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A unifying framework for mean-field theories
of asymmetric kinetic Ising systems
Miguel Aguilera 1,2,3✉, S. Amin Moosavi4,5 & Hideaki Shimazaki 4,6

Kinetic Ising models are powerful tools for studying the non-equilibrium dynamics of complex

systems. As their behavior is not tractable for large networks, many mean-field methods have

been proposed for their analysis, each based on unique assumptions about the system’s

temporal evolution. This disparity of approaches makes it challenging to systematically

advance mean-field methods beyond previous contributions. Here, we propose a unifying

framework for mean-field theories of asymmetric kinetic Ising systems from an information

geometry perspective. The framework is built on Plefka expansions of a system around a

simplified model obtained by an orthogonal projection to a sub-manifold of tractable prob-

ability distributions. This view not only unifies previous methods but also allows us to develop

novel methods that, in contrast with traditional approaches, preserve the system’s correla-

tions. We show that these new methods can outperform previous ones in predicting and

assessing network properties near maximally fluctuating regimes.
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Advances in high-throughput data acquisition technologies
for very large biological and social systems are providing
unprecedented possibilities to investigate their complex,

non-equilibrium dynamics. For example, optical recordings from
genetically modified neural populations make it possible to
simultaneously monitor activities of the whole neural network of
behaving C. elegans1 and zebrafish2, as well as thousands of
neurons in the mouse visual cortex3. Such networks generally
exhibit out-of-equilibrium dynamics4, and are often found to self-
organize near critical regimes at which their fluctuations are
maximized5,6. Evolution of such systems cannot be faithfully
captured by methods assuming an asymptotic equilibrium state.
Therefore, in general, there is a pressing demand for mathema-
tical tools to study the dynamics of large-scale, non-equilibrium
complex systems and to analyze high-dimensional datasets
recorded from them.

The kinetic Ising model with asymmetric couplings is a pro-
totypical model for studying such non-equilibrium dynamics in
biological7,8 and social systems9. It is described as a discrete-time
Markov chain of interacting binary units, resembling the non-
linear dynamics of recurrently connected neurons. The model
exhibits non-equilibrium behavior when couplings are asym-
metric or when model parameters are subject to rapid changes,
ruling out quasi-static processes. These conditions induce a time
reversal asymmetry in dynamical trajectories, leading to positive
entropy production (the second law of thermodynamics) as
revealed by the fluctuation theorem10–15 (see refs. 16,17 for
reviews). This time-asymmetry is characteristic of non-
equilibrium systems as it can only be displayed by systems in
which energy dissipation takes place18. In the case of symmetric
connections and static parameters, the model converges to an
equilibrium stationary state. Consequently, it is a generalization
of its equilibrium counterpart known as the (equilibrium) Ising
model19.

The forward Ising problem refers to calculating statistical
properties of the model, such as mean activation rates (mean
magnetizations of spins) and correlations, given the parameters of
the model. In contrast, inference of the model parameters from
data is called the inverse Ising problem20. In this regard, kinetic
Ising models21,22 and their equilibrium counterparts23–25 have
become popular tools for modeling and analyzing biological and
social systems. In addition, they capture memory retrieval
dynamics in classical associative networks. Namely, they are
equivalent to the Boltzmann machine, extensively used in
machine learning applications20. Unfortunately, exact solutions of
the forward and inverse problems often become computationally
too expensive due to the combinatorial explosion of possible
patterns in large, recurrent networks or the high volume of data,
and applications of exact or sampling-based methods are limited
in practice to around a hundred of neurons5,25,26. In con-
sequence, analytical approximation methods are necessary for
analysing large systems. In this endeavour, mean-field methods
have emerged as powerful tools to track down otherwise
intractable statistical quantities.

The standard mean-field approximations to study equilibrium
Ising models are the classical naive mean-field (nMF) and the
more accurate Thouless-Anderson-Palmer (TAP) approxima-
tions27. These methods have also been employed to solve the
inverse Ising problem28–31. Plefka demonstrated that the nMF
and TAP approximations for the equilibrium model can be
derived using the power series expansion of the free energy
around a model of independent spins, a method which is now
referred to as the Plefka expansion32. This expansion up to the
first and second orders leads to the nMF and TAP mean-field
approximations respectively. The Plefka expansion was later

formalized by Tanaka and others in the framework of informa-
tion geometry33–37.

In non-equilibrium networks, however, the free energy is not
directly defined, and thus it is not obvious how to apply the Plefka
expansion. Kappen and Spanjers38 proposed an information
geometric approach to mean-field solutions of the asymmetric
Ising model with asynchronous dynamics. They showed that their
second-order approximation for an asymmetric model in the
stationary state is equivalent to the TAP approximation for
equilibrium models. Later, Roudi and Hertz derived TAP equa-
tions for nonstationary states using a Legendre transformation of
the generating functional of the set of trajectories of the model39.
Another study by Roudi and Hertz extended mean-field equa-
tions to provide expressions for the nonstationary delayed cor-
relations assuming the presence of equal-time correlations at the
previous step40. Yet another interesting method proposed by
Mézard and Sakellariou approximates the local fields by a
Gaussian distribution according to the central limit theorem,
yielding more accurate results for fully asymmetric networks41.
This method was later extended to include correlations at the
previous time step, improving the results for symmetric cou-
plings42. More recently, Bachschmid-Romano et al. extended the
path-integral methods in ref. 39 with Gaussian effective fields43,
not only recovering ref. 41 for fully asymmetric networks but also
proposing a method that better approximates mean rate
dynamics by conserving autocorrelations of units. Although
many choices of mean-field methods are available, the diversity of
methods and assumptions makes it challenging to advance sys-
tematically over previous contributions.

Here, we propose a unified approach for mean-field approx-
imations of the Ising model. While our method is applicable to
symmetric and equilibrium models, we focus for generality on
asymmetric kinetic Ising models. Our approach is defined as a
family of Plefka expansions in an information geometric space.
This approach allows us to unify and relate existing mean-field
methods and to provide expressions for other statistics of the
systems such as pairwise correlations. Furthermore, our approach
can be extended beyond classical mean-field assumptions to
propose novel approximations. Here, we introduce an approx-
imation based on a pairwise model that better captures network
correlations, and we show that it outperforms existing approx-
imations of kinetic Ising models near a point of maximum fluc-
tuations. We also provide a data-driven method to reconstruct
and test if a system is near a phase transition by combining the
forward and inverse Ising problems, and demonstrate that the
proposed pairwise model more accurately estimates the system’s
fluctuations and its sensitivity to parameter changes. These results
confirm that our unified framework is a useful tool to develop
methods to analyze large-scale, non-equilibrium biological and
social dynamics operating near critical regimes. In addition, since
the methods are directly applicable to Boltzmann machine
learning, the geometrical framework introduced here is relevant
in machine learning applications.

