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Resumen
El ser humano es un ser social: las elecciones de las personas y su bienestar dependen en buena medida de

las acciones de sus contactos. Las redes sociales son una importante fuente de recursos para sus integrantes: a
través de amigos, familiares y conocidos, los individuos obtienen información, ayuda y otro tipo de recursos.
La gran incidencia que las redes sociales tienen en numerosos ámbitos de la vida hace necesario comprender:
(i) cómo la estructura de las redes sociales de las personas afecta a los resultados que éstas obtienen (en
términos laborales, de salud, de influencia, etc.) y (ii) cómo el comportamiento de las mismas se ve afectado
por la estructura que presenta la red de la que forman parte.

Esta tesis contribuye al conocimiento de estas cuestiones. El primer capítulo muestra cómo los resultados
laborales de las personas pueden explicarse parcialmente por las características de las red en la que están
inmersos, en la medida en que éstas obtienen información laboral de sus redes sociales. En este sentido,
analizamos el papel que las redes juegan como difusoras de información laboral y sus consecuencias en el
empleo. El segundo y tercer capítulo, en cambio, analizan la influencia que las redes sociales tienen en el
comportamiento de las personas en contextos en los que los resultados que los individuos obtienen dependen
no sólo de sus propias acciones sino de las acciones de sus contactos. Dada la naturaleza estratégica de este
tipo de situaciones, estos dos capítulos se analizan desde el enfoque de la Teoría de Juegos.

Capítulo 1. Are close-knit networks good for employment?
Uno de los ámbitos en los que las redes sociales han mostrado tener una mayor relevancia es el del

mercado de trabajo (Goyal, 2007, Jackson y Rogers, 2007, Vega-Redondo, 2007, Jackson, 2010). Uno de los
primeros estudios en documentar la importancia de las redes sociales en el mercado laboral fue el trabajo
de Myers y Schutz (1951), que constató que el 62 % de todos los trabajadores entrevistados en el sector
textil en Nueva Inglaterra habían encontrado su empleo a través de algún contacto, frente a un 23 % de
trabajadores que había solicitado directamente el empleo. El 15 % restante obtuvo su puesto de trabajo a
través de medios diseñados exclusivamente para tal fin: agencias de empleo, anuncios de ofertas laborales, etc.
Ese descubrimiento fue seguido de más investigaciones con resultados similares (véase Rees, 1966; Sheppard
y Beliitsky, 1966; Granovetter; 1974; Staiger, 1990; Montgomery; 1991; Corcoran et al. 1980, Campbell y
Marsden, 1990, entre otros muchos). El estudio de Rees y Schutz (1970), por ejemplo, mostró la relevancia de
las redes de contactos a la hora de obtener un empleo independientemente del ámbito profesional considerado.
Sorprendentemente −y a pesar de la gran diversidad de medios que han surgido a lo largo de los años para
la búsqueda de empleo− el uso de las redes de contactos para la obtención de trabajo se ha incrementado en
las últimas décadas (Ioannides y Loury, 2004).

A la vista de estos resultados han surgido ciertos interrogantes. Por ejemplo, ¿cómo afecta la estructura de
la red al flujo de información laboral entre individuos? ¿Qué características específicas de la red afectan a la
probabilidad de recibir empleo a través de contactos y cómo? ¿Puede una distinta posición en la red explicar
los patrones de desigualdad que se observan entre individuos en el mercado laboral? La literatura económica
ha tratado de dar respuestas a estas cuestiones a lo largo de los años. En este sentido, se ha identificado cómo
el número de contactos que los individuos tienen (su degree) tiene una influencia positiva en sus resultados
laborales: un número mayor de contactos se traduce en una mayor probabilidad de obtener empleo (Calvó-
Armengol, 2004) y en un salario esperado más elevado (Cappellari y Tatsiramos, 2015). Además, existen
correlaciones a lo largo del tiempo en el estado laboral de individuos conectados entre sí, lo cual puede explicar
parcialmente los patrones de segregación observados en el mercado laboral −ya sea por grupo étnico, género
o situación geográfica− o las decisiones de los individuos de permanecer o abandonar dicho mercado (Calvó-
Armengol y Jackson, 2004, 2007). Por otro lado, la probabilidad de que una persona obtenga información
laboral de un contacto varía dependiendo de la fuerza del vínculo que le une a dicho contacto: si el vínculo es
débil −el contacto es un mero conocido− la probabilidad de obtener información laboral del mismo es mayor
que si el vínculo es fuerte −es un amigo íntimo o un familiar. En efecto, Granovetter (1973) constató que,
mientras que un 16.7 % de los individuos entrevistados reportaron haber encontrado su empleo a través de
un enlace fuerte −alguien a quien veían regularmente− un 83.4% de los individuos encontraron su trabajo
a través de un enlace débil −alguien a que apenas frecuentaban−. Su explicación a tal descubrimiento fue
que los lazos débiles tienden a proporcionar a las personas información diferente de la que obtienen de
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otros contactos, pues estos individuos actúan como «puentes» entre grupos de personas que de otra forma
estarían aislados. Los vínculos fuertes, por el contrario, tienden a proporcionar información redundante y
poco novedosa.

Existen, sin embargo, otras cuestiones abiertas en relación al impacto que ciertas propiedades de las
redes de las personas tienen en sus resultados laborales. Una de las características más prominentes de las
redes sociales reales es su alto grado de agrupación: los amigos de un individuo son a menudo amigos entre
sí o tienen amigos en común, sus respectivos amigos en muchas ocasiones se conocen, y así sucesivamente
(Jackson y Rogers, 2007). En terminología de redes, las redes agrupadas se caracterizan por un gran número
de relaciones transitivas, lo cual se traduce en un considerable número de triángulos, cuadrados y otros ciclos
de enlaces en la red (Holland y Leinhardt, 1971; Watts y Strogatz, 1998, Vega-Redondo, 2007; Jackson, 2010).
Aunque la importancia de la agrupación de la red ha sido ampliamente discutida en la literatura sociológica,
no existe un acuerdo respecto a si las redes altamente agrupadas son beneficiosas o perjudiciales y por qué
(Burt, 2001, 2009; Jackson et al. 2017). Las relaciones en las redes agrupadas son normalmente más fuertes, lo
cual favorece la confianza y la cooperación entre individuos (Granovetter, 1973; Burt, 1992; Coleman, 1988a,
1988b; Bloch et al. 2008; Lippert y Spagnolo, 2011; Jackson et al. 2012). Sin embargo, las redes agrupadas
pueden inhibir el flujo de información novedosa, ya que el contenido de la información recibida en este tipo
de redes puede ser redundante (Burt, 2001, Blau, 2017). Este último punto es el argumento de Granovetter
(1973) en La fuerza de los lazos débiles. En relación con esta teoría surge una pregunta adicional: ¿reside la
ventaja de los vínculos débiles exclusivamente en el contenido de la información que estos vínculos aportan
o en otro tipo de propiedades de red asociados a ellos, tales como su menor presencia en ciclos de enlaces?

El presente capítulo trata de esclarecer estas cuestiones. Analizamos cómo la agrupación de la red
−reflejada en la presencia de ciclos de enlaces− influye en los resultados laborales de las personas: su pro-
babilidad de empleo y su salario esperado. De manera similar a Calvó-Armengol (2004) y Calvó-Armengol
y Jackson (2004; 2007) consideramos un modelo en el que los agentes están conectados a través de una red
social y los individuos empleados con información laboral transmiten esta información a sus amigos directos
en situación de desempleo. Calvó-Armengol (2004) analiza cómo el número de contactos directos e indirectos
afecta a la probabilidad de empleo e identifica un efecto positivo del número de contactos directos en dicha
probabilidad (esto es, un efecto positivo del degree), así como un efecto negativo del número de vecinos indi-
rectos (un efecto negativo del second-order degree). Por otro lado, muestra cómo un cambio en la distribución
del degree en redes regulares y sin ciclos tiene efectos no-monótonos en el empleo.1 Finalmente, propone un
modelo de formación de redes en el cual la decisión de los individuos de abandonar el mercado laboral es
endógena: depende de los recursos que esperan obtener de la red. Calvó-Armengol y Jackson (2004; 2007)
analizan el papel de los salarios en un modelo similar: estudian los patrones de correlación desde una perspec-
tiva dinámica. Este enfoque permite explicar la desigualdad en los salarios de los agentes y en sus decisiones
de abandono del mercado laboral en función de su estado inicial.2

El objetivo de este capítulo es estudiar el papel que el agrupamiento de la red, reflejado en la presencia de
ciclos de enlaces, tiene en los resultados laborales de sus integrantes. En nuestro análisis, aislamos el impacto
de los ciclos de aquel que podría venir inducido por otras propiedades de la red, como la distribución del
degree y del second-order degree. Probamos cómo la probabilidad de empleo de los individuos es diferente
dependiendo de los ciclos cortos (triángulos y cuadrados) que forman con sus vecinos, aun cuando sólo se
tiene en consideración un periodo. Esto es, mostramos cómo los flujos de información hacia un individuo
no sólo se ven afectados por su degree y su second-order degree, sino también por la geometría que crean
sus enlaces y los enlaces de sus respectivos vecinos. Dejando constante el degree y el second-order degree de
un individuo, la presencia de triángulos y cuadrados en su vecindario reduce su probabilidad de empleo. De
este modo, el desempleo en una red g puede ser mayor que en otra g′ si el grado de agrupamiento en g es
mayor que en g′, incluso si la distribución conjunta del degree y el second-order degree es la misma en ambas

1Dado que el número de contactos directos e indirectos determina la probabilidad de empleo de los agentes, la tasa de
desempleo en dos redes con el mismo número de enlaces puede ser diferente si la geometría de estas redes es distinta, sencillamente
por el hecho de que el degree y el second-order degree de sus respectivos integrantes puede no ser el mismo. Calvó-Armengol
(2004) ilustra este punto con un ejemplo.

2Los individuos desempleados obtienen más (menos) información cuando sus contactos están empleados (desempleados),
dando lugar a formas robustas de correlación en los salarios y en el estado laboral de agentes conectados entre sí. Calvó-
Armengol y Jackson (2004) muestran con un ejemplo cómo dos agentes con el mismo número de vecinos pero un distinto average
path length pueden presentar una diferente probabilidad de empleo en el largo plazo, lo cual sugiere un efecto negativo de la
agrupación de la red en el empleo. Sin embargo, su análsis no explora la incidencia específica que los ciclos de enlaces tienen en
los flujos de información, ceteris paribus.
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redes. Este efecto viene causado por el hecho de que estos ciclos generan afiliación estocástica en los flujos de
información procedente de distintos contactos. A diferencia de lo que ocurre en una red sin ciclos −donde los
flujos de información entre contactos ocurren de manera independiente− la probabilidad de que un individuo
A reciba información de un vecino B depende positivamente de la probabilidad de que A reciba información
de otro vecino C si ambos vecinos están unidos (es decir, si A, B y C forman un triángulo) o si B y C tienen
un amigo en común D (en cuyo caso A,B, C, y D forman un cuadrado). Esta falta de independencia en los
flujos de información en redes con ciclos hace que sus integrantes sean más propensos a recibir varias ofertas
de empleo de diferentes contactos de forma simultánea, pero también más propensos a no recibir ninguna
oferta de éstos. Dado que recibir varias ofertas de empleo no supone ninguna ventaja cuando se analiza la
probabilidad de empleo (los individuos sólo pueden aceptar un trabajo a la vez), el efecto resultante de los
ciclos en la probabilidad de empleo es negativo.

El agrupamiento perjudica a la probabilidad de empleo, pero también al salario esperado. Mostramos
cómo los ciclos cortos tienen una incidencia negativa en el salario esperado, dado que la probabilidad de
estar desempleado es mayor cuando los individuos están inmersos en ciclos y los agentes desempleados tienen
un salario esperado igual a cero. Condicionado a estar empleado, por el contrario, el salario esperado de los
individuos es mayor cuando éstos forman ciclos con sus contactos. Este resultado se explica por el hecho de
que los individuos inmersos en ciclos son más propensos a recibir varias ofertas laborales a la vez y por tanto
pueden escoger entre distintas opciones. El hecho de recibir distintas ofertas simultáneamente no presenta
ninguna ventaja cuando se analiza la probabilidad de empleo, ya que los individuos sólo pueden aceptar un
empleo. Sin embargo, recibir varias ofertas laborales a la vez constituye una ventaja cuando se analiza el
salario esperado ya que los individuos pueden escoger entre trabajos con salarios distintos.

Una vez identificados los efectos estáticos de los ciclos sobre el empleo, analizamos sus efectos dinámicos
(esto es, en el largo plazo). Consideramos distintas redes que difieren en el número de ciclos que los individuos
forman con sus vecinos, y analizamos el estado estacionario de la cadena de Markov inducida por nuestro
modelo. Mostramos cómo los ciclos de enlaces organizan la probabilidad de empleo en el estado estacionario
en el sentido de la dominancia estocástica de primer orden. Las personas en vecindarios altamente agrupados
presentan una menor probabilidad de empleo a largo plazo que aquellas en vecindarios menos agrupados. Este
resultado pone de manifiesto el efecto de los ciclos cortos de enlaces en los patrones de desigualdad observados
dentro de una red, así como entre redes distintas. La ciclos de longitud mayor (pentágonos, hexágonos, etc.)
−que son irrelevantes en el modelo estático− tienen una relevancia marginal en el modelo dinámico.

En la misma línea, mostramos cómo los ciclos cortos refuerzan los patrones de correlación en el empleo a
largo plazo identificados en Calvó-Armengol y Jackson, (2004). De acuerdo con estos patrones, los individuos
con amigos empleados (desempleados) presentan mayor (menor) tendencia a estar empleados porque su
entorno (no) les proporciona información laboral. Esto se traduce en patrones de desigualdad y segregación
laboral a lo largo del tiempo. La afiliación estocástica en los flujos de información inducida por los ciclos
cortos refuerza estos patrones: dado que la transición del desempleo al empleo es más difícil cuando los
individuos forman parte de ciclos, los individuos en vecindarios agrupados tienen una menor tendencia a
estar empleados. Si a esto añadimos la correlación en el estado laboral que existe entre vecinos en la red,
el resultado son fluctuaciones laborales más prolongadas y persistentes en redes con un mayor grado de
agrupamiento.
En resumen, la contribuciones de este capítulo primero son varias:

Sacamos a la luz un mecanismo detrás de La fuerza de los lazos débiles (Granovetter, 1973). Tal y
como argumenta Granovetter (1973), existen distintas formas de medir la fuerza de un lazo social. Una
manera se basa en el número de contactos que dos personas tienen en común, esto es, en los ciclos que
ambas forman, «cuanto más fuerte sea la unión entre A y B, mayor será el número de individuos del
grupo S con los que ambos estarán relacionados mediante lazos fuertes o débiles». Si de acuerdo con esta
concepción consideramos «débiles» a aquellos enlaces que no cierran ciclos de red cortos (triángulos o
cuadrados) y «fuertes» a aquellos que cierran algún ciclo corto, nuestro análisis muestra cómo los lazos
débiles son efectivamente más propensos a proporcionar información laboral que los lazos fuertes. Sin
embargo, la ventaja de los lazos débiles no reside en el contenido de la información proporcionada por
estos, sino en el hecho de que el flujo de información a través de ellos es independiente de los flujos de
información entre otros agentes en la red.

Contribuimos al debate clásico en sociología respecto a si el agrupamiento en las redes sociales es
una ventaja o una desventaja para los individuos inmersos en ellas. En nuestro contexto, los ciclos
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constituyen una desventaja a la hora de obtener empleo, ya que los individuos son menos propensos a
recibir al menos una oferta laboral si forman ciclos con sus contactos. Sin embargo, en otros contextos
en los que el proceso de difusión en la red es semejante al que tiene lugar en nuestro modelo, la afiliación
estocástica inducida por los ciclos podría beneficiar a los individuos inmersos en ellos.3

Tal y como argumentan Jackson et al. (2017), «las medidas estadísticas que han sido diseñadas para
capturar el agrupamiento han tendido a focalizarse exclusivamente en tríos −grupos de exactamente tres
nodos−. Aunque esto es útil, parece razonable conjeturar que las propiedades asociadas a la agrupación
de un grafo no pueden ser capturadas imponiendo las limitaciones implicadas por estas medidas». El
capítulo ilustra cómo la agrupación de la red y sus efectos van más allá de lo capturado por el coeficiente
de agrupamiento clásico (que sólo tiene en cuenta la presencia de triángulos en la red). Mostramos
cómo los cuadrados son igualmente relevantes para la difusión incluso en el modelo estático y cómo el
coeficiente de agrupamiento clásico puede dar una medida poco precisa del grado de agrupamiento de
la red, al no tener en cuenta la presencia de este tipo de ciclos (cuadrados).

Por último, la literatura económica ha mostrado cómo las fricciones en la búsqueda de trabajo conducen
a una lenta dinámica de empleo (Pissarides, 1985; Bentolilla y Bertola, 1999; Mortensen y Pissarides,
1999; Burgess et al., 2001). Además, las tasas de entrada y salida del desempleo se ven afectadas
por las características personales de los individuos, como su nivel de educación (Maarten y Wolbers,
2000), o su número de contactos directos e indirectos (Calvó-Armengol, 2004). El presente capítulo
identifica otro factor que incide en estos procesos: la geometría creada por los enlaces de la red. Dado
que las fluctuaciones en el empleo son un determinante importante de la economía, nuestros resultados
pueden contribuir a la comprensión de algunos hechos estilizados de tipo macroeconómico, como son
los patrones de desigualdad que se observan en las sociedades interconectadas.

Capítulo 2. Clustering in Network Games
En las sociedades actuales, el comportamiento y bienestar de los individuos no puede entenderse sin

considerar la estructura social en la que están inmersos. Por su condición gregaria, el ser humano rara vez
toma decisiones sin considerar a los demás, pues el rendimiento esperado de su comportamiento a menudo
se ve afectado por las decisiones de otras personas. En tiempos de coronavirus, por ejemplo, una persona
puede decidir acudir a un determinado lugar sólo si espera que otros individuos no van a hacerlo. En otros
contextos, la misma persona puede querer llevar a cabo una acción (como acudir a una huelga o reciclar su
basura) únicamente si anticipa que otras personas van a actuar del mismo modo. El elevado impacto que
el entorno social ejerce en el comportamiento de los individuos ha generado una inmensa literatura sobre
juegos en redes que ha permitido entender mejor fenómenos de distinta naturaleza (véase Calvó-Armengol
y Jackson, 2004, 2007; Calvó-Armengol et al. 2009; Calvó-Armengol y Zenou, 2004; Ballester et al. 2010;
Bramoullé y Kranton, 2007; Jackson et al. 2012, entre otros).

Existe una variedad de aspectos de la estructura social que pueden tener una incidencia en el comporta-
miento humano. Una característica intrínseca de las redes sociales reales es su elevado grado de agrupamien-
to, manifestado en una amplia presencia de relaciones transitivas y de ciclos de enlaces en la red (Holland
y Leinhardt, 1971; Watts y Strogatz, 1998, Vega-Redondo, 2007; Jackson, 2010). La literatura sociológica
ha analizado ampliamente cómo el comportamiento de las personas puede verse afectado por el grado de
agrupamiento de la red que integran señalando distintos mecanismos de incidencia. Uno de ellos se basa
en la información: en una red agrupada y densa es más probable que una mala conducta sea detectada y
divulgada, pues la existencia de un elevado número de relaciones transitivas hace que cualquier comporta-
miento inapropiado se detecte más rápidamente en este tipo de redes (Coleman, 1990; Greif, 1993). Como

3El proceso de difusión considerado en este capítulo presenta dos importantes rasgos: (i) la capacidad de cada agente para
poder ser transmisor o receptor de la información transmitida depende de su estado (empleado o desempleado) y (ii) el bien
transmitido es rival. Es razonable pensar que los ciclos de red pueden generar afiliación estocástica en otros procesos de difusión
que presenten estos rasgos, como podría ser la transmisión de una enfermedad. En este caso (i) se cumple, ya la capacidad para
transmitir la enfermedad o contagiarse depende del estado de cada agente (depende de si tiene la enfermedad o no). Por otro
lado, si los individuos tienen un tiempo limitado y sólo pueden interactuar con un cierto número de personas, la enfermedad
podría considerarse como un «bien» rival. En este caso formar parte de ciclos podría ser beneficioso para un individuo, pues
podría presentar una menor probabilidad de contagiarse como consecuencia de la afiliación generada por los ciclos en el proceso
de difusión.
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consecuencia, los incentivos de los individuos a comportarse de acuerdo a las reglas establecidas son más
grandes cuando la red presenta un grado de agrupamiento mayor. Otro mecanismo relacionado vendría dado
por la capacidad que tiene un grupo social para imponer sanciones colectivas en función de su grado de
agrupamiento: los individuos pueden coordinarse más fácilmente para imponer sanciones colectivas cuando
integran un grupo altamente cohesionado (Coleman, 1988a). Con base a ambos argumentos, las redes sociales
agrupadas fomentarían la confianza entre agentes e inhibirían la aparición de polizones (free riders).

Desde el punto de vista de la Teoría de Juegos, algunos estudios han mostrado cómo los individuos pueden
tener distintos incentivos a ayudar a sus contactos dependiendo del grado de agrupamiento de la red (Jackson
et al. 2012): la existencia de amistades comunes entre individuos les induce a prestar ayuda a sus contactos
ante la posibilidad de perder las amistades que tienen en común si la ayuda no es prestada. Sin embargo, son
pocos los estudios que analicen el impacto que el agrupamiento de la red tiene en el comportamiento de los
individuos desde una perspectiva de juegos, lo cual deja abiertas varias cuestiones. Por ejemplo, ¿cómo afecta
el agrupamiento de la red al comportamiento de los individuos en otro tipo de contextos? ¿es la amenaza de
sanciones colectivas el único mecanismo por el cual el agrupamiento puede afectar al comportamiento de las
personas? ¿cómo depende la respuesta del tipo de juego en cuestión?

El propósito de este segundo capítulo es estudiar cómo el comportamiento de los individuos se ve afectado
por el grado de agrupamiento de las redes sociales que éstos integran. Concentramos nuestra atención en
dos formas de interacción estratégica: juegos de sustitutivos estratégicos y de complementarios estratégicos.
En juegos de complementarios estratégicos el rendimiento que los individuos obtienen de sus acciones son
mayores cuanto mayor es el número de individuos en su vecindario (directo o indirecto) que juegan la misma
acción. Este tipo de interacción estratégica refleja decisiones como la adopción de una nueva tecnología:
por cuestiones de compatibilidad, por ejemplo, los individuos obtienen más (menos) beneficios al adoptar la
tecnología si sus contactos (no) lo hacen. Los juegos de sustitutivos estratégicos reflejan situaciones donde
el rendimiento que los individuos obtienen de llevar a cabo una determinada acción son más altos (bajos)
cuanto mayor (menor) es el número de vecinos que escoge la acción contraria. Este tipo de juegos se aplica,
por ejemplo, a la decisión de proveer un bien público: el beneficio que un individuo obtiene al no contribuir a
la financiación de un bien público es mayor si algún otro vecino contribuye al mismo, pues en este caso puede
disfrutar del bien de forma gratuita actuando como polizón.

Cuando se analizan las interacciones estratégicas que tienen lugar en redes surgen dos problemas fun-
damentales. En primer lugar, dada la interdependencia existente entre distintas propiedades de la red es
problemático −y en ocasiones imposible− aislar el impacto que cada característica de la red tiene en el
comportamiento de los jugadores. La razón estriba en que el cambio de una propiedad de la red modifica
simultáneamente otras características de la misma y, por tanto, es aventurado atribuir los efectos del cambio
a una propiedad de la red en concreto. En segundo lugar, aun cuando se tienen en cuenta las interacciones
estratégicas que tienen lugar en una red específica, los individuos a menudo pueden condicionar su compor-
tamiento a la observación de una gran variedad de aspectos de la red y coordinarse alcanzando un equilibrio
(véase, por ejemplo, Bramoullé y Kranton, 2007). Para solventar estos problemas, este capítulo asume que
los individuos tienen información incompleta sobre la red en la que están inmersos, lo cual permite realizar
predicciones más concretas sobre la incidencia que ciertas propiedades de la red tienen en su comportamiento
y en su bienestar. Este enfoque es además realista, puesto que en la vida real las personas rara vez tienen
información completa sobre la red social que integran e, incluso cuando la tienen, su capacidad para procesar
toda esta información es limitada (Jannick y Larrick, 2005; Dessi et al. 2014).

El marco teórico del presente capítulo es semejante al de Galeotti et al. (2010). Estos autores consideran
un escenario en el que los jugadores sólo conocen su tendencia a interactuar con otros −su degree− y la
distribución del degree de la población. Los jugadores no conocen ningún otro aspecto de la red (ni siquiera
la identidad de sus contactos). El degree de cada agente se interpreta como su tipo; los jugadores conocen su
tipo pero no el tipo de otros jugadores. Bajo este marco de información, los individuos tienen que decidir qué
acción jugar (por ejemplo, contribuir o no contribuir a la provisión de un bien público) teniendo en cuenta
que el beneficio que obtendrán de la misma dependerá de lo que los otros jugadores escojan (por ejemplo,
si un jugador decide no contribuir y nadie contribuye no podrá disfrutar del bien mientras que si decide no
contribuir y alguien lo hace podrá usar el bien de forma gratuita). La principal aportación de Galeotti et
al. (2010) es mostrar que las acciones de los jugadores son no crecientes (no decrecientes) en su degree en el
equilibrio Bayesiano bajo sustitutivos estratégicos (complementarios estratégicos). Este resultado indica que
las relaciones sociales crean ventajas personales para los jugadores, ya que los pagos esperados de los agentes
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con mayor degree son mayores que las de aquellos con menor degree en el equilibrio Bayesiano de ambos
juegos.

Nuestro marco teórico se construye a partir del modelo de Galeotti et al. (2010), pero lo extiende al
dotar a los jugadores de cierta información sobre el grado de agrupamiento de la red. Asumimos que cada
jugador conoce su degree (que define su tipo), la distribución del degree y máximo número de enlaces que
pueden existir entre sus vecinos, información a la que denominamos agrupamiento percibido. Este escenario
de información se da en ciertas situaciones de la vida real en las que las personas conocen su tendencia a
interactuar con otros y pueden anticipar el grado en el que sus futuros contactos pueden conocerse entre ellos.
Por ejemplo, una persona que es presentada en un nuevo círculo de amigos puede anticipar que la mayoría
de los individuos con los que interactuará se conocerán entre sí. Por el contrario, un estudiante de primer
año puede esperar que la mayor parte de los individuos con los que irá a clase no habrán tenido contacto
previo. En la mayor parte de las situaciones de la vida real, las expectativas de los individuos en relación al
agrupamiento en sus vecindarios se sitúa entre estos dos extremos.
Las contribuciones de este capítulo son la siguientes:

Mostramos que el comportamiento de los individuos puede ser diferente dependiendo de la informa-
ción que éstos tienen del grado de agrupamiento de sus vecindarios, ceteris paribus. Bajo sustitutivos
estratégicos (complementarios estratégicos), las acciones de los jugadores en el equilibrio Bayesiano no
decrecen (no crecen) cuando el agrupamiento percibido aumenta. Si tomamos la provisión de un bien
público como ejemplo de juego de sustitutivos estratégicos y la adopción de una tecnología como ejem-
plo de complementarios estratégicos, nuestros resultados indican que un mayor agrupamiento percibido
no reduce la contribución de los individuos al bien público y no incrementa la adopción de la nueva
tecnología. La explicación de este resultado es la siguiente: al igual que en Galeotti et al. (2010), la
popularidad de cada jugador (su degree) determina su comportamiento y, por tanto, las expectativas de
los jugadores sobre las acciones de sus vecinos corresponden a sus expectativas sobre los degrees de sus
vecinos. La diversidad de tipos de vecinos que un individuo espera tener (en términos de popularidad)
disminuye a medida que su agrupamiento percibido es mayor, pues los enlaces entre los vecinos de un
individuo generan correlaciones en los degrees de dichos vecinos. Es decir, un jugador espera tener una
mayor diversidad de vecinos cuando sabe que puede formar un número bajo de triángulos con ellos
y una menor diversidad de vecinos cuando sabe que puede formar un número alto de triángulos con
éstos. Como consecuencia, bajo sustitutivos estratégicos (complementarios estratégicos) los jugadores
esperan tener al menos un tipo de vecino que contribuya al bien (adopte la tecnología) con mayor
probabilidad cuando el agrupamiento percibido es bajo y por consiguiente sus acciones no decrecen (no
crecen) cuando el agrupamiento percibido aumenta.4

Ponemos de manifiesto un mecanismo alternativo por el cual el agrupamiento percibido de la red
podría modificar el comportamiento de los individuos. Nuestros resultados se encuentran en línea con
los argumentos de Coleman (1988a, 1988b), en el sentido de que un mayor agrupamiento percibido
desincentiva a los individuos a actuar como polizones y les induce a contribuir al bien común. Sin
embargo, este resultado no se debe a la amenaza de sanciones colectivas por parte de otros agentes, sino
meramente a las creencias que los individuos tienen sobre la diversidad de sus contactos en términos
de popularidad. Los individuos esperan tener amigos más diversos en términos de popularidad cuando
su agrupamiento percibido es bajo, y estas expectativas son las que les inducen a adoptar la acción
«más arriesgada»: no contribuir al bien público bajo sustitutivos estratégicos (a riesgo de quedarse sin
el mismo si ningún agente lo provee) y adoptar la tecnología bajo complementarios estratégicos (aún a
riesgo de no poder disfrutar de la misma si ninguno de sus contactos la adopta).

Capítulo 3. Network Perception in Network Games
En las interacciones estratégicas que tienen lugar entre agentes conectados a través de una red social, las

acciones de los individuos dependen de las acciones de sus vecinos, que a su vez dependen de las de sus vecinos
4En los juegos considerados en este capítulo, los individuos tienen que escoger entre dos acciones: jugar 1 −contribuir al bien

público en el caso de sustitutivos estratégicos y adoptar la tecnología en el caso de complementarios estratégicos− o jugar 0.
Bajo sustitutivos estratégicos (complementarios estratégicos), los agentes juegan 0(1) en equilibrio si esperan que al menos un
vecino jugará 1.
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y así sucesivamente. Por tanto, la información que los jugadores tienen sobre la red en la que están inmersos
tiene una influencia fundamental en su comportamiento y en su bienestar, que pueden verse afectados si dicha
información cambia.

La literatura económica ha analizado tradicionalmente los juegos en redes sociales bajo dos enfoques. El
primero asume que los individuos tienen información completa sobre la red de la que forman parte. Este
supuesto −considerado por ejemplo en Bramoullé y Kranton (2007), Goyal y Moraga-González (2001) o
Ballester et al. (2006) entre otros− presenta un inconveniente: cuando los jugadores tienen un conocimiento
completo de la estructura social subyacente puede existir una desconcertante variedad de equilibrios, lo que
impide sacar conclusiones sobre la incidencia específica que distintas características de la red tienen en el
comportamiento de las personas. Un segundo bloque de trabajos −entre los que se encuentra, por ejemplo,
Jackson y Yariv (2005; 2007) o Sundararajan (2008)− asume que la información que los individuos tienen sobre
su red se limita a algunas características concretas de la misma. Galeotti et al. (2010), por ejemplo, consideran
un escenario en el que los jugadores conocen su degree (que se interpreta como su tipo) y la distribución del
degree de la red, pero ningún otro aspecto de ésta. Estos supuestos permiten realizar predicciones más
concretas sobre el comportamiento de equilibrio. En particular, Galeotti et al. (2010) muestran cómo, bajo
estas condiciones, las acciones de equilibrio de los jugadores son no crecientes (no decrecientes) en su degree
en juegos de sustitutivos estratégicos (complementarios estratégicos), lo que se traduce en mayores pagos
esperados para los individuos más populares.

