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Abstract: Green electrospinning is a relatively new promising technology in which a polymer (latex)
can be spun from an aqueous dispersion with the help of a template polymer. This method is a green,
clean and safe technology that is able to spin hydrophobic polymers using water as an electrospinning
medium. In this article, a systematic study that investigates the influence of the template polymer
molar mass, the total solids content of the initial dispersion and the particle/template ratio is
presented. Furthermore, the influence of the surfactant used to stabilize the polymer particles, the
surface functionality of the polymer particles and the use of a bimodal particle size distribution on
the final fiber morphology is studied for the first time. In green electrospinning, the viscosity of
the initial complex blend depends on the amount and molar mass of the template polymer but also
on the total solids content of the dispersion to be spun. Thus, both parameters must be carefully
taken into account in order to fine-tune the final fiber morphology. Additionally, the particle packing
and the surface chemistry of the polymer particles also play an important role in the obtained
nanofibers quality.

Keywords: electrospinning; latex; green electrospinning; nanofibers; fiber morphology

1. Introduction

Electrospinning is a well-stablished technology used to create polymer nanofibers.
This technology has gained extraordinary relevance in recent years due to its simplicity
and low cost as well as the possibility to effectively scale it up opening perspectives for
industrial production [1–4]. Electrospun nanofibers have exceptional properties such as
a huge area to volume ratio, porous structure and tunable functionality. These unique
properties make electrospun materials very attractive for a broad range of applications such
as textiles, filters, tissue engineering, drug delivery, wound healing, sensors, environmental
remediation, aerogels, dye adsorption, packaging, energy storage and catalysis, among
others [5–12].

Solution electrospinning is the most widely used electrospinning method; however,
it presents some limitations for its industrial application. The first limitation is the need
to use toxic and flammable organic solvents, which can be problematic for industrial
production due to more and more stringent environmental and safety regulations. As an
alternative, water can be used as a solvent but in this way only water-soluble polymers
can be electrospun, and therefore, the produced nanofiber material will also be water
soluble, a fact that might be problematic for several applications. There are different
crosslinking methods to increase the water resistance of water-soluble nanofibers, but they
usually require high temperatures or toxic crosslinkers [13–16]. The second limitation is
related to the polymer concentration of the electrospinning solution. There is a maximum
critical concentration that can be used in this process, which is around 10–15 wt.% of
polymer (depending on its molar mass). Polymer solutions of higher concentrations are
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not spinnable due to their high viscosity. This concentration limitation decreases the
productivity of the electrospinning process significantly.

Suspension electrospinning, also named green electrospinning, is a novel and promis-
ing method that consists in the use of an aqueous polymer dispersion (latex) as an elec-
trospinning solution with the help of a polymer template. This method overcomes the
abovementioned limitations, as it allows the use of water as electrospinning medium, even
for hydrophobic polymers and enables dispersion of higher polymer concentrations to be
spun, increasing the overall productivity of the process [17,18].

The first paper on green electrospinning was published by Greiner and coworkers
in 2007 [19]. They electrospun poly(styrene) (PS) polymer particles of different diameters
using polyvinyl alcohol (PVA) as polymer template with the help of a polymeric surfactant
(Basenol). Since then, different works have been published on the electrospinning of diverse
types of polymer particles such as PS [20–24], poly(styrene-co-butyl acrylate) (PS/BA) [25],
poly(methyl methcrylate-co-butyl acrylate) (PMMA/BA) particles bearing crosslinkable
monomers [26,27], crosslinked core-shell PS/PMMA particles bearing quantum dots [28],
waterborne polyurethanes (WPU) [29–31], microgels [32], core-shell microcapsules [33–35]
or block copolymers [36]. Regarding the type of polymer template, although PVA has been
the most frequently used one [19–31,37], others such as polyethylene oxide (PEO) [34,36]
(or poly(vinyl formamide) (PVFA)) [26] have also been employed. These novel compos-
ite nanofibers obtained by green electrospinning have been claimed to have potential
applications in tissue engineering, medicine, pharmacy, agriculture or sensor technol-
ogy [28,30,32,33,36].

Although different particle/template systems have been successfully spun, there
are very few works in the literature that thoroughly study the influence of the initial
dispersion composition and properties on the final fiber morphology. Fiber morphology
and water resistance have been demonstrated to be affected by the particle/template weight
ratio [19,22,23,29], the particle diameter [19,22,25] and the glass transition temperature
(Tg) [25] or the crosslinking of the polymer particles [26,27]. However, in order to be able
to fine-tune the fiber morphology, the influence of the initial dispersion composition on
the final fiber morphology must be well understood. To this end, a systematic study that
investigates the effect of the template polymer molar mass, the total solids content of the
dispersion (that is, the total concentration of polymer, template plus polymer particles) and
the particle/template ratio in a single work is necessary and lacking in the literature. In
this article, we present this systematic study. Furthermore, we have also investigated for
the first time, the influence of another three parameters: the surfactant used to stabilize
the polymer particles, the surface functionality of the polymer particles and the use of a
bimodal particle size distribution.

The polymer particles used in this work were composed of a copolymer of MMA/BA
in a 50/50 wt.%/wt.%. These particles are film forming (their Tg is below room tem-
perature) [38], and therefore, they might coalesce within the fiber, forming a continuous
phase [25]. The chosen template polymer was PVA. This work presents a systematic and
detailed study on the influence of the initial electrospinning dispersion composition on the
final nanofibers morphology. Electrospinning dispersions have been properly characterized
by means of viscosity, surface tension and conductivity measurements. The morphology of
the electrospun nanofibers have been assessed by Scanning Electron Microscopy (SEM).

