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Abstract: The main result of this paper is a fixed-point theorem for multivalued contractions
obtained through an inequality with rational terms. The contraction is an F-type contraction. The
results are obtained in a metric space endowed with a graph. The main theorem is supported by
illustrative examples. Several results as special cases are obtained by specific choices of the control
functions involved in the inequality. The study is broadly in the domain of setvalued analysis. The
methodology of the paper is a blending of both graph theoretic and analytic methods.
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1. Introduction and Mathematical Preliminaries

Let (X, d) be a metric space. The following standard notations and definitions will be
used. N(X) is the family of all nonempty subsets of X, B(X) is the family of all nonempty
bounded subsets of X, CB(X) is the family of all nonempty closed and bounded subsets of
X, K(X) is the family of all nonempty compact subsets of X and

D(x, B) = inf {d(x, y) : y ∈ B}, where x ∈ X and B ∈ B(X),

H(A, B) = max{sup
x∈A

D(x, B), sup
y∈B

D(y, A)}, where A, B ∈ CB(X).

H is known as the Hausdorff metric induced by the metric d on CB(X) [1]. Furthermore, if
(X, d) is complete then (CB(X), H) is also complete.

Let X be a nonempty set and f = {(x, x) : x ∈ X}. Consider a directed graph G such
that the set V(G) of its vertices coincides with X and the set E(G) of its edges contains
all loops, i.e., f ⊆ E(G). Assume that G has no parallel edges. By G−1 we denote the
graph obtained from G by reversing the directions of the edges. Thus, V(G−1) = V(G)
and E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. By G̃ we denote the undirected graph
obtained from G by ignoring the direction of edges. Actually, it will be more convenient for
us to treat G̃ as a directed graph for which the V(G̃) = V(G) and E(G̃) = E(G) ∪ E(G−1).
A nonempty set X is said to be endowed with a directed graph G(V, E) if V(G) = X and
f ⊆ E(G).

Let F : (0, ∞)→ R be a function with the following properties:
(F1) F is strictly increasing, i.e., x < y =⇒ F(x) < F(y);
(F2) For each sequence {αn}∞

n=1 in (0, ∞), lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0

αkF(α) = 0;
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(F4) F(inf A) = inf F(A) for all A ⊂ (0, ∞) with inf A > 0.
We denote the set of all functions F satisfying (F1− F3) by = and the set of all functions F
satisfying (F1− F4) by =∗.

Wardowski [2] introduced the notion of F-contraction and established a new type of
generalization of the Banach’s contraction mapping principle.

Definition 1 ([2]). Let (X, d) be a metric space. A mapping T : X → X is said to be an
F-contraction if there exist F ∈ = and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y))

holds for any x, y ∈ X with d(Tx, Ty) > 0.

Theorem 1 ([2]). Let (X, d) be a complete metric space and T : X → X be an F-contraction.
Then T has a unique fixed point ξ in X.

Definition 2 ([3]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
mapping T : X → X is graph-preserving if

(x, y) ∈ E(G), for x, y ∈ X =⇒ (Tx, Ty) ∈ E(G).

Definition 3 ([4]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
mapping T : X → X is said to be an GF-contraction if T is graph-preserving and there exist F ∈ =
and τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y))

holds for any x, y ∈ X with (x, y) ∈ E(G) and d(Tx, Ty) > 0.

Definition 4 ([5]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
multivalued mapping T : X → CB(X) is graph-preserving if

(x, y) ∈ E(G), for x, y ∈ X =⇒ (u, v) ∈ E(G), whenever u ∈ Tx and v ∈ Ty.

Lemma 1 ([5]). Let (X, d) be a metric space and T : X → N(X) be an upper semi-continuous
mapping such that Tx is closed for all x ∈ X. If xn → x0, yn → y0 and yn ∈ Txn, then y0 ∈ Tx0.

Definition 5 ([5]). Let (X, d) be a metric space endowed with a directed graph G(V, E). A
multivalued mapping T : X → CB(X) is weakly graph-preserving if (x, y) ∈ E(G) where x ∈ X
and y ∈ Tx, implies that (y, z) ∈ E(G) for all z ∈ Ty.

Let X be a nonempty set and T : X → N(X) be a multivalued mapping. We define

PT = {x ∈ X : x ∈ Tx}, TG = {(x, y) ∈ E(G) : H(Tx, Ty) > 0} and

XT = {x ∈ X : (x, y) ∈ E(G) for some y ∈ Tx}.

