal mainly induced by heartbeats (red

lines in Figure 3.19). The second due to long-term variations, which are caused by the BW

(green lines in Figure 3.19).

This phenomenon led to the study of techniques focused on short- and long-term analysis

of temporal signals. One such technique is to use the difference between two averages
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FIGURE 3.16: OBP records corresponding to normal sinus rhythm and
atrial fibrillation in the upper graphs, affected by different artifacts in the

lower graphs.

calculated from short- and long-term SWs to detect relevant trend changes. This method

is known as the moving average convergence-divergence method [163].

In this development, the moving average convergence-divergence method was adapted,

replacing the averages with slopes values, thus filtering some of the noises and removing

the BW. These slopes are calculated by interpolating the OBP signal by using the long SW

(LSW) and short SW (SSW) data at each point. This slope calculation results in two param-

eters that represent the long-term (LTV) and short-term variations (STV), corresponding

to equations 3.18 and 3.19, respectively, where NL and NS are the lengths of LSW and SSW.
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FIGURE 3.17: Scheme of the proposed FPO detection methodology.
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FIGURE 3.18: An example of the effect of BW on the generation of valleys
that do not correspond to a real FPO.
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FIGURE 3.19: Short and long-term variations in a standard OBP signal.
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where LSW (i ) = (LSW (i )
x ,LSW (i )

y ).

STVi =

NS∑
j=i

(
SSW (i )

x j −SSW (i )
x

)
·
(
SSW (i )

y j −SSW (i )
y

)
NS∑
j=i

(
SSW (i )

x j −SSW (i )
x

)2
(3.19)

where SSW (i ) = (SSW (i )
x ,SSW (i )

y ).

The moving interpolation difference (MID) is calculated by extracting the difference of

the LTV and STV according to equation 3.20. The MID line is a byproduct of the OBP

signal that is not affected by the long-term variation (i.e., the BW) since it is computed on

the basis of slope measurements, which are equivalent to first derivatives. The MID line

represents the information contained in the OBP signal, free of BW. The disturbances due

to noise are also filtered out as a result of the interpolation performed along the signal.

In addition, the MID has a characteristic morphology that makes the FPOs identifiable as

illustrated in the third graph in Figure 3.20. The OBP signal and its corresponding LTVs

and STVs are also represented in the first and second graphs, respectively.

MIDi = STVi −LTVi (3.20)

The aforementioned characteristic morphology is clearly reflected in the amplified graphs

in Figure 3.21, where the long and short trends are perfectly visible as well as the corre-

sponding MID line.

Figure 3.22 shows several MID line examples corresponding to the OBP signals affected

by BW and noise previously shown in Figure 3.16. It can be observed how the MID line

retains the information of every heartbeat in its morphology but free of contamination

with BW and noise.

3.2.2 Valleys detection

According the second derivative maximum method (SDMM) presented by Kazanavicius

et al. [104], the FPO location corresponds to the maximum value of the OBP signal accel-

eration, i.e., the maximum value of the second derivative of the OBP signal, as illustrated

in Figure 3.23.

In practice, small changes in the OBP variations can generate additional local maxima in

the second derivative, resulting in surplus FP detections. Hence, in this development, an

improved SDMM was implemented together with the MID line to determine which of the

second derivative maxima correspond to potential FPOs.

In the modified version of the SDMM implemented in this solution, the first derivative

(D1) was calculated by computing the slope of the OBP signal. The second derivative (D2)

was then calculated by computing the slope of D1, as defined in equations 3.21 and 3.22,



90 Chapter 3. Heart period extraction: A new approach to ECG and OBP processing

0 2 4 6 8 10

40

50

kN
/m

²

OBP with BW

2 4 6 8 10
20

0

20

kN
/m

²·s

LTV (blue) & STV (red)

2 4 6 8 10
Time (sec)

5.0

2.5

0.0

2.5

kN
/m

²·s

MID line
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graph: MID of the two trends (light blue line).
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FIGURE 3.22: Set of MID lines corresponding to different APW signals
from the data set.

respectively. To avoid distortions caused by noise, the window (w) length (ND ) was set to

100 milliseconds.

D1i =

ND∑
j=i

(
OBP (w (i ))x j −OBP (w (i ))x

)
·
(
OBP (w (i ))y j −OBP (w (i ))y

)
ND∑
j=i

(
OBP (w (i ))x j −OBP (w (i ))x

)2
(3.21)

where OBP (w (i )) = (OBP (w (i ))x ,OBP (w (i ))y ).
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FIGURE 3.23: The OBP signal (black), the MID of the signal (green), the
first derivative of the signal (red) and the second derivative of the signal

(orange).

D2i =

ND∑
j=i

(
D1 (w (i ))x j −D1 (w (i ))x

)
·
(
D1 (w (i ))y j −D1 (w (i ))y

)
ND∑
j=i

(
D1 (w (i ))x j −D1 (w (i ))x

)2
(3.22)

where D1 (w (i )) = (D1 (w (i ))x ,D1 (w (i ))y ).

When a heartbeat occurs, the local maximum of the OBP signal coincides with the zero-

crossing point (ZCP) of the MID line. The ZCP is located where the MID line crosses zero

from the positive to the negative hemisphere. Accordingly, an FPO search area can be

defined to the left of the ZCP, as illustrated in Figure 3.23. Inside that area, the maximum

of the second derivative of the OBP signal that is closest to the ZCP is established as the

location of the current FPO.

The FPOs detected using the SDMM are not entirely accurate due to signal noise. Con-

sidering that the FPO is the point with the minimum amplitude between the rear front

of the current wave and the forefront of the subsequent wave, the SDMM was adapted to
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descend the slope of the OBP signal from the location of the D2 maximum until the op-

timal local minimum is reached. This results in an accurate detection of possible FPOs

associated with the ZCPs of MID waves with a specific morphology.

3.2.3 OBP parameter extraction

In this stage, a method for extracting MID waveform parameters is presented. These pa-

rameters are then used to perform a classification of the MID waveform in order to dis-

criminate real FPOs from artifacts.

First, characteristic points of the MID waves are located. Each MID wave has an associated

ZCP. However, zero crossings occur not only in the presence of a heartbeat, but also with

the appearance of artifacts. Therefore, it is necessary to differentiate which MID wave-

forms correspond to real heartbeats and which do not. For that purpose, the MID wave-

form minimum (MI), maximum (MA) and ZCP locations were detected, as represented in

the bottom graph in Figure 3.24.
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FIGURE 3.24: OBP signal (top graph) and characteristic points of the MID
line (bottom graph).

From the MA, MI and ZCP, a total of five representative parameters of the MID waveform

were extracted: the ratio of the difference in the MI and ZCP positions to the difference in

the ZCP and MA positions 3.23, the MI value divided by the MA value 3.24, the difference

between the MA and MI positions 3.25, the difference between the MA and MI values

3.26 and the product of the previous two parameters 3.27. Below are the equations for

calculating these parameters, where the subscripts “y” and “x” refer to the positions of the

points on the magnitude and time axes, respectively.
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P1 = MIx −ZCPx

ZCPx −MAx
(3.23)

P2 =
MIy

MAy
(3.24)

P3 = MAx −MIx (3.25)

P4 = MAy −MIy (3.26)

P5 = P1 ·P2 (3.27)

The significance of these five parameters lies in their ability to define the morphology

of each MID wave associated with a valley. Thus, it is possible to classify each valley as

corresponding to a real or false FPO (artifact) considering the morphology of the MID

line. To represent these parameters in relation to their correspondence to real and false

FPOs, a principal component analysis (PCA) visualization is employed in Figure 3.25. The

axes correspond to the first and second principal components, which retain most of the

information.

FIGURE 3.25: Two-dimensional PCA representation of the parameters ex-
tracted from MID waveforms corresponding to real and false FPOs.
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3.2.4 ANN for FPO detection

Due to the reduced number and the static nature of the parameters derived from MID

waveforms, a fully connected ANN is proposed to classify the valleys into real and false

FPOs [164].

To optimize the ANN model that relates the five input parameters extracted from the MID

waveform to the real and false FPO output labels, both the NS and NL and the ANN config-

uration hyperparameters were mapped to find the combination yielding the best results.

Since the morphology of the MID line determines the values of the input parameters of

the ANN, and, in turn, strongly depends on the NS and NL , it is necessary to identify the

optimal values for these two hyperparameters.

To optimize the ANN configuration for each combination of NS and NL values, the ANN

hyperparameters were optimized based on an exhaustive search of the optimal number of

neurons in each hidden layer (HL). The number of HLs ranged from 1 to 2, and the number

of neurons in each HL ranged from 1 to 10, where the number of neurons in the second

HL was limited to no more than the number of neurons in the first HL. In the output layer,

a single node with a sigmoid activation function was used that yielded an output value of

1 for real FPOs and 0 for false FPOs. The binary cross-entropy loss function was employed

to train the network along with the Adam optimization algorithm.

Furthermore, to ensure that NL would always be greater than NS , a parameter alpha (α)

was defined, thus, NS was calculated relative to NL according to equation 3.28. Hence,

a mapping was defined to range NL from 0.25 to 0.8 seconds and α from 1.05 to 4 units.

Algorithm 1 illustrates the method used to generate the mapping.

NS = NL

α
∀ (α ∈R | 1.05 ≤α≤ 4) (3.28)

Algorithm 1 Parameter mapping for FPO detection optimization.

1: for (LWL = 0.25; LWL ≤ 0.8; LWL = LWL+0.05) do
2: for (α= 1.05; α≤ 4; α=α+0.05) do
3: for (HL1 = 1; HL1 ≤ 10; HL1 = HL1 +1) do
4: for (HL2 = 1; HL2 ≤ HL1; HL2 = HL2 +1) do
5: params(LWL, α) ← ApwParamExt (APWsignals, [LWL, α])
6: ann(LWL,α)

(HL1, HL2) ← AnnTraining (params(LWL,α), [HL1, HL2])
7: end for
8: end for
9: end for

10: end for

3.2.5 Results and discussion on foot point detection

The performance was measured according to specificity (Sp), Se and F1 score (F1), corre-

sponding to equations 2.52, 2.51 and 2.54, respectively. These were obtained based on the
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number of TP, FP and FN. The data set described in subsection 2.3.3 was used for valida-

tion.

The ANN model was evaluated based on the arithmetic mean of the F1 in 20-fold cross-

validation (CV) sets for each mapped hyperparameter configuration. The best hyperpa-

rameter configuration achieved a mean F1 of 99.18% (99.17% Se and 99.21% Sp), repre-

sented by a blue cross in Figure 3.26. This representation illustrates the results obtained

for each combination of NL and α values. The best results are colored in red while the

worst ones are colored in blue. The optimized hyperparameter values are as follows:

• LSW length: 0.45 seconds

• Alpha: 1.4

• Number of neurons in each HL:

– First HL: 8 neurons

– Second HL: 5 neurons
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FIGURE 3.26: Average value of the F1 for FPO detection in 20-fold CV for
each combination of values of the alpha parameter and the LSW length

(NL).

For the optimized hyperparameter values NL=0.45 andα=1.4, the performance of the ANN

for each HL configuration is illustrated in Figure 3.27. The blue cross indicates the ANN

configuration that achieves the highest F1, corresponding to 8 neurons in the first HL and

5 neurons in the second HL, as indicated above.

In contrast to the results obtained in this development, the commercial BP+ device achieves

an F1 of 97.7%. By comparison, the proposed model achieves an F1 of 99.18%, an improve-

ment of 1.48 percentage points. This improvement is crucial, considering that failure in
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FIGURE 3.27: Average value of the F1 for FPO detection in 20-fold CV for
each combination of the numbers of neurons in the first and second HLs.

the detection of a single FPO in a small context OBP signal can generate an even greater

error in the subsequent extraction of parameters due to the resulting HP morphology.
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4 Physiological signal processing:

Parameter extraction, analysis,

normalization and labeling

This section presents a novel methodology for the parameter extraction, analysis, normal-

ization and labeling of physiological records, which was optimized for the identification

of stress and relaxation states. The 42 registers collected during the experimental stage

carried out in subsection 2.3.1 are used for this development. Each register consists of a

set of physiological signals, i.e., galvanic skin response (GSR), breathing (RSP) and heart

period (HP), where HP is calculated from the electrocardiographic signal applying the R-

peak detection algorithm proposed in the previous subsection 3.1. Figure 4.1 illustrates

these signals, which correspond to one of the records in the dataset. These physiologi-

cal signals are subsequently processed to obtain information related to the activity of the

autonomic nervous system (ANS) contained in the physiological parameters, as physio-

logical parameters have proven to be useful for estimating states of stress and relaxation

[19, 20, 28, 165, 166].
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FIGURE 4.1: Physiological records corresponding to HP, GSR and RSP.
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Physiological differences among people result in considerable deviations in the parame-

ters extracted during states of stress and relaxation. Therefore, the implementation of a

generic algorithm to process parameters extracted from different people is a challenging

task. In this section, a novel methodology is proposed for the selection of the best nor-

malization technique for each extracted parameter. This methodology focuses on both

obtaining the greatest differentiation between states of stress and relaxation and equaliz-

ing the ranges of parameter values for different people.