Asumir que los agentes tienen tal nivel de desconocimiento de la red es realista en ciertos contextos.
Un individuo puede decidir acudir a un congreso, preparar una oposición, votar a un partido político, etc.
basándose exclusivamente en el número de personas que espera que hagan lo mismo y puede tener información
a este respecto (puede conocer el número de personas que acudió a una edición anterior del congreso, tener
acceso a encuestas de intención de voto, etc.). Sin embargo, este agente puede no ser capaz de deducir otros
aspectos de la red en cuestión a partir de esta información, como, por ejemplo, si las personas que van a
acudir al congreso se conocen previamente, si tienen amigos en común, la distancia en términos de enlaces que
separa a cada una de ellas, etc. En este tipo de situaciones −en las que el conocimiento que los agentes tienen
de la estructura social se reduce a algunos aspectos concretos de la misma− el marco teórico de Galeotti
et al. (2010) es razonable, pues la percepción que los agentes tienen de la red se limita exclusivamente a la
información que poseen sobre la misma.

En muchos contextos de la vida real, la información que los individuos tienen sobre la red en la que están
inmersos no es completa. Sin embargo, suelen conocer la identidad de las personas con las que interactúan y
algunos aspectos de la posición que éstas ocupan en la red. Por ejemplo, pueden saber el grado de popularidad
de sus contactos, si sus respectivos amigos pertenecen a círculos distintos o se conocen entre sí, etc. A partir de
esta información − e incluso cuando es más reducida− los individuos pueden deducir otros aspectos de la red
social que integran y formarse una representación mental de la misma. Pensemos, por ejemplo, en una persona
que se incorpora a una organización. Esta persona puede tener cierta información sobre la red integrada por
los miembros de la organización a la que se incorpora: puede conocer el tamaño de la misma, el número
de trabajadores en cada departamento, su perfil, etc. A medida que interactúa con los individuos, puede
obtener más información sobre la estructura de la red: puede ver quién interactúa con quién, qué personas
coinciden en el mismo horario, quiénes tienen contactos en común, etc. A partir de esta información, este
individuo puede formarse una idea más precisa del entorno social en el que está integrada. En efecto, la
investigación en psicología social muestra cómo esto verdaderamente ocurre: las personas tienden a formarse
una un sociograma mental que captura las relaciones existentes entre los distintos individuos con los que
tratan (Hecker, 1993; Kilduff and Tsai, 2003). En este tipo de situaciones −en las que los individuos pueden
deducir más aspectos de su red a partir de la información que tienen− el modelo de Galeotti et al. (2010) no
parece un reflejo ajustado del conocimiento que los agentes tienen sobre su red social. Surgen entonces las
siguientes cuestiones:

¿Cómo podemos modelar la percepción que los agentes tienen de su red social en este tipo de situaciones?
¿Qué características de la red afectan a la percepción que los individuos tienen de ésta? ¿Qué aspectos
de la red pueden deducir a partir del conocimiento de otros elementos de la misma?

¿Son las predicciones de Galeotti et al. (2010) robustas a cambios sutiles en sus supuestos de informa-
ción? ¿existe un efecto monótono de incrementar la información que los jugadores tienen de la red en
el número y/o estructura de los equilibrios que se pueden alcanzar?
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El presente capítulo trata de dar respuesta a estas cuestiones. Está organizado en dos bloques:

1. Percepción de la red. Analizamos cómo los individuos perciben la red social de la que forman parte
cuando la información que poseen de la misma es limitada. Con tal propósito, consideramos distintos
escenarios de información y exploramos qué aspectos de la estructura social subyacente pueden deducir
a partir de la información que tienen de la red en cada uno de estos escenarios. Comenzamos por un
escenario en el que los jugadores tienen información muy limitada sobre la red que integran −conocen
exclusivamente su degree y la distribución del degree de la red− y a partir de ahí vamos incrementando
la cantidad de información que los agentes poseen. Mostramos cómo distintas redes pueden ser factibles
para los agentes dada la información que poseen en todos estos escenarios y analizamos la distribución de
probabilidad de las mismas. De la misma manera, ilustramos cómo los agentes calculan la probabilidad
de ocupar una determinada posición en la red teniendo en consideración todas las redes que consideran
factibles y su distribución de probabilidad.
Descubrimos una relación entre ciertas nociones de simetría entre nodos, tales como la equivalencia
automórfica (Hanneman y Riddle, 2005) y la equivalencia estructural (Lorrain y White, 1971), y la
percepción de los agentes de su entorno social. Tal relación implica que, bajo todos los escenarios
de información considerados, las personas presentan un sesgo cognitivo hacia estructuras sociales más
asimétricas. Esto es, cuando varias geometrías de red son factibles dada la información de los individuos,
éstos asignan un peso probabilístico mayor a aquellas con un grupo automórfico de menor orden. Este
resultado tiene un efecto en el comportamiento y bienestar de los agentes, como mostramos en la
segunda parte del capítulo.

2. Juegos en redes. Estudiamos las interacciones estratégicas que tienen lugar en la red considerando
el marco teórico desarrollado en la primera parte. Comenzamos por mostrar cómo las predicciones de
Galeotti et al. (2010) se rompen cuando relajamos sutilmente sus supuestos. Cuando los agentes tienen
información sobre su degree y la distribución del degree de la red −y a partir de esta información deducen
la probabilidad de que sus amigos tengan degrees particulares− los equilibrios simétricos pueden ser
múltiples y exhibir diversos patrones. Bajo este escenario de información, los equilibrios simétricos
son iguales en todas las redes con el mismo tamaño y distribución del degree. Sin embargo, dado que
el bienestar alcanzado en estos equilibrios varía dependiendo de la geometría de la red, establecemos
un condición suficiente para que una determinada estructura de red sea eficiente (el bienestar de sus
integrantes sea máximo). Finalmente, ilustramos cómo el hecho de incrementar la información de la
que disponen los jugadores tiene efectos no monótonos en el número y la estructura de los equilibrios.

Las aportaciones de este capítulo son varias:

Caracterizamos formalmente los mapas cognitivos de los individuos sobre la red social en la que están
inmersos a partir de la información que poseen. Nuestro marco contribuye a la literatura existente en
psicología social, sociología (Krackhardt; 1987, Carley; 1986; Michaelson y Contractor, 1992; Freeman,
1992; Kumbasar et al. 1994; Casciaro, 1998; Johnson y Orbach; 2002; Janicik y Larrick, 2005) y economía
(Dessi et al. 2016) en relación a la percepción que los individuos tienen de su entorno social. En
particular, mostramos que algunas nociones clásicas de equivalencia entre nodos son relevantes a la
hora de explicar la percepción que los individuos tienen de sus redes sociales. Probamos que todos los
jugadores tienen creencias simétricas sobre la estructura de la red que componen cuando sólo tienen
información sobre su degree y a la distribución del degree de la red. Sin embargo, esta simetría en la
percepción de la red desaparece a medida que el radio de información de los individuos se incrementa
ligeramente.

El marco teórico propuesto permite analizar las interacciones estratégicas entre jugadores cuando éstos
tienen creencias racionales sobre la posición que sus contrincantes ocupan en la red. En nuestro modelo,
los jugadores creen que sus vecinos presentan atributos particulares (por ejemplo, tienen un cierto de-
gree) con probabilidades que calculan teniendo en cuenta el conjunto de redes factibles y su distribución
de probabilidad. Ilustramos cómo esta diferencia entre nuestro modelo y el de Galeotti et al. (2010)
hace que el equilibrio alcanzado no sea único ni necesariamente monótono no creciente (no decreciente)
en el degree de los jugadores bajo sustitutivos estratégicos (complementarios estratégicos).5

5Galeotti et al. (2010) realizan algunos supuestos respecto a las creencias que los jugadores tienen sobre el degree de otros
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Ponemos de manifiesto los efectos que tiene manipular la información sobre la red de la que disponen los
jugadores en las interacciones estratégicas que tienen lugar en la misma. La introducción de información
incompleta como solución al problema de multiplicidad de equilibrios se ha encontrado con una crítica
fundamental: el resultado alcanzado por los jugadores depende en gran medida de cómo se introduce
esta falta de información −qué aspectos de la red se asume que conocen y cuáles desconocen (Weinstein
y Yildiz, 2007)−. Si bien está crítica podría aplicarse a cualquier juego Bayesiano, el presente capítulo
muestra que es particularmente relevante en los juegos que tienen lugar en redes: dada la interdepen-
dencia que existe entre las distintas medidas de la red, un ligerísimo cambio en la información que
los agentes tienen sobre algún elemento de la misma puede cambiar sustancialmente la percepción que
tienen sobre ésta y por ende, en los equilibrios y el bienestar alcanzados.

Por último, señalamos el papel que el tamaño del grupo automórfico de la red −medida de su grado de
simetría− tiene a la hora de analizar el comportamiento y el bienestar de los individuos cuando estos
interactúan en la misma. Si bien esta propiedad de la red ha tendido a ser ignorada en la literatura de
juegos, este capítulo pone de manifiesto su relevancia a la hora de explicar la percepción que los indi-
viduos tienen de su entorno social, así como las decisiones que estos toman en contextos de interacción
estratégica.

agentes. En particular, prueban que bajo sustitutivos estratégicos (complementarios estratégicos) el equilibrio es monótono no
creciente (no decreciente) cuando todos los jugadores creen que la probabilidad de tener un vecino con un degree alto depende
negativamente (positivamente) de su propio degree, o es independiente del mismo. En este capítulo, analizamos los juegos
relajando estos supuestos.
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Capítulo 1

Are close-knit networks good for
employment?

gsgsg

1.1. Introduction
The key role of social networks in shaping socio-economic phenomena is well documented across a variety

of contexts.1 The importance of social contacts and the architecture of relationships has been particularly
recognized in labor economics as a key source of employment information (Ionamides and Datcher, 2005;
Beaman, 2016). Granovetter (2018) concludes that people rely primarily on contacts when finding a job,
independently of the occupation, skill, location, or socio-economic background.2 Cappellari and Tatsiramos
(2015) estimate that an additional employed friend increases the probability of finding a job by 3.7 %.3
Topa (2001) and Conley and Topa (2002) document geographic, ethnic, and race correlations in employment,
suggesting a network-based flow of information about jobs. Other stream of literature analyzes referral systems
in hiring, reporting a better performance of referred employees (Burks et al., 2015), a higher probability of
being hired (Brown et al., 2016; Pallais and Sands, 2016), and a longer tenure in the firm (Dustmann et al.,
2016). Thus, employers may benefit from the employees network to increase the search efficiency in the hiring
process (Barr et al., 2019).4

Most of the above mentioned literature has focused on the effects of network size, whereas finer details
of network architecture have received less attention. Granovetter (1973) documents that, while 16.7 % of
interviewed individuals report having found their jobs through a strong tie (i.e. someone they saw regularly),
83.4 % found their job through a weak tie (a contact they meet «occasionally»).5 He argues that the strength
of the tie between two individuals is intimately related to the «overlap in their friendship circles», in such a
way that individuals linked through strong ties are expected to have a higher proportion of common contacts,
integrating densely-connected groups deprived of information from other parts of the social system. In the
terminology of this chapter, they are more likely to belong to short network cycles. Weak ties, on the contrary,
may act as bridges between such densely connected neighborhoods, enjoying an advantage for getting novel
information with respect to strong ties. Many studies have tested Granovetter’s argument (see e.g. Killworth
and Bernard, 1974; Friedkin, 1980; Montgomery, 1992) or applied his idea to different frameworks, ranging
from the diffusion of knowledge among organizations (e.g. Hansen, 1999) to innovation or creativity (e.g.
Ruef, 2002 and Baer, 2010). Recently, Gee et al. (2017) have analyzed the role of weak and strong ties in

1See Goyal (2007), Vega-Redondo (2007), Jackson (2010), and Jackson et al. (2017).
2The weight given to the network-driven information differs across these dimensions though. See also Myers and Schultz,

1951; Corcoran, et al. 1980; Marsden and Campbell, 1990; Montgomery, 1991; Marmaros and Sacerdote, 2002; Munshi, 2003;
Franzen and Hangarther, 2006; Pellizari, 2010; and Bentolila et al., 2010, among many others.

3Some studies directly explore the variation of employment status of some network members on other network integrants
(see e.g. Topa, 2001; Bayer et al., 2008; Beaman, 2011; Beaman and Magruder, 2012).

4Beaman et al. (2018) identify a potential cause of the different labor outcomes of males and females by documenting a
significant tendency of men to refer few women, compared to men.

5Granovetter (1973) defines the strength of a tie as the «amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services which characterize the tie».
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job search. Using data on six million Facebook users and creating a proxy for job help by identifying people
who eventually worked for the same employer as a pre-existing friend, they report that people are more likely
to find a job through a weak tie because of their relatively large number, but strong ties are individually
more beneficial at the margin. Note that they measure tie strength between two agents as the number of
friends they have in common, or−alternatively−the number of triangles, in which both participate.6 This
evidence notwithstanding, little is known about what drives this strength of weak ties phenomenon. Is this
effect driven solely by the differences in the content of the information, or is it partly due to the different
network embeddedness of weak vs. strong ties?

This chapter analyzes theoretically whether close-knittedness influences employment prospects and wages
of individuals and groups. Close-knit neighborhoods, one of the most prevalent features of real-world social
networks (Jackson and Rogers, 2007; Jackson, 2010), are characterized by high transitivity of relationship:
friends of friends are typically friends; and so are friends of friends of friends, and so on. In network ter-
minology, highly clustered networks contain a large number of triangles, squares, and other short network
cycles.

To study the role of short cycles in the flow of job market information, we build on a model develo-
ped by Calvó-Armengol (2004) and Calvó-Armengol and Jackson (2004, 2007).7 People are distributed on a
network and employed individuals who hear about vacancies pass the information on to their unemployed
network neighbors.8 Calvó-Armengol (2004) shows that higher degree and lower second-order degree increase
the individual probability of employment and detects a non-monotonic effect of shifts of the degree distri-
bution on employment in cycle-free regular networks. Calvó-Armengol and Jackson (2004) study patterns
of correlations from a dynamic perspective. They show that such a network model generates unemployment
correlations across time and path-connected individuals, exhibits duration dependence and persistence, and
allows to understand inequalities and drop-out decisions.9 Calvó-Armengol and Jackson (2004) provide seve-
ral examples suggesting that other network features might play a role, but they do not isolate their effects
formally. Last, Calvó-Armengol and Jackson (2007) analyze wages in a similar model. Our contribution to
this literature is to model explicitly the role of local network density of links, measured by the presence of
short cycles, isolating their effect from that of the first- and second-order degree.

We report two sets of results. The first result has implications that go beyond the labor-market application
of this study: we show that short network cycles generate stochastic affiliation in diffusion processes.10 More
precisely, if two friends of individual i are friends or have another common friend, the information flows
from these two friends to i are schochastically affiliated even in a one-period model, whereas these flows are
independent if they are connected neither directly nor indirectly in any other way.11 This implies that the
diffusion does not only depend on the number of first- and second-order connections but also on the geometry
created by these links. Thus, two neighborhoods or two networks where the players have the same number
of first- and second-order neighbors (i.e. the same joint distribution of degree and second-order degree) but
differing clustering patterns induce different diffusion dynamics and thus different employment and wage
distributions. Since this result is fairly general and does not rely on many of the model assumptions, our
work provides a microfoundation for why short networks cycles, namely triangles and squares, shape diffusion
on networks.

Our second set of results concerns the micro- and macroeconomic implications of short network cycles.
We prove that, ceteris paribus, people involved in three- or four-cycles have worse employment prospects. The
intuition stems from information affiliation: stochastic affiliation increases the probability of mismatch bet-
ween vacancies and job candidates, leading to diffusion inefficiencies. That is, network cycles are a source of
labor-market frictions when employers rely on referrals. Our numerical simulations show that this result per-
sists in the steady state of a dynamic Markov chain. In the long run, network cycles organize the employment

6Bian et al. (2015) show empirically that weak ties are better able to provide job information than strong ones, but strong
ties are better at mobilizing diverse forms of favoritism that is particularly relevant for high-earning positions.

7Calvó-Armengol (2004) and Calvó-Armengol and Jackson (2004, 2007) have in turn been partially inspired by the early
contributions of Boorman (1975) and Diamond (1981).}

8See also Montgomery (1991). Galeotti and Merlino (2014) model endogenous formation of networks.
9Unemployed agents obtain more (less) information when their contacts are employed (unemployed), giving rise to robust

forms of correlations in wages and employment status of path connected agents.
10Stochastic affiliation is a strong form of correlation; see Section 1.3.1 for a formal definition.
11Some results in Calvó-Armengol (2004) and Calvó-Armengol and Jackson (2004, 2007) rely on the assumption that the

inflow of information from two neighbors of i to i is independent. Our contribution is to show that this assumption fails even in
the static model if the two neighbors are connected or if they share a friend j ̸= i. We further explore the consequences.
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probabilities in the sense of the first-order stochastic dominance. People in densely-knit neighborhoods have
lower employment prospects than individuals in comparable positions and close-knit networks exhibit higher
unemployment rates than more loosely-knit societies with the same joint distributions of first- and second-
order degrees. Hence, short network cycles have important short- and long-run consequences for inequality
within and across networks. We further show that economically relevant and statistically strong effects are
exclusively limited to short cycles in our model. Importantly, none of these results relies on spatial segregation
of low- and high-clustering people. Although spatial correlations in the employment of path-connected people,
characterized in Calvó-Armengol and Jackson (2004, 2007), weaken the negative impact of short cycles in
integrated societies, we show that their detrimental role can persistent in the steady state. Hence, policies
aiming at the integration of dense and loosely-knit agents may have a limited effect.

These findings extend for wages. Leaving constant other network features, three- and four- cycles reduce
the expected wage of agents involved in these cycles. However, this negative effect is driven by the unemploy-
ment probability. Conditional on having a job, the expected wages of individuals involved is short cycles are
actually higher. The affiliation of information flows increases the probability of multiple job offers in dense
neighborhoods but such multiplicity is not longer redundant if we analyze wages: multiple job offers allow
agents to select among offers with different wages if unemployed or accept better-paid jobs if employed. Hence,
the direction of the effect of short network cycles may vary in function of one’s socio-economic environment.

Short network cycles further affect other features of the employment dynamics. Most importantly, they
increase serial correlations of employment. This has two implications. Firstly, since the variability of the
steady-state employment is virtually unaffected by network cycles but serial correlation increases conside-
rably, the fluctuations of employment within denser neighborhoods or in closely-knit societies exhibit larger
amplitude. This effect is generated by a combination of factors. First, network diffusion generates employment
time correlations, as well as correlations between connected nodes. Employed friends maintain their contacts
employed due to the diffusion channel, while unemployed agents make their contacts more vulnerable (Calvó-
Armengol and Jackson, 2004). However, the affiliation in job-market information flows caused by network
short cycles reinforces these effects and extends them to network neighborhoods. On the one hand, it slows
down the transition between different employment states: it maintains employment within cycled groups of
employed individuals while it also perpetuates unemployment in unemployed cycled neighborhoods. On the
other hand, the spatial correlation makes the transition from employment to unemployment in a neighbor-
hood more difficult. However, if several members of an employed neighborhood lose their job, they make their
circles more vulnerable and drag the whole neighborhood towards unemployment; in contrast, if a positive
shock hits an unemployed neighborhood the network externality spills over more easily in cycled neighbor-
hoods. The combination of these factors results in longer, more persistent employment fluctuations, with
more pronounced booms and troughs in closely-knit neighborhoods and networks. Secondly, the combination
of higher time persistence of employment and labor market transitions with lower unemployment causes that,
even though the probability of maintaining a job is unaffected, the likelihood of remaining unemployed across
periods is enhanced by close-knittedness.

The findings of this chapter have important implications for two fields, labor economics and network
theory. As for the former, we deepen our understanding of the micro- and macroeconomic effects of social
networks in labor markets and the economy as a whole. First, we uncover one possible mechanism behind
the strength of weak ties (Granovetter, 1973): since weak connections are less likely to be embedded in short
cycles,12 the strength of weak ties lies not only on the informational content but also on the lack of correlation
in the information they provide.13 Granovetter’s (1973) argues that the benefits of weak ties derive from their
ability to transmit information to larger audiences and to provide novel information. We show that individuals
immersed in loose-knit communities may enjoy information advantages even when they are in contact with
the same number of people and when the kind of information they receive is of the same nature as in highly
cohesive neighborhoods. Thus, weak ties might be relevant not solely because of their bridging role, but due
to their capacity to provide independent information.

12Granovetter (1973) argues that «transitivity, (...), is claimed to be a function of the strength of ties, rather than a general
feature of social structure». According to Marsden and Campbell (1984), the overlap of social circles is a particularly good
measure of the strength of a tie. Louch (2002) indeed observes that when two contacts of an individual speak to each other
frequently or know each other for a long time, i.e. they can be thought of as strong ties according to Granovetter (1973) definition,
the probability that they are mutually linked increases by 178 % and 278 %, respectively.

13Conversely, this mechanism provides a rationale behind the structural holes argument of Burt (2005): one of the advantages
of bridging holes is the diversification of information flows from otherwise disconnected parts of the network.
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Second, taking into account that the empirical evidence consistently corroborates that real-life labor
markets heavily rely on employee referrals, we show that short network cycles−and consequently, the clus-
tering coefficient, social cohesion, and network close-knittedness−are important determinants of individual
and aggregate labor-market performance. Short cycles affect inequality and they may be a relevant source of
labor-market frictions. They reinforce the propagation of idiosyncratic shocks, shaping labor fluctuations over
time and space in our model. The detected impact is particularly in line with the literature that shows that
search frictions lead to sluggish aggregate employment dynamics and labor market churning (e.g. Pissarides,
1985; Bentolilla and Bertola, 1999; Mortensen and Pissarides, 1999; Burgess et al., 2001). There is a literature
on how unemployment entry and exit rates are affected by personal characteristics, such as education (Maar-
ten and Wolbers, 2000); Calvó-Armengol and Jackson (2004) position networks among the determinants. We
identify another source of sluggishness: the geometry of one’s social environment. This channel deserves a
deeper empirical investigation. More generally, since employment fluctuations and employment transitions are
strongly correlated with business cycles and aggregate macroeconomic volatility cannot be explained without
consideration of labor-market fluctuations (Kydland, 1995; Mortensen and Pissardies, 1999), our results may
contribute to the understanding of key stylized facts of macroeconomic dynamics.

Last, we add a new potentially negative aspect to the list of economic consequences of recruitment process
that rely on employee referrals. Calvó-Armengol (2004) shows that popular friends and too much connectivity
in a network may be detrimental and Calvó-Armengol and Jackson (2004, 2007) implies that, under employee
referral programs, initially disadvantaged groups are persistently worse off. Munshi and Rosenzweig (2006)
report that networks may prevent people from exploiting new opportunities. We show that, apart from
connectivity, network cohesion contributes to inequality and lead to labor-market search inefficiencies.

As for network theory, we provide three novel insights. First, we show that network close-knittedness
goes beyond the clustering coefficient as both the number and the organization of cycles of different lengths
determine to what extent one benefits from the social capital embedded in social structures. Triadic closure
and clustering (i.e. cycles of length three) have received a great deal of attention in the literature across
fields. Our focus on cycles links naturally two concepts based on triangles, the clustering coefficient and the
concept of network support proposed recently by Jackson et al. (2012). However, both concepts ignore the
role of longer cycles in shaping socio-economic phenomena. We show formally that cycles of length larger
than three also play a role and why.

Second, numerous studies across fields suggest that local clustering may affect diffusion on networks (e.g.
Calvó-Armengol and Jackson, 2004; Centola, 2010; Acemoglu et al., 2011; Campbell, 2013). However, it is
difficult to disentangle the effect of clustering from that of other network features, which is a stumbling block
for any causal claims regarding the effect of short cycles and for a microfoundation of their role in network
processes. Since the transmission of information in this chapter resembles the network diffusion of many
other phenomena, our results may have implications beyond the labor market literature. We show formally
that clustering matters keeping constant the first- and second-order degree distributions−the two features
typically considered in the diffusion literature−and that short network cycles induce correlation in diffusion.
Since cycles already impact diffusion in our static, one-period model, they will likely play a relevant role
in the dynamics of other network phenomena and abstracting from them may thus provide an incomplete
picture of the mechanisms behind network diffusion.

Last, we contribute to the long-standing debate in economic sociology regarding whether dense neighbor-
hoods are beneficial or detrimental (Burt, 2001, 2009; Jackson et al. 2017).14 We report that, even in the
same context, the answer depends on the particular question: close-knittedness may be both beneficial and
detrimental and both directions coexist even in the same network and application. More precisely, network
cohesion may be beneficial in well-off neighborhoods that are successful maintaining high employment and
in times of high employment whereas it may hurt the same people in times of economic unease.

The chapter is organized as follows. Section 1.2 presents the model. Section 1.3 analyzes the static version
of the model while the dynamic analysis can be found in Section 1.4. Section 1.5 introduces wages into the
model. Finally, Section 1.6 concludes.

14Relationships in close-knit networks are typically stronger, enabling trust and cooperation (Granovetter, 1973; Burt, 1992;
Coleman, 1988a, 1988b; Bloch et al., 2008; Lippert and Spagnolo, 2011; Jackson et al., 2012). However, close-knit networks
inhibit the flow of novel information and individuals in tight neighborhoods may receive redundant information (Granovetter,
1973, 2005; Burt, 2001, Blau, 2017).
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1.2. Model
To study the role of short cycles in labor markets, we build on the model of Calvó-Armengol (2004) and

Calvó-Armengol and Jackson (2004, 2007). First, we present and analyze the static, one-period version of
the model where we introduce and consider the impact of short cycles. See Section 1.4 for the analysis of the
dynamics and long-run consequences.

1.2.1. The network
People are distributed on an undirected fixed network that is used to disseminate information about job

openings. The network g = (N,E) is characterized by a set of nodes N = {1, .., n} and a set of edges or links
E between them. We write gij = 1 if individuals i and j are directly linked in g and gij = 0 otherwise. Let
A = (gij)i,j∈N be the n× n symmetric adjacency matrix of the network, with gii = 0. To simplify notation,
we sometimes denote a link between i and j by ij. G is the set of all feasible networks.

The set of i’s direct contacts in g is defined as Ni(g) = {j ∈ N : gij = 1}; let ni(g) = |Ni(g)| be the (first-
order) degree of individual i. Analogously, denote the set of i’s second-order or indirect neighbors (neighbors of
i’s neighbors) as N2

i (g) = {k ∈ N : gijgjk = 1 for some j ∈ N , i ̸= k} and n2
i (g) =

∣∣N2
i (g)

∣∣. Observe from the
previous definitions that Ni(g) and N2

i (g) may have a non-empty intersection; that is, some contacts of i may
simultaneously be i’s indirect contacts. For a pair of nodes i and j, define Nij(g) = {k ∈ N : k ∈ Ni(g)∩Nj(g)}
as the set of common contacts of both i and j, with nij(g) = |Nij(g)|. The set of contacts of i that are not
shared with j is Ni−j(g) = Ni(g)\Nij(g), with ni−j(g) = |Ni−j(g)|. Distance between nodes i and j in
network g is the length of the shortest path between them, denoted as dij(g). Naturally, dij(g) = 1 if ij ∈ E,
dij(g) = 2 if there is k ∈ N such that ik, kj ∈ E but ij /∈ E, and so on.

This work focuses on the effect of cycles on the probability of receiving information about job vacancies
through network contacts.

Definition 1 (Cycle). A K−cycle ZK(g) is a sequence of distinct nodes i1, i2, . . . , iK−1, iK , such that K > 2,
gikik+1 = 1 for each k ∈ (1, . . . ,K − 1), and gi1iK = 1.

In words, a K−cycle in a network g is a sequence of K linked nodes starting and ending in the same node. A
cycle may be equivalently defined as the set of edges. For example, a three-cycle or a triangle is a path passing
through three edges: ij, jk, ki. Equivalently, we may refer to a triangle as the sequence {i, j, k}.15 Analogously,
a four-cycle or a square is a path through four edges ij,jk,kl,li or a sequence {i, j, k, l}. We denote SS(g) the
set of all three- and four-cycles and SL(g) the set of all K-cycles for K > 4 in g; S(g) = SS(g) ∪ SL(g) thus
corresponds to the set of all K-cycles in g. Last, Si

S(g), Si
L(g), and Si(g) are the sets of the corresponding

cycles, in which i is involved.
The clustering coefficient of individual i is the fraction ofi’s direct contacts who are neighbors themselves.

In the above terminology, the coefficient measures the number of triangles in i’s neighborhood divided by the
number of all possible triangles among all i’s contacts. Formally,16

Ci(g) =

∑
j ̸=i;k ̸=j;k ̸=i gijgikgjk∑
j ̸=i;k ̸=j;k ̸=i gikgij

Clustering coefficient reflects the density or closeknittedness within a node’s neighborhood; when the coeffi-
cient is high, the neighborhood is densely interconnected because most of i’s contacts are linked. The average
clustering coefficient of network g is simply C(g) = 1

n

∑n
i=1 Ci(g) and measures the overall level of local

density within the network.
Note that the clustering coefficient counts the triangles but abstracts from longer cycles. Lind et al. (2005)

propose a coefficient that keeps track of the fraction of four-cycles as follows:

C4
i (g) =

∑
gijgjmgmkgik∑
gijgikgjm

15In graph theory, the term n-cycle is sometimes used as a description of a circle network of n nodes. In Figure 1.2, gb and gc
would be examples of three- and four-cycles, respectively, under that terminology. In this chapter, cycles may also represent a
part of more complex architectures, rather than the whole network.

16The coefficient is not defined for ni(g) < 2. In such a case, some authors consider clustering to be equal to zero (e.g.
Vega-Redondo, 2007), while others leave it undefined.
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where i, j, k and m are nodes of the network. For node i, the number of squares is given by the number of
common neighbors among i’s contacts (i.e. that is sequences {i, j, k,m} such that gijgjmgmkgik = 1). Again,
C4(g) = 1

n

∑n
i=1 C

4
i (g).

A distinct but related concept is support, proposed by Jackson et al. (2012): A link jk is supported if
∃ i ∈ N : i ∈ Njk(g); the link is unsupported if Njk(g) = ⊘. A link jk is supported by i if i ∈ Njk(g); the
link is unsupported by i if i /∈ Njk(g). The more links are supported by i, the higher is i’s embeddedness.
Hence, network support is another measure of close-knittedness, but it differs from the clustering coefficient
(see Jackson et al., 2012).

Certain network architectures play a particular role in our analysis. First, a tree is a network with no
cycles of any length; that is, S(g) = ∅ and Ci(g) = C4

i (g) = 0 for each i ∈ N . A cycle network is the only
graph of n nodes and n links containing one n-cycle. In Figure 1.2, networks gb− gd depict a triangle, square,
and pentagon, respectively; network gg represents a hexagon. A regular network is a network in which |ni(g)|
is equal for all i ∈ N ; a regular network is symmetric in the number of direct and indirect contacts of each
individual but not necessarily in other network features.17 A special case of regular network is a vertex-
transitive network, where no node can be distinguished from any other based on its neighborhood since they
all have a structurally identical neighborhood, second-order neighborhood, and so on. There are several formal
definitions of these networks (see e.g. Weisstein, 2016), but an important property of these graphs is that
each node occupies a structurally equivalent position in the network.18 Hence, every vertex-transitive graph
is regular, and each node has the same degree, second-order degree, and the clustering coefficient. However,
the converse is not true; not all regular networks are vertex-transitive, and not all networks in which all nodes
have the same clustering coefficient are vertex-transitive. For instance, every node in a network may have
the same number of links but they can still differ in other characteristics, such as the clustering coefficient
or global centrality. Examples of vertex-transitive networks include empty and complete networks, circles,
cubes, many lattice networks, and Caley graphs. Figure 1.1 displays examples of vertex-transitive networks;
all nodes in the five networks occupy an identical position. In case of the first three networks, all vertices
have four connections and twelve second-order neighbors, but the number of triangles involving a given node
increases from zero in case of the leftmost network to two in case of the middle network. The fourth and fifth
networks are also vertex-transitive with ni(g) = 4 for all i, but each node is involved in several three- and
four-cycles. To see the difference between clustering and support, note that the clustering coefficient of each
node increases from zero to one as we move from the left to the right. Nevertheless, the support is already
maximal in the third and fourth networks where every single edge is supported, while the clustering is lower
than one in these networks because each node has contacts who are not connected.