The following class of functions will be used in our results in the next section.
Let ψ : [0, ∞)5 → [0, ∞) be such that (i) ψ is continuous and monotone nondecreasing

in each coordinate, (ii) ψ(t, t, t, t, t) ≤ t for all t ≥ 0. We denote the collection of such
functions ψ by the symbol Ψ.

Let φ : [0, ∞)4 → [0, ∞) be such that (i) φ is continuous and monotone nondecreasing
in each coordinate, (ii) φ(x1, x2, x3, x4) = 0 if x1x2x3x4 = 0. We denote the collection of
such functions φ by the symbol Φ.

Using the above mathematical notions in this paper we establish an F-contraction
type multivalued fixed-point result in a metric space with a graph. Fixed-point theory on
metric spaces with the additional structure of a graph is a recent development. Some works
from this line of research can be found in works such as [3,5–10]. We make specific choices
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of a particular function used in the metric inequality to discuss special cases of the main
theorem. This demonstrates the generality of our result. It may be further mentioned that
F-contractions are new concepts in metric fixed-point theory which have been extended
in various ways in works such as [2,4–6,11,12]. Essentially our results are in the domain
of setvalued analysis to which the Banach contraction mapping principle was extended
by Nadler [1]. In his result Nadler used the Hausdorff distance. The work was followed
by several other works such as [5,6,13–15]. The contractive inequality which we use in
our problem involves some rational terms. Dass and Gupta [16] generalized the Banach’s
contraction mapping principle by using a contractive condition of rational type. Fixed-point
theorems for contractive type conditions satisfying rational inequalities in metric spaces
have been developed in several works [17–20]. Finally, we support our main theorem with
illustrative examples.

2. Main Result

Theorem 2. Let (X, d) be a complete metric space endowed with a directed graph G and T :
X → K(X) be a multivalued map. Suppose that (i) T is upper semi-continuous and weakly
graph-preserving, (ii) XT is nonempty, (iii) there exist τ > 0, F ∈ =, ψ ∈ Ψ and φ ∈ Φ such that
for x, y ∈ X with (x, y) ∈ TG,

τ + F(H(Tx, Ty)) ≤ F(M(x, y) + N(x, y)),

where N(x, y) = φ
(

D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)
)

and

M(x, y) = ψ
(

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

)
.

Then PT is nonempty.

Proof. Let us assume T has no fixed point. Then D(x, Tx) > 0 for all x ∈ X. Let x0 ∈ XT .
Then there exists x1 ∈ Tx0 such that (x0, x1) ∈ E(G). Now 0 < D(x1, Tx1) ≤ H(Tx0, Tx1),
which implies that (x0, x1) ∈ TG. Using the assumption (iii) and a property of F, we have

F(D(x1, Tx1)) ≤ F(H(Tx0, Tx1)) ≤ F(M(x0, x1) + N(x0, x1))− τ, (1)

where

M(x0, x1) = ψ
(

d(x0, x1), D(x0, Tx0), D(x1, Tx1),

D(x0, Tx0)D(x1, Tx1) + D(x0, Tx1)D(x1, Tx0)

1 + d(x0, x1)
,

D(x0, Tx0)D(x1, Tx1) + D(x0, Tx1)D(x1, Tx0)

1 + H(Tx0, Tx1)

)
≤ ψ

(
d(x0, x1), d(x0, x1), D(x1, Tx1),

D(x0, Tx0)D(x1, Tx1)

1 + d(x0, x1)
,

D(x0, Tx0)D(x1, Tx1)

1 + H(Tx0, Tx1)

)
≤ ψ

(
d(x0, x1), d(x0, x1), D(x1, Tx1),

D(x0, Tx0)D(x1, Tx1)

1 + d(x0, x1)
,

d(x0, x1)D(x1, Tx1)

1 + D(x1, Tx1)

)
≤ ψ

(
d(x0, x1), d(x0, x1), D(x1, Tx1), D(x1, Tx1), d(x0, x1)

)
(2)
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and

0 ≤ N(x0, x1) = φ(D(x0, Tx0), D(x1, Tx1), D(x0, Tx1), D(x1, Tx0))

≤ φ
(

d(x0, x1), D(x1, Tx1), D(x0, Tx1), d(x1, x1)
)
= 0,

that is, N(x0, x1) = 0.

If possible, suppose that d(x0, x1) ≤ D(x1, Tx1). Then from (2), using the properties
of ψ, we have

M(x0, x1) ≤ ψ
(

D(x1, Tx1), D(x1, Tx1), D(x1, Tx1), D(x1, Tx1), D(x1, Tx1)
)

≤ D(x1, Tx1).