This thesis proposes continuous labeling of the registers in the range [0, 1], where 0 repre-

sents the maximum relaxation value and 1 the maximum stress value, in terms relative to

the experiment from which the analysed signals were extracted. Based on the assumption

that it is not possible to objectively assign a representative continuous value of stress and

relaxation level to each record manually, two partial and binary labelings are proposed

to capture stress and relaxation regions, where stress was denoted with the label “1” and

relaxation with the label “0”, respectively. The first partial labeling (type 1 labeling) was

conducted by the author of this thesis. The second partial labeling (type 2 labeling) was

performed by experts in the interpretation of physiological signals. The labeling of the

signals was subsequently completed through the implementation of a semi-supervised

learning algorithm, using type 1 and type 2 labelings for training and validation, respec-

tively. This is called pseudo-labeling, which consists of turning a partial labeling into a

complete labeling as illustrated in the diagram in Figure 4.2.

21-fold cross-validation

PARTIAL LABELING

PSEUDO-LABELING

TRAINING VALIDATION

DATA SET
(42 records)

TYPE 1 LABELING
By Author

TYPE 2 LABELING
By Experts

Semi-supervised
learning

FIGURE 4.2: Diagram representing the labeling process carried out in this
thesis.

To strengthen the reliability of the methodology, 21-fold cross-validation was used. Of the

42 available records, 30 (72%) were used for development and 12 (28%) in the validation
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stage. In addition, each of the stages was performed in duplicate, both with normalized

and unnormalized parameters, to verify the improvement in the results implicit in the

proposed normalization methodology. Figure 4.3 illustrates the strategy used for the 21-

fold cross-validation, where each column corresponds to each of the 42 records and each

row to each of the 21 folds. The records used for training are displayed in green and those

used for validation are displayed in yellow.

FO
LD

S

RECORDS

1

21
1 42

FIGURE 4.3: A 21-fold cross-validation strategy where training records are
displayed in green and those used for validation are displayed in yellow.

The proposed development is based on the use of the principal components (PCs), ex-

tracted through the application of principal component analysis (PCA). For each of the

21-fold, the PCA model was trained using the parameters of the training set. The trained

PCA model was subsequently used to obtain the PCs of both the training set and the val-

idation set. As mentioned above, PCs were processed using a semi-supervised learning

algorithm to perform a pseudo-labeling. During this process, type 1 partial labels were

used as initial labels for the training of the semi-supervised learning algorithm. In con-

trast, type 2 partial labels were used to validate the performance of the resulting pseudo-

labeling. Figure 4.4 shows an outline of the methodology proposed in this section.

4.1 Parameter extraction

The extraction of the physiological parameters is performed by analyzing the signals in

a 20-second sliding window, with 15-second overlap, which means a 5-second step as il-

lustrated in Figure 4.5. This configuration allows to process enough information from the

signal in order to extract reliable physiological parameters [28]. Furthermore, it is suitable

for real-time implementation, as demonstrated later in section 6.
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Parameter
extraction

Parameter
norm.

Binary partial 
labeling 
(Type 2)

PCA (CV1)
Pseudo-
labeling

PCA (CV2)

PCA (CV21)

Pseudo-
labeling

Pseudo-
labeling

… …

PCA (CV1)
Pseudo-
labeling

PCA (CV2)

PCA (CV21)

Pseudo-
labeling

Pseudo-
labeling

… …

Data set
42 registers

Binary partial 
labeling 
(Type 1)

Training and validation

Train 
72%

Valid. 
28%

PCA
Train 
PCA

Valid. 
PCA

Infer

FIGURE 4.4: Flow chart of the proposed methodology for the normaliza-
tion and labeling of the extracted parameters.

20 seconds
5 seconds

FIGURE 4.5: Proposed methodology for the processing of physiological
signals using a 20-second sliding window, with a step of 5 seconds.

A total of 29 parameters are extracted in this study, of which 19 correspond to HP, 3 to

GSR, 5 to RSP and 2 to both HP and RSP. These are presented below along with their cor-

responding equations. They are all closely related to changes in the physiological state,

which makes them good indicators of the activity of the ANS [19]. At the end of this sub-

section, Figure 4.10 illustrates the total of parameters extracted for a given register in the

data set. Finally, as a result of the study carried out on these parameters in subsequent

stages, the most representative in terms of stress and relaxation states will be selected

from the 29 extracted parameters. For this purpose, indicators related to the capacity of
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each parameter to differentiate between these two states will be considered.

4.1.1 Heart period

This subsection delves into the parameters derived from the HP that are commonly used

in the interpretation of the psychophysiological state in people. Some of them have al-

ready been introduced in subsection 2.1.2. These parameters are classified on temporal-

domain, frequency-domain and nonlinear. The parameters of the HP used in this devel-

opment are introduced below, together with their corresponding equations, where NH is

the number of detected heartbeats (R-peaks or FPOs, depending on from which signal the

HP is extracted) and ti the temporal location of the ith heartbeat.

Temporal-domain parameters were selected based on their capacity of identifying irreg-

ularities in the HP and the possibility of being processed in a sliding window of reduced

context. Thus, geometric features, which require a context of several minutes to extract

reliable parameters, were discarded. Selected parameters are listed in Table 4.1, where

HPa and HPb represent the ath and bth percentiles of HPs, respectively.

TABLE 4.1: HP temporal-domain features.

Feature Calculation

Mean HP MHP = 1

NH −1
·

NH−1∑
i=1

HPi

Variation of the HP VHP =
(NH −1) ·

NH−1∑
i=1

(ti+1 ·HPi )−
(NH−1∑

i=1
ti+1

)
·
(NH−1∑

i=1
HPi

)
(NH −1) ·

NH−1∑
i=1

t 2
i+1 −

(NH−1∑
i=1

ti+1

)2

Irregularity index IRRX(a,b) = σ(HP)

HP
∀ (HPa < HP < HPb)

Number of successive
HPs that differ by more
than 50ms

NN50 =
NH−2∑
i=1

(HPi −HPi−1) > 0.05

Percentage of NN50 PNN50 = NN50

NH −2
·100

Root mean square of the
HP

RMS =
√

1

NH −1
·

NH−1∑
i=1

HP 2
i

Root mean square of suc-
cessive HP differences

RMSSD =
√

1

NH −2
·

NH−2∑
i=1

(HPi −HPi−1)2

Standard deviation of the
HP

SDNN =
√

1

NH −1
·

NH−1∑
i=1

(HPi −HP )2

Standard deviation of
successive HP differ-
ences

SDSD =

√√√√√√√√√ 1

NH −2
·
NH−2∑

i=1

(HPi −HPi−1)−

NH−2∑
j=1

HP j −HP j−1

NH −2


2

Standard error of the HP
mean

SENN = 1

NH −1
·
√

NH−1∑
i=1

(HPi −HP)2
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From HP frequency-domain parameters, four main frequency bands are distinguished,

i.e.: high frequency (HPHF, 0.15 – 0.4Hz), low frequency (HPLF, 0.04 – 0.15Hz), very low

frequency (HPVLF, 0.0033 – 0.04Hz), and ultralow frequency (HPULF, <0.0033Hz) [107].

Due to the variability of the beats periodicity throughout the signal, it is necessary to in-

terpolate and resample the HP using equal intervals [167, 168, 109, 169]. Considering the

maximum frequency analyzed (0.4 Hz in the HF band), a sampling frequency of 4 Hz was

used, thus avoiding aliasing [168, 169, 170]. Cross correlation was applied to assess the

degree of similarity between the interpolated HP signal and the frequencies in the range

(0, 0.5] Hz with a resolution of 0.0001 Hz.

From nonlinear parameters, the standard deviations of the Poincaré plot (POSD1 and

POSD2) are widely used to detect irregularities in HP [108]. POSD1 is more related to fast

HP variability, while POSD2 represents the long-term HP variability according to equa-

tions 4.1 and 4.2, respectively. The ratio between POSD1 and POSD2 (POSD12) is also

frequently employed according to equation 4.3.

POSD1 =
√

1

2
·SDSD 2 (4.1)

POSD2 =
√

2 ·SDNN 2 − 1

2
·SDSD 2 (4.2)

POSD12 = POSD1

POSD2
(4.3)

The dispersion of points around diagonal line in Poincaré plot (DIS) and the mean step-

ping increment of inter-beat intervals (STEP) are also used according to equations 4.4 and

4.5, respectively. These parameters have proven to be effective in detecting irregularities

in the HP [171].

DIS =

√
1

2(NH −2)

NH−2∑
i=1

(HPi −HPi+1)2 −
(

1

(NH −2)
p

2

NH−2∑
i=1

|HPi −HPi+1|
)2

1

2(NH −2)

(
−HP1 −HPNH−1 +2

NH−2∑
i=1

HPi

) (4.4)

STEP =
1

NH −3

NH−3∑
i=1

√
(HPi −HPi+1)2 + (HPi+1 −HPi+2)2

1

NH −1

NH−1∑
i=1

HPi

(4.5)

4.1.2 Galvanic skin response

Parameters derived from the GSR are considered to be among the most representative of

the activity of the ANS. In fact, GSR is directly related to the sympathetic nervous system

(SNS) activity. Therefore, the parameters extracted from GSR have a great interest in the
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detection of the activation and deactivation of the SNS. This information was extracted

using a 20-second context in a sliding window, which contains enough information to

obtain representative parameters of the physiological state related to stress and relaxation.

In each sliding window, the mean value of the GSR (MGSR) was calculated as a represen-

tative value of the signal level according to equation 4.6, where NG refers to the number of

GSR samples in each sliding window and ti is the temporal location of the ith sample.

MGSR = 1

NG
·

NG∑
i=1

GSRi (4.6)

The activity of the sweat glands increases when the sympathetic branch of the ANS is ac-

tivated and decreases when it is deactivated. This makes the variation of the GSR (VGSR)

a significant parameter of the activity of the SNS, as illustrated in Figure 4.6 [19, 20, 11]. To

quantify VGSR, a linear regression is performed where the slope is obtained according to

equation 4.7.

VGSR =
NG ·

NG∑
i=1

(ti ·GSRi )−
(NG∑

i=1
ti

)
·
(NG∑

i=1
GSRi

)
NG ·

NG∑
i=1

t 2
i −

(NG∑
i=1

ti

)2
(4.7)

In the same way, the value of the GSR is more chaotic during stressful periods due to skin

conductance response and more stable during relaxation [8, 172]. This fact led to the ap-

plication of the differential area between the GSR signal and its first-order interpolation

(AGSR), which is represented in light blue in Figure 4.6. AGSR is calculated conforming to

equation 4.9, where the linear interpolation offset is calculated according to equation 4.8.

offset =

NG∑
i=1

GSRi −VGSR ·
NG∑
i=1

ti

NG
(4.8)

AGSR =

NG∑
i=1

|GSRi − (VGSR · ti +offset)|
NG

(4.9)

4.1.3 Breathing

In the study of RSP, it was observed that during states of relaxation (corresponding to the

areas colored in blue in the top graph in Figure 4.7) RSP is similar to a sinusoidal waveform

containing a dominant harmonic. In contrast, during states of stress (corresponding to the
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FIGURE 4.6: GSR signal (dark blue) and its first-order interpolation (pink
line) in a 20-second window. Light blue color represents the area between

both.

area colored in red in the top graph in Figure 4.7) RSP becomes more chaotic, thus increas-

ing the number of harmonics. This phenomenon is illustrated in the frequency correla-

tion in the bottom graph in Figure 4.7, and was considered in order to extract frequency-

domain parameters from RSP that capture those alterations related to states of stress and

relaxation.

