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Laburpena 
 

Litio-ioizko baterien teknologia metatze-sistema lehenetsia bilakatu da aplikazio 

industrial desberdinentzat. Izan ere, ezaugarri interesgarriak erakusten ditu beste 

metatze teknologiei konparatuz, hala nola dentsitate energetiko handia, energia eta 

potentzia espezifiko handia, efizientzia energetiko handia eta heldutasun 

teknologiko erlatiboki aitzinatua. Hala ere, teknologia horren arazo nagusi bat 

baterien kostu iniziala da. Horretaz gain, Li-ioizko bateriek beren hasierako 

gaitasunak galtzen dituzte denboraren poderioz, baita erabilpen baldintzen arabera 

ere. Horrek Li-ioizko baterietan oinarrituriko sistemen errentagarritasuna kolokan 

ezartzen du. 

Arazo hauei aurre egiteko, komunitate zientifikoa eta industria norabide desberdinak 

lantzen ari dira. Hauen artean, aipa genitzake metatze-sistemen 

dimentsionamenduaren optimizazioa, baterien bigarren bizitzan oinarrituriko 

negozio estrategien inplementazioa, eta baterien erabilpen estrategia optimizatuen 

garapena. Soluzio horien inplementaziorako, behar-beharrezkoa da Li-ioizko 

baterien degradazio eredu zehatzak garatzea: hain zuzen ere, eredu hauek baterien 

degradazioa aurreikusteko gai dira, bateriak sufrituriko erabilpen baldintzen arabera. 

Degradazio eredu konbentzionalen garapenerako, eta batez ere hauen zehaztasuna 

segurtatzeko operazio baldintza errealisten testuinguruan, zailtasun nagusi bat 

laborategian egin beharreko test kantitatea da. Test hauek gauzatze denbora luzeak 

eta baliabide ekonomiko inportanteak inplikatzen dituzte, degradazio ereduen 

garapen kostua iganez. Arazo horren aitzinean, tesi honetan proposatzen den 

soluzioa datu-korronte jarraiki batetik etengabe ikasteko gaitasuna duten degradazio 

ereduen garatzea da. Planteamendu horri jarraikiz (ikus azpiko irudia), degradazio 
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eredu inizial bat garatu liteke, laborategiko test kopuru murriztu batean oinarrituz. 

Gerora, bateria-sistema aplikazioan hedatu ondotik, bertan Datu Eskuratze 

Sistemaren (DAS, ingelesetik Data Acquisition System) bidez lorturiko datuek 

degradazio eredu inizialaren eguneratzea ahalbidera lezakete. Horrela, degradazio 

eredua etengabe hobetuko litzateke, iragarpenen zehaztasuna hobetuz, ereduaren 

erabilpen-leihoa zabalduz eta informazio baliagarria hornituz mantentze 

prediktiborako, energiaren kudeaketa estrategia adaptagarrietarako edo negozio 

estrategien berdefinitzeko. 

 

 

 

Proposaturiko degradazio ereduen planteamendua: laborategiko test kopuru murriztu batean 
oinarrituz, degradazio eredu inizial bat garatzen da. Gerora, bateria-sistema aplikazio 
desberdinetan zabaldu ondotik, bertatik DAS bidez lorturiko datuek degradazio eredu inizialaren 
eguneratzea ahalbidetzen dute. Modu horretan, garatutako degradazio ereduek datu-korronte jarrai 
batetik etengabe ikasteko gaitasuna dute. 
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Artearen egoeraren azterketa sakon baten ondotik, Prozesu Gaussiarren (GP, 

ingelesetik Gaussian Process) markoa identifikatu da tesiaren helburuen betetzeko 

ereduztatze metodo egokienen artean. Kobariantza funtzio konposizionalak 

proposatu dira GP ereduen garapenerako, zeinak Li-ioizko baterien degradazioaren 

iragarpenerako egokituak diren. Degradazio eredu holistiko bat garatu da, bi eredu 

independentez osatua: lehen ereduak Li-ioizko baterien “calendar” bidezko 

degradazioa deskribatzen du (hots, bateria geldialdi egoeran delarik ematen den 

degradazioa), eta bigarrenak baterien “ziklatze” bidezko degradazioa aurreikusten du 

(hots, bateria elektrikoki kitzikatua delarik ematen den degradazioa). Bi ereduak 

erabilpen baldintza estatiko, dinamiko eta errealistikoen tarte zabal batean egiaztatu 

dira. Horretarako laborategiko datu-base zabal bat erabili da zeinak hiru urte baino 

gehiagoz degradaturiko zelden datuak barneratzen dituen. Metodologia bat diseinatu 

da, degradazio ereduek progresiboki ikuskaturiko datuetatik etengabe ikasteko 

duten gaitasuna egiaztatzeko. 

 

Tesian zehar eraman diren ikerketa lanek ondoko ondorioak azaleratu dituzte:  

i) Beren izaera ez-parametrikoari esker, GP markoan oinarrituriko 

degradazio ereduek gaitasuna dute progresiboki ikuskaturiko erabilpen 

baldintzetatik ikasteko: Li-ioizko baterien erabilpen-lehio osoan zehar, 

degradazio ereduaren zehaztasuna hobetzen doa eta iragarpenen 

ziurgabetasun tarteak murrizten doaz, ereduaren fidagarritasuna hazten 

denaren lekuko. 
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ii) Testuinguru horretan, nukleo isotropikoak egokiak dira estres-faktore 

desberdinei dagozkien sarrerak ereduztatzeko, bateriaren erabilpena 

eraikitzaileek gomendaturiko erabilpen tarteetan mugatzen deno. 

iii) Baterien degradazioan eragin gehien duten estres-faktoreak identifikatu 

daitezke, Garrantzi Determinazio Automatikoa (ARD, ingelesetik 

Automatic Relevance Determination) inplementatzen duten nukleoetan 

oinarrituriko sentsibilitate analisiaren bidez. Informazio hau erabilgarria 

izan daiteke besteak beste baterien biziraupenaren maximizazioa helburu 

duten energia kudeaketa estrategiak definitzeko. 

iv) Desberdintasun bat bada bateriaren erabilpen baldintza estatikoen eta 

dinamikoen ondorioz ematen diren kapazitate galeren artean. Baliteke 

desberdintasun hori bateriaren deskarga sakontasunak erabilpen 

baldintza dinamikoetan izan lezakeen eragin murriztuaren ondorio izatea. 

Konstatazio horrek proposaturiko ereduen interesa areagotzen du, zeinak 

hedatu ondotik eboluzionatzeko gai diren, aplikazio errealean 

ikuskaturiko erabilpen profil dinamikoetatik ikasiz. 

 

Tesi honetan proposaturiko ereduztatze metodoa bat dator azken urteetan arlo 

desberdinetan gertatzen ari den digitalizazioaren joerarekin. Industria interes handia 

erakusten ari da datu bilketarako telemetria teknologia berrien inplementazioan. 

Horren ondorioz, espero da epe motz batean aplikazio errealetatik erauzitako 

baterien erabilpen datuak eskuragarri izatea kantitate handian. Testuinguru 

horretan, aplikazioko erabilpen datuetatik ikasteko gai diren degradazio ereduen 

garapena soluzio interesgarria da, besteak beste i) laborategiko eta aplikazio 

errealeko erabilpen profilen desberdintasunetik eratorritako iragarpen akatsak 

zuzentzeko gai direlako, eta ii) laborategiko test kantitatea, eta beraz degradazio 
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ereduen garapen kostua murriztea ahalbidetzen dutelako. Ondorioz, tesi honetan 

aurkezturiko emaitzak interes teknologikoa ez ezik, interes komertziala ere badute, 

eta proposaturiko soluzioak bereziki lerrokatuak dira industriak ondoko urteetan 

biziko duen bilakaerarekin. 
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Abstract 
 

Lithium-ion (Li-ion) battery technology has gained a significant market share as the 

principal energy storage solution for many industrial applications, mainly due to its 

relatively high technological maturity, high energy efficiency and high specific 

energy and power. However, Li-ion batteries are still relatively expensive compared 

to other storage technologies, and their performance is known to decline over time 

and use, which threatens their competitiveness against more affordable solutions. In 

order to overcome such barriers and ensure the profitability of Li-ion based systems, 

the global research focusses on different paths. Some of them are the implementation 

of optimised sizing of the storage systems, second-life business strategies and the 

design of effective operation strategies, which allow the reduction of the total cost of 

ownership and make profitable the implementation of large-scale Li-ion energy 

storage systems. The latter points are strongly conditioned by the development of 

accurate Li-ion battery ageing models, able to relate the operating conditions of a 

battery system to their subsequent degradation. 

A significant challenge for the development of conventional Li-ion battery ageing 

models is the amount of laboratory tests required to verify the accuracy of the model 

under realistic operating conditions. In order to reduce the number of laboratory tests 

and at the same time ensure the validity of the model under realistic operating 

profiles, the solution proposed in this thesis is the development of ageing models 

capable to continuously learn from streaming data. Following this approach, reduced 

laboratory tests could be used to develop a preliminary ageing model. Further, once 

the battery pack has been implemented and deployed, in-field data extracted by the 

data acquisition system could allow updating the preliminary ageing model. In this 
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way, the ageing model would be continuously upgraded, improving prediction 

accuracy, extending the operating window of the model itself and providing useful 

information for predictive maintenance, adaptive energy management strategies or 

business case redefinition.  

After an in-depth study of the state of the art, the Gaussian Process (GP) modelling 

framework was selected as the most suitable method to meet with the objective of 

the thesis. Compositional covariance functions were proposed in order to develop GP 

models tailored to the Li-ion battery ageing prediction application. A holistic ageing 

model was developed, composed of two separated models corresponding 

respectively to the cell degradation through calendar and cycle ageing. Both models 

were validated under a broad range of static, dynamic, and realistic operating 

conditions, using an extensive laboratory experimental dataset involving Li-ion cells 

tested during more than three years. A methodology was designed to validate the 

ability of the models to learn continuously from the data progressively observed. 

The research works carried out in this thesis bring the main following findings:  

i) Due to their nonparametric character, GP-based ageing models are 

capable to learn from progressively observed operating conditions: 

throughout the whole operating range of the Li-ion battery, the prediction 

accuracy of the model improves, and the confidence boundaries of the 

predictions are reduced, indicating an increased reliability of the models’ 

predictions. 

ii) In this context, isotropic kernel components are suitable to host the 

features corresponding to the different stress-factors, in so far as the 

battery operates within the limited range of the recommended operating 

conditions. 
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iii) The sensitivity analysis based on the automatic relevance determination 

kernels allows to identify which stress-factors have highest influence on 

battery ageing, providing insightful inputs for the development of energy 

management strategies oriented to extend the lifetime of battery systems. 

iv) There is a discrepancy between the capacity loss induced by static and 

dynamic profiles of the stress-factors, which could be related to the lower 

influence of the depth of discharge in dynamic operation. This highlight 

the increased interest of ageing models capable to evolve after the 

deployment and learn from the dynamic profiles observed in real 

applications. 

The modelling approach proposed in this thesis comes aligned with the digitalisation 

trends observed in the recent years in different areas. In fact, there is significant 

interest from industry in the introduction of new data collection telemetry 

technology. This implies the forthcoming availability of a significant amount of real-

world battery operation data. In this context, the development of ageing models able 

to learn from in-field battery operation data is an interesting solution to mitigate the 

need for exhaustive laboratory testing and reduce the development cost of ageing 

models. The findings presented in this work are therefore not only of technological 

but also of economic interest, and the proposed solution is particularly adapted to 

the industry trends upcoming. 

 

KEYWORDS: Li-ion battery, State of Health, Remaining Useful Life, Machine 

Learning, Data-driven model, Gaussian Process Regression. 
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Matrices are capitalised and vectors are in bold type. A subscript asterisk, such as 𝑋𝑋∗, indicates 
reference to a test set quantity. A superscript number, such as x1, indicate the index of the 
corresponding vector. 
 

Symbol  Meaning  Refers 
to 

     
~  Distributed accorded to; example 𝑥𝑥~𝒩𝒩(µ,𝜎𝜎2).  - 

|x|  Absolute value of x.   - 
|𝐾𝐾|  Determinant of matrix 𝐾𝐾.  - 
‖w‖  Euclidean norm of vector w.  - 

〈w, x〉  Dot product of vectors w and x.  - 
y𝑇𝑇  The transpose of vector y.  - 

α 
 Autocorrelation coefficient.  ARIMA 
 or α’. Dual variable or Lagrange multiplier.  SVR 

β  Weight applied to the residuals  ARIMA 

𝐶𝐶 
 Constant parameter to control the trade-off 

between the flatness objective and the tolerated 
error deviation. 

 
SVR 

Charging C-rate  The value of the charging C-rate stress-factor, 
corresponding to the cycled Ah-throughput. 

 - 

cov(f∗)  Gaussian process posterior covariance.  - 

𝐶𝐶𝐶𝐶2𝜎𝜎− ∆𝑄𝑄  Calibration score relative to a ±2𝜎𝜎 interval, 
calculated for 𝛥𝛥𝛥𝛥 predictions. 

 - 

𝐶𝐶𝐶𝐶2𝜎𝜎− 𝑄𝑄  Calibration score relative to a ±2𝜎𝜎 interval, 
calculated for 𝑄𝑄 predictions. 

 
- 

𝛿𝛿  
Dirac function. 

 Particle 
filters 

𝛥𝛥𝛥𝛥  The storage time for which the calendar ageing is 
predicted. 

 - 

𝛥𝛥𝛥𝛥  Capacity loss corresponding to a 𝛥𝛥𝛥𝛥 storage time or 
a ΔAh-throughput cycled. 

 
- 

ΔAh-throughput  The number of Ah-throughput for which the 
ageing is predicted. 

 - 

Discharging C-rate  The value of the discharging C-rate stress-factor, 
corresponding to the cycled ΔAh-throughput. 

 
- 

DOD  The value of the DOD stress-factor, corresponding 
to the cycled ΔAh-throughput. 

 - 

𝔼𝔼  Expectation.  - 
ε  Residual.  - 
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ξ𝑖𝑖, ξ𝑖𝑖
′  Slack variables.  SVR 
𝜖𝜖  Insensitivity parameter.  SVR 

𝑓𝑓(x) 

 Model of function to be found.  - 
 

Transition model. 
 Particle 

filters 
 or f. Gaussian process (or vector of) latent function 

values, f = (𝑓𝑓(x1), … , 𝑓𝑓(x𝑛𝑛))𝑇𝑇. 
 GP 

f∗ 
 Gaussian process (posterior) prediction (random 

variable). 
 

GP 

f∗�  Gaussian process posterior mean.  GP 
ℱ  Feature space.  - 

𝒢𝒢𝒢𝒢 
 Gaussian Process: 𝑓𝑓~𝒢𝒢𝒢𝒢(𝑚𝑚(x), 𝜅𝜅(x, x′)), the 

function 𝑓𝑓 is distributed as a Gaussian process with 
mean 𝑚𝑚(x) and covariance function 𝜅𝜅(x, x′). 

 
GP 

ℎ(x)  Measurement model.  Particle 
filters 

𝐼𝐼  The identity matrix  - 

𝜅𝜅(x, x′) 
 

Covariance (or kernel) function evaluated at x and 
x′. 

 SVR, 
RVM, 
GP 

𝐾𝐾 or 𝐾𝐾(𝑋𝑋,𝑋𝑋)  𝑛𝑛 × 𝑛𝑛 covariance (or Gram) matrix.  GP 

𝐾𝐾∗ 
 𝑛𝑛 × 𝑛𝑛∗ matrix 𝐾𝐾(𝑋𝑋,𝑋𝑋∗), the covariance between 

training and test cases. 
 

GP 

L  Loss function.  SVR 
𝑚𝑚(x)  The mean function of a Gaussian Process.  GP 

𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄  Mean Absolute Error, calculated for 𝛥𝛥𝛥𝛥 predictions.  - 
𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄  Mean Absolute Error, calculated for 𝑄𝑄 predictions.  - 

Middle-SOC  The value of the Middle-SOC stress-factor, 
corresponding to the cycled ΔAh-throughput. 

 
- 

η, η′  Dual variable or Lagrange multiplier.  SVR 

𝒩𝒩(µ,∑) 
 Gaussian (Normal) distribution with mean vector µ 

and covariance matrix ∑. 
 

- 

𝒪𝒪(∙)  Big O notation  - 

𝜙𝜙(x)  Basis function which maps a D-dimensional input 
vector x into a N-dimensional feature space. 

 SVR, 
RVM 

𝑄𝑄  Capacity.  - 
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚   Maximum value of the capacity curve.  - 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∆𝑄𝑄  Root Mean Square Error, calculated for 𝛥𝛥𝛥𝛥 
predictions. 

 - 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄  Root Mean Square Error, calculated for 𝑄𝑄 
predictions. 

 
- 

𝑆𝑆𝑆𝑆𝑆𝑆  The value of the SOC stress-factor, corresponding 
to the storage time 𝛥𝛥𝛥𝛥. 

 - 

𝜎𝜎  Standard deviation.  - 
𝜎𝜎2  Variance.  - 
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𝜎𝜎𝑛𝑛2  Noise variance.  GP 
𝜎𝜎𝑓𝑓2  Variance of the (noise free) signal.  GP 

𝜽𝜽  Vector of hyperparameters (parameters of the 
covariance functions). 

 
GP 

𝜃𝜃∆𝑡𝑡  Hyperparameter related to the 𝛥𝛥𝛥𝛥 input.  GP 
𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆   Hyperparameter related to the 𝑆𝑆𝑆𝑆𝑆𝑆 input.  GP 
𝜃𝜃𝑇𝑇  Hyperparameter related to the 𝑇𝑇 input.  GP 

𝑇𝑇−1  The reciprocal of the temperature corresponding to 
the storage time 𝛥𝛥𝛥𝛥 or to the cycled ΔAh-throughput. 

 
- 

u  Vector of the noise terms, in the measurement 
model. 

 Particle 
filters 

v  
Vector of the noise terms, in the transition model. 

 Particle 
filters 

w 

 Vector of parameters or weights.  SVR, 
RVM 

 
Weight of the particles. 

 Particle 
filters 

x 
 Input vector, x = (x1, … x𝑁𝑁).  - 
 Vector of state variables, x = (x1, … x𝑁𝑁)  Particle 

filters 
𝒳𝒳  Input space.  - 

y 
 Target or output vector.  - 
 Vector of measurement variables.  Particle 

filters 
𝑦𝑦�  Predicted output.  - 

𝑦𝑦|𝑥𝑥 and 𝑝𝑝(𝑦𝑦|𝑥𝑥)  Conditional random variable 𝑦𝑦 given 𝑥𝑥 and its 
probability (density) 

 
- 
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Glossary of Terms 
Ageing OR Degradation 

Battery permanent loss of performance capabilities due to both a repeated cyclic use 
and the course of time. Also referred as degradation. 
 

Ageing knee 
The point in the ageing history of a Li-ion battery in which a sudden and significant 
acceleration is experienced in the capacity fade and/or the DC resistance increase 
evolution. From an electrochemical standpoint, such acceleration is normally due to 
a change in the dominant ageing mechanism. 
 

Ampere-hour-throughput [Ah] 
The cumulative sum of the amount of Ampere-hours charged or discharged in 
absolute terms. 
 

Anode 
The electrode in an electrochemical cell where the oxidation takes place. It gives up 
electrons to the external circuit during discharge (negative electrode) and the 
situation reverses during charge (positive electrode). 
 

Anode overhang 
The anode overhang is defined by the geometrical anode area, which is not opposed 
by a cathode. The anode is oversized in nearly all lithium-ion cells containing a 
graphite anode. 
 

Autoregressive model 
Refers to a model which forecasts the variable of interest based on the past values of 
such variable. The term autoregression indicates that it is a regression of the variable 
against itself. 
 

Batch learning 
Refers to a learning paradigm in which the whole training dataset is used at once to 
train the model.  
 

Battery 
A device that converts chemical energy into electrical energy and vice versa. Batteries 
typically consist of several cells interconnected in modules, branches or racks to form 
a whole battery pack: 
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Cell 
The basic electrochemical unit providing a source of electrical energy by direct 
conversion of chemical energy. The cell consists of an assembly of electrodes, 
separators, electrolyte, container and terminals. 
 
Battery Module 
One or more electrochemical cells electrically connected in series/parallel to provide 
the required operating voltage and current levels. 
 
Battery pack 
An assembly of battery modules, either connected in series or in parallel. Typically 
includes higher level interfaces for battery control, monitoring, communications and 
thermal management. 
 

Battery Management System (BMS) 
Electronic circuit board that manages a rechargeable battery, by sensing and 
monitoring its state, calculating secondary data, communicating or reporting that 
data, protecting the battery, controlling its environment, and/or balancing it. 
 

Beginning of Life (BOL) 
The point in time at which battery use begins. 
 

Big-O complexity 
The Big O notation provides the asymptotic upper bound for the growth rate of 
runtime or memory of an algorithm or program. 
 

Calendar operation 
Refers to an operation in which the cell is not electrically cycled. 
 

Calendar ageing 
The degradation of a Li-ion cell due to the ageing mechanisms happening during a 
purely calendar operation, i.e. when the cell is not electrically cycled. 
 

Capacity [Ah] 
The quantity of Ampere-hours that can be withdrawn from a fully charged cell or 
battery under specified conditions of discharge. 
 

Actual, Current OR Remaining Capacity [Ah] 
The total capacity that will be obtained from a cell or battery at defined 
discharge rates and other specified discharge or operating conditions. The 
capacity that can be discharged until discharge cut-off voltage from a 
completely charged cell. 
 
Capacity Fade OR Irreversible capacity loss [Ah] 
Gradual loss of capacity of a secondary battery due to ageing processes. 
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Reversible capacity recovery [Ah] 
Reversible increase of capacity of a secondary battery. This could sometimes 
be observed in the initial phase of the capacity curve, or as a local 
phenomenon after an idle pause in cycling. According to the literature, the 
reversible capacity recovery could be induced by a slow, compensating flow 
of active lithium between the passive and the active part of the anode, where 
the passive part represents the geometric excess of the anode with respect to 
the cathode. 
 
Nominal capacity [Ah] 
Capacity of the cell or battery, expressed in Ampere-hours, measured at 
nominal conditions defined by the manufacturer (datasheet). 
 

Cathode 
The electrode in an electrochemical cell where the reduction takes place. It receives 
electrons from the external circuit during discharge (positive electrode) and the 
situation reverses during charge (negative electrode). 
 

Characterisation tests 
A characterisation test consists on a determined sequence of tests to periodically 
check the performance of the battery under test. 
 

Charge 
The conversion of electrical energy, provided in the form of a current from an external 
source, into chemical energy within a cell or battery. 
 

Confidence interval OR confidence boundary 
A confidence interval gives an estimated range of values which is likely to include an 
unknown population parameter, the estimated range being calculated from a given 
set of sample data. In this thesis the confidence intervals correspond to a 2𝜎𝜎 
confidence level. 
 

Constant Current (CC) 
A method of charging/discharging the battery using a constant current. 
 

Constant Voltage (CV) 
A method of charging the battery by applying a fixed voltage and allowing variations 
in the current. 
 

Covariance 
Measure of how much two random variables vary together. Formally, suppose 𝑋𝑋 and 
𝑌𝑌 are random variables with means µ𝑋𝑋 and μY. The covariance of 𝑋𝑋 and 𝑌𝑌 is defined as  

 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)  =  𝐸𝐸((𝑋𝑋 −  𝜇𝜇𝑋𝑋)(𝑌𝑌 −  𝜇𝜇𝑌𝑌 )) 
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Covariance function OR kernel function OR kernel 

In this thesis, the terms “covariance function”, “kernel function” or “kernel” are used 
equivalently. 
The covariance function 𝜅𝜅(x, x′) of a real process 𝑓𝑓(x) is formally defined as follows: 
 

𝜅𝜅(x, x′) = 𝔼𝔼��𝑓𝑓(x) −𝑚𝑚(x)��𝑓𝑓(x′) −𝑚𝑚(x′)�� 
 
where x and x′ are two different input vectors and 𝑚𝑚(x) is the mean function of the 
process. 
 

C-rate [h-1] 
The discharge or charge current (in Amperes) expressed as a multiple of the rated 
device capacity (in Ampere-hours). For example, for a device having a capacity of one 
Ampere-hour under this reference condition, 5A charging/discharging would be 
5𝐴𝐴 / 1𝐴𝐴ℎ rate or 5C [ℎ−1]. 
 

Cycle 
The discharge and subsequent or preceding charge of a secondary battery such that it 
is restored to its original State of Charge (SOC) condition. 
 

Cycle ageing 
The degradation of a Li-ion cell due to the ageing mechanisms happening during a 
purely cycling operation, i.e. when the cell is electrically cycled. 
 

Cycle life 
The number of cycles under specified conditions that a secondary battery is capable 
of withstanding before it fails to meet specified criteria of performance. 
 

Cycling operation 
Refers to an operation in which the cell is electrically cycled. 
 

Data-driven OR Empirical model 
Refers to a model only supported by experimental data, in opposition to physics-
based models in which the physical laws and mechanisms are explicitly modelled. 
 

DC Internal Resistance [Ω] 
The opposition or resistance to the flow of an electric current within a cell or battery; 
the sum of the ionic and electronic resistances of the cell components. 
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Depth of Discharge (DOD) [%] 
In this thesis DOD refers to the SOC window during each charge or discharge phase. 
That is, the DOD represents the absolute difference between the starting and ending 
SOC for each charge or discharge applied to the battery: 
 

𝐷𝐷𝐷𝐷𝐷𝐷[%] =  |𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘) − 𝑆𝑆𝑆𝑆𝑆𝑆(1)| 
 
being 𝑆𝑆𝑆𝑆𝑆𝑆(1) and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘) the State of Charge at the beginning and the end of the 
charge or discharge step, respectively. 
 

Discharge 
The conversion of the chemical energy of a cell or battery into electrical energy and 
withdrawal of the electrical energy into a load. 
 

Dynamic operating profile 
Refers to a cycling or calendar operating profile applied to a cell or battery, in which 
the values of the different stress-factors were periodically modified. 
 

Efficiency 
The ratio of the output of a battery to the input required to restore the initial SOC, 
under specified conditions. 
 
Coulombic efficiency (ηAh) 
The ratio of the number of charges that enter the battery during charging compared 
to the number that can be extracted from the battery during discharging. 
 
Energy efficiency (ηWh) 
The amount of energy that can be taken from the battery compared to the amount of 
energy that was charged into the battery beforehand. 
 

Electric Vehicle (EV) 
A vehicle which uses one or more electric motors for propulsion. 
 
Hybrid Electric Vehicle (HEV) 
A vehicle that combines a conventional Internal Combustion Engine (ICE) system with 
one or more electric motors for its propulsion. The vehicle is equipped with an ESS 
which can only be charged from the ICE onboard or via regenerative braking. 

  
Electrode 

The area at which electrochemical processes take place. 
 

Electrolyte 
The medium which provides the ion transport mechanism (charge transfer) between 
the positive and negative electrodes of a cell. 
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End of Life (EOL) 
A condition reached when the device under test is no longer capable of meeting the 
applicable goals. 

  
Energy density (volumetric) [Wh.L-1] 

The amount of energy that can be stored in a given volume of a substance or system. 
 

Experimental error 
Refers to the noise embedded in the data during the experimental data collection, 
mainly composed of the environmental and procedural error components. 
 
Environmental error 
Refers to errors that are systematic to multiple experiments and can be controlled to 
a limited degree within known bounds. Environmental errors include ambient 
temperature and humidity conditions, equipment accuracy and resolution, 
manufacturing tolerances on battery samples and equipment used. 
 
Procedural error 
Refers to errors introduced as a result of performing the experiment. These types of 
error occur during the experimental process itself and are known to be more variable. 
Procedural errors include the variation of the researcher in charge of the experiment, 
set-up variation, sample variation, repeatability. 
 

Full Equivalent Cycles (FEC) 
The number of complete (100% DOD) cycles corresponding to a certain Ah-throughput 
(charged and discharged Ah). FEC serve as a reference to compare battery degradation 
with the same Ah-throughput when the cycling is performed at different DODs 
inferior to 100% DOD. As an example, for a 20Ah battery, 1 FEC corresponds to a 
throughput of 40Ah. 
 

Gaussian noise 
Noise model which follows an independent, identically distributed Gaussian 
distribution with zero mean and variance 𝜎𝜎𝑛𝑛2. 
 

Hyperparameter 
Free parameter of the covariance function. We refer to the parameters of the 
covariance function as hyperparameters to emphasize that they are parameters of a 
nonparametric model. 
 

Impedance [Ω] 
The opposition or resistance of a cell or battery to an alternating current of a particular 
frequency. 
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Incremental learning 
Refers to Online learning strategies that work with limited memory resources. 
 

In-field data 
Data collected from battery systems already deployed and under usage in an 
application. 
 

Input data 
Examples or observations of the input vector variable of the model. 
 

Isotropic 
If the covariance function is a function only of |x –  x’| then it is called isotropic. 
 

Kernel 
See Covariance function 
 

Laboratory data 
Data collected from specific experiments carried out in laboratory environment, 
typically involving climatic chambers and controllable current sources for controlling 
battery operating conditions. 
 

Likelihood 
Refers to the probability density of the observations given the latent variable.  
 

y|f~𝒩𝒩(f,𝜎𝜎𝑛𝑛2𝐼𝐼) 
 
where y is the vector of observations, f is the vector of latent function values as f =
(𝑓𝑓(x1, … , x𝑛𝑛))𝑇𝑇 , 𝜎𝜎𝑛𝑛2 is the noise variance, and 𝐼𝐼 is the identity matrix. Under the 
Gaussian Process framework, the likelihood is Gaussian. 
 

Marginal likelihood 
Refers to the marginalisation of the likelihood over the function values f, i.e. the 
integral of the likelihood times the prior. 

𝑝𝑝(y|𝑋𝑋) = �𝑝𝑝(y|f,𝑋𝑋) 𝑝𝑝(f|𝑋𝑋)𝑑𝑑f 

 
Mean function 

The mean function 𝑚𝑚(x) of a real process 𝑓𝑓(x) is formally defined as follows: 
 

𝑚𝑚(x) = 𝔼𝔼[𝑓𝑓(x)] 
 
where x is an input vector. 
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Middle-SOC [%] 
Refers to the average SOC value of a cycle performed at a certain DOD. For instance, a 
cycle performed between 50% and 80% SOC values could be referred to as a cycle at 
30% DOD and 65% Middle-SOC levels. 

 
Nominal Voltage [V] 

The characteristic operating voltage or rated typical voltage of the battery given by 
the manufacturer, typically corresponding to the 50% SOC OCV. 
 

Nonparametric model 
Refers to a model in which the number of parameters is not fixed and is allowed to 
grow with the number of training data samples. 
 

Online learning 
Refers to a learning paradigm where the learning process takes place whenever new 
example(s) emerge and adjusts what has been learned according to the new 
example(s). 
 

Open Circuit Voltage (OCV) 
The difference in voltage between the terminals of a cell under no-load condition 
(when the circuit is open). It is near to the equilibrium potential. This thesis work 
refers OCV to the cell voltage after 3 hours rest (under no-load conditions). 
 

Parallel 
Term used to describe the interconnection of cells or batteries in which all of the like 
terminals are connected together. Parallel connections multiply the capacity of the 
resultant battery by the number of cells connected. 
 

Parametric model 
Refers to a model that has a finite number of parameters, independent of the size of 
the training dataset. 
 

Posterior probability distribution OR posterior 
Refers to the probability distribution over functions specified by the GP after the 
observation of the data. 
 

Prior probability distribution OR prior 
Refers to the probability distribution over functions specified by the GP before the 
observation of the data. Under the GP framework, the prior is gaussian f |𝑋𝑋~𝒩𝒩(0,𝐾𝐾). 
 

Random process OR Stochastic process 
A random process is defined as a collection of random variables defined on a common 
probability space. Whereas a probability distribution describes random variables 
which are scalars or vectors (for multivariate distributions), a stochastic process 
governs the properties of functions. 

https://en.wikipedia.org/wiki/Probability_space
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Realistic operating profile 

Refers to a cycling, calendar or mixed operating profile applied to a cell, similar to the 
profiles which could be observed in a real application in terms of current, voltage and 
temperature time series. 
 

Regression 
The problem of learning input-output mappings from empirical data (the training 
dataset), for continuous outputs. 
 

Remaining Useful Life (RUL) 
Refers to the operating time or cycles the battery can perform until reaching the 
defined End-of-Life (EOL) threshold. 
 

Second life 
Post-automotive use of batteries that are not valid any longer for electromobility 
applications. Once retired from the automotive service, second life batteries are 
thought to be reused on less demanding applications (typically stationary 
applications). 
 

Semi-supervised learning 
Semi-supervised learning is halfway between supervised and unsupervised learning. 
In addition to unlabelled data, the algorithm is provided with some supervision 
information – but not necessarily for all examples. Often, this information standard 
setting will be the targets associated with some of the examples. In this case, the 
dataset can be divided into two parts: the samples for which labels are provided, and 
the samples the labels of which are not known. 
 

Separator 
An ion permeable, electrically nonconductive, spacer or material which prevents 
electronic contact between electrodes of opposite polarity in the same cell. 
 

Series 
The interconnection of cells or batteries in such a manner that the positive terminal 
of the first is connected to the negative terminal of the second, and so on. Series 
connections increase the voltage of the resultant battery according to the number of 
cells connected. 
 

Side reactions 
Refers to the reactions inside a Li-ion cell that occur in addition to the main lithium 
ion intercalation reaction. The effects of battery side reactions are often detrimental 
and lead to the degradation of the cell. Sometimes referred in the thesis as ageing 
mechanisms. 
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Sparsity 
Refers to a property of some algorithms. Such an algorithm yields a sparse result 
when, among all the coefficients that describe the model, only a small number are 
non-zero. Analogously, a sparse matrix is a matrix in which most of the elements are 
zero. 
 

Specific energy [Wh.kg-1] 
The amount of energy that can be stored in a given mass of a substance or system. 
Also referred in the literature as gravimetric energy density. 
 

Static operating profile 
Refers to a cycling or calendar operating profile applied to a cell, in which the values 
of the different stress-factors were maintained constant during the whole duration of 
the operation. 
 

State of Charge (SOC) [%] 
The ratio between the amount of lithium ions remaining in the negative electrode and 
the total amount of active lithium ions in the cell system, i.e. the sum of lithium ions 
in the negative and positive electrode. The SOC would be given by cell OCV 
characteristics (𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑓𝑓 (𝑂𝑂𝑂𝑂𝑂𝑂)). In practical applications, SOC is used to represent 
the amount of available capacity in a battery. Thus, SOC is described as follows: 
 

𝑆𝑆𝑆𝑆𝑆𝑆[%]  =  (𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 𝑄𝑄⁄ ) ∙ 100 
 
where Q is the cell actual capacity and 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 is calculated as: 
 

𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄 − 𝐴𝐴ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 

State of Health (SOH) [%] 
It informs of battery ageing and represents the fraction of performance deterioration 
remaining. In a Li-ion battery, SOH is commonly determined by the capacity and/or 
DC internal resistance as follows: 
 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑄𝑄) =  100% − 𝛥𝛥𝑄𝑄[%]  or  𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝐼𝐼) =  100% − 𝛥𝛥𝐼𝐼𝐼𝐼[%] 
 
𝛥𝛥𝑄𝑄 or 𝛥𝛥𝐼𝐼𝐼𝐼: ratio between capacity or internal resistance of the battery in use and 
capacity or internal resistance measured at the BOL. In this thesis, the term SOH refers 
to 𝑆𝑆𝑆𝑆𝑆𝑆(𝑄𝑄). 
 

Stationary Application 
Application in which the batteries are designed for use in a fixed location. 
 

Stress-factor 
Refers to the operating factors of a cell or battery which have an influence on its ageing 
rate. In a calendar usage, the main stress-factors are identified as the storage 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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temperature and SOC. In a cycling usage, the main stress-factors are identified to be 
the cycling temperature, the DOD, the middle-SOC, the charging C-rate and the 
discharging C-rate. 
 

Sudden capacity drop 
Refers to the acceleration of the capacity curve of a Li-ion cell, after the occurrence of 
the knee point (see Ageing knee). 
 

Supervised learning 
The problem of learning input-output mappings from empirical data (the training 
dataset), in opposition to the unsupervised learning paradigm, in which the goal is to 
find interesting structures only in the input data. In the supervised learning paradigm, 
the output component of the data is called label or target. 
 

Target data OR output data 
Examples or observations of the output variable of the model. 
 

Training data 
Refers to the data used during the training process of the model. 
 

Voltage [V] 
The theoretical voltage of a cell is a function of the electrode materials, i.e. it is an 
intrinsic property of active materials. It is also dependent on temperature and 
concentration, as expressed by Nernst equation. OCV is a close approximation of the 
theoretical voltage. 
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« The power of population is so superior to the power in the earth to produce 
subsistence for man, that premature death must in some shape or other visit 
the human race. » 

Thomas Robert Malthus 

1798 – An Essay on the Principle of Population. 

 

« Sunita Narain – […] The fact is that we need to put the issue of lifestyle and 
consumption at the centre of climate negotiations. 

Leonardo Dicaprio – It’s a very difficult argument to present to the Americans 
that we need to change our lifestyle, and I would also argue that it’s probably 
not going to happen. So, we are dependent, if we want to solve the climate 
crisis, on the fact that hopefully renewables like solar and wind will become 
cheaper and cheaper and cheaper the more money we funnel into them, the 
more we invest into them and ultimately it will solve that problem. 

Sunita Narain – Who will invest, Leo? Let’s be real about this… » 

2016 – Before the Flood. 

 

Climate change is claimed to be one of the great challenges of the 21st 
century. Overpopulation, overconsumption and carbon-based economy are 
widely recognised to be at the origin of the problem [1]. Several solutions 
could be explored to break the circle, namely i) the establishment of human 
reproduction limitation policies [2], ii) the formulation of lifestyle regulation 
or consumption constraint policies [3,4], iii) active investigation towards the 
colonisation of further planets in the universe [5] or iv) the implementation 
of alternatives to carbon-based economy [6,7]. 

The first two policies seem difficult to be socially accepted, especially in 
European and North American societies [8,9]. The third proposal could only 
be seriously considered as a very long-term solution [10]. Therefore, the 
principal short-term solution to face the climate change seems to be to 
overturn the carbon-based economy. According to recent greenhouse gas 
emissions data [11], this implies a thorough transformation of the energy 
production and transport sectors, oriented to the wide adoption of 
renewable energy production technologies, as well as the electrification of 
transport solutions. The major obstacle to the extensive penetration of 
renewable energy sources such as wind and photovoltaic is their 
intermittent character, which could be addressed using energy storage 

Population, resources 
& lifestyle 

Renewables & electric 
transportation 
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[12,13]. Energy storage is also one of the most challenging components in 
the development of electric vehicles (EV) [14]. Therefore, both applications 
are strongly related to the development of high-performance and low-cost 
energy storage solutions. 

Lithium-ion (Li-ion) battery technology has gained a significant market share 
as the principal energy storage solution for many industrial applications, 
mainly due to its relatively high technological maturity, high energy 
efficiency and high specific energy and power [15,16]. However, Li-ion 
batteries are still relatively expensive compared to other storage 
technologies, and their performance is known to decline over time and use, 
which threatens their competitiveness against more affordable solutions 
[16,17]. In order to overcome such barriers, the global research in Li-ion 
batteries focusses on different paths. On the one hand, the next generation 
battery technology is wanted to be developed working on improved or new 
materials, in order to increase the specific energy and energy density [18], 
minimise side reactions [19], improve safety [20] and reduce material costs 
[21]. On the other hand, optimised sizing of the storage systems [22], second-
life business strategies [23] and the design of effective operation strategies 
for the currently commercialised Li-ion battery technologies allow the 
reduction of the total cost of ownership, making profitable the 
implementation of large-scale Li-ion energy storage systems [24]. The latter 
points are strongly conditioned by the development of accurate battery 
ageing models. In fact, accurate ageing predictions could help to: i) define 
optimal system sizing oriented to lifetime maximisation, ii) guarantee the 
technical feasibility of second-life applications and iii) minimise the 
operation cost of the system, e.g. identifying too heavy battery operating 
conditions and avoiding the need for system replacement [25]. 

The ageing mechanisms occurring inside Li-ion cells take place when the cell 
is electrically cycled (referred as ‘cycle ageing’), but also simply over time, 
when the cell is in storage operation (referred as ‘calendar ageing’). Different 
forms of ageing models have been widely proposed in the literature, with 
varying levels of complexity, accuracy and representativeness of the internal 
physics and chemical processes in the battery [26]. Physics-based models are 
known to provide a good mathematical representation of the internal 
variables of the battery, such as the thickness and conductivity of the Solid 
Electrolyte Interface (SEI) [27,28]. However, the development of 
electrochemical models supposes an extensive parametrisation phase 
typically requiring cell disassembly [26]. Models based on in-field 
measurable variables are argued to be more suitable for implementation in 
real-world applications [29]. Empirical models rely on experimental ageing 
tests while semi-empirical ageing models add a physicochemical support to 
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ageing 
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the mathematical empirical data fitting phase [30,31]. Developing such 
ageing models generally consists of capturing the relations between 
battery’s Health Indicators (HI, e.g. capacity or internal resistance [32]), and 
stress-factors; the most widely used factors cited in the literature include 
operating time, temperature, State of Charge (SOC), Ampere-hour-
throughput (Ah-throughput), C-rate and Depth of Discharge (DOD) [29]. 

The overall operation of Li-ion batteries could be represented as the 
combination of different profiles over time of the above-mentioned stress-
factors. These operating profiles could be roughly classified in three main 
categories, namely static, dynamic and realistic operating profiles, illustrated 
in Figure 1. 

 

Figure 1. Illustrative example of (a) static operating factors of Li-ion 
batteries, in terms of different stress-factors, (b) dynamic operating 
factors of Li-ion batteries, in terms of different stress-factors, and (c) 
realistic profiles of the in-field measurable time series. 

 

A significant challenge for the development of conventional ageing models 
is the amount of laboratory tests required to verify the accuracy of the model 
under realistic operating conditions. Conventional models are typically 
parametrised using laboratory tests carried out at constant ageing conditions 
[33,34], similar to those represented in Figure 1. (a). Furthermore, extensive 
validation procedures involving constant ageing conditions, slowly varying 
dynamic conditions and realistic ageing profiles, respectively illustrated in 
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Figure 1. (a), (b) and (c), are recommended to surround accurate lifetime 
predictions in a context of real-world operation [29]. However, even such a 
time and cost-intensive validation procedure cannot ensure accurate 
predictions for a large diversity of dynamic or realistic profiles, particularly 
when taking into account the reported path dependence within many 
battery ageing factors [35]. Summarising, this high amount of laboratory 
tests necessary to a proper development and validation, considerably 
increases the development cost of ageing models. However, trying to reduce 
the laboratory testing labours arise an uncertainty on the validity of the 
resulting model to perform predictions under realistic operating profiles. 