2. Materials and Methods
2.1. Materials

Three different polyvinyl alcohol (PVA) polymers were purchased from Kuraray
to be used as template polymer (Table 1). Table 2 summarizes the properties of the
different latexes used in this work; their synthesis procedure is explained in the Supporting
Information. The chemical structures of the PVA template polymer, the latex copolymer
and the used surfactants to stabilize the polymer particles are shown in Figure 1.
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Table 1. Properties of the commercial polyvinyl alcohol (PVA) used as template polymer, including
molecular weight (Mw) and hydrolysis degree.

Name Commercial Name Mw (kDa) Hydrolysis Degree (%)

PVA1 Mowiol 13–88 69.5 88
PVA2 Mowiol 25–88 92.6 88
PVA3 Mowiol 47–88 138.9 88

Table 2. Properties latexes in terms of composition, surfactant type and particle diameter (dp).

Name Copolymer Surfactant dp (nm)

D_1 MMA/BA Dowfax 2A1 (1 wbm%) 107 ± 1
D_2 MMA/BA Dowfax 2A1 (1 wbm%) 192 ± 1
D_3 MMA/BA Dowfax 2A1 (1 wbm%) 317 ± 4
L_1 MMA/BA Latemul PD-104 (2 wbm%) 171 ± 1

AA_1 MMA/BA/AA Dowfax 2A1 (1 wbm%) 139 ± 3
wbm %: weight based monomer %. Dowfax 2A1 was purchased from Dow and Latemul PD-104 from Kao
Corporation, Tokyo, Japan.
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Figure 1. Chemical structure of the PVA template polymer, the latex copolymer (PMMA/BA) and
the used surfactants to stabilize the polymer particles (Dowfax 2A1 and Latemul PD-104).

2.2. Preparation of Electrospinning Dispersions and Electrospinning Process

The electrospinning dispersions were prepared in 5 mL vials under magnetic stirring,
adding the latex (with 50 wt.% s.c.) to the PVA aqueous solution (in a concentration of
10 wt.%) dropwise. In order to adjust the final s.c. of all the blends to 17 wt.%, in some
cases water was added to the PVA solution before the latex was added (Table 3).

Table 3. Composition of the electrospinning dispersions.

PVA/Particles
(wt.%/wt.%) * Latex (g)/(wt.%) PVA Solution

(g)/(wt.%)
Added Water

(g/(wt.%)
Final Electrospinning
Dispersion (g)/(wt.%)

50/50 2/16.7 10/83.3 - 12/100
38/62 2/20.8 6/62.5 1.6/16.7 9.6/100
29/71 2/23.8 4/47.6 2.4/28.6 8.4/100
17/83 2/27.8 2/27.8 3.2/44.4 72/100

* wt.%/wt.% refers to the dry PVA/particle ratio.
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For the electrospinning experiments, polymer dispersions were placed into a syringe
with an 18-gauge blunt-end needle that was mounted in a syringe pump (Cole-Parmer,
Vernon Hills, IL, USA). Randomly oriented nanofibers were electrospun by applying a
voltage of 15 kV to the needle using a Spellman CZE1000R high voltage supply (0–30 kV
CZE1000R; Spellman High Voltage Electronics Corp. (Hauppauge, NY, USA)), with a low
current output (limited to a few A). The ground plate (stainless steel) was placed at 15 cm
from the needle tip. The syringe pump delivered the polymer solutions at a controlled
flow rate of 1 mL/h. The temperature and relative humidity (R.H.) of the electrospinning
chamber varied from 20 to 25 ◦C and from 31 ± 1% to 55 ± 1%, respectively. The exact
temperature and R.H. is specified for each experiment.

2.3. Characterization Methods

Polymer particle average diameter (dp) was measured by dynamic light scattering
(Zetasizer Nano Z, Malvern Instruments, Malvern, UK). The viscosity of all the blends
was measured from 10 to 1000 s−1 in an Antor Paar rheometer using concentric cylinders.
The surface tension of the blends was measured by means of the Du Noüy ring method
using a KSV Sigma 700 tensiometer (Iberlaser, Madrid, Spain). Nanofiber morphology
was analyzed by scanning electron microscopy (SEM) in a Hitach TM3030 Scanning Elec-
tron Microscope (Monocomp, Madrid, Spain). ImageJ™ open source software (National
Institutes of Health, Bethesda, MD, USA) was used on the SEM images to measure the
mean average fiber diameters. Fifty measurements were taken for each sample from three
separate images.

3. Results and Discussion
3.1. Effect of the Template Polymer and the Solids Content (S.C.)

First, the influence of the PVA molar mass and amount on the final fiber morphology
was studied. To this end, latex D_2 was blended with PVA polymers of different molar
masses. The PVA/particle ratio was varied from 50/50 to 17/83 wt.%/wt.%. It is important
to remark that the total solids content (s.c.) of all the dispersion, that is, the concertation
of the total polymer (PVA plus polymer particles), was kept constant to 17 wt.% in all
the cases.

As it can be observed in Figure 2, at high PVA/particle ratios, uniform and continuous
fibers were obtained. However, as the PVA amount was decreased, non-uniformities or
beads started to appear in the fibers. The same trend was observed when PVA polymers
of different molar masses were used as template (beads started to show at low PVA
amounts). Interestingly, as the PVA molar mass increased, defects appeared at lower PVA
concentrations. Therefore, controlling the increase in the molar mass of template polymer,
it is possible to obtain bead-free fibers with lower template concentration.

Bead formation is usually considered as a defect and, therefore, is normally an unde-
sired phenomenon. It is caused by the jet instability during the electrospinning process [39],
and it is affected by the electrospinning solution properties (viscosity, surface tension and
conductivity) as well as by the process parameters (applied voltage, tip to collector distance
and flow rate) [1,4,40,41].