As in HP frequency-domain parameter extraction, the same cross correlation method was

employed to assess the degree of similarity between the RSP signal and the frequencies

in the range (0, 0.5] Hz with a resolution of 0.0001 Hz. Therefore, it was necessary to

downsample the signal from 1000 Hz to 4 Hz so that the computational load would not

be excessive. Four main parameters were extracted from frequency correlation, i.e.: high

frequency band (RSPHF, 0.15 – 0.4Hz), low frequency band (RSPLF, 0.04 – 0.15Hz), very

low frequency band (RSPVLF, 0.0033 – 0.04Hz), and ultralow frequency band (RSPULF,

<0.0033Hz).

During relaxation, the RSP has a sinusoidal shape, while the opposite occurs during a

stressful situation, where RSP becomes more frequent and inharmonious [172]. Figure

4.8 illustrates this phenomenon, where the standard deviation of the frequencies (SDRSP)

is calculated according to equation 4.10, which reflects the frequency dispersion. N f rep-

resents the number of frequencies processed during cross correlation (CC).

SDRSP =
√√√√ 1

N f
·

N f∑
i=1

(CCi −CC )2 (4.10)

Due to the similarity of SDRSP with the RMS of HP presented in Table 4.1, it was noted

that the combination of both parameters results in a more reliable representation of relax-

ation and stress. This phenomenon can be observed by performing the product between

SDRSP and RMS (HSCR) according to equation 4.11. Figure 4.9 shows an example of RMS
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FIGURE 4.8: RSP frequency correlations during stress and relaxation.

and SDRSP during relaxation and stress, and the resulting HSCR. For the calculation of

the HSCR, SDRSP and RMS are scaled between 0 and 1 to avoid the imposition of the mor-

phology of the parameter with magnitudes closer to 0 over the morphology of the other

parameter when performing the product of both. The resulting HSCR is finally rescaled

according to the product of the minimum and maximum values of the original SDRSP and
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RMS.

HSCR = SDRSP ·RMS (4.11)
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FIGURE 4.9: RMS (top graph), SDRSP (central graph) and the resulting
HSCR (bottom graph).

During respiratory sinus arrhythmia, cardiac coherence (CACO) is frequently employed as

an index of the contribution of the parasympathetic nervous system to cardiac regulation

[173, 19, 174]. This phenomenon takes place during relaxation, when the acceleration and

deceleration of the HP is coordinated with the respiratory rate and the correlation between

the frequencies of the RSP and the HP is high. In this study, the CACO was calculated

by measuring the difference between the frequency correlations of the RSP and the HP

according to equation 4.12, where CCRSP and CCHP refer to the frequency correlation of

the RSP and HP, respectively.

CACO = 1

N f
·

N f∑
i=1

|CCRSPi −CCHPi| (4.12)

Figure 4.10 illustrates all the physiological parameters that were extracted up to this point,

which will be used in the following steps.

4.2 Binary partial labeling

Parallel to the parameter extraction, in this stage a partial labeling of each record was per-

formed. Considering the complexity of the physiological signals and the several factors
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FIGURE 4.10: Parameters extracted from GSR, RSP and HP signals.

that affect them, it was assumed that it is not possible to objectively assign a representa-

tive value of stress and relaxation level to each analyzed window. For this reason, a partic-

ular methodology is proposed in this thesis, where human knowledge is used to label the

areas clearly belonging to states of stress and relaxation by means of a binary labeling of

“1” and “0”, respectively. This labeling is illustrated in Figure 4.11, where the blue and red

areas represent states of relaxation and stress.

In total, two different labeling sets were generated: the first, known as type 1 labeling, was

proposed by the author of this thesis, and is based on the nature of the experiment carried

out for the acquisition of the physiological records, which was introduced in subsection

2.3.1. During the experiment two phases of relaxation are distinguished, at the beginning

and at the end, along with an intermediate phase of stress. These phases were used as
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FIGURE 4.11: Example of a binary labeling where the blue areas corre-
spond to the record segments labeled as relaxation and the red area to the

segment labeled as stress.

a reference to perform type 1 labeling. The second labeling, known as type 2 labeling,

was carried out by personnel with expert knowledge in the interpretation of physiological

signals, and was performed blinded to the nature of the experiment to avoid being affected

by the interpretations derived from it.

The two labeling types were used for different purposes, type 1 labeling for the develop-

ment and training of the proposed algorithms and models, and type 2 labeling for their

validation. More specifically, type 1 labeling was used to select from extracted parameters,

those that best differentiate both stages of stress and relaxation, and also to determine the

best normalization strategy, as developed in the following subsection. It was also used as

initial labeling to train a semi-supervised model for each register in order to perform the

pseudo-labeling. Besides, type 2 labeling is used to validate the pseudo-labeling derived

from the study of normalized and unnormalized parameters at the end of this section. It is

also used later in section 5 to validate the trained stress and relaxation prediction models.

4.3 Parameter normalization

Due to the existing physiological differences among individuals, this stage focuses on

the importance of normalizing physiological parameters. When the parameters extracted

from different participants are compared, significant variations are observed. The distri-

bution of the parameter values that represent stressful situations for some individuals are

mixed with the relaxation values of other individuals and vice versa. This phenomenon is
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reflected in the example in Figure 4.12, where the mean HP corresponding to 42 individu-

als (from the stress and relaxation experiment presented in subsection 2.3.1) and collected

during the same phases of stress and relaxation are mixed.
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FIGURE 4.12: HP records from different individuals during the same pe-
riod of the stress and relaxation experiment. The figure displays the physi-
ological change (purple area) from a relaxing state (blue area) to a stressful

state (red area).

The same phenomenon is observed in the remaining parameters to a greater or lesser

extent. Figure 4.13 shows the parameters extracted from the 42 records of the data set

plotted at the same time, where it is difficult to discern the stress and relaxation phases

only by considering the magnitude values.

This phenomenon is further illustrated in Figure 4.14, in which the distribution of each

parameter is represented based on its belonging to states of stress and relaxation accord-

ing to the type 1 partial labels.

Considering the need for a parameter normalization methodology in order to standardize

parameter ranges among participants, in this solution various normalization methods, in

addition to those that already exist, are proposed, together with a methodology to assess

their effectiveness in this specific context.

Two normalization classes are differentiated depending on the nature of the parameters:

The first class corresponds to those parameters that only have positive values before nor-

malization and the zero-crossing has no relevant meaning. The second class are those

parameters that have positive and negative values and the zero-crossing represents a rel-

evant state change, therefore, the zero value must be fixed. To this last class belong, for

example, VGSR and VHP, which represent the variations in the GSR and HP, respectively.

Among the first class normalization methods, the gold standards z-score and max-min

normalization stand out, corresponding to equations 4.13 and 4.14, respectively. A mod-

ified version of the max-min method that scales the values in the range [-1 1] was also
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FIGURE 4.13: Parameters extracted from all the participants displayed at
the same time without normalization.

implemented in this thesis according to equation 4.15. The fourth method proposed cor-

responds to equation 4.16, where the minimum value is adjusted to zero while the rest of

the signal is scaled based on the median value.

x ′ = x −µ
σ

(4.13)

x ′ = x −xmin

xmax −xmin
(4.14)
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FIGURE 4.14: Histogram of the values corresponding to states of stress
(red) and relaxation (blue) for each parameter.

x ′ = 2∗ x −xmin

xmax −xmin
−1 (4.15)

x ′ = x −xmin

(x −xmin)median
(4.16)

On the other hand, three methods are proposed to carry out the second class of normal-

ization. The first method is related to z-score, but the subtraction of the average value is

excluded to keep the zero in the same position according to equation 4.17. The second

is another modified version of the max-min method, where the values are only divided

by the maximum absolute value to keep zero in the same position according to equation
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4.18. The third and last is a nonlinear normalization method that analyzes positive and

negative values separately, dividing them by the maximum absolute value for each of the

signs to scale the signal in the range [-1, 1] according to equation 4.19.

x ′ = x

σ
(4.17)

x ′ = x

|x|max
(4.18)


x ′[x > 0] = x[x > 0]

x[x > 0]max

x ′[x < 0] = x[x < 0]

|x[x < 0]|max

(4.19)

To assess which of these normalization methods is the most appropriate for each param-

eter, the loss function shown in 4.20 is proposed. This function is based on two principles

reflected in its dividend and divisor. The first principle, reflected in the dividend, states

that the standard deviation of the parameter values of all participants together during the

relaxation (σr el ax ) and stress (σstr ess) stages has to be small. Therefore, the product be-

tween the standard deviation of the normalized values of the parameters in the stress and

relaxation intervals must be as small as possible. The second principle, reflected in the

divisor, states that the difference between the mean value of the normalized parameters

in the relaxation intervals (µr el ax ) and in the stress intervals (µstr ess) must be as large as

possible. This principle is reflected in Figure 4.15.

normloss =
σrelax ∗σstress

µrelax −µstress
(4.20)

Table 4.2 shows the losses obtained for each of the parameters according to the differ-

ent classes of normalization applied. The lower the value, the better the normalization

method adjusts to the proposed problem. Values in bold represent the method with the

lowest loss for each of the parameters.

According to the results observed in Table 4.2, the max-min 4.14 and modified max-min

4.18 normalizations achieved the lowest losses for each of the parameter normalization

classes defined in this thesis. Figure 4.16 shows the parameters of all individuals plotted

at the same time after normalization.

In Figure 4.17 the distribution of each normalized parameter is represented based on its

belonging to states of stress and relaxation according to the type 1 partial labels. These

normalized parameters are better distributed than the previously shown unnormalized

parameters in Figure 4.14.
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FIGURE 4.15: Blue and red boxes correspond to the relaxation and stress
stages respectively, from which the standard deviations and the mean val-

ues of relaxation and stressful states are extracted.

4.4 Distribution analysis and parameter selection

With the parameters optimally normalized, it is necessary to select the most appropriate

according to their ability to differentiate between states of relaxation and stress. For this

purpose, the histograms of each of the normalized parameters plotted in Figure 4.17 ac-

cording to their belonging to states of relaxation and stress were considered. Furthermore,

in Figure 4.18 the probabilities for each normalized parameter to belong to a state of re-

laxation or stress are graphically represented, in the range [-1, 1], where 1 represents the

maximum belonging to stress, -1 the maximum belonging to relaxation and 0 the same

belonging to both states. This representation makes it easier to identify those parame-

ters that are most influenced by changes resulting from stress and relaxation. To calculate

the probabilities, data from Figure 4.17 were processed according to equation 4.21, where

stressi and relaxationi refer to the distribution of each parameter (param) for a parameter

value i.

P
(
param

)
i =

stressi − relaxi

stressi + relaxi
(4.21)

In addition to the graphical representations of the parameter distribution and probabili-

ties, the losses from Table 4.2 were also used to carry out the parameter selection. These

are good indicators of the quality of the parameters, since a lower loss value represents

a greater potential to carry out the differentiation between stress and relaxation states.

These losses are illustrated in Figure 4.19, in which the best normalization loss obtained

for each parameter is graphically represented.
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TABLE 4.2: Loss of normalization methods.

Nor m0 Nor m1 Nor m2 Nor m3 Nor m4 Nor m5 Nor m8

AGSR - 0.2396 0.0561 0.1122 - - 0.2592
CACO - 1.3077 0.2760 0.5521 - - 0.6956

DIS - 0.5460 0.1346 0.2693 - - 0.5181
HPHF - 0.7108 0.1668 0.3336 - - 0.3456
HPLF - 1.5048 0.2950 0.5900 - - 0.4726

HPULF - 1.1522 0.2733 0.5466 - - 0.5501
HPVLF - 1.0227 0.2583 0.5165 - - 0.5040
HSCR - 0.2053 0.0490 0.0979 - - 0.1218
IRRX - 1.2257 0.2410 0.4819 - - 0.7686

MGSR - 0.6350 0.1762 0.3524 - - 0.3162
MHP - 0.1203 0.0299 0.0598 - - 0.1168
NN50 - 2.2381 0.8409 0.8409 - - 0.8409

PNN50 - - - - - - -
POSD1 - 0.2738 0.0682 0.1363 - - 0.2544

POSD12 - 0.5248 0.1102 0.2204 - - 0.2817
POSD2 - 0.6874 0.1417 0.2835 - - 0.5367

RMS - 0.1196 0.0297 0.0594 - - 0.1163
RMSSD - 0.2754 0.0682 0.1365 - - 0.2557
RSPHF - 0.7960 0.1843 0.3685 - - 0.2616
RSPLF - 2.0636 0.6847 1.3693 - - 2.1185

RSPULF - 1.3787 0.3037 0.6073 - - 0.9166
RSPVLF - 1.1525 0.2377 0.4753 - - 0.8584
SDNN - 0.5705 0.1241 0.2482 - - 0.4587
SDRSP - 0.3864 0.0937 0.1875 - - 0.1775
SDSD - 0.2738 0.0682 0.1363 - - 0.2544
SENN - 0.4494 0.0969 0.1937 - - 0.3799
STEP - 0.3682 0.0835 0.1670 - - 0.2737
VGSR 0.3139 - - - 0.0727 0.1322 -
VHP 3.0637 - - - 0.9134 1.0607 -

Considering the distribution, probabilities and normalization loss obtained for each pa-

rameter according to type 1 partial labels, the parameters selected to continue with the

next phases of the development are the following: MHP, RMS, RMSSD, SDSD, DIS, POSD1,

STEP, VGSR, AGSR, SDRSP and HSCR. These parameters present the lowest losses in Table

4.2 and a solid distribution in Figures 4.17 and 4.18.

