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Abstract 

Although the study of melt memory has attracted much interest, the effect of 

polymer chemical structure on its origin has not been fully elucidated. In this work, 

we study melt memory effects by Differential Scanning Calorimetry employing a self-

nucleation protocol. We use homologous series of homopolymers containing different 

polar groups and different number of methylene groups in their repeating units: 

polycarbonate, polyesters, polyethers and polyamides. We show that melt memory in 

homopolymers is generally controlled by the strength of the intermolecular 

interactions. The incorporation of methylene groups reduces melt memory effects by 

decreasing the strength of segmental chain interactions, which is reflected by the 

decrease in dipolar moments and solubility parameters. This work presents for the 

first time a unified view of the melt memory effects in different homopolymers. 
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Introduction 

Polymer crystallization depends on thermal history. Temperatures well above 

the experimental melting temperature are needed to erase memory effects induced by 

previous crystallization. Once thermal history is erased, an isotropic (or 

homogeneous) melt is obtained. The crystallization temperature recorded during a 

cooling scan from the melt in a Differential Scanning Calorimetry (DSC) experiment 

will be constant, as long as the melting temperature previously applied is high 

enough. However, when this temperature is not sufficient to produce an isotropic 

melt, the crystallization process during subsequent cooling accelerates, and higher 

crystallization temperatures are obtained. This increase in crystallization temperature 

(and crystallization rate) is known as melt memory effect and it is caused by the self-

nuclei produced1-3.  

Melt memory effects have been recently reviewed4. The exact nature of self-

nuclei is still under debate. There are several hypotheses to explain this phenomenon, 

such as residual orientation of chain segments5, small crystal fragments2,6, melt 

topology effects7,8, or metastable melt states8. It has been reported in the literature that 

melt memory effects depend on: the molecular weight3,5,7,10, the self-nucleation 

time3,5,11, chain topology3,11,12, and chain confinement13-16. In the particular case of 

copolymers, melt memory depends strongly on the copolymer composition and 

segregation of non-crystallizable units7,17.  

Even though much effort has been made to elucidate the nature of self-

nuclei18-22 the study on the persistence of melt memory effects, in terms of the 

relationship between the width of the self-nucleation Domain and the chemical 

structure of the polymer (i.e., the temperature range where melt memory effects are 

detected, see below), has not been directly in focus, so far. According to the works 
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reported in the literature, poly(butylene succinate) (PBS) is one of the homopolymers 

with the widest melt memory temperature range23 (about 18 ºC), whereas polyolefins 

such as polyethylene (PE) or polypropylene (PP) show a very narrow melt memory 

temperature range7,20. Recently, the role of hydrogen bonds in the memory effect of a 

series of polyamides has been studied by Liu et al.24. The authors have shown that the 

increase in hydrogen bond density results in a stronger (wider temperature range) melt 

memory effect. The above results point towards an important role of intermolecular 

interactions in determining melt memory effect, although a detailed understanding is 

still missing. 

This work aims to determine how polymer chemical structure affects the 

temperature width of the melt memory effect, by studying homologous series of 

homopolymers containing different types of polar groups and varying their number of 

methylene units. We employ polyesters based on diacids and diols, aliphatic 

polycarbonates25, and polyethers26. Recent literature data on a series of polyamides24 

are also included, to extend the study on the role of intermolecular interactions on 

melt memory to different polymer families, and obtain a more general and unified 

view. 

Experimental Part 

Materials 

In this work several polymer families have been studied: polycarbonates, 

polyesters, polyethers and polyamides, see the chemical structure in Figure 1. Except 

for polyamides which are commercial samples, the other polymers have been 

synthetized in our laboratory following the procedures described below. 

Aliphatic polycarbonates were prepared by polycondensation following a 

previous report25. Briefly, aliphatic diol, the organocatalyst (4-dimethilaminopyridine, 

DMAP) and dimethylcarbonate (DMC) were added to a schlenk flask in a 1:0.01:2 

molar ratio respectively. The reaction was performed under vacuum. The flask was 
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first heated to 130ºC during 4 hours, and then, it was maintained at 180ºC applying a 

high vacuum and it was left overnight. The polymers obtained were purified 

dissolving the material in dichloromethane and precipitating in cold methanol. The 

characterization was consistent with literature data25. 