In this case, the process parameters used in all the experiments were exactly the same
(see Materials and Method section); thus, the difference in the fiber morphology can only
be due to the properties of the electrospinning dispersions. In conventional solution electro-
spinning, it is well known that bead formation tends to decrease by increasing the viscosity
and/or conductivity of the solution as well as by decreasing its surface tension [1,41].
Table 4 shows the conductivity and surface tension of the blends prepared using PVA2 as
template polymer. The surface tension values of all these blends were very similar, but
the conductivity values slightly increased as the PVA amount was increased. In order to
better understand these results, the conductivity of a PVA2 water solution and the one of
latex D_2, both at 10 wt.% s.c., were also measured obtaining values of 758 and 364 µS/cm,
respectively. Thus, when measuring the conductivity of D_2/PVA blends, the contribution
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of the amount of PVA is greater than the one of D_2. This explains why the conductivity of
the blends increased as the PVA amount was increased. Phachamud et al. [42] investigated
the effect of different process parameters in conventional PVA solution electrospinning
and also observed that the conductivity of PVA water solutions increased with the PVA
concentration.
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Table 4. Properties the electrospinning dispersions prepared blending latex D_2 with PVA2 at
different ratios.

PVA/Polymer Particle (wt.%/wt.%) Surface Tension (mN/m) Conductivity (µS/cm)

50/50 44.1 ± 0.03 850
38/62 44.5 ± 0.1 739
29/71 42.6 ± 0.1 569
17/83 46.8 ± 0.1 552

The viscosity of all the blends shown in Figure 2 was measured from 10 to 1000 s−1

using concentric cylinders. In order to have an accurate comparison between the different
samples, viscosity values should be compared at the shear rate at which the fiber for-
mation during electrospinning process occurs. Since this shear rate value is unknown,
values obtained at 200 s−1 were compared (Figure 3) in order to have a simple and
systematic comparison. The viscosity values of the samples along all the shear rate
range are shown in the Supporting Information. Figure 3 shows that, as expected, the
viscosity of the solution increased as the molar mass and amount of PVA increased.
Combining Figures 2 and 3, a window of viscosity values (marked in grey in Figure 3)
that separates beaded fiber morphology from uniform morphology can be drawn. Accord-
ing to this window, the higher the molar mass of the template, the lower the concentration
of template required to produce uniform fibers. The minimum viscosity required to obtain
continuous fibers was in the range of 0.14 and 0.23 Pa·s. Note that this viscosity window
has been obtained with a limited number of solutions and, hence, is only qualitative.
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D_2 with different concentrations of PVA with different molar masses. Total s.c. of the solutions was
17 wt.%.

These results are in agreement with the ones obtained by Yuan et al. [22] and
Cao et al. [23], where PS nanoparticles were electrospun using PVA as polymer tem-
plate. A beaded morphology was achieved at low PVA concentrations in both works, and
it was attributed to the low viscosity of the electrospinning dispersions. However, only
Yuan et al. [22] reported viscosity values, even if they did not specify the shear rate. Fur-
thermore, none of these works studied the effect of the PVA molar mass.

Figure 2 also shows that for a given PVA type, bead size increased as the PVA concen-
tration was decreased, that is, as the viscosity of the solution was decreased. Yuan et al. [22]
also observed an increase in the bead size when the concentration of template polymer was
reduced, and they attributed this phenomenon to a decrease in the solution viscosity.

If only uniform, bead-free fibers are considered (Figure 2), it can be observed that the
diameter of the fibers increased as the molar mass of the PVA template polymer was in-
creased (Figure 4a). When PVA3 was used as polymer template, the average fiber diameter
also increased when the amount of PVA was increased. In contrast, it was not possible to
observe any clear trend when PVA2 was used as template polymer. Yuan et al. [22] and
Wu et al. [30] reported an increase in final fiber diameter as the template/particle ratio
was increased. Yuan et al. [22] attributed it to an increase in the electrospinning dispersion
viscosity, while Wu et al. [30] just mentioned that it was caused by the different amount of
template polymer in the aqueous phase.

One might think that the increase in the fiber diameter when the PVA of higher molar
masses used could be due to an increase in the viscosity of the dispersion; however, this
was not the case. No clear trend was observed when plotting the average fiber diameter as
a function of the viscosity of the electrospinning dispersion (Figure 4b).
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In a second step, blends of latex D_2 with the same PVA/particle ratio (38/62 wt.%/wt.%)
were compared but containing different total s.c. Figure 5 shows the presence of beads
for the solution at 9 wt.% s.c. and bead-free fibers when the s.c. was increased to 17 wt.%.
Again, this was related to the viscosity of the electrospinning solutions. The viscosity of
the solution at 9 wt.% s.c. (0.05 Pa·s) was below the critical viscosity window (between
0.14 and 0.23 Pa·s) defined above; hence, beaded fibers were produced. In contrast, the
viscosity of the dispersion at 17 wt.% s.c. (0.29 Pa·s) was well above the critical viscosity,
leading to uniform fibers.

Nanomaterials 2021, 11, 706 7 of 14 
 

 

electrospinning dispersion viscosity, while Wu et al. [30] just mentioned that it was caused 
by the different amount of template polymer in the aqueous phase. 

One might think that the increase in the fiber diameter when the PVA of higher molar 
masses used could be due to an increase in the viscosity of the dispersion; however, this 
was not the case. No clear trend was observed when plotting the average fiber diameter 
as a function of the viscosity of the electrospinning dispersion (Figure 4b). 

