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ABSTRACT 

In this paper, we study for the first time the effect of hard confinement on the 

isodimorphic crystallization of random copolyesters. A series of poly(butylene succinate-ran-

caprolactone) samples encompassing the entire composition range were successfully infiltrated 

into nanoporous alumina templates (AAO) with a fixed diameter of 100 nm. Samples were 

characterized using scanning electron microscopy (SEM), Raman spectroscopy, Fourier 

transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and grazing-

incidence wide-angle X-ray diffraction (GIWAXS). FTIR proved that PBS-rich nanofibers 

showed interactions between the copolyester chains and the walls of the AAO templates; 

however, the PCL-rich nanofibers did not show any interaction with the AAO walls. All 

infiltrated samples experienced a very large decrease in crystallization temperature, as expected, 

since the level of confinement is large enough to suppress heterogeneous nucleation. In spite of 

this, all copolymers were able to crystallize, regardless of composition. Additionally, when Tc or 

Tm are plotted versus copolymer composition a clear pseudo-eutectic point is observed. These 

results indicate that the isodimorphic behavior of the copolyesters is maintained under hard 

confinement. Infiltrated PCL undergoes homogeneous nucleation (inside the nanopore volume) 

as expected by the lack of interaction with the AAO walls. On the other hand, PBS exhibited a 

surface nucleation mechanism triggered by the interactions with the AAO walls. In the case of 

random copolymers, all PCL-rich copolymers nucleated homogeneously. However, in the case 

of PBS-rich copolymers, the nucleation gradually changed from surface-induced nucleation for 

neat PBS to homogeneous nucleation, as PCL concentration in the copolymers increased and the 

interactions of PBS chains with the AAO walls are diluted. The confinement under 100 nm 

nanopores did not change the orientation of the PBS or PCL phase crystals, which kept their 

chain direction perpendicular to the pore axis, as demonstrated by GIWAXS. 

 

Keywords: biocopolyesters; confinement; isodimorphism; homogeneous nucleation; 

crystallization. 
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INTRODUCTION 

One-dimensional (1D) polymers are an interesting area in the nanotechnology field1-3. A 

number of nano-molding techniques have been established to prepare 1D nanostructures. Among 

them, one of the most successful, low-cost and fast-manufacturing methods is polymer 

infiltration into inorganic templates. Anodic aluminum oxide (AAO) templates have become a 

research hotspot because of their advantages of inexpensive, high thermal and mechanical 

stability, and promising potential for scalable production4-10. Polymer infiltration within AAO 

nanoporous templates is an excellent strategy for nano-patterning3,11. 

The interest in employing semi-crystalline polymers in nanotechnology applications has 

been growing over the last few decades4,12-23. The main interest of confining semi-crystalline 

polymers is to create very small and isolated microdomains, which can be easily achieved by 

employing porous AAO templates. Many works have shown that polymer confinement 

contributes to many unique features of their structure and properties18,24-30. In terms of semi-

crystalline polymers, confinement contributes to a drastic depression in crystallization 

temperature18,20,25, a drop in crystallinity24,31, preferential orientation of crystals20,25,29,32-34, 

changes in crystallization kinetics35-37, polymorphism and crystal transitions33,37-42. To date, great 

advances have been achieved on the understanding of the crystallization behavior of 

homopolymers under confinement; however, the study of random copolymers under 

confinement is still rare. 

Random biodegradable copolymers have been recently studied for their unique 

crystallization behavior43. Multiple features can be found in random copolymers with two 

crystallizable components. Two crystal structures can be formed in isodimorphic random 
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copolyesters depending on their composition. The thermal properties indicate a pseudo-eutectic 

region, in which the two components of the copolymer have the same chance to crystallize. The 

fact is that this kind of copolymers crystallizes over the whole composition range, making their 

properties tunable just by changing the composition or even the thermal history of such 

copolyesters (e.g., changing the thermal history at the pseudo-eutectic point)44-49. 

Several examples of isodimorphic and isomorphic copolyesters were reported and 

discussed in the recent reviews of Pérez et al.50 and Pan et al.51. Most of them are based on 

polyesters and poly(hydroxialcanoates), such as P(HS-ran-HA)52, P(BS-ran-HS)53, P(BS-ran-

BAz)54, P(BS-ran-BA)45, P(BL-ran-CL)55, P(CL-ran-DL)56. In our previous works57,58, we have 

synthesized high Mw PBS-ran-PCL copolyesters and studied their morphological and thermal 

characterization in detail. We found that these random copolyesters show an isodimorphic 

behavior. It means that the morphology and properties of these copolyesters can be tailored by 

varying their composition, molecular weight or even their thermal history 50,58.  