In order to reduce the number of laboratory tests and at the same time 
ensure the validity of the model under realistic profiles, the solution 
proposed in this thesis is the development of ageing models capable to 
continuously learn from streaming data. Following this approach, reduced 
laboratory tests could be used to develop a preliminary ageing model. 
Further, once the battery pack has been implemented and deployed, in-field 
data extracted by the Data Acquisition System (DAS) could allow updating 
the preliminary ageing model. In this way, the ageing model would be 
continuously upgraded, improving prediction accuracy, extending the 
operating window of the model itself and providing useful information for 
predictive maintenance, adaptive energy management strategies or business 
case redefinition. This approach is illustrated in Figure 2. 
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Figure 2. Ageing model training approach proposed in this thesis. 

The proposed solution comes aligned with the digitalisation trends observed 
in the recent years in different areas [36–39]. In fact, there is significant 
interest from industry in the introduction of new data collection telemetry 
technology. This implies the forthcoming availability of a significant amount 
of real-world battery operation data. In this context, the development of 
ageing models able to learn from in-field battery operation data is an 
interesting solution to mitigate the need for exhaustive laboratory testing, 
reduce the development cost of ageing models and at the same time ensure 
the validity of the model for prediction under real operating conditions. 

In this context, the main objective formulated for this thesis is the following: 

The development of an ageing model for Li-ion batteries, capable of 
learning continuously from the operation data collected from the 

battery systems deployed in real applications. 

This main objective encompasses several secondary goals: 

- The ageing model must be able to perform accurate predictions 
for a wide range of applications. This implies that the model must 
be prepared to predict the ageing of battery systems submitted to 

Digitalisation  
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different use-cases, involving purely calendar usages, continuously 
cycling usages, as well as mixed usages in which both forms of 
operation take place sequentially. 

- The minimum number of laboratory experiments required for the 
development of a relatively accurate initial ageing model is 
desired to be quantified. Such initial ageing model could be used for 
the different tasks necessary prior the battery system deployment, 
e.g. system sizing, definition of initial energy management strategies, 
etc. 

The abovementioned objectives suggest several initial directions for the 
ageing model to be developed. Firstly, the implication of a progressively 
increasing training dataset orients into data-driven modelling approaches, 
fed with in-field measurable variables. This initial orientation leads to the 
formulation of a basic hypothesis: 

H0: the relations between the operation and the underlying ageing 
of Li-ion batteries could be described based only on in-field 
measurable variables. 

Furthermore, the ageing models typically presented in the literature are 
designed and validated to predict the ageing at i) purely calendar operation, 
ii) purely cycling operation, or iii) very specific operating profiles 
corresponding to a precise application. However, the development of an 
overall predictive framework adapted to a wide range of applications and 
use-cases is a challenging task. A possible direction to achieve this objective 
could be the development of two separated ageing models, respectively 
designed for pure calendar and cycle operations, which would be combined 
to perform predictions under mixed operating profiles. Accordingly, the 
following hypothesis is formulated: 

H1: The development of separated calendar and cycle ageing models 
could be a valid approach to predict accurately the overall 
degradation of Li-ion batteries. 

As previously mentioned, the ageing tests carried out in laboratory and used 
to parametrise initial ageing models, mainly involve constant operating 
conditions for each tested cell throughout the whole duration of the test, as 
illustrated in Figure 1. (a). Conversantly, the operation in real application is 
barely constant over time, and many applications imply highly varying 
current profiles, see Figure 1. (c). This leads to the subsequent hypothesis, 
related to the applicability of initial ageing models exclusively trained with 
laboratory data: 

Hypotheses 

In-field measurable 
variables 

Separate calendar 
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H2: Ageing models trained with static ageing laboratory tests may be 
able to perform accurate predictions at dynamic and realistic 
operating profiles different from those observed in the laboratory. 

Furthermore, in order to predict the ageing corresponding to highly varying 
operating profiles expressed in terms of in-field measurable variables, such 
variables profiles must be converted into input vectors compatible to the 
models trained at constant conditions. This compatibility is also necessary to 
update the developed models with the data collected in-field. In other words, 
the training data collected from laboratory and the training data collected in-
field should share an identical structure. Accordingly, further hypotheses 
must be defined: 

H3: Converting the continuous operation data measurable in-field 
(see Figure 1. (c)) into equivalent dynamic profiles of the different 
stress-factors (see Figure 1. (b)), could be a valid approach to: 

H3.1: perform accurate predictions at real operating 
conditions. 

H3.2: learn about the influence of new operating conditions 
on battery degradation and update an ageing model based on 
laboratory data while still improving its prediction 
performances1. 

As previously mentioned, one of the goals of this thesis is the mitigation of 
the amount of laboratory tests required to achieve accurate ageing models, 
and subsequently the reduction of the models’ development cost. The whole 
thesis is then articulated around the evaluation of the following core 
hypothesis: 

H4: The development of ageing models able to learn from in-field 
battery operation data could allow mitigating the needs for 
exhaustive laboratory testing. 

Finally, a last hypothesis is formulated related to the nature of the updating 
process of the modelling framework adopted in this thesis, which is selected 
after the study of the state of the art. Although such hypothesis is properly 
introduced in Section 1.3.3, it is reproduced here for convenience: 

 
 

1 The different metrics adopted to evaluate the prediction performances of the ageing model 
are further described in Chapter 3. 
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H5: The nonparametric frameworks are able to learn about the 
influence of new values of the different stress-factors on battery 
degradation, including new data in the training set. 

Beyond the completion of the above-mentioned objectives, this thesis aims 
to evaluate the different hypotheses formulated. For this purpose, the 
dissertation document has been organised in five main chapters. 

Chapter 1 aims to identify the most suitable data-driven modelling 
framework for the development of ageing models able to: i) learn 
continuously from the newly available data, and ii) minimise to the extent 
possible the laboratory tests required for the development of the initial 
ageing model. For this purpose, a systematic and critical review of the state 
of the art is presented, which reviews, classifies and compares the different 
methods proposed in the literature in this field. The main gaps of the 
literature are identified, and the most suitable modelling frameworks are 
suggested. 

Chapter 2 introduces the overall methodology designed to govern the main 
research activities carried out in this thesis. The designed methodology aims 
to i) lead to the development of an ageing model complying with the 
objectives of the thesis, ii) to fulfil the gaps identified during the analysis of 
the state of the art and iii) to assess the different hypotheses formulated at 
the outset of the research activities. 

Chapter 3 corresponds to the development of an ageing model for Li-ion 
batteries operating at storage conditions. The model is trained with ageing 
data produced in laboratory at different stress-factors values (temperature 
and SOC storage condition) and is validated at static and dynamic profiles of 
such stress-factors. The ability of the developed model to learn progressively 
from new data is illustrated. The minimal number of laboratory tests 
required for the design of an accurate initial calendar ageing model is 
quantified. Finally, a sensitivity analysis of the capacity loss with respect to 
the different stress-factors is derived from the developed model.  

Chapter 4 follows analogous objectives and structure of Chapter 3, 
transposed to the development of an ageing model tailored to a purely 
cycling use-case. The model is developed based on an extensive dataset 
produced in laboratory considering the main stress-factors specific to the 
cycling operation (temperature, DOD, middle-SOC, charging and discharging 
currents). 

Chapter 5 corresponds to the integration of both calendar and cycle ageing 
models developed respectively in Chapter 3 and Chapter 4. The complete 
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model is validated under realistic operating profiles for two different 
applications, namely EV driving scenarios and power smoothing renewable 
energy integration application. Data processing algorithms are designed to i) 
convert in-field measurable current, voltage and temperature time series 
into input vectors compatible to the ageing models developed in Chapter 3 
and Chapter 4, and ii) decompose the overall ageing periodically observed 
in-field into its calendar- and cycle-induced ageing components. The ability 
of the developed models to learn progressively from the data provided by 
cells operating under realistic profiles is evaluated. 

Finally, Chapter 6 draws the main conclusions from the different activities 
carried out in the thesis. The contributions of the thesis are enumerated, and 
the limitations of developed models are stated, highlighting the identified 
further works and uncertainty areas in the study. The formulated hypotheses 
are evaluated, and future research paths are proposed for the development 
of next generation ageing models for Li-ion batteries. 





 

 

 

 

 

 

Chapter 1.  
State of the Art 
 

 

This chapter aims at reviewing, classifying, and comparing the different 
methods proposed in the literature for the development of ageing models 
capable of continuously learning from streaming data 

This chapter is structured as follows, Section 1.1 classifies the different 
updating methods proposed in the literature for Li-ion battery ageing 
models, and defines specific criteria to assess and compare the accuracy and 
computational cost of the different models. Section 1.2 describes and 
evaluates in detail these different methods proposed in the literature. Finally, 
in Section 1.3 the different methods are compared based on the defined 
criteria, the main gaps of the literature are identified and a specific modelling 
framework is selected to carry out the different research activities of the 
thesis. 
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1.1. Identification of model updating methods and 
definition of assessment criteria 

In this section, the different methods used in the literature to periodically 
update Li-ion battery ageing models are identified, and specific criteria are 
defined to allow the assessment of such methods. 

 Characteristics of model updating methods 

Amid the different methods presented in the literature, different 
characteristics influence the ability of a model to update itself. 

Firstly, an intrinsic feature of the model is its parametric or nonparametric 
character. A model is called parametric when the number of unknown 
parameters is fixed and independent of the size of the dataset. Oppositely, 
the structure of nonparametric models is not fixed and is allowed to grow 
with the number of input data. In other words, its complexity is not specified, 
it is left to be determined from the available data [40]. 

Moreover, two main approaches were identified in the literature to update 
an ageing model whenever new data is available. The first approach is based 
on a periodical re-training of the full model developed beforehand. Using 
experimental training data, a regression technique is applied to relate 
different variables and build a first ageing model. During the in-field 
operation of the battery, operating conditions and ageing data are 
periodically recorded by the DAS, and this new data is combined with the 
experimental training data, creating a more complete database. The model is 
then re-trained using the previously selected regression technique, giving 
rise to an updated ageing model. 

In a situation in which the DAS periodically provides new battery ageing 
data, the ageing model is still getting trained after the first predictions were 
performed. There is no clear difference between the training and prediction 
phases, and this is usually referred as online learning scenario in the Machine 
Learning discipline [41]. Different training methods were used in the 
literature to face such situation, namely batch training and incremental 
training. The batch training method consists on completing the previously 
available dataset with new data and re-training the model from scratch 
considering the whole available data. Oppositely, incremental training 
methods do not consider the whole available dataset to update the model, 
resulting in computationally fewer intensive algorithms. Different 
incremental training strategies were proposed for Li-ion battery ageing 
prediction applications [42,43], further described in sections 1.2.2.2 and 
1.2.3.2. 
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The second approach consists in updating the parameters of a parametric 
model, using filtering techniques. A parametric model is firstly trained on the 
basis of the experimental data. Once the battery is working on the target 
application, a Bayesian filter is employed to update model’s parameters, 
using the new measurements continuously provided by the DAS. Table 1 
classifies the different research studies identified in the literature, according 
to the selected updating approach and involved model. 

Table 1. Self-adaptive Li-ion ageing models proposed in the literature, 
according to the selected model and updating approach. 

Re-training 

Autoregressive Integrated Moving Average (ARIMA) [44–46] 
Support Vector Regression (SVR) [42,47–49] 
Gaussian Process Regression (GPR) [50–53] 
Relevance Vector Machine (RVM) [43,54–61] 
Artificial Neural Network (ANN) [62–69] 

Filtering Parametric model [70–96] 
 

Figure 3 proposes a classification of the different methods proposed in the 
literature to proceed to a periodical update of Li-ion battery ageing models.

 

Figure 3. A classification for Li-ion battery ageing models updating 
methods proposed in the literature.

Filtering 

A classification 
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 Definition of assessment criteria for methods’ 
comparison 

In order to compare the different model updating methods, specific 
assessment criteria were defined, and gathered into two main groups. 

1.1.2.1.  Accuracy  
The ability of a model to perform accurate predictions was evaluated 
according to the following features: 

A1: Ability to deal with nonlinearities. Relations between some battery 
stress-factors and HIs are strongly nonlinear [32,33,97]. Furthermore, a Li-
ion battery does not necessarily degrade similarly in the Beginning of Life 
(BOL) and when approaching the End of Life (EOL), even if operating 
conditions remain the same [98]. Consequently, the initial ageing model, as 
well as the updating method should ideally be able to consider those 
nonlinear behaviours.  

A2: Expression of uncertainty. The predictions of the developed model could 
have a variable reliability. This reliability level should ideally be expressed in 
the prediction, e.g. in form of a probabilistic quantification of the 
corresponding uncertainty. Some sources of the prediction uncertainty could 
be i) the scarcity of training data and ii) the uncertainty on the input and 
output values’ estimation in the training dataset.  

The first source is highly relevant, taking into account the objectives stated 
in the introduction. In fact, considering that the number of Li-ion ageing tests 
carried out in laboratory is desired to be minimised, the training data 
available for the development of the initial model is reduced. The influence 
of some stress-factors’ operation range on ageing could be under- or non-
represented in the initial training dataset, increasing this way the 
uncertainty of the model predictions at such operation windows.  

The second source of uncertainty could be related to the limited accuracy of 
the data measurement equipment (e.g. current, voltage and temperature 
sensing), which induces noise in the training dataset. Furthermore, some of 
the stress-factors affecting on the ageing of Li-ion batteries, as well as the 
periodically extracted SOH target training data, are not directly measurable. 
They need to be estimated through dedicated algorithms with uneven level 
of accuracy, inducing additional uncertainty in the data. 

Therefore, the Li-ion battery ageing prediction models should ideally be 
probabilistic to express the uncertainty level of the performed predictions 
[99]. 

Nonlinearities 

Uncertainty 
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A3: Sensitivity to irrelevant data. In order to perform accurate predictions, a 
robust behaviour is necessary in front of noisy measurements, outliers and 
irrelevant data. This is partially related to the bias-variance dilemma and 
regularisation methods: a suitable model must be able to describe the main 
trend of the data, without fitting the noise embedded in data. 

1.1.2.2. Computational cost  
The computational cost is evaluated in terms of computation time and 
required memory. Since the computational cost of an algorithm is rarely 
specified in the literature, different criteria were determined to assess the 
computation requirements of the models published to date. 

C1: Indicative computation time. The computation time varies depending on 
the programming efficiency of the algorithm itself, but also on the hardware 
in which it is implemented. Consequently, it is difficult to compare the 
computation time of the different algorithms described in the literature, 
since they were implemented by different authors and on different 
platforms. However, indicative information of the computation time was 
reported, when available. 

C2: Big-O complexity. The big-O notation provides an order of the growth of 
the computational complexity in function of the input data size. Taking into 
account that i) in the context of online learning, the size of the model training 
vector increases gradually, and ii) the developed ageing models may be 
implemented in hardware systems with limited memory and computation 
power (e.g. Battery Management System), it is essential to have an idea about 
the big-O complexity of each model, both for time and memory 
requirements, respectively reported as criteria C2.1 and C2.2 (see Table 2). 
The models reviewed in this chapter have a theoretical big-O time 
complexity, specified in related handbooks or journal publications, and 
defined in this work as criterion C2.1.1. Furthermore, researchers regularly 
propose optimised algorithms, reducing the big-O complexity of the original 
algorithm. The reduced time complexity of any improved algorithm was 
reported as criterion C2.1.2. No information was provided in the literature 
with respect to any improvement in the memory complexity, and hence only 
the theoretical complexity was reported. 

C3: Sparsity. This criterion assesses the algorithm’s ability to reduce the size 
of the training dataset, i.e. to work with sparse matrices. Such criterion is 
crucial for algorithms with an elevated big-O complexity, for which a small 
increment of the size of the dataset could lead to unacceptable computation 
times on the real application. Moreover, some of the described models have 
an inherent ability to reduce the amount of training data. 

Big-O complexity 
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Table 2 summarises the different criteria defined in this section for model 
assessment. 

Table 2. Summary table of the different criteria for model assessment. 

Accuracy 
A1 Ability to deal with nonlinearities 
A2 Expression of uncertainty 
A3 Sensitivity to irrelevant data 

Computational 
cost 

C1 Indicative computation time 

C2 
C2.1 

C2.1.1 Big-O time complexity (theoretical algorithm) 
C2.1.2 Big-O time complexity (improved algorithm) 

C2.2 Big-O memory complexity (theoretical algorithm) 
C3 Sparsity 

 

1.2. Li-ion battery ageing model updating methods: 
description and assessment 

This section reviews the Li-ion battery ageing models updating methods 
proposed in the literature. Each subsection corresponds to a specific model, 
including ARIMA, SVR, RVM, GPR, ANN and particle filtering, and provides: i) 
a short theoretical explanation, ii) a literature review for Li-ion ageing 
modelling application, and iii) the assessment of the model based on the 
criteria defined in Section 1.1.2. 

 Autoregressive Integrated Moving Average  

1.2.1.1. Theoretical basis 
ARIMA models rely on the combination of two main concepts: the 
autocorrelation and the moving average. The autocorrelation coefficient 𝛼𝛼 
measures the linear relation between an observation at sample 𝑁𝑁 and the 
observations at previous samples (𝑁𝑁 − 1,𝑁𝑁 − 2, . . . ,𝑁𝑁 − 𝑝𝑝) [100]. In the 
context of time series forecasting, this concept can be used to perform a 
linear regression, building thereby an Autoregressive (AR) model of the time 
series. A Moving Average (MA) is conceptually a linear regression of one or 
more prior error values of the time series [101]. AR and MA models can be 
expressed through equations (1) and (2), respectively: 

y𝑁𝑁+1 = �α𝑖𝑖y𝑁𝑁−𝑖𝑖 + 𝛆𝛆𝑁𝑁+1

𝑝𝑝−1

𝑖𝑖=0

 (1) 

 

Autocorrelation 

Moving average 
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y𝑁𝑁+1 = �β𝑖𝑖𝛆𝛆𝑁𝑁−𝑖𝑖

𝑞𝑞−1

𝑖𝑖=0

 (2) 

where y𝑁𝑁 is the 𝑁𝑁th target value; α𝑖𝑖 is the autocorrelation coefficient at lag 𝑖𝑖; 
𝛆𝛆𝑁𝑁 is the residual corresponding to the 𝑁𝑁th target value; β𝑖𝑖 is the weight 
applied to the residual at lag 𝑖𝑖; parameters 𝑝𝑝 and 𝑞𝑞 respectively represent the 
order of AR and MA models, i.e. the number of prior data taken into account 
for the regression. 

The sum of both equations results in an ARMA model. The main idea is that 
the AR model captures the linear trend of the time series, and the MA model 
represents the uncertainty through previous errors regression. As ARMA 
model estimation could be skewed by a seasonal or cyclical component of 
time series, a previous differencing stage of the dataset is sometimes used, 
completing the ARIMA framework. 

1.2.1.2. Application to Li-ion battery ageing modelling 
Several ARIMA models were presented in the literature for Li-ion battery 
ageing prognosis. Long et al. [44] built an AR model for capacity prediction. 
At each prediction step, an optimization algorithm was used in order to 
determine the optimal order of the AR model. Figure 4. (a) shows the 
obtained prediction curve. It can be observed that the AR model was not able 
to fit the nonlinear trend of the measured capacity fade. 

Liu et al. attempted to solve this problem applying to the AR model an 
empirical two parameter nonlinear degradation factor correlated with the 
number of cycles performed by the cell [45]. Figure 4. (b) displays the results 
obtained with their approach at different ageing stages. Reversible capacity 
recoveries are punctually observable in the experimental dataset, typically 
due to electrochemical cell relaxation after a pause or idle period [61,102]. 
Such reversible capacity recoveries were linked in the literature to the anode 
overhang (geometrically oversized anode compared to the cathode) and to 
the homogeneity of lithium distribution [103]. Performing predictions from 
those capacity peak points may provide erroneous results, as it can be 
observed in the pink line (Prediction by ARIMA) in Figure 4. (c). 

Zhou et al. tried to avoid such difficulties employing a time series 
decomposition method on the battery ageing dataset, obtaining thereby 
different components of the initial dataset [46]. Then, an ARIMA model was 
built independently for each dataset component. After combining the several 
ARIMA models a complete capacity prediction model was generated, leading 
to improved prediction results, as displayed by the red line (Prediction by 
EMD-ARIMA) in Figure 4. (c). 

Optimal order AR 
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In the several literature publications previously mentioned [44–46], the 
predictions of the ARIMA models were performed considering a limited 
number of previous capacity data points, corresponding to the order of the 
model. The validity of such approach is questionable for Li-ion battery ageing 
prediction since the capacity loss caused by any cycle performed under any 
given condition is not necessarily the same for new and aged cells [98]. 
Hence, the predicted linear trend may not be representative for long-term 
predictions. Furthermore, the dataset used for training and validation of the 
ARIMA models corresponded to a single cell aged under constant operating 
conditions, and models were not validated at different operating conditions. 

 

 

Figure 4. Li-ion battery ageing predictions obtained through (a) optimal order AR model [44], (b) 
nonlinear factor AR model [45], and (c) ARIMA model combined with time series decomposition method 
[46]. In subfigure (a), APT signifies Acceptable Performance Threshold.
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1.2.1.3. Assessment through defined criteria 
The ARIMA framework proposes a parametric autoregressive method to 
solve an online learning situation. The training vector size is limited by the 
order of the model. While the model order remains constant, learning each 
new data sample is accompanied by the removing of the older one. Long et 
al. performed the optimal order calculation at each re-training step [44], but 
the size of the input vector did not change significantly. Fast deletion of the 
old data makes the ARIMA model very reactive but unstable. 

ARIMA models are not able to describe nonlinear relations (A1). Although 
some works proposed empirical nonlinear versions relating the battery 
capacity and the cycle number [45], it would be complicated to employ such 
methods to develop predictive models including different stress-factors. 
Besides, ARIMA models do not output probabilistic predictions (A2), which 
would be the ideal solution to manage uncertainty, as specified in Section 
1.1.2.1. However, the MA component performs a regression of previous 
residuals, which could be considered as an indirect way to take uncertainty 
into account. ARIMA is highly sensitive to outliers and irrelevant data (A3). 
In fact, only previous 𝑝𝑝 data is used for training, without any mechanism to 
assess data relevance, and this could skew the prediction (e.g. as in Figure 4. 
(c), where ARIMA is computed during a reversible capacity recovery stretch). 

The computational complexity of a low-order ARIMA model is relatively low. 
As long as the model order does not vary, the size of the training vector does 
not increase. Then the model keeps more or less a constant computational 
time, and the big-O complexity cannot be conceived (C2). In this sense, such 
model benefits from a considerable advantage compared to other more 
complex regression techniques, in which growing training vectors or 
matrices are typically used. Finally, ARIMA could be regarded as a very sparse 
method (C3), as it considers only a few data samples of the dataset. 
Nevertheless, the relevance of last p data is questionable for long term 
predictions. 

  Support Vector Regression  

1.2.2.1. Theoretical basis 
The theoretical explanations given below are mainly based on Smola and 
Schölkopf’s work [104]. Considering the input training vector x = (x1, … , x𝑁𝑁)  
and the target training vector y = (y1, … , y𝑁𝑁) in the input space 𝒳𝒳, the main 
idea of an SVR is to find a function 𝑓𝑓(x), which meets two requirements: i) 
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to be as flat as possible and ii) to obtain an error of 𝑓𝑓(x) smaller than a 

properly defined constant 𝜖𝜖[2], for all training data. 

Considering equation (3) as a general definition of a linear regression, where 
〈w, x〉 denotes the dot product of vectors w and x in the input space 𝒳𝒳, it is 
possible to formally write the flatness and error restriction objectives using 
the standard form of optimisation problems, as defined by equations (4) and 
(5), where w is the vector of parameters and 𝛆𝛆 denotes the bias or residual. 

𝑓𝑓(x) = 〈w, x〉 + ε (3) 

minimise    
1
2
‖w‖𝟐𝟐 (4) 

subject to   �
y𝑖𝑖 − 〈w, x𝑖𝑖〉 − ε ≤ 𝜖𝜖
〈w, x𝑖𝑖〉 + ε − y𝑖𝑖 ≤ 𝜖𝜖 (5) 

The flatness can be traduced as a w minimisation task, and it can be 
evaluated using the Euclidean norm, i.e. ‖w‖2. The error restriction is 
represented through the 𝜖𝜖-sensitive loss function, defined as: 

𝐿𝐿�y, 𝑓𝑓(x)� = �
|y − 𝑓𝑓(x)| − 𝜖𝜖,            if  |y − 𝑓𝑓(x)| > 𝜖𝜖
0,                                     if  |y − 𝑓𝑓(x)| ≤ 𝜖𝜖  (6) 

As both loss functions are convex, SVR can be resumed as a convex 
optimisation problem. Therefore, a single minimum exists and SVR is not 
affected by the problem of local minima. As shown in equation (6), the ϵ-
sensitive loss function only considers errors larger than 𝜖𝜖, and each data 
sample fulfilling this requirement is called Support Vector (SV). 

Equation (5) assumes that a function 𝑓𝑓 which approximates all pairs (x𝑖𝑖 , y𝑖𝑖) 
with 𝜖𝜖 precision exists, i.e. that the convex optimisation problem is feasible. 
When that is not the case, some errors could be allowed, and the so-called 
slack variables ξ𝑖𝑖 and ξ𝑖𝑖

′ are introduced to provide increased flexibility, 
obtaining the formulation stated by Vapnik in [105] and described in 
equations (7) and (8). A constant 𝐶𝐶 > 0 is introduced in order to control the 
trade-off between the flatness of 𝑓𝑓(x) and the tolerated error deviations 
(trade-off between bias and variance). 

 
 

[2] More information about the selection of 𝜖𝜖 in [104]. 
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minimise    
1
2
‖w‖2 + 𝐶𝐶�(ξ𝑖𝑖 + ξ𝑖𝑖

′)
𝑁𝑁

𝑖𝑖=1

 (7) 

subject to   �
y𝑖𝑖 − 〈w, x𝑖𝑖〉 − ε ≤ 𝜖𝜖 + ξ𝑖𝑖
〈w, x𝑖𝑖〉 + ε − y𝑖𝑖 ≤ 𝜖𝜖 + ξ𝑖𝑖

′

ξ𝑖𝑖 , ξ𝑖𝑖
′ ≥ 0

 (8) 

The duality principle specifies that any optimisation problem may be split 
into the primal problem (minimisation task) and the dual problem (error 
restriction). A dual formulation can be obtained constructing the Lagrangian 
loss function (equation (9)).

𝐿𝐿 ∶= 𝐴𝐴 + 𝐵𝐵 − 𝐷𝐷 − 𝐸𝐸 − 𝐹𝐹 where 

𝐴𝐴 = 1
2� ‖w‖2 

𝐵𝐵 = 𝐶𝐶��ξ𝑖𝑖 + ξ𝑖𝑖
′�

𝑁𝑁

𝑖𝑖=1

 

𝐷𝐷 = �α𝑖𝑖(𝜖𝜖 + ξ𝑖𝑖 − y𝑖𝑖 + 〈w, x𝑖𝑖〉
𝑁𝑁

𝑖𝑖=1

+ ε) 

𝐸𝐸 = �α𝑖𝑖′(𝜖𝜖 + ξ𝑖𝑖
′ + y𝑖𝑖 − 〈w, x𝑖𝑖〉

𝑁𝑁

𝑖𝑖=1

− ε) 

𝐹𝐹 = ��η𝑖𝑖ξ𝑖𝑖 + η𝑖𝑖
′ξ𝑖𝑖
′�

𝑁𝑁

𝑖𝑖=1

 

(9) 

The term 𝐴𝐴 corresponds to the flatness objective; the term 𝐵𝐵 reflects the cost 
of slack variables. Both terms resume the primal problem, and then 
(w, ε, ξ𝑖𝑖 , ξ𝑖𝑖

′) are called primal variables. Terms 𝐷𝐷, 𝐸𝐸 and 𝐹𝐹 represent the 
constraints of the optimisation problem, and (α𝑖𝑖 ,α𝑖𝑖′ ,η𝑖𝑖 ,η𝑖𝑖

′) ≥ 0 are the dual 
variables or Lagrange multipliers. 

Due to the convexity of the Lagrangian loss function, optimal values of the 
primal variables (w, ε, ξ𝑖𝑖 , ξ𝑖𝑖

′) could be obtained solving the partial derivatives 
of the loss function with respect to such variables. The vanished partial 
derivative of L with respect to w leads to the equation (10), and therefore 
𝑓𝑓(x) can be re-written as in the equation (11). 

Lagrangian 
loss function 
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w = �(α𝑖𝑖 − α𝑖𝑖′)x𝑖𝑖

𝑁𝑁

𝑖𝑖=1

  (10) 

𝑓𝑓(x) = �(α𝑖𝑖 − α𝑖𝑖′)〈x𝑖𝑖 , x〉 + ε
𝑁𝑁

𝑖𝑖=1

 (11) 

Thanks to the Lagrangian dual formulation, parameter w is expressed as a 
linear combination of the training data x𝑖𝑖, and the complete algorithm can 
therefore be described in terms of dot product of the input data. 

If the data does not follow a linear trend, a preliminary stage of data 
preprocessing could be applied in order to capture nonlinear trends. The 
main idea is to bring the input vector x, defined in the low-dimensional input 
space 𝒳𝒳, to some high-dimensional feature-space ℱ, via a basis function 𝜙𝜙 
(also called mapping function). The dot product of two mapped input vectors 
in the feature space is defined as kernel function (12). 

𝜅𝜅(x, x′) = 〈𝜙𝜙(x),𝜙𝜙(x′)〉 (12) 

A nonlinear regression task in the input space 𝒳𝒳 becomes linear in the 
feature space ℱ, and this is typically called the kernel trick. Thereby, the 
nonlinear function 𝑓𝑓(x) can be expressed as: 

𝑓𝑓(x) = �(α𝑖𝑖 − α𝑖𝑖′)𝜅𝜅(x𝑖𝑖 ,x) + ε
𝑁𝑁

𝑖𝑖=1

 (13) 

In practice, no information is required with respect to the feature space or 
the basis function 𝜙𝜙. Choosing the adequate kernel function, the insensitivity 
parameter 𝜖𝜖 and the trade-off parameter 𝐶𝐶 would be sufficient to build the 
algorithm. 

1.2.2.2. Application to Li-ion battery ageing modelling 
In the literature, different Li-ion lifetime estimation methods were proposed 
based on SVR modelling. Nuhic et al. introduced an SVR based model, trained 
with experimental data obtained in different operating conditions 
(temperature, SOC, DOD and C-rate) [47]. Six high power Li-ion cells, three 
new cells and three aged, were stressed according to real driving profiles 
recorded in different hybrid vehicles. The available dataset was split into a 
training set, composed by 2/3 of the available data, and a validation set, 
composed by 1/3 of the data. Battery SOC, temperature and current data 
were preprocessed through dwell-time counting and rainflow counting 
methods to train the developed ageing model. The dwell-time counting 
provided information about the occurrence frequency of a certain 

Kernel trick 

Dwell-time and 
rainflow counting 
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combination of the values of two different stress-factors. In this case, the 
occurrence of some temperature and current values combination, and some 
SOC and temperature values combination were counted during the battery 
cycling. Rainflow counting quantified the number of cycles occurred at 
different DODs. The input training vector was composed of the results 
obtained from the dwell-time and rainflow counting, and the target training 
vector stored the corresponding measured capacity data. Thereby, a linear 
kernel SVR was used to build the relation between the capacity and the 
number of events counted by dwell-time and rainflow counters.  

Figure 5 shows the capacity prediction results obtained for two cells. To 
perform a prediction, the operating conditions of the last training load profile 
were used as model input. The model initially tended to overestimate the 
capacity fade, as it can be observed in Figure 5 (1st prognosis instant, 
indicated by the leftmost dashed bar). According to the publication, this was 
mainly due to the less intense conditions of the second ageing phase marked 
between the two dashed bars [13]. The second ageing prediction took such 
milder operating conditions into account, providing a less pessimistic 
prediction. In order to assess the ability of the model to generalise its 
predictions, validation data included new load profiles and temperatures 
from those observed in the training process. The accuracy of the prediction 
was not significantly affected. In this work, model training was focussed on 
EV real driving profiles, and its implementability in different applications is 
questionable. 

In [48], Patil et al. proposed a different strategy for the Remaining Useful Life 
(RUL) estimation. Assuming that for onboard scenarios an accurate RUL 
estimation is only required when the battery is close to the EOL, a two-stage 
strategy was adopted. First, the quartile of the cell lifetime was determined 
by a Support Vector Machine (SVM[3]) classifier. Secondly, if the cell was 
working in the last quartile of its life, an SVR model estimated the RUL more 
accurately. The strategy was applied considering the ageing data of 19 cells 
from the NASA repository [106], which were aged at different temperatures, 
DODs and C-rates. Among eight different features extracted from the battery 
voltage, current and temperature curves, two of them involving voltage 
values were selected as input data, and the lifetime quartile of the cell was 
defined as target data. Then, the SVM was trained using a Gaussian kernel. 

 
 

[3] In this chapter, the term SVM refers to the classification algorithm analogous to the SVR. 

Linear kernel 

SVM classifier 

SVR for 
RUL prediction 

Voltage-based inputs 
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The SVR lifetime model used the same 2 features in the input training vector, 
but the target training data was changed for direct RUL values.  

Different types of kernels were assessed, and the Multi-Layer Perceptron 
kernel showed the most accurate results. The cycles of the 19 datasets were 
randomly split, using 70% of the data for training and 30% for validation. In 
the validation set, the classification accuracy was 81.17%, and a 0.357% Root 
Mean Square Error (RMSE) value was obtained on the RUL estimation. This 
methodology was patented by Samsung Electronics Co., Ltd. [49]. In this 
work, the model outputs RUL values, defining the EOL as a 20 or 30% capacity 
fade threshold, depending on the dataset. This criterion is typically used for 
EV application [107] but could be debatable for other applications where the 
capacity requirements were not so restrictive as in electromobility. Simply 
providing a certain capacity prediction value could be adequate for a wider 
applicability. 

Zhou et al. applied an incremental training method (described in Ref. [108]) 
to a Li-ion battery ageing model for online SVR training [42]. When a new 
capacity data point x𝑐𝑐  arrives, the algorithm tries to find the corresponding 
optimal coefficient w𝑐𝑐 = (α𝑐𝑐 − α𝑐𝑐′ ), which would be integrated into equation 
(13). For this purpose, the basic idea was to change w𝑐𝑐 in a finite number of 
discrete steps until it meets Karush-Kuhn-Tucker conditions [4]. The relation 
between each w𝑐𝑐 increment and the corresponding update of the optimal 
parameters related to the older data was previously established. 
Furthermore, the method integrated a decremental algorithm, analogous to 
the incremental one, to allow the unlearning or removal of the old data. The 
method was experimented with a single cell cycled under constant operating 
conditions [106], and the Mean Absolute Error (MAE) obtained was 0.026 Ah 
for a 50 cycles-ahead prediction. Nevertheless, the model did not take into 
account any battery stress-factors and was not validated for different 
operating conditions. 

 
 

[4] Necessary conditions for a solution to be optimal. 

Incremental training 

Decremental 
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Figure 5. Li-ion battery ageing predictions obtained through counting 
methods and SVR, for two different cells [47]. 

1.2.2.3. Assessment through defined criteria 
The SVR algorithm proposes a nonparametric regression method, which 
could be updated through model re-training. Both batch [47–49] and 
incremental [42] training methods were applied to Li-ion battery lifetime 
estimation in the literature. The incremental and decremental algorithms 
described in [42,108] allowed integrating rapidly each newly available data 
sample, and progressively unlearn samples that did not contribute to the SVR 
solution. Thereby, a good trade-off could be ensured between the stability 
and reactivity of the model. Furthermore, such approach improved 
drastically the computational complexity of the SVR training, as it will be 
reviewed in the C2 criterion. 

SVR models are able to capture nonlinear relations by preprocessing input 
data through the kernel use (A1). Kernel selection is a critical task in SVR 
modelling [42], but there is not any universally accepted method in the 
literature in order to choose the most suitable kernel. The predictions of SVR 
models are not probabilistic (A2), and the RVM algorithm, discussed in 
Section 1.2.3, provides a probabilistic framework in which SVR main 
concepts are recovered. The use of a ϵ-insensitive loss function makes the 
algorithm less sensitive to small deviations, as deviations smaller than ϵ are 
not taken into account (A3). A correct selection of the parameter ϵ should 
allow capturing the main trend of the curve, reducing model sensitivity 
when facing small local data fluctuations. Nevertheless, it is noteworthy that 
important deviations such as outliers would likely become SVs, then 
participating in the optimisation of the model. 

The big advantage of properly optimised SVR is its ability to condense 
thousands of training points to a manageable number of SVs [47]. In fact, the 
use of the ϵ-insensitive loss function makes SVR a very sparse solution (C3). 
As indicative information, Patil et al. reported the computational cost of the 
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proposed methodology implemented on a desktop MATLAB system (Intel i3 
3.2 GHz dual-core processor, 4.0 GB RAM, 32-bit Microsoft Windows 7): the 
computation time for RUL estimation of the battery (including feature 
computation, classification and regression) was c.a. 1.26 ms, for 196 cycles 
(C1). Solving a quadratic programming task (as the Lagrangian problem 
during SVR training step) supposes in general O(𝑛𝑛3) growing in computation 
time (C2.1.1) and O(𝑛𝑛2) in memory (C2.2) [40]. However, since Platt 
proposed a Sequential Minimal Optimisation (SMO) algorithm to solve 
quadratic programming [109], SVR training is usually faster. An efficient 
implementation of SMO lead to an empirical training time that scales 
between O(𝑛𝑛) and O(𝑛𝑛2.3) [40]. Furthermore, using the incremental training 
of the SVR algorithm, Ma et al. improved the computational complexity to 
the order of O(log(𝑛𝑛)) (C2.1.2) [108]. 

 Relevance Vector Machine  

1.2.3.1. Theoretical basis 
The RVM emerged in 2001 in order to improve some aspects of the SVM 
algorithm [99]. Indeed, two main advantages over the SVR are: i) the 
probabilistic character of the estimation, and ii) the higher degree of sparsity 
observed in practice. The basic idea is that the training data points that are 
not significantly contributing to describing the overall trend defined by the 
remaining data points should be removed, resulting in a sparse model [110]. 
Survival data are called Relevance Vectors (RVs), and the number of RVs is 
usually more reduced than the number of SVs in SVR models. RVM 
explanations below are based on [43,99]. 

The relationship among inputs x = (x1, … , x𝑁𝑁) and targets y = (y1, … , y𝑁𝑁) is 
described by a model 𝑓𝑓(x) and error ε. As specified in equation (14), the 
model 𝑓𝑓(x𝑖𝑖) is a linear combination of basis functions 𝝓𝝓𝑗𝑗(xi), defined as 
𝝓𝝓𝑗𝑗(𝐱𝐱i) ≡ 𝜅𝜅(𝐱𝐱i, 𝐱𝐱j) (the concepts of basis function 𝜙𝜙 and kernel 𝜅𝜅 were 
introduced in Section 1.2.2.1). 

𝑓𝑓(x𝑖𝑖) = � 𝝓𝝓𝑗𝑗(x𝑖𝑖)w𝑗𝑗

𝑁𝑁+1

𝑗𝑗=1
= 𝝓𝝓(x𝑖𝑖)w (14) 

being w = [w1, … , w𝑁𝑁+1]𝑻𝑻 the column of weights, and 𝝓𝝓(𝐱𝐱i) =
 [1,𝝓𝝓1(𝐱𝐱i), … ,𝝓𝝓𝑁𝑁(𝐱𝐱i)] the vector of basis functions relating the input data 𝐱𝐱i 
to the set x. Defining Φ as a 𝑁𝑁 × (𝑁𝑁 + 1) matrix with Φ = [𝝓𝝓(𝐱𝐱1), … ,𝝓𝝓(𝐱𝐱N)]𝑇𝑇, 
target values can be expressed in matrix notation, as described in equation 
(15). 

y =  Φw + ε (15) 
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The error ε is assumed to be a zero-mean Gaussian noise with variance 𝜎𝜎2. 
Therefore, the likelihood of the function y (equation (15)) can be expressed 
as 

𝑝𝑝(y|w,𝜎𝜎2) = (2𝜋𝜋𝜎𝜎2)−𝑁𝑁 2⁄ exp �
−1
2𝜎𝜎2

‖y −Φw‖2� (16) 

Due to its nonparametric nature, there are as many parameters in the model 
as training samples, which could lead to severe overfitting problems. To 
avoid such problem, additional constraints are imposed on the parameters. 
When the model is parameterised by the likelihood maximisation, a 
‘complexity’ penalty term is added to the marginal likelihood to avoid 
overfitting. Otherwise, in a Bayesian setting, a prior probability distribution 
is defined upon the parameters [5]. Using such prior distribution, the 
likelihood (defined in equation (16)) and the Bayes’ rule, the posterior 
distribution of the weights can be calculated. In this way, most probable 
weight values are iteratively estimated from the data. 

1.2.3.2. Application to Li-ion battery ageing modelling 
The most relevant and comprehensive work on ageing model updating 
methods proposed in the literature was a fatigue model approach presented 
by Nuhic et al. [43]. The model was initially trained using experimental 
laboratory ageing data of three pairs of high-power Li-ion cells for Hybrid 
Electric Vehicle (HEV) application, degraded through cyclically repeated 
real-world current profiles at room temperature. Input data was organised 
using a rainflow cycle-counting algorithm: each cycle was classified in 
function of the corresponding mean temperature, mean voltage, charge or 
discharge C-rate and DOD, building in that way a histogram reflecting the 
number of performed cycles at different operating conditions. Associated 
capacity data was used as target to train the RVM. 