100
150
200
250
300
350
400
450
500

25 30 35 40 45 50 55

PVA1: 69.5 kDa
PVA2: 92.6 kDa
PVA3: 136.9 kDa

Fi
be

r d
ia

m
et

er
 (n

m
)

PVA (%)  

100

150

200

250

300

350

400

450

500

0.2 0.4 0.6 0.8 1

PVA1: 69.5 kDa
PVA2: 92.6 kDa
PVA3: 138.9 kDa

29%
38%

38%

50%

50%

Fi
be

r d
ia

m
et

er
 (n

m
)

Viscosity (Pa s)  
(a) (b) 

Figure 4. (a) Average fiber diameters as a function of the PVA amount; (b) average fiber diameter as a function of the 
viscosity of the electrospinning solution. Error bars correspond to the standard deviation. The number at each point 
indicates the PVA amount of each sample. In both cases, electrospinning solutions were blends of latex D_2 and different 
concentrations of PVA polymers of different molar masses. Total s.c. of all the solutions was 17 wt. %. 
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Figure 5. SEM images of fibers obtained from blends of latex D_2 and PVA2 (38 wt.%) at different total s.c. The experiment
was performed at 20 ◦C and 55 ± 1% of R.H.

It is well known that the viscosity of polymer solutions increases with polymer con-
centration and molar mass [43]. Thus, in conventional solution electrospinning, for a given
polymer/solvent solution, bead formation can be avoided by just increasing the polymer
molar mass or its concentration [1,41]. In green electrospinning, however, the electrospin-
ning medium is not a simple polymer solution but a blend of a polymer dispersion and a
water soluble polymer. Therefore, the viscosity of these complex dispersions is not only
related to the total concentration of polymer (total s.c.), but also to the viscosity of the
continuous phase (the template polymer in water) and to the particle size distribution
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and the particle concentration [44–46]. Thus, it can be concluded that in green electrospin-
ning, these parameters must be carefully controlled in order to control the viscosity of the
complex dispersion and consequently fine-tune the final fiber morphology.

3.2. Effect of Particle Size and Particle Size Distribution

In order to study the effect of the latex particle size on the final fiber morphology,
latexes D_1 (107 nm), D_2 (192 nm) and D_3 (317 nm) were blended with PVA2. Dispersions
with two PVA/particle ratio were prepared, 29/71 and 38/62 wt.%/wt.%. The total s.c.
was 17 wt.% in all the cases. As it can be observed in Figure 6, when a PVA/particle ratio
of 38/62 wt.%/wt.% was used, uniform fibers were obtained for the samples containing
the latexes D_1 (107 nm) and D_2 (192 nm) but not for the samples containing the sample
D_3 (317 nm) that showed a pearl necklace morphology. Since the viscosity of all the
initial complex dispersions was very similar, around 0.3 Pa·s (all values are shown in
the Supporting Information), the pearl necklace morphology was attributed to the worse
packing of the bigger polymer particles. Although the particle packing along the fiber can
be altered by the used template/particle ratio [22], it has been demonstrated that small
polymer particles lead to a close packing arrangement along the fiber, whereas bigger
particles lead to a one by one particle packing [19].
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Figure 6. SEM images of fibers obtained from blends of latexes D_1 (107 nm), D_2 (192 nm) and D_3 (317 nm) with PVA2.
The total s.c. was 17 wt.% in all the cases. The experiment was performed at 20 ◦C and 55 ± 1% of R.H.

The average fiber diameter was also measured for fibers containing D_1 (107 nm) and
D_2 (192 nm) particles, and values of 177 ± 26 and 264 ± 52 nm were obtained, respectively.
Since the viscosity of both complex dispersions was very similar (around 0.3 Pa·s, see
Supporting Information), it can be concluded that the larger the initial polymer particles,
the larger the final fiber diameter. Greiner and co-workers [25] electrospun two PS/BA
latexes of different particle size (153 and 102 nm) using PVA as polymer template. They
also observed that larger polymer particles led to fibers with larger average diameter, but
they did not report any viscosity values.

When a PVA/particle ratio of 29/71 wt.%/wt.% was used, non-uniform beaded
fibers were obtained with the three different particle sizes. With the objective to study,
the effect that a bimodal particle size distribution could have on the fiber morphology,
latexes D_1 and D_3 were mixed in a 50/50 wt.%/wt.% ratio and blended with PVA2 in
a PVA/particle ratio of 29/71 wt.%/wt.%. Obtained fibers are shown in Figure 7. As
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can be observed, while a beaded morphology was obtained with the three monomodal
latexes, significantly more uniform fibers were obtained when the bimodal latex was used.
The viscosity values for the solutions with latexes D_1 and D_3 were 0.19 and 0.12 Pa·s,
respectively, whereas the one for the bimodal latex was 0.35 Pa·s (values are shown in the
Supporting Information). Therefore, the reason behind a more uniform fiber morphology
was attributed to an increase in the blend viscosity. This is the first time that the effect of
the use of a bimodal particle size system is investigated.
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ratio and blended with PVA in a PVA/particle ratio of 29/71 wt.%/wt.%. The total s.c. was 17 wt.%.
The experiment was performed at 20 ◦C and 55 ± 1% of R.H.

3.3. Electrospinning of Polymer Particles with Different Surface Chemistry

With the objective to analyze if the surface chemistry of the polymer particles have
any influence on the final fiber morphology, polymer particles containing carboxylic acid
groups in their surface and particles stabilized by different surfactants were electrospun.
First, blends of latexes D_1 and AA_1 were electrospun and compared using the same
conditions and process parameters (Figure 8). Both latexes were synthesized using the
same surfactant and had similar average particle size; however, latex AA_1 contained
1 wbm % of AA in the latex formulation; thus, the polymer particles of this latex contained
carboxylic acid groups on their surface [47]. The electrospinning dispersions were prepared
blending both latexes with PVA2 in a PVA/particle ratio of 29/71 wt.%/wt.%. The solids
content was 17 wt.% in both cases.