We have previously shown that at the pseudo-eutectic point, two crystalline phases are 

usually form, while compositions away from the pseudo-eutectic form a single crystalline phase. 

This double crystallization at the pseudo-eutectic compositions strongly depends on cooling rates 

or isothermal crystallization temperature45,57,58. Since the confinement provides a well-defined 

way of controlling the crystallization kinetics, it is interesting to investigate how the 

isodimorphic crystallization behavior changes under confinement. In this work, we studied, for 

the first time, the isodimorphic crystallization behavior of poly(butylene succinate-ran-

caprolactone) random copolymers under confinement within nanoporous alumina templates 

(AAO). The infiltration of the polymer was studied by Raman spectroscopy and SEM. FTIR was 

applied to study the interaction between the polymer and the AAO walls. The crystallization and 
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melting behavior were studied by DSC. The morphology and crystalline structure was studied 

by SEM, and GIWAXS. 

EXPERIMENTAL  

Materials and methods 

Synthesis of PBS-ran-PCL copolyesters. The PBS-ran-PCL copolyesters used in this 

study, were synthesized by a two-stage melt-copolymerization reaction that is described in our 

previous work in full detail58. In brief, we have done transesterification/ROP reactions of 

dimethyl succinate (DMS), 1,4-butanediol (BD), and ɛ-caprolactone (CL) at 160 ºC under 

nitrogen flow. Polycondensation reactions were completed at 190 ºC and under vacuum. The 

copolyesters are denoted in an abbreviated form, BSxCLy, subscripts x and y indicating the molar 

ratio of each component that were determined by 1H NMR. Table SI-1 shows molar composition 

of each copolyester, number-average molecular weight and glass transition temperature 

(extracted from non-isothermal DSC measurements) of the isodimorphic random copolyesters 

under this study. 

Manufacturing the nanostructures (nano-molding) using AAO templates. The 

infiltration of PBS-ran-PCL copolymers was performed applying the melt-wetting technique 

under vacuum. The AAO templates with a diameter of 100 nm were purchased from Shanghai 

Shangmu Technology Co. Ltd. Polymer films made from copolyesters were placed on top of the 

AAO template surface and then infiltrated by heating them to 40 °C above the corresponding 

melting point of each copolyester under nitrogen flow. After the melt-infiltration process for 12h, 

the samples were cleaned in order to eliminate any polymeric residue from the AAO surface in 

four steps, as follows: 1. Removing the residue bulk polymer from the top surface of the template 
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using a sharp blade at ambient temperature, 2. Then, samples were gently cleaned with a gauze 

at a temperature above the corresponding melting temperature of the copolymer, 3. In this step, 

the sample’s surface was softly polished using sandpaper (180 grit), 4. To complete the cleaning 

process, the top surface of the templates was wiped off with chloroform. 

Characterization Methods 

Scanning Electron Microscopy (SEM). A Philips XL-30 ESEM microscope was used 

to characterize the morphology of the obtained polyester nanofibers. To observe the polymeric 

nanofibers inside the AAO templates by SEM, the templates filled with copolymer were 

fractured in liquid nitrogen.  

Raman and Fourier Transformed Infrared (FTIR) Spectroscopies. A Raman 

Microscope (Renishaw plc, Wottonunder-Edge, UK) attached to a confocal microscope and 

fitted with a Peltier-cooled charge-coupled device (CCD) detector and a spectrometer of 785 nm 

near-infrared diode laser was employed. All spectra were analyzed by Renishaw WiRE software. 

The spectral range was between 4000−500 cm-1 with 4 cm-1 spectral resolution. To study the 

polymeric nanofibers after the infiltration process, samples were studied by FTIR using a 

PerkinElmer Spectrum One with an attenuated total reflectance (ATR) attachment. 

Characterization of the Crystalline Structure  

Crystallization Protocol. Differential scanning calorimetry (DSC) helped us to examine 

the non-isothermal crystallization behavior of both bulk and infiltrated polymers using a DSC-

Q2000, TA calorimeter under a nitrogen atmosphere flow calibrated with Indium. 

Approximately 5 mg of bulk polyester or 20 mg of confined polyester inside AAO were placed 

and sealed well in standard aluminum pans. First, samples were held at 30 °C above their 
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corresponding melting point for 3 min to erase thermal history. Then, the samples were cooled 

down to -100 °C at 10 °C/min and held at -100 ºC for 1 min. Subsequently, they were heated up 

to 30 ºC above their corresponding melting points. All infiltrated copolyester samples were 

measured inside the AAO template with its aluminum base. In this paper, we use the exothermic 

and endothermic peaks, corresponding to the first order transitions determined by non-isothermal 

DSC, as the characteristic crystallization (Tc) and melting (Tm) temperatures of the samples. 