The paper is organized as follows. First, we introduce the
kinetic Ising model and its statistical properties of interest. Sec-
ond, we introduce our framework for the Plefka approximation
methods from a geometric perspective. To explain how it works,
we derive the classical naive and TAP mean-field approximations
under the proposed framework. Third, we show that our
approach can unify other known mean-field approximation
methods. We then propose a novel pairwise approximation under
this framework. Finally, we compare different mean-field
approximations in solving the forward and inverse Ising pro-
blems, as well as in performing the data-driven assessment of the
system’s sensitivity. The last section is devoted to discussion.
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Results
The kinetic Ising model. The kinetic Ising model is the least
structured statistical model containing delayed pairwise inter-
actions between its binary components (i.e., a maximum cali-
ber model44). The system consists of N interacting binary
variables (down or up of Ising spins or inactive or active of
neural units) si,t ∈ {− 1,+ 1}, i= 1, 2, . . , N, evolving in
discrete-time steps t with parallel dynamics. Given the con-
figuration of spins at t− 1, st−1= {s1,t−1, s2,t−1,…, sN,t−1},
spins st at time t are conditionally independent random vari-
ables, updated as a discrete-time Markov chain, following

P st jst�1ð Þ ¼
Y
i

esi;t hi;t

2 cosh hi;t
; ð1Þ

hi;t ¼ Hi þ
X
j

J ijsj;t�1: ð2Þ

The parameters H= {Hi} and J= {Jij} represent local external
fields at each spin and couplings between pairs of spins
respectively. When the couplings are asymmetric (i.e., Jij ≠ Jji),
the system is away from equilibrium because the process is
irreversible with respect to time. Given the probability mass
function of the previous state P(st−1), the distribution of the
current state is:

P stð Þ ¼
X
st�1

P stjst�1ð ÞP st�1ð Þ: ð3Þ

This marginal distribution P(st) is not factorized (except at J= 0),
but it rather exhibits a complex statistical structure, generally
containing higher-order spin interactions. We can apply this
equation recursively, e.g., decomposing P st�1ð Þ in terms of the
distribution P(st−2), and trace the evolution of the system from the
initial distribution P(s0).

In this article, we use variants of the Plefka expansion to
calculate some statistical properties of the system. Namely, we
investigate the average activation rates mt, correlations between
pairs of units (covariance function) Ct, and delayed correlations
Dt given by

mi;t ¼
X
st

si;tPðstÞ; ð4Þ

Cik;t ¼
X
st

si;t sk;tPðstÞ �mi;tmk;t ; ð5Þ

Dil;t ¼
X
st ;st�1

si;t sl;t�1Pðst ; st�1Þ �mi;tml;t�1: ð6Þ

Note that mt and Dt are sufficient statistics of the kinetic Ising
model. Therefore, we will use them in solving the inverse Ising
problem (see Methods). We additionally consider the equal-time
correlations Ct as they are commonly used to describe neural
systems, and are investigated by some of the mean-field
approximations in the literature40. Calculation of these expecta-
tion values is analytically intractable and computationally very
expensive for large networks, due to the combinatorial explosion
of the number of possible states. To reduce this computational
cost, we approximate the marginal probability distributions (Eq.
(3)) by the Plefka expansion method that utilizes an alternative,
tractable distribution.

Geometrical approach to mean-field approximation. Informa-
tion geometry37,45,46 provides clear geometrical understanding of
information-theoretic measures and probabilistic models15,47,48.
Using the language of information geometry, we introduce our
method for mean-field approximations of kinetic Ising systems.

Let Pt be the manifold of probability distributions at time t
obtained from Eq. (3). Each point on the manifold corresponds
with a set of parameter values. The manifold Pt contains
submanifolds Qt of probability distributions with analytically
tractable statistical properties (See Fig. 1). We use this tractable
manifold, i.e., a reference model, to approximate a target point P
(st∣H, J) in the manifold Pt and its statistical properties mt,Ct,Dt.

The simplest submanifold Qt is the manifold of independent
models, used in classical mean-field approximations to compute
average activation rates. Each point on this submanifold
corresponds to a distribution

Q st jΘtð Þ ¼
Y
i

esi;tΘi;t

2 coshΘi;t
; ð7Þ

where Θt= {Θi,t} is the vector of parameters that represents a
point in Qt . This distribution does not include couplings between
units, and its average activation rate is immediately given as
mi;t ¼ tanhΘi;t .

Our first goal is to find the average activation rates of the target
distribution P(st∣H, J). It turns out that they can be obtained from
the independent model Q(st∣Θt) that minimizes the following
Kullback-Leibler (KL) divergence from P(st):

DðPjjQÞ ¼
X
st

PðstÞlog
PðstÞ
QðstÞ

: ð8Þ

The independent model Qðst jΘ�
t Þð�Q�ðstÞÞ that minimizes the

KL divergence has activation rates mt identical to those of the
target distribution P(st)38 because the minimizing points Θ�

i;t

satisfy (for i= 1,…,N)

∂DðPjjQÞ
∂Θi;t

jΘt¼Θ�
t
¼ �

X
st

si;tPðstÞ þ tanhΘ�
i;t

¼ mQ�
i;t �mP

i;t ¼ 0;

ð9Þ

where mP
i;t and mQ�

i;t are respectively expectation values of si,t by P

Fig. 1 A geometric view of the approximations based on Plefka
expansions. The point P(st) is the marginal distribution of a kinetic Ising
model at time t. The submanifold Qt is a set of tractable distributions, for
example a manifold of independent models. The points in A correspond to
a m-geodesic, that is a linear mixture of P(st) and Q*(st) on Qt , where for
independent Qt all points on A share the same mean values mt.
Geometrically, A constitutes the m-projection from P(st) to Qt, defining
Q*(st) as the closest point in the submanifold Qt to the point P(st)47. The
Plefka expansion is defined by expanding an α-dependent distribution Pα(st)
that satisfies Pα=0(st)=Q*(st) and Pα=1(st)= P(st).
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(st) and Qðst jΘ�
t Þ. As these values are equal, for the rest of the

paper we will drop their superscripts and just write mi,t for
simplicity. The result of this approximation is indifferent to the
system’s correlations. Later in the paper we will consider
approximations that take into account pairwise correlations.

From an information geometric point of view, given mt (or
Θ�

t ), we may consider a family of points defined as a linear
mixture of P(st) and Qðst jΘ�

t Þ for which mt is kept constant (the
dashed line A in Fig. 1). This is known as an m-geodesic, and it is
orthogonal to the e-flat manifold Qt , constituting an m-
projection to this manifold37,47. Thus, the previous search of
Qðst jΘ�

t Þ given P(st∣H, J) is equivalent to finding the orthogonal
projection point from P(st∣H, J) to the manifold Qt of
independent models36,37.