Figure 8 shows that more uniform fibers were obtained when latex AA_1 was used
(containing carboxylic acid groups at the particle surfaces) instead of D_1. Although both
complex electrospinning dispersions showed a similar surface tension value, the dispersion
containing latex AA_1 had higher conductivity and viscosity (Table 5). As it has been
explained before, an increase in both parameters helps in reducing bead formation and,
therefore, in obtaining more uniform fibers. In fact, whereas the viscosity of the blend
containing D_1 latex is in the lower part of the critical viscosity window observed in Figure 3
(between 0.14 and 0.23 Pa·s), the one of the blend containing latex AA_1 is above it.
Furthermore, it should be noted that film formation of latexes is influenced by the surface
chemistry of the polymer particles [48–51]. Some authors have demonstrated that the
presence of carboxylic acid groups on the particle surface can lead to a hydroplasticization
phenomenon enhancing the film formation [52–55]. Thus, the better quality of the fibers
containing latex AA_1 may also be due to this hydroplasticization effect.



Nanomaterials 2021, 11, 706 10 of 13Nanomaterials 2021, 11, 706 10 of 14 
 

 

 
Figure 8. SEM images of fibers obtained from blends of latexes D_1 and AA_1 with PVA2. The 
amount of PVA was 29 wt. % and the total s.c. 17 wt. % in both cases. The experiment was 
performed at 20 °C and 55 ± 1% of R.H. 

Figure 8 shows that more uniform fibers were obtained when latex AA_1 was used 
(containing carboxylic acid groups at the particle surfaces) instead of D_1. Although both 
complex electrospinning dispersions showed a similar surface tension value, the 
dispersion containing latex AA_1 had higher conductivity and viscosity (Table 5). As it 
has been explained before, an increase in both parameters helps in reducing bead 
formation and, therefore, in obtaining more uniform fibers. In fact, whereas the viscosity 
of the blend containing D_1 latex is in the lower part of the critical viscosity window 
observed in Figure 3 (between 0.14 and 0.23 Pa·s), the one of the blend containing latex 
AA_1 is above it. Furthermore, it should be noted that film formation of latexes is 
influenced by the surface chemistry of the polymer particles [48–51]. Some authors have 
demonstrated that the presence of carboxylic acid groups on the particle surface can lead 
to a hydroplasticization phenomenon enhancing the film formation [52–55]. Thus, the 
better quality of the fibers containing latex AA_1 may also be due to this 
hydroplasticization effect. 

Table 5. Properties the electrospinning dispersions prepared blending latexes D_1, AA_1 and L_1 
with PVA2 latexes with PVA2 in a PVA/particle ratio of 29/71 wt. %/wt. %. The solids content was 
17 wt. % in all the cases. 

Latex Surface Tension (mN/m) Conductivity (µS/cm) Viscosity (Pa s) pH 
D_1 49.5 ± 0.1 789 0.19 4.7 

AA_1 44.0 ± 0.1 1395 0.35 3.9 
L_1 45.0 ± 0.1 1231 0.25 4.2 

The effect of the surfactant type used to stabilize the polymer particles was also 
analyzed. To this end, latexes D_2 and L_1 were compared. These latexes had similar 
average particle diameter and exactly the same composition. The only difference between 
them was the surfactant used to stabilize the polymer particles. Latex D_2 was stabilized 
using 1 wbm % of Dowfax 2A1 and latex L_1 using 2 wbm % of Latemul PD-104 (Figure 
9). 
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Table 5. Properties the electrospinning dispersions prepared blending latexes D_1, AA_1 and
L_1 with PVA2 latexes with PVA2 in a PVA/particle ratio of 29/71 wt.%/wt.%. The solids content
was 17 wt.% in all the cases.

Latex Surface Tension (mN/m) Conductivity (µS/cm) Viscosity (Pa s) pH

D_1 49.5 ± 0.1 789 0.19 4.7
AA_1 44.0 ± 0.1 1395 0.35 3.9
L_1 45.0 ± 0.1 1231 0.25 4.2

The effect of the surfactant type used to stabilize the polymer particles was also
analyzed. To this end, latexes D_2 and L_1 were compared. These latexes had similar
average particle diameter and exactly the same composition. The only difference between
them was the surfactant used to stabilize the polymer particles. Latex D_2 was stabilized
using 1 wbm % of Dowfax 2A1 and latex L_1 using 2 wbm % of Latemul PD-104 (Figure 9).
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Figure 9. SEM images of fibers obtained from blends of latexes D_2 (Dowfax 2A1 as surfactant)
and L_1 (Latemul PD-104 as surfactant) with a PVA/particle ratio of 29/71 wt.%/wt.%. The solids
content was 17 wt.% in both cases. The experiment was performed at 20 ◦C and 55 ± 1 of % R.H.

Figure 9 shows that more uniform fibers were obtained when Latemul PD-104 was
used as surfactant. The electrospinning dispersion containing latexes L_1 and D_2 had
similar surface tension values; however, higher conductivity and viscosity values were
obtained for the dispersions containing latex L_1 (see Table 5). Thus, the reason for
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the better-quality fibers obtained when latex L_1 was used was attributed to the higher
conductivity and viscosity of the electrospinning dispersions. In fact, the viscosity for the
blend containing latex L_1 was above the critical window observed in Figure 3, whereas
the one for the blend containing D_2 was below it.

In summary, the changes in the surface chemistry of the polymer particles (by the pres-
ence of acid groups or by the used surfactant) can alter the viscosity and the conductivity
of the complex electrospinning dispersion and, therefore, strongly influence the final fiber
morphology. This is the first time that the effect of the polymer particle surface chemistry
on the electrospinning process has been studied.