To determine the glass transition temperature (Tg), samples were heated up to 30 °C 

above their melting point. Then, they were quenched to -90 °C at a cooling rate of approximately 

160 ºC/min. Finally, the DSC heating scan was recorded at 20 °C/min. The Tg values were 

extracted from the midpoint of the jump in heat capacity. 

X-Ray Scattering. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns 

were measured with a Xeuss 2.0 WAXS/SAXS system (Xenocs SA, France). The instrument 

was equipped with a Cu Kα source and a two-dimensional detector (Pilatus 300K, DECTRIS, 

Swiss). The wavelength of the X-ray radiation was 1.5418 Å. The X-ray beam was incident on 

the AAO surface with a ~3° angle. The exposure time was 20 min for the infiltrated samples and 

5 min for the bulk sample. Intensity profiles were obtained by averaging the 2D patterns. All 

samples shared the same thermal history: (I) erasing thermal history at 30 °C above their 

corresponding melting point; (II) Cooling down to -100 °C at 5 °C /min. After thermal treatment, 

all samples were kept at ambient temperature.  
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RESULTS 

SEM 

Commercial AAO templates with a pore diameter of 100 nm and a length of 100 µm 

were used as closed end-pore templates. Figure 1 shows SEM images of broken AAO templates 

after the infiltration of the PBS homopolymer (a), the BS78CL22 random copolyester (b) and the 

PCL homopolymer (c). The SEM images clearly demonstrate that nanofiber structures were 

formed for all the samples. The diameter of the nanofibers is approximately 100 nm (see Figure 

SI-1 for a closer view), which agrees well with the diameter of the empty templates. 
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Figure 1.  SEM micrographs of PBS homopolymer (a), BS78CL22 copolyester (b) and 
PCL homopolymer (c) nanofibers formed within the AAO templates after breaking the template 
using liquid nitrogen. 

 

It should be noted that due to the lower rigidity of nanofibers in the compositions close 

to the pseudo-eutectic point, it was hard to physically extract nanofibers of AAO templates by 

breaking the template in liquid nitrogen. As an example, Figures 2a and 2b show top and cross-

(b) 

(c) 

(a) 
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section views of BS45CL55 that show that most pores are completely filled with polymer. In 

addition, there is an acceptable copolymer distribution along the pores (see Figure 2b). Figure 

SI-2 shows another example of an infiltrated copolymer near to the pseudo-eutectic composition, 

the BS55CL45 sample, which was also successfully infiltrated within the alumina nanotubes.  

  

Figure 2. SEM micrographs of (a) the top-surface view of the infiltrated BS45CL55 
copolymer inside the AAO template and (b) the cross-sectional view of the infiltrated BS45CL55 
inside the AAO template. 

 

Raman Spectroscopy 

PBS and selected PBS-rich copolyesters in bulk and within AAO templates were 

examined by Raman spectroscopy to verify the infiltration penetration along the nanopores. 

Generally, the detected Raman spectra of bulk samples show less noise than infiltrated samples.  

(a) (b) 
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Figure 3. Normalized Raman spectra of infiltrated BS78CL22 (a) and BS45CL55 (b) 
samples within AAO templates along different depths. 
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Figures 3a and 3b show the normalized (by depth) Raman spectra of selected infiltrated 

samples: BS78CL22 and BS45CL55 compositions inside AAO templates, at different depths of up 

to 70 µm. The bands do not change with infiltration depth. This confirms that the PBS 

homopolymer and both copolymers infiltrated homogeneously within the nanocylinders. 

Raman spectra of neat infiltrated BS78CL22 and BS45CL55 samples show the main specific 

bond vibrations of the PBS homopolymer, which, according to literature are 59: around 1723 cm-

1, carbonyl bands stretching; at 1447 cm-1, CH2 in-plane bending; around 1256 cm-1, CH2 groups 

asymmetric stretching; and around 1080 cm-1, stretching of the C-O bands.  

The SEM images and the Raman results of the nanofibers clearly verify that the 

homopolymers and copolymers were completely infiltrated into the nanopores up to a depth of 

70 µm. The templates we employed had 100 µm in depth, but complete filling was also 

qualitatively confirmed by alumina dissolution and later observing the nanofibers by SEM, 

although not shown here. 