The Plefka expansion. Although the m-projection provides the
exact and unique average activation rates, its calculation in
practice requires the complete distribution P(st). In the Plefka
expansion, we relax the constraints of the m-projection, and
introduce another set of more tractable distributions that passes
only through P(st∣H, J) and Qðst jΘ�

t Þ (the solid line in Fig. 1).
This distribution is defined using a new conditional distribution
introducing a parameter α that connects a distribution on the
manifold Qt with the original distribution P(st):

Pαðsi;t jst�1Þ ¼
esi;thi;tðαÞ

2 cosh hi;tðαÞ
; ð10Þ

hi;tðαÞ ¼ ð1� αÞΘi;t þ α Hi þ
X
j

J ijsj;t�1

 !
: ð11Þ

At α= 0, Pα=0(st∣st−1)=Q(st∣Θt), and α= 1 leads to Pα=1(st∣st−1)=
P(st∣st−1). Using this alternative conditional distribution Pα(si,t∣st−1),
we construct an approximate marginal distribution Pα(st). Conse-
quently, expectation values with respect to Pα(st) are functions of α.
We thus write the statistics of the approximate system as mt(α),
Ct(α), and Dt(α).

The Plefka expansions of these statistics are defined as the
Taylor series expansion of these functions around α= 0. In the
case of the mean activation rate, the expansion up to the nth-
order leads to:

mtðαÞ ¼ mtðα ¼ 0Þ þ
Xn
k¼1

αk

k!
∂kmtðα ¼ 0Þ

∂αk
þOðαðnþ1ÞÞ; ð12Þ

where Oðαðnþ1ÞÞ stands for the residual error of the approxima-
tion of order n+ 1 and higher. For the nth-order approximation,
we neglect the residual terms as Oðαðnþ1ÞÞjα¼1 � 0. Note that all
coefficients of expansion are functions of Θt. The mean-field
approximation is computed by setting α= 1 and finding the value
of Θ�

t that satisfies Eq. (12). Since the original marginal
distribution is recovered at α= 1, the equality of Eq. (9) holds:
mt(α= 1)=mt(α= 0). Then, we haveXn

k¼1

1
k!
∂kmtðα ¼ 0Þ

∂αk
¼ 0; ð13Þ

which should be solved with respect to the parameters Θt. Since
we neglected the terms higher than the n-th order, the solution
may not lead to the exact projection, Qðst jΘ�

t Þ. In this study, we
investigate the first (n= 1) and second (n= 2) order approxima-
tions. Moreover we can apply the same expansion to approximate
the correlations Ct and Dt, using Eq. (10).

What is the difference between this approach and other mean-
field methods? Conventionally, naive mean-field approximations
are obtained by minimizing D(Q∣∣P) as opposed to D(P∣∣Q) (Eq.

(8))36,49. This approach is typically used in variational inference
to construct a tractable approximate posterior in machine
learning problems. Following the Bogolyubov inequality, mini-
mizing this divergence is equivalent to minimizing the variational
free energy. Geometrically, it comprises an e-projection of P(st∣H,
J) to the submanifold Qt , which does not result in Qðst jΘ�

t Þ.
Namely, minimizing D(Q∣∣P), as well as minimization of other α-
divergences except for D(P∣∣Q), introduces a bias in the
estimation of the mean-field approximation36,37. In contrast, if
we consider the m-projection point that minimizes D(P∣∣Q), we
can approximate the exact value of mt using Eq. (12) up to an
arbitrary order.

In the subsequent sections we show that different approxima-
tions of the marginal distribution P(st) in Eq. (3) can be
constructed by replacing P(si,τ∣sτ−1) with Pα(si,τ∣sτ−1) for different
pairs i, τ (here we will explore the cases of τ= t and τ= t− 1).
More generally, we show in Supplementary Note 1 that this
framework can be extended to a marginal path of arbitrary length
k, P(st−k+1,…, st). In addition, we are not restricted to manifolds
of independent models. The independent model is adopted as a
reference model to approximate the average activation rate, but
one can also more accurately approximate correlations using this
method. In this vein, we can extend our framework to use
reference manifolds Qt�kþ1:t (of models Q(st−k+1,…, st)) that
include interactions, e.g., pairwise couplings between elements at
two different time points, to more accurately approximate the
delayed correlations (see Supplementary Note 1). By system-
atically defining these reference distributions, we will provide a
unified approach to derive Plefka approximations of mt, Ct, and
Dt, including the one that utilizes a pairwise structure.

Plefka[t− 1, t]: expansion around independent models at times
t− 1 and t. Before elaborating different mean-field approxima-
tions, we demonstrate our method by deriving the known results
of the classical nMF and TAP approximations for the kinetic
Ising model38,39. In order to derive these classical mean-field
equations, we make a Plefka expansion around the points Θ�

t and
Θ�

t�1 that are, respectively, obtained by orthogonal projection to
the independent manifolds Qt and Qt�1, computed as in Eq. (9).
Here we should note that assuming an approximation where
previous distributions (e.g., t− 2, t− 3,… ) are also independent
yields exactly the same result. In this way, we derive the nMF and
TAP equations of a model defined by a marginal probability
distribution P½t�1:t�

α . Using Eqs. (3) and (10), we write

P½t�1:t�
α ðstÞ ¼

X
st�1
st�2

Pαðst jst�1ÞPαðst�1jst�2ÞPðst�2Þ; ð14Þ

where P½t�1:t�
α¼0 ðstÞ ¼ QðstÞ and the original distribution is recov-

ered for P½t�1:t�
α¼1 ðstÞ ¼ PðstÞ.

Following Eq. (13), for the first order approximation we have
∂mi;tðα¼0Þ

∂α ¼ 0. Since the derivative of the first order moment is

∂mi;tðα ¼ 0Þ
∂α

¼ ð1�m2
i;tÞ �Θi;t þ Hi þ

X
j

J ijmj;t�1

 !
; ð15Þ

by solving the equation, we find Θ�
i;t � Hi þ

P
j J ijmj;t�1 that

leads to the naive mean-field approximation:

mi;t � tanh Hi þ
X
j

J ijmj;t�1

" #
: ð16Þ

We apply the same expansion to approximate the correlations,
expanding Cik,t(α) and Dil,t(α) around α= 0 up to the first order
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using Θi;t ¼ Θ�
i;t . Then we obtain

Cik;t � 0; i ≠ k; ð17Þ

Dil;t � Jilð1�m2
i;tÞð1�m2

l;t�1Þ: ð18Þ
Detailed calculations are presented in Supplementary Note 2.