Figure 1.1 Vertex-transitive networks with degree four but increasing clustering from the left to the right.

1.2.2. Information flows
In our model, initially each worker is employed.19 Then, every agent looses her job with probability

b ∈ (0, 1). Afterwards, each node may hear about a vacancy with probability a ∈ (0, 1), regardless of her
17Some authors call regular networks symmetric (e.g. Calvó-Armengol, 2004). However, the term symmetric network exists in

graph theory and it is more restrictive than regularity.
18In fact, vertex-transitive graphs are also called node-symmetric (Chiang and Chen, 1995), a name that reflects better the

main feature of these networks.
19This assumption is inconsequential. All the results hold if all people start with the same probability of being employed.
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employment status. We assume that all jobs are identical.20 Loosing the job and hearing about a vacancy
are independently distributed and independent across individuals.

At this point, each worker can be in one out of four possible situations or status:

1. Status 1. Each person is employed and has heard about a new job with probability α = a(1− b).

2. Status 2. She is unemployed and has not heard about any offer with probability β = b(1− a).

3. Status 3. She is unemployed but has heard about an offer with probability δ = ab

4. Status 4. She is employed with no offer to pass to contacts with probability γ = (1− a)(1− b).

We label these different status as 1 to 4 respectively, and define the random variables Xi
1(g), Xi

2(g), Xi
3(g), Xi

4(g)
as the number of i’s contacts who are in each status. Particular realizations of these variables are denoted as
xi
1(g), xi

2(g), xi
3(g) and xi

4(g), with xi
1(g)+xi

2(g)+xi
3(g)+xi

4(g) = ni(g). Similarly, the variables Xjk
m (g) and

Xj−k
m (g) measure respectively the number of agents in Njk(g) and Nj−k(g) who are in status m ∈ {1, 2, 3, 4};

xjk
m (g) and xj−k

m (g) denote again their realizations. Define Y s
i (g) a random variable, such that ysi (g) = 1 if i

is in state s = {1, 2, 3, 4}; ysk(g) = 0 otherwise. Unemployed individuals who hear about a job (those in status
3) immediately accept the offer. Workers who are employed and have heard about a vacancy (in status 1)
pass the offer to one of their unemployed neighbors (in status 2) uniformly at random. As a result, status 1
and 2 play a key role in our analysis.

The model assumes that all agents at any point in time have perfect information about the labor status
of their direct contacts.21 Observe that only individuals in state 1 can pass an offer to one of their direct
contacts in status 2 (i.e. those who lost their job but have not heard about any offer) who immediately accepts
the offer. Therefore, an individual’s contacts who are in status 1 will be called potential providers and her
second-order contacts (the contacts of her contacts) who happen to be in status 2 will be named competitors.
By construction, it is possible that an individual in status 2 simultaneously receives several offers from her
different contacts. In such a case, she accepts one of them at random and the others remain unfilled. These
redundant offers may generate search frictions in the labor market.

Assume that node i is unemployed. We represent the information flow from j ∈ Ni(g) to i through a
random variable Iij(g) taking value 1 when i receives information from j and 0 otherwise. Iij(g) is a function
of the state of j and j’s network position. First, it depends on whether j is in state 1 (a provider), an event
with probability α. If so, she passes an offer to one of her unemployed neighbors with equal probability. Thus,
i receives an offer from j with probability 1

Xj\i
2 (g)+1

, where Xj\i
2 (g) denotes the number of j’s contacts other

than i who are in state 2. Then,

Iij(g) =

⎧
⎪⎪⎨

⎪⎪⎩

1 with probability
(

α

Xj\i
2 (g)+1

)

0 with probability
(
1− α

Xj\i
2 (g)+1

) (1.2.1)

1.2.3. The probability of receiving an offer through the network and the unem-
ployment rate

Denote P i(g) the probability that node i receives a job offer from at least one neighbor in network g when
she is is status 2 (i.e. unemployed). With this notation, we can write the employment probability of node
i as Ei(g) = (1 − b) + ba + b(1 − a)P i(g), which can be interpreted as the individual employment prospect
in network g. The employment rate of the network is E(g) = 1

n

∑
i∈N Ei(g); the unemployment rate is thus

U(g) = 1− E(g).
20In Section 1.5, we relax this assumption and allow for wages to differ across jobs.
21In Calvó-Armengol (2004), employed individuals with a job offer pass the vacancy to one of their contacts who lost their job.

Unemployed individuals may have later received an offer but this is not observed by other agents. Though this is not explicitly
stated, it can be seen in the proof of his Proposition 1, where the decision to pass information depends on b instead of β. We
change slightly this assumption and assume that the decision depends on β. If we maintained the assumption of Calvó-Armengol
(2004), our results would in fact be reinforced.
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Since a and b are exogenously given and the same for all individuals, the only difference in (un)employment
rates across nodes and networks arises from P i(g) so we analyze how this probability depends on network
cycles.

P i(g) depends on the employment status of i’s direct and indirect (second-order) contacts. The status of
i’s direct neighbors determines the number of i’s potential providers, Xi

1(g), while the status of the contacts
of the potential providers determines the number of competitors (Xj\i

2 (g)) and thus the probability with
which any potential provider j passes an offer to i (see (1)). As we show below, both three- and four-cycles
affect the probability with which i receives at least one offer through her contacts.

Assume that y2i (g) = 1 and y1j (g) = 1, j ∈ Ni(g). Since each node k ∈ Nj(g) \ i may be unemployed (that
is, in status 2) with probability β, the probability that i does not receive any offer from j is22

qj(nj(g)) =

nj(g)−1∑

h=0

(
nj(g)− 1

h

)
βh(1− β)nj(g)−1−h h

h+ 1
(1.2.2)

In a similar vein, the probability that i does not receive any offer from j, conditionall on knowing the
status of k ∈ Nj(g) \ i, is

qj(nj(g) | y2k(g) = x) =

nj(g)−2∑

h=0

(
nj(g)− 2

h

)
βh(1− β)nj(g)−2−h h+ x

h+ x+ 1
(1.2.3)

Expressions (1.2.2) and (1.2.3) directly lead to the following claim:

Claim 1. (Individual Probability). Assume that y2i (g) = 1 (unemployed) and let y1j (g) = 1 for a node
j ∈ Ni(g) (potential provider of i). Then, qj(nj(g)) is increasing in nj(g) and independent of network cycles,
and qj(nj(g) | y2k(g) = 1) > qj(nj(g) | y2k(g) = 0) = qj(nj(g)− 1).

Claim 1 illustrates first that the probability with which i does not receive any offer from a particular
provider j (or, conversely, the probability that she does, i.e. 1 − qj(nj(g)) only depends on the number
of (potential) competitors in j’s neighborhood and this probability is not affected by the presence of cycles
within i’s or j’s neighborhoods. Hence, network cycles do not affect the individual decision to pass information
about jobs. However, Example 1 below illustrates that cycles do affect the probability of getting an offer from
at least one contact, altering one’s employment prospects. Second, Claim 1 shows how knowing the status of
a neighbor of a neighbor affects this probability and that knowing that one neighbor does not need a job is
equivalent to having one competitor less. These latter results play a key role if a neighbor of a neighbor can
simultaneously be a direct neighbor.

Example 1 (Effect of short cycles). Consider networks gb, gc, ge, and gf in Figure 1.2 and assume that
y2i (g) = 1 in each network. The probability that node 1 receives a job offer from at least one neighbor in
network g, P 1(g), satisfies the following:23

P 1(ge) > P 1(gc) > P 1(gb) (1.2.4)

Note that node 1’s degree is the same in the three networks, while her second-order degree is the same in
networks gb and ge but lower in gc. However, individual 1 is more likely to be employed in the tree network
ge, followed by the square network gc, as compared to the triangle network gb even though the number of
competitors is the same in the first two networks and even though node 1 has one competitor less in gc than
in ge. Similarly, P 1(gf ) may be larger or lower than P 1(gb), depending on the parameters. If, say, α = 0.9 and
β = 0.01, P 1(gf ) = 0.9886 > P 1(gb) = 0.9810, despite the fact that the number of 1’s potential competitors
is greater in gf than in gb. !

Claim 1 and Example 1 jointly deliver several messages. First, the geometry of network neighborhoods
affects the probability of receiving a job offer, beyond the number of first- and second-order neighbors. We

22Since qj(nj(g)) is identical for any k ∈ Nj(g) including i, we do not index this probability by i throughout the chapter to
simplify the notation.

23Detailed calculations can be found in Appendix.
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particularly point to the role of short cycles. Since Claim 1 shows that their presence does not affect the
probability of receiving an offer from one particular individual, their role in Example 1 stems from the lack
of independence of information flows coming from different contacts j and k if they belong to a cycle with
i (operationalized by a multivariate random variable

(
Iij(g), I

i
k(g)

)
. The example particularly suggests that

network cycles affect individuals negatively and their length may matter. Last but not least, the impact of
cycles is economically relevant: their effect in Example 1 rivals with that of two-link-away connections. We
formalize these observations in the next section.

1.3. Results

1.3.1. Cycles and affiliation of information flows
In cycle-free networks (e.g. trees), Ni(g) ∩ N2

i (g) = ∅ and Njk(g) = {i} if j, k ∈ Ni(g), implying that
information flows from neighbors j and k to i are independent. The probability that neighbor j passes an
offer to i depends on j’s status and on Xj\i

2 , but it depends neither on the status of any other k ∈ Ni(g) nor
on the status of any second-order contact s ∈ Nk(g) \ i, k ̸= j.

In contrast, if j, k ∈ Ni(g) and jk ∈ E (i.e. j and k form a three-cycle with i), the information flow
from j to i depends on both j’s and k’s status and, similarly, that from k depends on k’s and j’s status.
More precisely, the probability that j transmits information about a job opening to i depends on whether j
is employed and possesses such information and on whether k also needs a job. If k does, k will provide no
information to i and this is independent of cycles. However, since j and k are friends, k now competes with i
for information from j, decreasing i’s probability of receiving information from j. Such indirect effect of the
status of k on P i

j (g)−and thus on P i(g)−is a direct consequence of the cycle {i, j, k}. This indirect effect is
missing when j and k do not belong to any short cycle with i.

Similar dependence appears when j and k belong to a four-cycle together with i. If a four-cycle {i, j, s, k}
is present, the lack of independence in information flows from j and k to i comes from the fact that the
probabilities of receiving a job offer from each of them depend on a common variable, the status of individual
s.

We formalize these statements using the concept of stochastic affiliation:2425

Proposition 1 (Affiliation). Assume y2i (g) = 1 and consider j, k ∈ Ni(g).
(a) Iij(g) and Iik(g) are strictly affiliated if either Si

S(g) = {i, j, k} or Si
S(g) = {i, j, s, k} for one s ̸= i, j, k.

(b) Conditional on the status of j’s and k’s neighbors who form three or four-cycles with i, Iij(g) and Iik(g)
are conditionally independent.

Strict affiliation in information flows from node i’s potential providers implies that, conditional on receiving
an offer from a provider j with high probability, the probability that i receives another offer from a provider
k increases if the two providers are connected directly or through another node s ̸= i.

We illustrate the intuition behind the proof using an example. Consider a triangle network gb in Figure
1.2 composed of individuals i, j, and k and assume that node i is unemployed. Denote f(Iij(gb),Iik(gb)) the
joint density function of Iij(gb) and Iik(gb). First, consider that j ∈ Ni(g) is employed and hears about an open
position; this happens with probability α. Only j will pass information to i, but not k, when k is employed
but does not have information about other jobs, an event that has probability 1−α− β. Node j transmits a
job offer to i with probability 1 in such a case. In contrast, i only receives a job offer from j with probability
1
2 if k needs a job and thus competes with i for j’s information, an event that has probability β. As a result
and due to the network symmetry,

f(1, 0) = f(0, 1) = αβ
1

2
+ α(1− α− β).

24This concept was introduced to economics by Milgrom and Weber (1982). Two random variables are affiliated if, conditional
on observing a low (high) value of one variable, the probability of observing a low (high) value of the other variable increases.
Formally, two random variables X and Y are affiliated if for all x < x′ and for all y < y′ :

f(x′, y) ∗ f(x.y′) ≤ f(x′, y′) ∗ f(x, y)

where f(x,y) is the joint density function of variables X and Y . Since two independent random variables are affiliated according
to the above expression, we say that two variables are strictly affiliated if the condition holds with strict inequality.

25All proofs are relegated to Appendix.
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Second, i receives no offer from any of her neighbors if either none of them has any information to pass or
one of them does but passes it along to a competitor, leading to

f(0, 0) = (1− α)2 + 2αβ
1

2

Last, a node does not lose the job and hears about a vacancy with probability α. Therefore, i might receive
two offers from both j and k with probability f(1, 1) = α2.

Note that

f(1, 1) ∗ f(0, 0) = α2
(
(1− α)2 + αβ

)
> α2

(
(1− α− β) + β

1

2

)2
= f(0, 1) ∗ f(1, 0)

(1− α)2 + βα > (1− α)2 − β(1− α− 1

4
β),

which implies that Iij(gb) and Iik(gb) are strictly affiliated.
To illustrate the case of a four-cycle, consider the four-node network gc in Figure 1.2 and take the

perspective of a node i with Ni(gc) = {j, k} and N2
i (gc) = {s}. In this example, it cannot happen that i

receives an offer with probability 1 from j and with probability 1
2 from k, or viceversa. If y2s(gc) = 0 (i.e.

s does not need a job), both potential providers j and k can only pass a job along to i with probability 1.
Conversely, if y2s(gc) = 1, both potential providers j and k will pass information to i with a lower probability
1
2 . Hence, the probabilities that each of the two neighbors of i pass information to her are not independent.

Figure 1.2 Networks with different local connectivity and clustering patterns

Part (b) of Proposition 1 shows that the affiliation in the information flows is the only reason for such
dependence. Once we condition on the status in the corresponding neighborhoods, the information flows
become independent.

1.3.2. Effects of cycles on employment
Proposition 1 shows that network cycles generate affiliation in information flows but provides no predic-

tion concerning the direction of the effect. Calvó-Armengol (2004) shows that, within cycle-free networks,
direct contacts are beneficial whereas second-order contacts are detrimental for the individual probability of
employment. However, example 1 indicates that this does not necessarily hold in networks that contain short
cycles. Let us denote

(
ni(g); {nj(g)}∀j∈Ni(g)

)
as the joint degree distribution of i. The following proposition

characterizes the effects of short cycles, keeping constant the joint degree distribution (i.e. the number of
direct contacts and the number of contacts of her contacts for each i):

Proposition 2. (Effects of cycles). Let g = (N,E) and gx = (Nx, Ex), x ∈ {t, s}, be three networks,
such that N ⊆ Nx,

(
ni(g); {nj(g)}∀j∈Ni(g)

)
=

(
ni(gx); {nj(gx)}∀j∈Ni(gx)

)
for ∀i ∈ N and x ∈ {t, s},

SS(gt) = SS(g) ∪ {i, j, k} and SS(gs) = SS(g) ∪ {i, j, z, k} for some i, j, k, z ∈ N . Then,
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(i) Ph(g) > Ph(gt) for h ∈ {i, j, k} and P f (g) = P f (gt) for all f ∈ N \ {i, j, k}.
(ii) Ph(g) > Ph(gs) for h ∈ {i, j, k, z} and P f (g) = P f (gs) for all f ∈ N \ {i, j, k, z}.
(iii) Ph(gs) > Ph(gt) for h ∈ {i, j, k} and Ph(gs) = Ph(gt) for f ∈ N \ {i, j, k, z}.

Figure 1.3 provides an example of the networks in Proposition 1. Networks g, gt and gs have the same
joint distribution of degree and second-order degree and the set of cycles is the same with one exception: gt
(gs) has one additional triangle (square) compared to g.26

Part (i) indicates that if an individual has the same degree and her neighbors also have the same degrees
in both networks but she is involved in one triangle more in gt than in g (e.g. the case of nodes 1, 2, and 3 in
Figure 1.3), she is less likely to get a job offer through her network contacts in gt. In contrast, the remaining
nodes (i.e. nodes 4− 7 in Figure 1.3) are unaffected by the difference between g and gt. Part (ii) shows that
the same holds for a square but, as Part (iii) indicates, the impact of a triangle is larger that that of a square.

Figure 1.3 Example of g, gt and gs from Proposition 2.

A direct consequence of Proposition 2 for labor-market outcomes is that under the conditions of the
proposition, the rate of employment of i is lower if i belongs to a triangle or square in gt or gs, respectively:
Ei(g) > Ei(gs) > Ei(gt). That is, i is more likely to be unemployed in gx, x ∈ {s, t} than in g and more so if
the additional cycle is a triangle rather than a square, while Ei(g) = Ei(gs) = Ei(gt) for the nodes that are
not involved in any of the additional cycles.

To illustrate the intuition behind the proposition, let us compare a tree network g, in which SS(g) = ∅,
with a network gt such that SS(gt) = {i, j, k}. Let Ni(g) = Ni(gt) = {j, k, v, . . . , z}. Assume ik, ij ∈ E ∩Et,
and jk ∈ Et but jk /∈ E. If i ∈ N is in status 2 (i.e. i needs a job), the probability that she does not receive
any offer from j ∈ Ni(g) is Ri

j(g) = αqj(nj) + (1 − α). In the following illustration, to simplify notation we
omit the superscript i and the dependence on g to write Rj .

Since SS(g) = ∅, the probability that i does not receive any offer from any neighbor in g is simply the
product of the individual probabilities over all i’s neighbors. Therefore, the probability that i receives at least
one offer from her contacts is (see Proposition 1 in Calvó-Armengol, 2004):

P i(g) = 1−RjRkRv...Rz = 1−
∏

h∈Ni(g)

Rh. (1.3.1)

Since the only difference between g and gt relevant for i is that jk ∈ E, Proposition 2 shows Iij(g
t) and

Iik(g
t) are affiliated. As a result, Rjk ̸= RjRk, where Rjk is the probability that i does not receive any offer

neither from j nor from k. Consequently,

P i(gt) = 1−RjkRv...Rn = 1−Rjk

∏

h∈Ni(g)\{j,k}

Rh. (1.3.2)

Note from (1.3.1) and (1.3.2) that P i(g) > P i(gt) if Rjk > RjRk.
26Note that keeping the second order degree constant implies that the number of neighbors of i’s contacts is constant; thus,

whenever the distribution of degree and second order degree is the same in the different networks, the conditions of Proposition
2 hold.}
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Table 1.1 presents the probabilities Rjk conditional on the status of j and k for networks g and gt under
the conditions of Proposition 1.27 The first column of the table lists the four possible combinations of the
status of j and k: both j and k are in status 1 and thus they are potential providers of i (row 1), two cases in
which one of them is a provider while the other one is not (rows 2 and 3), and the fourth situation where none
of them is a provider of i (row 4). The second and third columns, denoted respectively as g and gt, contain
the probabilities that i does not receive any offer neither from j nor k under each scenario in any of the two
networks. The probabilities Rjk are obtained by simply adding up the four expressions in the corresponding
columns.28

Table 1.1 Probability that i does not receive any offer from j, k ∈ Ni(g) in gt and g.

Rjk/status gt g gt − g

j, k providers α2qj(nj − 1)qk(nk − 1) α2qj(nj)qk(nk) α2
[
qj(nj − 1)qk(nk − 1)− qj(nj)qk(nk)

]

j is provider, k not αqj(nj)− α2qj(nj − 1) α(1− α)qj(nj) α2
[
qj(nj)− qj(nj − 1)

]

k is provider, j not αqk(nk)− α2qk(nk − 1) α(1− α)qk(nk) α2
[
qk(nk)− qk(nk − 1)

]

j, k not providers (1− α)2 (1− α)2 0

The last column (labeled gt − g) in Table 1.1 is the difference between these probabilities across the two
networks. If we add up the four rows of this last column, we obtain

Rjk −RjRk = α2
[(

qj(nj)− qj(nj − 1)
)(

1− qk(nk − 1)
)
+
(
qk(nk)− qk(nk − 1)

)(
1− qj(nj)

)]
> 0. (1.3.3)

by Claim 1. Therefore, P i(g) > P i(gt).
Table 1.1 further illustrates how the affiliation affects the information flows from j and k to i. In gt, the

affiliation increases the likelihood that i receives two offers from both j and k or none, while decreasing the
probability of receiving just one offer. When j and k are providers (row 1 in Table 1.1), Rjk − RjRk < 0
by Claim 1. In contrast, two events in Table 1.1 (one neighbor can pass information to i while the other
cannot, corresponding to cases in rows 2 and 3) yield a lower probability of not getting at least one offer in
gt than in g, Rjk − RjRk > 0. Expression (1.3.3) shows that the opposing effects are non-neutral and the
aggregate effect on i is negative (higher probability of not getting at least one offer). In gt, i receives two offers
simultaneously from j and k more often but she can accept only one of the jobs while the other one remains
unfilled. Therefore, short network cycles, by inducing affiliation, increase the likelihood of mismatch between
candidates and jobs; affiliation decreases the employment prospects of people in closely-knit neighborhoods.
In economic terms, transitivity in relationships and overlapping in the neighborhoods of different individuals,
through the effect of affiliation of information flows, prevent an efficient diffusion and generate labor market
frictions.29

The above argument extends naturally when the starting network g is not a tree, and to cycles of length
four. Regarding the former, P i(g) and P i(gt) would be more complex than a product of Rh’s if S(g) ̸= ∅,
but the comparison between the corresponding expressions (1.3.1) and (1.3.2) would again reduce to the
comparison of the probabilities Rjk(g) and Rj(g)Rk(g). As for four-cycles, the argument is the same, except
that the affiliation, and the fact that Rjk(gs) ̸= Rj(gs)Rk(gs), stems from the status of contacts of neighbors
such as s ∈ Njk(gs). If s is employed, her status makes it more likely that both j and k share a job information
with i and when s is unemployed it is more likely that i does not receive any offer from any of them.

Proposition 2 has several implications and raises a few issues that are worth stressing here. First, note
that the above comparison holds both within and across networks. That is, it does not matter whether we
compare two individuals across two networks as in Proposition 2 or two individuals within the same network.

27Appendix A.2. contains the detailed computation of the probabilities in Table 1.1
28Note that Rjk(g) = Rj(g)Rk(g) but Rjk(gt) ̸= Rj(gt)Rk(gt).
29Note that this effect is stronger that a simple diversification argument. A higher probability of receiving two offers or none,

and a lower probability of having just one offer could be equivalent if the individual could benefit more from receiving two offers
than from receiving just one. However, two offers are equivalent to just one offer because the individual can only have one job.
Thus, the negative effect is stronger, because people cannot fully enjoy the advantage of receiving multiple job offers. In other
words, even a slightly risk loving individual would, ceteris paribus, prefer not to be involved in cycles.



CAPÍTULO 1. ARE CLOSE-KNIT NETWORKS GOOD FOR EMPLOYMENT? 29

The reason is that, in the static, one-period version of the model, only the local neighborhood matters. More
precisely, the employment probability of an individual is determined only by the status of agents in her first-
and second-order neighborhood and by the geometry of these local neighborhoods. Therefore, any two nodes
with the same degree, second-order degree, and, say, the same numbers of squares but different number of
triangles could also be compared. The following two remarks clarify this point:

Remark 1. In the one-period model, m-cycles do not affect employment prospects for any m > 4.

Remark 2. In the one-period model, Iig(g) is unaffected by cycles that do not contain i.

It is important to note that none of the above two remarks would hold in a dynamic model (see Section
1.4, where we analyze the dynamics).

Second, what can we say about the unemployment at the network level? Proposition 2 can be interpreted
as an individual as well as a network-level result. Since the employment prospects of agents only differ in the
probability P i(g), the next statement directly follows from Proposition 2:

Corolary 1 (Network level). Consider networks g, gt, and gs from Proposition 2 with N = N t = Ns.
Then, the unemployment rate in each network is such that:

U(gt) > U(gs) > U(g) (1.3.4)

In words, our results allow us to compare two networked societies in terms of unemployment as long as
the assumptions in Proposition 2 hold: when two networks have the same joint degree distribution and they
only differ in one short cycle, the network that contain the cycle has higher unemployment rate and the effect
is stronger for a triangle than for a square.

The above discussion raises a natural question: can we compare two societies if we relax some of the
assumptions of Proposition 2? The answer is no. The following example shows that having the same joint
degree distribution,

(
ni(g); {nj(g)}∀j∈Ni(g)

)
, in both networks is a necessary condition. If we relax this

assumption, for example by only maintaining constant the degree distribution, Proposition 2 may fail to
hold.

Figure 1.4. Networks in Example 2

Example 2 (Equal joint degree distribution as a necessary condition). Consider networks g and g′

in Figure 1.4. Both networks have the same degree distribution, but the joint distribution differs across them.
At the individual level, being involved in more cycles does not necessarily translate in lower unemployment
if the number of direct and indirect contacts is not held constant. For instance, node 1 belongs to the cycle
{1, 2, 3} in network g’ while she is not involved in any cycle in network g. Nevertheless, P 1(g′) = 0.1334 >
P 1(g) = 0.1285 for a = 0.1 and b = 0.2.30 The reason is that node 1 competes with a smaller number

30See Section A.2 for the derivation of all the probabilities.
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of agents in g′ than in g for information and this benefits her more than the harm that comes from the
affiliation induced by the triangle. From the perspective of the entire network, although S(g′) \ S(g) =
{1, 2, 3}, E(g′) = 0.84013 > E(g) = 0.84012 for a = 0.1 and b = 0.2. Hence, having less cycles does not
guarantee lower unemployment if the joint distribution of the direct and two-links-away friends is not held
fixed. !

Example 2 illustrates that, if two networks have the same distributions of degrees and neighbors’ degrees but a
distinct joint distribution of both variables, the (un)employment rates cannot be generally ranked according
to Corollary 1. This is an important observation: Example 2 shows that Proposition 1 and Corollary 1
cannot be generalized by relaxing the assumption of holding fixed the joint distribution of connectivity and
second-order connectivity.
Next we compare specific networks with different clustering coefficient.

Corolary 2 (Vertex-transitive network). Consider two vertex-transitive networks g and g′, with(
ni(g); {nj(g)}∀j∈Ni(g)

)
=

(
ni(g′); {nj(g′)}∀j∈Ni(g′)

)
for ∀i ∈ N . If Ci(g′) ≥ Ci(g), C4

i (g
′) ≥ C4

i (g) for all
i, and at least one of them is satisfied with strict inequality, then U(g′) > U(g).

The corollary is a direct consequence of Proposition 2 and the definition of vertex-transitive networks (see
Section 1.2). Remember that a network is vertex-transitive if all the nodes occupy identical positions. Hence,
they have the same degree, second-order degree, clustering coefficient, global centrality etc. As a consequence,
if we compare two such networks that have the same number of neighbors and number of neighbors’ contacts,
we can compare their unemployment rates in line with both Proposition 2 and Corollary 1. To provide an
illustration, Corollary 2 predicts that unemployment increases as we move from the first to the third network
in Figure 1.1

According to Proposition 2 what matters for labor prospects is the number of short cycles, while we refer
to the clustering coefficients in Corollary 2. Due to the popularity of the clustering coefficient, one may ask
why we do not link unemployment directly to the coefficient in Proposition 2. The main reason is that the
relationship between the number of cycles and the clustering coefficients is not one-to-one. As an illustration,
consider node i in networks ga - gc in Figure 1.5. Although Ci(ga) = Ci(gb) =

1
3 , P i(ga) ̸= P i(gb) because

the two triangles in gb additionally form a four-cycle that affects i’s the information flows and thus the
employment prospects of those involved in the four-cycle. Similarly, C4

i (gb) = C4
i (gc) but P i(gb) ̸= P i(gc).

In vertex-transitive networks to which we refer in Corollary 2, differences in the number of cycles in which
agents are involved are controlled for, since all agents occupy identical positions. The short cycles in their
neighborhoods are then distributed equally. However, more complex architectures contain more complex
interactions between the two clustering coefficients and cycles of different lengths, depending on who is
involved in which cycle. Therefore, we express our main results in terms of additional network cycles to
illustrate their ceteris paribus effect. A result a là Proposition 2 that would link employment to the clustering
coefficient should account for both the number of cycles and their distribution across agents.

Figure 1.5. Relation between short cycles and the clustering coefficients
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1.4. Dynamic analysis
In this section, we examine the long-run consequences of network cycles in labor markets. Calvó-Armengol

and Jackson (2004) showed in a similar model that the unemployment rate is positively correlated across time
periods and path-connected agents, and that there is duration dependence. They further provide numerous
examples illustrating that the network topology shapes the long-run labor-market performance. In this section,
we separate the impact of short cycles on long-run employment and inequality patterns from that of other
network features.

In the proposed setup, time evolves in discrete steps, denoted by t. At the beginning of each period t,
each worker may be employed or unemployed, depending on her employment status in period t − 1. If she
starts employed, she has a probability b ∈ (0, 1) of losing the job. Afterwards, all workers (employed and
unemployed) hear about a vacancy with probability a ∈ (0, 1). As in the static model, losing a job and hearing
about a vacancy are independently distributed and independent across individuals and periods. Afterwards,
unemployed individuals who have heard about a job accept it immediately, while those employed pass it
along to one of their unemployed connections at random.

We again assume that, at t = 1, all nodes start being employed.31 The only difference between the first and
the subsequent periods is the initial employment status; in subsequent periods, not necessarily all individuals
are employed at the beginning of the period, but they may bring unemployment from the previous period.

Let the state at the beginning of period t be the vector st = (E1t, . . . , Ent), where Eit = 0 if node i is
unemployed when period t starts and Eit = 1 if she is employed. Each state st has an associated employment
rate Et =

∑
Eit

n and unemployment rate Ut = 1 −
∑

Eit

n . From t = 2 on, the state st will be determined by
the parameters a and b, the network architecture g that channels the flow of information about job openings
and the employment state of the previous period st−1; the rest of the history is irrelevant. This constitutes
a Markov chain.

Since the state space is finite, we can represent the transition distribution probability through the transi-
tion matrix P with element (i, j) given by pij = Pr(St+1 = j | St = i). Each row of P contains the probabilities
of each possible state st+1, i.e. all possible combinations of employment and unemployment for all nodes given
that they started the period in state st.

In our setup, the Markov chain is time-homogeneous, so that the transition matrix P is the same in
each period, and the t−period transition probability can be computed as the t−th power of the transition
matrix,P t. As a result, the dynamics can be modeled as a finite-state irreducible and aperiodic Markov
chain and the process converges to a unique limit distribution (Young, 1993). Note that the initial state
becomes irrelevant after a certain number of periods and the limit probabilities over states only depend
on the parameters of the model, a and b, as well as on the network architecture g. We are interested in
the steady-state probability distribution over all possible employment states: limt→∞P t = Π, where Π is a
matrix in which each row is the limit distribution of the process and yields the probability of each possible
state s. From this limit probability distribution over states, we first ask whether the effects of short cycles
identified in Section 1.3 persist in the long run. In addition, we study other moments of the distribution,
the space correlations and the persistence of employment, and we particularly focus how they change as we
systematically manipulate the close-knittedness of network neighborhoods.