FT-IR Spectroscopy  

In Figure 4, we show the FT-IR spectra of bulk and infiltrated homopolymers and two 

PBS-rich copolyesters (BS78CL22 and BS45CL55) in the 4000-500 cm−1 region. We can observe 

a decrease in band intensities of the infiltrated samples.  

The infiltrated and bulk samples of the PBS-rich copolyesters (Figure 4a-c) exhibit 

characteristic bands of hydrocarbons groups at 2959 cm-1 and the carbonyl group vibrations at 

1713 and 1738 cm-1 that are similar to those of neat PBS. Regarding the IR spectra of the PCL 

homopolymer (Figure 4d), we can identify the main strong bands such as the carbonyl stretching 

mode at 1722 cm-1, the asymmetric CH2 stretching at 2935 cm-1, the symmetric CH2 stretching 

https://www.sciencedirect.com/science/article/pii/S002197970400102X#FIG001
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at 2856, the carbonyl stretching at 1718 cm-1 and the  symmetric C-O-C stretching located at 

1173 cm-1 59. 
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Figure 4. Infrared spectra of (a) PBS and (b) BS78CL22, (c) BS45CL55 and (d) PCL in bulk 
and infiltrated (nanofiber) within AAO 100 nm templates. 

 

In addition, all PBS-rich copolyesters and PCL samples show a new band at around 1571 

cm−1, which arose from the stretching vibrations of carboxylic acid groups (COO−) produced due 

to the existence of water molecules (released from the hydrolysis of ester groups) inside the 

nanopores60,61.  
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One of the main changes observed in the IR spectra concerning bulk and infiltrated PBS-

rich copolyesters is located around the 1200-800 cm−1 region. In the magnified area plotted as 

an inset in Figure 4a, four absorption bands associated to C−O single bonds can be detected for 

PBS homopolymer and PBS-rich copolymers. The band at 917 cm−1 can be assigned to C−OH 

bending vibrations and the bands at 987 and 956 cm−1 are due to the O−C stretching and vibration 

of ester groups. The signal at 1044 cm−1 corresponds to the stretching vibration of C−C−O 

groups. The intensity ratios of the C−C−O stretching and C−OH vibration peak to the intensity 

of the O−C stretching peak in the nanofibers are higher than those in bulk samples. Moreover, 

the intensity ratio of the O−C−C stretching band to the intensity of the C−OH bending vibration 

is lower in the nanofibers than in the bulk sample. Similar results were obtained in our previous 

work for PBA and PBS polyesters38. These mentioned changes verify that confinement has an 

effect on the IR spectra. Actually, a smaller share of O−C bands was observed, which might 

possibly come from the interactions of PBS polymeric chains with the AAO walls.  

In contrast, for the PCL homopolymer (see Figure 4d), the intensities of the peaks 

belonging to the C−O single bands located in the 1300-900 region, do not change in the confined 

sample, as compared to the bulk PCL.  

The FTIR results demonstrate that for PBS-rich copolyesters nanofibers, there are new 

interactions between the polymer chains and the walls of the AAO templates, that are also present 

in the infiltrated PBS homopolymer. On the other hand, both PCL and PCL-rich copolymers do 

not show any detectable interaction with the AAO walls according to our FTIR results.   

Figure 5 shows magnified IR spectra for the carbonyl stretching group bands of PBS-rich 

copolyesters at 1730 cm-1 that relate to the amorphous phase, and at 1715 cm-1 that correspond 

to the crystalline phase62. The ratio of the intensities of the amorphous phase band to the 
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crystalline phase band increases when the CL content in the copolymer increases.  Therefore, the 

crystallinity degree decreases with comonomer content, as verified before by  
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Figure 5. Infrared spectra of the bulk and infiltrated (nanofiber) PBS and PBS-
rich copolyesters in the region of carbonyl group vibration for (a) PBS, (b) BS78CL22, 
and (c) BS45CL55. 
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DSC results in our previous works57,58. Moreover, the ratio of the amorphous phase band 

intensity to the crystalline phase band intensity increases under confinement, which also proves 

that the crystallinity degree decreases when the crystallization occurs inside the nanopores in all 

cases. 

Non-Isothermal Crystallization 

DSC scans of selected bulk samples and infiltrated ones inside 100 nm AAO templates 

are shown in Figure 6 (for PBS and PBS-rich copolyesters) and Figure 7 (for PCL and PCL-rich 

copolyesters). DSC scans for the rest of PBS-rich samples are shown in Figure SI-3. Data 

extracted from DSC curves are collected in Table SI-2.  