4. Conclusions

Green electrospinning is a relatively new promising technology that consists in the
use of an aqueous polymer dispersion (latex) as electrospinning medium with the help
of a template polymer. This method is a green, clean and safe technology that allows
spinning of hydrophobic polymers using water as an electrospinning medium. In this
work, a systematic study that investigates the influence of the template polymer molar
mass, the particle/template ratio and the total solids content of the dispersion has been
carried out. A critical viscosity window (between 0.14 and 0.23 Pa·s) has been defined for
bead formation. Dispersions with viscosity values above this critical window form uniform
fibers, whereas the ones with lower viscosities lead to bead formation. Furthermore, the
effect of the surfactant used to stabilize the polymer particles, the surface functionality
of the polymer particles and the use of a bimodal particle size distribution have been
studied for the first time. It has been demonstrated that the viscosity of the initial complex
dispersion is affected by the particle size distribution and the surface chemistry of the
polymer particles (defined by the used surfactant of the presence of functional groups),
and therefore, they have a strong influence on the final fiber morphology. As a conclusion,
when working with green electrospinning, all the parameters investigated in this work
must be carefully taken into account in order to fine-tune the final fiber morphology.
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latexes measured by DLS.

Author Contributions: Conceptualization, M.P., J.R.L. and E.G.; methodology, E.G.; investigation,
E.G., A.B. and B.M.-S.; writing—original draft preparation, E.G.; writing—review and editing, E.G.,
M.P. and J.R.L.; funding acquisition, M.P. and J.R.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the MINECO of the Spanish Government, grant number
CTQ-2017-87841-R and by the Basque Government “Grupos Consolidados del Sistema Universitario
Vasco”, grant number IT999-16.

Data Availability Statement: The data is available on reasonable request from the corresponding
author.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2079-4991/11/3/706/s1
https://www.mdpi.com/2079-4991/11/3/706/s1


Nanomaterials 2021, 11, 706 12 of 13

References
1. Greiner, A.; Wendorff, J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed.

2007, 46, 5670–5703. [CrossRef]
2. Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial upscaling of electrospinning and applications of polymer

nanofibers: A review. Macromol. Mater. Eng. 2013, 298, 504–520. [CrossRef]
3. Wang, L.; Ryan, A.J. Introduction to electrospinning. In Electrospinning for Tissue Regeneration; Bosworth, L.A., Downes, S., Eds.;

Woodhead Publishing: Cambridge, 2011; pp. 3–33.
4. Li, Z.; Wang, C. One-Dimensional Nanostructures Elctrospinning Technique and Unique Nanofibers; Springer: Berlin, Germany, 2013.
5. Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50,

1976–1987. [CrossRef]
6. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019,

119, 5298–5415. [CrossRef]
7. Toriello, M.; Afsari, M.; Shon, H.K. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. Membranes

2020, 10, 204. [CrossRef] [PubMed]
8. Wang, X.; Yu, J.; Sun, G.; Ding, B. Electrospun nanofibrous materials: A versatile medium for effective oil/water separation.

Mater. Today 2016, 19, 403–414. [CrossRef]
9. Topuz, F.; Abdulhamid, M.A.; Nunes, S.P.; Szekely, G. Hierarchically porous electrospun nanofibrous mats produced from

intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. Environ. Sci. Nano 2020, 7,
1365–1372. [CrossRef]

10. Cseri, L.; Topuz, F.; Abdulhamid, M.A.; Alammar, A.; Budd, P.M.; Szekely, G. Electrospun Adsorptive Nanofibrous Membranes
from Ion Exchange Polymers to Snare Textile Dyes from Wastewater. Adv. Mater. Technol. 2021, 2000955. [CrossRef]

11. Aytac, Z.; Huang, R.; Vaze, N.; Xu, T.; Eitzer, B.D.; Krol, W.; MacQueen, L.A.; Chang, H.; Bousfield, D.W.; Chan-Park, M.B.; et al.
Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustain. Chem. Eng. 2020, 8,
15354–15365. [CrossRef]

12. Yim, V.M.-W.; Lo, A.S.-W.; Deka, B.J.; Guo, J.; Kharraz, J.A.; Horváth, I.T.; Kyoungjin, A. Molecular engineering low-surface
energy membranes by grafting perfluoro-tert-butoxy chains containing fluorous silica aerogels. Green Chem. 2020, 22, 3283–3295.
[CrossRef]

13. Zhang, Y.Z.; Venugopal, J.; Huang, Z.M.; Lim, C.T.; Ramakrishna, S. Crosslinking of the electrospun gelatin nanofibers. Polymer
2006, 47, 2911–2917. [CrossRef]

14. Vashisth, P.; Pruthi, V. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application.
Mater. Sci. Eng. C 2016, 67, 304–312. [CrossRef]

15. Rezaee, S.; Moghbeli, M.R. Crosslinked Electrospun Poly (Vinyl Alcohol) Nanofibers Coated by Antibacterial Copper Nanoparti-
cles. Iran. J. Chem. Eng. 2014, 11, 45–58.

16. Nataraj, D.; Reddy, R.; Reddy, N. Crosslinking electrospun poly (vinyl) alcohol fibers with citric acid to impart aqueous stability
for medical applications. Eur. Polym. J. 2020, 124, 109484. [CrossRef]

17. Agarwal, S.; Greiner, A. On the way to clean and safe electrospinning-green electrospinning: Emulsion and suspension electro-
spinning. Polym. Adv. Technol. 2011, 22, 372–378. [CrossRef]

18. Crespy, D.; Friedemann, K.; Popa, A.M. Colloid-electrospinning: Fabrication of multicompartment nanofibers by the electro-
spinning of organic or/and inorganic dispersions and emulsions. Macromol. Rapid Commun. 2012, 33, 1978–1995. [CrossRef]
[PubMed]

19. Stoiljkovic, A.; Ishaque, M.; Justus, U.; Hamel, L.; Klimov, E.; Heckmann, W.; Eckhardt, B.; Wendorff, J.H.; Greiner, A. Preparation
of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning. Polymer 2007, 48,
3974–3981. [CrossRef]

20. Friedemann, K.; Turshatov, A.; Landfester, K.; Crespy, D. Characterization via two-color STED microscopy of nanostructured
materials synthesized by colloid electrospinning. Langmuir 2011, 27, 7132–7139. [CrossRef]