Using (1) and a property of F, we have

F(D(x1, Tx1)) ≤ F(D(x1, Tx1))− τ,

which is a contradiction. Thus, D(x1, Tx1) < d(x0, x1). Using (2) and the properties of ψ,
we have

M(x0, x1) ≤ ψ
(

d(x0, x1), d(x0, x1), d(x0, x1), d(x0, x1), d(x0, x1)
)

≤ d(x0, x1).

By (1) and a property of F, we have

F(D(x1, Tx1)) ≤ F(d(x0, x1))− τ. (3)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1). Hence from
(3), we have

F(d(x1, x2)) ≤ F(d(x0, x1))− τ. (4)

As T is weakly graph-preserving, (x0, x1) ∈ E(G), x1 ∈ Tx0 and x2 ∈ Tx1, we have
(x1, x2) ∈ E(G). Now, 0 < D(x2, Tx2) ≤ H(Tx1, Tx2), which implies that (x1, x2) ∈ TG. By
the assumption (iii) and a property of F, we have

F(D(x2, Tx2)) ≤ F(H(Tx1, Tx2)) ≤ F(M(x1, x2) + N(x1, x2))− τ. (5)

Arguing similarly as before, we have

F(D(x2, Tx2)) ≤ F(d(x1, x2))− τ. (6)

Since Tx2 is compact, there exists x3 ∈ Tx2 such that d(x2, x3) = D(x2, Tx2). From (6), we
have

F(d(x2, x3)) ≤ F(d(x1, x2))− τ. (7)

Continuing this process, we construct a sequence {xn} such that for all n ≥ 0,

xn+1 ∈ Txn, (xn, xn+1) ∈ TG (8)

and
F(d(xn, xn+1)) ≤ F(d(xn−1, xn))− τ. (9)

Let γn = d(xn, xn+1) for all n ≥ 0.
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From (9), we have

F(γn) ≤ F(γn−1)− τ ≤ F(γn−2)− 2τ ≤ ... ≤ F(γ0)− nτ. (10)

Taking limit as n→ ∞ in the above inequality, we get lim
n→∞

F(γn) = −∞, which by property

(F2) of F, implies that lim
n→∞

γn = 0. Then by property (F3) of F, there exists k ∈ (0, 1) such

that lim
n→∞

γk
nF(γn) = 0. Now, using (10), we have

γk
nF(γn)− γk

nF(γ0) ≤ −γk
nnτ ≤ 0.

Letting n→ ∞ in the above inequality, we obtain

lim
n→∞

nγk
n = 0.

Then there exists n1 ∈ N such that nγk
n ≤ 1 for all n ≥ n1, which implies that

γn ≤ 1

n
1
k

for all n ≥ n1. Then we have

∞

∑
n=n1

d(xn, xn+1) =
∞

∑
n=n1

γn ≤
∞

∑
n=n1

1

n
1
k

.

As 0 < k < 1, ∑∞
n=n1

1

n
1
k

is convergent. Then it follows that ∑ d(xn, xn+1) is convergent.

This implies that {xn} is a Cauchy sequence. As X is complete, there exists z ∈ X such
that lim

n→∞
xn = z. Since T is upper semi-continuous, by Lemma 1, we have z ∈ Tz, which

contradicts the assumption that T has no fixed point. Hence T has a fixed point, i.e., PT is
nonempty.

Remark 1. Varying the functions ψ and φ in the assumption (iii) of Theorem 2, we have different
form of F-contractions for which Theorems 2 hold. For some examples, choosing

(a) ψ(t1, t2, t3, t4, t5) = t1 and φ(x1, x2, x3, x4) = 0,
(b) ψ(t1, t2, t3, t4, t5) = max{t2, t3} and φ(x1, x2, x3, x4) = 0,
(c) ψ(t1, t2, t3, t4, t5) = max{t4, t5} and φ(x1, x2, x3, x4) = 0,
(d) ψ(t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5} and φ(x1, x2, x3, x4) = 0,
respectively, we have the following form of F-contractions respectively

1(a) : τ + F(H(Tx, Ty)) ≤ F(d(x, y)),

2(b) : τ + F(H(Tx, Ty)) ≤ F
(

max {D(x, Tx), D(y, Ty)}
)

,

3(c) : τ + F(H(Tx, Ty)) ≤ F
(

max
{D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

})
,

4(d) : τ + F(H(Tx, Ty)) ≤ F(M(x, y)),

where M(x, y) = max
{

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

}
.