To obtain the second-order approximation, we need to solve
∂miðα¼0Þ

∂α þ 1
2
∂2miðα¼0Þ

∂α2 ¼ 0 from Eq. (13). Here the second-order
derivative is given as

∂2mi;tðα ¼ 0Þ
∂α2

� �2mi;tð1�m2
i;tÞ
X
j

J2ijð1�m2
j;t�1Þ; ð19Þ

where terms of the order higher than quadratic were neglected
(see Supplementary Note 2 for further details). From these
equations, we find Θ�

i;t � Hi þ
P

j J ijmj;t�1 �mi;t

P
j J

2
ijð1�

m2
j;t�1Þ leading to the TAP equation:

mi;t � tanh Hi þ
X
j

J ijmj;t�1 �mi;t

X
j

J2ijð1�m2
j;t�1Þ

" #
: ð20Þ

Having Θ�
i;t , we can incorporate TAP approximations of the

correlations by expanding Cik,t(α) and Dil,t(α) (see Supplementary
Note 2 for details) as:

Cik;t � ð1�m2
i;tÞð1�m2

k;tÞ
P
j
J ijJkjð1�m2

j;t�1Þ; i≠k; ð21Þ

Dil;t � Jilð1�m2
i;tÞð1�m2

l;t�1Þð1þ 2Jilmi;tml;t�1Þ: ð22Þ
In these approximations, Eqs. (16) and (20) of activation rates

mt correspond to the classical nMF and TAP equations of the
kinetic Ising model38,39. The mean-field equations for the equal-
time and delayed correlations (Eqs. (17), (18), (21), and (22)) are
novel contributions from applying the Plefka expansion to
correlations.

Using the equations above, we can compute the approximate
statistical properties of the system at t (mt, Ct,Dt) from mt−1.
Therefore, the system evolution is described by recursively
computing mt from an initial state m0 (for both transient and
stationary dynamics), although approximation errors accumulate
over the iterations. After we introduce a unified view of mean-
field approximations in the subsequent sections, we will
numerically examine approximation errors of these various
methods in predicting statistical structure of the system.

Generalization of mean-field approximations. In the previous
section, we described a Plefka expansion that uses a model con-
taining independent units at time t− 1 and t to construct a
marginal probability distribution P½t�1:t�

α ðstÞ. This is, however, not
the only possible choice of approximation. As we mentioned
above, other approximations have been introduced in the litera-
ture. In ref. 40, expressions are provided for the nonstationary
delayed correlations Dt as a function of Ct−1. In ref. 41, an
approximation is derived by assuming that units at state st−1 are
independent while correlations of st are preserved.

In the following sections, we show that various approximation
methods, including those mentioned above, can be unified as
Plefka expansions. Each method of the approximation corre-
sponds to a specific choice of the submanifold Qt at each time
step. Fig. 2 shows the corresponding submanifolds Qt�1:t of
possible approximations, where gray lines represent interactions
that are affected by α in the Plefka expansion. The mean-field
approximations in the previous section were obtained by using
the model represented in Fig. 2B, where the couplings at time t−
1 and t are affected by α. Below, we present systematic
applications of the Plefka expansions around other reference

models in order to approximate the original distribution
(Fig. 2C–E). By doing so, we not only unify the previously
reported mean-field approximations but also provide novel
solutions that can provide more precise approximations than
known methods.

Plefka[t]: expansion around an independent model at time t.
For the Plefka[t− 1, t] approximation, explained above, the sys-
tem becomes independent for α= 0 at t as well as t− 1. This
leads to approximations of mt, Ct,Dt being specified by mt−1,
while being independent of Ct−1 and Dt−1. In ref. 40, the authors
describe a mean-field approximation by performing new expan-
sion over the classical nMF and TAP equations that takes into
account previous correlations Ct−1. Here, our framework allows
us to obtain similar results by considering only a Plefka expansion
over manifold Qt while assuming that we know the properties of
P(st−1) (Fig. 2C). Therefore, we denote this approximation as P½t�

α
and consider

P½t�
α ðstÞ ¼

X
st�1

Pαðst jst�1ÞPðst�1Þ: ð23Þ

In Supplementary Note 3 we derive the equations for this
approximation. For the first order, we obtain

mi;t � tanh Hi þ
X
j

J ijmj;t�1

" #
; ð24Þ

Cik;t � 0; i≠ k; ð25Þ

Dil;t � ð1�m2
i;tÞ
X
j

J ijCjl;t�1: ð26Þ

Note that Eqs. (24) and (25) are the same as the nMF Plefka[t
− 1, t] equations. Equation (26) includes Ct−1, being exactly the
same result obtained in ref. 40, Eq. (4). The second-order
approximations leads to:

mi;t � tanh Hi þ
X
j

J ijmj;t�1 �mi;t

X
jl

J ijJ ilCjl;t�1

2
4

3
5; ð27Þ

Cik;t � ð1�m2
i;tÞð1�m2

k;tÞ
X
jl

J ijJklCjl;t�1; i≠ k; ð28Þ

Dil;t � ð1�m2
i;tÞ
X
j

J ijCjl;t�1ð1þ 2Jilmi;tml;t�1Þ: ð29Þ

All update rules include the effect of Ct−1. We can see that if we
use the covariance matrix of the independent model at t− 1, we
recover the results of the Plefka[t− 1, t] approximation in the
previous section. In contrast with ref. 40, we provide a novel
approximation method that depends on previous correlations
using a single expansion (instead of two subsequent expansions),
and additionally present approximated equal-time correlations.

Plefka[t− 1]: expansion around an independent model at time
t− 1. In ref. 41, a mean-field method is proposed by approx-
imating the effective field ht as the sum of a large number of
independent spins, approximated by a Gaussian distribution,
yielding exact results for fully asymmetric networks in the ther-
modynamic limit. In our framework, we describe this approx-
imation as an expansion around the projection point from P(st−1)
to the submanifold Qt�1, using a model where only st−1 are
independent (Fig. 2D). In this case (see Supplementary Note 4),
the effective field ht at the submanifold is a sum of independent
terms, which for large N yields a Gaussian distribution.
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By defining

P½t�1�
α ðst ; st�1Þ ¼

X
st�2

Pðst jst�1ÞPαðst�1jst�2ÞPðst�2Þ; ð30Þ

we see that now the expansion is defined for the marginal
distribution of the path {st−1, st} (see Supplementary Note 1). The
first order equations for this method are

mi;t �
Z

Dx tanh Hi þ
X
j

J ijmj;t�1 þ x
ffiffiffiffiffiffiffi
Δi;t

q" #
; ð31Þ

Cik;t �
Z

Dρik
xy tanh Hi þ

X
j

J ijmj;t�1 þ x
ffiffiffiffiffiffiffi
Δi;t

q" #

� tanh Hk þ
X
l

Jklml;t�1 þ y
ffiffiffiffiffiffiffi
Δj;t

q" #
�mi;tmk;t ; i≠ k;

ð32Þ

Dil;t �
X
j

J ijCjl;t�1

Z
Dx

 
1� tanh2 Hi þ

X
j

J ijmj;t�1

"

þ x
ffiffiffiffiffiffiffi
Δi;t

q i!
:

ð33Þ

Here we use Dx ¼ dxffiffiffiffi
2π

p expð� 1
2 x

2Þ, Dρik
xy ¼ dxdy

2π
ffiffiffiffiffiffiffiffi
1�ρ2ik

p
expð� 1

2
ðx2þy2Þ�2ρikxy

1�ρ2ik
Þ, Δi;t ¼

P
j J

2
ijð1�m2

j;t�1Þ and ρik ¼
P

j J ijJkj
ð1�m2

j;t�1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δi;tΔj;t

p
. Derivations are described in Supplemen-

tary Note 4. These results are exactly the same as those presented
for mt,Dt in ref. 41, adding an additional expression for Ct. For
this approximation, we do not consider the second-order
equations since they are computationally much more expensive
than the other approximations.