The polyethers were synthetized by bulk polycondensation as reported in the 

literature26 except polyethylene oxide (PAO2) which is commercial. A mixture of 

methanesulfonic acid (MSA) and 1,5,7-triazabicyclo[4.4.0.]dec-5-ene (TBD) (3 

MSA:1 TBD molar ratio) was employed as catalyst. The Schlenk flask with the 

corresponding diol and the catalyst was heated up to 130ºC during 24 h, then to 180ºC 

during 24 h and finally to 200ºC during 24 h under vacuum. The polymer was purified 

as in the previous case and the characterization was consistent with literature data13.  

The DSC results obtained with commercial polyethylene oxide (PAO2) have been 

compared with results reported in literature13 for a polyethylene oxide with a 

molecular weight of 1 kg/mol, obtaining the same width of Domain IIa.  

The polyesters were prepared by melt polycondensation: first esterification 

was carried out and then the polycondensation under vacuum. The catalyst employed 

was titanium tetraisopropoxide (TTP) or titanium butoxide (TTB) depending on the 

polymer. To synthetize the polymer the flask was heated at 190ºC during 2 hours, 

then to 200ºC during 2.5 hours, to 230ºC during 1 hour under vacuum and finally it 

was heated to 250ºC during 4 hours. In the case of PBA, the reaction was heated at 

190ºC during 3 hours, then at 210ºC during 3 hours and finally at 230ºC during 3-4 

hours under vacuum as reported in literature. The characterization was consistent with 

literature data23,27. 

The polyamides analysed in this work are commercial and were from 

Shandong Guangyin New Materials Co., Ltd. Further details can be found in 

Reference 24. 

The melting temperature, melting enthalpy and molecular weight of different 

materials are shown in Tables S1-S4. 
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Figure 1. Chemical structure of the repeating unit for the investigated series of 

homopolymers: polycarbonates, polyesters, polyethers, and polyamides. 

 

Differential Scanning Calorimetric Measurements 

To study melt memory effects, a Perkin Elmer 8500 calorimeter has been used 

which has been calibrated with indium. The measurements were performed with 

samples of about 3.8-4.2 mg sealed in aluminium pans under nitrogen flow. The self-

nucleation procedure was performed following the thermal procedure by Fillon et al.2 
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(See Figure 2): 1) the sample is heated to temperatures well above the melting 

temperature (25 or 30ºC above the experimental peak melting temperature, to ensure 

the complete melting of the material) to erase all previous thermal history, and then 

cooled down at a constant rate to obtain a standard crystalline state, 2) then the 

polymer is heated to a self-nucleation temperature, Ts, and held there for 5 min, 3) 

finally, the sample is re-crystallized by cooling and later heated to analyze the newly 

formed crystals. Depending on the selected Ts temperature, different melt states or 

Domains can be obtained, which can be distinguished by analyzing the cooling from 

Ts temperature and the subsequent heating scans2,3 (See Note 1 in SI). 

 
Figure 2. Thermal procedure employed in the self-nucleation procedure. 

 

Results and Discussion 

In Figure 3, a representative example of the self-nucleation behavior of the 

PC6 sample employed here is shown. At self-nucleation temperatures above 68 ºC, 

the crystallization temperature does not change with the selected Ts and is equal to the 
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standard crystallization temperature, Tc = 29 ºC. The sample is in Domain I or melting 

Domain 2,3.   
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Figure 3. a) Cooling DSC scans of PC6 from the indicated Ts temperatures, b) 

subsequent heating scans and c) crystallization temperature as a function of Ts 

superimposed of the melting endotherm. The vertical lines mark the transition 

temperature between different Domains. Domain II is divided into two sections: DIIa, 

where the material is in the self-nucleated molten state, and DIIb, where crystalline 

self-seeds are responsible for the temperature increase.  

 

When the self-nucleation temperature is reduced to values in the range of 66 

ºC to 58 ºC, there is a significant increase in the crystallization temperature in 

comparison with the standard value, see Figure 3a. This increase results from the 

presence of self-nuclei that drastically enhances the nucleation density, so in this 

temperature range, the material is in the self-nucleation Domain or Domain II. More 
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specifically, the melting is not complete until 60 ºC, since the DSC curve does not 

reach the baseline until this temperature. For temperatures above 60 ºC, the increase 

of crystallization temperature truly results from the presence of self-nuclei, or melt 

memory effect, and this temperature range is called DIIa22. The region at a lower 

temperature, where a fraction of unmolten crystals remains and causes self-

nucleation, is called DIIb22 (and is characteristic of self-seeding4). For this PC6 the 

DIIa temperature range is about 6 ºC, which is a relatively wide temperature range. 