21. Herrmann, C.; Turshatov, A.; Crespy, D. Fabrication of polymer ellipsoids by the electrospinning of swollen nanoparticles. ACS
Macro Lett. 2012, 1, 907–909. [CrossRef]

22. Yuan, W.; Zhang, K.Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer
nanoparticles. Langmuir 2012, 28, 15418–15424. [CrossRef]

23. Cao, D.; Li, X.; Yang, L.; Yan, D.; Shi, Y.; Fu, Z. Controllable fabrication of micro/nanostructures by electrospinning from
polystyrene/poly(vinyl alcohol) emulsion dispersions. J. Appl. Polym. Sci. 2018, 135, 46288. [CrossRef]

24. Jiang, S.; He, W.; Landfester, K.; Crespy, D.; Mylon, S.E. The structure of fibers produced by colloid-electrospinning depends on
the aggregation state of particles in the electrospinning feed. Polymer 2017, 127, 101–105. [CrossRef]

25. Stoiljkovic, A.; Venkatesh, R.; Klimov, E.; Raman, V.; Wendorff, J.H.; Greiner, A. Poly(styrene-co-n-butyl acrylate) nanofibers
with excellent stability against water by electrospinning from aqueous colloidal dispersions. Macromolecules 2009, 42, 6147–6151.
[CrossRef]

26. Klimov, E.; Raman, V.; Venkatesh, R.; Heckmann, W.; Stark, R. Designing nanofibers via electrospinning from aqueous colloidal
dispersions: Effect of cross-linking and template polymer. Macromolecules 2010, 43, 6152–6155. [CrossRef]

http://doi.org/10.1002/anie.200604646
http://doi.org/10.1002/mame.201200290
http://doi.org/10.1021/acs.accounts.7b00218
http://doi.org/10.1021/acs.chemrev.8b00593
http://doi.org/10.3390/membranes10090204
http://www.ncbi.nlm.nih.gov/pubmed/32872232
http://doi.org/10.1016/j.mattod.2015.11.010
http://doi.org/10.1039/D0EN00084A
http://doi.org/10.1002/admt.202000955
http://doi.org/10.1021/acssuschemeng.0c05917
http://doi.org/10.1039/D0GC00593B
http://doi.org/10.1016/j.polymer.2006.02.046
http://doi.org/10.1016/j.msec.2016.05.049
http://doi.org/10.1016/j.eurpolymj.2020.109484
http://doi.org/10.1002/pat.1883
http://doi.org/10.1002/marc.201200549
http://www.ncbi.nlm.nih.gov/pubmed/23129202
http://doi.org/10.1016/j.polymer.2007.04.050
http://doi.org/10.1021/la104817r
http://doi.org/10.1021/mz300245b
http://doi.org/10.1021/la303312q
http://doi.org/10.1002/app.46288
http://doi.org/10.1016/j.polymer.2017.08.061
http://doi.org/10.1021/ma900354u
http://doi.org/10.1021/ma100750e


Nanomaterials 2021, 11, 706 13 of 13

27. Giebel, E.; Greiner, A. Water-stable nonwovens composed of electrospun fibers from aqueous dispersions by photo-cross-linking.
Macromol. Mater. Eng. 2012, 297, 532–539. [CrossRef]

28. De San Luis, A.; Aguirreurreta, Z.; Pardo, L.M.; Perez-Marquez, A.; Maudes, J.; Murillo, N.; Paulis, M.; Leiza, J.R. PS/PMMA-
CdSe/ZnS Quantum Dots Hybrid Nanofibers for VOCs Sensors. Isr. J. Chem. 2018, 58, 1347–1355. [CrossRef]

29. Buruaga, L.; Sardon, H.; Irusta, L.; Gonzalez, A.; Fernandez-Berridi, M.J.; Iruin, J.J. Electrospinning of Waterborne Polyurethanes.
J. Appl. Polym. Sci. 2010, 115, 1176–1179. [CrossRef]

30. Wu, Y.; Lin, W.; Hao, H.; Li, J.; Luo, F.; Tan, H. Nanofibrous scaffold from electrospinning biodegradable waterborne
polyurethane/poly(vinyl alcohol) for tissue engineering application. J. Biomater. Sci. Polym. Ed. 2017, 28, 648–663. [CrossRef]

31. Santamaria-Echart, A.; Ugarte, L.; Gonzalez, K.; Martin, L.; Irusta, L.; Gonzalez, A.; Corcuera, M.A.; Eceiza, A. The role of
cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats.
Carbohydr. Polym. 2017, 166, 146–155. [CrossRef] [PubMed]

32. Piperno, S.; Gheber, L.A.; Canton, P.; Pich, A.; Dvorakova, G.; Biffis, A. Microgel electrospinning: A novel tool for the fabrication
of nanocomposite fibers. Polymer 2009, 50, 6193–6197. [CrossRef]

33. Bansal, P.; Bubel, K.; Agarwal, S.; Greiner, A. Water-stable all-biodegradable microparticles in nanofibers by electrospinning of
aqueous dispersions for biotechnical plant protection. Biomacromolecules 2012, 13, 439–444. [CrossRef]

34. Faridi-Majidi, R.; Madani, M.; Sharifi-Sanjani, N.; Khoee, S.; Fotouhi, A. Multi-Phase Composite Nanofibers via Electrospinning
of Latex Containing Nanocapsules with Core-Shell Morphology. Polym. Plast. Technol. Eng. 2012, 51, 364–368. [CrossRef]

35. Sirohi, S.; Singh, D.; Nain, R.; Parida, D.; Agrawal, A.K.; Jassal, M. Electrospun composite nanofibres of PVA loaded with
nanoencapsulated n-octadecane. RSC Adv. 2015, 5, 34377–34382. [CrossRef]

36. Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by green electrospinning of aqueous suspensions of
biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. Macromol. Rapid Commun. 2010, 31,
2077–2083. [CrossRef] [PubMed]