The authors aimed at updating such initial model with further data obtained 
during Battery Management Systems (BMS) testing and HEV durability 
testing steps. For this purpose, two different models were developed: i) a 
model oriented to vehicle fleet management and off-board application, 
updated using a batch training strategy, and ii) a model designed for onboard 
implementation, adopting an incremental learning strategy originally 
proposed for SVR in [111], and also implemented with RVM in [54,55] for Li-
ion ageing prediction. The incremental adaptive procedure was the 
following: whenever a new data sample was available and the last prediction 

 
 
[5] Further explanations on prior distributions selections are detailed in [99]. 
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error was higher than a certain threshold, a new training set was created 
including previous RVs and the new data sample. Then, the RVM was 
subsequently re-trained. This approach allowed a reduced computation and 
memory cost but assumed the disadvantage that all data assessed as 
irrelevant were deleted, even if it could be potentially relevant in a future 
training. 

The models were updated using other six cells at different degradation 
levels, which were exposed to varying real operating profiles, in terms of 
current, temperatures and SOC occurred during the BMS testing and HEV 
durability tests. Furthermore, both batch and incremental RVM models were 
compared with analogous SVR models. Although obtained results were 
similar, the RVM framework was chosen due to its probabilistic outputs. 

The developed models required to know the operating conditions of future 
cycles as input information, in order to predict the battery degradation. As 
future battery operation is not known, the input data used for the off-board 
model prediction was obtained by randomly placing cycles in a continuous 
probability density extracted from the histogram of the counted cycles. Such 
method could not be applied to the onboard prediction model due to the 
limited computational capabilities, and hence the future battery load was 
achieved weighting the already stored input values. 

Finally, both RVM models were validated on an HEV battery cycled in 
laboratory according to recorded real duty cycles profiles. Prediction results, 
displayed in Figure 6. (a), showed very spread confidence intervals, which 
should be narrowed for increased accuracy. Calendar ageing, which may be 
especially relevant considering that most vehicles remain parked the biggest 
part of the day [30], was not considered in this work. 

Wang et al. introduced a method combining the RVM algorithm with an 
empirical three-parameter capacity degradation model, which related 
capacity (target data) and the number of cycles performed (input data) [56]. 
The model was trained with experimental battery ageing data,  obtained at a 
single constant operating condition and provided by CALCE research group 
[112]. The RVM algorithm was only used in order to identify the relevant 
training vectors and calculate the uncertainty boundaries associated with 
the target training data. At each prediction step, the empirical degradation 
model was trained with the RVs through nonlinear least-squares regression, 
and capacity predictions were computed until reaching the 80% EOL 
threshold. The method was applied to three different cells, performing 
predictions at various ageing stages, and the biggest Absolute Error (AE) was 
9 cycles. An analogous method was proposed in [57], using a two-term 
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exponential empirical model and improving the kernel selection of the RVM, 
but similar results were obtained. 

Zhang et al. assumed the reversible capacity recovery phenomenon as noisy 
data [58], and they decided to apply a time series decomposition method to 
the battery ageing dataset (NASA’s data [106]). Further, they used an 
optimisation algorithm in order to determine the value of the Gaussian 
kernel parameter. The obtained RVM model predicted capacity on the basis 
of the amount of performed cycles input data. The same authors used a 
similar approach in a posterior work [59], involving a multiple kernel RVM 
which was the weighted sum of thirteen different kernels. Weights and 
parameters corresponding to every single kernel were calculated using the 
optimisation algorithm. The method was applied to two different cells, 
performing predictions at various ageing stages, and the biggest Mean 
Square Error (MSE) was 6.6203e-04 Ah. Results were compared with an SVR 
algorithm, showing more accurate predictions for the proposed RVM 
approach. 

Noticing that full charge/discharge cycles were hardly realisable in in-field 
operation, and consequently that it was difficult to obtained capacity and 
resistance data, Zhou et al. proposed a novel battery HI based on the voltage 
falloff in the discharge voltage curve [60], – understood as the difference 
between the maximum battery voltage and the voltage measured after 
1000s of discharge (at a certain constant rate). A Gaussian kernel RVM model 
was used to capture the relation between the voltage falloff target and the 
amount of performed cycles. The 80% of the rated capacity EOL criterion was 
translated to the voltage falloff HI. For a 44 steps-ahead prediction, a 0.0117 
Ah RMSE of the capacity curve and an AE of 4 cycles were obtained. Yet, 
according to the authors, this prediction method might not be applicable to 
Li-ion batteries that show a flat discharging voltage curve (e.g. LiFePo4 
cathode). 

Widodo et al. proposed a sample entropy input feature extracted by 
discharge voltage and time data, used to predict the capacity [61].  An SVM 
model was compared with a Gaussian kernel RVM. The latter showed more 
accurate results. The method was applied to two different cells, and the 
biggest RMSE was 0.54% for a 30 steps-ahead prediction. 

Overall, in several literature publications tackling the implementation of 
RVM algorithms for battery ageing prediction [56–61], the models were 
trained with the capacity data obtained from a single cell, which was 
generally stressed under constant operating conditions. The ability of such 
models to perform accurate predictions is questionable for different static 
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Sample entropy 
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operating conditions and especially in more realistic dynamic conditions. 
Furthermore, a first fold of the capacity curve was typically used for model 
training and the remaining data for prediction. This approach assumes that 
a battery degrades similarly in the BOL and when approaching the EOL. As 
reported in Section 1.2.1, this should not necessarily be the case for Li-ion 
batteries. 

 

 

Figure 6. Li-ion battery ageing predictions obtained through (a) counting method and batch learning 
RVM [43], and (b) RVM and three-parameters empirical model combination [56]. 

 

1.2.3.3. Assessment through defined criteria 
The RVM provides a nonparametric framework, which could be updated 
through model re-training. Both batch and incremental training methods 
were used to update the proposed Li-ion ageing models. 

The RVM algorithm is able to handle nonlinear relations (A1) through the use 
of basis functions ϕ, and provides probabilistic predictions (A2). The RVM 
algorithm tends to discard irrelevant data, which reduces its sensitivity to 
noisy data and outliers (A3). Overfitting is avoided imposing additional 
constraints on the parameters. In this case, parameters are constrained by 
defining an explicit prior probability distribution over them [99], or by 
adding a complexity penalty term for marginal likelihood maximisation. 

No information was provided in the literature about the computation time 
required to compute Li-ion ageing predictions with RVM. The original RVM 
algorithm supposes an 𝒪𝒪(𝑛𝑛3) time complexity (C2.1.1) and an 𝒪𝒪(𝑛𝑛2) memory 
complexity (C2.2) [99]. Although faster algorithms were further proposed 
[113], big-O complexity data were not specified for such improved 
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algorithms (C2.1.2). The basic idea of RVM is that basis functions that are not 
significantly contributing to explaining the data should be removed [110], 
and this results in practice on a very sparse framework (C3). This sparse 
character is observable in Figure 6. (b), where selected RVs were displayed. 

 

  Gaussian Process Regression  

1.2.4.1. Theoretical basis 
This section aims to provide a brief overview of Gaussian Process (GP) 
models, introducing the main concepts and the predictive equations. 
Detailed explanations are available in [110]. 

The GP is a random process, i.e. a random entity whose realisation is a 
function 𝑓𝑓(x) instead of a single value. Rather than assuming a parametric 
form for the function to fit the data, 𝑓𝑓(x) is assumed to be a sample of a 
Gaussian random process distribution. Since the GP is a nonparametric 
model, even when observations have been added, the model is always able 
to fit the new upcoming data. 

A GP is fully determined by its mean and covariance functions. Defining the 
mean function 𝑚𝑚(x) and the covariance function 𝜅𝜅(x, x’) of a real process 
𝑓𝑓(x) as:  

𝑚𝑚(x) = 𝔼𝔼[𝑓𝑓(x)] (17) 

𝜅𝜅(x, x′) = 𝔼𝔼��𝑓𝑓(x) −𝑚𝑚(x)��𝑓𝑓(x′) −𝑚𝑚(x′)�� 

the GP can be expressed as 

𝑓𝑓(x) ~ 𝒢𝒢𝒢𝒢(𝑚𝑚(x), 𝜅𝜅(x, x′)) (18) 

where x and x′ are two different input vectors.  

Both mean and covariance functions encode the prior assumptions about the 
function to be learnt. They also express the expected behaviour of the model 
when the prediction inputs diverge from the inputs observed during 
training. The covariance function, also called the kernel, underpins the 
information about how relevant one target observation 𝑦𝑦 of the training 
dataset is to predict the output 𝑦𝑦∗, on the basis of the similarity between their 
respective input values x and x∗.  

The mean and covariance functions depend on some hyperparameters 𝜽𝜽, 
which must be learnt from the training dataset. From a GP point of view, the 
mean and covariance function selection and learning the corresponding 
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hyperparameters are the main tasks which must be carried out during the 
training phase. Hyperparameters are typically estimated by the 
maximisation of the marginal likelihood logarithm, using the gradient of the 
marginal likelihood with respect to such hyperparameters [110]. The 
marginal likelihood is defined as the integral of the likelihood times the 
prior. 

Under the GP framework, the prior is gaussian f |𝑋𝑋~𝒩𝒩(0,𝐾𝐾), and the 
likelihood is a factorised gaussian y|f~𝒩𝒩(f,𝜎𝜎𝑛𝑛2𝐼𝐼), where f is the vector of 
latent function values as f = (𝑓𝑓(x1, … , x𝑛𝑛))𝑇𝑇; 𝑋𝑋 is the matrix of the training 
input values; 𝒩𝒩 is the gaussian (normal) distribution; 𝐾𝐾 is the covariance 
matrix for the (noise free) f values; y is the vector of the training target 
values; 𝜎𝜎𝑛𝑛2 is the noise variance and 𝐼𝐼 is the identity matrix. 

The obtained log marginal likelihood is expressed in equation (19) 

log 𝑝𝑝(y|𝑋𝑋) = −
1
2

y𝑇𝑇(𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1y −
1
2

log |𝐾𝐾 + 𝜎𝜎𝑛𝑛2𝐼𝐼| −
𝑛𝑛
2

log 2𝜋𝜋 (19) 

The GP predictive equations are expressed in equations (20), (21) and (22). 

f∗|𝑋𝑋,y,𝑋𝑋∗~𝒩𝒩(f ̅∗ , cov(f∗)) (20) 

with 

f ̅∗ = m(𝑋𝑋∗) + 𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1(y − m(𝑋𝑋)) (21) 

 

cov(f∗) = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) − 𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝐾𝐾(𝑋𝑋,𝑋𝑋∗) (22) 

where f∗, f ̅∗, and cov(f∗) are the GP posterior prediction, its corresponding 
mean and its covariance, respectively; 𝑋𝑋∗ is the matrix of test inputs; m(𝑋𝑋) 
and m(𝑋𝑋∗) are the vectors of mean functions for the training and test inputs 
respectively;  𝐾𝐾(𝑋𝑋,𝑋𝑋), 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗), and 𝐾𝐾(𝑋𝑋,𝑋𝑋∗) are the covariance matrices 
between training inputs, the test inputs, and training and test inputs, 
respectively. The mathematical development and conceptual relations 
between the different kernel machines (SVR, RVM and GPR) are more widely 
described in [110]. 

 

1.2.4.2. Application to Li-ion battery ageing modelling 
In [50] and [52], the authors attempted to capture the decreasing trend of 
the Li-ion battery degradation curve, taking into account the fluctuations 
generated by the reversible capacity recovery phenomenon. For this 
purpose, two different strategies were adopted, both tested using the NASA’s 
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battery ageing data. Liu et al. built and compared GPR models with different 
combinations of the kernel and mean functions, using the amount of 
performed cycles as input data and the capacity data as a target [50]. The 
kernel function was decomposed in two parts: the functional kernel which 
described the unknown system model, and the noise part kernel. The 
functional kernel was defined as the sum of a squared exponential and a 
periodical kernel, being the latter specifically tailored to fit sudden capacity 
recoveries. Moreover, the functional kernel was combined with i) a linear 
mean function and ii) a quadratic mean function. Hyperparameters were 
trained by log-likelihood maximisation. Although both models obtained 
similar accuracy, the linear mean GPR showed narrower confidence bounds. 
In this work, the prediction of reversible capacity recoveries was approached 
using the periodical kernel. Such modelling approach is questionable, 
because as reported in Section 1.2.1, those capacity recuperations are 
typically explained by battery rest or relaxation periods, and have not to be 
necessarily periodicals [103]. This remark is also valid for the method 
presented in [51], in which a similar approach was adopted. 

He et al. proposed to combine a time series decomposition method with a 
GPR model, in order to develop a Multi-scale Gaussian Process Regression 
(MGPR) [52]. The time series decomposition method was used to separate 
the dataset into different components: the global degradation trend was 
reflected in low-frequency components, and the sudden capacity recovery 
points were collected in high-frequency components. A GPR model was 
developed for each data component, with linear mean function and two 
different kernels: i) a squared-exponential kernel, and ii) a periodic kernel. 
GP models of several data components were then combined to finally obtain 
the complete MGP model of the Li-ion battery degradation dataset. 
Additionally, a Spectral-Mixture kernel GPR model was built using the 
original dataset (prior to the time series decomposition). In order to 
determine the best approach, RMSE values were compared also including the 
results obtained in [50]: best results were achieved with the squared-
exponential MGPR model, obtaining as largest error ca. 2.11% RMSE for a 68 
cycles ahead prediction.  

Richardson et al. proposed a wide study aiming at predicting the lifetime of 
Li-ion batteries by using GPR, also considering the amount of performed 
cycles as input data and capacity data as target [53]. They first looked into 
the kernel optimisation issue: based on the squared-exponential, periodic 
and Matérn kernels, ten compound kernels were constructed, and their 
respective accuracy was compared using the ageing data of three cells from 
the NASA repository. Hyperparameters were optimised minimising the 
negative log marginal likelihood, and most accurate results were obtained 
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through a Matérn based compound kernel. Furthermore, different 
combinations of a GPR and an empirical exponential model produced three 
parametric, semi-parametric and nonparametric models. These models were 
assessed extracting ageing data from [82], originally derived from the data 
repository of the CALCE research group [112]. The semi-parametric model 
was the most accurate. Finally, the authors considered the possibility of 
correlation among the degradation trends experienced by different cells, 
employing the multi-outputs GP framework to three Li-ion battery ageing 
datasets. Results showed that considering the data from multiple cells in a 
multi-output framework could significantly improve the prediction accuracy 
(ca. 0.02 Ah RMSE for 40% of training data), but also the computational cost 
due to the larger data vectors to be handled.  

As pointed out in previous sections the lack of more extensive validation 
results hinders assessing the true accuracy of the presented models [50–53], 
especially under dynamic operating conditions. Furthermore, models were 
trained with a certain fold of the dataset to predict further capacity data: this 
approach assumes that a battery degrades similarly in the BOL and when 
approaching the EOL. As reported in Section 1.2.1, this is not necessarily the 
case for Li-ion batteries. 

1.2.4.3. Assessment through defined criteria 
The GP framework allows developing nonparametric models which could be 
updated through online re-training. In [50–53], only the batch training 
method was implemented. 

GP models are able to capture nonlinearities (A1), and hence the prediction 
accuracy is not affected by nonlinear relations in data. Furthermore, 
predictions are probabilistic (A2), so uncertainties can be dealt. The noise 
component within the data could be quantified and modelled through a 
dedicated hyperparameter in the covariance function (namely the noise 
variance 𝜎𝜎𝑛𝑛2), making the model’s performances relatively insensitive to 
noisy training data (A3). 

Training the GPR algorithm usually need the inversion of the covariance 
matrix, and this task corresponds to a 𝒪𝒪(𝑛𝑛3) computational time complexity 
(C2.1.1), being 𝒪𝒪(𝑛𝑛2) the memory complexity (C2.2) [40]. Furthermore, the 
mean and kernel prediction computations are respectively 𝒪𝒪(𝑛𝑛) and 𝒪𝒪(𝑛𝑛2) 
for time complexity [114]. In order to reduce the computational cost, various 
sparse methods were developed [110], which are based on the utilisation of 
a subset of size 𝑚𝑚 < 𝑛𝑛 of the training examples (C3). In these way, time and 
memory complexities can be reduced to 𝒪𝒪(𝑚𝑚3)  +  𝒪𝒪(𝑚𝑚2) (initialisation + 
prediction), and 𝒪𝒪(𝑚𝑚2), respectively. Furthermore, improved GPR algorithms 
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could provide more efficient results [114,115]. Ranganathan et al. proposed 
an online sparse solution to reach 𝒪𝒪(𝑛𝑛) time complexity (C2.1.2) [114]. 

 Artificial Neural Network  

1.2.5.1. Theoretical basis 
ANNs encompass a wide family of learning machines, which consist of 
interconnected neurons distributed in inputs, outputs and hidden layers. 
Each neuron is fed by the linear combination of its corresponding inputs, 
transformed by an activation function, and the resulting signal is propagated 
to the following layers. The main characteristics of an ANN can be explained 
in two parts: i) the architecture, related to the topology used to house the 
interconnected neurons, and ii) functional properties, which refer to the 
learning algorithms used to determine the weights of interconnections 
[116]. This way, input x = (x1, … , x𝑁𝑁) and target y = (y1, … , y𝑀𝑀) training 
vectors are used to estimate the weight vector w of the ANN. 

Static ANN architectures (typically feedforward networks) do not include 
any feedback connections. Dynamic architectures, by contrast, incorporate 
feedbacks from output values (adaptive ANN architectures) or 
interconnections between hidden nodes (recursive ANN architectures). The 
architecture is also defined by the number of hidden layers, neurons for each 
layer, inputs and outputs. 

Among the many different learning algorithms, the most popular is the back-
propagation algorithm, which consists on calculating the error contribution 
of each neuron and optimising its corresponding weight by applying a 
gradient descent optimisation, in order to minimise the overall loss function. 
Besides, different activation functions can be used to determine the state of 
a neuron (e.g. sigmoid, radial basis, linear, etc.). 

1.2.5.2. Application to Li-ion battery ageing modelling 
Liu et al. developed an adaptive recursive ANN, which considers inputs, 
output feedback and the feedback from the previous states for prediction 
[63]. The temperature was used as network input and the sum 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝐶𝐶𝐶𝐶 was 
chosen as output, being 𝑅𝑅𝐸𝐸 the electrolyte resistance and 𝑅𝑅𝐶𝐶𝐶𝐶 the charge 
transfer resistance in a lumped-parameter battery model [75]. Assuming 
that the battery capacity was inversely proportional to 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝐶𝐶𝐶𝐶, the capacity 
of each cell was deduced. Further, battery RUL was estimated, defining EOL 
through 70% capacity fade criterion. The learning algorithm of the ANN was 
recursively applied in order to update the weights of the model. Results were 
compared with a classical Recursive NN, a Recursive Neuro-Fuzzy, GPR, RVM 
and particle filter-based models, developed in previous works. The 
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developed ARNN model showed most accurate results. However, no 
information was provided about the implementation of the other models. 

Rufus et al. proposed a complex procedure using fuzzified C-rate, DOD and 
temperature data to obtain multimodal distributions of batteries’ RUL, 
combining various ANNs [65]. The probabilistic character of the output was 
achieved using a Confidence Prediction ANN. 

Wu et al. developed an in-field BMS implementable prediction model, 
although they did not reach to train the model online. The model predicted 
the RUL from the voltage curves of the charging process [62]. The ageing data 
of two cells was used for training and validation. The importance sampling 
(IS) method allowed selecting a limited number of data samples from the 
charging voltage curve, which were employed as input. EOL was defined 
according to the 80% capacity threshold criterion. The ANN model was a 
feedforward network involving 11 inputs, one hidden layer and one output, 
with a hyperbolic tangent sigmoid activation function. The model was 
trained through back-propagation, and the results were compared for a 
different number of hidden neurons. The forty-neuron architecture was 
selected as a trade-off solution of accuracy and computational cost, achieving 
a maximum AE of 29.4218 cycles for a lifespan of 2000 cycles. 

Other authors adopted a pure autoregressive approach of the capacity data 
to develop different ANN models. Rezvani et al. proposed an adaptive ANN 
[66], Huang et al. compared a feedforward back-propagation ANN with an 
SVR model [67], and Razavi-Far et al. presented comparative studies of 
different types of ANNs for various learning algorithms [68,69]. Pure 
autoregressive approaches assumed that the future capacity loss could be 
accurately predicted solely based on the previous capacity data. Particularly 
in the case of Li-ion batteries, the suitability of this assumption should be 
analysed with care, mainly because of i) the well-known influence of the 
operating conditions on ageing, and ii) the path dependence of Li-ion 
batteries [117], which would become especially relevant under dynamic 
operating conditions. 

1.2.5.3. Assessment through defined criteria 
Assuming that the topology does not change over time, ANN could be 
considered as a parametric framework able to perform regression in an 
online learning paradigm [116]. 

In theory, ANNs are able to approximate any continuous function [118]. The 
activation functions permit to capture nonlinearities between input and 
outputs (A1). Inherently, ANNs cannot quantify uncertainty (A2). However, a 
probabilistic character could be integrated into the ANN framework, e.g. 
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using Bayesian priors over the weights [119] or confidence prediction ANNs 
[65]. In general, models which handle many parameters are prone to fit the 
data very closely, leading to overfitting problems. Regarding ANNs, the 
amount of weights increases according to the number of inputs, hidden 
layers and neurons per layers, therefore, big networks could have more 
problems with outliers and noise (A3). Regularisation methods may also be 
used to avoid overfitting problems [120]. 

Although many works mention the high computational cost of the ANN 
model, it is difficult to find quantitative indications of time or memory cost 
for ANN training and prediction. In [121], authors quantified the time 
complexity of a multilayer perceptron trained through the standard gradient 
descent algorithm as 𝒪𝒪(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), being 𝑛𝑛 the number of training samples, 𝐷𝐷 
the input dimension, 𝐻𝐻 the number of hidden units and 𝐶𝐶 the number of 
outputs (C2.1.1). Assuming that the ANN’s architecture remains constant 
over time, 𝐷𝐷, 𝐻𝐻 and 𝐶𝐶 are constant, and then the complexity growth would 
be reduced to 𝒪𝒪(𝑛𝑛). ANNs have not any inherent sparse mechanism (C3), but 
sparse ANN training methods were proposed in [122]. 

 Particle filtering method 

1.2.6.1.  Theoretical basis 
Bayesian filters provide a framework to track the states of a time-dependent 
system, based on the measurements of a related variable, in a situation in 
which they cannot be directly measured and compulsorily have to be 
estimated. Two models are required: i) a model describing the evolution of 
the state over time (the state transition model), and ii) a model relating the 
measurement to the state (the measurement model) [123]. From a Bayesian 
probabilistic perspective, such models are expressed as probability density 
functions (pdf), see equations (23)-(24). 

x𝑘𝑘 = 𝑓𝑓𝑘𝑘(x𝑘𝑘−1, v𝑘𝑘−1)       ↔        𝑝𝑝(x𝑘𝑘|x𝑘𝑘−1) (23) 

 

y𝑘𝑘 = ℎ𝑘𝑘(x𝑘𝑘 , u𝑘𝑘)             ↔        𝑝𝑝�y𝑘𝑘�x𝑘𝑘� (24) 

where x is the vector of states; y is the vector of measurement variables; u 
and v are the noise terms. In the prediction stage, it is assumed that the prior 
state probability density function 𝑝𝑝(x𝑘𝑘−1|y1:𝑘𝑘−1) is known, and the actual 
state can be estimated via the Chapman-Kolmogorov equation (equation 
(25)): 
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𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘−1� = �𝑝𝑝(x𝑘𝑘|x𝑘𝑘−1)𝑝𝑝�x𝑘𝑘−1�y1:𝑘𝑘−1�𝑑𝑑x𝑘𝑘−1 (25) 

In the update stage, a new measurement y𝑘𝑘 becomes available at sample 𝑘𝑘, 
and the prior state estimate can be updated using the Bayes’ rule (equation 
(26)): 

𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘� =
𝑝𝑝�y𝑘𝑘�x𝑘𝑘�𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘−1�

𝑝𝑝�y𝑘𝑘�y1:𝑘𝑘−1�
 (26) 

 

where 𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘−1� and 𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘� are respectively the prior and posterior 
states estimate; 𝑝𝑝�y𝑘𝑘�x𝑘𝑘� is the likelihood function defined by the 
measurement model. The normalising constant is computed as follows: 

𝑝𝑝�y𝑘𝑘�y1:𝑘𝑘−1� = �𝑝𝑝�y𝑘𝑘�x𝑘𝑘�𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘−1�𝑑𝑑x𝑘𝑘 (27) 

Prediction and update stages are recursively computed whenever a new 
measurement data sample is available. There are different tools in the 
Bayesian filters family, including Kalman filters and particle filters [124]. In 
the Li-ion ageing prediction literature, the use of particle filters is much more 
widespread than the use of Kalman filters. Moreover, some comparative 
studies showed more accurate results with particle filtering [91]. Therefore, 
this section scopes particularly on particle filters. 

The particle filter is based on Monte Carlo sampling method to approximate 
the posterior states density function. The key idea is to represent the 
required posterior pdf by a set of random samples called particles, which 
represent discrete state hypotheses, with their respective associated weight. 
The estimate is then computed based on these samples and weights [123]. 

Let �x0:𝑘𝑘
𝑖𝑖 , w𝑘𝑘

𝑖𝑖 �
𝑖𝑖=1
𝑁𝑁𝑠𝑠  denote the 𝑁𝑁𝑠𝑠 amount of particles and weights couples, being 

the weights normalised such that ∑ w𝑘𝑘
𝑖𝑖 = 1𝑖𝑖 . The posterior distribution at 

state 𝑘𝑘 is approximated as:  

𝑝𝑝�x𝑘𝑘�y1:𝑘𝑘� ≈ �w𝑘𝑘
𝑖𝑖 𝛿𝛿(x0:𝑘𝑘 − x0:𝑘𝑘

𝑖𝑖 )
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (28) 

where 𝛿𝛿 denotes the Dirac function. The weights are typically chosen using 
the principle of importance sampling [123,124]. 

Using the particle filter framework, the prediction of Li-ion battery ageing 
could be handled from different points of view, depending on which state 
variable is tracked, which variable is measured, and which transition and 
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measurement equations are defined. Next section provides an overview of 
main works presented in the literature. 

1.2.6.2.  Application to Li-ion battery ageing modelling 
A very common trend in the literature in order to update Li-ion battery 
ageing models is to build an empirical parametric ageing model and update 
its parameters with a particle filter every time a new data is available. For 
this purpose, different models relating battery capacity 𝐂𝐂k and cycle number 
k were proposed. Table 3 lists several models found in the literature, 
specifying corresponding references. In these works, parametric models 
were used as the measurement equation of the particle filter, and model 
parameters were defined as system states. The state transition equation was 
specified as 

�
α1,𝑘𝑘
⋯
α𝑛𝑛,𝑘𝑘

� = �
α1,𝑘𝑘−1
⋯

α𝑛𝑛,𝑘𝑘−1

� + �
v1
⋯
v𝑛𝑛
� ,            

v1~𝒩𝒩(0,𝜎𝜎12)
⋯

v𝑛𝑛~𝒩𝒩(0,𝜎𝜎𝑛𝑛2)
 (29) 

where α𝑛𝑛,𝑘𝑘 depicted the 𝑛𝑛th parameter of the empirical model; 𝒩𝒩(0,𝜎𝜎𝑛𝑛2) was 
a Gaussian noise with zero mean and standard deviation 𝜎𝜎𝑛𝑛. Figure 7. (a) 
displays the results obtained in [72], showing up the capacity prediction 
particles propagated over time, and the corresponding RUL probability 
distribution. 

Table 3. Empirical models used in the literature for Li-ion capacity 
prediction. 

 Model Model equation Reference 
(1) Quadratic Polynomial 𝑪𝑪𝑘𝑘 = α1𝑘𝑘2 + α2𝑘𝑘 + α3 [70] 
(2) One-term Exponential 𝑪𝑪𝑘𝑘 = α1𝑒𝑒α2𝑘𝑘 [71] 
(3) Two-term Exponential 𝑪𝑪𝑘𝑘 = α1𝑒𝑒α2𝑘𝑘 + α3𝑒𝑒α4𝑘𝑘 [70,82,90–96] 
(4) Ensemble model 1 𝑪𝑪𝑘𝑘 = α1𝑒𝑒α2𝑘𝑘 + α3𝑘𝑘 + α4 [70] 
(5) Ensemble model 2 𝑪𝑪𝑘𝑘 = α1𝑒𝑒α2𝑘𝑘 + α3𝑘𝑘2 + α4 [70] 
(6) Ensemble model 3 𝑪𝑪𝑘𝑘 = α1𝑒𝑒α2𝑘𝑘 + α3𝑘𝑘2 + α4𝑘𝑘 + α5 [70] 
(7) Two-term logarithmic 𝑪𝑪𝑘𝑘 = α1 + α2 ln(𝑘𝑘 + 𝑚𝑚) + α3 ln(1− α4) [72] 

 

Goebel et al. proposed to update an exponential empirical model of the 
resistance growth using a particle filter [73]. The study was based on a first-
order Li-ion battery electrical model, whose parameters were fitted through 
Electrochemical Impedance Spectroscopy (EIS) curves. Due to their 
negligible changes, the double layer capacity and the Warburg resistance 
parameters were neglected. In this way, the values of the electrolyte 
resistance 𝑅𝑅𝐸𝐸 and the charge-transfer resistance 𝑅𝑅𝐶𝐶𝐶𝐶 were deduced for 
different ageing stages, and a RVM model was built involving time input 
vector and resistance target values, in order to reject irrelevant data. Then, 
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an empirical exponential impedance growth model was fitted on the RVM 
curve. This exponential model was regularly updated by a particle filter, in 
which both 𝑅𝑅𝐸𝐸 and 𝑅𝑅𝐶𝐶𝐶𝐶 values and impedance growth model parameters 
were defined as state variables. The measurement variables were 𝑅𝑅𝐸𝐸 and 𝑅𝑅𝐶𝐶𝐶𝐶, 
and the measurement equation contained the resistance state vector and a 
zero-mean Gaussian noise component. Assuming a strong linear relation 
among the capacity fade and 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝐶𝐶𝐶𝐶 growth, the EOL was set according to 
the 70% capacity fade criterion. Figure 7. (b) shows the RUL pdfs predicted at 
different ageing stages. The second RUL prediction provided more accurate 
results and narrower pdf compared to the first prediction, which indicates 
how the accuracy of the model improves as the considered dataset becomes 
larger. 

The same method was compared in [74] with two different models, based on 
Extended Kalman Filter and ARIMA, respectively. The particle filter method 
showed the best suited probabilistic RUL estimations. The method was 
completed in [75,76] improving the particle filter and combined with an SVR 
algorithm for re-sampling in [77]. All these works were based on EIS 
measurements and then required dedicated equipment and measurement 
conditions, hardly available on in-field operating conditions.  

 

 

Figure 7. Capacity fade curve predictions and RUL pdfs obtained in (a) [72] and (b) [73]. 

 

Saha et al. [78] proposed a capacity fade empirical model based on the 
Coulombic efficiency. The reversible capacity recovery phenomenon was 
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also involved, by a time-dependent two-term exponential model component 
depending on the resting time. The model was implemented as transition 
function into the particle filter. The state vector included both capacity 
values and model parameters, and the measurement variable was capacity. 
An identical approach was used in [79], with similar results. 

Su et al. introduced a different approach based on the combination of three 
particle filters [88]. Three empirical parametric models, namely the 
quadratic polynomial, the two-term exponential and the Verhulst model 
(previously used in [89]), were formulated in difference equations. Then, 
each of them was inserted in a respective particle filter as state transition 
equation, being the measurement equation the sum of the actual state’s 
value and a zero-mean Gaussian noise. Finally, the three EOL probability 
densities were combined in order to obtain the overall probability density 
estimation, reaching this way smaller prediction errors and a narrower 
prediction pdf. 

Previously mentioned works used the particle filter framework in order to 
update parametric models, which related capacity or internal resistance 
targets to either time or cycles inputs. The suitability of such empirical 
parametric models, which do not consider the effect of stress-factors, would 
be debatable for Li-ion battery ageing modelling. Nevertheless, a particle 
filter approach would still be valid to be implemented considering a semi-
empirical battery ageing model as the measurement equation, which should 
certainly provide more reliable prediction results. 

Beyond the utilisation of parametric empirical models, some works proposed 
to combine the particle filtering framework with other modelling tools. Main 
works based on such combinations are summarised in Table 4, specifying for 
each case the involved modelling tools, the state and measurement variables, 
and how the transition and measurement equations were obtained. 
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Table 4. Other methods based on the combination of different ageing models and particle filter framework 

Combination State variable x State Transition equation Measurement 
variable y 

Measurement equation References 

ARIMA 
Parametrical empirical 
model 
Particle filter 

Capacity Empirical exponential Capacity Nonlinear degradation factor + 
ARIMA [80,81,83][6] 

SVR 
Particle filter Capacity Multi-order equation, built 

by SVR Capacity y𝒌𝒌  =  x𝒌𝒌  +  noise [84] 

SVR 
Parametrical empirical 
model 
Particle Filter 
Similarity-based 

Internal Resistance Empirical exponential Capacity SVR [85] [7] 

Mixture of GPRs 
Parametrical empirical 
model 
Particle Filter 

Measurement equation’s 
parameters Mixture of GPRs Capacity Empirical [86] 

Parametrical empirical 
model 
Particle Filter 
ANN 

Internal Resistance and 
Transition equation’s 
parameters 

Empirical exponential Internal Resistance y𝒌𝒌  =  x𝒌𝒌  +  noise [87][8] 

 
 

[6] In [83], particle filter was replaced by an Extended Kalman Filter. 
[7] Similarity-based approach was used to predict future capacity measurement. 
[8] x𝑘𝑘 only involve of the internal resistance states. ANN was used to predict future capacity measurement. 
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1.2.6.3. Assessment through defined criteria 
The Particle Filter framework allows tracking a non-Gaussian probability 
density function for the state variable (A2), based on the measurements of a 
related variable. Such filter is able to handle nonlinear transition and 
measurement models (A1), which are previously specified. The basic 
formulation of the particle filter could be sensitive to noisy data samples, and 
as mentioned in [124], outliers may cause the divergence of the filter or 
produce inaccurate performances (A3). Many works proposed improved 
algorithms to reduce the sensitivity to outliers [125]. Moreover, the accuracy 
of a particle filter depends on the transition and measurement models and 
the number of particles, amongst others [124]. 

As indicative information, Walker et al. reported the computational cost of 
the proposed methodology implemented in Matlab (desktop information: 
3.4 GHz processor, 16.0 GB RAM, 64-bit operating system): the computation 
time for 100 particles was approximately 3.62 ms (C1) [91]. One of the 
advantages of particle filter is that the complexity is independent of the state 
dimension and increases in function of the number of particles 𝑁𝑁𝑝𝑝. 
Corresponding time complexity is 𝒪𝒪(𝑁𝑁𝑝𝑝) (C2.1.1) [124].  

1.3. Discussion & Conclusions of the chapter 

This section aims at comparing the different models proposed in the 
literature, on the basis of the criteria defined in Section 1.1, in order to find 
the most suitable framework to develop periodically updated ageing models. 
Furthermore, some considerations are discussed concerning some advisable 
ways to develop the selected models, for the particular application case of 
Li-ion battery ageing prediction. 

 Critical comparison of the different models 

Table 5 collects the different characteristics of the studied models, easing the 
comparison of their main characteristics. 

For the particular application case of Li-ion battery ageing prediction, the 
intrinsic structure of the selected model is relevant. Parametric models can 
only vary the value of their parameters, being their functional form constant. 
In an online learning situation, this could limit the ability of the model to fit 
future ageing data. ARIMA models could certainly experience such problems. 
Methods involving particle filters to update parametric ageing models could 
also be exposed to such limitation, and hence the ability to perform accurate 
predictions strongly depends on the reliability of the initial model. In order 
to obtain accurate initial models, it would be then necessary to carry out a 
minimal number of laboratory ageing tests. Therefore, adopting parametric 

Nonparametric vs 
parametric 

Computational 
cost 

Sensitivity 

Nonlinearities 

Uncertainty 
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modelling approaches could not be the most suitable solution, considering 
that one of the objectives of this thesis is the minimisation of the initial 
number of laboratory ageing tests (see introduction). Assuming a constant 
architecture over time, ANN models also have a fixed number of weights and 
they can also be considered as parametric models. However, ANNs are 
theoretically able to approximate any continuous function within some 
desired accuracy range, as long as the network size is accordingly defined. 
SVR, GPR and RVM are nonparametric models, and in such case each data 
point has its associated parameter, giving to the model increased flexibility 
to update itself to the new data logged during in-field operation.  

Two main approaches were identified in the literature to develop 
periodically updated Li-ion ageing models: i) periodical model re-training 
and ii) model updating through particle filtering. In cases in which a reliable 
parametric ageing model is already available from previous works, the use 
of filtering techniques might be an advisable solution to update it, from a 
parameter correction perspective. Oppositely, in a situation in which the 
model would need to be developed from the beginning, opting for a 
nonparametric probabilistic model might be a more appropriate choice, from 
a laboratory tests minimisation perspective. As already mentioned, such an 
approach would allow an enhanced flexibility to adapt the model when 
facing new data points, while still limiting the battery testing labours 
required to train the model. 

The ability to model nonlinear relations is crucial when modelling Li-ion 
battery ageing since the relation between some battery stress-factors and 
HIs is strongly nonlinear. SVR, GPR, RVM and ANN frameworks allow 
performing nonlinear regressions. Particle filters accept nonlinear models for 
both transition and measurement equations. As for ARIMA, it can only 
provide a linear autoregression, and hence it may not be suitable for Li-ion 
battery ageing prediction. 

The capability to manage uncertainty is also one of the key features analysed 
in this review. As explained in Section 1.1.2.1, predictions should ideally be 
probabilistic, in order to express the reliability of the predictions provided 
by the model [99]. RVM, GPR and the particle filter methods provide 
probabilistic frameworks. Confidence bounds typically spread over time for 
a longer prediction horizon, showing that as the number of prediction steps 
increases, the future uncertainty increases as well [65]. Thus, early 
predictions usually produce wide EOL pdf estimations. However, such 
estimations are expected to narrow over time as the battery approaches its 
true EOL value.  

Nonlinearities 

Uncertainty 

Periodical re-training 
vs filtering 
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Another criterion mentioned in Section 1.1.2 is the sensitivity of the models 
to noisy data or outliers. As reported in Section 1.2.1.3, ARIMA showed 
difficulties to appropriately handle data fluctuations. The basic formulation 
of the particle filter could also be quite sensitive, and outliers may cause the 
divergence of the filter or produce an inaccurate performance [124]. Many 
works proposed improved forms of filter algorithms to reduce the sensitivity 
to outliers [125]. Big ANNs could tend to overfit data and regularisation 
methods should be used to avoid overfitting problems [120]. Because of the 
use of the ϵ-sensitive loss function, the SVR algorithm is insensitive to small 
noisy fluctuations in the data. However, outliers would likely become SVs 
and then influence the predictions of the ageing model. RVM and GPR would 
present more suitable behaviour when facing small data fluctuation and 
outliers. Indeed, RVM possesses inherent mechanisms to discard irrelevant 
data from the training process. In the GPR framework, the noise component 
within the data could be quantified and modelled through a dedicated 
hyperparameter in the covariance function, making the model’s 
performances relatively insensitive to noisy training data.  

Finally, the computational complexity of the described models deserves a 
deeper discussion. In fact, observing the main trends and evolution 
perspective in the domain of energy storage solutions, two different 
approaches could be contemplated for the deployment of ageing models in 
real applications, considering the implementation of the models i) within the 
local hardware of each battery system, or ii) in an external data server (cloud 
server), connected to a fleet of battery systems. An illustrative figure as well 
as some thoughts and considerations on the implications arising from each 
deployment approach are provided in Chapter 6. The computational 
complexity of the described models is particularly critical from the 
perspective of the model implementation in local battery system hardware. 

Computation times indicated in the literature are reported in Table 5. Such 
information is of very limited use, as it strongly depends on the hardware 
employed for such computation, and the efficiency of the code itself. 
Moreover, local hardware of battery systems (e.g. BMS) typically have a 
reduced computational power compared to personal computers, yet the 
literature does not provide any information regarding the execution of each 
proposed algorithm in any certain local processor. In this context, the 
computation time in personal computers is a suitable information insofar it 
allows gauging the possibility of implementing any algorithm in a local 
processor. The computation times indicated in the literature were of the 
order of milliseconds in personal computers. Hence it could be possible to 
contemplate the implementation of such algorithms in a hardware system 
of more reduced computation power. Furthermore, in an online learning 
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situation, the amount of input data is expected to increase, and the 
computation time strongly depends on the big-O complexity of the 
implemented algorithm. Therefore, most of the literature publications to 
date lack of in-field experimental validation results, and a deeper analysis 
would still be necessary to evaluate on what extent each of the proposed 
algorithms may actually be implementable on a real local hardware. 

The required computational power for the local processor can be 
approximated considering: i) the number of available data points expected 
to perform the predictions, ii) the maximum time available to compute such 
prediction and iii) the big-O complexity of the algorithm. The former two 
factors strongly depend on the particular application in which the batteries 
are deployed. Hence, to what extent any of the reviewed algorithms could 
actually be implementable depends both on the nature of the application 
itself and on the power of the local processor.  

In cases in which computational challenges are faced, sparsity may become 
a crucial feature to enable a reduction of the amount of input data. The ϵ-
sensitive loss function makes SVR a sparse algorithm. RVM algorithms even 
have an increased sparsity compared to SVR algorithms [99]. Due to this 
sparse character, RVM training and prediction is usually faster than non-
sparse GPR models [110]. GPR models are not inherently sparse, but different 
methods can be used to reduce the number of training data [110]. Finally, 
filtering approaches and ANNs have not any inherent mechanism to achieve 
sparsity. However, this would not represent a critical issue due to their 
parametrical character, leading to a relatively limited relation among their 
computation complexity and the amount of training data. 

Sparsity 

About required 
computational power 
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Table 5. Comparison of different models used in the literature based on the defined criteria.[9] 

 ARIMA SVR GPR RVM ANN Particle Filter 
Parametric/nonparametric model Parametric[ 10] Nonparametric Nonparametric Nonparametric Parametric[ 11] Parametric[ 12] 
Model updating approach Re-training Re-training Re-training Re-training Re-training Parameters filtering 

Accuracy (A) 

Ability to deal with nonlinearities (A1) No Yes Yes Yes Yes Yes[ 13] 

Uncertainty management (A2) 
Not 
probabilistic 

Not probabilistic Probabilistic[ 14] Probabilistic[ 15] Not probabilistic[16] Probabilistic[ 17] 

Sensitivity to irrelevant data (A3) 
High 
sensitivity. 