Methodologically speaking, we proceed as follows. In Section 1.4.1, we first compute the exact limit dis-
tribution of the proposed Markov chain for a few simple networks and all values of a, b ∈ (0, 1). However,
certain statistics do not have a general closed-form solutions even in case of very simple networks and com-
puting the limit distributions for larger and more complex network structures is infeasible. As a consequence,
the remaining analysis relies on Monte Carlo methods studying how network cycles shape (un)employment
patterns in a set of carefully selected networks after convergence to the steady state, given the values of a and
b. In this chapter, we present the results of the simulations for a = b = 0.1. The conclusions are qualitatively
robust to alternative parameter constellations.32 To facilitate the comparison of the long-run dynamics across
networks, we simulate a large number of identical networked economies for each network architecture. Each
economy is composed of multiple identical networks, while the number of people in each economy is held
constant. This way, we might have different number of networks within each economy but the same number of

31The model converges to a unique steady-state distribution, independently of the initial state of the system. The initial
employment state is thus irrelevant after convergence.

32The analysis for different values is available from the authors upon request.
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random events across compared scenarios. This enables us to compare not only the averages of the variables
of interest but also their variability across economies.33

In the numerical experiments, we simulate 100 economies for 10, 000 periods for each parameter constella-
tion and report the unemployment patterns in the last 1, 000 periods to analyze the steady state distribution.34

We present three subsections. Section 1.4.1 analyzes the extent to which the length of network cycles
matters in the long-run employment. Section 1.4.2 studies how network cycles shape long-run inequality
within networks, and Section 1.4.3 compares across homogeneous networks.

1.4.1. Long-run unemployment in cycle networks
In this section, we characterize the steady state distributions of the Markov chain for a few cycle networks

(see Section 1.2 for a defintion). Consider the networks ga through gd in Figure 1.2 (an empty network with
n = 3, a triangle, a square, and a pentagon, respectively). The one-period analysis shows that three- and
four-cycles matter and the former have a larger impact on employment than the latter. Here, we use the cycle
networks to show that this result persists in the long run. The dynamic model further allows to test whether
the effect of cycles extends to cycles of longer lengths and, since the effect seems to diminish with the cycle
length, whether the affect vanishes as we increase the cycle length.

Since the networks ga - gd are simple and the positions of all nodes symmetric in each of them, we computed
the transition matrices, the limit state distributions in function of a and b, and the associated average steady-
state employment rates for each node and network.35 Figure 1.6 plots the differences in employment rates
between a few pairs of networks in a function of the parameters (a, b). The figure reveals that the steady-state
employment rate in networks ga to gd can be ranked as E[ga] < E[gb] < E[gc] < E[gd] for any a, b ∈ (0, 1).
That is, as long as the values of a and b differ from zero and one, the steady state employment rates scale
up with the length of the cycle (from three to five) in each network. This is the first evidence corroborating
that persistence of the negative role of short network cycles, characterized in the one-period model, in the
long run. Below, we corroborate this using alternative manipulations of network close-knittedness. Moreover,
the above ranking shows that the impact extends for five-cycles and scales down with the cycle length.

Figure 1.6. Differences in steady-state employment rates in networks ga, gb, gc, and gd

Although we are able to obtain explicitly the limit distributions as a function of a and b for the above
networks, certain statistics cannot be computed explicitly and the complexity of the limit distributions
increases dramatically with the network size. In the following, we thus provide numerical experiments for
a = b = 0,1 in cycle networks. To that aim, we complement the networks ga - gd, analyzed above, with
the hexagon network gg in Figure 1.2. Table 1.2 reports the long-run labor-market information from the
simulation exercise. Each cell reports the average steady-state statistic listed in the first column for the

33The higher the number of nodes the lower the variation of the employment rate around the mean, but a decrease in variation
due to the number of nodes is not what we try to capture.

34We performed robustness checks to see how fast the model converges and it actually converges to the steady state relatively
fast. We are thus confident that running the model for 10, 000 periods and selecting the last 1, 000 provides a good approximation
of the steady-state distributions.

35We include the empty network for comparison.
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network specified on top of the corresponding column in the last 1, 000 periods (out of the simulated 10,000)
from 100 economies composed of 60 individuals, each economy containing a certain number of independent
networks (see the row labeled as Number of networks).

We report four types of information in Table 1.2 (as well as Tables 1.3, A1.10, and A1.11):
A. Labor-market statistics report the size of each economy, the number of economies, the total number of
the corresponding networks,36 the average employment rate, and its standard deviation and coefficient of
variation.
B. Time and spatial correlations report the serial correlations in average employment and the simple-matching
coefficients in employment of connected and two-links-away individuals.37

C. Transition rates provide information about the changes and persistence of the labor-market status of
agents.38

D. Kolmogorov-Smirnov, Wilcoxon, and Fligner-Killeen tests report the statistics (and p-values) of non-
parametric tests of equality of distributions, means, and variances of employment, respectively, across all
pairs of networks after convergence.

Table 1.2. Long-run labor market statistics in cycle networks

36Remember that a network does not necessarily corresponds to an economy as an economy can contain one or more networks;
see above.

37Simple-matching coefficient reports the fraction of network links, in which both nodes at the end of the link share the
employment status. For instance, the value of 0.6 means that 60% of connected members of all networks in all simulated
economies in the last 1,000 periods were either both employed or both unemployed.

38We label EE the fraction of people who preserved a job from one period to the next one, UU is the corresponding fraction of
those who remained unemployed, EU is the fraction of the population that ended employed in one period but finished unemployed
in the next, while UE is the reverse case. For example, a row labeled as EE reporting 0.80 refers to that 80% of people across all
the simulated network and economies in the last 1, 000 periods preserved their jobs. The other cases are interpreted accordingly.
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Table 1.2 corroborates that E[ga] < E[gb] < E[gc] < E[gd]. Both the mean and the whole distributions
are all statistically different from each other (p < 0,00001; Kolmogorov-Smirnov and Wilcoxon rank-sum
tests); the variances of the average employment do not differ systematically though.39 The differences are
relatively small between the triangle, square, and pentagon economies, and the marginal increases in the
employment rates across these three networks decrease with the length of the shortest cycle. The increase is
over 15% from the empty network to the triangle, 0,79% from the triangle to the square, and 0,31% from
the square to the pentagon. Quantitatively speaking, in an economy composed of 1, 000, 000 workers, there
would be roughly 7, 975 and 11, 079 unemployed individuals more in the triangle economy in the long-run, as
compared to the square and pentagon economies, respectively. Figure 1.7 reveals that the different economies
can be ranked in the sense of the first-order stochastic dominance: the limit distribution of employment in the
pentagon economy first-order stochastically dominates (FOSD, hereafter) the square economy, which FOSD
the triangle.40

This notwithstanding, although the long-run employment distributions of the pentagon and hexagon
economies FOSD all the remaining ones, these two economies generate very similar employment distributions.
In fact, we can reject the equality of neither the distributions nor their moments (p > 0,15 in all cases). This
suggests that economically relevant and statistically strong long-run impact of network cycles is limited to
relatively short network cycles.

Figure 1.7. Cumulative density function of the employment rate in cycle networks

The simulated data enable to analyze other long-run effects of network cycles that go beyond the em-
ployment rates. For instance, one important macroeconomic question concerns the employment fluctuations.
We thus ask how network cycles affect the volatility and structure of employment. As mentioned above, we
find no systematic effects of network cycles on employment volatility across our comparison networks. Even
though we confirm the time and network correlations in employment and that the correlations diminish with
time and network distance, we detect virtually no systematic impact of network-cycle length on the values
of all these correlations in this exercise.

In sum, our first numerical experiment complements our theoretical results in that network cycles de-
crease employment prospects even in the long run and their impact diminishes with the length of the cycle.
Furthermore, although relatively longer cycles should theoretically induce associations in information flows
once the model is repeated, statistically strong and economically relevant long-run effects of network cycles
are limited to short cycles, such as triangles and squares and to a lesser extent five-cycles. The effects do not

39The non-parametric Fligner-Killeen tests of equality of variances only allow to reject the equality in two cases at 5% and
one at 10%, but the ranking is not systematic.

40To focus on cycles, the empty network is omitted in Figure 1.7 but the ranking in the sense of the first-order stochastic
dominance extends for the empty network.
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seem to go beyond five-cycles after convergence.41 In the following sections, we limit our attention to the role
triangles.42

1.4.2. Network cycles and long run inequality
In the previous subsection, all nodes occupy symmetric positions, which precludes within-network com-

parisons. However, an important question is whether network cycles can be a source of long-run inequality.
In this section, we provide two experiments. First, we investigate whether triangles affect the inequality per-
sistently even if the nodes with low and high clustering are not segregated in the network. Then, we analyze
the impact of the clustering coefficient in an economy simulated on a real-life friendship network.
Different clustering in an integrated network. We explore a carefully designed network, in which some
individuals have higher clustering than others. Specifically, we analyze the long-run effects of short cycles
in the network depicted in Figure 1.8. The network is composed of 28 individuals with equally sized first-
and second-order neighborhoods (ni(g) = 3 and n2

i (g) = 6 for each i) but differing clustering patterns. In
particular, 7 nodes have clustering equal to zero, whereas 21 agents belong to one three-cycle (i.e. have
clustering equal to 1/3).

More importantly for our purpose, the low- and high-clustering individuals are not segregated in the
network: each low-clustering individual is only connected with high-clustering individuals and each high-
clustering node is connected to one low-clustering and two high-clustering agents. Hence, this network enables
us to study whether short network cycles have any implications on long-run inequality even if people are not
segregated by the density of their neighborhoods. Such «no-segregation» condition is important because of the
steady-state spatial correlations in employment status across directly and indirectly connected individuals,
shown in Calvó-Armengol and Jackson (2004). Such long-run employment correlations across network paths
reduce the inequality across nodes in the same component and may thus may potentially eliminate the
negative effect of short cycles if high- and low-clustering individuals are close to each other in an network.
We therefore test whether differing clustering patterns can still generate inequality in the presence of such a
tradeoff.

Figure 1.8. Regular network with two types of nodes: high and low-clustering agents

Table 1.3 summarizes the long-run labor-market outcomes for the whole network (denoted All) as well as
disaggregated for the low- and high-clustering individuals. The structure of the table is the same as in Table
1.2. To ensure the comparability of all delivered statistics across the two node types, we deliver the statistics
of 100 independent realizations for each type. Due to the differing number of the two types in the network, we

41This conclusion only holds generally in qualitative terms. For other values of a and b, the exact cycles lengths for which we
(do not) observe differences may change.

42The effects of squares and pentagons in the reported simulation exercises are again qualitatively similar but quantitatively
weaker than those of triangles.
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simulated 300 economies/networks and report the results of 100 economies for the high-clustering individuals
and all the 300 economies for the low-clustering agents. This way, we compare a total of 2, 100 low- vs. 2, 100
high-clustering individuals in the last 1, 000 periods of the simulated Markov chain.

Table 1.3. Steady-state labor-market statistics in the network from Figure 1.8 (last 1000 periods)

From Table 1.3, we observe that the two types of agents exhibit important differences in their long-run
employment prospects. First, low-clustering individuals are somehow more likely to be employed and enjoy
smaller employment volatility; these differences are small and statistically weak though (p = 0,1137 and
0,2587 for the mean and the variance, respectively). The difference corresponds to roughly 2, 637 unemployed
individuals out of 1, 000, 000. However, we reject the equality of the two distributions at any reasonable
significance level, using the Kolmogorov-Smirnov test of equality of the distributions (p < 0,00001). This
suggest that the combined effect of the average employment and its variability are statistically strong. Figure
1.9(a) visualizes the comparison. We observe that the steady-state employment distribution of the low-
clustering individuals second-order stochasticlly dominates the employment distribution of the non-zero-
clustering nodes.

The two types of nodes further differ in the persistence of the employment status. Note that short cycles
simultaneously increase the employment variance−despite slightly−as well as the serial correlations of em-
ployment (see the reported 95% confidence intervals of Cor(Et, Et−1)). That is, although the correlation of
employment between two consecutive periods is considerable higher if one is embedded in more correlated
neighborhoods, the standard deviation of employment is higher for the nodes with higher clustering. As a
result, the employment cycles exhibit a different structure in case of each type. Figure 1.9(b) provides an
example of employment cycles of both types in one simulated economy. It illustrates that high clustering
maintains the employment state more stable across consecutive periods but, once we escape a state, the
troughs and peaks of employment cycles are lower and higher in close-knit network environments. This is an
effect that a simple variance of the distribution cannot capture. These features result from a combination
of different network effects. Since short network cycles increase spatial correlation, connected individuals are
more likely to be in the same state across periods and netowrk links, and the effect «drags» the employ-
ment of most members of a clustered community up or down, toward a new common employment status.
The higher unemployment and higher employment persistence among high-clustering individuals also affects
labor-market transitions. While high-clustering individuals are less likely to preserve their employment, they
are slightly more likely to remain unemployed across periods.
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Figure 1.9. Cumulative density function of employment and employment fluctuations with two types of
nodes (Figure 1.8)

Summarizing, network integration of low and high clustering nodes quantitatively and qualitatively at-
tenuates but does not eliminates the detrimental impact of short cycles. As a consequence, a policy aiming
at the integration of communities with differing clustering patterns does not necessarily eliminates labor-
market disadvantages generated by network close-knittedness. Furthermore, such integration do not seem to
eliminate the effect of short cycles on the volatility and the time and spatial correlations of employment.

Clustering in a real-world network. In contrast to the network in Figure 1.8, typical social networks
exert certain degree of segregation of clustering patterns and certain correlations between clustering and
connectivity. Therefore, the following exercise simulates our model on a real-life friendship network elicited
in Brañas et al. (2010). We use this particular network because it is not too large−and thus computationally
not too demanding−and exhibits typical features of real-life social networks, including a large variability in
the joint distribution of degrees, second-order degrees and the clustering, positive assortativity, and negative
clustering-degree correlation (see Brañas et al. (2010) for details). We use the giant component of their
network with n = 76, depicted in Figure A1.1 in Appendix A.3, and again simulate 100 independent networked
economies over 10, 000 periods. The average steady-state employment rate is 72,37% (E = 0,7237; sd(E) =
0,06) and the employment again exhibits large serial and spatial correlations.
Our main interest is to determine how these patterns at the individual level correlate with network positioning.
Table 1.4 reports three regressions, differing in the dependent variable and whether they control for the average
individual employment in the steady state. More precisely, we regress the steady-state average employment
rate (Ei; column (1)), standard deviation of employment (sd(Ei); column (2)), and the autocorrelation
(Cor(Eit, Eit−1); column (3)) of each network member in the last 1, 000 periods on her first- and second-
order degree, clustering coefficient and a constant. In columns (2) and (3), we further control for the average
employment of each node. To provide a clean effect of the clustering coefficient, the regressions only include
individuals with ni(g) ≥ 2 so that they have a well defined clustering. Standard errors are clustered at the
network level (the smallest independent unit in the simulated data).
The results corroborate the theoretical hypotheses. The average employment, its volatility, and the serial co-
rrelations all change systematically with individual degree, second-order degree, and the clustering coefficient.
The estimates are statistically strong (p < 0,00001). Most importantly, holding the first- and second-order
degree constant, the clustering coefficient decreases individual employment and increases simultaneously its
volatility and autocorrelation.43

43Tables A1.7 - A1.9 in Appendix A.3 illustrate the importance of our ceteris paribus condition. The estimated effects of the
regressors frequently switch signs depending on their combination in the model. Moreover, the tables show that the results are
robust to controlling for global centrality of each node.
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Table 1.4. Real-world network: OLS. People with ni(g) ≥ 2 who have well defined clustering coefficient.

1.4.3. Vertex-transitive networks
In this section, we propose an exercise that resembles a first-order stochastic dominance shift of the

distribution of the clustering coefficient. To that aim, we design a series of vertex-transitive networks a là
Figure 1.1, in which all nodes occupy identical positions. More precisely, we hold the first- and second-order
degree distributions constant across the networks to the extent possible but vary systematically the number
of triangles each node is embedded in. We perform this exercise for degree-three and degree-four networks.
Figures A1.2 and A1.3 in Appendix A.3 illustrate the networks under our comparisons; Tables A1.10 and
A1.11 deliver the steady-state labor-market statistics.

Figure 1.10 summarizes the main findings of this subsection. Independently of whether we focus on
ni(g) = 3 or 4 for each node, the steady-state probability distributions of employment dominate each other
as we decrease the number of triangles, in which each individual is involved. In all cases, the distributions
and the means are significantly different (p < 0,00001), while the variances do not differ systematically. In
quantitative terms, the steady-state employment rate decreases from 73,62% to 72,95% under ni(g) = 3
as we mode from a cycle-free network to the case when each node is involved in exactly one triangle. This
would correspond to over 6, 660 unemployed in a one-million-people economy. The figure further decreases
to 71,57% in a network with C(g) = 1, corresponding to 20, 525 more unemployed with respect to the zero-
clustering network. The average employment is naturally higher in networks where ni(g) = 4 for each node,
but the ranking with respect to triangles is preserved: the employment rates are 76,5%, 75,88%, 75,36%,
and 73,8% as we move from the zero-clustering network to a fully clustered architecture in our four networks
under study. We thus conclude that, ceteris paribus, first-order stochastic dominance shifts of the distribution
of the clustering coefficient organize the distribution of employment in the sense of the first-order stochastic
dominance.

In line with the previous sections, short network cycles again induce larger serial correlations in the
steady-state employment status in the networks analyzed here. As a consequence, since the variance is similar
across the networks but the time correlations increase steadily with the number of triangles, the peaks and
troughs of the employment cycles are somehow higher and lower as we increase the clustering of the networks
under study. This−jointly with the lower employment prospects in more close-knit networks−again affects
labor-market transitions: the likelihood of maintaining a job is virtually unaffected across the networks as we
increase their close-knittedness. In contrast, the probability of remaining unemployed between two consecutive
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periods increases steadily. Correlations in employment of linked people increase in the limit distributions but
they decrease between two-links-away individuals. All these observations corroborate the conclusions from
the previous subsections.

Figure 1.10. Cumulative distributions of employment in vertex-transitive networks.

1.5. Wages
In this section, we briefly analyze the impact of three-cycles on wages. To that purpose, we analyze an

extension of the static model in Section 1.2, in which each job offer comes with a wage.

1.5.1. Information transmission with wages
Let Wi(g) be a random variable denoting the wage of the position occupied by individual i in network

g. For simplicity, we assume that there are two wage levels in the economy: low-paying positions with wage
w0 and high-paying positions with wage w1 > w0. Initially, all people are employed in a high-paying job.44
Again, each worker may lose her job with probability b ∈ (0, 1). Then, each individual hears about a low- or
a high-paying job with probabilities a0 and a1, respectively, with a0 + a1 = a ∈ (0, 1). At this stage, each
worker can find herself in one out of six situations (status):

Status 1: with probability α0 = a0(1 − b), she is employed in a high-paying job and possesses information
about a low-paying job,
Status 2: with probability α1 = a1(1 − b), she is employed in a high-paying job and possesses information
about a high-paying job,
Status 3: with probability β = b(1−a0−a1), she is unemployed and has no information about any vacancy,
Status 4: with probability δ0 = a0b, she is unemployed but has heard about a low-paying job,
Status 5: with probability δ1 = a1b, she is unemployed but has heard about a high-paying job,
Status 6: with probability γ = (1− b)(1− a0 − a1), she is employed with no offer to pass to her contacts.

where α=α0+α1. Let us write ȳsi (g) = 1 if agent i is in status s.45 At this stage, unemployed workers
who learn about a vacancy (agents in status 4 or 5) immediately accept the offer, regardless of whether the
job is high- or low-paying. Employed workers who learn about a low-paying job (status 1) or a high-paying

44Once again, this assumption is inconsequential. All the results are qualitatively robust as long as all people occupy a
high-paying job with the same probability.

45Bear in mind that there are four status in Sections 1.2 - 1.4, while there are six of them in this extended version of the
model.
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job (status 2) pass the offer uniformly at random onto one of their unemployed contacts (in status 3) who
accepts the offer.

Individuals in status 1 and 2 are potential providers; we call them low providers and high providers,
respectively. Second-order neighbors in status 3 will be called competitors. As in Section 1.2, it is possible
that an unemployed individual receives multiple offers simultaneously. In such a case, she accepts the job
with the highest wage, while the other positions remain unfilled.

1.5.2. The incidence of triangles on wages
We first show that adding a triangle to a network a là Proposition 2 reduces the expected wage of the

nodes involved in the triangle:

Proposition 3. Consider networks g and gt defined in Proposition 2. Then, E[Wh(g)] > E[Wh(gt)] for
h ∈ {i, j, k} and E[Wz(g)] = E[Wz(gt)] for all z ̸= i, j, k.

Proposition 3 complements Proposition 2 by showing that lower employment prospects of clustered individuals
and networks translate into lower expected wages. However, this result raises a question: Is this finding
driven by the unemployment channel or does higher clustering affect wages through additional mechanisms?
To answer this question, the following proposition focuses on the expected wage conditional on ending up
employed and asks whether close-knit neighborhoods benefit or hurt employed individuals:

Proposition 4. Consider networks g and gt defined in Proposition 2. Then, E[Wh(gt) | Eh(gt) = 1] >
E[Wh(g) | Eh(g) = 1] for h ∈ {i, j, k} and E[Wz(gt) | Eh(gt) = 1] = E[Wz(g) | Eh(g) = 1] for all z /∈{i, j, k}.

We know from Propostion 2 that forming part of short network cycles decreases one’s employment pro-
bability. Therefore, it is not surprising that in turn decreases one’s expected wage. Nevertheless, Proposition
4 shows that the negative effect is driven by the unemployment channel. If we compare the wages of two
employed individuals whose local positioning only differs in the cohesion of their networks, the presence of
triangles actually benefits people. The intuition behind this findings is closely related to intuition behind
Proposition 2. The lack of independence of information flows from different neighbors persists, leading to hig-
her probability of receiving multiple offers. However, while multiple offers do not increase one’s employment
likelihood because each agent can only accept one job, they do increase the probability of hearing about at
least one high-paying job. As a result, receiving multiple offers is not redundant any longer and the expected
wage conditional on being employed is higher in clustered neighborhoods.

This result provides an additional channel for how network cycles contribute to the persistence and
widening of income inequalities across communities and over time periods. Well-off communities or economic
crises with high employment rates are benefited by close-knittedness, while bad neighborhoods and periods
of economic unease that suffer from high unemployment rates are actually hurt by the same network feature.

1.6. Conclusions
This chapter analyzes systematically the role of short network cycles in labor market outcomes. We show

formally that densely-knit neighborhoods lead to the affiliation in information diffusion with important micro-
and macro-economic consequences on expected unemployment rates, wages, inequality, and employment
fluctuations. In particular, network cycles lead to lower expected employment rates both at the individual
and the population level and both in the short and long run. Moreover, clustering leads to employment
fluctuations with higher volatility and more persistence (higher time correlation). Clustering results also in
lower expected wages. This effect is, however, driven by the lower probability of employment; for employed
workers, expected wages are higher if they belong to short cycles. The reason is that detected affiliation can
benefit workers because they may benefit from receiving multiple offers by selecting better-paying jobs. The
main direction for future research stemming from our work is the empirical test of the theoretical results.
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1.7. Appendix

A.1. Proofs
A.1.1 Proof of Proposition 1

Part (a). Three cycle. Consider a node i ∈ N such that y2i (g) = 1. Assume that Si
S(g) = {i, j, k}. Then,

there is no s ̸= i, j, k such that {i, j, s, k} ∈ SS(g) . The probabilities of i receiving different combination of
job offers from j and k, f(Ij(g), Ik(g)), thus are:

f(1, 0) = α(1− α− β)
[
1− qj(nj − 1 | 0)

]
+ αβ

[
1− qj(nj − 1 | 1)

]
+ α2

[
1− qj(nj − 1 | 0)

]
qk(nk − 1 | 0)

f(0, 1) = α(1− α− β)
[
1− qk(nk − 1 | 0)

]
+ αβ

[
1− qk(nk − 1 | 1)

]
+ α2

[
1− qk(nk − 1 | 0)

]
qj(nj − 1 | 0)

f(0, 0) = (1− α2) + α(1− α− β)qj(nj − 1 | 0) + α(1− α− β)qk(nk − 1 | 0) + αβqj(nj − 1 | 1)
+αβqk(nk − 1 | 1) + α2qj(nj − 1 | 0)qk(nk − 1 | 0)
f(1, 1) = α2

[
1− qj(nj − 1 | 0)

][
1− qk(nk − 1 | 0)

]

Then,

[f(1, 0) ∗ f(0, 1)]− [f(1, 1) ∗ f(0, 0)] =

α2β

[(
qj(nj − 1 | 0)− qj(nj − 1 | 1)

) [(
1− qk(nk − 1 | 0)

)
− β

(
qk(nk − 1 | 1)− qk(nk − 1 | 0)

)]

+
(
qk(nk − 1 | 0)− qk(nk − 1 | 1)

) [(
1− qj(nj − 1 | 0)

)
− β

(
qj(nj − 1 | 1)− qj(nj − 1 | 0)

)]]
< 0,

since by assumption α,β > 0, and by Claim 1 qm(nm − 1 | 0)− qm(nm − 1 | 1)
)
< 0 and

[(
1− qm(nm − 1 | 0)

)
− β

(
qm(nm − 1 | 1)− qm(nm − 1 | 0)

)]
> 0 for m ∈ {j, k}

Therefore, Iij(g) and Iik(g) are strictly affiliated.

Four cycle. If rather Si
S(g) = {i, j, z, k}, Xj

2(g) and Xk
2 (g) both depend on the status of z and Iij(g) and Iik(g)

are not independent. More precisely, f(Iij(g), Iik(g)) are as follows:

f(1, 0) = α(1− α)

[
β(1− qj(nj − 1 | 1)) + (1− β)(1− qj(nj − 1 | 0))

]

+α2

[
β(1− qj(nj − 1 | 1))qk(nk − 1 | 1) + (1− β)(1− qj(nj − 1 | 0))qk(nk − 1 | 0)

]

f(0, 1) = α(1− α)

[
β(1− qk(nk − 1 | 1)) + (1− β)(1− qk(nk − 1 | 0))

]

+α2

[
β(1− qk(nk − 1 | 1))qj(nj − 1 | 1) + (1− β)(1− qk(nk − 1 | 0))qj(nj − 1 | 0)

]

f(0, 0) = (1− α)2 + α(1− α)

[
βqk(nk − 1 | 1) + (1− β)qk(nk − 1 | 0)

]

+α(1− α)

[
βqj(nj − 1 | 1) + (1− β)qj(nj − 1 | 0)

]

+α2

[
βqk(nk − 1 | 1)qj(nj − 1 | 1) + (1− β)qj(nj − 1 | 0)qk(nk − 1 | 0)

]
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f(1, 1) = α2

[
β
(
1− qk(nk − 1 | 1)

)(
1− qj(nj − 1 | 1)

)
+ (1− β)

(
1− qk(nk − 1 | 0

)(
1− qj(nj − 1 | 0)

)]

Then,

[f(1, 0) ∗ f(0, 1)]− [f(1, 1) ∗ f(0, 0)] =

α2β

(
qk(nk − 1 | 0)− qk(nk − 1 | 1)

)(
qj(nj − 1 | 1)− qj(nj − 1 | 0)

)
(1− β) < 0

by Claim 1. As a result, Ij(g) and Ik(g) are strictly affiliated.

Part (b). Let Xj−k\k
2 be the random variable of the agents in Nj−k(g) \ {k} who are in state 2. If jk ∈ E,

p[Iij(g) = 1 | xjk
2 (g), y2k(g)] =

α

Xj−k\k
2 + xjk

2 (g) + y2k(g)
(1.7.1)

and p[Iij(g) = 0 | xjk
2 (g), y2k(g)] = 1− p[Iij(g) = 1 | xjk

2 (g), y2k(g)]. If rather jk /∈ E,

p[Iij(g) = 1 | xjk
2 (g)] =

α

Xj−k\k
2 (g) + xjk

2 (g)
=

α

Xj−k
2 (g) + xjk

2 (g)
(1.7.2)

Note from (1.7.1) and (1.7.2) that, when conditioned on the status of neighbors of j and k who belong to
three- or four-cycles with i, Iij(g) and by symmetry Iik(g) depend on Xj−k\k

2 and Xk−j\j
2 , two events that are

independent of each other. As a result, Iij(g) and Iik(g) are independent conditional on the status of agents
who form three- and/or four-cycles with i. !

A.1.2 Proof of Proposition 2

The proof of Proposition 2 relies on Lemmas 1 and 2.

Lemma 1. Let g = (N,E) and gt = (N t, Et) be two networks such that i ∈ N ∩N t, j, k ∈ Ni(g) ∩Ni(gt),
and nh(g) = nh(gt) for h ∈ {j, k}. If Si

S(g
t) = Si

S(g) ∪ {i, j, k}, then P i
jk(g) > P i

jk(g
t).

Case (a) With probability α2, y1j (g) = y1k(g) = 1 and, in such a case, the probability with which i receives
an offer neither from j nor from k in g is

Ri
jk

(
g|y1j (g) = 1, y1k(g) = 1

)
=

η∑

h=0

(
η

h

)
βh(1− β)η−hqj(nj − η | h) qk(nk − η | h) (1.7.3)

where

qj(nj − η | xjk
2 ) =

nj−η∑

h=0

(
nj − η

h

)
βh(1− β)nj−η−h

(
h+ xjk

2 − 1

h+ xjk
2

)

is the probability that j does not transmit any offer to i, conditional on Xjk
2 = xjk

2 , and analogously for
qk(nk − η | xjk

2 ).
For gt,

Ri
jk

(
gt|y1j (gt) = 1, y1k(g

t) = 1
)
=

η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η − 1 | h) qk(nk − η − 1 | h)

]
(1.7.4)

Subtracting expressions (1.7.4) and (1.7.3) and multiplying by their corresponding probabilities we get

α2

[
Ri

jk

(
gt|y1j (gt) = 1, y1k(g

t) = 1
)
−Ri

jk

(
g|y1j (g) = 1, y1k(g) = 1

)]
=

= α2
η∑

h=0

βh(1− β)η−h

[
qj(nj − η − 1 | h) qk(nk − η − 1 | h)− qj(nj − η | h) qk(nk − η | h)

] (1.7.5)
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Case (b). If y1j (g) = 1 but y1k(g) = 0, the probability that k does not transmit any offer to i is equal to
1 while the probability with which j does not transmit information to i in g, conditional on k not being a
provider, is

Ri
jk

(
g|y1j (g) = 1, y1k(g) = 0

)
= qj(nj) =

η∑

h=0

(
η

h

)
βh(1− β)η−hqj(nj − η | h) (1.7.6)

Observe that it does not matter in g whether k needs a job or not. Then, the probability that i does not
receive information neither from j nor from k is

α(1− α)Ri
jk

(
g|y1j (g) = 1, y1k(g) = 0

)
= α(1− α)qj(nj) = α(1− α)

η∑

h=0

(
η

h

)
βh(1− β)η−hqj(nj − η | h)

= α
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η | h)− αqj(nj − η | h)

]

(1.7.7)

In network gt, on the contrary, it matters whether y2k(g
t) = 0 or y2k(g

t) = 1 because k ∈ Nj(gt) and k can
thus compete with i for job information from j. Then,

α(1− α)Ri
jk

(
gt|y1j (gt) = 1, y1k(g

t) = 0
)

= αβRi
jk

(
gt|y1j (gt) = 1, y1k(g

t) = 0, y2k(g
t) = 1

)
+ α

(
1− α− β

)
Ri

jk

(
gt|y1j (gt) = 1, y1k(g

t) = 0, y2k(g
t) = 0

)

= αβqj(nj − 1 | y2k(gt) = 1) + α(1− α− β)qj(nj − 1 | y2k(gt) = 0)
(1.7.8)

being the first term the probability that j does not transmit information to i when y2k(g
t) = 1 (k competes

with i) whereas the second term corresponds to the probability that provider j does not transmit information
to i when either y3k(gt) = 1 or y4k(gt) = 1. Since qj(nj) = βqj(nj−1 | y2k(gt) = 1)+(1−β)qj(nj−1 | y2k(gt) = 0),
(8) is equal to:

αβqj(nj − 1 | y2k(gt) = 1) + α(1− α− β)qj(nj − 1 | y2k(gt) = 0) =

αβqj(nj − 1 | y2k(gt) = 1) + α(1− β)qj(nj − 1 | y2k(gt) = 0)− α2qj(nj − 1 | y2k(gt) = 0) =

αqj(nj)− α2qj(nj − 1) = α
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η | h)− αqj(nj − η − 1 | h)

]
(1.7.9)

The difference between expressions (1.7.9) and (1.7.7) leads to:

α(1− α)

[
Ri

jk

(
gt|y1j (gt) = 1, y1k(g

t) = 0
)
−Ri

jk

(
g|y1j (g) = 1, y1k(g) = 0

)]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η | h)− qj(nj − η − 1 | h)

]
(1.7.10)

Case (c). If y1j (g) = 0 but y1k(g) = 1, the equivalent of (1.7.10) has by symmetry the following form:

α(1− α)

[
Ri

jk

(
gt|y1j (gt) = 0, y1k(g

t) = 1
)
−Ri

jk

(
g|y1j (g) = 0, y1k(g) = 1

)]

α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qk(nk − η | h)− qk(nk − η − 1 | h)

]
(1.7.11)

Case (d). If y1j (g) = y1k(g) = 0, Ri
jk(g

t|y1j (gt) = 0, y1k(g
t) = 0)−Ri

jk(g|y1j (g) = 0, y1k(g) = 0) = 0.
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The sum of expressions (1.7.5), (1.7.10), and (1.7.11) reflects the difference in the probabilities, with which
i does not receive any offer from either j or k in networks gt and g. Formally,

Rjk(g
t)−Rjk(g) = α2

η∑

h=0

(
η

h

)
βh(1− β)η−h

[(
qj(nj − η | h)− qj(nj − η − 1 | h)

)(
1− qk(nk − η − 1 | h)

)

(1.7.12)

+
(
qk(nk − η | h)− qk(nk − η − 1 | h)

)(
1− qj(nj − η | h)

)]
> 0

by Claim 1. Consequently, P i
jk(g) > P i

jk(g
t). !