When the self-nucleation temperature is below 56 ºC, besides the increase in Tc 

during the cooling scans, an additional melting peak upon heating is observed in 

Figure 3b. This peak corresponds to the melting of annealed crystals and marks the 

transition to Domain III in which self-nucleation and annealing occur2,3. 

All the melting endotherms show two melting peaks, Figure 3b, independently 

of the Ts temperature. Multiple melting endotherms can result from the presence of 

different polymorphisms or from the reorganization of crystals, i.e., partial melting 

and subsequent crystallization during heating. Considering the studies carried out with 

PC7 employing WAXS, the presence of different polymorphisms has been ruled 

out27. If the heating curves corresponding to Domain I and Domain II are considered, 

the melting peak at lowest temperature corresponds to less stable crystals and the 

second one to the more stable recrystallized ones. When Ts temperature decreases 

from 66 to 58 ºC, a shift of the lowest Tm peak towards higher temperature is 

observed. It should be considered that when cooled from lower Ts temperatures, the 

polymer re-crystallizes at higher temperatures, hence forming more stable crystals. 

For Ts temperatures within Domain I and Domain II the same end-point melting 

temperature is obtained as in all cases there is a significant population of more stable 

recrystallized crystals. Finally, if the Ts temperatures corresponding to Domain III are 
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considered, i.e., Ts temperature 56 ºC in Figure 3b, two peaks are observed, the one at 

lower temperature corresponds to the more stable crystals, while the second is due to 

the annealed residual crystals at Ts, since this small peak is shifted to higher 

temperatures in comparison with the results obtained for higher Ts.  

In Figure 3c, the crystallization temperature of PC6 as a function of Ts 

temperature in the x-axis has been plotted superposed to the standard melting 

endotherm. Vertical lines divide the temperature range into three different Domains. 

Domain II is further divided into two sections22 as mentioned before: at low 

temperatures DIIb, in which according to the DSC there are still crystal fragments; 

and DIIa where there are no crystal fragments but the crystallization temperature 

increases due to the presence of self-nuclei. 

According to the methodology discussed above concerning PC6, the width of 

Domain II, Domain IIa, and Domain IIb are determined for a series of polyesters, 

polycarbonates, and polyethers. Data corresponding to polyamides obtained by Liu et 

al.24 and to poly(ethylene oxide) are also included in the discussion for comparison 

purposes. Before discussing the results obtained for the different polymer families it 

should be taken into account that the time spent at Ts temperature, i.e., ts, may change 

the limits between the different Domains. However, in previous literature it has been 

shown for other systems that the effect of time on the measured re-crystallization 

temperature is generally small or negligible at least for short times2,20. In any case, in 

this work the same ts time has been employed for all the polymers.  

On the other hand, we note that the molar mass of the various samples is not 

exactly the same. In a previous study performed by some of us, it was shown for PCL 

that, despite varying the molar mass about one order of magnitude (from 26 kg to 195 

kg/mol), the width of the melt memory effect was practically unaffected21. In the case 
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of the polymer families considered in this work the differences in the molecular 

weight are below one order of magnitude, being at most a factor 6 for the polyesters. 

The only exception is PEO, see Experimental Part. Therefore, according to previous  

literature results, the molar mass of the sample would not affect the results of the 

present work. 

Figure 4 shows the width of Domain II and Domain IIa for the different 

polymer families as a function of the number of methylene groups in their repeating 

unit. The width of Domain IIb as a function of the number of methylene groups is 

shown in the Supporting Information, Figure S1. There is a clear reduction of Domain 

II width for all the considered polymer series (Figure 4a) as the number of methylene 

groups increases. This pronounced decrease is mostly due to the reduction in DIIa 

width (Figure 4b). We will consider the results of Domain IIa and Domain IIb 

separately.  
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Figure 4. The width of a) Domain II and b) Domain IIa for polyesters, 

polycarbonates, polyethers and polyamides as a function of the number of methylene 

groups. The lines have been drawn to guide the eye. 