Insensitive to small 
deviations, sensitive to 
outliers. 

Ability to model 
noisy data. 

Ability to discard 
irrelevant data. 

Potential 
overfitting 
problems. 

Outliers could lead 
to divergence. 

Computational 
cost (C) 

Indicative computation time (C1) NA 1.26 ms[ 18] NA NA NA 3.62 ms[ 19] 

big-O 
complexity 
(C2) 

big-O time 
complexity 
(C2.1) 

Theoretical 
algorithm 
(C2.1.1) 

- [20] O(𝑛𝑛3) O(𝑛𝑛3) O(𝑛𝑛3) O(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)[ 21] O(𝑁𝑁𝑝𝑝) 

Improved 
algorithm 
(C2.1.2) 

- O(log(𝑛𝑛)) O(𝑛𝑛) ≤ O(𝑛𝑛3) [ 22]   

big-O memory complexity (C2.2) - O(𝑛𝑛2) O(𝑛𝑛2) O(𝑛𝑛2) Variable[ 23] Variable[ 24] 
Sparsity (C3) Very sparse[ 25] Sparse Not inherently Very sparse Not inherently Not inherently 

 
 

[9] Every model could be trained in either batch or incremental training methods, and hence, this aspect does not figure in the table. 
[10] Assuming a constant order ARIMA. 
[11] Assuming that the topology of the ANN does not change over time. 
[12] This column refers to updating the parameters of a parametric ageing model. 
[13] Depending on the selected model. Particle filters allow using nonlinear transition and measurement models. 
[14] Gaussian shape pdf. 
[15] Gaussian shape pdf. 
[16] Could become probabilistic (see section 1.2.5.3). 
[17] Non-Gaussian shape pdf. 
[18] Including features computation, classification and regression stages. 
[19] For 100 particles. 
[20] Assuming constant order ARIMA models, big-𝒪𝒪 complexity cannot be defined. 
[21] or O(𝑛𝑛), assuming that the topology of the ANN does not change over time. 
[22] Faster RVM algorithms were proposed in [83]. Not precise big-O complexity data was specified for such improved algorithms. 
[23] Depending on the number of training samples, the input dimension, the number of hidden units and the number of outputs. 
[24] Depending on the number of particles. 
[25] However, selected data are not necessarily the most relevant (see section 1.2.1.3). 
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 Considerations for future developments of data-
driven ageing models for Li-ion batteries 

The implementation of Machine Learning techniques to Li-ion battery ageing 
prediction is still at an early stage of maturity, and hence several 
improvement niches were identified. 

Firstly, the applicability of models that directly output a RUL estimation (e.g. 
[48,62]) might be debatable beyond EV applications. In fact, the EOL 
definition corresponding to the 80% remaining capacity threshold was first 
defined by USABC for EV batteries back in 1996 [107], and it may not be 
widely suitable for other applications where the range would not be so 
critical. Models providing a capacity or internal resistance prediction value 
would probably allow a wider applicability. Therefore, a more suitable 
practice could be to develop capacity prediction models and further apply 
the certain EOL criteria representative of each specific application. 

Furthermore, the applicability of empirical models, which do not consider 
any stress-factors, also demands an in-depth analysis. Indeed, most of the 
methods proposed in the literature related the dependency of a certain HI 
with respect to the amount of performed cycles, fitting the model on ageing 
data obtained under constant operating conditions. Such models were 
neither validated at different constant operating conditions, nor at dynamic 
operating conditions. Li-ion battery ageing phenomena strongly depend on 
the operating conditions, and therefore, to perform reliable predictions, the 
applicability of those models should be restrained to batteries operating at 
similar conditions to those corresponding to the training data. If different 
applications or a wider operation range needs to be covered, a wider training 
set would be required, and more extensive validation tests would certainly 
be advisable. 

Moreover, and as highlighted in the introduction, the accuracy of ageing 
models developed only with laboratory data is questionable for real-world 
ageing predictions, due to the intrinsic discrepancies between the operating 
conditions in laboratory and in real applications. In such a context, ageing 
models continuously updated with in-field data have an increased interest: 
the main patterns relating the battery operation and subsequent ageing 
could be approximated using laboratory experimental ageing data, and then 
corrected, re-calibrated or completed with in-field data to fit capture better 
the implications of being operating at real application profiles. In any case, 
the use of realistic application profiles during the offline validation phase 
may help to improve the performance of the initial ageing model once 
implemented onboard.  

Validation 

Stress-factors 

About EOL criterion 
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In the same way, preliminary offline training is advisable for Li-ion battery 
ageing model development. Actually, as already mentioned, a Li-ion battery 
does not necessarily degrade similarly in the BOL and when approaching the 
EOL [98]. Some cells show a sudden capacity drop, explained by a change of 
the dominant degradation mode [97]. There is a widespread trend in the 
literature, in which a single dataset (from a single cell) is used both for 
training and validation. Such an approach is undeniably cost- and time-
efficient, as the laboratory testing stage is minimised. Nevertheless, it may 
not be appropriate considering that the model would be fit according to a 
local degradation trend of the battery (at BOL), which may significantly differ 
from the ageing trend experienced at more advanced stages of degradation. 
In most publications in the literature which used a single ageing dataset for 
training and prediction, early long-term predictions were usually incorrect. 
For probabilistic models, the EOL true value was often recorded out of the 
initially predicted confidence bounds (e.g. [70,92]). This could be explained 
by the absence of preliminary offline training. For the same reason, pure 
autoregressive approaches may not be advisable for the specific case of Li-
ion battery ageing modelling. Moreover, such a modelling approach 
completely neglect the implication of the different stress-factors values on 
the subsequent ageing and could only be contemplated within the context of 
identical operation throughout the whole battery lifetime. 

An adequate training procedure, already introduced e.g. in the field of 
conventional semi-empirical ageing modelling (i.e. not oriented to periodical 
updates) but under-implemented in the literature reviewed in this section, 
would be the four-steps development of the initial ageing model [29], 
involving i) a training phase including static ageing tests at different levels 
of the different stress-factors, ii) a first validation step at static operating 
profiles but unobserved during the training phase, iii) a second validation 
step at dynamic operating profiles of the stress-factors, and iv) a third 
validation step at realistic operating profiles of in-field measurable variables. 

However, such benchmark modelling procedure would often be limited in 
practice by the economic resources available for model development, which 
are directly related to the number of laboratory tests to be performed. The 
degrees of freedom to constrain the amount of laboratory tests could mainly 
be i) the number of stress-factors of which the influence is desired to be 
modelled, ii) the operation range of the stress-factors for which the ageing is 
desired to be modelled, and iii) the degree of validation of the initial model 
desired before deployment (e.g. skipping the second validation step). 
Minimising laboratory tests while maintaining a relatively wide operation 
range of the predictive model is one of the objectives highlighted in the 

Minimising laboratory 
tests 
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introduction, and its importance is reinforced by the study of the state of the 
art. 

The approach adopted to deal with battery reversible capacity recovery 
phenomena may also be critical in some cases. Some authors considered 
such recoveries as a periodical phenomenon and proposed to model it using 
periodical kernels [50,51]. Such modelling approach is not advisable for Li-
ion batteries since such recoveries find a physical explanation on battery rest 
or relaxation periods [61,102,103], which do not necessarily follow a 
periodical behaviour for most applications. Others authors adopted time 
series decomposition methods to separate the overall degradation trend 
(low frequencies) from the reversible capacity recoveries (higher 
frequencies) [46,52,58,59]. Such approach would also require a deeper 
analysis as the authors typically tried to model the obtained high-frequency 
time series on the basis of the amount of performed cycles, yet a direct 
correlation between reversible capacity recoveries and the amount of 
performed cycles may not be evident. Finally, some authors [78,79] 
employed an empirical exponential model (relating the rest time to the 
actual capacity recovery), which appears to be the more appropriate solution 
to model reversible capacity recovery considering the physical nature of such 
phenomenon, yet such an approach would require experimental support and 
further validation from the battery ageing perspective. Overall, the long-
term trend of capacity decrease seems not to be influenced by sudden 
capacity recoveries (e.g. in Figure 4. (b) and (c)). Therefore, not modelling 
those recoveries might be considered as a valid alternative to long term 
predictions, neglecting the corresponding data points before training. 

The development of ageing models often involves capacity values as training 
data. In the literature, such capacity values were considered as known and 
accurate. Although this could be the case in the context of laboratory testing, 
in which specific testing procedure ensure a relatively accurate estimation 
of the capacity, it may not be so evident for the training data collected in-
field. In fact, SOH estimation in real operation requires dedicated algorithms 
[126], and the estimation error would induce uncertainty in the training 
data, propagated throughout the predictions of the ageing models. More 
considerations on this topic are available in Chapter 6. 
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 Selection of the modelling framework and main 
gaps identified in the literature 

In this chapter, the different methods proposed in the literature to 
periodically update Li-ion ageing models were reviewed, classified and 
compared according to several criteria to assess their accuracy and 
computational costs implications. 

The comparative study suggests that GP and RVM could be the most suitable 
frameworks to design Li-ion ageing models periodically updated by 
upcoming in-field operation data. This is mainly justified by the following 
two key features they share: 

- The nonparametric character: the size of these models increases 
along with the amount of training data. In the context of this research 
and according to the objectives defined in the introduction, this 
suggests an increased capability of these models to integrate new 
information from the data collected in-field after system 
deployment. This capability further suggests that the data scarcity 
raised from the minimisation of laboratory testing could be 
effectively compensated. Nevertheless, it is noteworthy that the 
minimisation of laboratory tests would still be detrimental for the 
accuracy of the initial model, not yet completed with in-field data 
and required for e.g. system sizing purposes. However, the issue of 
the uncertainty on initial model’s reliability is minimised by the 
second key feature of GP and RVM. 

- The probabilistic character: as mentioned in Section 1.1.2 of this 
chapter, one advantage of probabilistic models is their ability to 
quantify noise in the data. Furthermore, some of them could also 
identify and quantify knowledge scarcity within the training data 
and propagate the corresponding uncertainty throughout ageing 
predictions. This characteristic is of paramount importance, as it 
allows giving an idea about the reliability of the model’s predictions. 

The main drawback of GP and RVM frameworks is the computational 
complexity, as highlighted in Section 1.3.1. Nevertheless, a large quantity of 
algorithmic improvements was proposed to overturn such challenge. 
Furthermore, this issue would not necessarily be critical considering the 
recent trends in industry consisting on the implementation of cloud 
computing system. 

Finally, and as the main conclusion of this chapter, the GP modelling 
framework was selected for the development of the overall Li-ion battery 

Gaussian Processes 



52|  Chapter 1 
  State of the Art 

ageing predictive tool and to carry out the different research works of this 
thesis. The GP was favoured over the RVM because i) of the more active 
worldwide research activities aiming to improve the computational 
complexity of the GP, compared to RVM, ii) the higher level of controllability 
on the decision to discard or not the training data, which could be 
automatically removed from RVM algorithm. 

In a nutshell, the use and development of Li-ion battery ageing models 
capable to learn continuously from in-field operation data is still in an early 
maturity stage, and hence, the applicability and usefulness of these models 
may be insufficient for their industrial acceptation. The most critical gaps 
identified in the literature are summarised as follows: 

i) Most of the models proposed in the literature do not consider the 
different stress-factors, completely neglecting their influence on 
the ageing rate of the Li-ion batteries. This strongly limits the 
reliability of models’ predictions in the context of real 
applications. 

ii) The validation procedures implemented were insufficient or 
inexistent. As highlighted in Section 1.3.2, the developed models 
should ideally be validated through a three-step procedure, 
involving i) a static validation stage, in which the performances 
of the models are validated under constant operating conditions 
unobserved during the training process, ii) a dynamic validation 
stage, in which the performances of the model are validated 
under a periodically varying operation of the cells, and iii) a last 
validation stage, in which the performances of the model are 
validated under realistic operating profiles of in-field 
measurable variables. 

iii) Most of the ageing models proposed in the literature refers to the 
degradation of the Li-ion batteries when the cell is electrically 
cycled. However, some applications are characterised by a 
dominant storage operation of the battery system (e.g. 
Uninterruptible Power Supplies, EV applications, etc.), and the 
development of pure calendar ageing models is also necessary. 

iv) Due to the very early maturity stage of the proposed ageing 
models, a general picture describing the nature of the model 
updating process is missing in the literature. For this reason, it is 
difficult to perceive which kind of information could or could not 
be learnt posteriori, and then which information shall be 
incorporated within or could be saved from the initial model. 

Main gaps 
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This hinders the optimised definition of the laboratory ageing 
test matrix, from the perspective of the test minimisation. 
Furthermore, it is difficult to quantify the room for improvement 
left to the model from the continuous learning of the in-field 
data. 

The latter point suggests the formulation of an additional hypothesis related 
to the nature of the updating process of the selected GP modelling 
framework. 

H5: The nonparametric frameworks are able to learn about the 
influence of new values of the different stress-factors on battery 
degradation, including new data in the training set. 

The verification of such hypothesis would suggest that the number of 
laboratory tests could be reduced by limiting the stress-factors’ range or 
number of stress levels covered by the laboratory testing matrix. 
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Chapter 2.  
Methodology 
 

 

In the previous chapter, a critical review of the state of the art was provided, 
in order to identify the most suitable modelling frameworks for the 
development of an ageing model for Li-ion batteries, capable of learning 
continuously from the operation data collected from the battery systems 
deployed in real applications. The GP framework was identified as the most 
suitable candidate and selected for the further steps of this thesis. 
Furthermore, the main gaps of the literature were identified. 

In this chapter, the overall methodology designed to govern the main 
research activities carried out in this thesis is described in detail. 

The designed methodology aims to i) lead to the development of an ageing 
model complying with the main objectives of the thesis, ii) fulfil the main 
gaps identified during the analysis of the state of the art and iii) assess the 
different hypotheses formulated at the outset of the research activities, in 
the introductory part. 
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2.1. Methodology overview 

As explained in the introduction, the main objective of this thesis is the 
development of ageing models able to learn about the influence of the 
battery operating conditions on the degradation, directly by observing the 
battery operation data collected in real application. 

Following the proposed approach, illustrated in Figure 2 of the introduction, 
reduced laboratory tests could be used to develop a preliminary ageing 
model. Further, once the battery pack has been implemented and deployed, 
in-field data extracted by the DAS could allow updating the preliminary 
ageing model. In this way, the ageing model would be continuously 
upgraded, improving its prediction accuracy, extending the operating 
window of the model itself and providing useful information for predictive 
maintenance, adaptive energy management strategies or business case 
redefinition. 

In Chapter 1, an extensive study of the state of the art was presented, 
allowing to identify some of the key features desired for an ageing model 
suitable for this context. First, the developed model should be able to 
consider the influence of the different stress-factors on ageing. These stress-
factors have been identified in the literature as: i) the time elapsed in storage, 
ii) the cycled Ah-throughput, iii) the operating temperature, iv) the DOD, v) 
the middle-State-of-Charge (middle-SOC, or MidSOC) and vi) the charging 
and discharging C-rate. The combinations of such stress-factors define the 
hardness of the operation of a battery with respect to the ageing, and they 
should therefore be included in the development of the model. 

Furthermore, the validation of the developed model should be enough to 
ensure a correct generalisation ability of the model for predictions at realistic 
battery operation. This implies a validation procedure involving static, 
dynamic and realistic operating profiles [29]. 

Finally, as the battery operation in real application could involve successive 
stages of calendar and cycling operation, the developed model should be able 
to handle independently such different operating conditions. 

The in-depth analysis of the state of the art also allowed identifying the main 
modelling frameworks used in the literature to address similar objectives. 
The GP and the RVM models were identified as promising candidates. In fact, 
beyond their ability to perform probabilistic, relatively robust and 
computationally acceptable predictions, these models enjoy the very 
interesting feature of being nonparametric: in other words, the complexity 
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of these models depends on the volume of training data. Within the context 
of Li-ion battery ageing prediction, this implies: 

- A progressive spread of the operating window for the model. Each 
time a new data sample related to previously unobserved operating 
conditions is included within the training set, additional knowledge 
is obtained about the influence of stress-factors on ageing. The 
resulting models should provide an increasingly comprehensive 
picture of the ageing of Li-ion batteries. 

- A higher level of specialisation of the model. The preliminary ageing 
model developed from the laboratory ageing data could be upgraded 
by including new training data extracted from the in-field operation. 
In-field data encodes the intrinsic operating profiles of each 
application, as well as the corresponding battery ageing. This implies 
the possibility to move from a generic ageing model to a specialised 
model tailored to the specific applications. 

The GP was favoured over the RVM because i) of the more active worldwide 
research activities aiming to improve the computational complexity of the 
GP, compared to RVM, ii) the higher level of controllability on the decision to 
discard or not the training data, which could be automatically removed from 
RVM algorithm. Furthermore, the RVM model was shown to be a special case 
of the GP framework, involving a distinctive covariance function [110]. For 
the sake of a higher flexibility during the development of the ageing model, 
the general framework of GP was then selected. 

An overall methodology was designed to govern the main research activities 
carried out in this thesis. The designed methodology aimed to i) lead to the 
development of an ageing model complying with the main objectives of the 
thesis, ii) fulfil the main gaps identified during the analysis of the state of the 
art and iii) assess the different hypotheses formulated at the outset of the 
research activities, in the introductory part. 

The designed methodology, illustrated in Figure 8, is composed of four main 
stages: 

Stage 1: Data gathering. 

Stage 2: Data preprocessing. 

Stage 3: Ageing models’ development and validation at static and 
dynamic operating conditions. 

Stage 4: Validation of the ageing models at realistic operating profile. 

Gaussian Process 

Methodology 
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Figure 8. Overall methodology designed to govern the main research activities carried out in the context 
of the thesis. For each stage of the methodology, the principal tasks are specified, as well as the 
hypotheses evaluated from each task. 



Stage 1: data collection |59 

2.2. Stage 1: data collection 

Within the context of the development of data-driven ageing models, the 
data gathering represents a critical part strongly related to the quality of the 
resulting model. Within the proposed approach, the ageing models are 
trained using the data collected from two different sources, namely i) 
laboratory environments and ii) real-world application environments. 

The collected data could present very different features depending on its 
provenance. On the one hand, laboratory facilities provide temperature-
controlled chambers and controllable power sources to govern current and 
voltage signals. This ensures a relatively accurate estimation of the operating 
conditions applied to the cells tested in laboratory, resulting in the relative 
accuracy of the input values within the training dataset. Furthermore, a 
suitable scheduling of the experimental ageing tests involves periodical 
characterisation tests which aims to track the evolution of the HIs of the cells. 
Such characterisation tests are generally carried out with a defined 
periodicity and they involve high-quality measurement equipment. 
Furthermore, the participation of the storage and cycle operation on the 
evolution of the HIs could be decomposed, designing experimental ageing 
test matrices which separate calendar ageing tests from accelerated cycling 
ageing tests. Therefore, the laboratory environment allows generating 
relatively accurate target values for the training dataset. 

On the other hand, the operation data of battery packs implemented and 
deployed in real applications could be collected from a DAS. In such context, 
the operation data is expressed in terms of temperature, current and voltage 
time series. Depending on the DAS design and data gathering constraints, the 
quality of the data collected from the real application could be disparate. In 
fact, the accuracy of the current, voltage and temperature sensors, as well as 
the data registration frequency significantly influence the usability of the 
collected operation data. Moreover, the possibility to perform periodical 
characterisation cycles strongly depends on the application. State of Health 
(SOH) estimation algorithms, presenting uneven levels of accuracy, could 
then be necessary to track the evolution of the HIs. The quality of both input 
and target values of the training dataset collected from real application could 
then be uncertain. Table 6 summarises the characteristics of the data 
collected from laboratory and real application environment. 
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Table 6. Characteristics of the training data arising from laboratory 
environment and real application. 

 Input training data Target training data 
Laboratory 

environment 
- Accurate sensing 
- Relatively high registration 
frequency 
- Controlled operation 

- Scheduled characterisation 
tests 
- Decomposed participation of 
storage and cycling 

Real 
application 

- Variable measurement 
accuracy 
- Variable data sampling 

- SOH estimators 
- Indistinguishable 
contribution of storage and 
cycle operation 

 

2.3. Stage 2: data preprocessing 

Within the context of data-driven modelling, the raw data obtained from the 
data gathering stage must be analysed before starting any modelling task. 
For instance, this could consist on removing samples that may embed 
potential errors and possibly separate the components which are desired to 
be modelled from those which deserve to be discarded. 

The curves describing the evolution of the HIs typically reveal several ageing 
phases, corresponding to the occurrence of different ageing mechanisms, as 
illustrated in Figure 9. (a). Depending on the objectives of the developed 
ageing models, the modelling stage could then focus on the data 
corresponding to one or the other mechanisms. The combination of several 
analysis methods, e.g. post-mortem analysis, EIS, Incremental Capacity – 
Differential Voltage analysis, Energy-Dispersive X-ray Spectroscopy, etc. 
could help to explain the full cell degradation, allowing the identification of 
the main ageing mechanisms involved behind each phase of the degradation 
curves. Typically, the applied data preprocessing method strongly depends 
on the characteristics of the dataset under study. In this thesis, the dataset 
used to perform the different research activities was collected within the 
context of the FP7 European project titled Batteries2020 (grant agreement 
No. 608936), in the laboratories of the different partners of the project 
consortium. The identification of the different ageing phases, the 
assumptions of the corresponding ageing mechanisms and the underlying 
adopted data preprocessing method are detailed in Chapter 3 and Chapter 4. 

Furthermore, the data collected from the laboratory ageing tests embeds 
some experimental error part, mainly composed of i) the environmental 
error component and ii) procedural error component [127]. Environmental 
errors are systematic to multiple experiments and can be controlled to a 
limited degree within known bounds. Environmental errors include ambient 

Ageing phases 
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procedural errors 



Stage 2: data preprocessing |61 

temperature and humidity conditions, equipment accuracy and resolution, 
manufacturing tolerances on battery samples and equipment used. 
Oppositely, procedural errors are the errors introduced as a result of 
performing the experiment. These types of error occur during the 
experimental process itself and are known to be more variable. Procedural 
errors include the variation of the researcher in charge of the experiment, 
set-up variation, sample variation, repeatability [127]. 

The environmental error component is intrinsic to the data and could 
difficultly be identified in the battery degradation curve. This is not a drastic 
limitation as the GP models could handle such error component, typically 
fitting an additive Gaussian noise [110]. However, the data samples involving 
high procedural errors could sometimes be identified in the ageing curve, as 
illustrated in Figure 9. (b). In such cases, corrective measures should then be 
applied to the data in order to preserve the performances of the data-driven 
models. In this research work, the data samples showing clear implication of 
experimental errors component were discarded from the modelling dataset. 

 

 

Figure 9. Illustration of different situation which could be possibly faced in the data preprocessing stage. 
(a) Different ageing phases sometimes observable in the capacity curves of Li-ion batteries, and (b) 
Experimental errors sometimes clearly observable in the ageing curves. The shift of the purple circles 
could e.g. be provoked by the temporary exchange of the testing device and the red circle by an 
accidental stopping of the characterisation test. 
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2.4. Stage 3: ageing model development & validation at 
static and dynamic operating conditions 

The data collected in Stage 1 and preprocessed in Stage 2 is used in Stage 3 
for the development of the ageing models. As already advanced in the 
introduction part, in order to achieve an overall ageing predictive framework 
adapted to a wide range of applications and use-cases, the overall 
degradation of Li-ion batteries is proposed to be modelled separating the 
calendar and cycling operations. The Stage 3 of the methodology, 
summarised in Figure 10, is then applied successively to the developed 
calendar and cycle ageing models. This is an important stage of the designed 
methodology, as it results on several substantial outcomes. 
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Figure 10. Detailed procedure of the Stage 3 of the methodology, applied 
separately to the development of the calendar and cycle ageing models. 
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The first step consists on the formulation of the main assumptions which 
support the development of the model, as well as on the selection of the 
different inputs and output variables. Within the GP framework, the 
assumptions formulated prior observing the data are encoded in the 
development of the mean and covariance functions. Both mean and 
covariance functions completely define the developed GP model. As 
explained in Chapter 1, for the development of a suitable Li-ion ageing 
model, the selected input variables should at least include the stress-factors 
values corresponding to the battery operation. 

Another important and related point is the operating period covered by each 
data sample. Many research studies in the literature dispose of one HI data 
for each cycle, and then the operating period covered by each training data 
sample is defined as one cycle. Although such method could be pertinent for 
laboratory experimental data, its applicability is disputable within the 
context of real operating data. In fact, the availability of one HI data per cycle 
could be hardly conceivable in real application. Furthermore, as the ageing 
of Li-ion battery is a relatively slow process, the difference of the HI values 
obtained from one cycle to another would be reduced and highly conditioned 
by the measurement or estimation error components. A more appropriate 
method adopted in this thesis is to extend the operating period covered by 
each ageing data sample to higher durations (e.g. one ageing data per month, 
encoding the ageing corresponding to several cycles or analogously storage 
days). Such method also implies the reduction of the amount of training data 
of the developed ageing models, minimising this way the computational cost 
of model training. 

One of the main goals of this research work is to ensure that, each time new 
data is observed about the operation of Li-ion batteries, the developed model 
is effectively able to infer about the relations between the operating 
conditions and the underlying degradation. This objective, which also 
corresponds to the evaluation of the hypothesis H5, is partially assessed in 
this stage. In fact, the ability to the developed models to learn from static and 
dynamic operating conditions is analysed in this stage. Such analysis is 
extended to the realistic operating profiles in stage 4. 

In order to simulate a situation in which the training dataset is growing along 
with the number of involved information, the following method is proposed: 
from the ageing data obtained at static operating conditions, a suite of 
several training cases is constructed, defining a training case as a training 
dataset involving a specific number of training data. The suite of the training 
cases is designed in such a manner that i) an increasing number of training 
data is involved from a training case to the following one, and ii) each 
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training case presents an additional value of some stress-factors, yet 
unobserved in the previous training case. The developed model is then 
successively trained with the dataset corresponding to the different training 
cases, following the designed training suite. The design of the training cases 
suites contemplated in this methodology is illustrated in Table 7. 

Table 7. Illustration of the design of training suites. From the training case 
#1 to the training case #n, the number of training data is increasing. 
Furthermore, each training case introduces an additional combination of 
the different stress-factors yet unobserved in the previous stress-factors. 

 
Training 
case #1 

Training 
case #2 … 

Training 
case #n 

Number of training data 78 359  6597 

Involved operating 
conditions 

Condition 1 Condition 1 
Condition 2 

 

Condition 1 
Condition 2 

… 
Condition n 

 

The method of the training suites represents a useful approach for the 
validation of i) the prediction performances of the developed model and ii) 
the learning capabilities of the developed model. 

The performances of the model are proposed to be evaluated in terms of: 

- Accuracy of the mean prediction: the error of the mean prediction 
of the developed GP model with respect to the data. The metrics 
adopted to evaluate the prediction error are formally defined in 
Section 3.4.1, Chapter 3. 

- Accuracy of the predicted confidence intervals: as the GP models 
provide probabilistic predictions, the accuracy of the predicted 
confidence intervals should also be evaluated. The metric used to 
evaluate the accuracy of the confidence intervals is the calibration 
score (CS), defined as the percentage of data samples that are within 
a predicted confidence interval. Within a ±2𝜎𝜎 interval, 
corresponding to a 95.4% probability for a Gaussian distribution, the 
CS should be approximately 95.4% if the uncertainty predictions are 
accurate. Higher or lower scores indicate under- or over-confidence, 
respectively [128]. The CS is formally introduced in Section 3.4.1, 
Chapter 3. 

Accuracy 
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Furthermore, for each training case in the defined training suite, the 
performances of the model are assessed separately for: 

- The training cells: the mean value of the accuracy metrics obtained 
for all the cells involved in the training case is calculated. Such result 
is informative about the ability of the model to fit the training data. 

- The validation cells: the mean value of the prediction errors 
obtained for all the cells not involved in the training case is 
calculated. Such result is relevant to evaluate the generalisation 
ability of the model. 

- All the cells: the mean value of the prediction errors obtained for all 
the cells. Such result is informative about the global accuracy of the 
model. 

The learning capabilities of the developed model could be evaluated by 
analysing the evolution of the model’s performances throughout the defined 
training suite. The prediction errors corresponding to the validation cells, as 
well as the overall error are expected to reduce, indicating that the 
generalisation ability as well as the global accuracy of the developed ageing 
models are improving. As the GP is a nonparametric framework, the 
complexity of the model follows the number of training data, and therefore 
the prediction errors corresponding to the training cells are expected to hold 
a roughly constant value. 

The evolution of the confidence boundaries is proposed to be analysed from 
two different perspectives. First, the standard deviation of the models’ 
predictions is governed by the equation (22), Chapter 1, implying that it is 
expected to reduce if the training dataset contains data samples with input 
values similar to those for which a prediction is desired to be performed. 
Therefore, the incorporation of different combinations of the stress-factors 
throughout the different cases of the training suite should be accompanied 
by the reduction of the predicted confidence intervals in similar input values. 

Furthermore, as the number of training data increases throughout the 
different cases of the training suite, the evolution of the confidence intervals 
corresponding to the operating conditions already explored should be 
accompanied by the convergence of the CS metric values to 95.4%. 

Moreover, the proposed methodology includes an additional indicator of the 
performances of the GP model, which is the sensitivity analysis of the 
model’s output with respect to the different defined inputs. In fact, under 
particular circumstances, the observation of the optimised hyperparameters 
of the designed covariance function could allow interpreting how the GP 
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model understand the data: the relevance of each input variable for the 
accurate prediction of the output – from the point of view of the developed 
model – could be presumed. The perceptions of the model could then be 
compared with the general knowledge on battery degradation reported in 
the literature and deduce if the developed model correctly understands the 
relationship between the operating conditions and the ageing of Li-ion 
batteries. The evolution of such understanding throughout the different 
cases of the training suite testifies about the learning abilities of the 
developed model. At this point, it is important to highlight that although 
such sensitivity analysis could clarify how the GP model perceives the data, 
it is more a general indicator than a formal criterion for the evaluation of the 
model’s performances. 

One of the objectives of the thesis listed in the introduction was the 
determination of the minimal number of ageing tests required from 
laboratory experiments to obtain an ageing model able to achieve accurate 
ageing predictions for a broad range of battery operation. As a method to 
achieve this goal, a specific training case corresponding to such minimal 
number of ageing tests is pursued among the different cases of the designed 
training suite, defining as selection criteria: i) the achievement of a 
prediction error less than a determined threshold in terms of training, 
validation and overall error, ii) the meeting of the inflexion point since which 
the performances curves of the model throughout the training suite do not 
improve anymore. 

The operating conditions of Li-ion batteries are barely constant in real 
applications. This implies that the ageing models developed in the basis of 
ageing tests realised at constant operating conditions must be validated at 
dynamic operating conditions. Furthermore, as this study focusses on the 
development of ageing models oriented to learn from ageing data collected 
from real-world operation, the analysis of the possibility to infer about the 
correlations between the dynamic operating profiles and the underlying 
ageing is necessary. After the model validation at static operating conditions, 
an additional validation step is designed to validate the performances and 
the learning capabilities of the model at dynamic operating conditions. The 
GP model obtained from the training case corresponding to the minimal 
number of laboratory ageing test is defined as baseline model and adopted 
to perform predictions at dynamic operating profiles. Again, the 
performances and the learning capability of the model are evaluated in terms 
of prediction errors, accuracy of the confidence interval and sensitivity 
analysis. 

Minimal number of 
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Dynamic operating 
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The hypotheses formulated as H2 and H5 (reported below for convenience), 
which are related respectively to the prediction performances and learning 
capabilities of the developed ageing model, are partially evaluated in stage 
3. Such evaluation is completed in the last stage of the methodology, 
extending such assessments to the realistic operating profiles. 

H2: Ageing models trained with static ageing laboratory tests may be 
able to perform accurate predictions at dynamic and realistic 
operating profiles different from those observed in the laboratory. 

H5: The nonparametric frameworks are able to learn about the 
influence of new values of the different stress-factors on battery 
degradation, including new data in the training set. 

2.5. Stage 4: Validation of the complete ageing model at 
realistic operating profiles 

In the previous stages of the methodology, calendar and cycle ageing models 
are developed and validated at static and dynamic operating conditions. The 
fourth and last stage aims to connect the developed models with the load 
profiles observed in the real applications, validating the prediction 
performances and the learning capability of the model at such profiles. The 
fourth stage of the methodology is illustrated in Figure 11. 
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Figure 11. Detailed procedure of the Stage 4 of the methodology. The baseline GP model (including both 
calendar & cycle models) arising from Stage 3 corresponds to the training case related to the minimal 
number of required laboratory ageing tests. The input and target processing algorithms are detailed in 
Chapter 5.  
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The connection between the models developed in the previous stages and 
the real operation profiles presents several challenges. In fact, the operation 
profiles extracted from the DAS implemented in the deployed battery packs 
are typically expressed in terms of current, voltage and temperature time 
series, with uneven level of measurement accuracy and data registration 
frequency. However, as already explained in Chapter 1, the input of the 
developed models should at least involve the different stress-factors 
influencing on the battery ageing, and therefore the current, voltage and 
temperature time series must be converted into equivalent profiles of stress-
factors before to be applied to the models.  

Furthermore, the battery operation at real application could potentially 
involve successive storage and cycling operations phases. One objective of 
the research work is then to guarantee that the developed ageing models 
would be able deal with both operations, and the adopted approach 
contemplates the development of two separated calendar and cycle ageing 
models working in tandem. The time series processing algorithm should 
then execute two main tasks, namely i) the synthesis of stress-factors 
profiles equivalent to the recorded current, voltage and temperature time 
series with respect to the battery ageing, and ii) the decoupling of the real 
load operation into its equivalent calendar and cycling operation 
components. These objectives are summarised in Figure 12, and the designed 
input processing algorithm is detailed in Chapter 5. 

Although the input processing algorithm allows performing ageing 
predictions for batteries operating in real application, an additional 
challenge must be resolved in order to give to the developed models the 
capability to learn about the influence of the different stress-factors on the 
underlying degradation directly from real operating conditions. In fact, as the 
ageing models are developed under a supervised learning paradigm, the 
training dataset is composed of the input and target data. The target data 
corresponding to the processed inputs must then be extracted from the 
characterisation tests periodically carried out. Again, an additional algorithm 
is necessary to decompose the implication of the storage and cycling 
operation from the degradation quantified between two characterisation 
tests. The target processing algorithm is described in detail in Chapter 5. 

Once both operating conditions (input data) and underlying degradation 
(target data) are extracted from the real operating profiles, the training 
dataset could be completed. Both calendar and cycle ageing models could 
then be updated using the data extracted from real applications. The 
proposed approach is illustrated in Figure 12.

Input processing 
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Target processing 
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Figure 12. Illustration of the proposed approach to learn about the correlations between the operating 
conditions and the underlying degradation, directly from realistic profiles processing. The input and 
target processing algorithms are detailed in Chapter 5. 

In the stage 4 of the proposed methodology, the calendar and cycle ageing 
models obtained from the training case corresponding to the minimal 
number of required laboratory ageing tests – determined in stage 3 – are 
defined as baseline models. The prediction performances, as well as the 
learning capability of such models are then evaluated using the real 
operation profiles corresponding to different applications, specified in 
Chapter 5. Such an evaluation is performed in terms of prediction error, 
accuracy of confidence intervals and sensitivity analysis, as implemented in 
the stage 3 of the methodology. 

The implementation of this last stage of the methodology closes with the 
evaluation of the main objectives and the underlying hypotheses formulated 
in the introductory part. In fact, the validation of the prediction 
performances and the learning capabilities of the developed model at real 
operating profiles corresponds to the assessment of the hypotheses H3.1 and 
H3.2, respectively, reported below for convenience. It also completed the 
evaluation of the hypothesis H2 and H5, partially explored in the stage 3 of 
the proposed methodology. 

Baseline model 
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H3: Converting the continuous operation data measurable in-field 
(see Figure 1. (c)) into equivalent dynamic profiles of the different 
stress-factors (see Figure 1. (b)), could be a valid approach to: 

H3.1: perform accurate predictions at real operating 
conditions. 

H3.2: learn about the influence of new operating conditions 
on battery degradation and update an ageing model based on 
laboratory data while still improving its prediction 
performances. 

It is noteworthy that, at this stage, the ability of nonparametric frameworks 
to learn the influence of new ageing conditions on battery degradation is 
already validated for both static and dynamic operation of Li-ion batteries. 
Therefore, the denial of the hypothesis H5 in stage 4 would better suggest 
the unsuitability of the real operation time series input and target processing 
algorithms, rather than the incapacity of the models to learn from new 
operating conditions. 

As the baseline models used in stage 4 are obtained from the training case 
corresponding to the minimal number of required laboratory tests 
determined in stage 3, the validation of the baseline models in stage 4 would 
lead to the conclusion that, “the realisation of ageing models able to learn 
from in-field battery operation data could allow mitigating the needs for 
exhaustive laboratory testing”, corroborating with the hypothesis H4. 

2.6. Conclusions of the chapter 

In this chapter, a four-stage methodology was presented to govern the main 
research activities carried out in this thesis. The designed methodology aims 
to i) lead to the development of an ageing model complying with the main 
objectives of the thesis, ii) fulfil the main gaps identified during the analysis 
of the state of the art and iii) assess the different hypotheses formulated at 
the outset of the research activities, in the introductory part. 

The methodology encompasses the different topics of data gathering, data 
preprocessing, development and validation of calendar and cycle ageing 
models and finally the validation of the holistic model under realistic battery 
operation profiles. 

The following chapters are dedicated to the implementation of the designed 
methodology, using an extensive Li-ion battery ageing dataset. 



 

 

 

 

Chapter 3.  
Calendar ageing model 
 

 

As previously mentioned, the approach adopted in this thesis for modelling 
the overall ageing of Li-ion battery is based on decomposing the ageing on 
two components: i) a first model corresponding to a pure calendar use-case 
of the battery, and ii) a second model related to a pure cycling usage of the 
system.  

This chapter focusses on the systematic modelling and experimental 
verification of the cell degradation through calendar ageing, covering the 
implementation of the stages 1, 2 and 3 of the methodology described in 
Chapter 2. 

This chapter is structured as follows, Section 3.1 describes the experimental 
ageing tests carried out in order to produce the ageing data. The raw data 
obtained from the experimental tests are analysed and preprocessed before 
the development of the model. Section 3.2 details the processing of the raw 
data and evaluate the relevance of the obtained data for ageing modelling. 
Section 3.3 presents the development of the proposed calendar ageing model 
under the GP framework. In Section 3.4 and 3.5, the prediction results of the 
developed model are presented for the cells tested at static and dynamic 
storage conditions, respectively. Furthermore, both sections aim to illustrate 
the ability of the GP model to learn from new data observation. Finally, 
Section 3.6 closes the study depicting the main conclusions. 
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3.1. Experimental calendar ageing data 

Within the context of the European project titled as Batteries2020, extensive 
experimental works were carried out over a time span of more than three 
years, in order to analyse the ageing of Li-ion batteries, covering different 
possible operations. The capacity retention of a 20 Ah Lithium Nickel-
Manganese-Cobalt (NMC 4:4:2) cathode-based pouch cell with a graphite 
anode was evaluated. The nominal characteristics of the cell, as well as the 
operating conditions recommended by the manufacturer are specified Table 
8. 

Table 8. Nominal characteristics of the tested cell 

Electrical characteristics 
Nominal voltage [V] 3.65 

Nominal capacity [Ah] 20 
AC impedance (1 kHz) [mOhm] < 3 

Specific energy [Wh.kg-1] 174 
Energy density [Wh.L-1] 370 

  
Operating conditions 

End of charge voltage [V] 4.15 
End of discharge voltage [V] 3.0 

Recommended charge current [A] 10 
Maximum discharge current (continuous) [A] 100 

Operating temperature [°C] -30/+55 
Recommended charge temperature [°C] 0/+40 

 

A testing batch of 124 cells, related to the study of the ageing in cycling 
operation, is described in Chapter 4, which corresponds to the development 
of a cycle ageing model [129]. In this chapter, the experimental works 
associated with the study of the calendar operation will be presented. 

From the ageing point of view, the operation of a Li-ion battery in storage is 
conditioned by the level of different stress-factors, mainly identified in the 
literature as the storage temperature and SOC [29]. A total of 32 cells were 
tested in temperature-controlled climatic chambers, at different 
combinations of such stress-factors. Periodical characterisation tests were 
carried out at 25°C in order to evaluate the progressive capacity retention of 
the cells. The determination of the capacity started 30 minutes after its 
surface temperature reached 25°C degrees, ensuring that the cells has 
stabilised at the target temperature. The test started with a constant current 
– constant voltage (CC-CV) charge: the CC charge was done at 6.667 A (C/3) 
until reaching 4.15 V, and the following CV charge was stopped when 
achieving current values below 1 A (C/20). After a period of 30 minutes, the 

Temperature 
and SOC 

Capacity test 
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cell was discharged using a CC discharge current at 6.667 A (C/3) until the 
terminal voltage measured 3 V, followed by a pause period of 30 minutes. 
The procedure was repeated three times. The capacity value obtained in the 
last repetition was considered as the cell capacity. 

Depending on the variability of the stress-factors’ profiles in the whole 
duration of the tests, two types of ageing experiments were distinguished, 
namely i) the ageing tests at static operating conditions and ii) the ageing 
tests at dynamic operating conditions. 

 Experimental calendar ageing tests at static 
operating conditions 

In the ageing tests performed at static conditions, the value of the stress-
factors remained constant throughout the whole duration of the tests. A total 
of 30 cells were tested at 10 different storage conditions, specified in Table 
9. These tests were performed in the laboratories of ISEA-RWTH Aachen 
university, which was a partner of the Batteries2020 European project 
consortium. The cells were characterised approximately every 28 days. In 
order to ensure the repeatability of the results, 3 cells were allocated to each 
testing condition. The capacity curves resulting from the experimental 
ageing tests at static conditions are observable in Figure A. 1. (a-c), Appendix 
A. The variability of the capacity curves obtained for each tested storage 
conditions is indicated in Table A. 1, Appendix A. As already reported in the 
literature [130], a clear effect of temperature and SOC levels is observable, in 
that higher temperature and SOC levels are known to induce faster capacity 
loss.  

Table 9. Calendar ageing tests matrix, for the tests at static ageing 
conditions. For each testing conditions, the number of tested cells is 
indicated. 