Lemma 2. Let g = (N,E) and gs = (Ns, Es) be two networks such that i ∈ N ∩Ns, j, k ∈ Ni(g) ∩Ni(gs),
and nh(g) = nh(gs) for h ∈ {j, k}. If SS(gs) = SS(g) ∪ {i, j, z, k}, P i

jk(g) > P i
jk(g

s).

Proof of Lemma 2. Let y2i (g) = y2i (g
s) = 1. The probability with which i receives no offer from j or k if

j(k) is a provider but k(j) is not is independent of the four-cycles that i shares with j and k. As a result,
Ri

jk(g|y1j (g) ̸= y1k(g)) = Ri
jk(g

s|y1j (gs) ̸= y1k(g
s)). Similarly, Ri

jk(g|y1j (g) = y1k(g) = 0) = Ri
jk(g

s|y1j (gs) =

y1k(g
s) = 0) = 1. Hence, the only difference between g and gs arises when y1j (g) = y1k(g) = y1j (g

s) = y1k(g
s) = 1.

We focus on this case below.
In network gs, node i forms njk(gs) = η four-cycles with j and k. Denote z the node such that {z} ∈

Njk(gs) \ Njk(g). Define Xjk\z
2 (gs) as the random variable of the agents in Njk(gs) \ {z} who are in state

2, and xjk\z
2 (gs) as a realization of this variable. The expected probability that i does not receive any offer

from providers j and k can be expressed considering whether z ∈ Njk(gs) is in status 2 (with probability β)
or not:

Ri
jk

(
gs|y1j (gs) = y1k(g

s) = 1
)
=

η−1∑

h=0

(
η − 1

h

)
βh(1− β)η−1−h

[
βqj(nj − η − 1 | h+ 1)qk(nk − η − 1 | h+ 1) + (1− β)qj(nj − η − 1 | h)qk(nk − η − 1 | h)

]

(1.7.13)

where

qj
(
nj − η − 1 | xjk\z

2 (gs) + y2z(g
s)
)
=

nj−η−1∑

h=0

(
nj − η − 1

h

)
βh(1− β)nj−η−1−h

(
h+ xjk\z

2 (gs) + y2z(g
s)− 1

h+ xjk\z
2 (gs) + y2z(g

s)

)

is the probability that j does not transmit any offer to i, conditional on xjk
2 (gs)=xjk\z

2 (gs)+y2z(gs), and
analogously for qk

(
nk − η − 1 | xjk\z

2 (gs) + y2z(g
s)
)
. Note that (1.7.13) depends on the number of agents in

Njk(gs) \ {z} in status 2 (captured by the terms multiplying the expression in brackets) as well as on the
status of z.

In network g, node i forms η−1 four-cycles with j and k. Since SS(gs) = SS(g)∪{i, j, k, z} and nm(gs) =
nm(g) for all m ∈ N ∩ Ns, there exist two nodes that we label s, l such that Nj(g) \ Nj(gs) = {l} and
Nk(g) \Nk(gs) = {s}, l ̸= s.46 Then, the probability that i does not receive any offer from providers j and
k in g can be expressed in function of whether y2s(g) = 1 and y2l (g) = 1 as follows:

Ri
jk

(
g|y1j (g) = y1k(g) = 1

)
=

η−1∑

h=0

(
η − 1

h

)
βh(1− β)η−1−h

=

[
β2qj(nj − η − 1 | h+ 1)qk(nk − η − 1 | h+ 1) + β(1− β)qj(nj − η − 1 | h+ 1)qk(nk − η − 1 | h)

+β(1− β)qj(nj − η − 1 | h)qk(nk − η − 1 | h+ 1) + (1− β)2qj(nj − η − 1 | h)qk(nk − η − 1 | h)
]

(1.7.14)
46Note that it is possible that s = z or l = z.
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The difference between expressions (1.7.14) and (1.7.13) is

Rjk

(
g|y1j (g) = y1k(g) = 1

)
−Rjk

(
gs|y1j (gs) = y1k(g

s) = 1
)

=
η−1∑

h=0

(
η − 1

h

)
βh(1− β)η−1−h

β(1− β) ∗
[
qk(nk − η − 1 | h+ 1)− qk(nk − η − 1 | h)

]
∗
[
qj(nj − η − 1 | h)− qj(nj − η − 1 | h+ 1)

]
< 0

(1.7.15)
Thereby, Rjk

(
gs|y1j (gs) = y1k(g

s) = 1
)
> Rjk

(
g|y1j (g

)
= y1k(g) = 1). Since P [y1j (g

s) = y1k(g
s) = 1] > 0 by

model assumptions, P i
jk(g) > P i

jk(g
s). !

Proof of Proposition 2. Since the only difference across networks g, gt, and gs arises from network trans-
mission toward the agents involved in the additional triangle in gt and square in gs, we can focus on the
probabilties of receving information from neighbors, P i(g), when y2i (g) = y2i (g

t) = y2i (g
s) = 1.

Part (i). By Lemma 1, P i
jk(g) > P i

jk(g
t) and P i

m(g) = P i
m(gt) for any m /∈ {j, k}. As a result, P i(g) > P i(gt).

Analogously, P j(g) > P j(gt) and P k(g) > P k(gt). Since the remaining nodes have the same positioning in
terms of degree, second-order degree, and short cycles in g and gt, P s(g) = P s(gt) for any s ̸= i, j, k.
Part (ii). By Lemma 2, P i

jk(g) > P i
jk(g

s) and P i
m(g) = P i

m(gs) for any m /∈ {j, k}, implying that P l(g) >

P l(gs) for l ∈ {i, j, k, z}, while P t(g) = P t(gs) for t ̸= i, j, k, z.
Part (iii). Denote η = njk(g) = njk(gt) the number of four-cycles, in which i, j and k are involved in both
g and gt. Since SS(gs) = SS(g) ∪ {i, j, k, z}, η′ = η + 1 is the number of four-cycles that i, j and k form in
gs. In what follows, we relate the probabilities of (not) receiving information in gt and gs conditional on the
status of j and k case by case:
Case (a). If y1j (gt) = y1j (g

s) = 1 and y1k(g
t) = y1k(g

s) = 1, the probability that i does not receive any offer
from j and k in gs is

α2Rjk

(
gs|y1j (gs) = 1, y1k(g

s) = 1
)
= α2

η′∑

h=0

(
η′

h

)
βh(1− β)η

′−h
[
qj(nj − η′ | h) qk(nk − η′ | h)

]
, (1.7.16)

where

qj(nj − η′ | xjk
2 ) =

nj−η′
∑

h=0

(
nj − η′

h

)
βh(1− β)nj−η′−h

(
h+ xjk

2 − 1

h+ xjk
2

)
(1.7.17)

reflects the probability that j does not transmit any offer to i, conditional on Xjk
2 = xjk

2 ≥ 1, and analogously
for qk(nk − η | xjk

2 ). Since η′ = η + 1, (1.7.16) can be rewritten as

α2Rjk

(
gs|y1j (gs) = 1, y1k(g

s) = 1
)
= α2

η+1∑

h=0

(
η + 1

h

)
βh(1− β)η+1−h

[
qj(nj − η − 1 | h) qk(nk − η − 1 | h)

]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
βqj(nj − η − 1 | h+ 1)qk(nk − η − 1 | h+ 1) + (1− β)qj(nj − η − 1 | h)q(nk − η − 1 | h)

]

(1.7.18)
In gt, jk ∈ Et. Hence, y1j (gt) = y1k(g

t) = 1 implies that one neighbor of j (i.e. agent k) does not compete
with i for information and viceversa for k. Therefore, the probability that i receives an offer from neither j
nor k in gt is

α2Rjk(g
t|y1j (gt) = 1, y1k(g

t) = 1) = α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η − 1 | h) qk(nk − η − 1 | h)

]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
βqj(nj − η − 1 | h) qk(nk − η − 1 | h) + (1− β)qj(nj − η − 1 | h) qk(nk − η − 1 | h)

]

(1.7.19)



CAPÍTULO 1. ARE CLOSE-KNIT NETWORKS GOOD FOR EMPLOYMENT? 46

Then (1.7.19)-(1.7.18),

α2
[
Rjk

(
gt|y1j (gt) = 1, y1k(g

t) = 1
)
−Rjk

(
gs|y1j (gs) = 1, y1k(g

s) = 1
)]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η − 1 | h)qk(nk − η − 1 | h)− qj(nj − η − 1 | h+ 1)q(nk − η − 1 | h+ 1)

]

(1.7.20)
Case (b). Let y1j (gs) = y1j (g

t) = 1 and y1k(g
s) = y1k(g

t) = 0. Since j is a provider but k is not, the probability
that i does not receive any offer from k is one and independent of the number of common neighbors of j and
k in status 2. In such a case, the number of four-cycles that i forms with j and k is irrelevant and information
flows from j and k are equal in gs and in gt. Then, the difference in the probability that i gets an offer in gt

with respect to gs neither from j nor from k when j is a provider and k is not is given by expression (1.7.10)
(see the proof of Lemma 1). That is,

α(1− α)
[
Rjk

(
gt|y1j (gt) = 1, y1k(g

t) = 0
)
−Rjk

(
gs|y1j (gs) = 1, y1k(g

s) = 0
)]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qj(nj − η | h)− qj(nj − η − 1 | h)

] (1.7.21)

Case (c). When rather y1j (g
s) = y1j (g

t) = 0 while y1k(g
s) = y1k(g

t) = 1, by analogy with Case (b):

α(1− α)
[
Rjk

(
gt|y1j (gt) = 0, y1k(g

t) = 1
)
−Rjk

(
gs|y1j (gs) = 0, y1k(g

s) = 1
)]

= α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
qk(nk − η | h)− qk(nk − η − 1 | h)

]
.

(1.7.22)

Case (d). If y1j (gt) = 0 and y1k(g
t) = 0, the probabilities are identical in gt and gs.

Adding up the relevant expressions (1.7.20), (1.7.21), and (1.7.22) weighted by their corresponding pro-
babilities, we get the difference in the probability that i does not receive any offer neither from j nor from k
in the two networks as follows:

Rjk(g
t)−Rjk(g

s) =

α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[
−βqk(nk − η − 1 | h+ 1)

(
qj(nj − η − 1 | h+ 1)− qj(nj − η − 1 | h)

)

−βqj(nj − η − 1 | h)
(
qk(nk − η − 1 | h+ 1)− qk(nk − η − 1 | h)

)

+

(
qj(nj − η | h)− qj(nj − η − 1 | h)

)
+

(
qk(nk − η | h)− qk(nk − η − 1 | h)

)

Given that qj(nj − η | xjk
2 ) = βqj(nj − η − 1 | xjk

2 + 1) + (1− β)qj(nj − η − 1 | xjk
2 ),

Rjk(g
t)−Rjk(g

s) =

α2
η∑

h=0

(
η

h

)
βh(1− β)η−h

[(
qj(nj − η | h)− qj(nj − η − 1 | h)

)(
1− qk(nk − η − 1 | h+ 1)

)

+

(
qk(nk − η − 1 | h+ 1)− qk(nk − η − 1 | h)

)(
1− qj(nj − η − 1 | h)

)]
> 0

As each case occurs with positive probability, P i
jk(g

s) > P i
jk(g

t). Since P i
m(gs) = P i

m(gt) for m ̸= {j, k},
P i(gs) > P i(gt). By symmetry and Part (ii), Ph(gs) > Ph(gt) for h ∈ {j, k, z}. !

A.1.3 Proof of Proposition 3

Since the difference in i’s expected wage between g and gt only arises from network transmission by j
and k while the expected wage conditional on receiving it from any s ∈ Ni(g) \ {j, k} is the same in both
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networks, we can focus on the expected wage of an employed agent i who has received her job from either j
or k.

Denote η ∈ {0}∪N the number of four-cycles, in which the three i, j and k are involved. In what follows,
we analyze the expected wage conditional on whether i has received a job from any s ∈ Ni(g) \ {j, k}:
Case (a). Assume first that i has received no offer from any s ∈ Ni(g) \ {j, k}. In such a case, i’s expected
wage depends exclusively on information flows from j and k in both networks. The rows of Table A1.1 list all
the situations that can arise depending on the status of j and k. The second column (denoted gt−g) contains
the difference in the expected wage of i between gt and g, multiplied by the probability of the occurrence of
each case. As a result, the sum of all the elements in the second column of Table A1.1 is the difference in i’s
expected wage between g and gt. After some simplification, we get

E[Wi(g
t)]− E[Wi(g)] =

η∑

h=0

(
η

h

)
βh(1− β)η−h

−(α2
0w0 + α2

1w1)

[(
qk(nk | h)− qk(nk − 1 | h)

)
∗
(
1− qj(nj | h)

)
+
(
qj(nj | h)− qj(nj − 1 | h)

)
∗
(
1− qk(nk − 1 | h)

)]

−α0α1 ∗ w0

[(
qj(nj | h)− qj(nj − 1 | h)

)
∗
(
2− qk(nk | h)− qk(nk − 1 | h)

)

+
(
qk(nk | h)− qk(nk − 1 | h)

)
∗
(
2− qj(nj | h)− qj(nj − 1 | h)

)]
.

(1.7.23)
Using that qj(nj) =

∑η
h=0

(η
h

)
βη(1−β)η−hqj(nj−η | h), we get after some algebra that E[Wi(g)] > E[Wi(gt)]

if i receives no information from any s ∈ Ni(g) \ {j, k}.
Case (b). Assume that i receives at least one offer of a low-paying but no high-paying job from agents
s ∈ Ni(g) \ {j, k}. Then, E[Wi(g)] > E[Wi(gt)] if the probability of receiving a high-paying job from either
j or k or both is greater in g than in gt. Agent i receives information about a high-paying job from j and
k only if at least one of them is a high provider, corresponding to cases (2 - 4) and (7 - 8) in Table A1.1.
Operating, the difference in these probabilities between g and gt is

η∑

h=0

(
η

h

)
βh(1− β)η−h

α2
0

[(
qk(nk | h)− qk(nk − 1 | h)

)(
1− qj(nj − 1 | h)

)
+
(
qj(nj | h)− qj(nj − 1 | h)

)(
1− qk(nk − 1 | h)

)]
> 0

by Claim 1. Hence, E[Wi(g)] > E[Wi(gt)] conditional on receiving at least one low offer from an s ∈
Ni(g) \ {j, k}.
Case (c). If i receives at least one high-payoff offer from {s ∈ N |s ∈ Ni(g) \ {j, k}}, her expected wage is
w1 in both networks, independently on the information flows from j and k.
Since all cases occur with positive probability, E[Wi(g)] > E[Wi(gt)]. !
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−
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−
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−
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−
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=
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−
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A.1.4 Proof of Proposition 4

Since the expected wage before the network transmission is independent of the network and i’s expected
wage conditional on receiving it from a neighbor s ∈ Ni(g) \ {j, k} is equal in both networks, the only
difference between the two networks for a node i can arise when i receives her job either through i or j. We
thus focus on the expected wage of an individual i who found her job through either j or k, conditional on
being employed through i or j. There are eight possible cases in function of the status of j and k listed in
Table A1.1. Overall, such conditional expected wage in of i in a network g is

E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1] =

α2
0E

[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) = 1, ȳ1k(g) = 1

]
+ α2

1E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2j (g) = 1, ȳ2k(g) = 1

]

+α1α0E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2j (g) = 1, ȳ1k(g) = 1

]
+ α1α0E

[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) = 1, ȳ2k(g) = 1

]

+ α0(1− α)E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) + ȳ2k(g) = 0, ȳ1k(g) = 1

]

+ α0(1− α)E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) = 1, ȳ1j (g) + ȳ2k(g) = 0

]

+ α1(1− α)E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) + ȳ2k(g) = 0, ȳ2k(g) = 1

]

+ α1(1− α)E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2j (g) = 1, ȳ1j (g) + ȳ2k(g) = 0

]
.

Table A1.2 contains the expected wages E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳsj , ȳ

s
k] conditional on each possible

state combination of j and k in networks g and gt. For example, the expected wage of an employed individual
i if she received the job either from her neighbor j or k who both possess information about a high paying
job satisfies the following:

E
[
Wi(g) | Iij(g

t) + Iik(g
t) ≥ 1, ȳ1j (g

t) = 1, ȳ1k(g
t) = 1

]
=

∑
η

(
1− qj(nj − η − 1 | h)qk(nk − η − 1 | h)

)
w0

∑
η

(
1− qj(nj − η − 1 | h)qk(nk − η − 1 | h)

)

= E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ1j (g) = 1, ȳ1k(g) = 1

]
=

∑
η

(
1− qj(nj − η | h)qk(nk − η | h)

)
w0

∑
η

(
1− qj(nj − η | h)qk(nk − η | h)

) = w0

where η = njk(g) = njk(gt) is the number of four-cycles in which i, j and k are involved in both g and
gt, and

∑
η =

∑η
h=0

(η
h

)
βh(1 − β)η−h is an abbreviated form of an expression that conditions on the status

of the common neighbors of j and k.
Note that the only difference between g and gt arises in cases (3) and (4). To compare these cases, note

first that the probability that i receives at least one offer either from j of from k in g satisfies:

P i
jk(g) = P i

j (g) +
(
1− P i

j (g)
)
P i
k(g) =

∑

η

[
1− qj(nj − η | h)qk(nk − η | h)

]
=

∑

η

[(
1− qj(nj − η | h)

)
+qj(nj − η | h)

(
1− qk(nk − η | h)

)] (1.7.24)

where P i
j (g) =

∑
η 1−qj(nj−η | h) is the probability that i receives information from j. Using the expression

(1.7.24), we can express i ’s expected wage in case (3) in g as follows:

E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2j (g) = 1, ȳ1k(g) = 1

]
=

w0 +
∑

η

1− qj(nj − η | h)
1− qj(nj − η | h)qk(nk − η | h) (w1 − w0)

(1.7.25)

and that in case (4) as follows:

E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2k(g) = 1, ȳ1j (g) = 1

]
=

w0 +
∑

η

1− qk(nk − η | h)
1− qj(nj − η | h)qk(nk − η | h) (w1 − w0)

(1.7.26)
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Since both cases occur with the same probabilty, we can add (1.7.25) and (1.7.26) up to obtain:

E
[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2j (g) = 1, ȳ1k(g) = 1

]
+ E

[
Wi(g) | Iij(g) + Iik(g) ≥ 1, ȳ2k(g) = 1, ȳ1j (g) = 1

]

= 2w0 +
∑

η

2− qj(nj − η | h)− qk(nk − η | h)
1− qj(nj − η | h)qk(nk − η | h) (w1 − w0)

(1.7.27)
Analogously, the corresponding expression to (1.7.27) in network gt is

E
[
Wi(g

t) | Iij(g
t) + Iik(g

t) ≥ 1, ȳ2j (g
t) = 1, ȳ1k(g

t) ≥ 1
]
+ E

[
Wi(g

t) | Iij(g
t) + Iik(g

t) ≥ 1, ȳ2k(g
t) = 1, ȳ1j (g

t) = 1
]

= 2w0 +
∑

η

2− qj(nj − η − 1 | h)− qk(nk − η − 1 | h)
1− qj(nj − η − 1 | h)qk(nk − η − 1 | h) (w1 − w0).

(1.7.28)
Note that (1.7.28) is greater than (1.7.27) if:

∑

η

[
2− qj(nj − η | h)− qk(nk − η | h)

]
∗
[
1− qj(nj − η − 1 | h)qk(nk − η − 1 | h)

]

−
[
2− qj(nj − η − 1 | h)− qk(nk − η − 1 | h)

]
∗
[
1− qj(nj − η | h)qk(nk − η | h)

]
≤ 0

(1.7.29)

Operating in (1.7.29):

∑

η

[
qj(nj − η − 1 | h)− qj(nj − η | h)

]
∗
[
1− qk(nk − η − 1 | h)

(
2− qk(nk − η | h

)]

+

[
qk(nk − η − 1 | h)− qk(nk − η | h)

]
∗
[
1− qj(nj − η | h)

(
2− qj(nj − η − 1 | h

)]
≤ 0

(1.7.30)

since qj(nj − η − 1 | h) ≤ qj(nj − η | h)∀j ∈ N by Claim 1,
[
1 − qk(nk − η − 1 | h)

(
2 − qk(nk − η | h

)]
≥ 0

and

[
1 − qj(nj − η | h)

(
2 − qj(nj − η − 1 | h

)]
≥ 0. Consequently, (1.7.28) is greater than (1.7.27), and

E
[
Wi(gt) | Iij(g

t) + Iik(g
t) ≥ 1] ≥ E

[
Wi(g) | Iij(g) + Iik(g) ≥ 1]. !
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ȳ1 k
=

1
w

o
w

o

(6
)
y1 j

=
1,

y1 k
+

y2 k
=

0
w

o
w

o

(7
)
y1 j

+
y2 j

=
0,
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A.2 Examples
A.1.2 The role of the initial state

In this subsection, we provide an example showing that the results from the main text are robust to
relaxing the assumption of initial full employment. We focus on an initial situation, in which each node is
unemployed with probability one half.

To this aim, Table A1.3 lists the employment probabilities of node 1 for each initial combination of
employment status of all the network members in networks gb and gc in Figure 1.2. Assuming that each node
is (un)employed with probabilty one half and all the initial states thus have the same probability (i.e., 1

8 for
network gb and 1

16 for network gc), the expected employment probability of node 1 is, in gb:

Ei(gb) = 4− 4b+ a(1 + b)

[
7− 3a(−1 + b)2 − (4− b)b− 2a2(1− b)b

]
,

while in network gc :

Ei(gc) =
1

2
− 1

2
b+

1

16
a

[
14− a

(
21

4
+

(3
2
− 3

4
a
)
a

)
+

(
6 +

(
6− 4a

)
a

)
b

−
(
6− a

(9
2
+ (3− 3

2
a)a

))
b2 +

(
2− a

(
6− 4a

))
b3 +

3

4
(1− a)2ab4

]
.

It is easy to show that Ei(gb) < Ei(gc) for any a, b ∈ (0, 1). Moreover, since all nodes occupy an identical
position in both networks, E(gb) < E(gc) for any a, b ∈ (0, 1).

Table A1.3. Employment probability of node 1 for each initial state in networks gb and gc in Figure 1.2

Triangle (gb) Square (gc)
Initial state: Employment probability Initial state: Employment probability

(1,1,1) (1− β) + αβ(2− α− β)
(1,1,1,1) (1− β) + αβ

(
2− α− β(1− 3

4α)
)

(1,1,1,0) (1− β) + αβ
(
2− α− (1− a)(1− 3

4α)
)

(1,1,0) (1− β) + αβ 1
2 (1 + a)

(1,1,0,1) (1− β) + αβ
(
1− 1

2β
)

(1,1,0,0) (1− β) + αβ 1
2

(
1 + a

)

(1,0,1) (1− β) + αβ 1
2 (1 + a)

(1,0,1,1) (1− β) + αβ
(
1− 1

2β
)

(1,0,1,0) (1− β) + αβ 1
2

(
1 + a

)

(0,1,1) a+ α(1− a)(2− α− β)
(0,1,1,1) a+ α(1− a)

(
2− α− β(1− 3

4α)
)

(0,1,1,0) a+ α(1− a)
(
2− α− (1− a)(1− 3

4α)
)

(1,0,0) (1− β)
(1,0,0,1) (1− β)
(1,0,0,0) (1− β)

(0,1,0) a+ α(1− a) 12 (1 + a)
(0,1,0,1) a+ α(1− a)

(
1− 1

2β
)

(0,1,0,0) a+ α(1− a) 12

(
1 + a

)

(0,0,1) a+ α(1− a) 12 (1 + a)
(0,0,1,1) a+ α(1− a)

(
1− 1

2β
)

(0,0,1,0) a+ α(1− a) 12

(
1 + a

)

(0,0,0) a
(0,0,0,1) a
(0,0,0,0) a

A.2.2 Example 1

Consider agent 1 in networks gb, gc, ge, and gf depicted in Figure 1.2. Focus first on networks gb and ge;
in both networks, n1(gb) = n1(ge) = 2 and n2

1(gb) = n2
1(ge) = 2. Hence, 1’s neighborhood and second-order

neighborhoods are equally sized. However, the link 23 generates a three-cycle in gb, which has important
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consequences for the flow of information from nodes 2 and 3 to agent 1. More precisely, the probability that
node 1 receives an offer from one particular neighbor can be expressed as the dot product of two vectors: (i)
a vector of the probabilities of the different status combinations of 1’s neighbors 2 and 3, and (ii) a vector of
the probabilities that 1 receives an offer for each combination. Let

Φ = [α2, αβ, βα, α(1− α− β), (1− α− β)α, (1− α− β)2, β2, β(1− α− β), (1− α− β)β]

denote the first vector. For example, α2 is the probability that both neighbors are i’s potential providers.
Then, the expected probability of receiving information about a vacancy from, say, neighbor 2 in networks

gb and ge is

P 1
2 (gb) = P 1

2 (ge) = Φ ∗ [1, 1
2
, 0, 1, 0, 0, 0, 0, 0]′ = α2 +

1

2
αβ + α(1− α− β) = α(1− β

2
),

where Φ are the probabilities of the combined states of nodes 2 and 3 in gb and 2 and 4 in ge. Analogously,
the probability of getting an offer from neighbor 3 is:

P 1
3 (gb) = P 1

3 (ge) = Φ ∗ [1, 1
2
, 0, 1, 0, 0, 0, 0, 0]′ = α(1− β

2
)

where Φ are the probabilities of the combined states of 3 and 2 in gb and 3 and 5 in ge. The probabilities P 1
2

and P 1
3 are the identical in networks gb and ge. However, when we compute the expected probability that

agent 1 receives at least one offer from her contacts 2 and 3, P 1(gb) ̸= P 1(ge). First,

P 1(gb) = Φ ∗ [1, 1
2
,
1

2
, 1, 1, 0, 0, 0, 0]′ = α2 + αβ + 2α(1− α− β) = α(2− α− β)

where Φ are the probabilities of the combined states of 2 and 3 in gb.
Note that P 1

3 (gb)(1−P 1
2 (gb))+P 1

2 (gb)(1−P 1
3 (gb))+P 1

2 (gb)P
1
3 (gb) = P 1(gb)+α2(β− β2

4 ) > P 1(gb). That
is, we cannot compute P 1(gb) directly from P 1

2 (gb) and P 1
3 (gb) because information flows from 2 and 3 to 1

are not independent in gb.
In contrast, in network ge,

P 1(ge) = α2Φ ∗ [1, 1, 1, 1, 1, 1, 3
4
, 1, 1]′ + α(1− α)Φ ∗ [1, 1, 1

2
, 1, 1, 1,

1

2
,
1

2
, 1]′+

+(1− α)αΦ ∗ [1, 1
2
, 1, 1, 1, 1,

1

2
, 1,

1

2
]′ = α(1− β

2
)[2− α(1− β

2
)],

where Φ are the probabilities of the combined states of nodes 4 and 5 in ge. In such a case, the information
flows are independent as P 1

3 (ge)(1− P 1
2 (ge)) + P 1

2 (ge)(1− P 1
3 (ge)) + P 1

2 (ge)P
1
3 (ge) = P 1(ge) = 2α(1− β

2 ) −
α2(1− β

2 )
2.

Most importantly, note that P 1(ge) − P 1(gb) = α2(β − β2

4 ) > 0. That is, gb provides a lower expected
probability of receiving a job offer through the network than ge as a consequence of the lack of independence
in information flows.

Consider network gf , in which node 1 has one competitor mode in this network, node 6, than in ge.
Formally, P 1

2 (gf ) = P 1
2 (gb) = P 1

2 (ge) = α(1− β
2 ), but

P 1
3 (gf ) = αΦ ∗ [1, 1

2
,
1

2
, 1, 1, 1,

1

3
,
1

2
,
1

2
]′ = α[1− β(1− β

3
)],

where Φ are the probabilities of the combined states of nodes 5 and 6 in gf . Consequently, P 1
3 (gf ) < P 1

3 (gb) =
P 1
3 (ge) = α(1− β

2 ). Moreover, since the information flows from nodes 2 and 3 to agent 1 are independent,

P 1(gf ) = α(1− β

2
) + [α− α2(1− β

2
)][1− β(1− β

3
)],

implying that P 1(gf ) < P 1(ge).
In general, P 1(gf ) may be higher or lower than P 1(gb). Table A1.4 illustrates the probabilities, with

which node 1 receives job offers from her neighbors in the four networks for different parameter values; note
that, as a consequence of the triangle in gb, node 1 may have better employment prospects in gf than in gb
even though node 1 has more competitors in gf .
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Table A1.4. Employment prospects for parameter values β = 0.01, α = 0.9 (panel A on the left) and
β = 0.1, α = 0.8 (panel B on the right)

A gb gf gc ge

P 1
2 0.8955 0.8955 0.8955 0.8955

P 1
3 0.8955 0.8909 0.8955 0.8955

P 1 0.9810 0.9886 0.9871 0.9891

B gb gf gc ge

P 1
2 0.7600 0.7600 0.7600 0.7600

P 1
3 0.7600 0.7109 0.7600 0.7600

P 1 0.8800 0.9306 0.9280 0.9424

Finally, let us compare networks gc and ge. Again, n1(gc) = n1(ge) = 2 but n2
1(gc) = 1 < n2

1(ge) = 2,
which in principle should yield better employment prospects for node 1 in gc than in ge due to the lower
number of potential competitors. The probability of getting information about a job offer from neighbor 2
in gc is

P 1
2 (gc) = Φ ∗ [1, 1

2
, 0, 1, 0, 0, 0, 0, 0]′ = α(1− β

2
),

where Φ are the probabilities of the combined states of nodes 2 and 4 in gc. Thus, P 1
2 (gf ) = P 1

2 (gb) = P 1
2 (ge) =

P 1
2 (gc). Similarly, P 1

3 (gb) = P 1
3 (ge) = P 1

3 (gc) = α(1− β
2 ). Therefore, P 1(gc) = βΦ ∗ [ 34 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0] +

(1−β)Φ ∗ [1, 1, 1, 1, 1, 0, 0, 0, 0] = α(2−α−β+ 3
4αβ), being Φ the vector of the probabilities of the combined

states of nodes 2 and 3 in gc.
Thus, P1(gc) < P1(ge), i.e. in contrast to the results in Calvó-Armengol (2004), node 1 is more likely to

receive a job offer through the network in ge despite the lower number of indirect contacts in gc. Table A1.5
shows the probabilities of receiving two, one or no offers.