Remark 2. Theorem 2 is a generalization of Theorem 2 in [6].

Remark 3. Theorem 2 is true for the class of functions T : X → CB(X) under the consideration
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of the class of function =∗ instead of =. Arguing similarly as in the proof of Theorem 2 and taking
into account the condition (F4) of F, we get

F(D(x1, Tx1)) = F(inf {d(x1, z) : z ∈ Tx1})
= inf(F({d(x1, z) : z ∈ Tx1})).

From (3), we have

inf(F({d(x1, z) : z ∈ Tx1})) ≤ F(d(x0, x1))− τ < F(d(x0, x1))−
τ

2
.

Then there exists x2 ∈ Tx1 such that

F(d(x1, x2)) ≤ F(d(x0, x1))−
τ

2
.

Arguing similarly as in the proof of Theorem 2, it can be proved that PT is nonempty.

Example 1. Take the metric space X = [0, ∞) with usual metric d. Assume that G is a directed
graph with V(G) = X and E(G) = {(x, y) : if x, y ∈ [0, 1]} ∪ {(x, x) : x > 1}. Define a

multivalued mapping T : X → K(X) as Tx =

{
[0, e−τ

5 x] if x ∈ [0, 1],
{ e−τ

5 } if x > 1.
Let F(x) = ln(x), ψ(x1, x2, x3, x4, x5) = x1, φ(x1, x2, x3, x4) = 0 and τ > 0. Then T is
upper semi-continuous and weakly graph-preserving. Let x, y ∈ X with (x, y) ∈ E(G) and
H(Tx, Ty) > 0. Then x, y ∈ [0, 1] with x 6= y. Without loss of generality, assume that y < x.
Then

H(Tx, Ty) = e−τ 1
5
|x− y| ≤ e−τ |x− y| = e−τd(x, y).

Taking ‘ln’ on both sides of the above equation, we get

F(H(Tx, Ty)) ≤ −τ + F(d(x, y)),

τ + F(H(Tx, Ty)) ≤ F(d(x, y)),

τ + F(H(Tx, Ty)) ≤ F(M(x, y) + N(x, y)),

where N(x, y) = φ
(

D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)
)

and

M(x, y) = ψ
(

d(x, y), D(x, Tx), D(y, Ty),
D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)

1 + d(x, y)
,

D(x, Tx)D(y, Ty) + D(x, Ty)D(y, Tx)
1 + H(Tx, Ty)

)
.

Thus, all the conditions of Theorem 2 are satisfied and here PT = {0} is the fixed-point set of T.

Example 2. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8} and G be a directed graph with V(G) = X and
E(G) = {(0, 0), (0, 1), (0, 4), (0, 5), (1, 1), (1, 0), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),
(4, 5), (5, 4), (5, 5), (6, 6), (6, 7), (7, 1), (7, 7), (8, 7), (8, 8)}. Let d be a metric defined on X as

d(x, y) =
{

0 if x = y,
x + y if x 6= y.

Let T : X → K(X) be defined as

T(x) =


{4, 5}, if x ∈ {0, 4, 5},
{2, 3}, if x ∈ {1, 2, 3},
{7}, if x ∈ {6, 8},
{1}, if x = 7.
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Let F(x) = ln(x), ψ(x1, x2, x3, x4, x5) = max(x1, x2, x3, x4, x5), φ(x1, x2, x3, x4) = x1x2x3x4
and τ = 0.2. Then all the conditions of Theorem 2 are satisfied and here PT = {2, 3, 4, 5} is the
fixed-point set of T.

Remark 4. Take x = 0 and y = 1. Then H(T0, T1)= 7, d(0, 1) = 1, D(0, T0) = 4, D(1, T1) =
3, D(0, T1) = 2, D(1, T0) = 5. It is easy to verify that the inequality (3.1) of Theorem 2 in [6]
is not satisfied when x = 0 and y = 1. Therefore, the above example is not applicable in case of
Theorem 2 in [6]. Hence Theorem 2 is an actual extension of Theorem 2 in [6].

3. Conclusions

In this paper, we combine several concepts which have featured prominently in the
recent literature of fixed-point theory. Fixed-point theory has many applications as, for
instances, those in [10,21]. It is our perception that the structure of graph on the metric
space allows us to obtain fixed-point results with more flexibility and for making some
new applications. These problems are supposed to be taken up in our future works.
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