Temperature [°C] 
SOC [%] 

100 80 65 50 35 20 
25  3  3   
35 3 3 3 3 3 3 
45  3  3   

 

 Experimental calendar ageing tests at dynamic 
operating conditions 

As the battery stress conditions in real-world applications are not constant 
over time, the developed ageing models should be able to perform accurate 

Test matrix 
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predictions at dynamic operating profiles. The ability of the GP model to 
learn from dynamic profiles should also be analysed. Therefore, 2 additional 
cells were tested in the laboratories of Ikerlan Technology Research Centre, 
under variable ageing conditions, namely the temperature and SOC level 
were modified between each periodic characterisation experiment. The cells 
were characterised approximately every 28 days. The obtained capacity 
curves and the corresponding dynamic operating profiles are depicted in 
Figure A. 1. (d-e), Appendix A. It is noteworthy that the lower capacity 
measurement observable in Figure A. 1. (d), between days 1200 – 1300 were 
induced by environmental testing errors, due to temperature control issues 
in the climatic chambers. 

3.2. Calendar ageing data preprocessing 

In the context of data-driven modelling, an important step is to analyse and 
preprocess the raw data before any modelling task, in order to address data 
inconsistency and noise issues and achieve effective models [131]. The 
capacity curves obtained from the experimental ageing tests described in 
Section 3.1 could be decomposed into four distinct phases, as illustrated in 
Figure 13.  

 

 

Figure 13. The four different phases of the capacity retention curve of the 
cells. The first phase is an increase of the capacity, the second is a 
progressive degradation, the third phase is a sudden capacity drop and 
the fourth phase is a slowdown of the capacity loss. Modified from [132]. 

Dynamic operating 
conditions 

Four phases 
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The first phase corresponds to an initial capacity rise appearing at the BOL. 
This is clearly observable in cells exposed to relatively light ageing conditions 
(e.g. low temperature and SOC levels, Figure A. 1, Appendix A) and matches 
with the calendar experimental data already published in the literature 
[102,133]. According to the literature, the capacity recovery could be induced 
by a slow, compensating flow of active lithium between the passive and the 
active part of the anode, where the passive part represents the geometric 
excess of the anode with respect to the cathode [103,133,134]. However, no 
clear relationship was found between the initial capacity recovery and any 
ageing mechanism. Therefore, it was assumed that the initial capacity 
recovery phenomenon is not provoked by an ageing mechanism itself and 
does not have any influence on the subsequent ageing trend of the cells. This 
assumption should be verified in further work (see Chapter 6). Accordingly, 
the data corresponding to Phase 1 was discarded for the development of the 
ageing model. During the data preprocessing stage, the maximal capacity 
point of each cell was designated as the BOL point and assigned to the ‘zero 
storage days’ state. 

After the initial capacity increase, a progressive rate-constant decrease of the 
cell capacity is observable, identified in Figure 13 as Phase 2. This phase is 
the main phase corresponding to the regular degradation of Li-ion batteries, 
mainly linked to the growth of the SEI, in calendar operation [135]. 

After a rate-constant decline of capacity, some cells showed a clear 
acceleration of the ageing rate (Phase 3), especially those stored at high 
temperature and SOC levels (e.g. black curves, Figure A. 1. (b), and green and 
blue curves, Figure A. 1. (c), Appendix A). Similar behaviour has been 
reported in the literature for calendar ageing [32,130,136]. One of the cells 
stored at 35°C and 100% SOC (black curves, Figure A. 1. (b), Appendix A) was 
reserved to carry out post-mortem analysis, and revealed lithium plating at 
one electrode edge, even after a short storage time of 240 days [132]. The 
early appearance of lithium deposition for this cell suggests a most advanced 
propagation of lithium plating for the cells aged at similar and more 
significant ageing conditions. Therefore, the sudden capacity drop was linked 
to the occurrence of lithium deposition. The turning point of the sudden 
capacity drop, often referred to as “knee point” [23], was diagnosed as the 
state in which lithium deposition starts to become irreversible [137]. Lithium 
plating mechanism usually takes place in cycling conditions, and its 
occurrence in calendar ageing is not widely reported in the literature. 
According to [132], the plating phenomena in these cells could have been 
provoked by overcharging during the periodical characterisation tests, or 
uneven charge distribution within the float storage. 

Phase 1 

Phase 2 

Phase 3 
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In some cases, a fourth phase describing a slowdown of the capacity loss was 
also observable (black curves since ca. 500 days in Figure A. 1. (b), and a green 
curve since ca. 300 days in Figure A. 1. (c), Appendix A). The references to 
similar observations are scarce in the literature. Petzl et al. introduced the 
theory of self-weakening phenomenon of the lithium plating mechanism, 
explaining the decrease of the ageing rate by a counter-effect of the lithium 
deposition [138]. Their hypothesis was that pore clogging induced by the 
lithium plating leads to a loss of the active material and obstructs the full 
charge of the cell, making electrochemically impossible for the graphite 
anode to reach low voltages close to the metallic lithium’s voltage. This leads 
to a continuous reduction of the lithium plating after the turning point of the 
sudden capacity reduction, until the whole disappearing of the lithium 
plating mechanism. 

In order to develop ageing models able to predict the capacity fade 
corresponding to Phase 3 and 4, a deep research work would be necessary to 
extract and validate consistent features which could explain such 
occurrences, as suggested in [139]. However, this requires of large amount 
of data, and resulted impossible with the available dataset. For this reason, 
modelling the Phase 3 and 4 remained out of the scope of this research work, 
and the corresponding data was discarded from the modelling dataset. 

Therefore, in the context of this study, the modelling work focussed on 
capturing the relations between the storage conditions and the capacity loss 
of the cells, during the progressive degradation corresponding to the second 
phase in Figure 13.  

Besides, some unexpected trends were identified within the experimental 
data, for instance, a clear capacity recovery for the cells #26 and #28 at day 
480 (respectively green and blue curves, Figure A. 1. (c), Appendix A). Such 
deviations are related to procedural errors during the capacity tests (e.g. 
exchange of the testing device, etc.). These noisy data samples could affect 
the performances of the model and were therefore removed from the 
modelling dataset. 

On average, 64.64% of the initial experimental data corresponding to static 
ageing conditions was preserved after the preprocessing stage. The 
percentage of the remaining data for each cell is indicated in Table 10. 
Overall, all the ageing conditions of the initial experimental ageing matrix 
were still represented in the processed dataset. However, a large part of the 
cells exposed to light ageing conditions were discarded, mainly due to 
neglecting of the initial capacity recovery phenomenon. One of the cells 
stored at 35°C and 35% SOC depicted increasing capacity values until the end 

Phase 4 

Focus on Phase 2 
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of the tests and was therefore completely removed from the modelling 
dataset. Regarding to the cells submitted to dynamic ageing profiles, 75.56% 
and 52.17% of the ageing data was maintained for the cells # 31 and #32 
respectively. Figure 14 illustrates the resultant ageing data obtained after the 
processing stage. 

Table 10. Remaining data percentage ranges for each storage condition, 
after the data preprocessing.  

Temperature [°C] 
SOC [%] 

100 80 65 50 35 20 
25  94.4 – 100%  14.3 – 64.7%   
35 66.6 – 87.5 95.2% 85.7 – 90.5% 70.0 – 90.0% 10.0 – 50.0% 10.0% – 15.0% 
45  30.0 – 75.0%  52.9 – 88.2%   
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Figure 14. Normalised (with maximum value 𝑸𝑸𝒎𝒎𝒎𝒎𝒎𝒎) capacity, obtained after the preprocessing phase of 
static ageing tests at (a) 25°C, (b) 35°C and (c) 45°C. (d) Normalised capacity obtained after the 
preprocessing phase of the dynamic ageing tests for the cells #31 and #32. 
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3.3. Development of the calendar ageing model 

 Assumptions and input selection 

For an accurate prediction of Li-ion battery ageing at several static and 
dynamic operating conditions, it is necessary to consider the effect of the 
different stress-factors and their influence on the ageing mechanisms.  

In the literature, a significant percentage of the ageing models based on 
Machine Learning methods do not consider the influence of such stress-
factors [140]. Apart from the authors’ recent work [141], only two 
publications were found to this effect [128,142]. Both proposed to classify 
and count “load patterns” depending on the stress-factors’ values, defining a 
subset of stress-factor ranges for which the ageing is assumed to be 
equivalent. Then, the counted “loads” at different conditions are applied to 
the model. However, the definition of such “equivalency ranges” 
independently of the data inference could be a difficult and uncertain task, 
and could significantly vary from some commercial battery reference to 
another. The selection of too broad ranges supposes a low resolution in the 
input space and could lead to a poor accuracy of the model. The selection of 
too narrow ranges induces an increased number of inputs, increasing the 
computational cost and the uncertainty associated to each range. 

The GP framework allows quantifying the similarities of the input space with 
respect to the output through data inference, depending on the kernel 
properties. Therefore, a better solution could be to introduce the stress-
factors’ values directly as an input, as already highlighted in a previous 
publication [141]. As a result, the “equivalency” or “similarity ranges” of each 
stress-factor are directly inferred from data and updated each time new data 
is available. 

Within the context of calendar ageing, in addition to the time-dependence, 
the main stress-factors involved are assumed to be the cell temperature and 
the SOC [130]. Therefore, the model we proposed in this section considered 
three inputs: 

- 𝛥𝛥𝛥𝛥: the storage time for which the ageing is predicted. 

- 𝑇𝑇−1: the reciprocal of the temperature corresponding to this storage 
time (for alignment to the Arrhenius law). 

- 𝑆𝑆𝑆𝑆𝑆𝑆: the SOC level corresponding to this storage time. 

The output of the model was the capacity loss 𝛥𝛥𝛥𝛥 corresponding to a 𝛥𝛥𝛥𝛥 
storage time at 𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑆𝑆 storage conditions. 

Stress-factors as input 

Output 
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 Kernel construction 

As explained in Section 1.2.4.1, the kernel 𝜅𝜅(x, x’) specifies how similar or 
correlated the outputs 𝑦𝑦 and 𝑦𝑦’ are expected to be for two inputs x and x’, 
respectively. The selection of the structural form of the kernel is the most 
important challenge in nonparametric regression [110]. However, it remains 
a largely subjective process based on trial and error and designer experience,  
as there is not any broadly accepted method to perform this task [143]. For 
all the GP ageing models presented in the literature, the selection of the 
kernel was based on trial and error methods. In this way, the kernel function 
presenting the lowest error with respect to a specific dataset was considered 
as the most suitable. Following this method, the suitability of the selected 
kernel in the general context of Li-ion battery ageing prediction could hardly 
be guaranteed, due to its high correlation to the used dataset. In order to 
develop GP models tailored to Li-ion battery ageing application, a stronger 
justification of the kernel selection is desirable. 

As noted in Section 3.3.1, the model must be able to handle different input 
dimensions. Consequently, compositional kernels’ framework is a suitable 
solution to construct a main kernel composed of interpretable components, 
each one related to a specific input dimension [143]. In order to focus on the 
behaviour of the composed kernels, a zero-mean function was defined in this 
work. This is not a significant limitation, since the mean of the posterior 
process is not confined to be zero [110]. 

 Selecting individual kernel components 

As explained in Section 1.2.4.1, the GP framework is a nonparametric model, 
and therefore the learning problem is the problem of finding the suitable 
properties of the function (isotropy, anisotropy, smoothness, etc.), rather 
than a particular functional form [110]. 

The range of the SOC input dimension is intrinsically limited between 0 – 
100%. This is defined to be a local modelling problem. In the context of the 
development of ageing models oriented to learn from the data observed after 
their deployment in real application, the definition of the similarity using the 
Euclidean distance seems suitable, as it could allow the model to cover the 
whole SOC range after the observation of a few data points. Therefore, the 
kernel components corresponding to the SOC input space could be 
represented by isotropic kernels. Furthermore, the operation window 
corresponding to the temperature input is limited by the recommendations 
of the manufacturer (i.e. storage temperatures between -30°C and 55°C), 
specified in Table 8. Accordingly, isotropic kernel could also be assigned to 

Compositional 
kernels 

Zero-mean function 

Isotropic kernels 
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such input dimensions. Furthermore, different kind of isotropic kernels could 
be selected for these inputs, depending on the smoothness assumption for 
the process. The Ornstein-Uhlenbeck kernel, detailed in [110], was deemed 
too rough to describe the influence of the stress-factors on ageing. Besides, 
although the squared-exponential kernel is the most widely used isotropic 
kernel, its strong smoothness assumption was claimed to be unrealistic for 
modelling many physical processes (e.g. implication of charging C-rate 
deviations on underlying capacity loss) and the Matérn kernel class was 
recommended instead [110]. Therefore, a 5/2 Matérn kernels were selected 
to host independently the input dimensions corresponding to each stress-
factor. 

The kernel component related to the Δt input dimension requires several Δt 
values to be involved in the training data, in order to optimise the associated 
hyperparameters. In order to limit the training computation time, only three 
different values of Δt were processed in the training data (which are 30, 60 
and 90 days). Table 11 illustrates the structure of the training data. In this 
context, the use of an isotropic kernel requires a large amount of different 
values of Δt for long-term prediction, implying a large quantity of training 
data and increased computation times. Therefore, this kernel component 
should be anisotropic. In the second phase of the Li-ion cells ageing described 
in Figure 13, the capacity loss seems to be linear with respect to Δt. Therefore, 
a linear kernel component was selected for this input dimension. 

Table 11. Example of the training data structure 

 
Input vector x Target 𝑦𝑦 

∆𝑡𝑡 [days] 𝑇𝑇−1 [𝐾𝐾−1] 𝑆𝑆𝑆𝑆𝑆𝑆 [%] ∆𝑄𝑄 [%] 

CELL02 

data vector 1 30 

0.0034 80 

-0.041 
data vector 2 60 -0.136 
data vector 3 90 -0.181 
data vector 4 30 -0.095 
data vector 5 60 -0.140 

… … … … … … 

CELL09 

data vector 1 30 

0.0032 100 

-0.310 
data vector 2 60 -0.572 
data vector 3 90 -0.949 
data vector 4 30 -0.261 
data vector 5 60 -0.638 

… … … … … … 
 

Although the data vectors ‘CELL002 – data vector  1’ and ‘CELL002 – data 
vector 4’ in Table 11 have the same inputs values, the target is different 
because both correspond to a the capacity loss from a different starting point, 

Matérn 

Linear kernel 
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in the capacity curve of the CELL002. The data vectors with identical input 
values and different outputs are useful for the determination of the noise 
hyperparameter of the GP models (see Equation (30)). 

 Composing the whole kernel 

In the GP framework, the kernel function is also a covariance function and 
therefore must be positive semidefinite [110]. Moreover, positive 
semidefinite compositional kernels are closed under the addition and 
multiplication of basic kernels. The effect of these operations is well 
explained in [143], for example: “A sum of kernels can be understood as a 
[logical] OR operation. Two points are considered similar if either kernel has 
a high value. Similarly, multiplying kernels is a [logical] AND operation, since 
two points are considered similar only if both kernels have high values”. 

Additive kernels assume the added stochastic processes to be independent. 
However, the inputs 𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑆𝑆 interact in the kinetics reactions inside the 
electrode [28], hence additive kernel composition should be avoided. In 
order to account for the interactions between the different input dimensions, 
the tensor product is suggested within [110,143] and is used in the composed 
kernel (equation (30)). 

 

𝜅𝜅(x, x′) = 𝜎𝜎𝑓𝑓2 ⋅
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where x and x′ are different input vectors structured as x = (x1, x2, x3), with 
x1 = 𝑇𝑇−1, x2 = 𝑆𝑆𝑆𝑆𝑆𝑆, x3 = 𝛥𝛥𝛥𝛥;  

𝜃𝜃𝑇𝑇, 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 , and 𝜃𝜃∆𝑡𝑡 are the hyperparameters related to the 𝑇𝑇, 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝛥𝛥𝛥𝛥 inputs 
respectively. The additional hyperparameters 𝜎𝜎𝑓𝑓2 and 𝜎𝜎𝑛𝑛2 are respectively 
the signal variance, which plays the role of scaling the outputs in the 
dimension of the capacity loss 𝛥𝛥𝛥𝛥, and the noise variance, which models an 
additive Gaussian noise from the data. 

 

 

Tensor product 

Hyperparameters 
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3.4. Learning from static operating conditions 

This section aims to illustrate the ability of the developed GP model to 
improve its prediction performances while observing an increasing number 
of battery calendar operation data. Indeed, as new observations of storage 
conditions are presented to the model, the training dataset of the model 
involves a more comprehensive view of the influence of the different 
combinations of stress-factors on the capacity loss. Therefore, for each 
prediction, the covariance function is able to find more similar examples in 
the training dataset, in term of storage conditions. The prediction 
performances of the model improve throughout the whole operation 
window of the Li-ion cells. 

In this section, the improvement of the model performances was evaluated 
in terms of: 

- Accuracy of the prediction: as the training dataset increases, a 
reduction of the prediction errors is expected over the whole 
operation window. The metrics used to evaluate the prediction error 
are detailed in Section 3.4.1. 

- Confidence in the prediction: as the training dataset increases, the 
model disposes of more information about the ageing throughout 
the whole operation window. In accordance with the covariance 
equation (22), the confidence intervals of the predictions are 
expected to reduce, signifying that the model is more confident 
about its predictions. The metric used to evaluate the accuracy of the 
confidence intervals is detailed in Section 3.4.1. 

 Evaluation metrics 

Six different metrics were used to assess the prediction performances of the 
two ageing models. The first one was the root-mean-square error (RMSE) of 
the output of the model, which was the capacity loss 𝛥𝛥𝛥𝛥, defined according 
to equation (31). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∆𝑄𝑄(𝒚𝒚�𝑖𝑖 ,𝒚𝒚𝑖𝑖) = � 1
𝑁𝑁𝑇𝑇

�(𝒚𝒚�𝑖𝑖 − 𝒚𝒚𝑖𝑖)2
𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (31) 
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where 𝒚𝒚�𝑖𝑖 is the predicted output, 𝒚𝒚𝑖𝑖 is the measured output and 𝑁𝑁𝑇𝑇 is the 
number of points to be evaluated. The second metric was defined as the 
RMSE of the predicted capacity curve: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄�𝑸𝑸�𝑖𝑖 ,𝑸𝑸𝑖𝑖� = � 1
𝑁𝑁𝑇𝑇

��𝑸𝑸�𝑖𝑖 − 𝑸𝑸𝑖𝑖�
2

𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (32) 

where 𝑸𝑸�𝑖𝑖 is the predicted capacity calculated by accumulation of the output 
and 𝑸𝑸𝑖𝑖 is the measured capacity. This second metric is useful in order to 
evaluate the accumulative error of the model.  

The RMSE is useful to assess the prediction performances of a model, with an 
emphasis on the high deviations which are strongly penalised. In order to 
evaluate the ability of the model to capture the main trends of the data, the 
analysis was completed with the implementation of the Mean Absolute Error 
(MAE), defined in equation (33) and (34) in terms of model output and 
capacity curve, respectively. 

𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄(𝒚𝒚�𝑖𝑖,𝒚𝒚𝑖𝑖) =
1
𝑁𝑁𝑇𝑇

� |𝒚𝒚�𝑖𝑖 − 𝒚𝒚𝑖𝑖|
𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (33) 
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1
𝑁𝑁𝑇𝑇

� |𝑸𝑸�𝑖𝑖 − 𝑸𝑸𝑖𝑖|
𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (34) 

In the context of this study, the main objective of the model was to capture 
the main trends of Li-ion battery ageing in different operating conditions, 
rather than achieving a perfect fit of each data point. Therefore, a 2% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 
threshold was defined as acceptable prediction error. 

The final metric was the Calibration Score (CS), which aimed at quantifying 
the accuracy of the uncertainty estimates. It is defined as the percentage of 
measured results in the test dataset that are within a predicted credible 
interval. Within a ±2𝜎𝜎 interval, corresponding to a 95.4% probability for a 
Gaussian distribution, the CS is given by equations (35) and (36). 

𝐶𝐶𝐶𝐶2𝜎𝜎− ∆𝑄𝑄 =
1
𝑁𝑁𝑇𝑇
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(36) 

Therefore, 𝐶𝐶𝐶𝐶2𝜎𝜎 should be approximately 95.4% if the uncertainty predictions 
are accurate. Higher or lower scores indicate under- or over-confidence, 
respectively [128]. 

 Training case studies to illustrate the learning of 
new operating conditions 

In order to illustrate how the GP model could learn from new observations 
and improve prediction performances, 7 distinct training cases were defined, 
each one involving a different number of training data from the ageing 
dataset presented in Section 3.1. From the training case 1 to the training case 
7, the number of training data increased: the data corresponding to new 
storage conditions was included progressively, revealing one by one the 
influence of the different levels of the different stress-factors. 

Accordingly, the distinct temperature values were introduced from case 1 to 
case 2, followed by the different SOC levels from case 3 to case 7. The training 
case 1 involved the single 80% SOC condition at the temperature extrema of 
the static test matrix (25°C and 45°C). The temperature range was completed 
in case 2 with the additional value of 35°C. Since the training case 3, different 
SOC storage values were introduced, starting by the 50% SOC value at the 
three temperatures. The SOC range was then progressively completed 
alternating the incorporation of highest and lowest values, i.e. 100%, 20%, 
65% and 35% SOC respectively in training cases 4, 5, 6, and 7. The 
characteristics of each training case are summarised in Table 12 specifying 
the different storage conditions involved during the training process, as well 
as the corresponding ratio of the amount of training data with respect to the 
whole available data. 
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Table 12. Summary of the different case studies, specifying the different 
cells involved and the related storage conditions, as well as the ratio of 
the amount of training data with respect to the whole available data. 

 
Learning 

Temperature 
Learning 

SOC 
# Training data / 
# Total data [%] 

CASE 1 
T 25 45 

  24.86 
SOC 80 

CASE 2 
T 25 45 35 

 42.40 
SOC 80 

CASE 3 
T 25 45 35 25, 35, 45 

 70.13 
SOC 80 50 

CASE 4 
T 25 45 35 25, 35, 45 35 

 79.70 
SOC 80 50 100 

CASE 5 
T 25 45 35 25, 35, 45 35 

 80.44 
SOC 80 50 100 20 

CASE 6 
T 25 45 35 25, 35, 45 35 

 95.43 
SOC 80 50 100 20 65 

CASE 7 
T 25 45 35 25, 35, 45 35 

100 
SOC 80 50 100 20 65 35 

 

 Prediction results 

3.4.3.1. Accuracy improvement 
The black curves in Figure 15 indicate the prediction accuracy of the GP 
model proposed in Section 3.3, trained with the different training cases 
defined in Section 3.4.2, in term of 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄. The corresponding 
RMSE values are indicated in Table A. 2, Appendix A. For each training case, 
the error calculation was performed separately for: 

- The training cells: the mean value of the prediction errors obtained 
for all the cells involved in the training case was calculated (Figure 
15. (a)). Such errors are informative about the ability of the model to 
fit the training data. 

- The validation cells: the mean value of the prediction errors obtained 
for all the cells not involved in the training case was calculated 
(Figure 15. (b)). Such error is relevant to evaluate the generalisation 
ability of the model. 

- All the cells: the mean value of the prediction errors obtained for all 
the cells (Figure 15. (c)). Such error is informative about the global 
accuracy of the model. 

As expected, the predictions errors of the training cells in Figure 15. (a) fulfil 
the 2% MAEQ threshold for all the training cases. Regarding the validation 
cells, the threshold of the 2% MAEQ is reached for the training case 2 (see 

Fitting 

Generalisation 
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Figure 15. (b)). For the training case 3, the model achieved 0.64% MAEQ 
accuracy and the performances of the model seem not to improve 
significantly since such training case. 

 

 

Figure 15. Prediction results corresponding to each training case, in term of 𝑴𝑴𝑴𝑴𝑴𝑴𝑸𝑸 and 𝑪𝑪𝑪𝑪𝟐𝟐𝟐𝟐, 
distinguishing the errors of (a) all the training cells, (b) all the validation cells and (c) all the cells. 

 

Figure 16. (a-d) illustrates the capacity predictions of the GP model resulting 
from the training case 3, for different storage conditions involved in the 
training data. The average 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 errors of the model 
corresponding to the training case 3 were 0.27% and 0.47%, respectively, for 
the training cells. The average CS2σ−∆Q and CS2σ−Q were respectively 94.54% 
and 83.03%. 

Figure 16. (e-h) aims to underpin the improvement of the generalisation 
performances of the GP, while increasing the number of training values in 

1.5

1

0.5

0

3

2

1

0

3

2

1

0

M
A

E 
[%

]
M

A
E 

[%
]

M
A

E 
[%

]

Results in training 
conditions 

Showing model 
improvement 



90|    Chapter 3 
Calendar ageing model 

the input space of the SOC. To this end, the capacity predictions were 
represented for the cells stored at 35°C and 65% SOC, using GP models 
obtained from different training cases. The model obtained from the training 
case 1 did not have any information neither about the degradation at 35°C 
nor about the effect of SOC on the capacity loss, as the training data involved 
the single input of 80% SOC. At this stage, the prediction at lower SOC levels 
were over-estimated (see Figure 16. (e)). The mean error obtained at 35°C 
and 65% SOC storage condition was 3.15% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄. In the training case 2, the 
incorporation of the 35°C storage temperature in the training data improved 
significantly the prediction, reaching a 1.12% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, Figure 16. (f). In the 
training case 3, the model started to learn the effect of the SOC by 
incorporating a 50% SOC condition in the training data. The mean error of the 
prediction improved drastically (0.34% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄), as the model could infer from 
two different SOC values and gain a numerical intuition about the effect of 
the SOC on capacity loss (see Figure 16. (g)). For comparison, the results 
obtained with a fully trained GP (training case 7) were also plotted in Figure 
16. (h): there was not significant improvement in term of error reduction. 
However, the confidence intervals were slightly reduced, indicating a higher 
confidence of the model to perform predictions in at 65% SOC, since such 
operating condition was represented in the training data (more details in 
Section 3.4.3.2). At this point, it is noteworthy that the model corresponding 
to the training case 7 is only used in this study for a sake of comparison with 
the previous cases. In fact, such a model would be unreliable for deployment, 
as it involves all the available data for training and then its performances 
would not be further validated under static conditions. 
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Figure 16. Capacity predictions with the GP model trained at training case 3, for the training cells stored 
at (a) 25°C and 80% SOC, (b) 35°C and 50% SOC, (c) 35°C and 80% SOC, (d) 45°C and 50% SOC. Capacity 
predictions for the cells stored at 35°C and 65% SOC, with the GP models trained at (e) training case 1, 
(f) training case 2, (g) training case 3 and (h) training case 7. 

 

3.4.3.2. Increase of confidence 
As stated by the variance equation (22), the confidence intervals of a 
prediction reduce if the training dataset involves data samples similar to the 
predicted input values. Informally, this means that the model feels more 
confident to do predictions in case it already observed similar operating 
conditions in training data. Therefore, the analysis of the width of the 
confidence intervals – or equivalently the standard deviation value - along a 
large operating range of each stress-factor is informative about how 
confident the model feels to perform predictions throughout a broad 
operating window. In this sense, the evolution of the standard deviation 
throughout the input space testifies about the learning process of the model. 

Figure 17 shows the evolution of the standard deviation of the GP model 
predictions throughout the whole operation window of the Li-ion cell under 
study, for the different training cases. In Figure 17. (a), the standard deviation 
of the model obtained from the training case 1 indicates lowest values 
around 25°C and 45°C, which are the only storage temperatures experienced 
at this stage. The observation of the effect of a 35°C operation in the training 
case 2 flattened the curve around such temperature: at this stage, the 

Evolution of 
standard deviation 

Gaining confidence 
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obtained model felt relatively confident to perform predictions within the 
20°C - 50°C temperature range. It is noteworthy that the model presented 
high standard deviation values at low and negative temperatures, due to the 
lack of information in such storage regions. Figure 17. (b), (c), (d) and (e) 
corresponds to the learning of the influence of the SOC, showing the 
evolution of the standard deviation of the GP model predictions throughout 
the whole SOC range and at constant 15°C, 25°C, 35°C and 45°C, respectively. 
As expected, the lowest standard deviation stood near 50% and 80% for 
training case 3, and the observation of intermediate SOC levels from the 
training cases 4 to 7 lead to reduced values in the whole range, unless below 
20% SOC operation which still was an unknown storage condition. It is 
noteworthy that the lowest standard deviation values are observable at 35°C, 
Figure 17. (d), as the SOC input space was explored at this temperature. 
Besides, the standard deviation of the predictions at 15°C, Figure 17. (b), 
achieved highest values for the training case 7. This is due to the higher 
relevance associated to the temperature in such training case (see sensitivity 
analysis in Section 3.4.3.3), which led to a higher gradient in the evolution of 
the standard deviation throughout unknown temperatures, e.g. colder 
temperatures than those involved in the training dataset.  

 

Uncertainty at 
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temperatures 
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Figure 17. Evolution of the standard deviations of the GP model predictions throughout the whole 
operation window of the Li-ion cell under study, from training case 1 to 7. (a) Evolution throughout the 
temperature space, at constant 80% SOC (b) Evolution throughout the SOC space, at constant 15°C, (c) 
Evolution throughout the SOC space, at constant 25°C, (d) Evolution throughout the SOC space, at 
constant 35°C and (e) Evolution throughout the SOC space, at constant 45°C.
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The reduction of the standard deviation in Figure 17 testifies about the 
increment of the model’s confidence to perform prediction throughout a 
broad operating window, as input spaces are progressively explored. 
Furthermore, the accuracy of the confidence level of the model was 
evaluated using the CS metric, introduce in Section 3.4.1. As previously 
explained, the 𝐶𝐶𝐶𝐶2𝜎𝜎 values should be approximately 95.4% if the uncertainty 
predictions are accurate. Higher or lower scores indicate under- or over-
confidence of the model, respectively [128]. 

In Figure 15, the evolution of the mean value of the CSs were plotted for each 
training case of the GP model, in term of capacity loss and accumulated 
capacity. Since the training case 3, the overall CS2σ−Q values converge into 
approximately 86.55% (Figure 15. (c)). This traduces a slightly over-confident 
behaviour of the model in term of the accumulated capacity. However, 
regarding the CSs values corresponding to the output of the model, the 
overall CS2σ−∆Q values converge into approximately 96.19%. 

3.4.3.3. Sensitivity of the capacity loss to the stress-factors 
For many covariance functions, the observation of the hyperparameters 
allows one to interpret how the GP model understand the data. For isotropic 
kernels, the hyperparameters play the role of characteristic length-scale. 
Such covariance functions implement automatic relevance determination, 
since the inverse of the length-scale determines how relevant an input is: if 
the length-scale has a very large value, the covariance will become almost 
independent of that input, effectively removing it from the inference [8]. 
Therefore, the sensitivity of the capacity loss to the different stress-factors 
could be analysed by observing the inverse of their respective 
hyperparameters. Figure 18 displays, for each training case, the inverse of 
the hyperparameters corresponding to the temperature and SOC, relatively 
normalised to each other. 
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Figure 18. Evolution of the relative relevance of the different stress-
factors, from the training case 1 to 7. 

In the training cases 1 and 2, only the temperature involved different storage 
values in the training dataset, as the single value of 80% was available for the 
SOC input. In absence of data to guide the optimisation of the corresponding 
hyperparameters, a high initial hyperparameter value was imposed to the 
SOC input, in order to hinder its optimisation and then remove its effect from 
inference. In this context, the unique relevant stress-factor for the GP model 
was the temperature. 

From the training case 3 to 7, different SOC levels were progressively 
included in the training dataset, and the corresponding hyperparameter was 
‘released’ for optimisation. In Figure 18, it could be observed that the relative 
relevance of the SOC input with respect to the capacity loss increased for the 
training case 3; however, the temperature variations was still considered 
slightly more impactful on the capacity loss than SOC variations. The training 
case 4 included the data corresponding to 100% SOC storage condition, which 
present a relatively high acceleration of the capacity loss: this increased the 
relative weight of the SOC with respect to the temperature. The following 
cases 5, 6 and 7 included the data corresponding to the lower SOC levels, 
highlighting that the variation of SOC at its low values has a reduced effect 
on capacity loss (observable in Figure 14. (b)). This resulted in the mitigation 
of the relative relevance of the SOC input, compared to the temperature. At 
this point, it is important to highlight that although such comparison could 
clarify how the GP model understand the data, it does not imply causality. 
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3.5. Learning from dynamic operating conditions 

The operating conditions of Li-ion batteries are barely constant in real 
applications. This implies that the ageing models developed in the basis of 
ageing tests realised at constant operating conditions must be validated at 
dynamic operating conditions. Furthermore, as this study focusses on the 
development of ageing models oriented to learn from ageing data collected 
from real-world operation, the analysis of the possibility to infer about the 
correlations among the different stress-factors and the capacity loss directly 
from dynamic operation profile is necessary. 

For this purpose, the model developed in Section 3.3 was employed to 
perform ageing predictions for cells #31 and #32, the operating profiles of 
which were presented in Figure 19. (b). In Section 3.4, the GP model reached 
satisfying prediction results for the training case 3 achieving an overall error 
of 0.53% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, and the performances of the model did not improve 
significantly since such training case. In this section, such training case was 
therefore selected as initial state of the model, in order to evaluate the 
prediction performances of the model at dynamic operating conditions. The 
obtained predictions are presented in black line (mean prediction) and grey 
area (confidence intervals) in Figure 19. (a), for the cells #31 and #32. 
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Figure 19. (a) Normalised capacity (with initial value 𝑸𝑸max) of the cells #31 and #32, after the 
preprocessing of the raw data obtained from the dynamic ageing tests (dotted grey lines) and the 
corresponding ageing predictions for the initial model (training case 3, black line and grey area) and the 
updated model (blue line and area). (b) Storage temperature and SOC dynamic profiles, applied during 
the dynamic ageing tests for the cells #31 and #32.  

 

The errors of the predictions for the model obtained from training case 3 
were 0.72% and 0.42% in terms of 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄, and 1.78% and 0.62% in terms of 
𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, for the cells #31 and #32 respectively. At approximately 368 days in 
storage, the whole range of the temperature profile was experienced for the 
cells #31 and #32, Figure 19. (b). For the cell #32, different combinations of 
the temperature and SOC level were also observed, some of them reproduced 
on the remaining storage profiles (e.g. the combinations between ca. 0 - 368 
days were reproduced between ca. 368 – 641 days). Such point was then 
deemed to be a suitable updating point for the model, to be able to evaluate 
the learning ability of the model at dynamic operating conditions. Therefore, 
the operating conditions as well as the corresponding capacity loss values 
observed between 0 – 368 days were included in the training dataset in order 
to obtain an updated GP model. 

The predictions performed with the updated model were represented in blue 
in Figure 19. (a), for cell #32. The initial model predicted larger confidence 
intervals at cold temperatures (between 15°C - 25°C), as the coldest 

Updating 
model 
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temperature experienced in the training case 3 was 25°C. The inclusion of 
such values in the training set increased the confidence of the model to 
perform predictions in this range. This is traduced in Figure 19. (a) by 
reduced confidence intervals at cold temperatures, compared with the initial 
predictions. 

When updating the model with the different temperature and SOC 
combinations observed in the dynamic profiles, the confidence of the model 
for predicting throughout the whole window of the storage conditions 
accordingly improved. This is observable in Figure 20, which reflects the 
evolution of the standard deviation of the model’s predictions, for the model 
corresponding to the training case 3 and the model updated with the data 
obtained from dynamic storage profiles until 368 days. Regarding the range 
of the storage temperatures, Figure 20. (a), it is remarkable that the model 
gained confidence at coldest temperatures, which is reflected by a reduction 
of the standard deviation in such region. This is also observable in Figure 20. 
(b), which indicates the standard deviations of the predictions at constant 
15°C and throughout the whole SOC range: the models’ predictions are 
clearly more confident at such temperatures, with minimal values around 
35% and 100% SOC levels, which are the values at which the cell was stored 
when experiencing cold temperatures (Figure 19. (b), between 240 – 309 
storage days). Figure 20. (c), (d) and (e) depicts the evolution of the standard 
deviation respectively at 25°C, 35°C and 45°C. It could be observed that the 
model gained confidence notably between the range of 0% - 40% SOC storage 
conditions. 
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Figure 20. Evolution of the standard deviations of the GP model predictions throughout the whole 
operation window of the Li-ion cell under study, from the model trained at case 3 and the model updated 
at dynamic operating conditions. (a) Evolution throughout the temperature space, at constant 80% SOC 
(b) evolution throughout the SOC space, at constant 15°C, (c) evolution throughout the SOC space, at 
constant 25°C, (d) evolution throughout the SOC space, at constant 35°C and (e) evolution throughout 
the SOC space, at constant 45°C. 
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3.6. Conclusions of the chapter 

In this chapter, a calendar capacity loss model was developed based on the 
GP framework. The model developed in Section 3.3 demonstrated suitable 
performances to fit the data, independently from the number of training data 
and involved stress-factors. This is observable in Figure 15. (a), where both 
MAE∆Q and MAEQ curves of the training cells showed a constant level under 
the defined 2% threshold, from the training case 1 to 7. 

Moreover, this chapter illustrates the ability of GP-based calendar ageing 
models to learn from the operating conditions progressively observed, 
increasing both accuracy and confidence of the model. This contribute to the 
verification of the hypothesis H5, which states that the nonparametric 
frameworks are able to learn about the influence of new values of the 
different stress-factors on battery degradation, including new data in the 
training set. 

The improvement of the model’s prediction accuracy is demonstrated in 
Figure 15. (b) and (c), as the new temperature and SOC storage conditions 
are incorporated in the training dataset. Moreover, the reduction of the 
standard deviation in Figure 17 and Figure 20 testified about the increment 
of the model’s confidence to perform predictions throughout a broad 
window of the storage conditions, as the temperature and SOC input spaces 
are progressively explored. However, it is noteworthy that the developed GP 
model turned out to be slightly over-confident, according to the CS curves 
represented in Figure 15. As previously explained, the CS2σ values should be 
approximately 95.4% if the uncertainty predictions are accurate: the 
obtained CS2σ−Q and CS2σ−∆Q values converged approximately into 86.55% 
and 96.19% respectively (Figure 15. (c)). The difference between the CS2σ−Q 
and CS2σ−∆Q suggests that the overconfidence of the model was induced by 
the error accumulation of the iterative prediction process. 

Regarding the amount of experimental ageing tests necessary from the 
laboratory for the development of the initial ageing model, the training case 
3 seems to present an adequate trade-off between the performances and the 
development cost of the model, insofar as the cell is used at the operating 
conditions recommended by the manufacturer (Table 8). In fact, the model 
achieved an overall error of 0.53% MAEQ, which is below the defined 2% MAEQ 
threshold, for 30 cells operating between 25°C-45°C and 20-100% SOC 
storage conditions, using only 18 cells tested at 6 storage conditions for 
training. Furthermore, the performances of the model seem not to improve 
significantly since such training case (see Figure 15. (b) and (c)). 
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In Section 3.5, the developed model was validated at dynamic operating 
conditions, achieving a 1.78% and 0.62% in terms of 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 for cells #31 and 
#32 respectively. This result allows to partially verify the hypothesis H2, 
which states that ageing models trained with static ageing laboratory tests 
may be able to perform accurate predictions at dynamic operating profiles. 
The thorough evaluation of the hypothesis, which would also contemplate 
the model performances under realistic operating profiles, is completed in 
Chapter 5. 

Additionally, in Section 3.4.3, the suitability of isotropic kernel components 
to host the features corresponding to temperature and SOC storage 
conditions is also explored and validated, within the specific context of Li-
ion ageing models able to evolve and improve their performances even after 
deployment in real application. 

Finally, the sensitivity analysis shows that the developed model tends to 
assign a higher influence of the temperature variations on the capacity loss, 
compared to the SOC. 

In the following chapter, analogous objectives and methods are transposed 
to the development of an ageing model tailored to a purely cycling use-case 
of Li-ion batteries. 
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Chapter 4.  
Cycle ageing model 
 

 

As mentioned in the previous chapters, the approach adopted in this thesis 
for modelling the overall ageing of Li-ion battery is based on decomposing 
the ageing on two components: i) a first model corresponding to a pure 
calendar use-case of the battery, and ii) a second model related to a pure 
cycling usage of the system. 

The previous chapter focussed on the systematic modelling and 
experimental verification of cell degradation through calendar ageing. 
Conversantly, this chapter addresses the same research challenge when the 
cell is electrically cycled, covering the implementation of the stages 1, 2 and 
3 of the methodology described in Chapter 2. 

This chapter is structured as follows, Section 4.1 describes the experimental 
ageing tests carried out in order to produce the ageing data. The raw data 
obtained from the experimental tests is analysed and preprocessed before 
the development of the model. Section 4.2 details the processing of the raw 
data and evaluates the relevance of the obtained data for ageing modelling. 
Section 4.3 presents the development of the proposed cycle ageing model 
under the GP framework. In Section 4.4 and 4.5, the prediction results of the 
developed model are presented for the cells tested at static and dynamic 
storage conditions, respectively. Furthermore, both sections aim to illustrate 
the ability of the GP model to learn from new data observation. Finally, 
Section 4.6 closes the chapter depicting the main conclusions. 
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4.1. Experimental cycle ageing data 

Within the context of the European project titled as Batteries2020, extensive 
experimental works were carried out over a time span of more than three 
years, in order to analyse the ageing of Li-ion batteries, covering different 
possible operations. The capacity retention of a 20 Ah NMC cathode-based 
pouch cell with a graphite anode was evaluated. The nominal characteristics 
of the cell, the operating conditions recommended by the manufacturer, as 
well as the experimental results obtained from a testing batch of 32 cells 
related to the study of the ageing in storage operation, were described in 
Chapter 3. In this chapter, the experimental works associated with the study 
of the cycling operation will be presented. 

From the ageing point of view, the operation of a Li-ion battery in cycling is 
conditioned by the level of different stress-factors, mainly identified in the 
literature as the operating temperature, DOD, middle-SOC, and the charging 
and discharging C-rates [29]. A total of 124 cells were cycled in temperature-
controlled climatic chambers, at different combinations of such stress-
factors. Periodical characterisation tests were carried out at 25°C in order to 
evaluate the progressive capacity retention of the cells. The determination of 
the capacity started 30 minutes after its surface temperature reached 25°C 
degrees, ensuring that the cells has stabilised at the target temperature. The 
test started with a CC-CV charge: the CC charge was done at 6.667 A (C/3) 
until reaching 4.15 V, and the following CV charge was stopped when 
achieving current values below 1 A (C/20). After a period of 30 minutes, the 
cell was discharged using a CC discharge current at 6.667 A (C/3) until the 
terminal voltage measured 3 V, followed by a pause period of 30 minutes. 
The procedure was repeated three times. The capacity value obtained in the 
last repetition was considered as the cell capacity. 