Table A1.5. Distribution of job offers in the different networks

Example 1 pr. 2 offers in network
Φ gb ge gc
α2 1 (1-β2 )2 (1− β) + β

4
αβ 0 0 0
βα 0 0 0

α(1− α− β) 0 0 0
(1-α− β)α 0 0 0

(1-α)2 0 0 0

Example 1 pr. 1 offer in network
Φ gb ge gc
α2 0 β(1-β2 ) β

2

αβ 1
2 (1-β2 ) (1-β2 )

βα 1
2 (1-β2 ) (1-β2 )

α(1− α− β) 1 (1-β2 ) (1-β2 )
(1-α− β)α 1 (1-β2 ) (1-β2 )

(1-α)2 0 0 0

Example 1 pr. 0 offers in network
Φ gb ge gc
α2 0 β2

4
β
4

αβ 1
2

β
2

β
2

βα 1
2

β
2

β
2

α(1− α− β) 0 β
2

β
2

(1-α− β)α 0 β
2

β
2

(1-α)2 1 1 1
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A.2.3 Example 2

Consider networks g and g′ in Figure 1.4. Both networks have the same degree distribution and the
distribution of second-order degree, but the joint first- and second-order distribution differ. For example,
n1(g) = n1(g′) = 2 but n2

1(g) = 4 but n2
1(g

′) = 3. Moreover, S(g′) = {1, 2, 3} but S(g) = ∅. That is,
S(g′) = S(g) ∪ {1, 2, 3} as in Proposition 2.

(i) Network g. Since R1
3(g) = R1

4(g) = αq3(n3) + (1 − α) = 1 − α + α

[
(1 − β)β + 2β2

3 )

]
, the probability

with which 1 receives at least one offer from her neighbors in network g is:

P 1(g) = 1−
[
1− α+ α

[
(1− β)β +

2β2

3

]]2

The probability that node 2 does not receive information from her neighbor 8 ∈ N2(g) is R2
8(g)=(1− α),

while the probability she does not receive information from 4 ∈ N2(g) is R2
4(g)=R1

3(g). As a result,

P 2(g) = 1−R2
8(g)R

2
4(g) = 1− (1− α)

[
1− α+ α

[
(1− β)β +

2β2

3

]]

Consider agent 3. The probability that she does not receive information from her neighbor 1 is R3
1(g) =

αq1(n1) + (1 − α) = 1 − α
[
(1 − 1

2β)

]
, while R3

5(g) = R3
6(g) = (1 − α). Then, agent 3 receives information

from her contacts with probability:

P 3(g) = 1−R3
1(g)R

3
5(g)R

3
6(g) = 1− (1− α)2

[
1− α+

αβ

2

]

Agent 4 does not receives information from 7 ∈ N4(g) with probability R4
7(g) =(1−α), while R4

1(g)=R4
2(g) =

R3
1(g). Thereby,

P 4(g) = 1−R4
1(g)R

4
2(g)R

4
7(g) = 1− (1− α)

[
1− α+

αβ

2

]2

The probability that node 5 does not receive information from her only neighbor 3 ∈ N5(g) is 1−R5
3(g),

with R5
3(g)=R1

3(g). Henceforth, P 5(g) = α − α
[
(1 − β)β + 2β2

3

]
and P 5(g)=P 6(g)=P 7(g). Similarly, since

R8
2(g) = R4

2(g) = R3
1(g), P 8(g) = 1 − R8

2(g) = α − αβ
2 and P 8(g)=P 11(g)=P 12(g)=P 13(g)=P 14(g). Last,

P 9(g)=P 10(g)=1− (1− α)2.

(ii) Network g′. Information flows from nodes 2 and 3 to 1 are affiliated, since {1, 2, 3} ∈ S(g′). The
probability that provider 2 does not transmit information to 1 is 1

2 when y23(g
′) = 1 (3 is i’s competitor) and 0

when y23(g
′) = 0. Conditional on y22(g

′) = 1 (2 is a competitor), the probability that node 3 does not transmits
information to 1 is q3(n3 − 1 | y22(g′) = 1) = 2

3β + (1− β) 12= 1
2+β

6 . Analogously, q3(n3 − 1 | y22(g′) = 0) = 1
2β

is the probability that provider 3 does not transmit information to 1, conditional on y22(g
′) = 0.

Let Φ = [α2, αβ, βα, α(1 − α − β), (1 − α − β)α, (1 − α − β)2, β2, β(1 − α − β), (1 − α − β)β] be
the vector of probabilities of all relevant combined states of 2 and 3. Then, the probability that 1 does not
receive any offer from 2 or 3 can be expressed as the dot product of Φ and the vector of the probabilities that
1 does not receive any offer in each joint state: R1

23(g
′) = Φ ∗ [0, 1

2 , q3(n3 − 1 | 1), 0, q3(n3 − 1 | 0), 1, 1, 1, 1]′ =

1 + α2

(
1− β

2

)
−α

(
2− 3

2β + 1
3β

2

)
. Therefore, the probability that 1 receives at least one offer in g′ is:

P 1(g′) = 1−R1
23(g

′) = α

(
2− 3

2
β +

1

3
β2

)
−α2

(
1− β

2

)
= P 2(g′)

by symmetry of 1’s and 2’s positions.
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Consider agent 3. The probability that provider 1(2) does not pass information to 3 when 2(1) is in state
2 is 1

2 and 0 when 2(1) is not in such a state. Then,

R3
12(g

′) = Φ ∗ [0, 1
2
,
1

2
, 0, 0, 1, 1, 1, 1]′ = αβ + (1− α)2

Since R3
4(g

′)=R1
3(g),

P 3(g′) = 1−R3
12(g

′)R3
4(g

′) = 1−
[
(1− α)2 + αβ

][
1− α+ α

(
(1− β)β +

2β2

3

)]

Observe that R4
3(g

′)=R1
3(g), and R4

5(g
′)=R6

5(g
′)=(1− α). Hence,

P 4(g′) = 1−R4
3(g

′)R4
5(g

′)R4
6(g

′) = 1− (1− α)2
[
(1− α) + α

(
(1− β)β +

2β2

3

)]
.

As for agent 9, the likelihood that she does not receive information from 10 ∈ N9(g′) is R9
10(g

′)=R3
1(g),

while the probability that she does not receive information from 11 ∈ N9(g′) is R11
9 (g)=(1−α). This implies

that

P 9(g′) = 1−R9
10(g)R

9
11(g

′) = 1− (1− α)

[
1− α

(
1− β

2

)]

and P 9(g′)=P 10(g′) by symmetry. Finally, note that P 5(g′)=P 6(g′)=P 5(g)=P 6(g), P 7(g′)=P 8(g′)=P 13(g′)=P 14(g′)=α,
and P 11(g′)=P 12(g′)=P 11(g)=P 12(g).

Table A1.6 summarizes the employment probabilities of each node for a = 0.1 and b = 0.2, the values
in Example 2. The employment probability of node i is computed as Ei(g) = (1 − β) + βP i(g), while
E(g) = 1

n

∑
i∈N Ei(g).

Table A1.6. Employment probability for a =0.1, b = 0.2 in Example 2

Node P i(g) Ei(g) P i(g′) Ei(g′)

1 0.128511 0.843132 0.133440 0.844019
2 0.141147 0.845406 0.133440 0.844019
3 0.215218 0.858739 0.196412 0.855354
4 0.209076 0.857634 0.209855 0.857773
5 0.066464 0.831964 0.066464 0.831964
6 0.066464 0.831964 0.066464 0.831964
7 0.066464 0.831964 0.080000 0.834400
8 0.072800 0.833104 0.080000 0.834400
9 0.153600 0.847648 0.146968 0.846454
10 0.153600 0.847648 0.146968 0.846454
11 0.072800 0.833104 0.072800 0.833104
12 0.072800 0.833104 0.072800 0.833104
13 0.072800 0.833104 0.080000 0.834400
14 0.072800 0.833104 0.080000 0.834400

Aver. 1.564544 0.840116 1.565610 0.840129

A.2.4 Computation of probabilities for Table 1.1

First, note that since SS(g) = ∅, Rjk(g) = Rj(g)Rk(g). Formally,

Rjk(g) = α2qj(nj)qk(nk) + α(1− α)qj(nj) + α(1− α)qk(nk) + (1− α)2

considering the four possible cases (both j and k are providers, only j is a provider, only k is a provider and
none of them is a provider) and their corresponding probabilities.
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If SS(g) = {i, j, k} as in gt, the probability that i does not receive any offer from provider j conditional
on y2k is

qj(nj − 1 | y2k) =
nj−2∑

h=0

(
nj − 2

h

)
βh(1− β)nj−2

(
h+ y2k

h+ y2k + 1

)

With this expression in and, we compute Rjk(gt). The probability that i does not receive an offer from j
when j is a provider but k is not, depends on whether k is a competitor or not, and the same holds for he
probability that i does not receive an offer from k when k is a provider but j is not. There are six cases to
consider: (1) both j and k are providers; (2) j is a provider and k a competitor, (3) k is a provider and j a
competitor; cases (4) and (5) in which one is a provider and the other neither a provider nor a competitor (i.e.
in state 3 or 4, event that occurs with probability δ + γ = 1− α− β); and (6) neither j nor k are providers:

Rjk(g
t) = α2qj(nj − 1 | y2k = 0)qk(nk − 1 | y2j = 0) + αβqj(nj − 1 | y2k = 1) + α(1− α− β)qj(nj − 1 | y2k = 0)

+ αβqk(nk − 1 | y2j = 1) + α(1− α− β)qk(nk − 1 | y2j = 0) + (1− α)2

= α2qj(nj − 1 | y2k = 0)qk(nk − 1 | y2j = 0)

+ αβqj(nj − 1 | y2k = 1) + α(1− β)qj(nj − 1 | y2k = 0)− α2qj(nj − 1 | y2k = 0)

+ αβqk(nk − 1 | y2j = 1) + α(1− β)qk(nk − 1 | y2j = 0)− α2qk(nk − 1 | y2j = 0) + (1− α)2

Given that βqj(nj − 1 | y2k = 1) + (1− β)qj(nj − 1 | y2k = 0) = q(nj) and qj(nj − 1 | y2k = 0) = qj(nj − 1),
the above probability simplifies to

Rjk(g
t) = [α2qj(nj − 1)qk(nk − 1)] + [αqj(nj)− α2qj(nj − 1)] + [αqk(nk)− α2qk(nk − 1)] + [(1− α)2]

where each term in brackets corresponds to the probability that i does not receive any offer in each of the
four cases in column labeled as gt in Table 1.1.

Adding up all the rows of the last column in Table 1.1, we obtain that

Rjk(g
t)−Rj(g)Rk(g) = α2

[(
qj(nj)− qj(nj − 1)

)(
1− qk(nk − 1)

)
+
(
qk(nk)− qk(nk − 1)

)(
1− qj(nj)

)]
> 0

because both qj(nj) and qk(nk) increase in their arguments by Claim 1. Therefore, P i(g) > P i(gt). !
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A.3 Additional material for the dynamic analysis
A.3.1 Real-life network

Figure A1.1 Giant component of the friendship network from Brañas et al. (2010).
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A.3.2 Steady state results for vertex-transitive networks

Here, we present more details regarding the analysis of Section 1.4.3. First of all, Figure A1.2 presents
the three network under study if ni(g) = 3 and Figure A1.3 those for ni(g) = 4.

Figure A1.2. Vertex-transitive networks with ni(g) = 3 for each i but varying clustering

Figure A1.3.Vertex-transitive networks with ni(g) = 4 for each i but varying clustering
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In Figure A1.2, each node has three links. In (a) and (b), each node has six neighbors of neighbors while
n2
i (g(c)) = 3. As for cycles, there is neither any triangle or square in (a), each node is involved in one triangle

but no square in (b), whereas Ci(g(c)) = 1 for each i and everybody belongs to one four-cycle. Network (c)
presents the only feasible degree-three vertex-transitive network with more than one triangle per person.
Hence, any differences between (a) and (b) can be attributed to short cycles, but the comparison of (a) and
(b) with (c) is more complex. People belong to more short cycles, but they have three competitors less. Table
A1.10 reports the results of the simulations using these networks.

In Figure A1.3, each node has degree four and, in networks (a), (b), and (c), second-order degree equal
to eight while n2

i (g(c)) = 8. Network (c) is not vertex-transitive. All members have identical local position,
but the nodes in the interior of the circle are slightly more globally central than those in the periphery in
the figure. We constructed a corresponding vertex-transitive network satisfying the above conditions, but the
network (c) resembles more the networks (a) and (b) in the presence of cycles of longer length. We thus opted
for network (c) in our comparison. There is neither any triangle or square in (a), each node is involved in two
or three triangles but no square in (b) and (c), whereas Ci(g(d)) = 1 (six triangles) for each i and everybody
belongs to three four-cycles and one five-cycle. Network (d) presents the only feasible network with ni(g) = 4
and C(g) = 1. Hence, networks (a), (b), and (c) enable a clean comparison with respect to short network
cycles, whereas the comparison of these networks with (d) is more complex. Table A1.11 reports the results
of the simulations using these networks.

Table A1.10. Labor-market statistics in vertex-transitive networks with ni(g) = 3 but varying clustering
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Table A1.11. Labor-market statistics in vertex-transitive networks with ni(g) = 4 but varying clustering



Capítulo 2

Clustering in Network Games

1. Introduction
Social networks have an incidence on individuals’ behavior (Goyal, 2012; Jackson and Zenou, 2015). An

agent may decide to wear a sanitary mask in Covid-19 times only if people in her network do. In other
contexts, the same agent may perform a task, such as a providing a public good, only if none of her neighbors
does.

The study of such strategic interactions from a social network perspective has grown over the last decades,
motivated by the empirical evidence that social networks exert enormous influence on human behavior (Topa,
2001; Conley and Udry, 2005; Centola, 2010, 2011; Bond et al. 2012; Breza and Chandrasekhar, 2019).
Literature on network games has aimed to understand which features of social networks affect behavior and
how in different contexts, such as criminality (Calvó-Armengol and Zenou, 2004; Ballester et al. 2010), labor
(Calvó-Armengol and Jackson, 2004, 2007), public good provision (Bramoullé and Kranton, 2007), or security
investment (Acemoglu et al. 2016) among others.1

One of the most prevalent structural properties of real-life social networks is network cliquishness: indivi-
duals tend to form close-knit networks, where network cycles are highly present (Holland and Leinhardt, 1971;
Watts and Strogatz, 1998, Ravasz and Barabási, 2003; Vega-Redondo, 2007; Leskovec et al. 2008; Jackson and
Rogers, 2007; Jackson, 2010; Seshadhri et al. 2012). Network knittedness is typically quantified through the
clustering coefficient, which captures the frequency with which neighbors of a node are mutually connected.
For instance, Newman (2003) finds average clustering coefficients of 0.496 in coauthor networks, meaning
that around 50 percent of the coauthors of the researchers in the network are, on average, coauthors of each
other.2

Clustering has been pointed as a driver of human behavior through different mechanisms. One is information-
based: news flow faster and more reliably though clustered networks, what may discourage misbehavior be-
cause of reputation effects (Merry, 1984; Raub and Weesie, 1990; Burt, 2005, 2008; Lippert and Spagnolo,
2011). Another related mechanism is the emergence of collective sanctioning systems: people may coordinate
efforts to punish an individual more easily if the network they are part of is tightly clustered (Coleman, 1988a,
1988b). These types of mechanisms constitute the basis of theories of social capital (Coleman, 1990, Putnam,
2000; Burt, 2001 2005) that posit that clustering might prevent the emergence of free-rider attitudes and
foster the emergence of cooperation. Recent research has found support for the positive effects of network
cliquishness on cooperation (Bloch et al. 2008, Righi, and Takács, 2014; Vega-Redondo, 2005; Ali and Miller,
2012, 2016; Melamed et al. 2018), both through communication and ostracism patterns (Jackson, et al. 2012,
Ali and Miller, 2016) as well as though social collateral (Karlan et al. 2009).3

1See also Ballester, Calvó-Armengol and Zenou (2004), Calvó-Armengol et al. (2009), and Leduc et al. (2017).
2Different explanations have been proposed to explain the tendency of people to form transitive relationships. Levine and

Kurzman (2006) argue how humans may have evolved cognitive mechanisms designed to exploit the positive externalities that
derive from network clustering, while Kovářík and Van der Leij (2014) relate it to risk aversion. See also Rapoport, (1953) or
Jin et al. (2001).

3Beyond their incidence on behavior, clustering has also been relevant when explaining other economic phenomena, such as
employment (Granovetter, 1973) or gender inequality (Ductor, et al. 2018).
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This chapter explores the impact of clustering in two canonical forms of strategic interactions: games of
strategic substitutes and games of strategic complements.4 Under strategic complements, the benefits that a
player obtains from taking an action are greater as more contacts of her do the same. This typically occurs
because of the positive effects of having compatible products or undertaking similar behaviors (e.g. buying
compatible technologies or speaking a common language) or because of peer pressures (in the case for example
of smoking habits). Under strategic substitutes the opposite occurs: the benefits of a player from taking an
action are lower as more contacts of her do the same. This is often due to the positive externalities that
emerge from people’s actions, that enables others to free ride from them. Games of strategic substitutes cover
applications such as public good provision, costly experimentation or information adquisition, etc.

The main challenge while studying games played on networks stems from the intrinsic complexity of
network architectures. The two main difficulties are the following. First, it is problematic and sometimes
impossible to isolate the ceteris paribus incidence that each network feature has on behavior, because changing
one network property affects the whole network architecture and thus any network measure that depends on
the whole structure. Second, even if one focuses on a particular network, a bewildering range of equilibrium
outcomes is possible when players have complete information about the network they are embedded in (see
e.g. Bramoullé and Kranton, 2007).

One approach to solve these fundamental problems is the introduction of incomplete network information.
Under incomplete information, behavior may only depend on anticipated interaction patterns, simplifying the
analysis (De Martí and Zenou, 2015; Jackson and Zenou, 2015). Moreover, in many real-life situations, people
indeed have incomplete information about their network and, even if complete information is available, people
exhibit cognitive limitations while recalling and processing information about the whole network architecture
(Jannick and Larrick, 2005; Dessi, et al. 2016).

Galeotti et al. (2010) take this approach. In their model, each player knows her degree and the degree
distribution of the network, but not the degree of other players.5 The ignorance of players about other players’
degrees defines a Bayesian game where the degree of each player is interpreted as her type. An important
contribution of these authors is the prediction of a player’s optimal action on the sole basis of one of her
network attributes, her degree. They show that every symmetric equilibrium is monotone non-increasing (non-
decreasing) in players’ degrees under strict strategic substitutes (complements).6 This implies that social
connections create personal advantages−a recurrent idea in networks literature (Burt, 1992, Granovetter,
2018)−as the expected payoffs of players with higher degrees are greater.7 However, the incidence that other
features of networks have on behavior, such as network clustering, is set aside from their analysis.

This chapter builds on the incomplete information framework of Galeotti et al. (2010), but extends it to
incorporate players’ information about (positive) network clustering. In our setup, each player has private
information about her own degree, which defines her type. Besides, each player has information about the
degree distribution, as well as about the extent to which her neighbors can be connected.8 To be precise,
players are informed about the maximal number of triangles they may be involved in, information that we
refer as perceived clustering. However, no player knows neither her neighbors’ identities nor the triangles she
forms with them. We particularly explore how behavior changes as perceived clustering varies, ceteris paribus,
and why.

Our information structure applies to many real life situations. A newcomer to a small village (or a
prospective member of a fraternity) may expect that the people with whom she is going to interact know

4These games cover many of the game-theoretic applications studied in economics (see Bulow et al. 1985 or Potters and
Suetens, 2009).

5This information setup−also considered in Jackson and Yariv, (2007)−applies for situations in which people have to take
decisions without knowing with whom they are going to interact. For example, an agent who has to decide whether to get a
vaccination may anticipate the volume of agents with whom she is going to have contact, but not the identity of these people.
Although this is the main information setup in their paper, the authors also explore the effects of endowing players with richer
network information.

6This result holds for games that satisfy a property: having an additional neighbor playing 0 is payoff equivalent to not having
such a neighbor. This property holds for instance when players’ payoffs depend on the sum of their neighbors’ actions, but not
when they depend, say, on the average.

7Consider for example a binary game of strategic substitutes (complements): action 1 is interpreted as paying for a public
good (as adopting a complementary technology in the case of strategic complements), and action 0 not doing so. High-degree
players may derive higher payoffs than low-degree ones, since they can free-ride at the expense of low degree-players under
strategic substitutes. Under strategic complements, high-degree players may enjoy the benefits derived from compatibility.

8As we show below, the information structure of Galeotti et al. (2010) can be considered as a special case of our model when
players believe that their neighbors do not know each other (clustering is zero).
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each other. On the contrary, a first-year student (or a person starting a new job in a new firm) may believe
that her future colleagues come from distant places and are not linked. In most real-life situations, people’s
expectations about network clustering lies in between these two extremes.

Our main result shows that equilibrium behavior of people can change depending on perceived clustering.
Under strategic substitutes, equilibrium contribution to the public good does not decrease (does not increase)
as perceived clustering increases (decreases). The opposite occurs under strategic complements: technology
adoption in equilibrium does not increase (does not decrease) as perceived clustering increases (decreases).9

The intuition behind this result is the following. As in Galeotti et al. (2010), the popularity of each player
(her degree) determines her equilibrium action, and thereby players’ expectations about their neighbors’
actions correspond to their expectations about their neighbors’ degrees. Players know that there exist some
correlation in their neighbors’ degrees that derives from the fact that their neighbors may be linked.10 The
more neighbors a player expects to be mutually connected, the more neighbors she expects to have with
correlated degrees. This implies that a player believes more likely to have similar types of neighbors (in
terms of popularity) when she knows that many of her neighbors can be linked, and a greater diversity of
neighbors when she knows that only a few of them can. Consequently, a player believes more likely to have at
least one type of neighbor playing action 1 (i.e. a neighbor that contributes to the public good under strategic
substitutes or adopts the technology under strategic complements) when perceived clustering is lower than
when it is higher. Since in our game of strategic substitutes (complements) a player wants to play action 0(1)
if at least one of her neighbors plays 1(1) and action 1(0) otherwise, a greater perceived clustering neither
reduces public good contribution nor increases technology adoption in equilibrium.

The contribution of this chapter is to uncover a novel mechanism by which clustering influences equilibrium
in games played on networks: the influence of this network feature in the perceived heterogeneity of players.
We show that people’s choices are not only driven by the number of connections they have, but also by
their expectations about the diversity of their contacts in terms of popularity, which are shaped by their
information about network clustering. Our findings are in line with those predicted by Coleman (1988a,
1988b), as greater perceived clustering discourages people to free ride. However, our result is not driven
by the emergence of collective sanctions as suggested by him, but by the effects of perceived clustering on
the perceived heterogeneity of players. Lower perceived clustering traduces in greater expectations about
neighbors diversity, what creates personal advantages in a similar way as personal connections do. In fact,
increasing perceived clustering has the same effect as inducing a shift in the sense of first order stochastic
dominance in the degree distribution (see Galeotti et al. 2010) under strategic substitutes and the opposite
effect under strategic complements.

The closest chapter to ours is Lamberson (2015), that also builds on the framework of Galeotti et al. (2010)
to analyse the incidence of clustering in binary games of strategic substitutes and of strategic complements.
Their model is however different: the network is regular and the beliefs of each player about her neighbors’
actions are based on their past actions.11 This introduces local correlation in players’ actions, increasing both
technology adoption and public good provision in the Bayes-Nash equilibrium.

The chapter is organized as follows. Sections 2.1 and 2.2 present some basic definitions and the games
considered in this work, respectively. Section 2.3 provides the results. In Section 2.4, we discuss the results
and offer directions for future research.

2.1. Background definitions
Consider a social network g = (N,E) composed of a set of nodes N = {1, .., n} and a set of edges or links

E between them. Each node i ∈ N represents one of the n = |N | agents in the network. We write gij = 1 if
9Under strategic complements, there is always a trivial equilibrium where all types of players play action 1(0). Since these

equilibria are always possible, we set them aside when exploring the incidence of perceived clustering on equilibria.
10Players know that nodes in the network do not have degrees with independent probabilities, but the degree of connected

nodes are correlated even if links are formed in a fully random way. Consider the simplest example of a network integrated by
node i and her neighbors j and l. If each each edge forms randomly and independently with probability p, i knows that there
exist perfect correlation in their neighbors’ degrees: either both j and l have degree 1 (with probability p) or they both have
degree 0 (with probability 1− p). While this correlation is always present, it tends to vanish as the network gets very large, as
we discuss.

11For example, if an agent contributes to the provision of a public good, she may not know whether their neighbors will
contribute in a subsequent period, but she may expect them to be less likely to contribute because they can count on her to do
it.
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agents i ∈ N and j ∈ N are directly linked in g and gij = 0 otherwise, with gij = gji, ∀i, j ∈ N. The network
is represented by a n×n symmetric adjacency matrix A = (gij)i,j∈N , with gii = 0.

The neighborhood of node i ∈ N is the set of agents directly connected to i, Ni(g) = {j ∈ N : gij = 1}.
The degree of node i is denoted ki(g) = |Ni(g)|.

Let Pg(k) be the probability degree distribution. Namely, Pg(k) is the probability that each i ∈ N has
degree k, for all k ∈ {0, 1, ..., n− 1}.

In our analysis, we will refer to a model of network formation: the Erdös-Renyi model (1959; 1960). In
this model, each link between any two nodes occurs randomly with probability p, independently of any other
link. The degree of each node i ∈ N is then given by a random variable Ki(g), which takes value k with
probability:

P [Ki(g) = k] =

(
n− 1

k

)
pk(1− p)n−1−k (2.1.1)

A three−cycle Z3
i (g) in a network g is a set of nodes {i, j, k} such that gijgjkgki = 1. We define S3

i (g) =
{Z3

i (g) : i ∈ Z3
i (g)} as the set of all three cycles in g to which agent i belongs. We refer a three-cycle also as

a triangle.
The clustering coefficient of i ∈ N captures the proportion of three-cycles (triangles) that she forms with

her neighbors:

Ci(g) =
2
∣∣S3

i (g)
∣∣

ki(g)
(
ki(g)− 1

)

In words, Ci(g) is the number of pairs of neighbors of i that are linked divided by the maximal number
of links that could exist among i′s neighbors. The average clustering coefficient of network g is C(g) =
1
n

∑
i∈N Ci(g) (Barabasi, 2016). In Erdös-Renyi networks, C(g) = p.

2.2. Network games

2.2.1. Network and players
Throughout all our analysis, we consider a random network, where each link is formed independently with

probability p ∈ (0, 1) as in the Erdös-Renyi model. In such a network, each node has degree k as given by
(2.1.1).12 Nodes are the players of the game.

2.2.2. Payoffs
We analyse two types of strategic interactions: games of strategic substitutes and games of strategic

complements.

2.2.2.1. Strategic substitutes

We consider a game similar to that in Bramoullé and Kranton (2007). Each player chooses simultaneously and
independently an action in X = {0, 1}.13 Action 1 represents an activity that generates positive externalities
to people. For instance, action 1 may be interpreted as contributing to a public good or investing in a non-rival
technology. Players pay a cost c when they play action 1, with 0 < c < 1. Action 0 bears no cost.
Let xi be the action of player i ∈ N , and xN = (x1, ..., xn) the action profile of all players. The utility of each
i is ui(xi, xNi(g)), with xNi(g) =

∑
j∈Ni(g)

xj . It takes the following values:

ui(0, xNi(g)) = 0 if xNi(g) = 0

ui(0, xNi(g)) = 1 if xNi(g) ≥ 1
12Galeotti et al. (2010) do not consider a specific network in their model. However, the assumption of degree independence

on which many of their results are based is interpreted as holding asymptotically in random networks, as we discuss below. We
thereby consider a random network as well when presenting their results.

13In Bramoullé and Kranton (2007), players can play any action in [0,∞). We consider here a simpler version of this model.
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ui(1, xNi(g)) = 1− c for any xNi(g)

It is readily seen that each player prefers her neighbors to take action 1 rather than taking this action
herself. However, if none of her neighbors plays 1, she prefers playing 1 than playing 0.

2.2.2.2. Strategic complements

Jackson (2010) provides the example of a game where players’ actions are strategic complements. Imagine a
situation where each i ∈ N has to decide independently and simultaneously whether to take an certain action
(xi = 1) or not (xi = 0), and the enjoyment of this activity is higher if at least one of her neighbors plays
also this action. For example, i has to decide whether to attend an event (action 1) or not (action 0), and c
accounts for the travel expenses, 0 < c < 1. Another example is the decision to adopt a certain technology:
the benefit that an individual derives from the use of a technology often depends on the number of neighbors
that use compatible items (Katz and Shapiro, 1986). In this case:

ui(1, xNi(g)) = 1− c if xNi(g) ≥ 1

ui(1, xNi(g)) = −c if xNi(g) = 0

ui(0, xNi(g)) = 0 for any xNi(g)

2.2.3. Information
We write Ii(g) to denote the whole information set that each i ∈ N has about the network.

2.2.3.1. Galeotti et al. (2010).

Information and types. Agents’ private information corresponds to their degree, while the probability
degree distribution of the network is common knowledge. These two aspects constitute the whole information
set that each i ∈ N has about the network, Ii(g) = {ki(g), p, n}. The games are analysed within the framework
of Bayesian games of incomplete information by identifying the type of each player with her degree.
Players’ beliefs. Given Ii(g), each i ∈ N knows that the probability that j ∈ Ni(g) has degree k is the
probability that j forms k − gij = k − 1 additional links with the remaining n − 2 agents in the network.
Namely,

P [Kj(g) = k | Ii(g)] =
(
n− 2

k − 1

)
pk−1(1− p)n−k−1 ∀j ∈ Ni(g), ∀i ∈ N (2.2.1)

Define F (g) = {1, 2, ..., k} as the set of feasible neighbors’ degrees: the set of degrees that each neighbor of
any node can have in network g, where k is the maximal degree in this set. Equivalently, it could be assumed
that the information set of each i is I ′i(g) = {ki(g), p, F (g)} and k = n − 1; players have the same beliefs
about the connectivity of their neighbors given Ii(g) and given I ′i(g),

P [Kj(g) = k | I ′i(g)] =
(
k̄ − 1

k − 1

)
pk−1(1− p)k̄−k = P [Kj(g) = k | Ii(g)], ∀j ∈ Ni(g), ∀i ∈ N (2.2.2)

We stress the equivalence between both information sets here, as it will be relevant in certain parts of our
analysis.
Degree independence. Although links are formed randomly and independently, nodes do not have degrees
with independent probabilities, but their degrees are to some extent correlated.14 While this correlation is
always present, it tends to vanish as the network gets large, since the possibility of an edge between each pair
of nodes is only 1 out of the n − 1 that each might have (Jackson, 2010). Then, it is reasonable to assume
that nodes have degrees with probabilities that are (roughly) independent when n → ∞. The assumption of
degree independence made by Galeotti et al. (2010) is interpreted in this manner, as holding (approximately)
for infinitely large random networks (often referred as Poisson networks).15

14See footnote 10.
15Galeotti et al. (2010) make use of this assumption to characterize the equilibrium generally (see their Proposition 2). However,

they also show how some of their results for strategic complements (substitutes) maintain when the degree of connected nodes
are positively (negatively) correlated.