4.5 Correlation and principal component analysis

An important factor to consider is the correlation that exists among different parameters.

The use of strongly correlated parameters can lead to redundant information that neg-

atively affects the result of the used algorithms, which can provide more weight to the

redundant information than to the rest of the information. Figure 4.20 shows the corre-

lation between the different parameters, where the positive and negative correlation is

represented with the same color since they have the same redundant effect.
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FIGURE 4.16: Parameters extracted from all participants displayed at the
same time after normalization.

This solution proposes the use of PCA to eliminate redundancy with the minimum loss

of useful information and achieve an orthogonalised set of PCs. Figure 4.21 shows the

percentage of original information retained according to the loss of cumulative variance

for each number of PCs. A maximum loss of cumulative variance of 1% was set, which is a

gold standard in PCA.

The minimum number of PCs that complies with the 1% loss is 5. These PCs, which are

an orthogonalised and reduced version of the original parameters, are shown to the right

of Figure 4.22, and will be used from this point for further processing.

In Figure 4.23, the first three PCs are illustrated in a three-dimensional graph, showing

the clear difference that exists between the values representative of relaxation (blue) and
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FIGURE 4.17: Histogram of the values corresponding to states of stress
(red) and relaxation (blue) for each normalized parameter.

stress (red). The signal used in this representation is the same as in Figure 4.22, as well as

the values labeled on it.

4.6 Continuous pseudo-labeling

To complete the previously performed partial labeling, this subsection proposes the im-

plementation of a semi-supervised learning methodology to extract a continuous level of

relaxation and stress in the range [0, 1], with 0 being the maximum measured relaxation

and 1 the maximum stress value. To do this, the label spreading method was used, which,

unlike the label propagation method, allows the labels initially set to be adjusted during

the process, thus correcting any errors made during partial labeling.
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FIGURE 4.18: Graphic representation of the probability for each normal-
ized parameter to belong to a state of stress (red) or relaxation (blue).

The label spreading algorithm provides two outputs. The first output is the complete la-

beling of the signal. The second output is the possibility of each analyzed window to be-

long to each of the labels. These possibilities are defined in a continuous range [0, 1]. In

this particular case only two labels are used, so the possibilities associated with each of the

labels are inversely proportional to each other. Therefore, it is sufficient to use one of the

possibilities as a continuous signal representative of the level of relaxation and stress at

each moment. This results in the labeling illustrated in Figure 4.24, where the blue bands

represent a higher level of relaxation and the red bands a higher level of stress.
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FIGURE 4.19: Graphical representation of the best normalization loss ob-
tained for each physiological parameter.
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FIGURE 4.20: Parameter correlation.

4.7 Results and discussion on pseudo-labeling

To evaluate the proposed method, the entire methodology, from PCA to pseudo-labeling,

was validated using 21-fold cross-validation on both normalized and unnormalized pa-

rameters. Figures 4.25, 4.26, 4.27 and 4.28 show a representation of the first two PCs as a

function of the labels obtained after performing the continuous pseudo-labeling. Figures
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FIGURE 4.21: Cumulative percentage of variance depending on the num-
ber of PCs.
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4.25 and 4.26 correspond to the training and validation sets of the unnormalized param-

eters respectively, while Figures 4.27 and 4.28 correspond to the training and validation

sets of the normalized parameters. These figures show the improvement resulting from

the parameter normalization, which results in a more uniform distribution compared to

the continuous labeling obtained from unnormalized parameters.
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FIGURE 4.24: Pseudo-labeling of the signal in a continuous range [0, 1].

To achieve an objective assessment of the stress and relaxation level estimations (rang-

ing between 0 and 1) compared to binary type 2 labeling, error metrics were defined as

follows: a true positive (TP) corresponds to a real state of stress in which the obtained

relaxation-stress level is > 0.5, a true negative (TN) corresponds to a real state of relaxation
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FIGURE 4.25: Labeling of the 21-fold training sets without normalization.

FIGURE 4.26: Labeling of the 21-fold validation sets without normaliza-
tion.
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FIGURE 4.27: Labeling of the 21-fold normalized training sets.

FIGURE 4.28: Labeling of the 21-fold normalized validation sets.

in which the obtained relaxation-stress level is ≤ 0.5, a false positive (FP) corresponds to a
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real state of relaxation in which the obtained relaxation-stress level is > 0.5 and a false neg-

ative (FN) corresponds to a real state of stress in which the obtained relaxation-stress level

is ≤ 0.5. These metrics were used to calculate the sensitivity (Se), specificity (Sp), accuracy

(Ac) and F1 score (F1), according to equations 2.51, 2.52, 2.53 and 2.54, respectively. The

resulting scores, for both normalized and unnormalized parameters, are shown in Table

4.3, which are also graphically represented in Figure 4.29.

TABLE 4.3: Results obtained during pseudo-labeling cross-validation for
normalized and unnormalized parameters derived from HP, GSR and RSP.

Class TP TN FP FN Se (%) Sp (%) Ac (%) F1 (%)
Unnorm. 7890 23457 1155 1371 85.20 95.31 92.55 89.97

Norm. 9114 24444 168 147 98.41 99.32 99.07 98.86
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FIGURE 4.29: Graphical representation of the results obtained during
pseudo-labeling cross-validation for normalized and unnormalized pa-

rameters derived from HP, GSR and RSP.

As expected from the distribution analysis and parameter selection stage by observing

the labels dispersion with normalized and unnormalized parameters, the quality of the

results obtained from the normalized parameters is considerably better than using the

unnormalized parameters. To further investigate the results obtained with the normalized

parameters, the whole process was repeated for different combinations of physiological

signals, leading to the results presented in Table 4.4 and graphically represented in Figure

4.30.

According to the results obtained in Table 4.4, the combined implementation of GSR and

HP stands out, achieving slightly better results by adding RSP to the processing. The GSR

shows a higher Sp than Se, emphasizing the ability of this signal to reflect relaxation states.

GSR is directly related to sympathetic activation, so non-activation becomes much more

noticeable, resulting in TNs. Definitely, the labeling achieved shows a high accuracy rate,
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TABLE 4.4: Results obtained during pseudo-labeling cross-validation ac-
cording to the combination of the normalized parameters of different sig-

nals.

Signals TP TN FP FN Se (%) Sp (%) Ac (%) F1 (%)
HP 8043 19925 4687 1218 86.85 80.96 82.54 83.80

GSR 7665 24528 84 1596 82.77 99.66 95.04 90.43
RSP 7917 19236 5376 1344 85.49 78.16 80.16 81.66

HP, GSR 9030 24465 147 231 97.51 99.40 98.88 98.45
HP, RSP 8421 20622 3990 840 90.93 83.79 85.74 87.21

GSR, RSP 8400 24360 252 861 90.70 98.98 96.71 94.66
HP, GSR, RSP 9114 24444 168 147 98.41 99.32 99.07 98.86

Sensitivity Specificity Accuracy F1-score
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FIGURE 4.30: Graphical representation of the results obtained during
pseudo-labeling cross-validation according to the combination of the nor-

malized parameters of different signals.

which is considered adequate to carry out the training of a generalized model for the pre-

diction of the level of relaxation and stress in the next section.
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5 ANS activity prediction: Design and

comparison of intelligent models

In this section, a methodology for evaluating existing supervised and unsupervised learn-

ing techniques in relation to their ability to predict the level of relaxation and stress in

people is proposed by using the labels and principal components (PCs) calculated in the

previous section. For this purpose, the capacity of each method to predict the level of

stress and relaxation was evaluated considering the sensitivity (Se), specificity (Sp), accu-

racy (Ac) and F1 score (F1) as objective indicators of their performance. In addition, an

evaluation of the training and inference times was performed, which are critical regarding

the required development time and their implementation in real-time applications.

Two main approaches were considered for the selection of these methods. The first ap-

proach is based on the use of fuzzy logic for the implementation of an unsupervised algo-

rithm whose kernel consists of a set of rules derived from expert knowledge. The second

approach is the application of different supervised learning methods based on fuzzy rules.

These were trained on the pseudo-labels estimated from type 1 labels in the previous sec-

tion, which have proven to be robust as they obtained a high F1 during the evaluation

stage against type 2 labels. Fuzzy rule-based supervised learning systems have been par-

ticularly interesting in the development of this thesis, since it is possible to extract knowl-

edge from human physiology through the rules and fuzzy sets inferred during the training

stage. The evaluated fuzzy rule-based supervised learning methods were the Wang and

Mendel’s method (WM), the dynamic evolving neural-fuzzy inference system (DENFIS),

the hybrid neural fuzzy inference system (HyFIS) and the heuristics and gradient descent

method (FS.HGD). In addition, artificial neural networks (ANNs) were also evaluated.

Achieved results were validated using the type 2 labels from the previous section in 21-

fold cross-validation (CV) according to the CV strategy previously depicted in Figure 4.3.

Type 2 labels were generated by personnel with expert knowledge in the interpretation of

physiological signals. Of the 42 available records, 30 (72%) were used for training and 12

(28%) in the validation stage. Moreover, training and validation processes were carried out

in duplicate, both using the PCs derived from the normalized and unnormalized parame-

ters. In the design of the fuzzy algorithm, only normalized parameters were used since it

is impractical to define the membership functions from unnormalized parameters. Figure

5.1 shows an outline of the methodology followed in this section.
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FIGURE 5.1: Flowchart of the proposed methodology for training and val-
idation of the models.

Below, the fuzzy logic model implemented in this thesis is presented, followed by the dif-

ferent configurations employed in the supervised learning models. Finally, the results

achieved are presented and discussed.

5.1 Design of the unsupervised fuzzy logic model

Considering the fact that the records are not originally labeled, in this subsection an un-

supervised Mamdani fuzzy logic model is presented for the estimation of the level of re-

laxation and stress through rules based on expert knowledge.

To estimate the physiological state of the individual using a fuzzy logic model, five pa-

rameters representative of the state and variation of the heart period (HP), galvanic skin

response (GSR) and breathing (RSP) signals defined in section 4 were selected. These are:

the mean HP (MHP), which represents the average HP at each moment; the variation of
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the HP (VHP), which indicates strong changes in the HP; the product between the stan-

dard deviation of the RSP frequencies and root mean square of the HP (HSCR), which

represents the alteration in both the frequency dispersion of the RSP and variations in

the HP through the root mean square; the variation in the galvanic skin response (VGSR),

which emphasizes the strong changes in the stability of the GSR; and the differential area

between the GSR signal and its first-order interpolation (AGSR), which reliably represents

the non-activation of the sympathetic nervous system (SNS) in the GSR. Figure 5.2 shows

an outline of the implemented fuzzy model.

FIGURE 5.2: Diagram of the proposed fuzzy model.

The output of the model was ranged from 0 to 1, where 0 represents the maximum relax-

ation level and 1 represents the maximum stress level. Table 5.1 shows the configuration

that was employed to set up the membership function (MF) for each input and output,

where PIMF, TRAPMF, SMF and ZMF refer to the Pi-shaped MF, trapezoidal MF, S-shaped

MF and Z-shaped MF, respectively. Expert knowledge was applied via well-defined rules

extracted from the literature [175, 19, 20, 11, 172, 173]. This approach facilitated the con-

struction of the set of rules shown in Table 5.2.

Figure 5.3 shows the total weight of each parameter in the set of rules. MHP and HSCR

are the parameters with the greatest weight because both are derived from the cardiovas-

cular response. Therefore, they are strongly correlated with both parasympathetic and

sympathetic branches of the autonomic nervous system (ANS). Otherwise, the parame-

ters derived from GSR are closely related to sympathetic activity. For this reason, they are

suitable for measuring only the activity of the SNS, but not that of the parasympathetic

nervous system [19].