Figures 6 and 7 show that during the cooling runs, bulk copolyesters exhibit 

crystallization peaks that depend on composition, as we have previously reported and analyzed 

in detail57,58,63. The novel results are those of infiltrated samples, in which a single crystallization 

peak can be generally observed at much lower temperatures than that detected in their 

corresponding bulk samples. These results indicate that all infiltrated polyesters and copolyesters 

are fully isolated within the nanopores without any interconnections because they do not display 

any crystallization exotherms at temperatures similar to the crystallization temperature of the 

corresponding bulk samples or any fractionated crystallization with multiple crystallization 

peaks 20-25,44,46,47.  
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Figure 6. DSC cooling scans from the melt and subsequent heating scans for the 
indicated bulk and infiltrated (nanofibers) PBS homopolymer and PBS-rich copolyesters. 
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There are several orders of magnitude more nanopore cavities in the AAO templates 

(typically 1012 pores/cm3) than heterogeneities in the bulk material (of the order of 106-108 

heterogeneities/cm3) before infiltration. Therefore, statistically the nanopores can be considered 

as heterogeneities free. Hence, the nucleation will proceed either by nucleation at the pore walls 

(surface nucleation) or by homogeneous nucleation inside the nanopore volume17,20,27,64. 

Some interesting peculiarities can be observed in Figure 6. Neat PBS in the bulk state 

(Figure 6a) shows a single crystallization exotherm upon cooling from the melt. Upon 

subsequent heating, the Tg can be observed at around -33 ºC, followed by a small but sharp cold 

crystallization exotherm just before the melting peak, a typical behavior of neat PBS.  

The infiltrated PBS sample (Figure 6a) needs a much higher supercooling to crystallize 

(to be discussed below) and a melting behavior that is quite similar to that of the bulk sample 

preceded by a small cold crystallization exotherm. From the copolyester samples whose DSC 

scans are shown in Figure 6, two exhibit a rather similar behavior (see Figures 6b and 6c), as 

they display a single crystallization exotherm at very high supercooling (their peak 

crystallization temperatures are below -5 ºC) and then upon subsequent heating an extremely low 

temperature cold crystallization exotherm (in the same temperature range as the crystallization 

from the melt, i.e., below -5 ºC) very different to that of infiltrated neat PBS. In these samples, 

the contents of PBS in the copolymers are 91% (Figure 6b) and 78% (Figure 6c). The 

corresponding melting points of the infiltrated samples are always slightly lower than those of 

their bulk counterparts. 
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There is a special case shown in Figure 6 (see Figure 6d) for the copolyester whose 

composition coincides with the pseudo-eutectic point (i.e., BS45CL55), as this is the only sample 

where both PBS and PCL components can crystallize. This is shown in the plot of Figure 8, 

where Tc and Tm values are represented as a function of composition. The dashed vertical line in 

Figure 8a (or Figure 8b) shows the location of the pseudo-eutectic composition. To the left of 

this line, only PBS-rich phase crystals are formed, while to the right of this line PCL-rich phase 

crystals develop with crystal structures closely resembling PBS and PCL unit cells57,58,63. At the 

pseudo-eutectic composition, two crystalline phases can form and co-exist, i.e., PBS-rich and 

PCL-rich crystalline phases.  

Going back to Figure 6d, the DSC scan (black solid line) for the bulk BS45CL55 sample 

upon cooling from the melt clearly shows two crystallization peaks (whose Tc values appear as 

two data points in Figure 8a), the first one for the PBS-rich phase at higher temperatures and the 

second one for the PCL-rich phase at lower temperatures.  

The subsequent heating DSC scan (solid black line) in Figure 6d shows the following 

succession of thermal transitions upon increasing temperature: (a) an enthalpic heat capacity 

endothermic jump associated with the single Tg of this copolymer (at around -48 ºC); (b) a cold 

crystallization exotherm (at -16 ºC) of the PCL-rich phase; (c) a sharp melting endotherm 

corresponding mostly to the fusion of PCL-rich phase crystals with some overlap of the cold 

crystallization of the PBS-rich phase (whose sharp exothermic peak can be seen just after the 

melting peak of the PCL-rich phase crystals at around 13 ºC) and (d) the melting peak of the 

PBS-rich phase crystals at around 49 ºC. 
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In the same Figure 6d, but plotted in red lines, the DSC traces corresponding to the 

infiltrated BS45CL55 sample are shown. In the cooling DSC run, only one crystallization 

exotherm whose peak value is at approximately -41 ºC can be observed. In this single exotherm 

both phases crystallize coincidentally, as the subsequent heating run shows the two well defined 

melting endotherms corresponding to the fusion of PCL-rich phase and PBS-rich phase crystals.