CAPÍTULO 2. CLUSTERING IN NETWORK GAMES 70

Clustering. In Poisson networks, the probability that two specific nodes i and j are connected is insignificant.
This implies not only that nodes have degrees with (roughly) independent probabilities, but also that the
probability that two neighbors of a node are connected is negligible in these networks.16 Galeotti et al. (2010)
presume then not only that players’ believe that nodes have degrees with independent probabilities, but
implicitly also that players believe that the network has a tree-like structure.17

2.2.3.2. Our Setting.

Information and types. Players are privately informed about their degree, while the degree distribution of
the network is common knowledge. Besides, each player privately knows the extent to which her neighbors
can be connected. In particular, each player is exogenously informed about the maximal number of triangles
in which she may be involved, denoted τ . We refer to τ as perceived clustering. The information set of each
i ∈ N is then Ii(g) = {ki(g), p, F (g),

∣∣S3
i (g)

∣∣ ≤ τ}, with F (g) = {1, 2, ..., k}.18 Note that i does not have
information about the identity of her neighbors nor about the triangles that she forms with them; even if she
knows that the cardinality of Si(g) lies in the interval [0, τ ], both S3

i (g) and
∣∣S3

i (g)
∣∣ are unknown for her. For

example, if Ni(g) = {j, l,m} and τ = 1, i knows that she may form one triangle with her neighbors. However,
she does not know whether this triangle is {i, j, l}, {i, j,m}, or {i, l,m}. It might be also the case that she
does not form any triangle with her neighbors.
Perceived clustering is the same for all players, regardless of their degree. It is an exogenous information that
they may have obtained from the context, in a similar way as they know the degree distribution. Imagine for
example a company representative who is considering to attend a networking event, say, a business congress.
Before attending the congress, this agent may know the volume of clients of her company, and have one idea
about the volume of clients of the other participating companies. Besides, she may know the companies that
participated in a past edition of the congress, the number of them that operate within the same area or have
collaborated previously in any project, etc. These exogenous signals may inform the agent about the number
of firms that might have a prior relationship, and in turn, about the maximal number of connections that
might exist among her potential partners (τ).
The private information of each i, ki(g) and τ , define her type. However, since perceived clustering is the
same for all players, we will assume that the type of each player is only given by her degree, since this is the
only information that can be different across players. Hence, every symmetric strategy σ is a mapping that
specifies each player’s action as a function of her type, σ(ki) ∈ {0, 1}.
Finite random network. The analysis of clustering requires setting aside Poisson networks, since clustering
is very small in these graphs. We thereby consider a random network of finite size throughout our analysis.
Unlike Poisson networks, degrees of connected nodes are (not negligibly) positively correlated in this type of
networks (Newman 2003; Jackson and Rogers 2007).

2.3. Results
This section analyses the relation between clustering and behavior. We start by presenting the main

insights in Galeotti et al. (2010) (Section 2.3.1). Then, we show how a variation in perceived clustering may
have consequences in players’ equilibrium behavior (Section 2.3.2).

2.3.1. Degree and behavior
Under the information setup in Galeotti et al. (2010), the (pure) strategy of each player can be identified

with a mapping σ that specifies her action as a function of her degree, σ(ki) ∈ {0, 1}, ∀i ∈ N . Galeotti et
16In fact, the probability that a pair of nodes are connected is always p in Poisson networks, regardless on whether they share

a common neighbor. Then, for fixed p, the clustering coefficient becomes vanishing small as the number of nodes increases (see
Vega-Redondo, 2007).

17In Section 2.3.2.1, we will show that the equilibrium setup in Galeotti et al. (2010) is rougly equal that the one that emerges
when players know that the network has clustering equal to zero.

18As we explained in the previous section, players form the same beliefs about the degree of their neighbors from the knowledge
of n and p as well as from the knowledge of F (g) and p: in both cases, they believe that each neighbor of them has degree k with
the probability in (2.2.1). However, players can derive some additional information about their neighbors’ connectivity from the
joint knowledge of τ and n, while they cannot from the joint knowledge of τ and F (g), as we discuss in a subsequent section.
Then, in order to isolate the effects of perceived clustering from those that may be caused by changes in players’ beliefs about
their neighbors’ degrees we assume Ii(g) = {ki(g), p, F (g),

∣∣S3
i (g)

∣∣ ≤ τ} for each i ∈ N .
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al. (2010) focus on the symmetric equilibria of the games, where players with the same types play the same
strategies. In fact, these are the only equilibria that are possible under the assumption of degree independence,
as they discuss.19

2.3.1.1. Strategic substitutes.

Suppose all players follow a strategy σ. The expected utility of each i ∈ N of playing 0 corresponds to
the probability that at least one j ∈ Ni(g) plays 1 (i.e. the probability that ∃j ∈ Ni(g) : σ(kj) = 1). Under
degree independence, i′s expected utility of playing 0 is:

EUi(g) (0,σ, Ii(g)) = 1−

⎡

⎣
∑

kj :σ(kj)=0

p[Kj(g) = kj | Ii(g)]

⎤

⎦
ki(g)

(2.3.1)

while EUi (1,σ, Ii(g)) = 1 − c is the expected utility of i of playing 1. In equilibrium, each agent plays 0 if
EUi (0,σ, Ii(g)) ≥ EUi (1,σ, Ii(g)) = 1− c, and action 1 otherwise.

Independence in degrees guarantees that p[Kj(g) = kj | Ii(g)] is the same for all i ∈ N , implying that
EUi (0,σ, Ii(g)) is increasing in ki(g), whenever players are uncertain about their neighbors actions.20 As a
consequence, if i is best responding with action 0, each player l with degree kl(g) > ki(g) must be responding
with action 0 as well, since EUl (0,σ, Il(g)) > EUi (0,σ, Ii(g)) ≥ 1− c. It follows then that any equilibrium of
the game is and characterized by a degree threshold. Such an equilibrium threshold is the value t for which
following equality satisfies:

1− P
[
Kj(g) > t | Ii(g)]

]t
= 1− c (2.3.2)

Any equilibrium strategy σ of the game satisfies σ: σ(k) = 1 if k < t, σ(k) = 0 if k > t and σ(k) ∈ {0, 1}
for k = t.21

2.3.1.2. Strategic complements.

Reasoning is similar for strategic complements. Under degree independence, the expected utility of i of
playing 1 is increasing in ki(g):

EUi(g) (1,σ, Ii(g)) = −c+ 1−

⎡

⎣
∑

kj :σ(kj)=0

p[Kj(g) = kj | Ii(g)]

⎤

⎦
ki(g)

(2.3.3)

while EUi (0,σ, Ii(g)) = 0. Therefore any equilibrium of this game is non-decreasing, and characterized by a
threshold.

Let t the value for which:

1−
[
P [Kj(g) < t | Ii(g)]

]t
= c (2.3.4)

Analogously as for strategic substitutes it is readily seen that any (non-trivial)22 equilibrium strategy σ
satisfies σ: σ(k) = 0 if k < t, σ(k) = 1 if k > t and σ(k) ∈ {0, 1} for k = t.

19Under degree independence, players with the same degree face the same probability distribution over their neighbors’ actions,
and consequently the same decision problem. Then, their best response to their neighbors’ actions is the same.

20Clearly, if all agents play the same action, say, action 0(1), EUi(g) (0,σ, Ii(g)) equal to 0(1) and does not depend on ki(g).
21Strategy σ1: σ1(k) = 1 for k ≤ t and σ1(k) = 0 for k > t is always an equilibrium strategy, since EUi (0,σ1, Ii(g)) =

1 − P [Kj(g) > t | Ii(g)]
]ki(g) ≤ 1 − c, for all i with ki(g) ≤ t, and EUi (0,σ1, Ii(g)) = 1 − P [Kj(g) > t | Ii(g)]

]ki(g)
>

1 − c for all i with ki(g) > t. However, strategy σ2: σ2(k) = 1 for k < t and σ2(k) = 0 for k ≥ t might not. Suppose

P [Kj(g) ≥ t | Ii(g)] > P [Kj(g) > t | Ii(g)]. For ki(g) = t, EUi (0,σ2, Ii(g)) = 1 − P [Kj(g) ≥ t | Ii(g)]
]t

would be lower

than 1 − P [Kj(g) > t | Ii(g)]
]t

= 1 − c, and i would not best responding with action 0 but with action 1. On the contrary, if
P [Kj(g) ≥ t | Ii(g)] = P [Kj(g) > t | Ii(g)] = 1− c, strategy σ2 is an equilibrium strategy, for the same reasons as strategy σ1 is.

22See footnote 9.
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2.3.2. Clustering and behavior.
Section 2.3.2.1 shows that the equilibrium in Galeotti et al. (2010) is roughly equal to that in an in-

formation setup where players know that the network is a tree, in addition to their own degree and the
degree distribution. Section 2.3.2.2 analyses the equilibria that arise under our information setup, presented
in Section 2.2.3.2.

2.3.2.1. Triangle-free networks

Consider a random network g where each link between any pair of nodes is formed randomly with pro-
bability p. Conditioned on gjl, the probability that j ∈ N has degree k is independent from the probability
that l ∈ N has degree k′, as the following Lemma highlights.

Lemma 1. If each link in g is formed randomly with probability p,

p[Kj(g) = k,Kl(g) = k′ | gjl] = p[Kj(g) = k | gjl] ∗ p[Kl(g) = k′ | gjl]

for any j, l ∈ N.

Proof. By construction, each link between j(l) ∈ N and any agent in N \ {j, l} occurs with probability
p, independently of any other edge. Then,

p[Kj(g) = k | Kl(g) = k′, gjl] =

(
n− 2

k − gjl

)
pk−gjl(1− p)n−2−k+gjl = p[Kj(g) = k | gjl]

and Kj and Kl are conditionally independent given gjl, ∀j, l ∈ N . Hence, p[Kj(g) = k,Kl(g) = k′ | gjl] =
p[Kj(g) = k | gjl] ∗ p[Kl(g) = k′ | gjl], ∀j, l ∈ N . !

Lemma 1 stresses an important fact: the lack of independence in degrees of i′s neighbors derives from the
fact that these agents may be linked. Conditioning on the possible links among i′s neighbors, the degree of
these agents depend on independent events, thereby they are (conditionally) independent.

Galeotti et al. (2010) analyse the games under the assumption that the network is that large that players’
disregard the probability that their neighbors’ are connected when choosing their actions, which is implicit
in their assumption of degree independence. The equilibrium that arise under their information setup is
similar to the one that would emerge in a setting where the information set of each i ∈ N is Ii(g) ={
ki(g), p, n,

∣∣S3
i (g)

∣∣ = 0
}
. When the information set of each i ∈ N is Ii(g) =

{
ki(g), p, n,

∣∣S3
i (g)

∣∣ = 0
}
, each i

believes that j ∈ Ni(g) has degree k with probability:

P [Kj(g) = k | Ii(g)] =
(
n− ki − 1

k − 1

)
pk−1(1− p)n−ki−k ∀j ∈ Ni(g), ∀i ∈ N (2.3.5)

Applying the reasoning in Section 2.3.1, it can be easily checked that any equilibrium is monotone non-
increasing (non-decreasing) in players’ degrees under strategic substitutes (complements) and characterized
by a threshold t. Such a threshold t is the value for which (2.3.2) satisfies under strategic substitutes, and
the value for which (2.3.4) holds under strategic complements. Since for n → ∞, (2.2.1) is roughly equal
to (2.3.5), the equilibrium in Galeotti et al. (2010) is practically equal that the one that emerges when the
information set of each i is Ii(g) =

{
ki(g), p, n,

∣∣S3
i (g)

∣∣ = 0
}
.

2.3.2.2. Clustered networks

We first show that under our information setup, every symmetric equilibrium is characterized by a degree
threshold. This means that the monotonicity property of equilibrium maintains, even when the assumption
of degree independence is relaxed.

Proposition 1. Let Ii(g) = {ki(g), p, F (g),
∣∣S3

i (g)
∣∣ ≤ τ}, ∀i ∈ N . Under strategic substitutes (comple-

ments), every symmetric equilibrium is characterized by a degree threshold and it is non-increasing (non-
decreasing).
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We now compare the equilibria that arise in two random networks g1 and g2 under the information setup
presented in Section 2.2.3.2. The information set of each i in g1 is Ii(g1) = {ki(g1), p, F (g1),

∣∣S3
i (g1)

∣∣ ≤ τ},
while the information set of each i in g2 is Ii(g2) = {ki(g2), p, F (g2),

∣∣S3
i (g2)

∣∣ ≤ τ + 1}. We assume that
F (g1) = F (g2) = F = {1, 2, ..., k̄}. Hence, the only difference in the information that players have in the two
networks is their perceived clustering: in g1, each i knows that she can form a maximum of τ triangles with
her neighbors, while in g2 she knows that she can form a maximum of τ + 1.

As we introduced in Section 2.2.3.1, players can calculate the probability that each neighbor of them has
degree k whether they know p and n or they know p and F . We assume that players in network gx, x ∈ {1, 2},
know p and F but not n because the joint knowledge of the maximum value of

∣∣S3
i (gx)

∣∣ and n can provide
them information about their neighbors’ degrees. In such a case, players in g1 and in g2 might have different
beliefs about their neighbors’ degrees, and any difference in their behavior might be due to this fact and not
to their different perceived clustering, per se.23 To isolate the effects of perceived clustering from those that
might be caused by the different beliefs of players about their neighbors’ degrees, we assume that players are
not informed about the network size: they only know that the feasible degrees of their neighbors are those
in set F (g1) = F (g2) = F . Then, both in g1 as well as in g2 each player i believes that her neighbor j has
degree k ∈ F (gx) with probability:

P [Kj(g1) = k | Ii(g1)] = P [Kj(g2) = k | Ii(g2)] =
(
k̄ − 1

k − 1

)
pk−1(1− p)k̄−k (2.3.6)

Since perceived clustering is τ in g1 and τ+1 in g2, we will assume that players have degree equal or greater
than 2(τ + 1) in the two networks.24

Proposition 2. Consider two networks g1 = (N,E) and g2 = (N ′, E′), with N ⊆ N ′. Let
Ii(g1) =

{
ki(g1), p, F (g1),

∣∣S3
i (g1)

∣∣ ≤ τ
}
∀i ∈ N, Ii(g2) =

{
ki(g2), p, F (g2),

∣∣S3
i (g2)

∣∣ ≤ τ + 1
}
∀i ∈ N ′, F (g1) =

F (g2) = F , ki(g1) = ki(g2) ≥ 2(τ + 1) ∀i ∈ N ∪N ′, τ ≥ 0 and 0 < p < 1. If σx is a symmetric equilibrium
strategy in network gx, x ∈ {1, 2}:

1. σ2(k) ≥ σ1(k), under strategic substitutes, for all k.

2. σ2(k) ≤ σ1(k), under strategic complements, for all k, where σx(k) ̸= 0 and σx(k′) ̸= 1 for some k and
some k′.25

Proposition 2 shows how players’ behavior may change depending on their beliefs about network knittedness:
under strategic substitutes, the range of degree values for which players act as a free-rider decreases as their
perceived clustering increases. As for strategic complements, the opposite occurs: people play action 0 for a
greater range of degree values if their their perceived clustering is greater. As a consequence, the situations
where players coordinate to play the action that may provide them the highest payoff −action 0(1) under
strategic substitutes (complements)− reduces.

Intuitively, the greater the number of links between i′s neighbors, the greater the number of neighbors of
i with correlated degrees. This is known by i when she chooses her action. Since i expects to have a greater
(lower) diversity of types of neighbors when her perceived clustering is lower (greater), she expects to have at
least one neighbor playing 1 with a greater probability in g1 than in g2. This means that EUi(g1) (0,σ, Ii(g1)) >
EUi(g2) (0,σ, Ii(g2)) under strategic substitutes and EUi(g1) (1,σ, Ii(g1)) > EUi(g2) (1,σ, Ii(g2)) under strategic
complements, and the result follows.

To conclude, our results show that an increase in the perceived clustering has a similar effect to an overall
increase in connectivity under strategic substitutes, and the opposite effect under strategic complements.
To be precise, Galeotti et al. (2010) show how inducing a shift in the degree distribution in the sense
of first order stochastic dominance (specifically, moving from p to p′ where p′ > p) does neither reduce
overall contribution to public good provision nor technology adoption. Since players’ expectations about

23Consider a for instance a network g and suppose that each i ∈ N knows
∣∣S3

i (g)
∣∣ ≤ τ . If i knows n, she knows that the

maximum degree that each j ∈ Ni(g) can have is n− 1− ki + τ , since j may form a maximum of τ links with agents in Ni(g),
and a maximum of |N \ {j}|−ki(g) = n− 1−ki(g) links with agents outside Ni(g). On the contrary, if i knows

∣∣S3
i (g)

∣∣ ≤ τ +1,
she knows that the maximum degree of j is n− 1− ki + τ + 1.

24Notice that it would not be reasonable to assume that every player expects to be immersed in a maximum of, say, one
triangle if any player does not have at least two neighbors.

25As mentioned above, we are interested in comparing the equilibria in the two networks in which not all types play the same
actions.
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their neighbors’ popularity is higher as p increase, the probability that any of them plays action 1 does not
increase (does not reduce) under strategic substitutes (complements), and the best response of each particular
player is based in a threshold higher (lower) than t. This suggest that, if greater expectations about network
clustering are accompanied by greater expectations about neighbors’ connectivity as it often occurs,26 our
results on strategic substitutes might reinforce, while those under strategic complements might depend on
the tradeoff of the effects of these two network aspects (clustering and degree).

2.4. Concluding Remarks
Network clustering is an ubiquitous property of real-life networks. Although the importance of clustering

has broadly discussed in social capital theory (Burt, 2001, 2005; Coleman, 1988a, 1988b; 1990), there is
a scarcity of work that analyses its impact on the strategic interactions among networked agents. This
chapter provides novel predictions about clustering, and evinces how this network property may be a driver
of behavior: irrespective of whether the game exhibits strategic complements or substitutes, players with
the same degree may behave differently depending on their perceived clustering. Specifically, an increase
in perceived clustering does not reduce public good provision under strategic substitutes, while it does not
increase technology adoption under strategic complements.

In this chapter, we have focussed on games in which players only require that one neighbor plays a certain
action to be best responding with the same action (under strategic complements) or with the opposite one
(under strategic substitutes). In certain contexts, however, people may require social reinforcement from
multiple neighbors to adopt particular behaviors, and empirical evidence shows that clustering foster the
spread of behaviors in these specific contexts (Centola, 2010). When such a social reinforcement is required,
do our results maintain? Could the correlation in degrees induced by clustering explain the advantage of
clustered networks to spread behaviors that require social reinforcement to be adopted? We leave these
questions for future research.

2.5. Appendix
Claim 1. p[Kj(g) = k | Kl(g) = k′] is independent on glr , ∀l, r ̸= j.

The probability that j has degree k does not depend on any link involving agents different from j. Likewise,
p[Kj(g) = k | Kl(g) = k′] does not depend on links between agents in N \ {j}, nor even on those involving
l. In fact, although Kj is not independent of Kl, the lack of independence between these two variables is
exclusively due to the fact that j and l may link (see footnote 10). However, Kj is independent of any link
between l and any node distinct from j, since each link forms randomly and independently with probability
p. Analogously, p[Kj(g) = k | Kl(g) = k′, ...,Km = k′′] is independent of any link that does not involve j.

Proof of Proposition 1. Intuitively, since F (g), p and τ is the same for all i ∈ N , the probability that a
neighbor of i is a type that plays 1 is the same for all i ∈ N. However, since players with greater degrees
have more neighbors, they face a higher probabilility of having at least one neighbor playing action 1, and
the result follows.

A. Strategic substitutes. We first note that there is not any equilibrium in pure strategies at which all
types choose the same actions. Observe that when σ(k) = 1(0) for all k, EUi(g1)

(
0,σ, Ii(g1)

)
= 1(0) and i is

not best responding with action 1(0) but with action 0(1). This implies that, if σ is an equilibrium strategy,
σ(k) ̸= 0 and σ(k′) ̸= 1 for some k and some k′. Let D = {k ∈ F (g) : σ(k) = 0} be the set of (feasible)
degree values for which a symmetric strategy σ specifies action 0, assuming σ(k) ̸= 0 and σ(k′) ̸= 1 for some
k and for some k′.

The expected utility of i of playing 0 is the probability that at least one of her neighbors plays 1. If
neighbors of i play the symmetric strategy σ, EUi(g)

(
0,σ, Ii(g)

)
is the probability that at least one of her

neighbors does not have a degree in set D. This probability is
26Note that the average clustering of a random network is simply p. Hence, an increment in p increases both players’ expec-

tations about their neighbors’ degrees and about network clustering.
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EUi(g)

(
0,σ, Ii(g)

)
= 1− p[K1(g),K2(g), ...,Kki(g) ∈ D | Ii(g)] (2.5.1)

where K1(g),K2(g), ...,Kki(g)(g) are the random variables of the degrees of the agents in Ni(g)={1, 2, ..., ki(g)},
and p[K1(g),K2(g), ...,Kki(g) ∈ D

]
is the joint probability degree distribution of i′s neighbors, given Ii(g).

If perceived clustering is equal to τ , i knows that she may be involved in a maximum of τ triangles. That
is, the maximum number of agents in her neighborhood that may be linked is 2τ . This means that ther are
ki(g) − 2τ agents in Ni(g) that are not linked to any other agent in Ni(g), and thereby these agents have
degrees with independent probabilities (see Lemma 1). Then, (2.5.1) can be expressed as:

EUi(g)

(
0,σ, Ii(g)

)
= 1− p[K1(g),K2(g), ...,K2τ (g) ∈ D] ∗ p[Kj(g) ∈ D]ki(g)−2τ (2.5.2)

To see the equivalence between (2.5.2) and (2.5.1), suppose that τ = 1 and Ni(g) = {1, 2, 3}. Agent i
knows that she may be involved in one triangle at most. However, she does not know whether this triangle
is {i, 1, 2}, {i, 1, 3} or {i, 2, 3}. It may also occur that none of her neighbors are linked and she forms no
triangle. Recall from Lemma 1 that, conditional on not being linked, nodes have degrees with independent
probabilities. Since p is the probability that two neighbors of i are linked, and (1 − p) the probability that
they are not, the probability that all neighbors of i have a degree in set D can be expressed as:

p[K1(g),K2(g),K3(g) ∈ D | Ii(g)] =
p

3
∗ p[K1(g),K2(g) ∈ D | g12 = 1] ∗ p[K3(g) ∈ D]

p

3
∗ p[K1(g),K3(g) ∈ D | g13 = 1] ∗ p[K2(g) ∈ D] +

p

3
∗ p[K2(g),K3(g) ∈ D | g23 = 1] ∗ p[K1(g) ∈ D]

(1− p) ∗ p[K1(g) ∈ D] ∗ p[K2(g) ∈ D] ∗ p[K3(g) ∈ D]
(2.5.3)

All probabilities in (2.5.3) are conditioned on Ii(g). Since the value of p[Kj ,Kl ∈ D | gjl = 1] is the same
for all j, l ∈ N and the value of p[Kj ∈ D] is the same for all j ∈ N , Expression (2.5.3) is equal to:

p[K1(g),K2(g),K3(g) ∈ D | Ii(g)] = p[K3(g) ∈ D] ∗
[
p ∗ p[K1(g),K2(g) ∈ D | g12 = 1] + (1− p) ∗ p[K1(g)]p[K2(g)]

]

= p[K3(g) ∈ D] ∗
[
p ∗ p[K1(g),K2(g) ∈ D | g12 = 1] + (1− p) ∗ p[K1(g),K2(g) | g12 = 0]

]

= p[K3(g) ∈ D] ∗ p[K1(g),K2(g) ∈ D]

Hence,

EUi(g)

(
0,σ, Ii(g)

)
= 1− p[K1(g),K2(g) ∈ D] ∗ p[K3(g) ∈ D]

which only reflects the fact two neighbors of i can be linked (i.e. they have degrees with non-independent
probabilities) while a third one is not linked to the other two. Generally, for other values of ki(g) and τ ,
EUi(g)

(
0,σ, Ii(g)

)
is given by (2.5.2).

Consider (2.5.2). Given that p[Kj(g) ∈ D]ki(g)−2τ is decreasing in ki(g) and p[K1(g),K2(g), ...,K2τ (g) ∈
D] does not depend on ki(g), EUi(g)

(
0,σ, Ii(g)

)
is increasing in ki(g). This means that EUi(g)

(
0,σ, Ii(g)

)
is

greater for player with greater degrees. It follows then that, if a player of degree k is best responding with
action 0, a player of degree k′ > k must be best responding with this action as well. Then, any equilibrium
is non-increasing in players’ degrees, and it is characterized by a degree threshold t. Such a threshold t is the
value of ki(g) for which EUi(g)

(
0,σ, Ii(g)

)
= EUi(g)

(
1,σ, Ii(g)

)
= 1 − c. That is, it is the value t for which

the following equality holds

1−
[
p[K1(g),K2(g), ...,K2τx(g) > t

]
∗
[
p[Kj(g) > t]

]t−2τ
= 1− c (2.5.4)

Strategy σ: σ(k) = 1 for k ≤ t, and σ(k) = 0 for k > t is always an equilibrium strategy in g. Indeed, i′s
expected utility of playing 0 when all agents play σ is:
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1−
[
p[K1(g),K2(g), ...,K2τ (g) > t]

]
∗
[
p[Kj(g) > t]

]ki(g)−2τ

which is greater (lower) than 1− c if ki(g) is greater (lower) than t, and equal to 1− c for ki(g) = t.
Note that, if the left part of (2.5.4) is equal to:

1−
[
p[K1(g),K2(g), ...,K2τ (g) ≥ t]

]
∗
[
p[Kj(g) ≥ t | Ii(g)]]

]t−2τ

(what happens if t is a non-integer), EUi(g)

(
0,σ, Ii(g)

)
is the same regardless on the action played by agents

with degree t. In this case, the strategy σ′: σ′(k) = 1 for k < t, and σ′(k) = 0 for k ≥ t is also an equilibrium
strategy. Thus, while all players with degree below (above) t must play 1(0) in equilibrium, there may exist
equilibria at which players with degree t play any of these two actions, {0, 1}.

B. Strategic complements. Reasoning is analogous as for strategic substitutes. In this case,

EUi(g)

(
1,σ, Ii(g)

)
= −c+ 1−

[
p[K1(g),K2(g), ...,K2τx(g) ∈ D

]
∗
[
p[Kj(g) ∈ D]

]ki(g)−2τ

Any equilibrium strategy σ satisfies σ(k) = 0 for k < t, σ(k) = 1 for k > t, and σ(k) ∈ {0, 1} for k = t,
where t is the value for which the following equality holds:

1−
[
p[K1(g),K2(g), ...,K2τx(g) < t]

]
∗
[
p[Kj(g) < t]

]t−2τ
= c

!

Lemma 2. Consider two networks g1 = (N,E) and g2 = (N ′, E′), where each link was formed randomly and
independently with probability 0 < p < 1, as in the Erdös-Renyi model. Let Ii(g1) = {ki(g1), p, F (g1), gjl = 0}
be the information set of each i ∈ N , and Ii(g2) = {ki(g2), p, F (g2)} the information set of each i ∈ N ′, with
F (g1) = F (g2). If D ⊆ F (g1) is a subset of degree values,

p[Kj(g2),Kl(g2) ∈ D | Ii(g2)] > p[Kj(g1),Kl(g1) ∈ D | Ii(g1)] =
[
p[Kj(g1) ∈ D | Ii(g1)]

]2
∀j, l ∈ Ni(g1)∩Ni(g2)

Proof.

1. Network g2. Recall that F (g2) = {1, 2, ..., k̄} is the set of feasible degrees that each neighbor of a
player can have in network g2, and k̄ is the maximal number of agents to which such a neighbor can
be linked in g2. Each i does not know whether j, l ∈ Ni(g2) are linked in g2. Since j ∈ Ni(g2) can
be linked to a maximum of k̄ agents (including i and l), the probability that j has a degree in set D,
conditioned on gjl = 1 and on Ii(g2), is the probability that j forms k − gij − gjl = k − 2 additional
links with some of the k̄ − |{i, l}| = k̄ − 2 remaining agents:

p[Kj(g2) ∈ D | Ii(g2), gjl = 1] =
∑

k∈D

(
k̄ − 2

k − 2

)
pk−2(1− p)k̄−k

and p[Kj(g2) ∈ D | Ii(g2), gjl = 1] = p[Kl(g2) ∈ D | Ii(g2), gjl = 1].
Conditioned on gjl = 0, the probability that the realization of Kj(g2) falls inside D is, given Ii(g2):

p[Kj(g2) ∈ D | Ii(g2), gjl = 0] =
∑

k∈D

(
k̄ − 2

k − 1

)
pk−1(1− p)k̄−k−1

with p[Kj(g2) ∈ D | Ii(g2), gjl = 0] = p[Kl(g2) ∈ D | Ii(g2), gjl = 0].
Agent i knows that each link is formed randomly and independently with probability p ∈ (0, 1). Then,
Kj(g2) and Kl(g2) are conditionally independent given gjl (see Lemma 1), and P [Kj(g2),Kl(g2) ∈ D |
Ii(g2)] can be expressed as a sum of two conditional probabilities: the probability that both j and l
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have a degree in set D conditioned on gjl = 1, and the probability that they both have a degree in D
conditioned on gjl = 0:

P [Kj(g2),Kl(g2) ∈ D | Ii(g2)] = p ∗
[
p[Kj(g2) ∈ D | Ii(g2), gjl = 1] ∗ p[Kl(g2) ∈ D | Ii(g2), gjl = 1]

]

+(1− p)∗
[
p[Kj(g2) ∈ D | Ii(g2), gjl = 0] ∗ p[Kl(g2) ∈ D | Ii(g2), gjl = 0]

]

Since p[Kj(g2) ∈ D | Ii(g2), gjl] = p[Kl(g2) ∈ D | Ii(g2), gjl]:

= p ∗
[
p[Kj(g2) ∈ D | Ii(g2), gjl = 1]

]2
+ (1− p) ∗

[
p[Kj(g2) ∈ D | Ii(g2), gjl = 0]

]2
(2.5.5)

2. Network g1. As in network g2, i knows that j ∈ Ni(g1) can be linked to a maximum of k̄ agents
(included i). However, i knows that none of these agents is l, since gjl = 0. Hence, the probability
that each j ∈ Ni(g1) has a degree in set D given Ii(g1) is the probability that j forms k − gij = k − 1
additional links with some of the k̄ − |{i}| = k̄ − 1 remaining agents to which j can be linked:

p[Kj(g1) ∈ D | Ii(g1)] =
∑

k∈D

(
k̄ − 1

k − 1

)
pk−1(1− p)k̄−k

In network g1, each i ∈ N knows that gjl = 0, what implies that j and l have degrees with independent
probabilities (see Lemma 1). Hence, player i believes that both j and l have a degree in set D with
probability:

p[Kj(g1),Kl(g1) ∈ D | Ii(g1)] = p[Kj(g1) ∈ D | Ii(g1)] ∗ p[Kl(g1) ∈ D | Ii(g1)]
= p[Kj(g1) ∈ D | Ii(g1)]2

since p[Kj(g1) ∈ D | Ii(g1)] = p[Kl(g1) ∈ D | Ii(g1)].
Given that

(n
k

)
=

(n−1
k−1

)
+
(n−1

k

)
:

p[Kj(g1) ∈ D | Ii(g1)] =
∑

k∈D

(
k̄ − 1

k − 1

)
pk−1(1− p)k̄−k

=
∑

k∈D

[(k̄ − 2

k − 2

)
+

(
k̄ − 2

k − 1

)]
pk−1(1− p)k̄−k

=

[
∑

k∈D

(
k̄ − 2

k − 2

)
pk−1(1− p)k̄−k

]
+

[
∑

k∈D

(
k̄ − 2

k − 1

)
pk−1(1− p)k̄−k

]

= p ∗
[
∑

k∈D

(
k̄ − 2

k − 2

)
pk−2(1− p)k̄−k

]
+ (1− p) ∗

[
∑

k∈D

(
k̄ − 2

k − 1

)
pk−1(1− p)k̄−k−1

]

=p ∗ p[Kj(g1) ∈ D | Ii(g1), gjl = 1] + (1− p) ∗ p[Kj(g1) ∈ D | Ii(g1), gjl = 0]

Then, the probability that both j and l have a degree in set k ∈ D given Ii(g1) is:

p[Kj(g1),Kl(g1) ∈ D | Ii(g1)] = p[Kj(g1) ∈ D | Ii(g1)]2

=

[
p ∗ p[Kj(g1) ∈ D | Ii(g1), gjl = 1] + (1− p) ∗ p[Kj(g1) ∈ D | Ii(g1), gjl = 0]

]2

= p2 ∗
[
p[Kj(g1) ∈ D | Ii(g1), gjl = 1]

]2
+ 2p(1− p)

[
p[Kj(g1) ∈ D | Ii(g1), gjl = 1] ∗ p[Kj(g1) ∈ D | Ii(g1), gjl = 0]

]

+(1− p)2
[
p[Kj(g1) ∈ D | Ii(g1), gjl = 0]

]2
(2.5.6)



CAPÍTULO 2. CLUSTERING IN NETWORK GAMES 78

3. Subtracting (2.5.5)-(2.5.6):

= p(1− p)

[
p[Kj(g1) ∈ D | Ii(g1), gjl = 1]− p[Kj(g1) ∈ D | Ii(g1), gjl = 0]

]2
> 0 (2.5.7)

!