5.2 Configuration of the supervised learning models

The training of the supervised learning models was performed using the five PCs and the

labels obtained during the pseudo-labeling in the previous section as inputs and outputs
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TABLE 5.1: Expert knowledge-based rules.

Type Name Range MF name MF type MF parameters

Input 1 MHP [0 1]
Low SMF [0.5 1]

Medium PIMF [0 0.5 0.5 1]
High ZMF [0 0.5]

Input 2 VHP [-2 2]
Low SMF [0 1.5]

Medium PIMF [-1.5 0 0 1.5]
High ZMF [-1.5 0]

Input 3 VGSR [-2 2.5]
Low ZMF [-2 0]

Medium PIMF [-2 0 0 2.5]
High SMF [0 2.5]

Input 4 AGSR [0 1]
Low ZMF [0 1]
High SMF [0 1]

Input 5 HSCR [0 1]
Low SMF [0.5 1]

Medium PIMF [0 0.5 0.5 1]
High ZMF [0 0.5]

Output Stress [0 1]
Low TRAPMF [-0.5 -0.25 0.25 0.5]

Medium TRAPMF [0 0.25 0.75 1]
High TRAPMF [0.5 0.75 1.25 1.5]

TABLE 5.2: Implemented membership function parameters.

MHP VHP VGSR AGSR HSCR Weight Connection Stress

High - - - - 0.3 OR High
Medium - - - - 0.3 OR Medium

Low - - - Low 0.3 OR Low
High - - - High 0.4 AND High

Medium - - - Medium 0.5 AND Medium
Low - - - Low 0.6 AND Low
High - - High High 0.7 AND High
Low - Low Low Low 0.8 AND Low
High High High High High 1 AND High

Medium Medium Medium - Medium 1 AND Medium
Low Low Low Low Low 1 AND Low

- - Low Low - 0.5 AND Low
- Low Low - - 0.1 OR Low
- High High - - 0.1 OR High
- Low Low - - 0.2 AND Low
- High High - - 0.2 AND High

High - - - Low 0.2 AND Medium
- - - - High 0.1 OR High
- - - - Medium 0.2 OR Medium
- Medium Medium - - 0.1 OR Medium
- Medium Medium - - 0.2 AND Medium

of the models, respectively. As mentioned previously, the supervised learning algorithms

validated in this proposal are: WM, DENFIS, HyFIS, FS.HGD and ANN. These algorithms

contain several hyperparameters that must be tuned to obtain optimal results. Next, the
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FIGURE 5.3: Total weight of each parameter in the set of rules.

main hyperparameters of the fuzzy rule-based systems (FRBSs) and the configuration

used to train the ANN are presented.

5.2.1 Fuzzy rule-based systems

For a reliable implementation of the FRBSs, a validated framework is needed to carry out

both training and inference of the models. For the training and validation of the fuzzy

rule-based supervised learning models, the widely used “frbs” package developed in R

was selected, which is available in the CRAN (comprehensive R archive network) repos-

itory [126]. This package contains all the FRBSs implemented in this solution and pro-

vides simple and effective tools for their deployment. To perform the integration of this

package with the code developed up to this point, an implementation in Python of the

“frbs” package is proposed in this thesis, which allows the execution of the R commands

of the “frbs” package through functions developed in Python. This contribution provides

the opportunity to train the different models using the Python programming language,

which was used throughout this thesis, thus connecting the different sections of the cur-

rent development. In addition, the proposed abstraction allows the implementation of

FRBS algorithms that were not previously developed in Python.

The models contained in the “frbs” package can be customized by modifying their hyper-

parameters in order to find the combination that best fits each particular problem. To

better understand the model tuning carried out throughout this section, a scheme of each

of the hyperparameters corresponding to each of the FRBSs implemented in this solution

are shown below, along with their possible values:
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• WM

– num.labels: a positive integer to determine the number of labels (linguistic

terms).

– type.mf : the type of the membership function.

1. TRIANGLE refers to triangular shape MF.

2. TRAPEZOID refers to trapezoid shape MF.

3. GAUSSIAN refers to gaussian shape MF.

4. SIGMOID refers to sigmoid MF.

5. BELL refers to generalized bell MF.

– type.tnorm: the type of conjunction operator (t-norm).

1. MIN means standard type (minimum).

2. HAMACHER means Hamacher product.

3. YAGER means Yager class (with tao = 1).

4. PRODUCT means product.

5. BOUNDED mean bounded product.

– type.snorm: the type of disjunction operator (s-norm).

1. MAX means standard type (maximum).

2. HAMACHER means Hamacher sum.

3. YAGER means Yager class (with tao = 1).

4. SUM means sum.

5. BOUNDED mean bounded sum.

– type.defuz: the type of the defuzzification method.

1. WAM refers to the weighted average method.

2. FIRST.MAX refers to the first maxima.

3. LAST.MAX refers to the last maxima.

4. MEAN.MAX refers to the mean maxima.

5. COG refers to the modified center of gravity.

• DENFIS

– Dthr: threshold value for the evolving clustering method, ranged between 0

and 1.
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– d: width of the triangular membership function.

– max.iter: a positive integer to determine the maximum number of iterations.

– step.size: the step size of the gradient descent method, a real number between

0 and 1.

• HyFIS

– num.labels: a positive integer to determine the number of labels (linguistic

terms).

– max.iter: a positive integer to determine the maximum number of iterations.

– step.size: the step size of the gradient descent method, a real number between

0 and 1.

• FS.HGD

– num.labels: a positive integer to determine the number of labels (linguistic

terms).

– max.iter: a positive integer to determine the maximum number of iterations.

– step.size: the step size of the gradient descent method, a real number between

0 and 1.

– alpha.heuristic: a positive real number representing a heuristic value. The de-

fault value is 1.

5.2.2 Customized ANN

The design of the ANN was performed using the Tensorflow tool. A fully connected neural

network architecture was implemented as illustrated in Figure 5.4, for which a customized

design of a loss function is proposed in this thesis according to the desired stress and re-

laxation prediction values. The model was trained on labels in the range [-1, 1] using a

hyperbolic tangent-based loss function directly on the output neuron. Note that in this

section the hyperbolic tangent does not refer to the activation function of the output neu-

ron, but to the function on which the loss function designed for this proposal is based,

as explained below. This loss function evaluates the linear output of the output neuron

defined as z out = ∑nx

j=1 x j ·w out
j + b out, where wout

j and bout are the weights and bias of

the output neuron, respectively. Once the network is trained, the inference is performed

by adding a sigmoid activation function to the output neuron in order to range the output

from 0 (maximum relaxation level) to 1 (maximum stress level) and to smooth out possible

outliers.

Although the sigmoid function has similar properties to the hyperbolic tangent in the ma-

chine learning field, the hyperbolic tangent facilitates the convergence of the algorithm as

its derivatives are larger than the derivatives of the sigmoid function, so the loss function

minimizes faster. The fact that the hyperbolic tangent range is between -1 and 1 instead
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FIGURE 5.4: Diagram of the implemented ANN structure.

of 0 and 1 makes this function more convenient for training ANNs. This intuition is illus-

trated in Figure 5.5, where the ratio between the hyperbolic tangent and sigmoid functions

corresponds to equation 5.1. As a result, the values of the derivatives are larger for the hy-

perbolic tangent function according to equation 5.2.

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0 Tanh function
Sigmoid function

FIGURE 5.5: Illustration of the hyperbolic tangent and sigmoid functions.

tanh(x) = 2σ(2x)−1 (5.1)

∣∣∣∣∂ tanh(x)

∂x

∣∣∣∣> ∣∣∣∣∂σ(x)

∂x

∣∣∣∣ (5.2)
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To calculate the loss, the linear value of the output neuron without activation function

(zout) was used, as explained above. Considering that the objective is the prediction of

a continuous output zout of relaxation and stress in the range [-1, 1] during the training

stage (do not mistake with the range [0, 1] used for inference through the sigmoid activa-

tion function), both deviations of the predictions from the target value (y) and predictions

with a value greater than 1 and less than -1 were penalized according to equations 5.3 and

5.4, respectively. As a result, zout remains in an interval around -1 and 1 where the con-

tinuous prediction level of relaxation and stress are smoothed to prevent overfitting, thus

the prediction does not get stuck in extreme values. Figure 5.6 illustrates a mapping of the

proposed loss function according to equation 5.5, where not only incorrect predictions

are penalized, but extreme values as well.

loss1 = |y − tanh
(
z out

)| (5.3)

loss2 =
(
2 · tanh

( z out

2

)
− tanh

(
z out

))2

(5.4)

lossT = loss1 + loss2 (5.5)
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FIGURE 5.6: Total loss (lossT ) according to the output of the ANN and the
reference label.

To find the optimal ANN configuration, the number of neurons that constitute the net-

work were mapped. For this purpose, two hidden layers (HL1 and HL2) were defined,

where the number of neurons in each hidden layer were mapped from 1 to 10. Once the

ANN is trained, the model is exported by adding a sigmoid activation function to the linear

output zout of the output neuron as previously mentioned. This results in an output value
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in the range [0, 1] where 0 represents the maximum relaxation level and 1 the maximum

stress level.

5.3 Results and discussion on model performance

This subsection contains the results obtained from the training and validation of the im-

plemented algorithms, as well as a discussion about the presented results. The proposed

supervised and unsupervised algorithms were validated using the type 2 labels from the

previous section. Due to the binary format of the labels (1 and 0 for representing the real

states of stress and relaxation respectively), the evaluation was carried out according to

the following metrics: a true positive (TP) corresponds to a real state of stress in which the

obtained relaxation-stress level is > 0.5, a true negative (TN) corresponds to a real state

of relaxation in which the obtained relaxation-stress level is ≤ 0.5, a false positive (FP)

corresponds to a real state of relaxation in which the obtained relaxation-stress level is >
0.5 and a false negative (FN) corresponds to a real state of stress in which the obtained

relaxation-stress level is ≤ 0.5. These were used to calculate the Se, Sp, Ac and F1, accord-

ing to equations 2.51, 2.52, 2.53 and 2.54, respectively.

5.3.1 Fuzzy logic model results

Cross-validation was not required for the evaluation of the fuzzy model. Due to the fact

that the rules for inference are constructed manually, the standard fuzzy model does not

require further training, so the validation was carried out on all 42 records as shown in the

results of Table 5.3. The normalized parameters were used, since unnormalized parame-

ters make it impossible to define effective fuzzy sets manually.

Analyzing Table 5.3, a significant F1 (94.19%) is achieved, where the Sp (96.16%) is higher

than the Se (92.29%). This fact suggests that the algorithm is more robust in the detection

of relaxation states. These results support the idea of the difficulty of detecting stress states

due to the different levels of activation for different individuals in a variety of situations.

Some records of Table 5.3, such as 2, 9, 10, 16 and 24, are below the average. In a further

analysis, it was found that the normalization drastically altered the values due to outliers,

shifting the normalized values away from the corresponding MFs and leading to an in-

crease in FP and FN.

5.3.2 Supervised learning models results

To achieve the best solution for each supervised learning model, the corresponding hyper-

parameters were tuned by mapping their possible values. To validate each of the resulting

configurations, 21-fold cross-validation was applied, from which the average F1 was con-

sidered to select the best hyperparameters for each model.

For the WM model, the following hyperparameters were mapped according to the list

of values associated with each of them: num.labels [2, 3, 5, 7], type.mf [1, 2, 3, 4, 5],
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TABLE 5.3: Results obtained after comparing the estimation of the level of
relaxation and stress of the fuzzy algorithm against type 2 labels.