Plefka2[t]: expansion around a pairwise model. The proposed
framework is also a powerful tool to develop novel Plefka
expansions. To make the expansions more accurately

approximate target statistics, we can consider a reference mani-
fold composed of multiple time steps while maintaining some of
the parameters in the system (see Supplementary Note 1).
Motivated by this idea, here we propose new methods that
directly approximate pairwise activities of the units by choosing a
reference manifold that preserves a coupling term.

Let us first consider the joint probability of any arbitrary pair of
units at time t− 1 and t to compute the delayed correlations
(Fig. 2E, left). Namely, we consider the joint probability of spins
si,t and sl,t−1:

Pðsi;t ; sl;t�1Þ ¼
X
snl;t�1
st�2

Pðsi;t jst�1ÞPðst�1jst�2ÞPðst�2Þ; ð34Þ

with s⧹l,t−1 containing all elements of st−1 except sl,t−1. As a
reference manifold Qt�1:t , we consider the dependency among
only the units i and l:

Qðsi;t ; sl;t�1Þ ¼ Qðsi;t jsl;t�1ÞQðsl;t�1Þ

¼ esi;tθi;tðsl;t�1Þ

2 cosh θi;tðsl;t�1Þ
esl;t�1Θl;t�1

2 coshΘl;t�1
;

ð35Þ

where θi,t(sl,t−1)=Θi,t+ Δil,tsl,t−1. The orthogonal projection to
Qt is equivalent to minimizing the KL divergence D(P∣∣Q) with
respect to the parameters:

∂DðPjjQÞ
∂Θi;t

����� θt¼θ�t
Θt�1¼Θ�

t�1

¼ mQ�
i;t �mP

i;t ¼ 0; ð36Þ

∂DðPjjQÞ
∂Θl;t�1

����� θt¼θ�t
Θt�1¼Θ�

t�1

¼ mQ�
l;t�1 �mP

l;t�1 ¼ 0; ð37Þ

∂DðPjjQÞ
∂Δil;t

����� θt¼θ�t
Θt�1¼Θ�

t�1

¼ hsi;t sl;t�1iðQ��PÞ � hsi;t sl;t�1iP ¼ 0: ð38Þ

Fig. 2 Unified mean-field framework. Original model (A) and family of generalized Plefka expansions (B–E). Gray lines represent connections that are
proportional to α and thus removed in the approximated model to perform the Plefka expansions, while solid black lines are conserved and dashed lines are
free parameters. Plefka[t− 1, t] (B) retrieves the classical naive and TAP mean-field equations38,39. Plefka[t] (C) results in a novel method which preserves
correlations of the system at t− 1, incorporating equations similar to ref. 40. Plefka[t− 1] (D) assumes independent activity at t-1, and in its first order
approximation reproduces the results in ref. 41. Plefka2[t] (E) represents a novel pairwise approximation which performs better in approximating correlations.
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with

hxiðQ��PÞ ¼
X
si;t

sl;t�1

x Qðsi;t jsl;t�1; θ
�
t ;Θ

�
t�1ÞPðsl;t�1Þ: ð39Þ

As in the previous approximations, P(si,t, sl,t−1) is connected to
Qðsi;t ; sl;t�1jθ�t ;Θ�

t�1Þ through an α-dependent probability

P2½t�
α ðsi;t; sl;t�1Þ ¼

X
snl;t�1
st�2

Pαðsi;t jst�1ÞPαðsl;t�1jst�2Þ

� Pðsnl;t�1jst�2ÞPðst�2Þ;
ð40Þ

with conditional probabilities given by

Pαðsi;tjst�1Þ ¼
esi;t hi;tðαÞ

2 cosh hi;tðαÞ
;

hi;tðαÞ ¼ ð1� αÞθi;tðsl;t�1Þ þ α Hi þ
X
j

J ijsj;t�1

 !
;

ð41Þ

Pαðsl;t�1jst�2Þ ¼
esl;t�1hl;t�1ðαÞ

2 cosh hl;t�1ðαÞ
;

hl;t�1ðαÞ ¼ ð1� αÞΘl;t�1 þ α Hl þ
X
n

J lnsn;t�2

 !
:

ð42Þ

As in the cases above, we can calculate the equations for the
first and second-order approximations (see Supplementary
Note 5). Here, for the second-order approximation (which is
more accurate than the first order) we have that:

θ�i;tðsl;t�1Þ � Hi þ
X
j

J ijmj;t�1 þ Jilðsl;t�1 �ml;t�1Þ

þ
X
j≠l;n

JijJ lnDjn;t�1

0
@

1
Aðsl;t�1 �ml;t�1Þ

� tanh θ�i;tðsl;t�1Þ
X
jn≠l

J ijJ inCjn;t�1;

ð43Þ

Θ�
l;t�1 � Hl þ

X
n

Jlnmn;t�2 �ml;t�1

X
mn

JlmJlnCmn;t�2; ð44Þ
which directly leads to calculation of means and delayed
correlations as:

mi;t �
X
sl;t�1

tanh θ�i;tðsl;t�1ÞQ�ðsl;t�1Þ; ð45Þ

ml;t�1 � tanhΘ�
l;t�1; ð46Þ

Dil;t �
X
sl;t�1

tanh θ�i;tðsl;t�1Þsl;t�1Q
�ðsl;t�1Þ �mi;tml;t�1: ð47Þ

These results are related to previous work43 that included
autocorrelations as one of the constraints to derive the Plefka
approximation. Instead, here we provide a Plefka approximation
that includes delayed correlations between any pair of units.