Figure 7 shows results before and after infiltration for PCL homopolymer and PCL-rich 

copolyester samples. In this case, the behavior of all samples is very similar. Upon infiltration, 

all materials tend to crystallize at much lower temperatures (-40 ºC for the PCL homopolymer 

and lower temperatures for the copolymers) than in the corresponding bulk samples. In the 

case of their melting behavior, a slight decrease in melting points is observed for infiltrated 

samples. 

As has been reported before, when the crystallization temperature is quite close to the 

glass transition temperature (Tg), the nucleation is almost certainly homogeneous 19,27,28,65. In 

contrast, if a higher supercooling is needed for the crystallization of a confined polymer, as 

compared to the bulk polymer, but at substantially higher temperatures than the Tg value, 

surface-induced nucleation possibly controls the nucleation mechanism inside the nanopores. 

The Tc-Tg difference value in this work is therefore an indication of the relevant changes in 

nucleation mechanisms. The results presented in Figures 6 and 7 indicate that PBS-rich and 

PCL-rich copolyesters exhibit two different nucleation mechanisms, as explained in detail 

below.  

The peak crystallization temperatures of infiltrated and bulk samples are plotted as a 

function of composition (expressed as mol% of CL units in the copolymer) in Figure 8a. The 
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large gap in peak crystallization temperature, Tc, between bulk and infiltrated samples 

demonstrates quantitatively the much larger supercooling (i.e., between 20 and 70 ºC 

depending on composition) needed to crystallize the infiltrated samples in AAO nanopores.  
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Figure 8. (a) Crystallization temperature, Tc, of bulk samples (squares), crystallization 
temperature, Tc, of infiltrated samples (circles) and glass transition temperature, Tg, of bulk 
samples (stars) as a function of CL content in the copolymers. (b) melting temperature peak, 
Tm, of bulk and infiltrated samples versus CL content in the copolymers. The segmented 
vertical lines indicate the position of the pseudo-eutectic point. 

 

Figure 8 shows that both bulk and infiltrated samples exhibit a very clear pseudo-

eutectic behavior corroborating the thermodynamic origin of the isodimorphism in these PBS-

ran-PCL copolymers. In particular, when melting temperatures are examined, the behavior is 
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remarkably similar. Even though the crystallization is clearly much more difficult inside the 

nanopores and requires much higher supercoolings, the final outcome, at the unit cell level is 

the same. The trends in Tm versus composition are maintained, as the inclusion/exclusion ratio 

inside each of the PBS-rich or PCL-rich crystalline phases is still the same as in the bulk or 

inside the nanoporous confined volume. The isolated volume of the nanopores is small enough 

to impact the nucleation mechanism, but large enough so that no effect can be induced at the 

unit cell level (whose largest dimension is at least approximately two orders of magnitude 

smaller that the pore diameter). 

If we first compare the change in Tc values upon infiltration for PBS and PCL 

homopolymers, it is clear that in the PCL case, the nucleation changes from heterogeneous 

(before infiltration) to homogeneous. Before infiltration, bulk PCL crystallizes in the range 

between 36 and 19 ºC, with a peak value of Tc=29 ºC. Infiltrated PCL in Figure 7a crystallizes 

is a much wider range, from -20 ºC down to -57 ºC, with a peak value at -40 ºC. Considering 

that the Tg value of bulk PCL is -60 ºC as determined by DSC, it is clear that PCL nanofibers 

inside the AAO nanopores crystallize in a range of temperatures that reach values that approach 

vitrification temperatures. This is a signature for homogeneous nucleation inside the nanopores 

volume. The occurrence of homogeneous nucleation of PCL under confinement has been 

reported previously17,19,30,64,65. According to the FTIR results presented above (see Figures 4 

and 5), the PCL does not exhibit any interactions with the AAO pore walls, therefore, it cannot 

nucleate by a surface nucleation mechanism. Thus, the infiltrated PCL homopolymer has to 

create homogeneous nuclei by spontaneous aggregation of polymer chains inside the 

nanopores volume, a process that requires surpassing a high energy barrier, hence it needs the 

maximum possible supercooling before vitrification44,46. 
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On the other hand, the PBS homopolymer (Figure 6a) displays a different behavior. 