Tape No. TP TN FP FN Se (%) Sp (%) Ac (%) F1 (%)
1 7 14 0 0 100.00 100.00 100.00 100.00
2 9 41 7 0 100.00 85.42 87.72 92.13
3 10 39 2 0 100.00 95.12 96.08 97.50
4 5 17 0 0 100.00 100.00 100.00 100.00
5 11 6 0 0 100.00 100.00 100.00 100.00
6 7 28 0 0 100.00 100.00 100.00 100.00
7 15 43 0 1 93.75 100.00 98.31 96.77
8 14 46 0 1 93.33 100.00 98.36 96.55
9 10 55 5 1 90.91 91.67 91.55 91.29

10 17 10 6 3 85.00 62.50 75.00 72.03
11 13 37 0 0 100.00 100.00 100.00 100.00
12 3 12 0 0 100.00 100.00 100.00 100.00
13 6 24 0 0 100.00 100.00 100.00 100.00
14 9 15 0 1 90.00 100.00 96.00 94.74
15 20 18 0 4 83.33 100.00 90.48 90.91
16 7 35 6 1 87.50 85.37 85.71 86.42
17 20 68 9 0 100.00 88.31 90.72 93.79
18 10 20 0 1 90.91 100.00 96.77 95.24
19 20 31 0 4 83.33 100.00 92.73 90.91
20 7 15 0 2 77.78 100.00 91.67 87.50
21 4 33 0 1 80.00 100.00 97.37 88.89
22 9 30 3 0 100.00 90.91 92.86 95.24
23 8 33 0 1 88.89 100.00 97.62 94.12
24 3 4 0 5 37.50 100.00 58.33 54.55
25 4 32 0 0 100.00 100.00 100.00 100.00
26 6 35 0 1 85.71 100.00 97.62 92.31
27 9 32 0 0 100.00 100.00 100.00 100.00
28 3 33 0 1 75.00 100.00 97.30 85.71
29 5 7 0 0 100.00 100.00 100.00 100.00
30 7 36 3 0 100.00 92.31 93.48 96.00
31 6 25 1 1 85.71 96.15 93.94 90.63
32 7 23 1 1 87.50 95.83 93.75 91.48
33 22 33 0 1 95.65 100.00 98.21 97.78
34 31 43 2 0 100.00 95.56 97.37 97.73
35 12 37 0 0 100.00 100.00 100.00 100.00
36 0 16 0 0 - 100.00 100.00 -
37 15 15 0 0 100.00 100.00 100.00 100.00
38 6 18 0 1 85.71 100.00 96.00 92.31
39 6 14 0 0 100.00 100.00 100.00 100.00
40 0 26 0 0 - 100.00 100.00 -
41 15 7 0 1 93.75 100.00 95.65 96.77
42 9 21 0 1 90.00 100.00 96.77 94.74

Total 407 1127 45 34 92.29 96.16 95.10 94.19

type.tnorm [1, 4, 5], type.snorm [1, 4, 5] and type.defuz [1, 5]. Figure 5.7 illustrates the

mapping of the most significant hyperparameters (num.labels and type.mf) according to
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their influence on F1 variation. The configuration with the highest F1 corresponds to the

following hyperparameters:

• num.labels: 7

• type.mf: 3 (GAUSSIAN)

• type.tnorm: 4 (PRODUCT)

• type.snorm: 5 (BOUNDED)

• type.defuz: 1 (WAM)
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FIGURE 5.7: WM hyperparameters mapping during training (top plots)
and validation (bottom plots) using the normalized and unnormalized PC

sets.

For the DENFIS model, the following hyperparameters were mapped according to the list

of values associated with each of them: Dthr [0.2, 0.15, 0.12, 0.1], d [1, 1.5, 2, 2.5], max.iter

[300] and step.size [0.01]. Figure 5.8 illustrates the mapping of the Dthr and d according

to the achieved F1. The configuration with the highest F1 corresponds to the following

hyperparameters:

• Dthr: 0.1

• d: 2.5

• max.iter: 300

• step.size: 0.01
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FIGURE 5.8: DENFIS hyperparameters mapping during training (top
plots) and validation (bottom plots) using the normalized and unnormal-

ized PC sets.

For the HyFIS model, the following hyperparameters were mapped according to the list

of values associated with each of them: num.labels [2, 3, 5, 7], max.iter [5, 10, 20, 30] and

step.size [0.01]. Figure 5.9 illustrates the mapping of the num.labels and max.iter accord-

ing to the achieved F1. The configuration with the highest F1 corresponds to the following

hyperparameters:

• num.labels: 7

• max.iter: 30

• step.size: 0.01

For the FS.HGD model, the following hyperparameters were mapped according to the

list of values associated with each of them: num.labels [2, 3, 5, 7], max.iter [5, 10, 20,

30], step.size [0.01] and alpha.heuristic [1]. Figure 5.10 illustrates the mapping of the

num.labels and max.iter according to the achieved F1. The configuration with the highest

F1 corresponds to the following hyperparameters:

• num.labels: 2

• max.iter: 30

• step.size: 0.01
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FIGURE 5.9: HyFIS hyperparameters mapping during training (top plots)
and validation (bottom plots) using the normalized and unnormalized PC

sets.

• alpha.heuristic: 1

For the ANN model, the following hyperparameters were mapped according to the list of

values associated with each hidden layer: HL1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and HL2 [1, 2, 3,

4, 5, 6, 7, 8, 9, 10]. Figure 5.11 illustrates the mapping of both hyperparameters according

to the achieved F1. The configuration with the highest F1 corresponds to the following

hyperparameters:

• HL1: 4 neurons

• HL2: 5 neurons

The scores obtained during the training and validation of each model resulted in a re-

markable improvement in the quality of the predictions when using the normalized PCs

as input parameters instead of unnormalized ones. Table 5.4 shows the results obtained in

the training and validation steps for each of the models with the optimized hyperparam-

eters using the normalized and unnormalized PCs. In Figure 5.12 the F1 is shown for the

normalized PCs, where it is evident that the best results were obtained by the ANN and

FS.HGD models, being the F1 of the FS.HGD slightly higher. However, the ANN model

achieved the most stable (equal) results according to the Se and Sp values, which is an

important factor to consider.
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FIGURE 5.10: FS.HGD hyperparameters mapping during training (top
plots) and validation (bottom plots) using the normalized and unnormal-

ized PC sets.

TABLE 5.4: Results obtained for the different methods during training and
validation in the cross-validation sets with normalized and unnormalized

PCs.

Training Validation
Method Se (%) Sp (%) Ac (%) F1 (%) Se (%) Sp (%) Ac (%) F1 (%)

N
o

rm
.

ANN 98.03 98.03 98.03 98.03 97.93 97.92 97.91 97.91
DENFIS 97.59 97.19 97.30 97.39 96.86 96.62 96.69 96.73
HYFIS 97.87 95.95 96.48 96.89 97.88 94.95 95.78 96.38

WM 97.61 96.62 96.90 97.11 97.46 95.59 96.09 96.51
FS.HGD 97.75 99.02 98.68 98.38 97.02 99.02 98.48 97.99

U
n

n
o

rm
. ANN 92.69 86.56 88.24 89.44 90.85 83.23 85.27 86.57

DENFIS 94.34 58.51 68.27 70.18 93.44 57.49 67.35 69.34
HYFIS 78.02 84.14 82.51 78.86 77.37 82.81 81.17 78.37

WM 84.35 84.23 84.27 84.25 82.57 82.19 82.20 81.96
FS.HGD 85.72 87.19 86.87 85.93 83.41 87.17 85.88 83.68

The training and inference times for each model are shown in Table 5.5. This information

is particularly interesting for the implementation of the algorithm in a functional device,

since it represents the required development time and the resources that the model can

consume when implemented. Figure 5.13 shows on a logarithmic scale the training and

inference times associated with each model, where the ANN presents the second lowest
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training time, only surpassed by the WM model, and the lowest inference time by far.

These results highlight the improvement implicit in the normalization of physiological
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TABLE 5.5: Average training and inference times of the different methods.

Training Inference
ANN 0:00:03.078720 0:00:00.000216

DENFIS 0:24:59.378496 0:00:00.095633
HYFIS 1:40:59.445965 0:00:08.172145

WM 0:00:00.661490 0:00:09.702216
FS.HGD 0:05:46.763769 0:00:00.177498
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FIGURE 5.13: Logarithmic representation of the training and inference
times associated with each model.

parameters conducted in the previous section. For the normalized parameters, F1 has a

score above 96% in all cases, while for unnormalized parameters F1 is under 87%. The best

F1 was achieved with the FS.HGD method, closely followed by the ANN, which achieved

a more stable (equal) Se and Sp. In addition, the ANN provides promising training and

inference times, where the inference time makes the ANN suitable for implementation in

real-time systems.

Extended ANN results

Considering both the scores obtained during validation and the training and inference

times of each of the models, the ANN presents the most attractive results to be imple-

mented in later stages of this thesis. Going deeper into ANN results, Figures 5.14, 5.15,

5.16 and 5.17 show the first two PCs as a function of the predictions obtained during cross-

validation. Figures 5.14 and 5.15 correspond to the predictions during training and valida-

tion respectively of the unnormalized PCs, while Figures 5.16 and 5.17 correspond to the

predictions during training and validation respectively of the normalized PCs. These last

two figures show a more uniform distribution in the results obtained from the normalized

PCs, while for the unnormalized PCs the distribution is more chaotic.

As can be deduced from the distribution of the ANN predictions, the results obtained from
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FIGURE 5.14: Predictions of the 21-fold training sets without normaliza-
tion.

FIGURE 5.15: Predictions of the 21-fold validation sets without normal-
ization.
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FIGURE 5.16: Predictions of the 21-fold normalized training sets.

FIGURE 5.17: Predictions of the 21-fold normalized validation sets.

the normalized PCs are considerably better than those from the unnormalized ones. To
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further explore the results obtained with the normalized PCs, the whole process was re-

peated for different combinations of physiological signals with their respective parame-

ters, leading to the results presented in Table 5.6 and graphically illustrated in Figure 5.18.

TABLE 5.6: Results obtained for different combinations of parameters dur-
ing ANN training in the cross-validation sets.

Training Validation
Signals Se (%) Sp (%) Ac (%) F1 (%) Se (%) Sp (%) Ac (%) F1 (%)

HP 88.34 84.17 85.32 86.19 88.37 82.94 84.24 85.39
GSR 84.43 99.55 95.40 91.33 84.21 99.56 95.28 91.05
RSP 87.82 77.94 80.61 82.53 87.95 78.58 80.93 82.76

HP, GSR 98.21 98.57 98.48 98.39 98.02 98.30 98.25 98.15
HP, RSP 92.02 85.94 87.60 88.86 92.23 85.14 86.94 88.36

GSR, RSP 92.87 99.27 97.51 95.96 92.35 99.30 97.34 95.66
HP, GSR, RSP 98.03 98.03 98.03 98.03 97.93 97.92 97.91 97.91
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FIGURE 5.18: Graphical representation of the average F1 obtained for
different combinations of parameters during ANN training in the cross-

validation sets.

Analyzing these results, the best scores are achieved by combining the HP and the GSR

with an Se of 98.02% and an Sp of 98.30%, followed by the combination of the HP, GSR and

RSP. However, this conclusion does not make RSP an insignificant signal, since looking at

the results in more detail, the combination of RSP with any of the other signals improves

the results obtained by these other signals individually. Furthermore, the RSP itself can

achieve an F1 over 82%. The results obtained with the GSR signal are also remarkable,

exceeding the 90% of the F1 with an Sp higher than the Se. This fact suggests that GSR

may be suitable for implementation in a specific algorithm for detecting relaxation states,

since Sp is directly related to TNs. The HP itself also achieves an F1 over 85%, although

its combination with the GSR provides the best results for a robust prediction of the ANS

activity in relation to the level of relaxation and stress.
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6 Hardware implementation

In the last decade, several works have attempted to implement in hardware platforms al-

gorithms for the detection of events related to the autonomic nervous system (ANS) in

order to be used in both general and clinical contexts. These works were conducted by

analyzing physiological signals in short length sliding windows or intervals, thus perform-

ing the processing in real-time. Among the existing proposals, Minguillon et al. [1] pre-

sented a portable real-time stress detection device that consists of multiple biosignal sen-

sors (i.e., galvanic skin response (GSR), electrocardiogram (ECG), electromyogram (EMG)

and electroencephalogram (EEG)), a laptop, an Arduino e-Health board and the RaBio

w8 system to collect and process the physiological signals. They achieved 86% accuracy

(Ac) by analysing collected physiological signals in a 2-second sliding window. Han et

al. [176] performed stress detection from breathing and ECG records acquired by a wear-

able device at 1-minute intervals, achieving 94% Ac. However, these records were pro-

cessed offline once the acquisition process was finished. Salai et al. [32] achieved 74.6%

Ac by integrating a stress detection algorithm in a low-cost portable device and analyzing

560 RR intervals extracted from ECG registers. Gjoreski et al. [3] used a wrist device to

perform stress detection with 70% sensitivity processing parameters extracted from skin

temperature (ST), photoplethysmography (PPG), acceleration (ACC) and GSR registers.