To compute the above approximations, we need to know Ct−1

and Ct−2. Here, we provide similar pairwise Plefka approxima-
tions for the pairwise distribution at time t, P(si,t, sk,t). Since si,t, sk,t
are conditionally independent, we can construct a model in which
first sk,t is computed from st−1, and then si,t is computed
conditioned on sk,t, st−1 (Fig. 2E, right):

Qðsi;t ; sk;tÞ ¼ Qðsi;t jsk;tÞQðsk;tÞ; ð48Þ

P2½t�
α ðsi;t ; sk;tÞ ¼

X
st�1

Pαðsi;t jsk;t ; st�1ÞPαðsk;t jst�1ÞPðst�1Þ; ð49Þ

with conditional probabilities given by

Pαðsi;t jsk;t ; st�1Þ ¼
esi;thi;tðαÞ

2 cosh hi;tðαÞ
;

hi;tðαÞ ¼ ð1� αÞθi;tðsk;tÞ

þ α Hi þ
X
j

J ijsj;t�1

 !
;

ð50Þ

Pαðsk;tjst�1Þ ¼
esk;thk;tðαÞ

2 cosh hk;tðαÞ
;

hk;tðαÞ ¼ ð1� αÞΘk;t þ α Hk þ
X
l

Jklsl;t�1

 !
:

ð51Þ

Here θi,t is a function of sk,t that accounts for equal-time
correlations between si,t and sk,t. Computed similarly to delayed
correlations, the second-order approximation yields (see Supple-
mentary Note 5):

θ�i;tðsk;tÞ �Hi þ
X
j

J ijmj;t�1 þ
X
jl

J ijJklCjl;t�1

0
@

1
Aðsk;t �mk;tÞ

� tanh θ�i;tðsk;tÞ
X
jl

J ijJ ilCjl;t�1;

ð52Þ

Θ�
k;t � Hk þ

X
l

Jklml;t�1 �mk;t

X
jl

JkjJklCjl;t�1: ð53Þ

Using these equations, approximate equal-time correlations are
given as

Cik;t �
X
sk;t

tanh θ�i;tðsk;tÞsk;tQ�ðsk;tÞ �mi;tmk;t : ð54Þ

Note that the approximation of equal-time correlations may not
be symmetric for Cik,t and Cki,t. In the results of this paper we use
the average of the two.

Comparison of the different approximations. In the subsequent
sections, we compare the family of Plefka approximation methods
described above by testing their performance in the forward and
inverse Ising problems. More specifically, we compare the
second-order approximations of Plefka[t− 1, t] and Plefka[t], the
first order approximation of Plefka[t− 1], and the second-order
pairwise approximation of Plefka2[t]. We define an Ising model
as an asymmetric version of the kinetic Sherrington-Kirkpatrick
(SK) model, setting its parameters around the equivalent of a
ferromagnetic phase transition in the equilibrium SK model.
External fields Hi are sampled from independent uniform dis-
tributions Uð�βH0; βH0Þ, H0= 0.5, whereas coupling terms Jij
are sampled from independent Gaussian distributions

Nðβ J0
N ; β2 J2σ

NÞ, J0= 1, Jσ= 0.1, where β is a scaling parameter (i.e.,
an inverse temperature).

Generally, mean-field methods are suitable for approximating
properties of systems with small fluctuations. However, there is
evidence that many biological systems operate in critical, highly
fluctuating regimes5,6. In order to examine different approxima-
tions in such a biologically plausible yet challenging situation, we
select the model parameters around a phase transition point
displaying large fluctuations.

To find such conditions, we employed path-integral methods
to solve the asymmetric SK model (Supplementary Note 6). We
find that the stationary solution of the asymmetric model displays
for our choice of parameters a non-equilibrium analogue of a
critical point for a ferromagnetic phase transition, which takes
place at βc ≈ 1.1108 in thermodynamic limit (see Supplementary
Note 6, Supplementary Fig. 1). The uniformly distributed bias
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terms H shift the phase transition point from β= 1 obtained at
H= 0. By simulation of the finite size systems, we confirmed that
the maximum fluctuations in the model are found near the
theoretical βc, which shows maximal covariance values (see
Supplementary Note 6, Supplementary Fig. 2).

Fluctuations of a system are generally expected to be
maximized at a critical phase transition19. In addition, entropy
production (a signature of time irreversibility) has been suggested
as an indicator of phase transitions. For example, it presents a
peak at the transition point of a continuous phase transition in a
non-equilibrium Curie-Weiss Ising model with oscillatory field50

and some instances of mean-field majority vote models51,52. We
found that the entropy production of the kinetic Ising system is
also maximized around βc (discussed later, see also Methods for
its derivation).

Forward Ising problem. We examine the performance of the
different Plefka expansions in predicting the evolution of an asym-
metric SK model of size N= 512 with randomH and J. To study the
nonstationary transient dynamics of the model, we start from s0= 1
(all elements set to 1 at t= 0) and recursively update its state for
T= 128 steps. We repeated this stochastic simulation for R= 106

trials for 21 values of β in the range [0.7βc, 1.3βc] (except for the
reconstruction of the phase transition where we used R= 105 and
201 values of β in the same range). Using the R samples, we com-
puted the statistical moments and cumulants of the system, mt, Ct,
and Dt at each time step. We then computed their averages over the
system units, i.e., hmi;tii, hCik;tiik and hDil;tiil , where the angle
bracket denotes average over indices of its subscript.

The black solid lines in Fig. 3A–C display nonstationary
dynamics of these averaged statistics from t= 0,…, 128,
simulated by the original model at β ¼ βc. In comparison,
color lines display these statistics predicted by the family of Plefka
approximations that are recursively computed using the obtained
equations, starting from the initial statem0= 1, C0= 0 and D0=
0. We observe that although the recursive application of all the
approximation methods provides good predictions for the
transient dynamics of the mean activation rates mt until its
convergence (Fig. 3A), the predictions using Plefka[t] and
especially the proposed Plefka2[t] approximations are closer to
the true dynamics than the others. Evolution of the mean equal-
time and time-delayed correlations Ct,Dt is precisely captured
only by our new method Plefka2[t]. In contrast, Plefka[t]
overestimates correlations while Plefka[t− 1] and Plefka[t− 1,
t] underestimate correlations.

Performance of the methods in predicting individual activation
rates and correlations are displayed in Fig. 3D–F by comparing
vectors mt, Ct and Dt at the last time step (t= 128) of the original
model (o superscript) and those of the Plefka approximations (p
superscript). For activation rates mt, the proposed Plefka2[t] and
Plefka[t] perform slightly better than the others (see also Fig. 3A).
While being overestimated by Plefka[t], underestimated moder-
ately by Plefka[t− 1] and significantly by Plefka[t− 1, t], equal-
time and time-delayed correlations Ct,Dt are best predicted by
Plefka2[t] (Fig. 3E, F).

The above results are obtained at the critical β= βc, intuitively
the most challenging point for mean-field approximations. In
order to further show that our novel approximation Plefka2[t]
systematically outperforms the others in a wider parameter range,
we repeated the analysis for different inverse temperatures β (the
same random parameters are applied for all β). Fig. 3G, H, I,
respectively, show the averaged squared errors (averaged over
time and units) of the activation rates ϵm, equal-time correlations
ϵC and delayed correlations ϵD between the original model and
approximations, averaged over units and time for 21 values of β

in the range [0.7βc, 1.3βc]. Fig. 3G–I shows that Plefka2[t]
outperforms the other methods in computing mt,Ct,Dt (with the
exception of a certain region of β > βc in which Plefka[t] is slightly
better), yielding consistently a low error bound for all values of β.
Errors of these approximations are smaller when the system is
away from βc.