Depending on the variability of the stress-factors’ profiles in the whole 
duration of the tests, two types of ageing experiments were distinguished, 
namely i) the ageing tests at static operating conditions and ii) the ageing 
tests at dynamic operating conditions. 

 Experimental cycle ageing tests at static 
operating conditions 

In the ageing tests performed at static conditions, the value of the stress-
factors remained constant throughout the whole duration of the tests. 122 
cells were tested at 34 different operating conditions, specified in Table B. 1, 
Appendix B. Most of these tests were performed in the laboratories of the 
Vrije Universiteit Brussel and were completed by the laboratories of Ikerlan 
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Technology Research Centre, ISEA – RWTH Aachen University, Leclanché and 
Centro Ricerche Fiat. The cells were characterised every 4000 Ah, or 
equivalently 100 Full-Equivalent-Cycles (FECs). In order to ensure the 
repeatability of the results, at least 3 cells were allocated to each testing 
condition. The capacity curves resulting from the experimental ageing tests 
at static conditions are observable in Figure B.1, Appendix B. The variability 
of the capacity curves obtained for each tested cycling conditions is indicated 
in Table B. 2, Appendix B. 

 Experimental cycle ageing tests at dynamic 
operating conditions 

As the battery stress conditions in real-world applications are not constant 
over time, the developed ageing models should be able to perform accurate 
predictions at dynamic operating profiles. The ability of the GP model to 
learn from dynamic profiles should also be analysed. Therefore, 2 additional 
cells were tested at dynamic profiles of the different stress-factors. The value 
of the stress-factors was modified between each characterisation test, during 
the whole duration of the tests. One cell was tested at constant 80% DOD, 50% 
middle-SOC, C/3 rate in charge, 1C rate in discharge and a variable 
temperature profile following the seasonal temperatures over a year, 
between a range of 15°C - 36°C. Furthermore, one additional cell was 
submitted to the same seasonal temperature profile, but also variable DOD, 
middle-SOC and charging and discharging C-rates. The cells were 
characterised approximately every 28 days. The variating profiles of the 
stress-factors, as well as the corresponding capacity retention of the tested 
cells are depicted in Figure B.2, Appendix B. 

4.2. Cycle ageing data preprocessing 

In the context of data-driven modelling, it is important to analyse and 
preprocess the raw data before any modelling task, in order to address data 
inconsistency and noise issues and achieve effective models [131]. The 
capacity curves obtained from the experimental ageing tests described in 
Section 4.1 present clearly three distinct phases, as illustrated in Figure 21.  
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Figure 21. The three different phases of the capacity curve of the cells. The 
first phase is an increase of the capacity, the second is a progressive 
degradation and the third phase is a sudden capacity drop. Modified from 
[132]. 

The first phase corresponds to an initial capacity rise appearing at the BOL. 
As detailed in Chapter 3, this behaviour could be explained by the 
geometrical characteristics of the cells and it is not related to any ageing 
mechanism. Accordingly, the data corresponding to Phase 1 was discarded 
for the development of the ageing model. During the data preprocessing 
stage, the maximal capacity point of each cell was designated as the BOL 
point and assigned to the ‘zero cycled Ah-throughputs’ state. The second 
phase is characterised by a progressive rate-constant decrease of the cell 
capacity, and it is sometimes followed by a third phase describing a sudden 
capacity drop, as illustratively depicted in Figure 21. According to [132], in 
these tested cells, this third phase was provoked by the occurrence of lithium 
plating. For the reasons exposed in Chapter 3, the modelling of the Phase 3 
remained out of the scope of the study, and the corresponding data was 
discarded from the modelling dataset. 

Therefore, in the context of this study, the modelling work focussed on 
capturing the relations between the cycling conditions and the capacity loss 
of the cells, during the progressive degradation corresponding to the second 
phase in Figure 21.  
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Besides, some unexpected trends were identified within the experimental 
data, for instance, abnormally reduced capacity measurements around 
25000 Ah in the cells #21-23 (green curves in Figure B.1. (a), Appendix B). 
Such deviations are related to procedural errors during the capacity tests 
(e.g. exchange of the testing device, etc.). These noisy data samples could 
affect the performances of the model and were therefore removed from the 
modelling dataset. Furthermore, the cell #56 showed a clearly defective 
behaviour (isolated red curve in Figure B.1. (f), Appendix B) and was also 
discarded from the dataset. 

On average, 76.5% of the raw experimental data corresponding to the static 
ageing conditions was preserved after the preprocessing stage. The 
percentage of the remaining data for each cell is indicated in Table 13. 
Overall, all the ageing conditions of the initial experimental ageing matrix 
were still represented in the processed dataset. It is noteworthy that most of 
the discarded data corresponds to cells cycled at low DOD values, due to the 
decision to neglect the initial capacity rise points. Regarding to the cells 
submitted to dynamical ageing profiles, 90% and 95.45% of the ageing data 
was maintained for the cells #124 and #125 respectively. Figure 22 and 
Figure 23 illustrates the resultant ageing data obtained after the 
preprocessing stage.
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Table 13. Remaining data percentage ranges for each cycling condition, after the data preprocessing. 

Temperature [°C] 25 35 45 
C-Rate [C] 

(charge - discharge) 
C/3-1C 1C-1C C/3-C/3 C/3-1C C/3-2C C/2-1C 1C-1C 2C-1C 2C-2C C/3-1C 

DoD [%] MidSOC [%]           
100 50 89.6%   85.7 – 92.8%      83.3 – 91.6% 
80 50 70 – 95% 88.5 – 94.1% 66.6 – 83.3% 62.5 – 100% 77.2 – 81.8% 100% 66.6 – 88.8% 50 – 66.6% 62.6 – 72.7% 80 – 92.8% 
65 50 50 – 87.5%   88.8 – 100%      80 – 100% 

50 
65    88.2 – 100%       
50 82.7 – 72.4%   88.2 – 100%      73.3 – 80% 
35    76.4 – 77.7%       

35 50 50%   77.7 – 88.8%      80% 

20 

80    83.3 – 94.4%       
65    33.3 – 44.4%       
50 47 – 73.3%   55.5 – 61.1%      63.6 – 78.5% 
35    11.1– 44.4%       
20    38.8 – 50%       

10 
80    94.4%       
65    33.3%       
20    22.2 – 66.6%       
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Figure 22. Normalised capacity (with maximum value 𝑸𝑸𝒎𝒎𝒎𝒎𝒎𝒎), after the preprocessing of the raw data 
obtained from the static ageing tests at (a) 25°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (b) 
35°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (c) 45°C, 50% middle-SOC, C/3 – 1C, and several 
DOD values, (d) 35°C, 10% DOD, C/3 – 1C, and several middle-SOC values, (e) 35°C, 20% DOD, C/3 – 1C, 
and several middle-SOC values, (f) 35°C, 50% DOD, C/3 – 1C, and several middle-SOC values, (g) 25°C, 
80% DOD, 50% middle-SOC, 1C discharging rate, and several charging rate values, (h) 35°C, 80% DOD, 50% 
middle-SOC, 1C discharging rate, and several charging rate values, (i) 35°C, 80% DOD, 50% middle-SOC, 
C/3 charging rate, and several discharging rate values, and (j) 35°C, 80% DOD, 50% middle-SOC and 
several symmetric charging and discharging rate values. 



110| Chapter 4 
Cycle ageing model 

 

 

Figure 23. Normalised capacity (with initial value 𝑸𝑸max), after the 
preprocessing of the raw data obtained from the dynamic ageing tests, for 
the cell #124 and #125. 

 

The analysis of the capacity curves in Figure 22 allows understanding the 
relations between the values of the different stress-factors and the 
underlying ageing of the cells. Comparing the curves corresponding to 
identical DOD operations in Figure 22. (a), (b) and (c), it is noteworthy that 
the increased cycling temperature in (c) accelerated the capacity loss of the 
cells. This observation is in accordance with the literature [144,145]. In fact, 
the growth of the SEI layer is a chemical reaction and then obeys to the 
Arrhenius law: the SEI formation rate increases exponentially with 
temperature. 

By studying them independently, the Figure 22. (a), (b) and (c) also illustrate 
the DOD dependency of the capacity loss. Higher values of the DOD increased 
the capacity loss. As explained in [146], at relatively low current rates of 
battery operation the SEI cracking and reforming is the main mechanism 
inducing capacity loss. Such capacity loss was shown to be dependent to the 
state of lithiation swing (which could be approximated by the DOD) of the 
electrode, during lithiation [146]. Similar experimental results were 
reported in [32,147,148]. 

Regarding the effect of the middle-SOC stress-factor, the cycling at higher 
lithiation ranges of the anode is expected to lead to accelerated ageing, due 
to i) the effect of the calendar ageing, in which higher SOC values induce 
faster degradation [130,132], ii) the increased mechanical stress 
accumulated in the anode at higher lithiation states, conducting to 
accentuated SEI cracking and reforming [149] and iii) the crossing of the 
transitions between voltage plateaus of the negative electrode, which 
provokes changes in the lattice parameters of the material and leads to 
material expansion and contraction, increasing again the mechanical stress 
[32]. The latter element suggests a U-shape dependency of the capacity loss 

Effect of 
temperature 

Effect of DOD 

Effect of 
middle-SOC 
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to the middle-SOC, with an optimum around 50% SOC and stronger 
degradations at higher and lower cycle ranges [32]. A similar behaviour is 
observable in Figure 22. (f), in which the cells cycled at 35% and 65% middle-
SOC aged slightly faster than the cells operating at 50% middle-SOC. As for 
the 10% and 20% DOD operation, Figure 22. (d) and (e) reflect an increased 
capacity loss at 80% middle-SOC operation, compared with lower middle-
SOC levels. 

Furthermore, the effect of high charging and discharging C-rate values on 
capacity loss was also demonstrated in the literature. High C-rates lead to 
additional stress in the electrodes, due to i) a non-homogeneous 
intercalation of lithium on graphite which create Li-concentration gradients 
and ii) more important volume expansions and compressions [149]. This 
increase the probability of particle fracture, conducting to a loss of active 
material. In the negative electrode, the particle cracking reveals fresh anode 
surface, which react with electrolyte reforming SEI and augmenting capacity 
loss [149,150]. Furthermore, the charging at high C-rate could generate the 
lithium plating reaction, because of the heterogeneous lithium repartition in 
the material which could locally induce voltages close to the 0V vs. Li Li+⁄  
[137]. The study of the C-rate effect in the experimental works was limited 
to a C/3 – 2C range, in order to obtain enough resolution. These are relatively 
low levels compared to the actual EV market requirement (~6C in charge 
[151]). The obtained results showed relatively high variability, and not clear 
influence of the C-rate was remarkable below 1C for both charging and 
discharging C-rates (see Figure 22. (g-j)). However, an increased degradation 
rate was observed at 2C charging (discharging at 1C in Figure 22. (h) and at 
2C in Figure 22. (j)). 

Summarising, the experimental works carried out with 122 cells allowed 
obtaining an extensive dataset which describes effectively the influence of 
temperature, DOD, and middle-SOC for a relatively broad operating window 
of Li-ion cells, which overlaps the typical operating conditions in many real 
applications. It is noteworthy that high C-rate levels, as well as negative 
temperatures are not represented in the data, which could limit the 
applicability of the developed model in such operating conditions (see 
limitations in Chapter 6). Furthermore, the additional tests realised at 
dynamic operating conditions allow validating the performances of the 
model under time-varying stress-factors profiles, which are closer to real-
world operation. 
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4.3. Development of the cycle ageing model 

 Assumptions and input selection 

As stated in Section 4.2, this research study focusses on the modelling of the 
progressive capacity loss corresponding to the second phase represented in 
Figure 21. The development of the model was based on the following 
assumptions:  

The predominant ageing mechanism involved in such phase is the formation 
of the SEI layer on the anode surface, which could be moderated, accelerated 
or expanded by the cycling conditions, characterised by the values of the 
different stress-factors mentioned in Sections 3.2 and 4.2. 

The capacity loss is strongly dependent on the interactions between the 
different stress-factors, as described in Section 4.2.  

As explained in Chapter 3, corresponding to the calendar ageing model, the 
influence of the stress-factors should be considered introducing the 
corresponding values directly as an input. Therefore, the model proposed in 
this section considered six inputs: 

- ∆Ah-throughput: the number of Ah-throughput for which the ageing 
is predicted. 

- 𝑇𝑇−1: the reciprocal of the temperature corresponding to the cycled 
Ah-throughput (for alignment to the Arrhenius law). 

- DOD: the DOD level corresponding to the cycled Ah-throughput. 

- Middle-SOC: the average SOC corresponding to the cycled Ah-
throughput. 

- Charging C-rate: the charging C-rate corresponding to the cycled Ah-
throughput. 

- Discharging C-rate: the discharging C-rate corresponding to the 
cycled Ah-throughput. 

The output of the model was the capacity loss 𝛥𝛥𝛥𝛥 corresponding to the 
∆Ah-throughput cycled at 𝑇𝑇−1, DOD, Middle-SOC, Charging C-rate and 
Discharging C-rate conditions. 
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 Kernel construction 

As justified in Chapter 3, the framework of compositional kernels is a suitable 
solution to develop covariance functions tailored to Li-ion battery ageing 
application: a main kernel could be constructed composed of interpretable 
components, each one related to a specific input dimension [143]. In order 
to focus on the behaviour of the composed kernels, a zero-mean function was 
defined in this work. This is not a significant limitation, since the mean of the 
posterior process is not confined to be zero [110]. 

4.3.2.1. Selecting individual kernel components 
As explained in Section 1.2.4.1, the GP framework is a nonparametric model, 
and therefore the learning problem is the problem of finding the suitable 
properties of the function (isotropy, anisotropy, smoothness, etc.), rather 
than a particular functional form [110].  

The range of the DOD and Middle-SOC input dimensions is intrinsically 
limited between 0 – 100%. Furthermore, the operation window 
corresponding to the Temperature, Charging C-rate and Discharging C-rate 
inputs is also limited by the recommendations of the manufacturer (e.g. 
cycling and storage temperatures between -30°C and 55°C), specified in 
Chapter 3. This is defined to be a local modelling problem and therefore the 
kernel components corresponding to the stress-factors’ input spaces could 
be represented by isotropic kernels, as justified in Chapter 3. Among the 
different isotropic kernels, the 5/2 Matérn kernels imply a suitable 
smoothness assumption to represent the physical processes inside the 
battery (as suggested in Chapter 3), and were then selected to host 
independently the input dimensions corresponding to each stress-factor. 

The kernel component related to the ΔAh − throughput input dimension 
requires several ΔAh − throughput values to be involved in the training data, 
in order to optimise the associated hyperparameters. In order to limit the 
training computation time, only three different values of ΔAh − throughput 
were processed in the training data (which are 4000, 8000 and 12000 ΔAh). 
Table 14 illustrates the structure of the training data. In this context, the use 
of an isotropic kernel requires a large amount of different values of ΔAh −
throughput for long-term prediction, implying a large quantity of training 
data and increased computation times. Therefore, this kernel component 
should be anisotropic. In the second phase of the Li-ion cells ageing described 
in Figure 21, the capacity loss seems to be linear with respect to ΔAh −
throughput. Therefore, a linear kernel component was selected for this input 
dimension. 
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Table 14. Example of the training data structure, relating the input data to the corresponding target.  

 

Input vector x Target 𝐲𝐲 

∆𝑨𝑨𝑨𝑨 − 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 [Ah] 𝑻𝑻−𝟏𝟏 [𝑲𝑲−𝟏𝟏] 𝑫𝑫𝑫𝑫𝑫𝑫 [%] Middle-SOC [%] Charging C-rate [C] 
Discharging 

C-rate [C] 
∆𝑸𝑸 [%] 

CELL002 

Data vector 1 4000 

0.0034 100 50 C/3 1C 

-0.163 
Data vector 2 8000 -0.743 
Data vector 3 12000 -1.101 
Data vector 4 4000 -0.579 
Data vector 5 8000 -0.937 

… … … … … … … … … 

CELL055 

Data vector 1 4000 

0.0032 50 35 C/3 1C 

-0.135 
Data vector 2 8000 -0.142 
Data vector 3 12000 -0.451 
Data vector 4 4000 -0.007 
Data vector 5 8000 -0.316 

… … … … …   … 

 

Although the data vectors ‘CELL002 – data vector  1’ and ‘CELL002 – data 
vector 4’ in Table 14 have the same inputs values, the target is different 
because both correspond to the capacity loss from a different starting point, 
in the capacity curve of the CELL002. The data vectors with identical input 
values and different outputs are useful for the determination of the noise 
hyperparameter of the GP models (see Equation (37)). 

4.3.2.2. Composing the whole kernel 
In the GP framework, the kernel function is also a covariance function and 
therefore must be positive semidefinite [110]. Moreover, positive 
semidefinite compositional kernels are closed under the addition and 
multiplication of basic kernels. Additive kernels assume the added stochastic 
processes to be independent [143]. However, as specified in Section 3.3.1, 
the different inputs were assumed to have a strong interaction on their 
influence on the capacity loss, and hence an additive kernel composition 
should be avoided. In order to account for the interactions between the 
different input dimensions, the tensor product is suggested within [110,143] 
and is used in the composed kernel (equation (37)). 
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where x and x′ are different input vectors structured as x =
(x1, x2, x3, x4, x5, x6), with x1 = 𝑇𝑇−1, x2 = 𝐷𝐷𝐷𝐷𝐷𝐷, x3 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀-𝑆𝑆𝑆𝑆𝑆𝑆; x4 =
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; x5 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and x6 = ∆𝐴𝐴ℎ-𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝. 

𝜽𝜽1, 𝜽𝜽2, 𝜽𝜽3, 𝜽𝜽4, 𝜽𝜽5 and 𝜽𝜽6 are the hyperparameters related to the corresponding 
input spaces. The additional hyperparameters 𝜎𝜎𝑓𝑓2 and 𝜎𝜎𝑛𝑛2 are respectively 
the signal variance, which plays the role of scaling the outputs in the 
dimension of the capacity loss 𝛥𝛥𝛥𝛥, and the noise variance, which models an 
additive Gaussian noise from the data. 

4.4. Learning from static operating conditions 

This section aims to illustrate the ability of the developed GP model to 
improve its prediction performances while observing an increasing number 
of cycling data. Indeed, as new observations of cycling conditions are 
presented to the model, the training dataset of the model involves a more 
comprehensive view of the influence of the different combinations of stress-
factors on the capacity loss. Therefore, for each prediction, the covariance 
function is able to find more similar examples in the stored training dataset, 
in term of cycling conditions. The prediction performances of the model 
improve throughout the whole operation window of the Li-ion cells. 

In this section, the improvement of the model performances was evaluated 
in terms of: 

- Accuracy of the prediction: as the training dataset increases, a 
reduction of the prediction errors is expected over the whole 
operation window. The metrics used to evaluate the prediction error 
were detailed in Section 3.4.1. 

- Confidence in the prediction: as the training dataset increases, the 
model disposes of more information about the ageing throughout 
the whole operation window. In accordance with the covariance 
equation (22), the confidence intervals of the predictions are 
expected to reduce, signifying that the model is more confident 

Hyperparameters 

Accuracy 

Confidence 
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about its predictions. The metric used to evaluate the accuracy of the 
confidence intervals was detailed in Section 3.4.1. 

 Training case studies to illustrate the learning of 
new operating conditions 

Following the method introduced in Chapter 3, 16 training cases were 
defined in order to illustrate how the GP model could learn from new 
observations and improve prediction performances. Each training case 
involved a different number of training data from the ageing dataset 
presented in Section 4.2. From the training case 1 to the training case 16, the 
number of training data increased: the data corresponding to new cycling 
conditions was included progressively, revealing one by one the influence of 
the different levels of the different stress-factors. 

The distinct temperature values were introduced from case 1 to case 2, 
followed by the DOD levels from case 3 to case 7, the middle-SOC levels from 
case 8 to case 11, the charging C-rate levels from case 12 to case 14 and 
finally the discharging C-rate levels from case 15 to case 16. The introduction 
of each stress-factors level was guided by the following process: the highest 
level was introduced first, followed by the lowest level, and then the range 
was completed adjoining one by one the levels equidistant to the already 
known values, alternating the highest and lowest values. Illustrating the 
process in the DOD range: i) 100% DOD, the highest value, was already 
included in cases 1 and 2, then ii) the lowest value i.e. 20% DOD was included 
in case 3, iii) the equidistant would be 60% DOD, then the closest available 
values 65% and 50% DOD were included in case 4 and case 5 respectively, and 
iv) the highest (%80 DOD) and lowest (35% DOD) remaining levels were 
respectively added in cases 6 and 7. Notice that the 10% DOD level was 
included later, because the 50% middle-SOC level was not available at such 
DOD. Table 15 indicates the characteristics of each training case. The 
different cells and the related cycling conditions involved during the training 
process are specified, as well as the corresponding ratio of the amount of 
training data with respect to the whole available data.

Training suite 
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Table 15. Summary of the different case studies, specifying the different cells involved and the related 
cycling conditions, as well as the ratio of the amount of training data with respect to the whole available 
data.  

 

 
Learning 

Temperature Learning DOD Learning MidSOC 
Learning 

charging C-rate 
Learning 

discharging C-rate 
# Training data / 
# Total data [%] 

CASE 1 

T 25 45 

     7.56 
DOD 100 

MidSOC 50 

C-rate 
CHA C/3 
DCH 1C 

CASE 2 

T 25 45 35 

    10.08 
DOD 100 

MidSOC 50 

C-rate 
CHA C/3 
DCH 1C 

CASE 3 

T 25 45 35 25, 35, 45 

    15.70 
DOD 100 20 

MidSOC 50 50 

C-rate 
CHA C/3 C/3 
DCH 1C 1C 

CASE 4 

T 25 45 35 25, 35, 45 

    21.13 
DOD 100 20 65 

MidSOC 50 50 

C-rate 
CHA C/3 C/3 
DCH 1C 1C 

CASE 5 

T 25 45 35 25, 35, 45 

    37.22 
DOD 100 20 65 50 

MidSOC 50 50 

C-rate 
CHA C/3 C/3 
DCH 1C 1C 

CASE 6 

T 25 45 35 25, 35, 45 

    59.97 
DOD 100 20 65 50 80 

MidSOC 50 50 

C-rate 
CHA C/3 C/3 
DCH 1C 1C 

CASE 7 

T 25 45 35 25, 35, 45 

   64.25 
DOD 100 20 65 50 80 35 

MidSOC 50 50 

C-rate 
CHA C/3 C/3 
DCH 1C 1C 

CASE 8 

T 25 45 35 25, 35, 45 35 

   71.05 
DOD 100 20 65 50 80 35 10, 20 

MidSOC 50 50 80 

C-rate 
CHA C/3 C/3 C/3 
DCH 1C 1C 1C 

CASE 9 

T 25 45 35 25, 35, 45 35 

   74.03 
DOD 100 20 65 50 80 35 10, 20 10, 20 

MidSOC 50 50 80 20 

C-rate 
CHA C/3 C/3 C/3 
DCH 1C 1C 1C 

CASE 10 

T 25 45 35 25, 35, 45 35 

   78.00 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 

MidSOC 50 50 80 20 65 

C-rate 
CHA C/3 C/3 C/3 
DCH 1C 1C 1C 

CASE 11 

T 25 45 35 25, 35, 45 35 

  80.11 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 

MidSOC 50 50 80 20 65 35 

C-rate 
CHA C/3 C/3 C/3 
DCH 1C 1C 1C 
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Table 15 (continued). Summary of the different case studies, specifying the different cells involved and 
the related cycling conditions, as well as the ratio of the amount of training data with respect to the 
whole available data.  

 
Learning 

Temperature 
Learning DOD Learning MidSOC 

Learning 
charging C-rate 

Learning 
discharging C-rate 

# Training data / 
# Total data [%] 

CASE 12 

T 25 45 35 25, 35, 45 35 35 

  80.88 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 80 

MidSOC 50 50 80 20 65 35 50 

C-rate 
CHA C/3 C/3 C/3 2C 
DCH 1C 1C 1C 1C 

CASE 13 

T 25 45 35 25, 35, 45 35 35 25, 35 

  92.41 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 80 

MidSOC 50 50 80 20 65 35 50 

C-rate 
CHA C/3 C/3 C/3 2C 1C 
DCH 1C 1C 1C 1C 1C 

CASE 14 

T 25 45 35 25, 35, 45 35 35 25, 35 35 

 94.09 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 80 

MidSOC 50 50 80 20 65 35 50 

C-rate 
CHA C/3 C/3 C/3 2C 1C C/2 
DCH 1C 1C 1C 1C 

CASE 15 

T 25 45 35 25, 35, 45 35 35 25, 35 35 35 

 98.83 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 80 80 

MidSOC 50 50 80 20 65 35 50 50 

C-rate 
CHA C/3 C/3 C/3 2C 1C C/2 C/3 2C 
DCH 1C 1C 1C 1C 2C 2C 

CASE 16 

T 25 45 35 25, 35, 45 35 35 25, 35 35 35 

100.00 
DOD 100 20 65 50 80 35 10, 20 10, 20 10, 20, 50 20, 50 80 80 

MidSOC 50 50 80 20 65 35 50 50 

C-rate 
CHA C/3 C/3 C/3 2C 1C C/2 C/3 2C C/3 
DCH 1C 1C 1C 1C 2C 2C C/3 
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 Prediction results 

4.4.2.1. Accuracy improvement 
The black curves in Figure 24 indicate the prediction accuracy of the GP 
model proposed in Section 4.3, trained with the different training cases 
defined in Section 4.4.1, in term of 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄. The corresponding 
RMSE values are indicated in Table B. 3, Appendix B. For each training case, 
the error calculation was performed separately for: 

- The training cells: the mean value of the prediction errors obtained 
for all the cells involved in the training case was calculated (Figure 
24. (a)). Such errors are informative about the ability of the model to 
fit the training data. 

- The validation cells: the mean value of the prediction errors obtained 
for all the cells not involved in the training case was calculated 
(Figure 24. (b)). Such error is relevant to evaluate the generalisation 
ability of the model. 

- Some targeted validation cells: the mean value of the prediction 
errors obtained for the validation cells which operated at unobserved 
levels of the partially explored stress-factors (Figure 24. (c)). For 
instance, the influence of the DOD is learned from the training case 
3 to 7; in the training case 4, the training data included the data 
corresponding to the 20%, 65% and 100% DOD operation. Then the 
prediction error corresponding to the training case 4 plotted in 
Figure 24. (c) was calculated only for the validation cells 
corresponding to the 50%, 80% and 35% DOD cycling conditions, 
neglecting the errors corresponding to the cells cycled at different 
values of the further stress-factors. Such error is relevant to evaluate 
the generalisation ability of the model, to the extent of the partially 
explored input spaces. 

- All the cells: the mean value of the prediction errors obtained for all 
the cells (Figure 24. (d)). Such error is informative about the global 
accuracy of the model. 

As expected, the predictions errors of the training cells in Figure 24. (a) fulfil 
the 2% 𝑀𝑀𝑀𝑀𝑀𝑀Q threshold for all the training cases. Regarding the validation 
cells, the threshold of the 2% MAEQ is reached for the training case 4 (see 
Figure 24. (b)), and the performances of the model seem not to improve 
significantly since such training case.  

Fitting 
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Figure 24. (c) describes the evolution of the generalisation ability of the 
model throughout the whole range of each stress-factor. Focussing on the 
part related to the learning of the influence of the DOD, the first points 
correspond to the mean value of the MAE errors obtained with the GP model 
trained with training case 2 and performing predictions for all the cells 
tested at the cycling conditions corresponding to the learning of the DOD in 
Table 15. At this training stage, the model only observed the influence of 
cycling at 100% DOD, and then all the predictions at lower DOD values were 
overestimated, resulting in a high error of 4.89% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄. In the training case 3, 
the model started to learn the effect of the DOD by incorporating a 20% DOD 
condition in the training data. The mean error of the targeted validation cells 
improved drastically, as the model could infer from two different DOD values 
and gain a numerical intuition about the effect of the DOD on capacity loss. 
In the training case 4, the model possessed capacity loss values 
corresponding to 20%, 65% and 100% DODs in the training dataset. The mean 
error of the predictions corresponding to the cells at the remaining DOD 
values drop below the 2% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 threshold, indicating a good generalisation 
of the model throughout the whole available range of DOD operation. Finally, 
the inclusion of new DOD values to the training dataset in the training cases 
5 and 6 did not seem to significantly improve the generalisation ability of the 
model throughout the DOD operation range. Notice that for the training case 
7, all the DOD values available from the dataset were involved in training, 
and therefore, there was no validation cells yet to evaluate the evolution of 
the generalisation ability of the model, and then the error cannot be 
calculated. 

Regarding the evolution of the errors from training cases 7 to 10, which is 
related to the learning of the influence of the middle-SOC, the results were 
unaltered by the inclusion of new middle-SOC values in the training dataset 
(Figure 24. (c)). This is explainable by the relatively reduced influence on the 
capacity loss assigned by the model to the middle-SOC stress-factor (more 
details in Section 4.4.2.3). Furthermore, concerning the learning of the 
charging C-rate, an increase of the error is observable from training case 11 
to 12, before the final reduction in case 13. This is due to the initial inclusion 
of the 2C charging condition in training case 12, which presents a faster 
capacity loss compared to the remaining levels of charging C-rate (see Figure 
22. (h)). At this stage, the model tends to overestimate the ageing at 
intermediate charging C-rate values. This is corrected in the training case 13 
by the incorporation of the 1C charging data. 
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Figure 24. Prediction results corresponding to each training case, in term of 𝑴𝑴𝑴𝑴𝑴𝑴𝑸𝑸 and 𝑪𝑪𝑪𝑪𝟐𝟐𝟐𝟐, 
distinguishing the errors of (a) all the training cells, (b) all the validation cells, (c) targeted validation 
cells and (d) all the cells.  

 

Figure 25. (a-e) illustrate the capacity loss predictions of the GP model 
resulting from the training case 4, for different cycling conditions involved 
in the training data. The average 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 errors of the model 
corresponding to the training case 4 were 0.68% and 1.12%, respectively, for 
the training cells. The average CS2σ−∆Q and CS2σ−Q were respectively 90.65% 
and 77.75%. Furthermore, Figure 25. (f-j) depict the capacity loss predictions 
of the GP model resulting from the training case 4, for different validation 
cycling conditions, which were not involved in the training data. The average 
𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 errors of the model corresponding to the training case 4 
were 0.55% and 1.02%, respectively, for the validation cells. The average 
CS2σ−∆Q and CS2σ−Q were respectively 94.02% and 82.01%. Figure 25. (k-o) 
aims to underpin the improvement of the generalisation performances of the 
GP, while increasing the number of training values in the input space of the 
DOD. To this end, the capacity loss predictions were represented for the cells 
#004 to #011 (which operated at 25°C, 80% DOD, 50% middle-SOC and C/3 – 
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1C charging and discharging C-rates), using GP models obtained from 
different training cases. 

As previously explained, the models obtained from the training cases 1 and 
2 did not have any information about the effect of the DOD on the capacity 
loss, as the training data involved the single input of 100% DOD. At this stage, 
the prediction at lower DOD levels were over-estimated (see Figure 25. (k) 
and (l)). The mean error in such condition was 3.91% and 3.88% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, 
respectively. In the training cases 3 and 4, the integration of the 20% and 65% 
DOD operating conditions in the training dataset allowed improving the 
predictions at 80% DOD, reaching 2.34% and 0.42% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 values, respectively 
(see Figure 25. (m) and (n)). For comparison, the results obtained with a fully 
trained GP (training case 7) were also plotted in Figure 25. (o): there was not 
significant improvement in term of error reduction. However, the confidence 
intervals were slightly reduced, indicating a higher confidence of the model 
to perform predictions in at 80% DOD, since such operating condition was 
represented in the training data (more details in Section 4.4.2.2). At this 
point, it is noteworthy that the model corresponding to the training case 7 is 
only used in this study for a sake of comparison with the previous cases. In 
fact, such a model would be unreliable for deployment, as all the available 
DOD levels were observed in training and then the generalisation ability of 
the model could not be validated in the space of DOD. 
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Figure 25. (a-e) Capacity predictions with the GP model trained at training case 4, for the training cells 
cycled at the Temperature and DOD levels indicated in each graph. (f-j) Capacity predictions with the 
GP model trained at training case 4, for the validation cells cycled at the Temperature and DOD levels 
indicated in each graph. (k-o) Capacity predictions for the cells cycled at 25°C and 80% DOD, with the 
GP models trained at (k) training case 1, (l) training case 2, (m) training case 3, (n) training case 4 and 
(o) training case 7. Unless otherwise specified, the cells involved in (a-o) were cycled at 50% Middle-
SOC, C/3 charging C-rate and 1C discharging C-rate. 
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4.4.2.2. Increase of confidence 
According to the variance equation (22), the confidence intervals of a 
prediction reduce if the training dataset involves data samples similar to the 
predicted input values. Informally, this means that the model feels more 
confident to do predictions in case it already observed similar operating 
conditions in training data. Therefore, the analysis of the width of the 
confidence intervals – or equivalently the standard deviation value - along a 
large operating range of each stress-factor is informative about how 
confident the model feels to perform predictions throughout a broad 
operating window. In this sense, the evolution of the standard deviation 
throughout the input space testifies about the learning process of the model. 

In Figure 26, the evolution of the standard deviation of the GP model 
predictions is depicted throughout the whole operation window of the Li-
ion cell under study, for the different training cases. For the model obtained 
from the training case 1, the standard deviation indicates lowest values 
around 25°C and 45°C, Figure 26. (a), which are the only temperatures 
experienced at this stage. The observation of the effect of a 35°C operation in 
the training case 2 flattened the curve around the such temperature: at this 
stage, the obtained model felt relatively confident to perform predictions 
within the 20°C - 50°C temperature range. Notice that the model presented 
high standard deviation values at low and negative temperatures, due to the 
lack of information in such cycling regions. Figure 26. (b) corresponds to the 
learning of the influence of the DOD. As expected, the lowest standard 
deviation stood near 20% and 100% for training case 3, and the observation 
of intermediate DOD levels from the training cases 4 to 7 lead to reduced 
values in the whole range, unless below 20% DOD operation which still was 
an unknown cycling condition. Identical interpretation could be done from 
Figure 26. (c), (d) and (e) regarding the evolution of the standard deviation 
in the operation ranges of the middle-SOC, charging and discharging C-rate, 
respectively.
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Figure 26. Evolution of the standard deviations of the GP model predictions throughout the whole 
operation window of the Li-ion cell under study, from training case 1 to 16. (a) Evolution throughout the 
temperature space, at constant 80% DOD, 50% middle-SOC and C/3 – 1C charging and discharging C-rate 
(b) Evolution throughout the DOD space, at constant 35°C, 50% middle-SOC and C/3 – 1C charging and 
discharging C-rate (c) Evolution throughout the middle-SOC space, at constant 35°C, 20% DOD and C/3 – 
1C charging and discharging C-rate (d) Evolution throughout the space of the charging C-rate, at constant 
35°C, 80% DOD, 50% middle-SOC and 1C discharging C-rate and (e) Evolution throughout the space of the 
discharging C-rate, at constant 35°C, 80% DOD, 50% middle-SOC and C/3 charging C-rate. 



126| Chapter 4 
Cycle ageing model 

The reduction of the standard deviation in Figure 26 testifies about the 
increment of the model’s confidence to perform prediction throughout a 
broad operating window, as input spaces are progressively explored. 
Moreover, the accuracy of the confidence level of the model was evaluated 
using the CS metric, introduced in Section 3.4.1. As previously explained, the 
𝐶𝐶𝐶𝐶2𝜎𝜎 values should be approximately 95.4% if the uncertainty predictions are 
accurate. Higher or lower scores indicate under- or over-confidence of the 
model, respectively [128]. 

In Figure 24, the evolution of the mean value of the CSs are plotted for each 
training case of the GP model, in term of capacity loss and accumulated 
capacity. Since the training case 4, the overall CS2σ−Q values converge into 
approximately 75% (Figure 24. (d)). This traduces a slightly over-confident 
behaviour of the model in term of the accumulated capacity. However, 
regarding the CSs values corresponding to the output the model, the overall 
CS2σ−∆Q values converge into approximately 90%. 

4.4.2.3.  Sensitivity of the capacity loss to the stress-factors 
Isotropic covariance functions implement automatic relevance 
determination, since the inverse of the length-scale determines how relevant 
an input is: if the length-scale has a very large value, the covariance will 
become almost independent of that input, effectively removing it from the 
inference [8]. Therefore, the sensitivity of the capacity loss to the different 
stress-factors could be analysed by observing the inverse of their respective 
hyperparameters. Figure 27 displays, for each training case, the inverse of 
the hyperparameters corresponding to each input dimension, relatively 
normalised to each other. 

 

 

Slightly over-
confident 



Learning from static operating conditions  |127 

 

 

Figure 27. Evolution of the relative relevance of the different stress-
factors, from the training case 1 to 16. 

Figure 27 illustrates the relative relevance of the different stress-factors, for 
the GP model corresponding to training case 1 to 16. In the training cases 1 
and 2, only the temperature involved different operating values in the 
training dataset, as a single value was available for the remaining stress-
factors. In absence of data to guide the optimisation of the corresponding 
hyperparameters, a high initial hyperparameter value was imposed to those 
stress-factors, in order to hinder their optimisation and then remove their 
effect from inference. In this context, the unique relevant stress-factor for 
the GP model was the temperature. 

From the training case 3 to 7, different DOD levels were progressively 
included in the training dataset, and the corresponding hyperparameter was 
‘released’ for optimisation. In Figure 27, it could be observed that the relative 
relevance of the DOD input with respect to the capacity loss increased; 
however, the temperature variations was still considered slightly more 
impactful on the capacity loss than DOD variations. From the training case 8 
to 11, the evolution of the importance assigned to the middle-SOC is 
observable, which was still limited compared to the temperature and DOD. 
In training case 12, a reduced impact of the charging rate was inferred, 
considering the difference in capacity losses between C/3 and 2C training 
data. However, the observation of the 1C and C/2 charging rates in training 
cases 13 and 14, which both lead to similar capacity loss as C/3 charging rate, 
suggested that all such difference stood between 1C and 2C: from this new 
perspective, small changes of charging C-rate induces relatively high 
changes in capacity loss, traducing a high covariance between these two 
variables. Then the GP assigned high relevance to the charging C-rate input 

Relative relevance of 
the stress-factors 
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in the training case 14. Finally, a reduced dependence of the capacity loss on 
the discharging C-rate was captured from the training cases 15 and 16, which 
is in accordance with the observations done in Section 4.2. 

In this way, the fully trained GP classified the relevance of the different 
stress-factors with respect to the capacity loss prediction in this order: 1/ 
temperature, 2/ DOD, 3/ charging C-rate, 4/ middle-SOC and 5/ discharging 
C-rate. At this point, it is important to highlight that although such 
comparison could clarify how the GP model understand the data, it does not 
imply causality. 

4.5. Learning from dynamic operating conditions 

As the operating conditions of Li-ion batteries are barely constant in real 
applications, the ageing models developed in the basis of ageing tests 
realised at constant operating conditions must be validated at dynamic 
operating conditions. Furthermore, as this study focusses on the 
development of ageing models oriented to learn from ageing data collected 
from real-world operation, the analysis of the possibility to infer about the 
correlations among the different stress-factors and the capacity loss directly 
from dynamic operation profile is necessary. To this end, the model 
developed in Section 4.3 was employed to perform ageing predictions for 
cells #124 and #125, whose operating profiles were presented in Figure 28. 
(b, c) and (e, f), respectively. For the training case 4 (see Section 4.4), the GP 
model reached satisfying prediction results, achieving errors below the 
defined 2% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 threshold. In this section, such training case was therefore 
selected as initial state of the model, in order to evaluate the prediction 
performances of the model at dynamic operating conditions. The obtained 
predictions are presented in black line (mean prediction) and grey area 
(confidence intervals) in Figure 28. (a) and (d), for the cells #124 and 125 
respectively. 
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Figure 28. (a) Normalised capacity (with maximum value 𝑸𝑸max) data and the corresponding ageing 
predictions for the initial model (training case 4, black line and grey area) and the updated model (blue 
line and area), for the cell #124. (b) DOD and middle-SOC profiles and (c) temperature and charging and 
discharging C-rate profiles applied to the cell #124. (d) Normalised capacity (with maximum value 𝑸𝑸max) 
data and the corresponding ageing predictions for the initial model (training case 4, black line and grey 
area) and the updated model (blue line and area), for the cell #125. (e) DOD and middle-SOC profiles and 
(f) temperature and charging and discharging C-rate profiles applied to the cell #125. 
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The model obtained from training case 4 achieved 1.13% and 0.46% errors in 
terms of 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄, and 3.76% and 1.46% in terms of 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, for the cells #124 and 
#125 respectively. At approximately 90000 Ah-throughput of cycling, the 
whole range of the temperature profile was experienced for the cells #124 
and #125. For the cell #124, different combinations of the remaining stress-
factors were also observed, some of them reproduced on the remaining 
cycling profiles (e.g. the combinations between ca. 11000-43000 Ah-
throughput, were reproduced between ca. 126000-167000 Ah-throughput). 
Such point was then deemed to be a suitable updating point for the model, 
to be able to evaluate the learning ability of the model at dynamic operating 
conditions. Therefore, the operating conditions as well as the corresponding 
capacity loss values observed between 0 – 90000 Ah-throughput were 
included in the training dataset in order to obtain an updated GP model. 

In Figure 28. (a) and (d), the blue curves represent the predictions performed 
with the updated model, for the cells #124 and #125 respectively. For the 
cell #125, only the temperature profile was varying, the remaining stress-
factors being constant. The initial model predicted larger confidence 
intervals at cold temperatures (between 15°C - 25°C), as the coldest 
temperature experienced in the training case 4 was 25°C. The observation of 
such values increased the confidence of the model to perform predictions in 
this range. This is traduced in Figure 28. (d) by reduced confidence intervals 
at cold temperatures, compared with the initial predictions26. 