They utilized 20-minute intervals and 2-minute intervals for context-based stress detec-

tion and short-term-based stress detection, respectively. Golgouneh and Tarvirdizadeh [7]

achieved 81% Ac by processing PPG and GSR registers at 20-second intervals in an online

stress detection algorithm implemented in a portable device.

In this section, a low-cost IoT-based prototype for the acquisition, transmission and pro-

cessing of physiological records is proposed. The results obtained in the previous section

were crucial in the selection of the signals and physiological parameters for the current

hardware development. Thus, due to the results obtained and the availability of low-cost

measurement devices, the ECG and GSR were selected to predict the level of activity of the

ANS in terms of stress and relaxation.

The proposed development consists of three main components illustrated in the scheme

in Figure 6.1: First, the acquisition device collects the ECG and GSR data and sends this

data wirelessly (or by cable, both options are available) to the server, which stores and pro-

cesses the received signals. Then, the server sends the processed data to the client, who

will receive information about the acquired records as well as the extracted physiological

parameters and the estimated stress and relaxation level.
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FIGURE 6.1: Schematic representation of the different stages that consti-
tute the proposed methodology for the hardware implementation.

6.1 Physiological data acquisition

The acquisition device is a critical point in the development of the proposed prototype,

since it is in direct contact with the subject. Therefore, it must be as less invasive as pos-

sible and it must acquire physiological signals without coupling excessive noise. For the

hardware construction, the cost of the components was considered, since an excessive

cost would not be suitable for general purpose use.

The prototype consists on a set of components installed on a small-sized printed circuit

board (PCB) that provides the device with inputs, to carry out the acquisition of physio-

logical signals, and Bluetooth connection, for wireless data transmission, but this solution

also considers the possibility of doing so by cable. The proposed design consists of an Ar-

duino Nano board (ArdN) for concurrent acquisition of physiological records, a Bluetooth

module (HC-05) for sending the data packages to the server, a bi-directional converter

(BOB-12009) to adjust the voltage levels between these two components, an AD8232 de-

vice for ECG acquisition using the three lead Einthoven’s triangle configuration and a GSR

sensor (Grove v1.2) for skin conductance acquisition, which is intended to be located in

the distal phalanges of the non-dominant hand. Figure 6.2 shows the proposed layout for

connecting all components.

The digital outputs D2 and D3 of the ArdN are used as alternative TX and RX connections,

respectively. Thus, a serial channel was created to connect to the Bluetooth device via

the bi-directional voltage converter. The bi-directional converter is used to bridge the 5V

digital ports of the ArdN to the 3.3V digital ports of the HC-05.

The PCB used for the implementation of the circuit was modularly assembled as shown in
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Arduino Nano

AD8232 Grove v1.2

H
C

-0
5

BOB-12009

FIGURE 6.2: Layout of the prototype for the acquisition and Bluetooth
transmission of the GSR and ECG data.

the pictures in Figure 6.3. Thus, if any component breaks down, it is easy to replace it with-

out purchasing all the components again. The PCB dimensions are 5x7cm as illustrated in

Figure 6.4, where all the components are shown connected.

FIGURE 6.3: PCB board with the connectors soldered. The left figure
shows the upper section of the board and the right figure shows the lower

section.

The sensors used for ECG and GSR acquisition are also replaceable. For ECG, the leads

are connected directly to a jack connector. The GSR sensor includes a coiled wire that

provides the required elasticity to prevent restricting the movement of the arm. Figure

6.5 shows all components attached and operating together, where the power source is a

portable battery connected to the ArdN through a USB cable. The ArdN, in turn, powers
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FIGURE 6.4: PCB board of the acquisition device with all the components
connected.

the remaining components with its 3.3 and 5V outputs.

FIGURE 6.5: Acquisition prototype with ECG and GSR sensors connected
and running.



6.1. Physiological data acquisition 151

6.1.1 Acquisition algorithm

Algorithm 2, implemented in the ArdN, performs the acquisition and sending of physio-

logical samples at a specific sampling frequency (FS). More specifically, the analog inputs

A0 and A4 of the ArdN board are used to carry out the acquisition of the GSR and ECG,

respectively.

Algorithm 2 Algorithm for acquisition and sending of physiological samples.

1: t i c ← t i me
2: while True do
3: t i c ← t i c +1/FS

4: wait(t i c − t i me)
5: GSR ← anal og Read(A0)
6: ECG ← anal og Read(A4)
7: writeBT(ECG ,GSR)
8: end while

It is crucial to set an appropriate FS , high enough so that important details of the ECG

and GSR signals are not lost, but low enough so that the computational load is not exces-

sive. According to the literature, QRS complexes can be detected effectively at 200 Hz in

ECG signals [177]. For GSR, 32 Hz provides sufficient information to carry out parameter

extraction [178]. Considering that the ECG has the highest resolution requirements, an

FS = 200 Hz was established to perform the acquisition. Figure 6.6 shows a real example

of the ECG and GSR signals collected using the developed acquisition prototype.
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0.6
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0.8

EC
G

0 200 400 600 800 1000
Time (sec)
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FIGURE 6.6: Display of ECG and GSR records acquired through the devel-
oped acquisition prototype.
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6.2 Server processing

Several platforms were tested during the development of the server, i.e., Raspberry Pi 3

(RPi3) and 4 (RPi4) and a regular desktop PC. Although for the final implementation, the

RPi3 was used, which despite having the lowest performance, it is enough to adequately

implement the proposed solution. It is also the device with the lowest price and the small-

est in size and energy consumption.

For this solution, the Raspbian Stretch Lite operating system was used, which eliminates

the interface by focusing performance on physiological data processing and wireless con-

nection of the device, both to the client via Wi-Fi, and to the acquisition prototype via

Bluetooth. Moreover, the Python programming language was used for the code imple-

mentation. This programming language is fully integrated in all Raspbian operating sys-

tems and it provides a comprehensive set of tools to implement the different processes.

As presented in section 4, a 20-second sliding window was used to carry out the processing

of the physiological signals. The sliding window is updated every 5 seconds by discarding

the oldest data and stacking new data according to a FIFO protocol. Subsequently, pa-

rameter extraction, normalization and principal component analysis (PCA) are performed

from the physiological registers stored in the sliding window, followed by the artificial neu-

ral network (ANN) processing, which generates an estimation of the relaxation and stress

level. This process is represented in Figure 6.7.

20-second sliding window

Arduino Nano
200 Hz Physiological data 

adquisition

Raspberry Pi 3
Parameter extraction

Bluetooth

Arousal level

ECG

GSR

FIGURE 6.7: Schematic representation of the acquisition, 20-second slid-
ing window generation and relaxation and stress level estimation.

6.2.1 Processing algorithm

The server programming consists of two main concurrent tasks, which are responsible of

storing the ECG and GSR signals in sliding windows and processing the stored data at each

step, respectively.

Algorithm 3 represents the first of the concurrent tasks, which acquires the data received

from the Bluetooth channel and appends it to the sliding windows of the ECG (ECGSW )
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and GSR (GSRSW ). When the sliding windows reach the length of 20 seconds, this data

is copied into the buffers that send the data to the next concurrent task. Meanwhile, the

initial samples of the sliding windows are removed to leave space for the new incoming

data.

Algorithm 3 Bluetooth buffer reading and sliding window generation thread.

1: ECGSW ← []
2: GSRSW ← []
3: step ← 5∗FS

4: wi ndow ← 20∗FS

5: while True do
6: ECG ,GSR ← readBT
7: ECGSW append ECG
8: GSRSW append GSR
9: if cont >= wi ndow then

10: writeECGbuffer(ECGSW )
11: writeGSRbuffer(GSRSW )
12: ECGSW ← ECGSW [1 : (wi ndow − step)]
13: GSRSW ←GSRSW [1 : (wi ndow − step)]
14: end if
15: end while

During the execution of the second concurrent task, the data is read from the buffers that

contain each of the windows for analysis, as presented in Algorithm 4. The 20-second ECG

and GSR windows are processed for parameter extraction, which are, in turn, normalized

and reduced through PCA. Finally, the resulting features are processed through an ANN

and the obtained relaxation and stress level estimation is sent together with the extracted

parameters to the client via gRPC.

Algorithm 4 Thread for parameter extraction, normalization, PCA and arousal level esti-
mation.

1: while True do
2: ECGSW ← readECGbuffer
3: GSRSW ← readGSRbuffer
4: par ams ← parameters(ECGSW ,GSRSW )
5: nor m ← normalization(par ams)
6: pca ← PCA(nor m)
7: ar ousal ← ANN(pca)
8: writeResults(ar ousal , par ams)
9: end while

6.3 Client authentication and security

The implementation of the client was conducted through the gRCP communication pro-

tocol. This mechanism makes it possible to send data between clients and servers, pro-

grammed in a wide variety of languages. Thus, it is possible to link the server to any ap-

plication or web service developed for any device. Hence, the front-end development can
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be customized for any platform.

In this thesis, the client was developed using the Python programming language for test-

ing purposes and to verify the correct performance of the system implementation in real-

time conditions. As gRPC is designed to work with a variety of authentication mecha-

nisms, there is the possibility of integrating the SSL/TLS protocol to encrypt all the data

exchanged between the client and the server. Optional mechanisms that provide certifi-

cates for mutual authentication are also available for clients.

gRPC also provides an authentication method through credentials attached to the package

metadata. It is possible to send in the metadata of the first package a verification token

from the client, which must be the same as the one in the server in order to make the

connection possible and secure. Both the authentication method and SSL/TLS encryption

can be used together to make the system even more secure.

6.4 Results and considerations

To provide a real perspective for medical and commercial use, the algorithm must be

within established performance ranges. On the one hand, to perform real-time data ac-

quisition and transmission at 200 Hz, the ArdN must execute each sampling and data

transfer cycle in less than 1/200H z = 5ms. On the other hand, since the sliding window

step was set to 5 seconds, this value is also the maximum time available to process the

current window until the next window is ready. Table 6.1 presents the average times (in

milliseconds) measured for each of the tasks executed in different devices. The standard

deviation was considered to evaluate the deviation during normal operation due to the

simultaneous execution of other processes in the operating system. The maximum and

minimum run times were also considered as a reference for the best and worst case sce-

narios, respectively.

During the acquisition performed by the ArdN and the processing executed on the server

hosted on the RPi3 and other devices, the worst case scenarios (maximum measured

times) do not reach the established limits. This fact leaves a significant safety margin and

ensures a robust real-time execution of the proposed system. In Figure 6.8 the average

times obtained from each of the devices tested as a server are graphically represented in

logarithmic scale.

An additional factor that must be considered is the total price. This fact has a direct in-

fluence on the demand, thus it is important to maintain a low-cost in order to make the

device accessible to the public and medical centres. Table 6.2 shows a detailed overview

of the cost of each of the components at the date of purchase. The battery was excluded

from the total cost as the prototype has not yet a proven power source. However, the cost

is under 100 euros, which is a promising starting point that brings a real perspective for

implementation in an approved device.
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TABLE 6.1: Comparison of time results extracted from each task during
real-time execution of different devices on a single CPU/Micro.

Device CPU/Micro Process Mean (ms) Std (ms) Max (ms) Min (ms)

ArdN ATmega328
16MHz

Acquisition 0.692 0.013 0.784 0.672

RPi3
ARM Cortex-A53

1.20GHz

Window 0.438 0.780 101.112 0.199
Parameters 189.784 66.173 1663.007 160.307

Normalization 10.821 0.411 11.721 10.074
PCA 0.077 0.032 0.356 0.064
ANN 2.774 6.969 134.475 1.700
Total 203.894 74.366 1910.671 172.344

RPi4
ARM Cortex-A72

1.50GHz

Window 0.247 0.370 12.764 0.090
Parameters 118.024 32.937 731.848 84.968

Normalization 4.662 0.138 5.057 4.018
PCA 0.042 0.015 0.238 0.038
ANN 1.389 1.991 27.710 1.004
Total 124.364 35.452 777.617 90.118

PC
i7-4790K
4.00GHz

Window 0.112 0.109 5.283 0.020
Parameters 16.744 4.558 113.206 10.684

Normalization 0.845 0.050 1.218 0.792
PCA 0.010 0.001 0.024 0.009
ANN 0.344 0.460 6.482 0.282
Total 18.054 5.178 126.213 11.786
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FIGURE 6.8: Comparison of the average time extracted from each task dur-
ing real-time execution of different devices on a single CPU.