PBS has a Tg value of approximately -33 ºC. The bulk material crystallizes upon cooling from 

the melt in a range between 87 ºC and 60 ºC, with an exothermic peak at 70 ºC. When PBS is 

confined within the AAO nanopores, its crystallization range starts at 21 ºC down to -16 ºC, 

with a peak value of 4 ºC. Its peak crystallization value is 37 ºC higher than the Tg, while the 

lowest detected crystallization upon cooling is at 17 ºC higher than Tg. Therefore, it is more 

plausible that the nucleation in the PBS case changes from heterogeneous (before infiltration) 

to a surface-induced nucleation. The FTIR results presented above (see Figures 4 and 5) 

indicate that PBS presents interactions with the AAO walls, therefore supporting a surface 

nucleation mechanism for the infiltrated PBS homopolymer. 

Remarkably, the PBS-rich and PCL-rich copolyesters show different trends with 

increasing amounts of comonomer in Figure 8a. The trend exhibited by the values of Tc 

(crystallization peak values) as a function of composition for the infiltrated samples should be 

compared with the plotted Tg values measured by DSC in bulk samples. 

To the left of the pseudo-eutectic point in Figure 8a, where the PBS-rich copolyesters 

are located, the nucleation mechanism changes from surface nucleation, for PBS 

homopolymer, to homogeneous nucleation, for the BS45CL55 copolymer. The difference 

between the crystallization and the glass transition temperatures of BS-rich compositions 

shows that by adding CL-comonomer, the nucleation mechanism progressively turns to 

homogenous nucleation. This is probably caused by a dilution effect on the PBS chains-AAO 

walls interactions, as PCL content in the copolymers increases. For instance, the Tc value of 

the infiltrated PBS homopolymer is 37 °C above its Tg temperature, but the Tc value of the 

infiltrated composition with 34 % of CL is about 14 °C above its Tg value, and for the 
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composition at the pseudo-eutectic point, which has 55% CL content, it is only 7 °C above 

their corresponding Tg temperature. In fact, Figure 6d shows the overlap between the Tg of bulk 

BS45CL55 and the end of the crystallization exotherm for the infiltrated BS45CL55 sample. 

On the other hand, all the compositions that are rich in PCL exhibit a homogenous 

nucleation mechanism. Even though the peak crystallization temperature Tc for PCL decreases 

with PBS content in the copolymer (Figure 8a), the end of the crystallization range in all PCL 

rich samples is located around -60 ºC in Figure 7. We include a low temperature range close-

up of Figures 6 and 7 in the Supplementary Information (Figure SI-4), where the differences 

between crystallization temperature ranges and Tg values (and Tg ranges) can be clearly 

appreciated.  

Subsequent heating scans (see Figure 8b) demonstrate that the melting points of 

confined copolyesters are somewhat lower at all compositions as compared to the bulk values 

(around 3-7 °C, the large range of temperatures in the y-axis of the figures makes difficult to 

appreciate these small differences, but the values are listed in Table SI-2 of the SI). It is 

expected that the confined materials that crystallize at much lower temperatures than the bulk 

samples, form thinner lamellae that melt correspondingly at lower temperatures. 

Crystalline Structure of PBS-ran-PCL within Nanopores 

2D grazing incidence WAXS experiments were performed at ambient temperature to 

study the orientation and texture of the copolyesters crystals inside the AAO nanopores. 

Samples for GIWAXS measurements were heated to 30 ºC above their corresponding melting 

temperatures and then cooled down at 5 °C/min to allow them to crystallize. 
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Figures 9a-h show GIWAXS patterns for the bulk and infiltrated PBS-rich samples. 

There are three separate reflections for the PBS sample at q =13.9, 15.3 and 15.9 nm−1. These 

reflections have d-spacing values of 4.52, 4.11 and 3.95 Å, which can be assigned to the 

following crystal planes: (020)/(1�11), (021), and (110), respectively. For the infiltrated PBS-

rich phase, only two main reflections were detected at q = 13.8 and 15.9 nm−1 that can be 

indexed as the (020)/(1�11) and (110)/(021) reflections. Figures 10a-d show the corresponding 

1-D scattering patterns determined from the data in Figure 9. These results show that both bulk 

and infiltrated homopolymers and BS-rich copolymers crystallized in the same α form. There 

is no polymorphic transformation for the PBS crystalline phase upon infiltration. Similar 

results were observed in our previous work for PBS homopolymer infiltrated in a 70 nm AAO 

template38.   