The cell #124 was cycled at dynamic temperatures, DOD, middle-SOC and 
charging and discharging C-rates profiles (see Figure 28. (b) and (c)). In 
Figure 28. (a), it could be observed that while the confidence intervals were 
reduced at some point (e.g. around 132000 Ah-throughput), they became 
larger at some other points (e.g. around 167000 Ah-throughput). In fact, in 
the training case 4 only different temperature and DOD values were 
observed, and the remaining stress-factors were then neglected from 
inference by imposing high initial hyperparameters (as explained in Section 
4.4.2.3). When updating the model with the different stress-factors 
combinations observed in the dynamic profiles, all the stress-factors were 

 
 
26

 It is noteworthy that the updated model’s prediction is worse than the original prediction in 
Figure 28. (d). This is due to the starting point of the updated prediction, which is located just 
before the critical point (around 100.000 Ah) inducing the shift of the predictions with respect 
to the data. In fact, one of the reasons to select this updating point was to reveal that the updated 
predictions also depend on the initial value of the updating point.  
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involved in the learning process, and the confidence of the model for 
predicting throughout the whole operating window was modified. This is 
observable in Figure 29, which reflects the evolution of the standard 
deviation of the model’s predictions, for the model corresponding to the 
training case 4 and the model updated with the data obtained from dynamic 
operating profile until 90000 Ah-throughput. Regarding the range of the 
cycling temperatures, Figure 29. (a), it is remarkable that the model gained 
confidence around approximately 15°C - 25°C, which is reflected by a 
reduction of the standard deviation in such region. Furthermore, a strong 
influence of the charging C-rate was detected from the dynamic profiles, 
leading to a large variability on the standard deviation even for small 
charging C-rate variations, Figure 29. (d). This explains why the confidence 
intervals became larger in some prediction point in Figure 28. (a): around 
167000 Ah-throughput, for instance, the updated model predicted larger 
confidence intervals, because the ~1C charging C-rate value was identified as 
an ‘uncertain’ region for prediction due to i) the lack of training data in such 
charging rates region and ii) to the high influence of this stress-factor on the 
capacity loss, which was inferred from the previously observed ageing at 
dynamic operating profile. 
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Figure 29. Evolution of the standard deviations of the GP model predictions throughout the whole 
operation window of the Li-ion cell under study, from the model trained at case 4 to the model updated 
at dynamic operating conditions. (a) Evolution throughout the temperature space, at constant 80% DOD, 
50% middle-SOC and C/3 – 1C charging and discharging C-rate (b) Evolution throughout the DOD space, 
at constant 35°C, 50% middle-SOC and C/3 – 1C charging and discharging C-rate (c) Evolution throughout 
the middle-SOC space, at constant 35°C, 20% DOD and C/3 – 1C charging and discharging C-rate (d) 
Evolution throughout the space of the charging C-rate, at constant 35°C, 80% DOD, 50% middle-SOC and 
1C discharging C-rate and (e) Evolution throughout the space of the discharging C-rate, at constant 35°C, 
80% DOD, 50% middle-SOC and C/3 charging C-rate. 
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4.6. Conclusions of the chapter 

In this chapter, a cycling capacity loss model is developed based on the GP 
framework. The model developed in Section 4.3 demonstrated suitable 
performances to fit the data, independently from the number of training data 
and involved stress-factors. This is observable in Figure 24. (a), where both 
MAE∆Q and MAEQ curves of the training cells showed a constant level under 
the defined 2% threshold, from the training case 1 to 16. 

Moreover, this chapter illustrates the ability of GP-based cycle ageing models 
to learn from the operating conditions progressively observed, increasing 
both accuracy and confidence of the model. This way, the verification of the 
hypothesis H5 is extended to the cycle ageing use-case. This hypothesis, 
already verified in Chapter 3 for calendar ageing, states that the 
nonparametric frameworks are able to learn about the influence of new 
values of the different stress-factors on battery degradation, including new 
data in the training set. 

The improvement of model’s prediction accuracy is demonstrated in Figure 
24. (b), (c) and (d), as the new cycling conditions are incorporated in the 
training dataset. The analysis of the uncertainty boundaries corroborates the 
findings observed in Chapter 3: the reduction of the standard deviation in 
Figure 26 and Figure 29 testified about the increment of the model’s 
confidence to perform prediction throughout a broad operating window, as 
input spaces are progressively explored. Again, the developed GP model 
turned out to be slightly over-confident, according to the CSs curves 
represented in Figure 24. As previously explained, the CS2σ values should be 
approximately 95.4% if the uncertainty predictions are accurate: the 
obtained CS2σ−Q and CS2σ−∆Q values converged approximately into 75% and 
90% respectively (Figure 24. (d)). As already observed in Chapter 3, the 
difference between the CS2σ−Q and CS2σ−∆Q suggests that the overconfidence 
of the model was induced by the error accumulation of the iterative 
prediction process. 

Regarding the minimum amount of experimental ageing tests necessary 
from the laboratory for the development of the initial ageing model was 
determined: the training case 4 seems to present an adequate trade-off 
between the performances and the development cost of the model, insofar 
as the cell is used at the operating conditions recommended by the 
manufacturer (specified in Chapter 3). In fact, the model achieved 1.04% 
𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 average prediction errors for 122 cells operating between 25°C-45°C, 
20%-100% DOD, 20%-80% middle-SOC, C/3-2C charging C-rates and C/3-2C 
discharging C-rates, using only 26 cells tested at 9 cycling conditions for 
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training. Furthermore, the performances of the model seem not to improve 
significantly since such training case (see Figure 24. (b) and (d)). 

In Section 4.5, the developed model was validated at dynamic operating 
conditions, achieving 3.76% and 1.46% in terms of 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, for the cells #124 
and #125 respectively. In Figure 28. (a), the initial model overestimated the 
degradation trend, mainly due to a large cycling step at 100% DOD around 
80000 Ah-throughput. In fact, the cells tested at 100% DOD in static cycling 
conditions observed increased capacity losses, compared to the cell tested at 
the same DOD but within a dynamic ageing test. A similar behaviour was 
already reported in [34], in which it was suggested that the dynamic 
character of the DOD stress-factor’s profile may induce reduced ageing rates 
compared to static DOD profiles. This result allows to partially deny the 
hypothesis H2, which states that ageing models trained with static ageing 
laboratory tests may be able to perform accurate predictions at dynamic 
operating profiles. 

Additionally, the research works carried out in this chapter with cycle ageing 
data corroborates the findings observed with calendar ageing data in the 
previous chapter: isotropic kernel components are suitable to host the 
features corresponding to the different stress-factors, in so far as the battery 
operates within the limited range of the recommended operating conditions.  

Finally, the sensitivity analysis shows that, for this dataset, the developed 
model tends to classify the influence of the stress-factors’ variation on 
capacity loss in this order: 1/ temperature, 2/ DOD, 3/ charging C-rate, 4/ 
middle-SOC and 5/ discharging C-rate. Nevertheless, it is noteworthy that, 
manipulating the equation (37), which corresponds to the developed 
covariance function, some terms involving the products among the different 
stress-factors’ hyperparameters appear. Such terms could be interpreted as 
the covariance components corresponding to the interactions between the 
different stress-factors. The sensitivity analysis of the capacity loss to the 
stress-factors could be extended by involving such covariance components, 
in order to have a feedback about which combinations of stress-factors levels 
are most critical according to the GP model. 

The following chapter is dedicated to the integration of the calendar and 
cycle ageing models, developed respectively in Chapter 3 and Chapter 4. The 
holistic ageing model is applied to predict the ageing of Li-ion batteries 
cycled under realistic operating profiles. 
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Chapter 5.  
Validation of the holistic 
ageing model under 
realistic operating profiles 
 

Chapter 3 and Chapter 4 were dedicated to the development of pure calendar 
and cycle ageing models, respectively. In this chapter, the Stage 4 of the 
methodology described in Chapter 2 is implemented. Both calendar and 
cycle models are combined in order to obtain a holistic view of Li-ion battery 
ageing. The holistic model is validated under realistic operation profiles 
corresponding to two different applications, in which both calendar and 
cycle use-cases are sequentially experienced: i) a full EV driving application 
and ii) a power smoothing application for renewable energy integration. The 
ability of the models to learn from realistic battery operation profiles is also 
evaluated. 

This section is structured as follows, Section 5.1 describes the experimental 
ageing tests carried out in order to produce the ageing data corresponding to 
the operation in the two different applications. Moreover, the data collected 
from deployed battery systems is typically expressed in terms of current, 
voltage and temperature time series. Section 5.2 describes the processing 
algorithm used to convert such time series into a profile of the different 
stress-factors, suitable for prediction and training of the GP models 
developed in Chapter 3 and Chapter 4. Sections 5.3 and 5.4 are dedicated to 
the application of the holistic ageing model to the EV driving and to the 
power smoothing applications, respectively. Finally, Section 5.5 summarises 
the main conclusions of the chapter. 
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5.1. Data gathering 

The digitalisation of the industry is still in an early stage of maturity, and 
although some companies already showed interest on collecting and 
analysing the operation data extracted from deployed battery packs, the 
availability of significantly degraded battery data is yet scarce. Therefore, the 
real-world operation data considered in the context of this research was not 
directly taken from in-field battery operation, but rather replicated in the 
laboratory environment, again as part of the project Batteries2020. The 
operating profiles of two different applications were reproduced in 
laboratory, namely i) full EV driving application and ii) power smoothing for 
renewable energy integration application (herein referred as ‘power 
smoothing application’). The operating profiles corresponding to such 
applications are particularly interesting, as they provide a considerably 
different participation of the storage and cycling operation. The synthesised 
EV load profiles imply a substantial participation of the storage operation, 
whereas the power smoothing load profiles involve a quasi-exclusive cycling 
operation. Throughout the whole duration of the tests, periodical 
characterisation tests were carried out to observe the degradation induced 
by such operating profiles. 

 Synthesis of EV real driving load profiles 

In order to validate the predictive and learning capabilities of the developed 
ageing models under realistic operating conditions, several EV driving 
profiles were synthesized. The profiles synthesis was based on the 
Worldwide harmonised Light vehicle Test Cycle (WLTC), because it 
appropriately matched the conditions found in the normal operation of an 
EV, according to measured real-life driving data [152,153]. 

Two different EV driving profiles were defined. The first profile (herein 
referred as ‘Driver 1’) was representative of an urban driver, while the second 
profile (herein referred as ‘Driver 2’) combined the driving conditions 
corresponding to an urban and suburban traffic area. 

On the basis of the WLTC speed profile [152], a cell-level current profile was 
synthesised for both driving conditions Driver 1 and 2, illustrated 
respectively in Figure 30. (a) and (b). The positive current values represent 
charging events while negative current values refer to discharging events. 
The sampling frequency of the synthesised time series was 1Hz. 
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Figure 30. Cell-level current profiles synthesised on the basis of WLTC speed profiles, for (a) Driver 1 and 
(b) Driver 2. 

The current profiles synthesised from the WLTC speed profiles were adapted 
to cover a real-life driving application. Starting from 90% SOC, the designed 
scenario was the following: 

From Monday to Friday: 

- 8:00 am: unplug charged car (90% SOC) from home charging station 
and drive to work. 

- 8:30 am: get to work and plug car in for charging. 

- 6:30 pm: get home and plug car into charge again. 

Saturday: 

- 10:00 am: drive a few kilometres for an errand. 

- 12:30 am: get home and charge the car. 

Sunday: 

- The EV is not used. 

Although the temperature of the cells in EVs is typically controlled by a 
thermal management system during the driving operation, this is not the 
case during the multiple idle periods of the EV. Therefore, a seasonal 
temperature profile corresponding to the monthly averages registered in 
Seville was applied to the tested cells throughout the whole duration of the 
tests. The temperature profile, depicted in Figure 31, reached a maximum 
and minimum values of 36°C and 15°C, respectively. 

 

 

 

Seasonal temperatures 
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Figure 31. Monthly average seasonal temperature profile in Seville. 

The evolution of the capacity of the cells submitted to the real driving 
profiles are depicted in Figure 32, for both synthesised profiles 
corresponding to Driver 1 and 2. 

 

 

Figure 32. Evolution of the normalised capacity of the cells tested under 
the synthesised driving profiles. 
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 Synthesis of the power smoothing load profiles 

In addition to the EV driving profiles described in Section 5.1.1, 
supplementary cells were submitted to power smoothing renewable energy 
integration application profiles. More precisely, the power profile observed 
by a second life energy storage system connected to a grid-scale PV plant was 
synthesised, within the context of the mitigation of the power variability of 
the plant [23,154]. 

In order to simulate a ‘first life’ of the cells before the power smoothing 
application, two cells previously submitted to static and accelerated cycling 
conditions were selected. The cycling conditions of the selected ‘first life’ 
corresponded to a 35°C, 80% DOD, 50% Middle-SOC and C/3 and 1C charging 
and discharging C-rate operation. The total duration of the first life was ca. 
532 days. However, it is noteworthy that as the corresponding operation was 
designed to accelerate the ageing, such operation could represent a larger 
duration of ‘real life’ of the cell. After the first life operation, the cells were 
submitted to a storage period of 120 days at 20°C and 50% SOC, representing 
the idle transition period of the cell after the first life operation and before 
the implementation in the second life operation. 

The detailed procedure adopted for the synthesis of the second life battery 
operating profiles were explained in [23,154]. The resulting current profile, 
depicted in Figure 33, showed current pulses until 2.5C and was combined 
with a constant cycling temperature of 35°C. The sampling frequency of the 
synthesised time series was 0.0083 Hz (one sample per two minutes). The 
capacity curves obtained for the corresponding cells were represented in 
Figure 34. It is noteworthy that, in Figure 34, a capacity recovery is 
observable during the idle transition period between the first and second life. 
This is explained in the literature by the effect of the anode overhang 
(geometrical oversized anode) and the homogeneity of lithium distribution: 
during rest periods at relatively low SOC levels, the lithium ions located in 
the anode overhang tends to return into the active part of the anode, 
inducing this way a capacity recovery [103]. 

Power smoothing 
renewable energy 

application 

First life profile 

Second life profile 

Capacity recovery 

Anode overhang 
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Figure 33. Cell-level current profile synthesised for the power smoothing renewable energy integration 
application, applied to ‘second life’ cells. The profile corresponding to one week is plotted. 

 

Figure 34. Evolution of the normalised capacity of the cells tested under successively i) first life cycling 
conditions, based on static and accelerated testing profiles, and ii) second life cycling conditions, based 
on synthesised power smoothing current profiles. 



Realistic profiles processing  |141 

 

5.2. Realistic profiles processing 

Once the battery-pack is implemented and deployed in a real application, the 
real operation data collected from the DAS is typically extracted in term of 
current, voltage and temperature time series. Nevertheless, as explained in 
Chapter 2, such time series must be processed prior performing any 
prediction, in order to extract the different stress-factors influencing the 
ageing of Li-ion batteries and defined as inputs of the models developed in 
Chapter 3 and Chapter 4. 

As the model developed in this thesis is thought to be trained under a 
supervised learning paradigm, the target training values corresponding to 
the input values must also be extracted. This could be done on the basis of i) 
periodical characterisation tests performed to the battery-packs in 
operation, or ii) SOH estimation algorithms developed to estimate the 
capacity of the battery-packs in operation [126]. 

 Input profiles processing algorithm 

Figure 35 illustrates the different steps of the algorithm designed to convert 
the current, voltage and temperature time series. 

 

Input processing 
algorithm 

Target processing 
algorithm 
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Figure 35. Input processing algorithm: temperature, current and voltage time series are converted into 
input tables for the calendar and cycle ageing models. 
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The starting point of the input processing algorithm is the decomposition of 
the time series, which will derive to the calendar and cycling components of 
the operation of the cell. The decomposition is based on a zero-current 
detection step applied to the current time series recorded from the DAS: if 
the current applied to the cell held a zero value during a time period superior 
to a priorly defined time threshold 𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , such section of the current time 
series, as well as the corresponding sections of the voltage and temperature 
time series are assigned to the calendar operation of the cell. Conversantly, 
the remaining sections of the current time series, as well as the 
corresponding voltage and temperature sections are assigned to a cycling 
operation. 

Further, the current, voltage and temperature time series’ sections assigned 
to the cycling operation of the cell are processed as follows: i) based on the 
current and voltage time series, a coulomb counting algorithm with Open-
Circuit-Voltage (OCV) calibration is applied to generate a SOC profile of the 
cell [155]; ii) from the current time series, positive and negative half-cycles 
are distinguished; iii) for each half-cycle, the corresponding stress-factors 
are processed in Algorithm 1, from the current, temperature and SOC time 
series; iv) some stress-factors ranges are defined, for which the 
corresponding influence on cell ageing is assumed to be equivalent; v) based 
on such equivalence ranges assumptions, the Ah-throughput corresponding 
to charging and discharging half-cycles are separately accumulated in 
Algorithm 3, for the half-cycles which belong within the same equivalence 
ranges, leading to a reduced table specifying the different stress-factors 
corresponding to accumulated half-cycles; vi) the accumulated charging and 
discharging half-cycles which belong within the same equivalent 
temperature, DOD and Middle-SOC ranges are classified within associated 
clusters; and vii) from each cluster involving charging and discharging half-
cycles corresponding to identical stress-factors ranges, full-cycles are 
synthesised in Algorithm 4. This way, an input table is finally generated for 
the cycle ageing model, consistent with the required input data structure, 
described in Chapter 4, Table 14. 

In parallel, the sections of the current, temperature and SOC time series 
which were assigned to the calendar operation of the cell are processed in 
Algorithm 2, in order to generate an analogue input table for the calendar 
ageing model, consistent with the required input data structure described in 
Chapter 3, Table 11. The pseudo-codes of the Algorithms 1 – 4 are detailed 
in Appendix C. 

Figure 36 illustrates representative examples of the dynamic input profiles 
extracted from the cycle operation component of the current, voltage and 

Input processing 
algorithm 

Calendar profile 
processing 
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temperature time series, applying the input processing algorithm described 
in Figure 35. The obtained dynamic profiles are depicted for (a, b) the EV 
driving profiles, Driver 1, (c, d), the EV driving profiles, Driver 2, and (e, f) the 
power smoothing profiles. 

 

 

Figure 36. Dynamic profiles of the different stress-factors with respect to the Ah-throughput, extracted 
from temperature, current and voltage time series, applying the input processing algorithm described in 
Figure 35. 

Table 16 summarises the operating ranges of the different stress-factors 
profiles, for the EV (Driver 1 and 2) and power smoothing applications. 

Table 16. Equivalent operating conditions corresponding to the real EV 
and power smoothing profiles described in Section 5.1.1 and 5.1.2. 

 EV - Driver 1 EV - Driver 2 Power 
smoothing 

Temperature [°C] 15 - 36 15 - 36 35 
DOD [%] ca. 5.7 ca. 23 < 40 

Middle-SOC [%] ca. 88.7 ca. 79.4 50 – 80  

C-rate CHA [h-1] C/5 in charging, 
0C – 1.5C in driving 

C/5 in charging, 
0C – 1.5C in 

driving 

0C – 2.5C 

C-rate DCH [h-1] 0C - 1.5C 0C - 2C 0C – 2C 

Equivalent dynamic 
profiles 
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 Target processing algorithms 

Although the input processing algorithm allows performing ageing 
predictions for batteries operating in real application, an additional 
challenge must be resolved in order to give to the developed models the 
capability to learn about the influence of the different stress-factors on the 
underlying degradation directly from real operating conditions. 

For the calendar and cycle ageing models developed respectively in Chapter 
3 and Chapter 4, the training stage was performed under a supervised 
learning paradigm. In fact, the laboratory tests were designed in such a 
manner to observe separately the calendar and cycle ageing of the tested Li-
ion cells. Furthermore, the operating conditions applied to the cells between 
two characterisation tests remained constant. This way, for both calendar 
and cycle ageing models, it was possible to associate i) one training input 
vector, expressing the values of the stress-factors corresponding to the static 
operating conditions of the cell, with ii) one training target data, 
corresponding to the capacity loss calculated from the capacity data obtained 
in the characterisation tests. The association of both input and target training 
components led to the complete training data of the models. 

Nevertheless, during many real-world operating conditions, the cell is 
subject to both calendar and cyclic ageing taking place successively. 
Furthermore, the characterisation tests (or equivalently the computation of 
a SOH algorithm) are not necessarily carried out at every transition between 
storage and cycling operation of the cells. For these reasons, the direct 
association of input and target training data is not possible, for the data 
extracted from real operating conditions. 

The designed input processing algorithm, described in Section 5.2.1, allows 
converting current, voltage and temperature time series into a dynamic 
profile of the different stress-factors, illustrated in Figure 36. Such dynamic 
profiles could be expressed as a succession of constant stress-factors, 
consistently with the required input data structure for the models’ training. 
However, as depicted in Figure 37, the synthesised input component of the 
training data does not have any target component directly associated. The 
training data available to update the initial GP model is then composed of i) 
the data obtained from the laboratory tests, which includes both input and 
target components, and ii) the data obtained from real operation of the 
deployed battery-packs, which only includes the input component, as well 
as a single target capacity loss value extracted from the characterisation tests 
carried out in-field (or equivalently the computation of a SOH algorithm). 
This new learning paradigm could be assimilated to the semi-supervised 

Supervised learning 

Target data issues 
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learning problem defined in the literature [156]. Under such learning 
paradigm, data imputation methods are typically applied in order to 
associate a target data component to the input data. As depicted in Figure 37, 
a target processing algorithm was developed to partition the capacity loss 
data into a target component vector of the training data. 

The developed target processing algorithm proceeded as follows: i) the 
overall capacity loss data27 was first decomposed into a calendar and cycle 
components, applying a decomposition factor based on the respective 
duration of the storage and cycling with respect to the total duration of the 
cell operation; ii) the calendar capacity loss component was then partitioned 
among each row of the input component of the calendar ageing models’ 
training data, applying a decomposition factor based on the respective 
duration of each row with respect of the total duration of the storage 
operation; and iii) the cycle capacity loss component was partitioned among 
each row of the input component of the cycle ageing models’ training data, 
applying a decomposition factor based on the ∆Ah value of each row with 
respect of the total Ah-throughput of the cycling operation. The pseudo-code 
of the target processing algorithms is detailed in Appendix C. 

 

 
 

27 Calculated as the difference between two consecutive capacity data from characterisation 
tests or SOH estimations. 

Data imputation 
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Figure 37. Proposed method for the extraction of the training data from real operation profiles, for the 
calendar and cycle ageing models training. 

 

5.3. Use-case 1: EV driving profiles 

The main goal of this section is to evaluate the prediction performances, as 
well as the learning capability of the developed ageing models, in terms of 
prediction error, accuracy of confidence intervals and sensitivity analysis, for 
an EV driving use-case of the cells. First, the capacity loss of the cells 
submitted to such operating profiles was predicted with a baseline model, 
defined to be the GP model corresponding to the minimal required training 
cases, determined as the training case 3 and 4 for the calendar and cycle 
ageing model respectively, in Chapter 3 and Chapter 4. After a real operation 
data gathering period, the collected current, voltage and temperature time 
series data, as well as the periodically estimated capacity data are processed 
and included within the training data of the baseline model. An updated 

Baseline model 

Learning from 
EV profiles 
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ageing model is obtained by retraining the covariance function of the GP 
model with the completed training dataset. 

The data gathered from the real operation potentially includes new 
combinations of the different stress-factors values, unobserved during the 
laboratory ageing tests. Each time the training dataset is completed with new 
data collected from the real operation, the resulting GP model could perform 
more accurate and confident predictions for a broader window of battery 
operating conditions. 

For the cell submitted to the synthesised real EV driving profile, driver 1, 
described in Section 5.1.1, Figure 38. (a), (b) and (c) depict the predictions 
performed with the baseline model for the overall capacity loss, and the 
calendar and cycle capacity loss components extracted from the target 
processing algorithm, respectively. 

 

Completing the 
training dataset 
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Figure 38. (a) Overall capacity experimental data for the ‘Real EV profile – Driver 1’, capacity loss 
prediction of the baseline model (black line and grey area), the model updated after 365 days operating 
(blue line and area) and the model updated after 730 days operating (red line and area). (b) Overall 
capacity experimental data, calendar capacity curve component extracted from the target processing 
algorithm, predictions of the calendar baseline model (black line and grey area), the model updated after 
365 days operating (blue line and area) and the model updated after 730 days operating (red line and 
area). (c) Overall capacity experimental data, cycle capacity curve component extracted from the target 
processing algorithm, predictions of the cycle baseline model (black line and grey area), the model 
updated after 365 days operating (blue line and area) and the model updated after 730 days operating 
(red line and area). (d) Monthly average seasonal temperature profile in Seville. 
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As expected, it is noteworthy that the target processing algorithm assigned 
most of the capacity loss to the calendar operation of the cell, due to large 
periods in which the EV was parked and the battery was submitted to a 
storage operation. In Figure 38. (a), it could be observed that the overall 
ageing prediction of the baseline model was clearly overestimated. The 
visualisation of the predicted calendar and cycle ageing components 
respectively in Figure 38. (b) and (c) indicates that the cycle ageing model 
was responsible of the deviation. Such a behaviour was already observed in 
Chapter 4, Figure 28, and was linked in [97] to the dynamic character of the 
DOD stress-factor’s profiles, which may induce lower ageing rates compared 
to the static DOD ageing profiles. Indeed, the baseline model was trained 
based on ageing data obtained from static DOD operation profiles (namely 
20%, 65% and 100% DOD), and this could be why it overestimated the ageing 
under dynamic DOD conditions.  

In parallel, the calendar component of the ageing prediction was 
underestimated. One cause of this deviation could be the limited 
extrapolation capabilities of the Matérn class kernels [157], coupled to the 
fact that the highest storage SOC level involved in the training dataset of the 
baseline model was 80% SOC. However, observing the evolution of the 
calendar ageing prediction, Figure 38. (b) and the corresponding seasonal 
temperature profiles, Figure 38. (d), it is noteworthy that the 
underestimation occurred especially during the periods corresponding to 
the highest temperatures in summer. The capacity loss corresponding to the 
summer periods increased throughout the whole duration of the tests. In 
fact, the first summer led to a 1.1% capacity loss in 141 days (between 221 – 
362 operating days), the second summer led to a 3.57% capacity loss in 149 
days (between 577 – 726 operating days), and the last summer led to a 3.88% 
capacity loss in 96 days (between 931 – 1017 operating days). Although not 
any strong evidence were found in this sense, this phenomenon could be 
caused by the cycle-induced calendar ageing, also reported in [158,159]. 
Following this theory, the cycling phases of the cell could intensify the ageing 
observed during the subsequent storage phases of the cell. In fact, the cycling 
of the cell could provoke the cracking of the SEI or of the particle itself in the 
negative electrode, potentially revealing fresh anode surfaces or areas of 
thinner SEI film, which are prone to further SEI formation [146,149,150]. 
These phenomena are magnified during the summer periods, in which the 
higher temperatures accelerate the SEI formation within such sensible areas 
of the negative electrode. For the calendar ageing tests carried out in 
laboratory and described in Chapter 3, some cycle-induced calendar ageing 
could also have happened due to the periodical characterisation tests 
performed once a month. However, such phenomenon should have a higher 
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Dynamic DOD 

Underestimation of 
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Cycle-induced 
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impact on the ageing corresponding to the EV driving profiles, due to the 
repeated driving cycles which punctuate the storage phases when the car is 
parked. This could explain why the baseline model, composed of a calendar 
ageing model based exclusively on laboratory calendar ageing tests data, 
tended to underestimate the effect of cycle-induced calendar ageing in the 
prediction of the real operation EV profile ageing curve. 

Furthermore, the predictions of the baseline model showed a periodical 
spread of the confidence intervals, corresponding to the colder temperatures 
experienced during winter (see the applied temperature profile, Figure 31). 
In fact, although the model seemed to be relatively confident to perform 
predictions between 23°C – 36°C, the uncertainty increased when predicting 
the ageing below the 20°C, i.e. between November - March. This is consistent 
with the training data managed by the baseline model, involving ageing data 
only for a 25°C, 35°C and 45°C storage and cycling operation, and then 
reducing the reliability of the predictions below 25°C. 

In order to update the baseline model, the operation and the underlying 
ageing response of two cells were used, namely the cells corresponding to 
the real operation EV profiles related to “Driver 1” and “Driver 2” (see Section 
5.1.1). The learning example considered in this section could then be 
compared to a “fleet learning” paradigm, in which the developed ageing 
model would be learning in parallel from different usages of the EV operation 
[25,160].  

After data gathering periods of one and two years, the baseline model was 
updated by retraining the covariance function with the completed training 
data. The overestimation of the cycle ageing model, linked above to the 
dynamic character of the DOD profiles, was corrected in the updated models’ 
predictions. In fact, the predictions of the updated models seem to follow 
correctly the capacity curve corresponding to the cycle ageing component, 
Figure 38. (c). The underestimation of the calendar ageing in Figure 38. (b) 
was also rectified in the predictions of the updated models, particularly after 
the observation of the data corresponding to the second summer (between 
577 – 726 operating days), which revealed more clearly the accelerated 
ageing effect assigned above to the cycle-induced calendar ageing. The 
predictions errors of the overall ageing models were respectively 0.46%, 
0.29% and 0.26% 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 8.17%, 1.91% and 0.78% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄, respectively for 
the baseline model, and the models updated after 365 and 730 operation 
days. 

In order to evaluate the quality of the training data extracted from real 
operation, the calendar ageing models updated after 365 and 765 operating 
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days were submitted to an additional validation test which consisted on 
predicting the ageing of the cells tested in laboratory at 100% SOC and 35°C 
storage conditions. It is noteworthy that such storage condition was not 
observed in training. The initial hypothesis was that, after the observation of 
the 90% SOC storage condition in the EV profiles, the predictions of the 
models at 100% SOC should indicate an improvement. Indeed, Figure 39. (a), 
(b) and (c) illustrate such improvement, displaying the predictions of the 
baseline model and the models obtained after 365 and 730 operating days, 
respectively. 

 

Figure 39. Experimental data obtained from the laboratory calendar 
ageing tests for the cells tested at 100% SOC and 35°C storage conditions, 
and predictions of the (a) baseline model, and the models updated after 
(b) 365 and (c) 730 operating days. 

Looking back at Figure 38, an standardisation of the confidence intervals was 
observable throughout the whole prediction of the updated models, mainly 
associated with the learning of cold temperatures’ influence on both 
calendar and cycle ageing, which was the main source of uncertainty for the 
baseline model. The CS of the models were respectively 18.92%, 59.46% and 
94.59% CS2σ−Q, for the baseline model, and the models updated after 365 and 
730 operation days. It is noteworthy that the model obtained after 2 years of 
EV profile observation provided a very accurate quantification of the 
uncertainty, very close to the 95.4% target value.  

As explained in Chapter 3 and Chapter 4, the analysis of the width of the 
confidence intervals – or equivalently the standard deviation value - along a 
large operating range of each stress-factor is informative about how 
confident the model feels to perform predictions throughout a broad 
operating window. In this sense, the evolution of the standard deviation 
throughout the input space testifies about the learning process of the model. 
Figure 40 and Figure 41 depict respectively the evolution of the standard 
deviation of the calendar and cycle ageing models components, for the 
baseline model and the models updated after 365 and 730 operation days. 
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Figure 40. Evolution of the standard deviations of the GP model predictions throughout the SOC and 
temperature operation window of the Li-ion cell under study, for the calendar components of the 
baseline model and the updated models after 365 and 730 days operating. (a - e) Evolution throughout 
the SOC space, respectively at constant (a) 0°C, (b) 15°C, (c) 25°C, (d) 35°C and (e) 45°C. (f - j) Evolution 
throughout the space of the temperature, respectively at constant (f) 20% SOC, (g) 50% SOC, (h) 80% SOC, 
(i) 90% SOC and (j) 100% SOC. 

 

In Figure 40, it could be observed that the baseline model indicated higher 
confidence levels (reduced standard deviation values) when predicting the 
ageing around 50% and 80% SOC storage conditions, particularly at 25°C, 35°C 
and 45°C (Figure 40. (c - e), (g), (h)). In fact, those were the storage conditions 
of the laboratory calendar ageing tests involved in the training of model. 
Moving away from such combinations of the storage conditions, the 
standard deviation bent to higher values, although traces of some 
“confidence peaks” were still observable in Figure 40. (b), (f), (i), and (j). Too 
far from the storage conditions involved in the training data, the model’s 
predictions were completely uncertain, independently of the SOC values e.g. 
in Figure 40. (a). 

As mentioned in Section 5.1.1, the storage part of real EV driving profiles 
were mainly concentrated around a 90% SOC storage condition, during the 
time periods when the cars were parked at work and home, for both “Driver 
1” and “Driver 2” profiles. Such SOC condition was combined with a different 
storage temperature between 15°C - 36°C, depending on the period of the 
year. In Figure 40, a reduction of the standard deviation is observable around 
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154| Chapter 5 
Validation of the holistic ageing model under realistic operating profiles 

the storage conditions corresponding to such SOC and temperatures 
combinations, for the models updated after 365 and 730 operation days. This 
is particularly pronounced in Figure 40. (b), in which a clear “confidence 
peak” dropped around 15°C and 90% SOC, which corresponds to the storage 
condition observed during the parking periods in January. Figure 40. (i), and 
(j) also clearly indicated a reduction of standard deviation values throughout 
the temperature ranges observed during the whole year, at 90% SOC and by 
extension also at 100% SOC. 

An analogous analysis could be performed from Figure 41, for the cycle 
ageing components of the models. 
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Figure 41. Evolution of the standard deviations of the GP model predictions throughout the DOD and 
temperature operation window of the Li-ion cell under study, for the cycle components of the baseline 
model and the updated models after 365 and 730 days operating. (a - e) Evolution throughout the space 
of the temperature, respectively at constant (a) 5% DOD, (b) 20% DOD, (c) 65% DOD, (d) 80% DOD and (e) 
100% DOD. (f - j) Evolution throughout the DOD space, respectively at constant (f) 0°C, (g) 15°C, (h) 25°C, 
(i) 35°C and (j) 45°C. (k - m) Zoom of the evolution throughout the DOD space, respectively at constant 
(k) 25°C, (l) 35°C and (m) 45°C. 
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In Figure 41. (a - e), the standard deviation of the baseline model predictions 
also showed lowest values at 25°C, 35°C and 45°C cycling temperatures, 
which corresponded to the training data obtained from laboratory cycling 
ageing tests. Furthermore, as the training data involved 20%, 65% and 100% 
DOD cycling conditions, the confidence of the model remained relatively 
similar throughout a broad segment of the DOD input space (Figure 41. (h - 
j)). However, slight increases of the standard deviation could be observed 
focusing on the lowest values of the input space below 15% DOD, as well as 
around 40% DOD (Figure 41. (k - m)). Figure 41. (f) and (g) revealed a large 
uncertainty throughout the whole DOD ranges, induced by unobserved cold 
temperatures. 

After the observation of the operating conditions corresponding to the urban 
(“Driver 1”) and suburban (“Driver 2”) real EV profiles, the confidence 
pattern of the updated models was modified throughout the input space. The 
models updated after 365 and 730 operation days gained confidence to 
perform predictions at low DOD values, especially observable in Figure 41. 
(a), (b), (f) and (g) for winter temperatures, and in Figure 41. (k) and (l) for 
moderate temperatures. This is due to the relatively low DOD ranges implied 
by both “Driver 1” and “Driver 2” driving profiles. 

As explained in Chapter 3 and Chapter 4, the sensitivity of the capacity loss 
to the different stress-factors could be analysed by observing the inverse of 
their respective hyperparameters. Figure 42 depicts the relative relevance of 
the different stress-factors with respect to the capacity loss, for the baseline 
model and the models updated after 365 and 730 days operating. For the 
calendar ageing models, it could be observed in Figure 42. (a) that the 
perception of the relative impact of temperature and SOC with respect to the 
capacity loss was not substantially modified by the observation of the real 
EV operation profiles. Regarding the cycle ageing models, Figure 42. (b) 
suggests that the GP model assigned slightly more relevance to the DOD 
stress-factor after the observation of the real operation data. This is in 
contradiction with the remark done above about the lower ageing rates 
induced by dynamical DOD profiles, compared to the static DOD conditions 
applied in laboratory testing profiles. In fact, the models trained with real 
operation data should conclude a reduced impact of the DOD on the capacity 
loss, compared to the baseline model. However, it is noteworthy that, for the 
models updated after the real profiles’ observation, the data corresponding 
to the static 20%, 65% and 100% DOD profiles collected from the laboratory 
was not removed from the training dataset. This data hinders the 
hyperparameter of the DOD to converge towards higher values during the 
optimisation of the model. Finally, Figure 42. (c) provides a zoom on the 
participation of the relative relevance of Middle-SOC, charging and 
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discharging C-rates stress-factors with respect to the capacity loss, which 
was insignificant compared to the temperature and DOD. It appeared that 
the model did not need higher implication of such stress-factors to explain 
the real driving ageing data. It is noteworthy that the optimisation method 
for the determination of the hyperparameters adopted during the whole 
thesis was a gradient-based maximum likelihood method. Other 
optimisation methods e.g. the Bayesian optimisation method could possibly 
lead to different interpretations of the data. 

 

 

Figure 42. Evolution of the relative relevance of the different stress-factors, from the baseline model to 
the updated model after 730 days operating, for the (a) calendar ageing models, (b) cycle ageing models. 
(c) Zoom on the relative relevance of the Middle-SOC, charging and discharging C-rate stress-factors, for 
the cycle ageing models. 

 

5.4. Use-case 2: power smoothing profiles 

This section aims at extending the analysis carried out in the previous section 
to the power smoothing for renewable energy integration application 
profiles, which were applied to second life cells and described in Section 
5.1.2.  

Figure 43. (a), (b) and (c) depict predictions performed with the baseline 
model and the updated models, for the overall capacity loss, and the calendar 
and cycle capacity loss components extracted from the target processing 
algorithm, respectively.  
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Figure 43. (a) Overall capacity experimental data for the power smoothing profile, capacity loss 
prediction of the baseline model (black line and grey area), the model updated after 365 days operating 
(blue line and area) and the model updated after 800 days operating (red line and area). (b) Overall 
capacity experimental data, calendar capacity curve component extracted from the target processing 
algorithm, calendar predictions of the baseline model (black line and grey area), the model updated after 
365 days operating (blue line and area) and the model updated after 800 days operating (red line and 
area). (c) Overall capacity experimental data, cycle capacity curve component extracted from the target 
processing algorithm, cycle predictions of the baseline model (black line and grey area), the model 
updated after 365 days operating (blue line and area) and the model updated after 800 days operating 
(red line and area). 
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As explained in Section 5.1.2, the first life of the cell was simulated by 
accelerated cycling conditions applied during ca. 532 days, corresponding to 
a 35°C, 80% DOD, 50% Middle-SOC and C/3 and 1C charging and discharging 
C-rate operation. The total duration of the first life was ca. 532 days. During 
this period, in Figure 43. (b) the calendar component of the experimental 
capacity curve, as well as the prediction of the calendar ageing model were 
null, due to the purely cycling character of the first life profile. After the first 
life operation, the cells were submitted to a storage period of 120 days at 
20°C and 50% SOC, representing the idle transition period of the cell after the 
first life operation and before the implementation of the cells in second life 
operation. Finally, it could be observed in Figure 43. (a) and (b) that the target 
processing algorithm assigned most of the capacity loss to the cycle ageing 
component, leaving reduced participation to the calendar component (0.3% 
capacity loss during the whole second life). 

The prediction of the baseline model during the whole first life resulted in a 
0.28% 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 0.36% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 accuracy. In fact, the model already observed 
similar cycling conditions during the training phase, namely static 65% and 
100% DOD profiles, and the accurate generalisation performances of the cycle 
ageing model under static cycling conditions were already demonstrated in 
Chapter 4. After the first life of the battery, a calendar component of the 
ageing appeared. However, the prediction of the model was insignificant, 
due to the reduced storage time processed by the input processing algorithm, 
and relatively suitable storage conditions experienced during this time. 

During the second life of the battery, the prediction of the baseline model 
was clearly overestimated, which is in accordance with the observations 
made in Section 5.3 for the real driving profiles predictions. The DOD and 
Middle-SOC ranges processed from the second-life time series by the input 
processing algorithm were respectively between ca. 0.5% - 40% DOD and 37% 
- 80% Middle-SOC, with ca. 7700 Ah-throughput per month. The strong 
overestimation of the model may be caused again by the lower ageing rates 
induced by dynamical DOD profiles, compared to the static DOD conditions 
applied in laboratory testing profiles. The effect of such deviation is here 
amplified by the high cycling character of the power smoothing profiles (ca. 
7700 Ah-throughput per month, compared to ca. 4000 Ah-throughput for the 
accelerated cycling ageing tests). 

After 365 days operating, the cell was still operating within a first life, and 
therefore, the model updated at this stage did not show any significant 
improvement regarding the prediction of the second life capacity loss. 
However, after 800 days operating, the effect of the second life profiles on 
ageing could be observed for 120 days, and the overestimation of the cycle 

Reduced participation 
of the calendar ageing 

Strong overestimation 
of the cycle ageing 
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ageing model could be corrected in the updated models’ predictions. In fact, 
the predictions of the updated model seem to follow correctly the capacity 
curve corresponding to the cycle ageing component, Figure 38. (c), achieving 
a 0.40% 𝑀𝑀𝑀𝑀𝑀𝑀∆𝑄𝑄 and 1.48% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 accuracy for the overall second life capacity 
curve. 

Figure 44 depicts the evolution of the standard deviation of the cycle ageing 
models components, for the baseline model and the models updated after 
365 and 800 operation days. As expected, it could be observed from Figure 
44. (f - j) that the baseline ageing model performed confident predictions 
between a 25°C - 45°C temperature range, while the uncertainty increased 
for colder and warmer temperatures. The observation of the 80% DOD and 
25°C cycling condition during the first life of the cell endorsed the confidence 
peak around the 25°C temperature, which was the global minimum of the 
standard deviation throughout the whole temperature input space (the 
global minima were highlighted in Figure 44. (a - e)). During the second life, 
the effect of the whole range between 0.5% - 40% DOD was explored at a 
constant temperature of 35°C. Accordingly, the global minimum of the 
standard deviation shifted from 25°C to 35°C for the predictions performed 
at reduced DOD ranges, as illustrated in Figure 44. (a - c). Furthermore, Figure 
44. (k - o) illustrates the standard deviation throughout the DOD input space. 
It could be observed that the model gained confidence to perform prediction 
at low DOD ranges, particularly when cycling at 35°C, Figure 44. (q). 