Table 6.3 compares the performance of the proposed algorithm in predicting states of

stress and relaxation together with the implementation in a hardware device with other

well-known works. It also includes information on whether the solution proposed by each

author is integrated into a hardware device (HW) or not, if the device is portable (P) or not

and if the execution is carried out in real-time (RT) or not. Other interesting parameters
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TABLE 6.2: Price of each of the components that conform the proposed
hardware implementation and total price.

Product name Price (€)
Arduino Micro (A000053) 18.00

SparkFun Logic Level Converter Bi-Directional (BOB-12009) 2.66
Bluetooth Module HC-05 2.32
Heart Monitor (AD8232) 4.30
Grove GSR Sensor V1.2 15.60

ELEGOO Double Sided PCB 0.70
Raspberry Pi 3 Model B 37.44

Total 81.02

as the population size (n), acquired physiological signals, size of the sliding window/step

(W/S) and price of the device are also collected. The price of the proposed prototype cor-

responds to that shown in Table 6.2, since the remaining devices were only employed in

the experimental stage and in the preliminary development stage, such as BIOPAC MP36,

which was used for the acquisition and generation of the data set during the development

of the proposed system.

The achieved performance and the low-cost of the components employed in this proposal

makes it possible to transform the proposed system into a commercial application. Thus,

the developed algorithms could be successfully implemented in an embedded device that

fulfils the stability and safety requirements of a real medical device.
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TABLE 6.3: Comparison of stress and relaxation estimation performance
represented by sensitivity Se and specificity (Sp), respectively.
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7 Conclusions

The main objective of this thesis was the automatic and real-time estimation of the level

of stress and relaxation in a continuous operation through the analysis of non-invasively

acquired physiological measures. Since stress and relaxation are closely related to the ac-

tivity of the autonomic nervous system, it is essential to study the physiological patterns

related to such activity. For this reason, the development of novel algorithms based on

intelligent computing techniques was proposed, focused on the real-time processing of

physiological parameters for pattern extraction. Finally, the implementation of the final

solution in a low-cost hardware device with portability capabilities was also proposed.

Thus, this thesis was structured in four main sections, in which an advanced process-

ing of the physiological data, a novel analysis and labeling of the extracted parameters, a

complete comparison of the performance of various intelligent algorithms, and a robust

hardware implementation of the final solution were carried out. This solution focused

principally on the processing of the heart period, galvanic skin response and breathing,

since they can be non-invasively acquired from a wide range of devices and are directly

related to the activity of the autonomic nervous system.

The first section was focused on the development of algorithms for reliable extraction of

the heart period. As reflected in the state of the art, the period between heartbeats can be

obtained from several biosignals. However, these signals are frequently affected by arti-

facts that result in erroneous measurements of the heart period, distorting the estimation

of the autonomic nervous system activity. To improve the extraction of the heart period,

two novel proposals were presented in this thesis: one for the processing of the electro-

cardiogram and another for the oscillometric blood pressure signal processing.

The algorithm developed for the extraction of the heart period from the electrocardio-

graphic signals is focused on the robust detection of R-peaks. This thesis proposes an orig-

inal and computationally efficient method for online and robust detection of R-Peaks di-

vided in three main stages: First, a complete elimination of artifacts is performed based on

a noise and signal intensity approach during the preprocessing stage. Second, a prelimi-

nary R-peaks detection methodology is applied for the identification of R-peaks through

an efficient area over the QRS complex measurement. Finally, the detected R-peaks are

subsequently processed iteratively by means of three innovative state machines that fix

the errors committed during the first detection by adding and removing the missing and

exceeding R-peaks, respectively. For each state machine, a set of conditions that assesses

the reliability of the HP at every instant was developed. Moreover, the algorithm was
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designed to carry out the processing of the electrocardiogram using a 20-second sliding

window, thus being implementable in real-time applications. Very promising results were

achieved, reaching a sensitivity of 99.54% and a precision of 99.60% in R-peak detection.

Additionally, the algorithm entails a reduced computational cost, suitable for its imple-

mentation in a low performance platform. The results obtained acquire relevance consid-

ering that a small error during the R-peaks detection in short duration windows can lead

to major changes in the parameters obtained from the resulting heart period. This devel-

opment was published in the prestigious Applied Mathematics and Computation journal

(JCR: 3.472 - Q1) under the title “Online robust R-peaks detection in noisy electrocardio-

grams using a novel iterative smart processing algorithm.”

The algorithm proposed for the extraction of the heart period in oscillometric blood pres-

sure signals combines advanced processing methods and artificial neural networks to

carry out an accurate estimation of the foot points location. New processing techniques

such as the moving interpolation difference method and improved second derivative max-

imum method were developed in order to achieve a robust elimination of the baseline

wander and a reliable detection of any existing valley in the oscillometric blood pressure

signal. These valleys are subsequently classified into real and false foot points according to

five characteristic parameters extracted from the morphology of the moving interpolation

difference line. Classification was carried out using a specialized artificial neural network,

which combines at the input the five extracted parameters to determine at the output

whether the valley corresponds to a real foot point or not. 10-second oscillometric blood

pressure registers were used, achieving a sensitivity of 99.17% and a specificity of 99.21%

in foot point detection. Considering the similarity between the morphology of the oscillo-

metric blood pressure registers and the photoplethysmographic signals, this algorithm is

potentially applicable on the latter type as well. Similarly to the algorithm for electrocar-

diogram processing, the possibility of processing the oscillometric blood pressure signal

in short length windows makes this algorithm implementable in real-time execution sys-

tems. This development led to a publication in the well-known Computer Methods and

Programs in Biomedicine journal (JCR: 3.632 - Q1) under the title “Diagnosis of atrial fib-

rillation based on arterial pulse wave foot point detection using artificial neural networks.”

In the second section, novel methodologies were proposed for the normalization and la-

beling of physiological parameters extracted from the heart period, galvanic skin response

and breathing. This section proposes a partial binary labeling (0/1) of the registers inter-

vals clearly identified as stress and relaxation states, followed by an innovative normal-

ization and an original pseudo-labeling of all the registers. To address the challenge of

providing a set of normalized parameters not affected by interpersonal discrepancies, a

novel approach was developed by automatically selecting the normalization methodol-

ogy that best suits each parameter. For this purpose, existing normalization methods and

those proposed in this thesis were evaluated by means of a customized loss function. This

loss function was designed to discriminate between states of stress and relaxation, being

https://doi.org/10.1016/j.amc.2019.124839
https://doi.org/10.1016/j.amc.2019.124839
https://doi.org/10.1016/j.cmpb.2020.105681
https://doi.org/10.1016/j.cmpb.2020.105681
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the methods with the smallest loss the most suitable to carry out the normalization. More-

over, the most representative parameters of stress and relaxation states were selected by a

comprehensive distribution analysis. Redundancy was subsequently eliminated through

principal component analysis. The resulting principal components were consistently im-

plemented together with the partial labels in a semi-supervised learning algorithm, thus

resulting in a continuous pseudo-labeling of the entire signals. The results obtained were

verified against a second validation label set conducted by experts in physiological signal

analysis, reaching 98.41% sensitivity and 99.32% specificity.

In the third section, the principal components and the pseudo-labels obtained in the pre-

vious section are used to compare the stress and relaxation prediction capability of differ-

ent intelligent algorithms based on supervised and unsupervised learning methods. Stud-

ied techniques include fuzzy logic, several fuzzy rule-based supervised learning systems

(i.e., Wang and Mendel’s method, dynamic evolving neural-fuzzy inference system, hy-

brid neural fuzzy inference system and heuristics and gradient descent method) and arti-

ficial neural networks. Each technique was validated using an original methodology based

on the mapping of the possible values for each hyperparameter through 21-fold cross-

validation. The results obtained led to a sensitivity of 97.93% and a specificity of 97.92%

for artificial neural networks, which present the most stable results and the smallest train-

ing and inference times. Furthermore, the evaluation of the artificial neuronal networks

was also carried out along with all the different combinations of the three studied physi-

ological signals (i.e., heart period, galvanic skin response and breathing), concluding that

the heart period and the galvanic skin response together obtain the best results in the es-

timation of the level of stress and relaxation, corresponding to a sensitivity of 98.02% and

a specificity of 98.30%. A further relevant conclusion is that breathing contributes to im-

prove the results that the heart period and the galvanic skin response achieve separately.

The fourth and last main section describes the hardware implementation of the algo-

rithms developed and validated throughout this thesis. For this purpose, a portable, real-

time acquisition platform was designed, combining in an original manner a variety of

easily affordable, low-cost electronic components. Moreover, the algorithms were imple-

mented on a low-cost and low-performance server, such as the Raspberry Pi platform. The

server receives the physiological signals recorded by the acquisition platform wirelessly

(Bluetooth). Meanwhile, the extracted parameters are processed by an artificial neural

network, resulting in a continuous measurement of the level of stress and relaxation. The

results obtained are subsequently sent to the client via Internet (wire or Wi-Fi) using the

gRPC protocol, which enables the implementation of encryption and authentication pro-

cedures. The concurrency of the system was validated by subjecting both the acquisition

platform and the server to real-time performance tests and obtaining the temporal results

supporting their correct execution.

Both the implementation of the fuzzy logic model for the continuous estimation of stress

and relaxation levels in the third section and the integration of the algorithm in a low-cost

platform resulted in a publication in the well-known IEEE Access journal (JCR: 3.745 - Q1)
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under the title “A low-cost, portable solution for stress and relaxation estimation based on

a real-time fuzzy algorithm.”

Therefore, the culmination of this thesis is the design of four well-defined modules that

describe the methodologies established to carry out the complete development of algo-

rithms for the continuous, real-time and automatic estimation of stress and relaxation

level by processing parameters extracted from non-invasively acquired physiological sig-

nals. The full development was finally implemented on a low-cost portable hardware plat-

form. During the process, techniques from the field of computational intelligence were

employed, including supervised, semi-supervised and unsupervised learning algorithms.

In addition, new methodologies were provided both for the processing of physiological

signals and for the normalization, analysis and labeling of the parameters extracted from

them. An original use of semi-supervised learning algorithms was also performed to carry

out a novel pseudo-labeling, thus converting binary and partial labels into continuous and

complete labels. A further contribution is the customized loss function for the training of

the artificial neural network, which was specifically developed for the estimation of stress

and relaxation levels. Finally, a great effort was placed on the hardware implementation,

where different types of devices were combined to create an integrated system capable of

acquiring physiological signals in real-time and executing the developed algorithms con-

currently.

All the algorithms were developed in Python programming language. This language was

used both during the development stage and in the implementation of the final code in

the production server. Thus, a complete development from the first phases of study to the

hardware implementation was carried out using a single programming language.

It should be noted that physiological differences between individuals still represent a chal-

lenge in terms of physiological data normalizacion. This factor has a direct impact on the

design of generic algorithms capable of processing physiological parameters across dif-

ferent individuals simultaneously. Each person is unique, and this is reflected in the phys-

iological reactions of each person to the same kind of events, both in the manner and in

the intensity of the reaction. This thesis addressed this challenge in an original and ef-

fective, but not perfect way, as some signals may diverge slightly from others due to their

morphology during the normalization stage. This phenomenon can lead to the appear-

ance of false positives and false negatives during the stress and relaxation level estima-

tion. Labeling of physiological registers constituted another major challenge, requiring

each signal to be studied individually, both to carry out the partial labeling manually and

to subsequently achieve the continuous labeling through pseudo-labeling techniques. Al-

though the proposed pseudo-labeling method has proven to be effective, outlier data can

potentially affect the value of the new obtained labels, altering the ranges and leading to

differences between individuals.

Further research is proposed on the development of new methodologies for the normal-

ization and labeling of physiological signals. This study represents a strong and validated

https://doi.org/10.1109/access.2020.2988348
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starting point for the construction of more advanced methodologies that will provide even

more robust results in the processing of physiological patterns. The development of a

more sophisticated hardware implementation is also proposed for further consideration.

Since this thesis presents a functional prototype that carries out both the acquisition and

the processing stages under strict and validated operating conditions, the creation of a

commercial device would take this development to the next stage. This would provide

an opportunity to design a wearable sensor solution in conjunction with a more embed-

ded and miniaturized hardware. Furthermore, the implementation of the algorithms in

production-oriented languages should improve the efficiency and reliability of the sys-

tem, such as C++ for the acquisition stage and JavaScript for the server execution. Finally,

the validation of the foot point detection algorithm in plethysmographic signals is pro-

posed, which has already been validated in oscillometric blood pressure signals, whose

morphology is very similar to plethysmographic ones.
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