37. Giebel, E.; Getze, J.; Röcker, T.; Greiner, A. The importance of crosslinking and glass transition temperature for the mechanical
strength of nanofibers obtained by green electrospinning. Macromol. Mater. Eng. 2013, 298, 439–446. [CrossRef]

38. Gonzalez, E.; Tollan, C.; Chuvilin, A.; Barandiaran, M.J.; Paulis, M. Determination of the coalescence temperature of latexes by
environmental scanning electron microscopy. ACS Appl. Mater. Interfaces 2012, 4, 4276–4282. [CrossRef]

39. Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y. Experimental study on relationship between jet instability and formation
of beaded fibers during electrospinning. Polym. Eng. Sci. 2005, 45, 704–709. [CrossRef]

40. Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [CrossRef]
41. Rogina, A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite

systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296, 221–230. [CrossRef]
42. Phachamud, T.; Phiriyawirut, M. Research Journal of Pharmaceutical, Biological and Chemical Sciences. Res. J. Pharm. Biol. Chem.

Sci. 2011, 2, 675–684.
43. Teraoka, I. Polymer Solutions: An Introduction to Physical Properties; Wiley-Interscience: New York, NY, USA, 2018; pp. 1–360.
44. Sudduth, R.D. A generalized model to predict the viscosity of solutions with suspended particles. I. J. Appl. Polym. Sci. 1993, 48,

25–33. [CrossRef]
45. Sudduth, R.D. A new method to predict the maximum packing fraction and the viscosity of solutions with a size distribution of

suspended particles. II. J. Appl. Polym. Sci. 1993, 48, 37–55. [CrossRef]
46. Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3,

137–152. [CrossRef]
47. de Mariz, I.F.A.; de la Cal, J.C.; Leiza, J.R. Unimodal Particle Size Distribution Latexes: Effect of Reaction Conditions on Viscosity

and Stability at High Solids Content. Macromol. React. Eng. 2011, 5, 361–372. [CrossRef]
48. González, E.; Barandiaran, M.J.; Paulis, M. Isolation of the effect of the hairy layer length on the mechanical properties of

waterborne coatings. Prog. Org. Coat. 2015, 88, 137–143. [CrossRef]
49. Gonzalez, E.; Tollan, C.; Chuvilin, A.; Paulis, M.; Barandiaran, M.J. Effect of alkali-soluble resin emulsifiers on coalescence and

interdiffusion between latex polymer particles. Colloid Polym. Sci. 2015, 293, 2419–2427. [CrossRef]
50. González, E.; Paulis, M.; Barandiaran, M.J. Effect of controlled length acrylic acid-based electrosteric stabilizers on latex film

properties. Eur. Polym. J. 2014, 59, 122–128. [CrossRef]
51. Keddie, J.; Routh, A.F. Fundamentals of Latex Film Formation: Processes and Properties; Springer Laboratory: Dordrecht,

The Netherlands, 2010; pp. 1–274.
52. Voogt, B.; Huinink, H.P.; Erich, S.J.F.; Scheerder, J.; Venema, P.; Keddie, J.L.; Adan, O.C.G. Film Formation of High Tg Latex Using

Hydroplasticization: Explanations from NMR Relaxometry. Langmuir 2019, 35, 12418–12427. [CrossRef]
53. Voogt, B.; Huinink, H.; van de Kamp-Peeters, L.; Erich, B.; Scheerder, J.; Venema, P.; Adan, O. Hydroplasticization of latex films

with varying methacrylic acid content. Polymer 2019, 166, 206–214. [CrossRef]
54. Tsavalas, J.G.; Sundberg, D.C. Hydroplasticization of Polymers: Model Predictions and Application to Emulsion Polymers.

Langmuir 2010, 10, 6960–6966. [CrossRef]
55. Dron, S.M.; Paulis, M. Tracking Hydroplasticization by DSC: Movement of Water Domains Bound to Poly(Meth)Acrylates during

Latex Film Formation. Polymers 2020, 12, 2500. [CrossRef]

http://doi.org/10.1002/mame.201100401
http://doi.org/10.1002/ijch.201800038
http://doi.org/10.1002/app.31219
http://doi.org/10.1080/09205063.2017.1294041
http://doi.org/10.1016/j.carbpol.2017.02.073
http://www.ncbi.nlm.nih.gov/pubmed/28385218
http://doi.org/10.1016/j.polymer.2009.11.004
http://doi.org/10.1021/bm2014679
http://doi.org/10.1080/03602559.2011.639326
http://doi.org/10.1039/C4RA16988C
http://doi.org/10.1002/marc.201000379
http://www.ncbi.nlm.nih.gov/pubmed/21567634
http://doi.org/10.1002/mame.201200080
http://doi.org/10.1021/am300971v
http://doi.org/10.1002/pen.20304
http://doi.org/10.1016/S0032-3861(99)00068-3
http://doi.org/10.1016/j.apsusc.2014.01.098
http://doi.org/10.1002/app.1993.070480104
http://doi.org/10.1002/app.1993.070480105
http://doi.org/10.1122/1.548848
http://doi.org/10.1002/mren.201100016
http://doi.org/10.1016/j.porgcoat.2015.06.027
http://doi.org/10.1007/s00396-015-3635-3
http://doi.org/10.1016/j.eurpolymj.2014.07.023
http://doi.org/10.1021/acs.langmuir.9b01353
http://doi.org/10.1016/j.polymer.2019.01.074
http://doi.org/10.1021/la904211e
http://doi.org/10.3390/polym12112500

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Electrospinning Dispersions and Electrospinning Process 
	Characterization Methods 

	Results and Discussion 
	Effect of the Template Polymer and the Solids Content (S.C.) 
	Effect of Particle Size and Particle Size Distribution 
	Electrospinning of Polymer Particles with Different Surface Chemistry 

	Conclusions 
	References