Inverse Ising problem. We apply the approximation methods to
the inverse Ising problem by using the data generated above for
the trajectory of T= 128 steps and R= 106 trials to infer the
parameters of the model, H and J. The model parameters are
estimated by the Boltzmann learning method under the max-
imum likelihood principle: H and J are updated to minimize the
differences between the average rates mt or delayed correlations
Dt of the original data and the model approximations, which can
significantly reduce computational time (see Methods). While
Boltzmann learning requires to compute the likelihood of every
point in a trajectory and every trial (RT calculations) each
iteration, we can estimate the gradient at each iteration in a one-
shot computation by applying the Plefka approximations
(Methods). At β= βc (Fig. 4A, B), we observe that the classical
Plefka[t− 1, t] approximation adds significant offset values to the
fields H and couplings J. In contrast, Plefka[t], Plefka[t− 1] and
Plefka2[t] are all precise in estimating the values of H and J.

Fig. 4C, D shows the mean squared error ϵH, ϵJ for bias terms
and couplings between the original model and the inferred values
for different β. In this case, errors are large in the estimation of J
for Plefka[t− 1, t]. In comparison, Plefka[t], Plefka[t− 1] and
Plefka2[t] work equally well even in the high fluctuation regime
(β ≈ βc). Since the inverse Ising problem is solved by applying
approximation one single time step (per iteration), it is not as
challenging as the forward problem that can accumulate errors by
recursively applying the approximations. Therefore, different
approximations other than the classical mean-field Plefka[t− 1, t]
perform equally well in this case.

Phase transition reconstruction. We have shown how different
methods perform in computing the behavior of the system (for-
ward problem) and inferring the parameters of a given network
from its activation data (inverse problem). Combining the two,
we can ask how well the methods explored here can reconstruct
the behavior of a system from data, potentially exploring beha-
viors under different conditions than the recorded data.

First, in Fig. 5A–C we examine how the different approxima-
tion methods approximate fluctuations (equal-time and time-
delayed covariances) and the entropy production (see Methods)
at t= 128 after solving the forward problem by recursively
applying the approximations for the 128 steps. As we mentioned
above, the asymmetric SK model explored here presents
maximum fluctuations and maximum entropy production
around β= βc (Supplementary Note 6, Supplementary Fig. 2).
However, we see that Plefka[t− 1, t] and Plefka[t− 1] cannot
reproduce the behavior of correlations Ct and Dt of the original
SK model around the transition point. Plefka[t] and Plefka2[t]
show much better performance in capturing the behavior of Ct

and Dt in the phase transition, although Plefka[t] overestimates
both correlations. Additionally, all the methods capture the phase
transition in entropy production, though Plefka[t] overestimates
its value around βc and Plefka2[t] is more precise than the other
methods.

Next, we combine the forward and inverse Ising problem and try
to reproduce the transition in the asymmetric SK model in the
models inferred from the data. We first take the values of H, J from
solving the inverse problem from the data sampled at β= βc, and
next we solve again the forward problem with those estimated
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parameters rescaled by a new inverse temperature ~β. The results for
the correlations (Fig. 5D, E) show that in this case Plefka[t− 1, t]
works badly, not being able to capture the transition. Plefka[t− 1]
shows similar performances as in the forward problem, and Plefka
[t] and Plefka2[t] have a similar behavior, underestimating

fluctuations slightly. When we analyze entropy production of the
system (Fig. 5F), we find that Plefka2[t] exhibits better performance
with a high precision, with Plefka[t− 1] slightly overestimating it,
Plefka[t] underestimating it, and Plefka[t− 1, t] not capturing the
phase transition. Overall, the results above suggest that Plefka2[t] is

Fig. 3 Forward Ising problem. Top: Evolution of average activation rates (magnetizations) (A), equal-time correlations (B), and delayed correlations (C)
found by different mean-field methods for β= βc. Middle: Comparison of the activation rates (D), equal-time correlations (E), and delayed correlations (F)
found by the different Plefka approximations (ordinate, p superscript) with the original values (abscissa, o superscript) for β= βc and t= 128. Black lines
represent the identity line. Bottom: Average squared error of the magnetizations ϵm ¼ hhðmo

i;t �mp
i;tÞ2iiit (G), equal-time correlations ϵC ¼

hhðCo
ik;t � Cp

ik;tÞ
2i

ik
i
t
(H), and delayed correlations ϵD ¼ hhðDo

ik;t � Dp
ik;tÞ

2i
il
i
t
(I) for 21 values of β in the range [0.7βc, 1.3βc].

Fig. 4 Inverse Ising problem. Top: Inferred external fields (A) and couplings (B) found by different mean-field models plotted versus the real ones for β=
βc. Black lines represent the identity line. Bottom: Average squared error of inferred external fields ϵH ¼ hðHo

i � Hp
i Þ2ii (C) and couplings ϵJ ¼ hðJoij � JpijÞ2iij

(D) for 21 values of β in the range [0.7βc, 1.3βc].
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better suited to identify non-equilibrium phase transitions in
models reconstructed from experimental data.

Discussion
We have proposed a framework that unifies different mean-field
approximations of the evolving statistical properties of non-
equilibrium Ising models. This allows us to derive approxima-
tions premised on specific assumptions about the correlation
structure of the system previously proposed in the literature.
Furthermore, using our framework we derive a new approxima-
tion (Plefka2[t]) using atypical assumptions for mean-field
methods, i.e., the maintenance of pairwise correlations in the
system. This new pairwise approximation outperforms existing
ones for approximating the behavior of an asymmetric SK model
near the non-equilibrium equivalent of a ferromagnetic phase
transition (see Supplementary Note 6), where classical mean-field
approximations face problems. This shows that the proposed
methods are useful tools to analyze large-scale, non-equilibrium
dynamics near critical regimes expected for biological and social
systems. However, we note that low-temperature spin phases
(e.g., the spin-glass phase in symmetric models) also impose
limitations on mean-field approximations32,41, which could be
further explored with methods like the ones presented here.

The generality of this framework allows us to picture other
approximations with atypical assumptions. For example, the
Sessak-Monasson expansion53 for an equilibrium Ising model
assumes a linear relation between α and spin correlations. An
equivalent equilibrium expansion could use an effective field h(α)
nonlinearly dependent on α, satisfying linear Ct(α)= αCt or
Dt(α)= αDt relations. As another extension, Plefka2[t] could
incorporate higher-order interactions. As Eqs. (43) and (52) are
each equivalent to two mean-field approximations with sl,t−1= ±
1 respectively, a generalized PlefkaM[t] would involve 2M−1

equations, increasing accuracy but also computational costs. In
general, reference models Q(st) set coupling parameters of the
model to zero at some steps of its dynamics. Other parameters
(e.g., fields) are either free parameters fitted as m-projection from
P(st), or preserved to their original value (see Supplementary
Note 7 for comparing free and fixed parameters of each model).