 

Corrected predictions 
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Figure 44. Evolution of the standard deviations of the GP model predictions throughout the temperature 
and DOD operation window of the Li-ion cell under study, for the cycle components of the baseline model 
and the updated models after 365 and 800 days operating. (f - j) Evolution throughout the space of the 
temperature, and (a - e) zoom of the evolution throughout the space of temperature, respectively at 
constant (a, f) 5% DOD, (b, g) 10% DOD, (c, h) 20% DOD, (d, i) 65% DOD and (e, j) 80% DOD. (k - o) Evolution 
throughout the DOD space, and (p - r) zoom of the evolution throughout the DOD space, respectively at 
constant (k) 0°C, (l) 15°C, (h, p) 25°C, (i, q) 35°C and (j, r) 45°C. 
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Figure 45 depicts the relative relevance of the different stress-factors with 
respect to the capacity loss, for the baseline model and the models updated 
after 365 and 800 days operating. For the calendar ageing models, Figure 45. 
(a), it appeared that the relative impact of the temperature increased for the 
model updated after 800 operating days. As the second life operating profiles 
implied relatively reduced calendar ageing implication, such variation could 
be induced by the observation of the capacity recovery corresponding to the 
storage transition phase between the first and second life. According to 
[103], the capacity recovery could be provoked by the effect of the anode 
overhang, which acts here as a sink or a source of lithium depending on the 
SOC before and during the characterisation tests. As the cells were stored at 
20°C and 50% SOC during such transition period and the resulting capacity 
loss was substantially different from those observed in 25°C and 50% SOC 
laboratory storage tests, the model interpreted higher covariance between 
the temperature and the capacity loss, and reduced the hyperparameter 
corresponding to the temperature. 

Regarding the cycle ageing models, Figure 45. (b) suggests that the GP model 
assigned slightly more relevance to the DOD stress-factor after the 
observation of the real operation data. Again, and due to the reasons already 
enlightened in Section 5.3, this was in contradiction with the remark done 
above about the lower ageing rates induced by dynamical DOD profiles, 
compared to the static DOD conditions applied in laboratory testing profiles. 
Finally, Figure 45. (c) provides a zoom on the participation of the relative 
relevance of Middle-SOC, charging and discharging C-rates stress-factors 
with respect to the capacity loss, which was insignificant compared to the 
temperature and DOD. As for the real driving ageing data, it appeared that 
the model did not need higher implication of such stress-factors to explain 
the power smoothing ageing data. 

 

Sensitivity 
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Figure 45. Evolution of the relative relevance of the different stress-factors, from the baseline model to 
the updated model after 800 days operating, for the (a) calendar ageing models, (b) cycle ageing models. 
(c) Zoom on the relative relevance of the Middle-SOC, charging and discharging C-rate stress-factors, for 
the cycle ageing models.

 

5.5. Conclusions of the chapter 

In this chapter, the calendar and cycle ageing models developed and 
validated respectively in Chapter 3 and Chapter 4 were combined to provide 
a holistic view of the Li-ion battery ageing and predict the degradation under 
realistic operating conditions. 

The initial holistic GP model was composed of the calendar and cycle ageing 
models trained with the minimal number of training data determined in 
Chapter 3 and Chapter 4, respectively. The predictions provided by such 
models were initially overestimated, for both EV and power smoothing 
applications, as depicted in Figure 38. (a) and Figure 43. (a). Such an 
overestimation was associated with the predictions of the cycle ageing 
model component, corroborating the findings already noticed in Chapter 4. 

Nevertheless, the overestimation of the cycle ageing model was corrected in 
the updated models’ predictions. In fact, the predictions of the updated 
models seem to follow correctly the capacity curve in e.g. Figure 38. (a) and 
Figure 43. (a). The improvement of the model’s prediction accuracy testified 
about the ability of the model to learn from the real operating profiles. This 
was also reflected on the evolution of the confidence boundaries throughout 
the input space of both calendar and cycling model: the reduction of the 
standard deviation in e.g. Figure 40 and Figure 41, testified about the 
increment of the model’s confidence to perform prediction throughout a 
broad operating window, as input spaces are progressively explored. 
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Finally, Figure 42. (c) and Figure 45. (c) provides a zoom on the participation 
of the relative relevance of Middle-SOC, charging and discharging C-rates 
stress-factors with respect to the capacity loss, which was insignificant 
compared to the temperature and DOD. It appeared that the model did not 
need higher implication of such stress-factors to explain the real driving and 
power smoothing ageing data. 

The following and last chapter summarises the different research activities 
carried out in the thesis. The main conclusions are drawn, the contributions 
of the thesis are enumerated, and the limitations of developed models are 
stated, highlighting the identified further works and uncertainty areas in the 
study. The formulated hypotheses are evaluated, and future research paths 
are proposed for the development of next generation ageing models for Li-
ion batteries 

 



 

 

 

Chapter 6.  
General conclusions, 
discussion & future 
trends 
 

In order to round off the different research activities carried out in this thesis, 
the final chapter aims to summarise the main findings, highlight the 
principal contributions, discuss the different results and identify the 
limitations and further works of the study. 

This chapter is structured as follows, Section 6.1 summarises the different 
research activities carried out in this thesis. The degree of achievement of the 
different objectives, as well as the hypotheses formulated in the introduction 
are evaluated. In Section 6.2, the main contributions of the thesis are 
highlighted. Section 6.3 discusses the results obtained throughout the 
different chapters of the thesis. Furthermore, the main limitations of the 
research are identified, and several further works are highlighted. Finally, 
Section 6.4 closes the thesis, paving the way to future generations of ageing 
models for Li-ion batteries. 
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6.1. Summary and general conclusions 

The different research activities carried out in this thesis allow taking one 
step beyond the state of the art on the development of Li-ion battery ageing 
models capable of learning continuously from the in-field operation data. 

From the study of the literature, the following critical gaps were identified:  

i) The limited reliability of the proposed data-driven models in the 
context of real applications, as the effect of the stress-factors on 
battery ageing rate was typically not considered. 

ii) The insufficient validation of most developed models. 

iii) The under-representation of holistic ageing models, including 
both calendar and cycling use-cases. 

iv) The unclear nature of the learning mechanisms of the methods 
identified in the literature, which hinders the suitable 
quantification of the required initial laboratory tests and the 
correct perception of learning capabilities of the models.  

Furthermore, the GP framework was identified as the most suitable 
candidate for the further modelling works, mainly due to its nonparametric 
and probabilistic character. In fact, these key features provide respectively i) 
the assurance of a suitable learning capability and ii) a quantification of the 
reliability of the model predictions in terms of probability densities, 
necessary in the context of under-trained initial models. 

A methodology was designed to develop a model which could comply with 
the objectives defined in the introduction. The main objective was the 
development of an ageing model for Li-ion batteries, capable of learning 
continuously from the operation data collected from the battery systems 
deployed in real applications. Such capability was validated illustrating the 
transformation of the corresponding ageing models through i) the 
improvement of the ageing predictions, ii) the reduction of the confidence 
intervals and iii) the evolution of the models’ sensitivity to the different 
stress-factors, while new ageing data was progressively explored. 

A secondary objective was to ensure the capability of the model to perform 
accurate predictions for a wide range of applications, implying a suitable 
behaviour of the model for purely calendar, continuously cycling and mixed 
operation of Li-ion batteries. This requirement was addressed from the 
combination of two ageing models, respectively used for prediction in 
calendar and cycling operation. Their respective accuracy was validated, 
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achieving overall errors of 0.53% and 1.04% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄. Furthermore, the accuracy 
of both models working in tandem was verified in Chapter 5, for an 
application involving an important calendar component (EV driving), and an 
application implying a highly cycling use-case (power smoothing renewable 
energy integration). 

Another secondary objective was to quantify the minimum number of 
laboratory experiments required for the development of a relatively accurate 
initial ageing model. For the specific case of the dataset under study, it was 
quantified that 6 storage conditions (i.e. 3 temperatures and 2 SOC levels) 
were enough to obtain a calendar ageing model able to achieve a 0.53% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 
average prediction errors for 30 cells operating between 25°C-45°C and 20-
100% SOC storage conditions. Analogously, 9 cycling conditions (i.e. 3 
temperatures and 3 DOD levels) were enough to achieve a cycle ageing 
model reaching 1.04% 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 average prediction errors for 122 cells operating 
between 25°C-45°C, 20%-100% DOD, 20%-80% middle-SOC, C/3-2C charging 
C-rates and C/3-2C discharging C-rates. 

The developed methodology further allowed the evaluation of the 
formulated hypotheses, reported below for convenience: 

H0: the relations between the operation and the underlying ageing 
of Li-ion batteries could be described based only on in-field 
measurable variables. 

The hypothesis H0 was partially verified: in-field measurable temperature, 
current and voltage time series were used to extract several stress-factors 
influencing on the capacity loss rate of Li-ion batteries. The ageing models 
based on such stress-factors seem to be able to predict the ageing of Li-ion 
batteries with a significant accuracy while they are working in the Phase 2 
of their lifetime (Figure 13 and Figure 21). 

H1: The development of separated calendar and cycle ageing models 
could be a valid approach to predict accurately the overall 
degradation of Li-ion batteries. 

The hypothesis H1 was verified in Chapter 5, the combination method was 
successful for a calendar-dominated use-case (EV driving), as well as for a 
cyclic-dominated use-case (power smoothing renewable energy 
integration). 

H2: Ageing models trained with static ageing laboratory tests may be 
able to perform accurate predictions at dynamic and realistic 
operating profiles different from those observed in the laboratory. 

Hypotheses 
re-evaluation 

In-field measurable 
variables 

Decoupling calendar 
and cycling 
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The hypothesis H2 was partially denied. In fact, the calendar ageing model 
trained with data collected from static ageing laboratory tests seemed to 
provide accurate predictions for dynamic operating conditions (Chapter 3). 
Nevertheless, the cycle ageing model achieved worse accuracy in dynamic 
operating conditions (Chapter 4). Possible reasons of such discrepancy are 
discussed in Section 6.3. 

H3: Converting the continuous operation data measurable in-field 
(see Figure 1. (c)) into equivalent dynamic profiles of the different 
stress-factors (see Figure 1. (b)), could be a valid approach to: 

H3.1: perform accurate predictions at real operating 
conditions. 

H3.2: learn about the influence of new operating conditions 
on battery degradation and update an ageing model based on 
laboratory data while still improving its prediction 
performances. 

Both hypotheses H3.1 and H3.2 were verified. For both EV driving and power 
smoothing renewable energy integration applications, “equivalent stress-
factors profiles” were generated from in-field measurable temperature, 
current and voltage time series. Such profiles were inputted to the models in 
order to perform predictions and update the models using at real operating 
conditions, achieving accurate prediction results. However, it is noteworthy 
that the in-field time series processing algorithm could have a strong 
influence on underlying prediction accuracy of the Li-ion ageing model. This 
is further discussed in Section 6.3. 

H4: The development of ageing models able to learn from in-field 
battery operation data could allow mitigating the needs for 
exhaustive laboratory testing. 

In fact, the ability of the developed models to learn progressively from 
upcoming data was demonstrated. This implies that the learning process 
could be split into two different phases: a first learning phase from 
laboratory data before system sizing and deployment, and a second learning 
phase from data collected in-field. Such splitting of the learning process 
could allow mitigating the need for exhaustive laboratory testing, by shifting 
the learning of the influence of some stress-factors combinations to the 
second learning phase. Accordingly, the main task for the definition of the 
ageing tests is to estimate which conditions should be learnt before battery 
system sizing, and which ones could be learnt once the system is deployed. 

About training with 
static profiles 

In-field data 
processing 

Minimise laboratory 
tests 
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H5: The nonparametric frameworks are able to learn about the 
influence of new values of the different stress-factors on battery 
degradation, including new data in the training set. 

This capability was reflected by i) the improvement of the predictions 
accuracy, ii) the reduction of the confidence boundaries and iii) the evolution 
the models’ sensitivity to the different stress-factors. The nature of the 
nonparametric learning process was especially well visualised by depicting 
the evolution of the standard deviation of the model’s predictions 
throughout the whole range of the different stress-factors (e.g. Figure 40). 
The values of the stress-factors which were previously learnt showed a 
reduced standard deviation. Oppositely, the unexplored areas were 
characterised by increased values of the standard deviation, traducing a high 
uncertainty and reduced reliability on the models’ predictions for such 
operating conditions. The progressive observation of the ageing in 
unexplored stress-factors areas induced the reduction of the standard 
deviation, testifying about the increase of the reliability on models’ 
predictions. In such a way, the complete picture of the mapping between the 
different stress-factor combinations and the underlying ageing of Li-ion 
batteries could be progressively drawn, while new data is integrated in the 
training dataset. 

6.2. Contributions 

The main contributions of the research activities carried out throughout the 
development of this thesis are listed as follows: 

- A thorough and critical state of the art was presented on the different 
methods used in the literature to periodically update Li-ion battery 
ageing models. 

- The ageing of Li-ion batteries was considered from a general 
prospect, rather than from the scope of a specific application. In fact, 
the developed models are oriented to broad ranges of operating 
conditions, and usable for a large diversity of Li-ion battery 
application. 

- A general picture describing the nature of the model updating 
process was provided, by the detailed illustration of the progressive 
learning of the developed ageing models, in terms of accuracy 
improvement, reduction of the confidence boundaries and evolution 
of the model sensitivity to stress-factors. Such contribution could 
help to i) optimise the definition of the laboratory ageing test matrix, 
from the perspective of the test minimisation and ii) perceive the 

Nonparametric 
frameworks 
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room for improvement left to the model from the continuous 
learning of the in-field data. 

- New compositional covariance functions were introduced, tailored 
for use in a Li-ion battery ageing prediction application. 

- A sensitivity analysis of the capacity loss with respect to the different 
stress-factors was studied, from the point of view of the developed 
model. This could provide some intuitions about e.g. which stress-
factors are the most impactful on the capacity loss, producing useful 
insights for the design of energy management strategies. 

- A specific approach was presented to preprocess the real operation 
data, in order to feed separately the calendar and cycle ageing 
models and combine their respective predictions. 

6.3. General discussion, limitations of the study and 
further works 

One of the objectives of the thesis was the evaluation of the number of 
experimental laboratory ageing tests necessary for the development of an 
ageing model able to provide accurate ageing predictions. This issue was 
addressed in Chapter 3 and Chapter 4 respectively, for the development of a 
calendar and cycle ageing models. It was quantified that 6 storage conditions 
and 9 cycling conditions were enough to obtain a calendar and a cycling 
ageing model able to achieve acceptable prediction accuracy throughout the 
whole operating range of the battery recommended by the manufacturer. 

However, such a quantification could not be generalisable either to the 
different Li-ion chemistries or to a wide range of applications, and should 
rather be contemplated as general guideline subject to the following 
limitations: 

i) The cycle ageing model trained with the mentioned ageing 
conditions would be insensitive to the middle-SOC, charging and 
discharging C-rate variations, at least before the model could 
learn the influence of such ageing factors. Although this does not 
seem to matter regarding the middle-SOC stress-factor (see 
sensitivity analysis Chapter 4), it could be problematic for the 
applications involving high charging and discharging C-rates. In 
such cases, supplementary laboratory tests could be necessary at 
several C-rate values. This is also the case for the applications 
involving cell cycling at cold temperatures, as the minimal 
temperature involved in the dataset under study was 25°C. 

Minimal required 
amount of laboratory 
tests 
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ii) Depending on the repeatability of the cells, it could be necessary 
to carry out more than one experimental test for each ageing 
condition, to ensure the reproducibility of the generated data. 
Furthermore, some additional test before deployment would be 
advisable for model validation purposes but these could be 
avoided depending on the availability of in-field data, which 
could be used for such validation purposes. 

Summarising, the design of an experimental ageing test matrix is subject to 
a trade-off between the desired accuracy of the initial ageing model and the 
corresponding development cost. Further, the key questions to consider 
during the design phase are i) which operating mode is predominant in the 
target application (i.e. calendar or cycling), and to which operating 
conditions the cells will be submitted, and ii) which conditions should be 
learnt by the model prior to system deployment, and which ones could be 
learnt a posteriori. 

Furthermore, the minimisation of the laboratory testing procedure should 
also be assessed in terms of testing duration. Nevertheless, such an 
evaluation would difficultly be categorical, as the required testing duration 
is strongly constrained by the occurrence of the different ageing phases in 
the generated capacity curves (see Figure 13 and Figure 21). 

In this thesis, the uncertainty of the GP predictions was studied from the 
perspective of its evolution throughout a partially explored space of the 
different stress-factors. The model predictions showed large confidence 
intervals when the corresponding operating conditions were unknown for 
the model. Conversantly, the model predicted reduced confidence intervals 
for operating conditions already observed in the training dataset. The 
progressive observation of different operating conditions led to the 
increment of the model’s confidence to perform prediction throughout a 
broad operating window of the battery system. However, both calendar and 
cycle GP models turned out to be slightly over-confident. The results 
obtained in Chapter 3 and Chapter 4 suggests that the overconfidence of the 
model was induced by the error accumulation of the iterative prediction 
process. Therefore, further investigations would be required in order to 
study the propagation of model’s uncertainty throughout the long-term 
ageing prediction [161]. 

Furthermore, a more complete view of the model’s reliability should also 
include the analysis of the uncertainty propagated from the inputs of the 
models, as illustrated in Figure 46. 
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In order to update periodically the calendar and cycling ageing models, the 
battery operation data timeseries extracted in-field must be processed to 
obtain the training data composed of the equivalent input vectors and 
associated capacity loss. The different algorithms used during this procedure 
(e.g. SOC and SOH estimators), as well as the battery system sensors they rely 
on, involve an associated estimation error. Such errors contribute to increase 
the uncertainty of the system. Therefore, as illustrated in Figure 46, the 
propagation of the uncertainty from the system measurement sensors to the 
ageing models’ predictions would be required in order to provide a more 
complete view of predictions’ reliability. 

 

Figure 46. Uncertainty propagated from the inputs of the system, which could reduce the reliability of 
the ageing models predictions.

In Chapter 3 and Chapter 4, the evolution of the hyperparameters’ reciprocal 
was analysed, in order to illustrate how the model would actually be learning 
about the sensitivity of the capacity loss to each individual stress-factor. The 
sensitivity analysis could be extended by involving covariance components 
corresponding to the interactions between the different stress-factors, in 
order to have a feedback about which combinations of stress-factors levels 
are most critical according to the GP model. Such analysis would be difficult 
to carry out with laboratory data, mainly due to the large amount of ageing 
data it would require. However, the incorporation of the real-world data 
collected from the deployed battery-packs could make such analysis 
possible. This could provide insightful inputs for the development of 
effective energy management strategies. 
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In Chapter 4 and Chapter 5, it was observed that the cycle ageing models 
trained with data obtained from static ageing profiles tended to overestimate 
the degradation at dynamic operating conditions. Such a behaviour was 
linked in [97] to the dynamic character of the DOD stress-factor’s profiles, 
which may induce lower ageing rates compared to the static DOD ageing 
profiles. This observation increases the interest of ageing models able to 
learn from the dynamic profiles observed after deployment, correcting this 
way the initial model trained with laboratory static ageing experiments. 
Anyway, this observation should be verified in further work, and the study 
should be extended involving more cells cycled at dynamic conditions and 
realistic conditions. The latter point would also allow consolidating the 
validation of the input and output processing algorithms, described in 
Chapter 5. 

In the pre-processing stage, it was assumed that the initial capacity rise 
identified in several cells is not provoked by any ageing mechanism and does 
not have any influence on the further ageing trend of those cells. These 
assumptions should be verified in further work. Besides, cycle-induced 
calendar ageing is another important source of capacity degradation [158]. 
Once the cells are severely degraded due to cycling, they may suffer a 
stressed capacity degradation even under moderate storage conditions. In 
order to undertake such occurrence, the calendar ageing model should be 
informed about the degradation suffered by the cell because of cycling. 
Accordingly, the integration of both calendar and cycle ageing models, 
within the context of defining a holistic view of lithium-ion degradation 
modelling is a challenging research task, proposed as further research line. 

Furthermore, the deployment of the ageing models developed in this study 
deserves a deeper discussion from the perspective of computational 
complexity. In fact, the logging of the current, voltage and temperature time 
series, as well as the extraction of the corresponding inputs variables 
requires memory and computation considerations. Furthermore, the 
inherent time and memory complexity of the GP is 𝒪𝒪(𝑛𝑛3) and 𝒪𝒪(𝑛𝑛2), and the 
required computations rapidly become prohibitive within the context of 
increasing training datasets. Within this context, two different approaches 
could be contemplated for the deployment of ageing models in real 
applications, considering the implementation of the models i) within the 
local hardware of each battery system, or ii) in an external data server (cloud 
server), connected to a fleet of battery systems (Figure 47).
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Figure 47. Two different approaches for the deployment of ageing models in real applications. The first 
approach consists on the implementation of the ageing model in the local hardware device of each 
battery system. The second approach contemplates the communication and storage of the battery 
operation data to a data server in the cloud, in which the ageing model is implemented.

The first approach presents several issues related to the computational 
complexity of the ageing model. In fact, the above-mentioned 𝒪𝒪(𝑛𝑛3) and 
𝒪𝒪(𝑛𝑛2) time and memory complexity of the GP questions its ability to be 
implemented within a device with limited computation resources, in the 
context of increasing training datasets. This implies that i) approximation 
methods of the GP algorithm [110] may be required once the training dataset 
becomes critically large, and ii) the model must be implemented in a 
hardware system presenting minimal requirements in terms of computation 
power. In case the model would be implemented in a BMS board, an 
oversizing of the system could be necessary, as well as an adequate 
scheduling with the other tasks performed by the BMS (e.g. measurements, 
safety-related tasks, SOC and SOH estimations, communications, etc.). 
However, the first approach presents the advantage of avoiding the cost 
corresponding to the implementation of the data server infrastructure and 
communication systems with the local devices. 

The second approach provides many advantages with respect to the first one. 
First, it allows a single ageing model to be fed in parallel with the data 
obtained from several battery systems, empowering it to learn 
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simultaneously about the effect of a wide range of operating conditions. In 
this way, the learning process of the GP could be significantly accelerated, 
and the resulting ageing model could provide reliable predictions on a 
broader range of the operating conditions, compared to the different models 
evolving independently in the context of the first approach. Furthermore, the 
observation of the data collected from several battery systems allows 
assessing the quality and variability of the obtained data, from a statistical 
point of view28. The main drawback of such an approach is the 
implementation cost of the data server and the communication systems. 
Moreover, the issue of the computational complexity of the GP model would 
be linked to the computation power of the server, which would determine 
the necessity to use approximation methods oriented to reduce the time and 
memory complexity of the GP models. 

Finally, although the degradation of Li-ion batteries is mainly expressed in 
terms of both capacity loss and resistance increase, the research activities in 
this thesis only focused on the data corresponding to the capacity loss. 
However, the methodology proposed in this chapter could easily be 
extended to the development of ageing models oriented to the prediction of 
resistance increase, as the periodical characterisation tests could also include 
resistance determination procedures. 

6.4. Closure: towards future generations of ageing models 

The research activities carried out in this thesis aimed to resolve some of the 
issues typically encountered during the development of Li-ion ageing 
models, i.e. i) to reduce the need for exhaustive experimental ageing tests 
from laboratory, ii) ensure the validity of the model to predict and learn 
under realistic operating profiles. This was achieved by the development of 
ageing models capable of evolving and learning progressively from the data 
collected directly from deployed battery systems. 

Nevertheless, the described models are still dependent of some laboratory 
tests which need to be carried out before system deployment, in order to 
obtain a relatively accurate ageing model for system sizing. This dependency 
is partially produced by the early maturity stage of the data collection 
telemetry technologies applied to the Li-ion battery system deployed in 

 
 

28 From a long-term perspective, this second approach would also allow to produce a database 
traducing the behaviour of the deployed systems in real applications. This information could be 
exploited for further objectives, e.g. to acquire a better knowledge about the deployed systems, 
carry out further modelling works, extract new insights for the development of new business 
models, etc. 

Resistance increase 
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industry. Consequently, no long-term ageing data is currently available from 
most battery systems deployed to date. However, the increased interest from 
industry in the introduction of new data collection systems implies the 
forthcoming availability of a significant amount of real-world battery 
operation data, which would be available for use as initial dataset for the 
development of future Li-ion ageing models. The use of real operation data 
for initial ageing model development could e.g. reduce the prediction errors 
induced by the discrepancies observed between the ageing at static 
operating conditions and dynamic or realistic operation (see Sections 4.5 and 
5.4). 

A remaining problem would be the sequential timing relation between cell 
selection, system sizing, system deployment and in-field ageing data 
gathering, which make impossible the obtention of ageing model before 
system deployment. This issue could possibly be addressed by the 
implementation of transfer learning methods [162], which would consist on 
transferring the patterns between operating conditions and ageing learnt 
from data collected from previously deployed Li-ion battery system to new 
battery technologies. 

Further advances in the field of Machine Learning discipline as well as in new 
technologies of Li-ion cell development could trigger promising synergies, 
allowing new possibilities in cell diagnosis and ageing prediction. One of 
them could be the effective prediction of the sudden capacity drop reported 
in Chapter 3 and Chapter 4. In fact, a recent research trend is to incorporate 
new sensing technologies directly inside Li-ion cells [163]. These 
technologies would provide new in-field measurable time series data 
(internal pressure, voltage at electrode level, electrode concentration, etc), 
completing the currently available external current, voltage and 
temperature measurements. Concurrently, recent advances in Machine 
Learning research could possibly reveal new stress-factors or powerful 
predictive features. 

Reader, if you are still here, rejoice! 

Such perspectives promise exciting times for further research! 

Removing the need 
for laboratory tests? 

Bridging the gap: 
physics-based and 
data-driven ageing 
models 
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Appendices 
 





 

 Calendar ageing 
Raw data, variance, and prediction results 

 

 

Figure A. 1. Normalised (with initial value 𝑸𝑸𝟎𝟎) capacity, obtained from the experimental static ageing 
tests at (a) 25°C, (b) 35°C and (c) 45°C. (d) Normalised capacity, and (f) corresponding temperature and 
SOC storage conditions, obtained from the experimental dynamic ageing tests for CELL31. (e) Normalised 
capacity, and (g) corresponding temperature and SOC storage conditions, obtained from the 
experimental dynamic ageing tests for CELL32. 



 
Table A. 1. Mean variance of the capacity curves, for the three cells tested at identical storage conditions 
(in [%²]). 

Temperature [°C] 
SOC [%] 

100 80 65 50 35 20 
25  0.09  0.67   
35 0.05 0.42 0.02 0.03 0.04 0.03 
45  3.51  0.95   

 

Table A. 2. Results obtained with the models resulting from the different training cases, for the training, 
validation, and all the cells, in terms of ∆Q and Q. 

 
Capacity loss (∆Q) Capacity (Q) 

Training Validation All Training Validation All 
MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS 

CASE 1 0.37 0.45 85.27 0.66 0.75 90.74 0.60 0.69 89.61 0.72 0.78 61.54 2.02 2.30 59.75 1.75 1.98 60.12 

CASE 2 0.31 0.39 89.93 0.53 0.61 84.08 0.46 0.54 85.90 0.639 0.703 69.66 1.33 1.54 58.87 1.11 1.28 62.22 

CASE 3 0.26 0.33 94.51 0.37 0.44 99.49 0.30 0.37 96.42 0.47 0.53 83.03 0.64 0.76 89.04 0.53 0.62 85.31 

CASE 4 0.27 0.34 94.87 0.28 0.33 100 0.27 0.33 96.28 0.50 0.55 81.99 0.37 0.41 100 0.46 0.51 86.95 

CASE 5 0.28 0.34 95.31 0.26 0.30 100 0.27 0.33 96.28 0.49 0.54 83.55 0.44 0.53 94.44 0.48 0.54 85.80 

CASE 6 0.25 0.32 95.75 0.38 0.43 100 0.27 0.33 96.19 0.44 0.49 84.99 0.41 0.42 100 0.43 0.48 86.54 

CASE 7 0.26 0.33 96.19 - - - 0.26 0.33 96.19 0.45 0.50 86.54 - - - 0.45 0.50 86.54 



 

 Cycle ageing 
Ageing test matrix, raw data, variance, and prediction 
results 

 
 

Table B. 1. Cycle ageing tests matrix, for the tests at static ageing conditions. Numbers indicate the 
number of cells tested at each cycling condition. 

Temperature [°C] 25 35 45 
C-Rate [C] 

(charge - discharge) 
C/3-1C 1C-1C C/3-C/3 C/3-1C C/3-2C C/2-1C 1C-1C 2C-1C 2C-2C C/3-1C 

DoD [%] MidSOC [%]           
100 50 3   3      3 
80 50 8 3 3 8 3 3 3 3 3 8 
65 50 3   3      3 

50 
65    3       
50 3   8      3 
35    3       

35 50 3   3      3 

20 

80    3       
65    3       
50 3   3      3 
35    3       
20    3       

10 
80    3       
65    3       
20    3       

 



 

 

 

Figure B.1. Normalised capacity (with initial value 𝑸𝑸𝟎𝟎), obtained from the experimental static ageing 
tests at (a) 25°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (b) 35°C, 50% middle-SOC, C/3 – 1C, 
and several DOD values, (c) 45°C, 50% middle-SOC, C/3 – 1C, and several DOD values, (d) 35°C, 10% DOD, 
C/3 – 1C, and several middle-SOC values, (e) 35°C, 20% DOD, C/3 – 1C, and several middle-SOC values, (f) 
35°C, 50% DOD, C/3 – 1C, and several middle-SOC values, (g) 25°C, 80% DOD, 50% middle-SOC, 1C 
discharging rate, and several charging rate values, (h) 35°C, 80% DOD, 50% middle-SOC, 1C discharging 
rate, and several charging rate values, (i) 35°C, 80% DOD, 50% middle-SOC, C/3 charging rate, and several 
discharging rate values, and (j) 35°C, 80% DOD, 50% middle-SOC and several symmetric charging and 
discharging rate values. 
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Figure B.2. (a) Normalised capacity (with initial value 𝑸𝑸𝟎𝟎), and the corresponding (c) DOD and middle-
SOC, and (e) temperature and charging and discharging C-rate profiles, for the cell #124. (b) Normalised 
capacity (with initial value 𝑸𝑸𝟎𝟎), and the corresponding (d) DOD and middle-SOC, and (f) temperature and 
charging and discharging C-rate profiles, for the cell #125. 

 



 

 

Table B. 2. Mean variance of the raw capacity curves, for all the cells tested at identical storage conditions 
(in [%²]). 

Temperature [°C] 25 35 45 
C-Rate [C] 

(charge - discharge) C/3-1C 1C-1C C/3-C/3 C/3-1C C/3-2C C/2-1C 1C-1C 2C-1C 2C-2C C/3-1C 

DoD [%] MidSOC [%]           
100 50 0.26   0.41      12.821 
80 50 0.11 0.03 0.01 0.27 9.292 0.13 7.943 69.894 40.885 1.93 
65 50 0.04   0.21      3.26 

50 
65    0.41       
50 0.12   0.29      0.40 
35    74.066       

35 50 0.01   0.16      0.06 

20 

80    0.05       
65    0.01       
50 0.03   0.14      1.04 
35    0.15       
20    0.37       

10 
80    0.03       
65    0.23       
20    1.18       

 

 

 
 

1 This high variance is induced by a shift between the different curves obtained at this testing conditions, 
Figure B.1. (c), Appendix B. 
2 This high variance is induced by the sudden capacity drops observable in the black curves, Figure B.1. (i), 
Appendix B. 
3 These high variances are induced by the sudden capacity drops observable in the blue curves respectively, 
Figure B.1 (j), Appendix B. 
4 This high variance is induced by the sudden capacity drops observable in the black curves, Figure B.1. (h), 
Appendix B. 
5 These high variances are induced by the sudden capacity drops observable in the black curves 
respectively, Figure B.1 (j), Appendix B. 
6 This high variance value is induced by the cell #56, which depicts a clearly defective behaviour (isolated 
red curve in Figure B.1. (f), Appendix B. 



 

 

Table B. 3. Results obtained with the models resulting from the different training cases, for the training, validation, targeted validation 
and all the cells, in terms of ∆Q and Q. 

 
Capacity loss (∆Q) Capacity (Q) 

Training Validation Targeted validation All Training Validation Targeted validation All 
MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS MAE RMSE CS 

CASE 1 1.13 1.36 84.72 2.09 2.36 84.35 1.01 1.22 100.00 2.04 2.31 84.37 1.43 1.67 80.36 5.97 6.63 36.57 4.02 4.25 43.32 5.74 6.38 38.76 
CASE 2 0.94 1.16 87.60 1.72 1.97 70.26 1.72 1.98 71.54 1.66 1.91 71.56 1.56 1.74 80.71 4.91 5.44 26.89 4.89 5.40 23.10 4.66 5.16 30.93 
CASE 3 0.70 0.85 90.87 0.68 0.84 95.22 0.77 0.96 94.26 0.69 0.84 94.57 1.06 1.19 81.61 1.92 2.11 56.84 2.18 2.36 47.30 1.79 1.97 60.55 
CASE 4 0.68 0.84 90.65 0.55 0.70 94.02 0.61 0.77 93.12 0.58 0.73 93.26 1.12 1.23 77.75 1.02 1.16 82.01 1.06 1.19 80.81 1.04 1.17 81.05 
CASE 5 0.57 0.71 90.03 0.58 0.73 90.48 0.71 0.89 87.12 0.58 0.72 90.33 1.06 1.17 72.31 1.04 1.18 75.18 1.12 1.25 69.62 1.05 1.17 74.20 
CASE 6 0.66 0.82 88.14 0.53 0.66 93.56 0.66 0.79 100.00 0.60 0.75 90.62 1.21 1.32 68.96 1.09 1.26 78.77 0.74 1.00 99.31 1.16 1.29 73.45 
CASE 7 0.62 0.77 88.79 0.50 0.63 92.20 0.32 0.43 96.26 0.58 0.72 90.10 1.14 1.24 68.74 1.11 1.25 75.05 0.50 0.62 93.75 1.13 1.25 71.16 
CASE 8 0.61 0.75 88.84 0.50 0.62 91.93 0.28 0.34 96.96 0.57 0.71 89.87 1.11 1.22 70.09 1.14 1.26 70.76 0.37 0.44 92.58 1.12 1.23 70.32 
CASE 9 0.57 0.71 89.28 0.55 0.68 89.81 0.30 0.38 95.17 0.57 0.70 89.43 1.04 1.14 71.53 1.28 1.40 65.63 0.40 0.46 91.88 1.11 1.22 69.86 

CASE 10 0.56 0.69 90.37 0.64 0.77 89.39 0.24 0.29 100.00 0.57 0.71 90.16 1.04 1.14 71.51 1.60 1.76 58.47 0.40 0.54 93.24 1.16 1.27 68.80 
CASE 11 0.54 0.67 90.59 0.71 0.86 87.37 0.78 0.94 85.31 0.57 0.70 90.03 1.01 1.11 71.77 1.83 1.99 51.02 2.15 2.36 44.32 1.15 1.26 68.13 
CASE 12 0.56 0.69 90.11 0.65 0.77 91.00 0.67 0.79 90.63 0.57 0.70 90.24 1.03 1.13 71.12 2.03 2.25 44.80 2.74 3.07 25.58 1.18 1.30 67.18 
CASE 13 0.54 0.67 89.79 0.64 0.77 89.85 0.71 0.84 90.48 0.55 0.68 89.80 1.01 1.11 71.35 1.29 1.42 59.88 1.32 1.47 61.40 1.04 1.14 70.21 
CASE 14 0.54 0.67 89.94 0.61 0.75 89.65 0.61 0.75 89.65 0.54 0.67 89.92 1.00 1.10 71.97 1.29 1.40 59.37 1.29 1.40 59.37 1.02 1.12 71.02 
CASE 15 0.54 0.67 89.89 0.63 0.80 85.19 0.63 0.80 85.19 0.54 0.67 89.77 1.00 1.09 72.28 1.08 1.12 61.90 1.08 1.12 61.90 1.00 1.10 72.02 
CASE 16 0.54 0.67 89.74 - - - - - - 0.54 0.67 89.74 1.00 1.09 71.97 - - - - - - 1.00 1.09 71.97 

 

 





 

 

 Processing algorithms 
 

 

Algorithm 1. Generate equivalent stress-factors values in cycling operation, for each half-cycle. 

 

 

Algorithm 2. Generate equivalent stress-factors values in calendar operation. 

input: profiles of time, temperature, current and SOC 

2:  for j := 1 …number of half-cycles 

3:  Ahhalf-cycle-j := ∫ Iprofile-j dt         

4:   Thalf-cycle-j := mean(Tprofile-j)     

5:  DODhalf-cycle-j := max(SOCprofile-j) – min(SOCprofile-j) 

6:   Middle-SOChalf-cycle-j := mean(SOCprofile-j) 

7:  if Iprofile-j > 0  

8:    charging C-ratehalf-cycle-j := mean(Iprofile-j) / Ahnominal 

9:   discharging C-ratehalf-cycle-j := NaN 

10:      else                           

11:     charging C-ratehalf-cycle-j := NaN 

12:    discharging C-ratehalf-cycle-j := mean(Iprofile-j) / Ahnominal 

13:   end if 

14:  SFhalf-cycle-j = [Ahhalf-cycle-j,  Thalf-cycle-j, DODhalf-cycle-j, Middle-SOChalf-cycle-j, C-ratecharging-j, C-ratedischarging-j] 

15:  SF = concatenate SFhalf-cycle-j rows in table 

16:  end for 

return: SF (table of stress-factors, for all half-cycles) 

input: profiles of time, temperature and SOC 
2:  ∆time := sum(timeprofile)         
3: T := mean(Tprofile)     
4:  SOC := mean(SOCprofile) 
5: SF := [∆time, T, SOC] 
 return: SF (table of stress-factors of the storage time) 



 

 

 

Algorithm 3. Accumulate the Ah-throughput of the half-cycles (charge and discharge separately) 
belonging within the same “equivalence ranges”, for which the corresponding influence on cell ageing 
is assumed to be equivalent. 

 

input: table of stress-factors of all half-cycles, equivalence ranges assumptions 
2:  for j := 1 …number of equivalence ranges 
3:  Cluster j := regroup half-cycle rows which belong within the equivalence range #j 
4:   Ahgroup-j := ∑ Ahhalf-cycles        
5:  Tgroup-j := mean(Thalf-cycles)     
6:  DODgroup-j := mean(DODhalf-cycles) 
7:  Middle-SOCgroup-j := mean(Middle-SOChalf-cycles) 
8:   Charging C-rategroup-j := mean(Charging C-ratehalf-cycles) 
9:  Discharging C-rategroup-j := mean(Discharging C-ratehalf-cycles) 
10:   SFgroup-j = [Ahgroup-j,  Tgroup-j, DODgroup-j, Middle-SOCgroup-j, Charging C-rategroup-j, Charging C-rategroup-j] 
11:  HCtable := concatenate SFgroup-j rows in table 

12:  end for 
return: HCtable (table of stress-factors, for all clusters of equivalence ranges) 



 

 

 

Algorithm 4. Synthesis of full-cycles, from each cluster involving charging and discharging half-cycles 
corresponding to identical stress-factors ranges. 

 

 

 

 

 

input: table of half-cycles (HCtable) 
2:  for j := 1 … # equivalence ranges clusters 
3:  while isempty(cluster #j) == 0 
4:   hcCHA – largest := find the charging half-cycle with largest ∆Ah 
5:   hcDCH – largest := find the discharging half-cycle with largest ∆Ah 
6:   Synthesize full-cycle (fc): 
7:    ∆Ahfc := 2 . min(∆Ah-hcCHA – largest, ∆Ah-hcDCH – largest) 
8:     ∆Ahhc-residual := ∆Ah-hcCHA – largest - ∆Ah-hcDCH – largest 
9:    FC := [∆Ahfc, Tcluster – j, DOD cluster – j, Middle-SOC cluster – j, … 
10:      charging C-rate cluster – j, discharging C-rate cluster – j] 
11:     HCresidual := [∆Ahhc-residual, Tcluster – j, DOD cluster – j, Middle-SOC cluster – j, … 
12:      charging C-rate cluster – j, discharging C-rate cluster – j] 
13:    
14:    FCtable := concatenate FC rows in table 
15:   Re-incorporate HCresidual in HCtable 
16:   if HCresidual is the last row in the cluster #j 
17:    break 
18:   end if 
19:  end while 
20:   
21:   HCresiduals - table := concatenate HCresidual rows in table 
22: end for 
23: 
24: HClast residual := hc with lowest ∆Ahhc-residual within HCresiduals – table. 
25: Remove HClast residual from HCresiduals – table. 
26: Synthesize a single full-cycle from HCresiduals – table: 
27:  Tfc := average of hc temperatures, weighted by ∆Ahhc-residual 
28:  DODfc := maximum of hc DOD 
29:   Middle-SOCfc := average of hc temperatures, weighted by ∆Ahhc-residual 
30:  Charging C-ratefc := average of charging hc C-rates, weighted by ∆Ahhc-residual 
31:  Discharging C-ratefc := average of discharging hc C-rates, weighted by ∆Ahhc-residual 
32:  FC := [Tfc, DODfc, Middle-SOCfc, Charging C-ratefc, Discharging C-ratefc] 
33:  FCtable := concatenate FC in FCtable table 
return: FCtable (table integrating the obtained full-cycles) 



 

 

 

 

Algorithm 5. Target processing algorithm: the overall capacity loss measured between two 
characterisation tests is split into several components, further assigned to the different rows of the input 
data obtained from the input processing algorithm 

∆Q := Capacity data i – Capacity data i-1. 
∆ttotal – profile := duration of the total operating profile. 
∆tcalendar component := duration of the extracted calendar component profile. 
∆tcycle component := duration of the extracted cycle component. 
 

input: ∆Q, ∆ttotal – profile, ∆tcalendar component, ∆tcycle component 

2: 
3:  ∆Qcalendar component := ∆Q . ∆tcalendar component / ∆ttotal – profile 
4: ∆Qcycle component := ∆Q . ∆tcycle component / ∆ttotal – profile 
5 :  
6 :   for i … dim(calendar input training data) 
7:  ∆Q i := ∆Qcalendar component . ∆t i / ∆tcalendar component 

8: ∆Qcalendar output training vector := concatenate (∆Q i) in vector 

9: end for 
10: 
11:  for j … dim(cycle input training data) 
12:  ∆Q j := ∆Qcycle component . ∆Ah j / ∆Ahcycle total 

13: ∆Qcycle output training vector := concatenate (∆Q i) in vector 

14: end for 
return: ∆Qcalendar output training vector, ∆Qcycle output training vector 
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