 

In the case of Domain IIa (Figure 4b), polyesters and polycarbonates with 6 

methylene units show a width of 11 and 6 ºC, respectively. However, with the 
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incorporation of more methylene units, the DIIa width reduces drastically, down to its 

disappearance in polymers containing the two polar groups and 8 methylene units. 

Regarding polyethers, PEO, which only contains 2 methylene groups, displays a 

Domain IIa of 8 ºC, while polyethers with 6 methylene groups or more do not show 

any melt memory effect.  

Polyamides, on the other hand, show different behavior in Figure 4b. The 

incorporation of methylene units reduces the width of Domain II, but even with 22 

methylene groups, the sample still shows a Domain IIa of 7 ºC24. Contrary to the rest 

of the polymer series studied in this work, for polyamides, Domain IIa does not 

vanish in the explored range of methylene units. These results are probably due to the 

higher strength of hydrogen bonds in polyamides, as it will be discussed in more 

detail below. 

Domain IIb also reduces its width as the number of methylene groups in the 

repeating units decreases (see Figure S1 in SI), even though the data is more 

scattered. In comparison with DIIa, the width of Domain IIb is smaller and relatively 

constant with the number of methylene units.  

As reported before, the molecular weight of the samples can affect the width 

of Domains5,7,10. However, in this study, the variations in the molecular weight for the 

same polymer family are not meaningful (see Table S1-S4 in SI). In addition, no 

correlation between the width of Domain II and the crystallinity degree can be 

derived, see SI Table S1-S4. Remarkably, the trends displayed by melt memory effect 

with methylene units number are found in different polymer classes, despite the 

differences in crystalline structures between them. It has been previously reported for 

polycarbonates that a subtle odd-even effect in the melting temperature25 exists when 

the number of methylenic units is varied along the repeating unit. However, according 
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to the present results it seems that such minor even-odd effect does not affect the 

width of Domain II. 

The results presented above demonstrate the key role of intramolecular 

interactions between chain segments on melt memory, as they determine the width of 

Domain II. In fact, if we consider the different polymer families, polyamides have the 

largest interactions due to the presence of strong hydrogen bonding groups. Polyesters 

can only form weak hydrogen bonds due to the electronegativity of the ester group 

atoms, as it has been reported for PBS28 and PCL29. Finally, polyethers and 

polycarbonates can only form weak dipole-dipole interactions.  

To gain more insights, the transition temperatures between Domain II and 

Domain I are shown as a function of the endpoint of the DSC melting endotherm for 

the different polymer series in Figure 5. 
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Figure 5. Transition temperature between Domain II and Domain I as a function of 

the end-point of the melting endotherm for the different series of polymers considered. 
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Data reported in literature for random copolymers based on PP and PE have been 

included7,17,20. The line corresponds to a linear fit of the homopolymers´ data.  

 

The data from the different polymers follow the same linear trend in Figure 5, 

reflecting a direct relationship between the stability of the self-nuclei (TDII/DI), with 

the ultimate stability of the original crystals. Considering that the melting temperature 

depends mainly on the intermolecular forces between chains30-32, being the melting 

entropy largely invariant among various polymer types, the direct relationship 

between TDII/DI and Tm,end corroborates the deductions drawn from Figure 4. Figure 5 

suggests that in homopolymers of various chemical nature, despite the specific type of 

interactions, the same forces that govern the melting of the polymer crystals are also 

involved in the persistance of the self-nucleation effect above the experimental 

melting temperature. However, the same relationship does not hold in random 

copolymers, since the corresponding data show large deviations from the common 

line of the homopolymers. It can be deduced that fundamentally different mechanisms 

drive the memory effect in the two polymer classes. While for the presently 

investigated homopolymers containing different polar groups intermolecular forces 

seems to play a dominant role both in dictating crystals’ melting point and self-nuclei 

thermal stability. for random copolymers, melt memory is caused by the complex 

topological constraints created in the amorphous phase by the process of crystallizable 

sequence selection during crystallization, as suggested in the literature7.  

To attempt a comprehensive discussion of memory effects in different 

polymer families, under the hypothesis of a major role of interactions between chain 

segments, the strength of such interactions is quantified for the considered samples in 

the next section. 
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One way to estimate the extent of intermolecular interactions (including 

dispersion forces, polar forces and hydrogen bonds) is the solubility parameter, which 

can be calculated from the cohesive energy as well as from molar attraction 

constant30,33 (see Note 2 in SI). Given that the polymers studied have polar groups, in 

addition to dispersion forces, dipole-dipole interactions should be present. Thus, they 

can be taken into account by calculating the dipolar moment, which directly 

determines the interaction forces between permanent dipoles.  