Augmenting accuracy by increasing parameters often involves a
computational cost. As a practical guideline for using each
method, Supplementary Note 7 compares their precision and
computation time in the forward and inverse problems (see also
Supplementary Figs. 3 and 4).

Asides from its theoretical implications, our unified framework
offers analysis tools for diverse data-driven research fields. In
neuroscience, it has been popular to study the activity of
ensembles of neurons by inferring an equilibrium Ising model
with homogeneous (fixed) parameters23 or inhomogeneous
(time-dependent) parameters25,54 from empirical data. Extended
analyses based on the equilibrium model have reported that
neurons operate near a critical regime5,6. However, studies of
non-equilibrium dynamics in neural spike trains are scarce7,26,55,
partly due to the lack of systematic methods for analysing large-
scale non-equilibrium data from neurons exhibiting large fluc-
tuations. The proposed pairwise model Plefka2[t] is suitable for
simulating such network activities, being more accurate than
previous methods in predicting the network evolution at criti-
cality (Fig. 3) and in testing if the system is near the maximally
fluctuating regime (Fig. 5). In particular, application of our
methods for computing entropy production in non-equilibrium
systems could provide tools for characterizing the non-
equilibrium dynamics of neural systems56.

In summary, a unified framework of mean-field theories offers
a systematic way to construct suitable mean-field methods in
accordance with the statistical properties of the systems
researchers wish to uncover. This is expected to foster a variety of
tools to analyze large-scale non-equilibrium systems in physical,
biological, and social systems.

Methods
Boltzmann learning in the inverse Ising problem. Let Srt ¼ fSr1;t ; Sr2;t ; ¼ ; SrN;tg
for t= 1,…, T be observed states of a process described by Eq. (1) at the r-th trial
(r= 1,…, R). We also define S1:T to represent the processes from all trials. The
inverse Ising problem consists in inferring the external fields H and couplings J of
the system. These parameters can be estimated by maximizing the log-likelihood
‘(S1:T) of the observed states under the model:

‘ðS1:T Þ ¼ log
YT
t¼1

YR
r¼1

PðSrt jSrt�1Þ ¼
X
t

X
r

X
i

Sri;th
r
i;t � log 2 cosh hri;t

� �
; ð55Þ

Fig. 5 Reconstructing phase transition of kinetic Ising systems. Top: Average of the Ising model’s equal-time correlations (A), delayed correlations (B),
and entropy production (shown as an exponential for better presentation of its maximum) (C), at the last step t= 128 found by different mean-field
methods for β= βc. Bottom (D–F): The same as above using the reconstructed network H, J by solving the inverse Ising problem at β= βc and multiplying a
fictitious inverse temperature ~β to the estimated parameters. The stars are marked at the values of ~β that yield maximum fluctuations or maximum entropy
production.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20890-5

10 NATURE COMMUNICATIONS |         (2021) 12:1197 | https://doi.org/10.1038/s41467-021-20890-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with hri;t ¼ Hi þ
P

jJ ijS
r
j;t�1. The learning steps are obtained as:

∂‘ðS1:T Þ
∂Hi

¼ RTðhSri;tir;t � htanh hri;tir;tÞ; ð56Þ

∂‘ðS1:T Þ
∂Jil

¼ RTðhSri;tSrl;t�1ir;t � htanh hri;tSr;tl;t�1ir;tÞ; ð57Þ

where 〈⋅〉r denotes average over trials. We solve the inverse Ising problem
by applying these equations as a gradient ascent rule adjusting H and J. The
second terms of Eqs. (56) and (57) need to be computed at every iteration,
thus the computational cost grows linearly with R × T. However, the use of
mean-field approximations can significantly reduce the cost when a large
number of samples R and time bins T are used to correctly estimate
activation rates and correlations in large networks. Here the second terms can
be written as

htanh hri;tir;t ¼
X
s;~s

siPðsj~sÞPð~sÞ ¼ mi; ð58Þ

htanh hri;tSrl;t�1ir;t ¼
X
s;~s

si~slPðsj~sÞPð~sÞ ¼ Dil þmi ~ml; ð59Þ

where Pð~sÞ ¼ 1
RT

P
r;tδð~s; Srt Þ is the empirical distribution averaged over trials

and trajectories (with δ being a Kronecker delta) and ~ml is the average activation
rate computed from the empirical distribution. Pðsj~sÞ is defined as Eq. (1). We
then approximate mi and Dil using the mean-field equations. Note that when we
apply the mean-field equations, we replaced all statistics related to the previous
step with those computed by the empirical distribution. By applying the mean-
field methods, we reduced the computation of R trials of trajectories of length T
into a single computation (instead of RT calculations). In our numerical tests,
gradient ascent was executed using learning coefficients
ηH ¼ 0:1=RT; ηJ ¼ 1=ðRT ffiffiffiffi

N
p Þ, starting from H= 0, J= 0.

Entropy production of the kinetic Ising model. The entropy production is
defined as the KL divergence between the forward and backward path, quantifying
the irreversibility of the system17,55,57:

hσti ¼
1
2

X
st ;st�1

ðPðst�1ÞPðst jst�1Þ � PðstÞPBðst�1jstÞÞ log
Pðst jst�1ÞPðst�1Þ
PBðst�1jstÞPðstÞ

: ð60Þ

where PB(st−1∣st) is a probability of the backward trajectory defined as in Eq. (1)
but switching st and st−1. Assuming a non-equilibrium steady state, where P(st)=
P(st−1), the entropy production of the kinetic Ising system is computed as:

hσti ¼
X
st ;st�1

Pðst ; st�1Þ
X
i

Hiðsi;t � si;t�1Þ
 

þ
X
ij

J ijðsi;t sj;t�1 � si;t�1sj;tÞ

� log 2 cosh Hi þ
X
j

J ijsj;t�1

 ! !
þ log 2 cosh Hi þ

X
j

J ijsj;t

 ! !!

þ log Pðst�1Þ � log PðstÞ ¼
X
ij

J ijðDij;t � Dji;tÞ ¼
X
ij

ðJ ij � J jiÞDij;t :

ð61Þ

Data availability
The datasets generated and analysed in this study are available under CC BY license at
Zenodo https://zenodo.org/record/431898358 (https://doi.org/10.5281/zenodo.4318983).

Code availability
The source code for implementing the methods and results in this work is available
under GPL license at GitHub https://github.com/MiguelAguilera/kinetic-Plefka-
expansions59 (https://doi.org/10.5281/zenodo.4357634).
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