Figures 11a-d show the GIWAXS patterns of bulk and infiltrated PCL-rich 

copolyesters at room temperature.  For the PCL bulk homopolymer, major reflections were 

observed at q = 15.1, 15.6, and 16.7 nm−1, and they correspond to d-spacing values of 4.16, 

4.02, and 3.77 Å, respectively. The corresponding 1D GIWAXS patterns are plotted in Figure 

12. The reflections of the (200), (111), and (110) planes can be observed, which can be assigned 

to the PCL orthorhombic unit cell, as reported by Chatani et al.66. We observed that the crystal 

form of PCL does not change within 100 nm nanopores as previously reported by Shi et al.64 

for confined PCL inside 100 nm AAO pores. Among the PCL-rich compositions, we could 

measure GIWAXS for the BS11CL89 sample, because this composition is the only one that is 

not molten at room temperature and it shows reflections that are very close to those of the PCL 

homopolymer (see Figures 11c-d and 12b).  
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As in the AAO template the amount of polymer is smaller and the crystallinity degree 

is poorer in all the cases, these samples show weaker intensities within the AAO templates than 

in bulk.  

 

Figure 9. 2D grazing incidence WAXS patterns for samples of (a) bulk PBS, (b) 
infiltrated PBS, (c) bulk BS91CL9, (d) infiltrated BS91CL9, (e) bulk BS78CL22, (f) infiltrated 
BS78CL22, (g) bulk BS66CL34 and (h) infiltrated BS66CL34. 
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Figure 10.  Corresponding 1D GIWAXS patterns of bulk and infiltrated (nanofibers) 
samples of (a) PBS, (b) BS91CL9, (c) BS78CL22 and (d) BS66CL34. 

 



30 
 

 

 

Figure 11.  2D WAXS patterns for samples of (a) bulk PCL, (b) infiltrated PCL, (c) 
bulk BS11CL89, and (d) infiltrated BS11CL89. 
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Figure 12. Corresponding 1D GIWAXS patterns of bulk and infiltrated (nanofibers) 
samples of (a) PCL and (b) BS11CL89. 

 

Polymers within AAO often exhibit anisotropic crystal growth during crystallization. 

The orientation depends on the kinetics of nucleation and growth29,32. The degree of anisotropy 

of PBS-rich polymer is quite low, similar to a previous study38. As shown in Figure 9, a clear 

feature of the 2D patterns of PBS-rich copolymer is the off-meridian maxima of the (110) peak 

(azimuth ~25º). The azimuthal intensity profiles of PBS-rich polymers were plotted in Figure 

SI-5. According to the unit cell parameters of PBS (a = 0.523 nm, b = 0.912 nm, c = 1.090 nm, 

and β = 123.98° 67), the angle of ~ 25º agrees with the angle between the (020) plane and (021) 

plane (26.8º). Therefore, the orientation mode of PBS-rich copolymers can be assigned as the 

(020) plane perpendicular to the pore axis.  

As for PCL-rich copolymers, since the scattering signal is weak, the assignment of the 

orientation mode is difficult. Nevertheless, the orientation of PCL has been studied extensively 

in a previous study64.  
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CONCLUSIONS 

This study demonstrated that polyester nanofibers were successfully made from PBS 

and PCL homopolymers and PBS-ran-PCL random copolymers over the entire range of 

compositions by infiltrating into AAO templates. All compositions, even at the pseudo-eutectic 

point, were able to crystallize within the nanopores. However, the crystallization temperature 

decreased significantly under confinement and both the infiltrated copolyesters and the bulk 

copolyesters showed an identical pseudo-eutectic behavior. The nucleation mechanism was 

composition-dependent, as judged by the difference between the crystallization temperature 

and the glass transition temperature. 

Interactions between PBS chains and AAO walls were identified by FTIR results, 

supporting the surface nucleation mechanism that was exhibited by neat PBS. In the case of 

PBS-rich samples, a probable shift from surface nucleation, for the PBS homopolymer, to 

homogeneous nucleation, for compositions near to the pseudo-eutectic point, was assigned. 

This shift is probably due to the progressive dilution of the PBS/AAO walls interactions in the 

copolymers, as the PCL content in the copolymers increased. In contrast, for the infiltrated 

PCL and PCL-rich copolyesters, a homogenous nucleation mechanism is more probable in all 

cases. FTIR showed that the PCL homopolymer does not show any affinity with the AAO 

walls, a result that explains the predominance of homogeneous nucleation inside the volume 

of the nanopores for PCL and PCL rich copolyesters, where only the PCL phase can crystallize.  

The crystalline modifications of the copolyesters kept unchanged after infiltration. The 

degree of anisotropy of all the samples was low, suggesting high nucleation density inside the 

nanodomains crystallized at high supercoolings. Low degrees of orientation were seen for all 
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the samples and the orientation mode of the copolyesters is very similar to that of the infiltrated 

homopolymers of dominant comonomers. 
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