Figure 6a shows the extent of melt memory, expressed as the width of Domain 

IIa,  as a function of semi-empirically calculated values (employing group 

contribution theory30) of the solubility parameter for all the homologous polymer 

series. Although the data is somewhat scattered, above a certain minimum value, there 

is a clear increasing trend of the memory effect as the solubility parameter (and hence 

intermolecular forces) increases.  

A normalized version of Figure 6a can be found in Figure 6b, where the 

solubility parameter was divided by the molecular weight of the repeating unit of each 

polymer considered. Methylene units only contribute with dispersion forces to the 

intermolecular interactions and “dilute” the dipolar interaction strength. The 

normalized data for each series presents a smooth trend, as the effect of the different 

number of methylene units is taken into account. Figure 6b shows for each polymer 

family a different trend (in comparison to the rough approximation of a common trend 

in Figure 6a): polyesters, polyethers and polycarbonates show a sudden increase at a 

certain normalized solubility value, whereas polyamides show a more progressive 

increase.  

In Figure 6c the width of Domain IIa, or the extent of the melt memory effect, 

is plotted against the molecular dipolar moment, which has also been calculated 
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employing group contribution theory30, normalized by the molecular weight of the 

repeating unit.  

It can be seen in Figure 6c that polyesters, polycarbonates and polyethers 

display analogous trends. Figure 6b and 6c show that the memory effect is absent 

until a critical value of normalized solubility parameter and dipolar moment, in the 

range 0.08-0.13 J1/2/cm3/2g  and 3-4 x 10-3 D/g, above which the width of Domain IIa 

becomes larger than zero and increases proportionally to the considered parameter. 

Interestingly, the critical values of normalized solubility parameter or dipolar moment 

are dependent on the type of polar groups in the polymer, increasing in the order 

polyesters, polycarbonate and polyethers. It seems that this critical value is larger for 

weaker dipoles, and this explains why polyethers with 6 methylene groups do not 

show any Domain IIa. 

Polyamides show a somewhat different behavior, as in this case the critical 

solubility parameter or dipolar moment needed to show melt memory effects (i.e., a 

finite value of Domain IIa) is really small; i.e., roughly below 0.0189 J1/2/cm3/2g or 

0.0017 D/g respectively. As such, polyamides display Domain IIa, even when there 

are 22 methylene groups per repeating unit, and therefore the polymer has low dipolar 

moment and low solubility parameter. This is probably due to the strong interactions 

of hydrogen bonds24, which might not be properly accounted for by the solubility 

parameter or dipolar moment. Although polyamides have a wider Domain IIa in 

comparison with the other polymer series, a saturation value seems to be reached.  
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Figure 6. The width of Domain II for polyesters, polycarbonates, polyethers and 

polyamides as a function of a) the solubility parameter, b) the solubility parameter 

divided by the molecular weight of the repeating unit and c) the dipolar moment 

divided by the molecular weight of the repeating unit. 

 

Therefore, we have demonstrated that the stability of self-nuclei in the melt 

clearly depends on the strength of intermolecular interactions. If the material has 

strong interactions, i.e., high dipolar moment or solubility parameter, the forces 

associated to the self-nuclei require a high thermal energy to be broken. In other 

words, polymers with stronger intermolecular interactions generally display wider 

melt memory effects.  

 

Conclusions  
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In this work it has been shown that the incorporation of methylene groups in 

the repeating units of polyesters, polycarbonates, polyethers and polyamides reduces 

the width of Domain IIa. The reduction of Domain IIa results from the decrease of the 

strength of the interactions, which is reflected by the decrease of dipolar moment or 

by the decrease of the solubility parameter. For the different polymers examined here, 

there is a critical dipolar moment or solubility parameter value that the polymer 

should surpass in order to display melt memory effects or Domain IIa. Overall, in this 

work we have demonstrated that the melt memory effect for homologous series of 

different polymer families is governed by the intermolecular interactions of the 

chains, thereby proposing a unified view of the melt memory effects in 

homopolymers. 
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