Proof of Proposition 2. We write gx to denote network x, with x ∈ {1, 2}.

A. Strategic substitutes. Under strategic substitutes, there is not any equilibrium in which all types
play the same actions. If σ(k) = 1(0) for all k, EUi(g1)

(
0,σ, Ii(g1)

)
= 1(0) and i is not best responding with

action 1(0) but with action 0(1). Hence, if σ is an equilibrium strategy, σ(k) ̸= 0 and σ(k′) ̸= 1 for some k
and some k′. We define D = {k ∈ F : σ(k) = 0} as the set of feasible degree values for which a symmetric
strategy σ specifies action 0, assuming σ(k) ̸= 0 and σ(k′) ̸= 1 for some k and for some k′.

The expected utility of i of playing 0 is the probability that at least one of her neighbors plays 1. When
all agents play the symmetric strategy σ, i′s expected utility of playing 0 is the probability that at least one
of her neighbors does not have a degree in set D. Namely, in network gx, x ∈ {1, 2},

EUi(gx)

(
0,σ, Ii(gx)

)
= 1− p[K1(gx),K2(gx), ...,Kki(gx) ∈ D | Ii(g)

]
(2.5.8)

where K1(gx),K2(gx), ...,Kki(gx)(gx) are the random variables of the degrees of the agents in Ni(gx)={1, 2, ..., ki(gx)},
and p[K1(gx),K2(gx), ...,Kki(gx) ∈ D | Ii(gx)] is the joint probability degree distribution of i′s neighbors,
conditioned on Ii(gx).

Comparison between g1 and g2. Applying the probability chain rule (also known as the general product rule,
Schum, 2001; Klugh, 2013), we can rewrite (2.5.8) as:

EUi(gx)

(
0,σ, Ii(gx)

)
= 1−

[
p
[
K1(gx)K2(gx) ∈ D

]
∗ p

[
K3(gx) ∈ D | K1(gx),K2(gx) ∈ D

]
∗

p
[
K4(gx) ∈ D | K1(gx),K2(gx),K3(gx) ∈ D

]
∗ ... ∗ p

[
Kki(gx)(gx) ∈ D | K1(gx),K2(gx), ...,Kki(gx)−1(gx) ∈ D

]]

(2.5.9)

where all the probabilities in (2.5.9) are conditional on Ii(gx).
Perceived clustering is equal to τ in network g1, and equal to τ + 1 in network g2. This means that

i ∈ N knows that she may form at most τ triangles, while i ∈ N ′ knows that she may form a maximum of
τ + 1. This is the only different information that player i has in g1 and in g2. Then, the different value of
EUi(g1)

(
0,σ, Ii(g1)

)
and EUi(g2)

(
0,σ, Ii(g2)

)
comes from the fact that i ∈ N knows that there are at most τ

pairs of linked agents in Ni(g1), while i ∈ N ′ knows that there are at most τ + 1 in Ni(g2).

a) Agent i does not know the identity of the agents that may be in a triangle with her. For example, if i
has three neighbors, 1, 2 and 3 and τ = 1, she knows that she may form one triangle with her neighbors, but
she does not know whether this triangle is {i, 1, 2}, {i, 1, 3} or {i, 2, 3}. Imagine however that she knew the
set of triangles that she may form in g1, denoted Ti(g1). If {i, 1, 2} /∈ Ti(g1), the probability that 1 ∈ Ni(g1)
has a degree in set D is independent of the probability that 2 ∈ Ni(g1) does (see Lemma 1), since i knows
that 1 and 2 are not linked:

p[K1(g1),K2(g1) ∈ D] = p[K1(g1) ∈ D] ∗ p[K2(g1) ∈ D] (2.5.10)
= p[K1(g1) ∈ D]2
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Analogously, imagine i ∈ N ′ knew T (g2) (the set of triangles that in which she may be in g2). Suppose
T (g2) = T (g1) ∪ {i, 1, 2}. In i′s beliefs, the probability that 1 ∈ Ni(g2) has a degree in D would not be
independent of the probability that 2 ∈ Ni(g2) does, since these two neighbors might be linked in g2:

p[K1(g2),K2(g2) ∈ D] ̸= p[K1(g2) ∈ D]2 (2.5.11)

Observe that all other probabilities in EUi(g2)

(
0,σ, Ii(g2)

)
are equal as their corresponding ones in

EUi(g2)

(
0,σ, Ii(g2)

)
. That is,

p
[
K3(g1) ∈ D | K1(g1),K2(g1) ∈ D

]
= p

[
K3(g2) ∈ D | K1(g2),K2(g2) ∈ D

]
,

p
[
K4(g1) ∈ D | K1(g1),K2(g1),K3(g1) ∈ D

]
= p

[
K4(g2) ∈ D | K1(g2),K2(g2),K3(g2) ∈ D

]

and so on, since each of these probabilities only depend on p, F (g1) = F (g2), and on T (g1) = T (g2) \
{i, 1, 2}. For example, p

[
K3(g1) ∈ D | K1(g1),K2(g1) ∈ D

]
depends on p, F (g1), and on the possible

triangles among 3, 1 and 2, but not on whether g12 = 1 or g12 = 0 (see Claim 1 in the Appendix). Hence,
EUi(g1)

(
0,σ, Ii(g1)

)
− EUi(g2)

(
0,σ, Ii(g2)

)
corresponds to the difference between (2.5.11) and (2.5.10), which

is positive by Lemma 2 (in the Appendix). As a result, σ2(k) ≥ σ1(k).

b) The above shows that when the only difference in i′s beliefs in g1 and in g2 is that in g2 the triangle
{i, 1, 2} may exist while in g1 it cannot, EUi(g1)

(
0,σ, Ii(g1)

)
> EUi(g2)

(
0,σ, Ii(g2)

)
. Observe that i has the

same beliefs about other network aspects in g1 and in g2, including the other triangles that she might form
with her neighbors, T (g1) = T (g2) \ {i, 1, 2}.

In our setup, integrants of g1 and g2 only know the maximal number of triangles that they might form
with their neighbors,

∣∣S3
i (g1)

∣∣ ≤ τ and
∣∣S3

i (g2)
∣∣ ≤ τ +1, respectively, but they know neither T (g1) nor T (g2).

However, the result in (a) holds regardless on the identity of the agents in triangle Z3, T (g2) = T (g1) ∪ Z3.
As a result, EUi(g1)

(
0,σ, Ii(g1)

)
> EUi(g2)

(
0,σ, Ii(g2)

)
, and σ2(k) ≥ σ1(k).

B. Strategic complements. As for strategic complements,

EUi(gx)

(
1,σ, Ii(gx)

)
= −c+ 1−

[
p
[
K1(gx)K2(gx) ∈ D

]
∗ p

[
K3(gx) ∈ D | K1(gx),K2(gx) ∈ D

]
∗

p
[
K4(gx) ∈ D | K1(gx),K2(gx),K3(gx) ∈ D

]
∗ ... ∗ p

[
Kki(gx)(gx) ∈ D | K1(gx),K2(gx), ...,Kki(gx)−1(gx) ∈ D

]]

(2.5.12)

Applying the same reasoning as for strategic substitutes, it is readily seen that EUi(g1)

(
1,σ, Ii(g2)

)
>

EUi(g2)

(
0,σ, Ii(g2)

)
, and consequently σ2(k) ≤ σ1(k). !



Capítulo 3

Network Perception in Network Games

3.1. Introduction
It is widely documented that peers exert a great influence on human behavior (Goyal, 2012; Jackson

and Zenou, 2015). Research on network games has particularly modeled the interaction of people when their
choices are influenced by those of their network neighbors in a variety of contexts (Bala and Goyal, 1998;
Jackson and Yariv, 2007; Galeotti et al. 2010; Bramoullé et al. 2014; Bourlès et al. 2017).

Regarding the information that players’ have about the underlying network architecture, network games
have primarily been analysed through two approaches. One approach assumes that players have complete
information about the network they are embedded in (e.g. Goyal and Moraga-González, 2001; Ballester et al.
2007; Bramoullé and Karton, 2007). This approach presents a fundamental drawback: under complete infor-
mation, a wide range of equilibrium outcomes are possible, what makes difficult to draw general conclusions
on the incidence that each specific network feature has on behavior.1 A second approach assumes that players
have incomplete information about the network they are part of and they take decisions without knowing
with whom they are going to interact. Because of their usefulness to solve the equilibrium selection problem,
different papers take this approach (Jackson and Yariv, 2007; Galeotti et al. 2010; Lamberson, 2015). Among
these papers, the most closely related to ours is Galeotti et al. (2010), who consider a setup where each player
has private information about her degree and the probability degree distribution of the network is common
knowledge. Players’ beliefs about the network are fully identified with the degree distribution, as they are not
able to learn finer aspects about the network from the information they have. They show that, under such
an information setup, every symmetric equilibrium is monotone non-decreasing (non-increasing) in players’
degrees under strategic complements (substitutes) when certain assumptions on the network assortativity
patterns hold: nodes have degrees either with independent probabilities or with probabilities that are positi-
vely (negatively) correlated. Such a monotonicity property of equilibria implies that social connections create
personal advantages, since the expected payoffs of players choosing higher (lower) actions are greater than
those of players choosing lower (higher) ones under strategic complements (substitutes).2

The information setup of Galeotti et al. (2010) applies for many real-life situations. A person may decide
to learn a language, to start a business, to get a vaccination, etc. on the sole basis of her expected volume
of future interactions, without necessarily knowing the identity of their future contacts. In such a situation,
the unique network feature that influences her decision may be the number of individuals she expects to
interact with from a relatively unbounded population (e.g. a country). A natural way of modeling this type
of situations (where the network influencing people’s behavior is typically very large) is to identify players’

1For instance, Bramoullé and Kranton (2007) show that people who contribute to the provision of a public good in equilibrium
compose a maximal independent set (namely, their are not linked). However, how do different features of people’s networks affect
their equilibrium behavior? Do people with greater degree (or clustering, or betweenness centrality, etc.) contribute systematically
more (or less) to the provision of the good in equilibrium?.

2The idea that social connections create personal advantages is fundamental in social capital theory (Granovetter, 1994; Burt,
1994) and it is backed by a vast number of empirical studies. See for instance Montgomery (1991) and Beaman (2012) for the
effects of networks on employment, Ahuja (2000) and Gulati (1995) for the role of links to generate competitive advantages in
markets or Baum et al. (2000), for the impact of connections on firm performance.
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beliefs about the network with a probability degree distribution, setting aside beliefs about other network
aspects. This assumption is reasonable in these particular environments, in which the following conditions
apply: (i) people have a good sense of their volume of future interactions and (ii) they have neither information
about the identity of their contacts not about any other aspects of the network topology.3

Notwithstanding this, in most real-life situations people indeed have incomplete−typically local−network
information but they know with whom they interact, how popular their opponents might be, whether they
know each other, etc. (Killduf et al. 2008). Such more detailed information in turn allows network members to
estimate further properties of their local and global networks. Indeed, research in social psychology documents
that people entering into a social group tend to form a cognitive map of the existing network−a mental picture
of connections capturing who is connected with whom in the group (Hecker, 1993; Kilduff and Tsai, 2003).
For example, a newcomer to a firm may have a certain idea about other people in the company: she may
notice who is popular, who shares office with whom, who eats with whom, who holds which position in the
company, etc. All this information provides signals enabling to form mental representations about the firm
network. Such mental representations then influence one’s behavior. Since in contexts where such a mental
representations of networks emerge−such as a firm, a class, or a faculty department4−people’s beliefs about
the network are not usually restricted to one’s degree and a probability degree distribution, this issue raises
novel research questions:

From the perspective of network perception, we ask: How can we model players’ beliefs about the
network in this kind of contexts? What can people deduce about the underlying network from such
incomplete local information? Which network features affect how people view their social networks?

From the game-theoretical perspective, are the unicity and monotonicity results of Galeotti et al. (2010)
robust to relaxing their information assumptions? If not, how does deeper network information shape
players’ behavior and payoffs and the aggregate welfare in network games? Can we link the depth of
network information to the multiplicity of equilibria?

This chapter aims to answer these questions. We present different information settings which differ in the
depth of information that agents have about the network they are embedded in. The information settings
range from an extreme case of incomplete network information (a setting similar to that in Galeotti et al.
2010) to the complete information setup (considered for instance in Ballester et al. 2006 or in Bramoullè and
Kranton, 2007). We analyse how, and to what extent, each agent can infer different aspects of the interaction
structure in function of the information that she possesses even if she is not directly informed about these
aspects. To that aim, we illustrate how exploring the role of information requires to distinguish two types of
information: information about links (related to connectivity) and information about nodes (relevant to learn
who is connected with whom). Building up on this, we develop a theoretical framework linking incomplete
network information to agents’ beliefs about the properties of the underlying network architecture and explore
how such beliefs shape the behavior of players in games played on networks.

We first show that even a minimal knowledge of the social environment enables people to learn both the
network geometries that are compatible with their information as well as their probability distribution, which
in turn allows them to estimate any network feature (e.g. the assortativity patterns, the expected clustering
coefficient, the expected number of components, their variances, etc.). We find that, in contexts of limited
network information (such as those in Galeotti et al. (2010)), all agents have identical perceptions of the
underlying network architecture: they have identical beliefs about the feasible network geometries and their
probabilities. Nevertheless, this symmetry in beliefs disappears once we depart from such a limited information
setup, as agents may have different beliefs about set of feasible geometries and/or about its probability
distribution. Furthermore, we show that individuals with complete and incomplete network knowledge can
coexist under any information setup−even when their level of network information is limited and equal across
agents−and this may have important consequences on behavior.

We particularly relate individuals’ beliefs about the network with notions of equivalence among nodes,
such as structurally equivalence and automorphic equivalence (Wasserman and Faust, 1994; Easley and Klein-
berg, 2010). These measures are canonical in social network analysis (Lorrain and White, 1971; Everet, 1985;

3Think for instance about a wholeseller: from survey data, she may get information about the shopping habits of her potential
customers (e.g. the links that they may have to other firms), but not about other features of the network they compose. Such
an application is considered in Nermuth et al (2009).

4This usually occurs when the network is not very large. As pointed by Killduf et al. (2008), even a network integrated by
20 people requires an agent to monitor hundreds of possible links, what may constitute a cognitive challenge.
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Hanneman and Riddle, 2003; Newman, 2004, Leicht, et al. 2006; Casse et al. 2013; Jin et al. 2014; Prota
and Doreian, 2016; Audenaert, et al. 2019) and identify nodes that occupy identical positions in the net-
work.5 Based on these notions, we show how people exhibit a cognitive biases towards asymmetric networks
structures in all these information setups, giving more probabilistic weight to network architectures with an
automorphism group of a lower order. This implies, for example, that a recently hired employee believes more
likely that most of their colleagues occupy heterogeneous positions in the network firm rather than equivalent
ones.

In the second part, we explore the effects that network perception of agents have on Bayesian games of
strategic substitutes and strategic complements played on networks. We find that the equilibrium structure
in Galeotti et al. (2010) breaks even when players’ network information is limited to their own degree and
the degree distribution: symmetric equilibria are not necessarily monotone, but they can exhibit different
patterns in the absence of further assumptions on the degree assortativity patterns.6 Besides, although the
set of symmetric equilibria is the same across all networks with the same degree distribution, the welfare that
these equilibria yield may be different depending on their respective geometries. To this respect, we provide
a sufficient condition for a network to be efficient : a network is efficient if there is not any other network
with the same degree distribution in which equilibrium welfare is higher.7 Such a condition establishes a
positive link between network efficiency and the degree of symmetry of the network, suggesting that under
certain conditions the only networks that are efficient are the more asymmetric ones. Last, we illustrate how
a subtle variation in the network information of players (the knowledge of their neighbors’ neighborhoods
vs. the knowledge of their neighbors’ degrees) can modify their equilibrium behavior. The reason is that
players’ observation of certain network features−such as the three- or four-cycles that they form with their
neighbors−depends on which information they possess (neighborhood or degree). Such an observation shapes
players’ beliefs about the network, which in turn determine their behavior. As a consequence, the equilibrium
structure may change dramatically even if the network information varies only slightly, but the direction in
which it changes is network-specific.

The first contribution of this chapter is the development of a theoretical framework for how rational agents
form mental representations of the networks they are embedded in from network information. The information
assumptions in many papers on network games (such as Galeotti et al. 2010) imply that players’ beliefs about
the network confine to one particular network aspect: connectivity. In contrast, full network information does
not require developing a theory regarding how people view the networks. However, in real-life people typically
possess limited information about the interaction patterns. Our framework thus provides a first step toward
modeling more real-life strategic and non-strategic network interactions under incomplete information about
the underlying network. The proposed framework complements the large literature on network cognition in
social psychology and sociology (Krackhardt; 1987, Carley; 1986; Michaelson and Contractor, 1992; Freeman,
1992; Kumbasar et al. 1994; Casciaro, 1998; Johnson and Orbach; 2002; Janicik and Larrick, 2005)8 and
recently in economics (Dessi et al. 2016), by characterizing formally the formation of people’s cognitive
network maps. In this sense, we uncover a relation between some canonical notions of symmetry among
nodes and network perception. Although such notions have been fundamental in structural theory, they
have not been theoretically related, to the best of our knowledge, to network perception.9 The uncovered
relation between these notions and agents’ network perception reflects a cognitive biases towards asymmetric
structures that may imply a misperception of agents’ social environments, since empirical evidence shows
that a certain degree of symmetry is ubiquitous in real-life social networks (MacArthur et al. 2008; Ball and
Geyer-Schulz, 2018a, 2018b).10

5These concepts were initially studied in sociology (Boorman and White, 1976; White et al. 1976; Sailer, 1978; Doreian, 1988;
Winship, 1988; Burt, 1976, 1990; Borgatti and Everett, 1992; Doreian et al. 2005) to explain the role that a person plays within
a society on the basis on how she is connected to others according to the network topology (e.g. the role of a student, of a
politician, of a boss, of a employee, etc.). Given their applicability to other settings, their study has extended to more general
domains (see e.g. Rossi et al. 2014 or Vega et al. 2016).

6The key insight is that, under our framework, players’ beliefs about other players’ degrees may not adjust to the assumptions
in Galeotti et al. (2010). For example, a degree-k player may expect to have a particular type of neighbor (say, a neighbor of
degree k̄) with a greater probability than a degree-k′ one, even if k′ ≥ k. If this happens, the assumption of degree independence
in Galeotti et al. (2010) fails to hold, and the degree-k player has an advantage over the degree-k′ one (a greater probability of
having a particular type of neighbor). As a consequence, equilibria are not necessarily monotone.

7The condition focuses on the symmetric equilibria in pure-strategies.
8For a review, see Brands (2003).
9Some empirical papers study how perceived similarity relates to these notions of equivalence among nodes (e.g. Michaelson

and Contractor, 1992), yet, the context of this paper is different to ours.
10Wang et al. (2009) also find a certain degree of symmetry in their analysis of the world trade network. On the contrary,
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Second, we contribute to the literature on network games in two ways. On the one hand, we provide a first
step toward bridging the two extreme assumptions regarding network knowledge: extremely limited informa-
tion (Galeotti, et al. 2010; Jackson and Yariv, 2005; 2007; Sundararajan, 2008) and complete information
(Goyal and Moraga-González, 2001; Ballester et al. 2006; Bramoullé and Karton, 2007). We characterize the
intermediate information setups and exploit their role in network games. Most importantly, we show that
incomplete information is not panacea to solve the equilibrium selection problem. In fact, the introduction
of incomplete information as a way of solving the problem of equilibrium multiplicity has faced a major
critique: the equilibrium achieved depends on the way incomplete information is introduced (Weinstein and
Yildiz, 2007). While this critique applies generally to all incomplete information games, we show that it is
particularly relevant for those played on networks, given (i) the wide range of network aspects that may
shape players’ behavior and welfare and (ii) the variety of network characteristics that players can learn from
the knowledge of particular network aspects, given the intrinsic interdependency among different network
features. This explains why, as we illustrate in this chapter, manipulating information of players has largely
non-monotonic effects on the structure and number of equilibria. In a similar vein, we show that a subtle
variation of the information setup in Galeotti et al. (2010) may break the equilibrium symmetry of games of
strategic substitutes and strategic complements: while for strategic complements the equilibrium predictions
of Galeotti et al. (2010) tend to maintain, non-systematic predictions can be done under strategic substitutes.

Last, while most network applications in economics focus on connectivity, centrality, and network density
(see Jackson, et al. 2017), we point to a potential role of one particular feature of network symmetry−the
network automorphism group–in agents’ perception, behavior, and welfare. In fact, this network property
is receiving increasing attention in mathematics and physics (MacArthur and Anderson, 2006; Xiao, et al.
2008a, 2008b, 2008c; Wang et a. 2009; Dehmer et al. 2020), given its impact on the dynamics of processes that
take place on networks (Golubitsky and Stewart, 2003), on the network’s eigenvalue spectrum (Cvetkovíc et
al. 1979) or because of its utility to simplify the network topology by collapsing redundant information (Xiao
et al 2008b), among other applications.11 This chapter points out the importance of this network property on
behavior and welfare, suggesting that behavior of people might be shaped in a greater extent by the network
characteristics associated to asymmetric structures in incomplete information contexts as a consequence of
the greater probabilistic weight that players assign to these network architectures.

The chapter is organized as follows. Section 3.2 presents some background definitions. Section 3.3 presents
different setups of network information. Section 3.4 provides the results on network perception, which are
the bases of our theoretical framework. Results on network games are presented in Section 3.5. Section 3.6
concludes.

3.2. Background Definitions
Let g = (N,E) be a social network characterized by a set of nodes N = {1, .., n} and a set of edges or links
E between them. Each node in g represents one agent and there are n =

∣∣N
∣∣ agents in the network. Let gij

denote the link between i ∈ N and j ∈ N ; gij = 1 if individuals i ∈ N and j ∈ N are directly linked in g
and gij = 0 otherwise, with gij = gji, ∀i, j ∈ N. The network is represented by a n×n symmetric adjacency
matrix A = (gij)i,j∈N , with gii = 0. Equivalently, we sometimes denote a link between i and j by ij.
We distinguish two network characteristics:

The neighborhood of node i is the set of agents directly connected to i, Ni(g) = {j ∈ N : gij = 1}.

The degree of node i is the cardinality of Ni(g), ki(g) = |Ni(g)|. It is the number of neighbors of i.

Although both characteristics are similar, the level of network information that they capture is different:
the degree reflects with how many other agents one interacts without providing any information about their
identities, while the neighborhood reflects both their number and their identities. Considering one or another
feature has important consequences in certain parts of our analysis.
The set of i’s second-order neighbors is N2

i (g) = {s ∈ N : gijgjs = 1 for some j ∈ N , i ̸= s}.

almost all random graphs are asymmetric (Erdös-Renyi, 1963).
11See also Soicher, (2004) and Kocay, (2007), for its application to simplify the computational complexity of network algorithms.
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The degree distribution of network g, denoted Fg(k), specifies, for all k ∈ {0, 1, ..., n − 1}, the fraction of
nodes that have degree k in this network:12

Fg(k) =
1

n
|{i ∈ N : ki(g) = k}|

The degree counts in network g, denoted Dg(k) = n Fg(k), are the numbers of nodes that have degree k in
this network. The degree sequence of a nodes is the sequence of the node degrees; two networks g and g′ have
the same degree sequence if Dg(k) = Dg′(k), ∀k.
The geometry of a network correspond to its structure: the network architecture created by its edges. Two
networks have the same geometry if and only if they are isomorphic: there exists a bijection (an isomorphism)
f : N → N ′, such that ij ∈ E if and only if f(i)f(j) ∈ E′ (see Borgatti and Everett, 1992). Thus, f just
relabels the nodes, but their network structure is the same. For example, the four networks in Figure 3.1 are
isomorphic. We use the symbol ∼= to denote an isomorphism; g ∼= g′ means that g and g′ are isomorphic.

Figure 3.1

Network g = (N,E) is different from network g′ = (N ′, E′) if and only if their respective adjacency matrices
differ, i.e. if gij ̸= g′ij , for at least one ij ∈ E∪E′. The adjacency matrix of a network depends on two aspects:
(i) the network geometry and (ii) the distribution of labels among the nodes (how agents are distributed within
the network). Hence, networks g and g′ can be different if either (i) or (ii) (or both) is different in the two
networks. For example, network g and g1 in Figure 3.1 are isomorphic. However, since agents are distributed
differently in g and in g1 both networks are distinct, as reflected in their respective adjacency matrices:

g =

⎛

⎜⎜⎜⎜⎜⎜⎝

gii gij gil gim gio gir
gji gjj gjl gjm gjo gjr
gli glj gll glm glo glr
gmi gmj gml gmm gmo gmr

goi goj gol gom goo gor
gri grj grl grm gro grr

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
̸= g1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 0 0 0 1
1 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

Similarly, g3 is different from the other three networks in Figure 3.1, since it is integrated by different agents.
In our analysis, the only isomorphic networks to g that will play a role are those integrated by the agents in
N .
An isomorphism f of a graph with itself that preserves the adjacency matrix is known as an automorphism:
f : N → N , where ij ∈ E if and only if f(i)f(j) ∈ E. That is, an automorphism is a permutation of the
labels of the nodes in g that results in a network g′ = g. For example, f : f(i) = l, f(j) = r, f(l) = i,
f(m) = o , f(r) = j, f(o) = m is an automorphism of g, as it results in network g2 = g (see Figure 3.1). The
set composed of all the automorphisms of g is the automorphism group of g, denoted Aut(g) (Chartrand et
al. 2010). Note that all graphs in an automorphism group represent the same network, since they all have
the same adjacency matrix. The order of the automorphism group of g is the number of elements in Aut(g),
|Aut(g)| ≥ 1. It captures the degree of symmetry of the network: the greater |Aut(g)|, the more symmetric
network g is (Xiao et al., 2008b).

12In contexts of random networks, Fg(k) is naturally interpreted as the probability that a randomly selected node has degree
k (Vega-Redondo, 2007), while here it is the distribution of degree frequencies in the network.
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Two nodes i ∈ N and j ∈ N are automorphically equivalent if they are identical in terms of all network
measures (degree, second-order degree, centrality, number of cycles to which they belong, etc.). Namely, i
and j are automorphically equivalent if and only if there exists an automorphism f : N → N such that
f(i) = l. We write i ≡ l to indicate that i and l are automorphically equivalent. In network g of Figure 3.1,
i ≡ l, j ≡ r and m ≡ o. Other pairs of agents are not automorphically equivalent, since their number of
second-order neighbors is different. Two nodes occupy the same position in the network if and only if they
are automorphically equivalent, regardless on whether the identity of their direct and indirect neighbors is
distinct.
An important property of automorphically equivalent nodes is that we can exchange their labels to form a
new network that is identical to the original one (Friedkin and Johnsen, 1997). For example, starting from
graph g in Figure 3.1, we can exchange the labels of i and l and relabel all other nodes to obtain network
g2 (in the same Figure) with the same adjacency matrix as g, g2 = g. Notice that this is possible because
i ≡ l. If we swap the labels of two nodes that are not automorphically equivalent, say, i and j in network g,
we cannot obtain a network equal to g.
The orbit of node i is the set composed of all nodes that occupy the same position as her, Oi(g) = {l ∈ N :
l ≡ i}. In graph g of Figure 3.1, Oi(g) = Ol(g) = {i, l}, Oj(g) = Or(g) = {j, r}, Om(g) = Oo(g) = {m, o}.
Structural equivalence is a particular form of automorphic equivalence. Node i ∈ N is structurally equivalent
to l ∈ N if and only if both agents are connected to the same nodes, Ni(g) \ {l} = Nl(g) \ {i}.13 We write
i ≡s l to indicate that i and l are structurally equivalent. Structural equivalence is more demanding than
automorphic equivalence: it not only requires that the nodes occupy indistinguishable structural locations
in the network, but also that the identities of the agents connected to them are the same. Thus, structural
equivalent nodes must be automorphically equivalent, but the opposite is not true. For example, in network
g in Figure 3.2, nodes s ≡s m are structurally equivalent and therefore s ≡ m. However, there is no pair of
structurally equivalent nodes in network g of Figure 3.1, despite the fact that i ≡ l, j ≡ r and m ≡ o. The
set of nodes that are structurally equivalent to i is denoted Si(g) = {j ∈ N : j ≡s i, j ̸= i}.

Figure 3.2

In certain parts of our analysis, we need to identify a set of nodes with the same degree as node i but a
distinct network position:

Definition 1. An equal-degree set to i (i-ed set hereafter) is a subset of nodes Ki(g) ⊆ N such that if
j ∈ Ki(g) and l ∈ Ki(g) and j ̸= l, then (i) kj(g) = kl(g) = ki(g) and (ii) j✚≡l, ∀j, l ∈ N. Ki(g) is maximal
if and only if it is not a proper subset of any other i-ed set in g.

In network g of Figure 3.1, the maximal i-ed sets in N are {i, j}, {i, r}, {l, j} and {l, r}. Notice that an i-ed
set only includes nodes with a different network position; since i ≡ l and j ≡ r in g, there is not any i-ed set
Ki(g) such that i, l ∈ Ki(g) and/or j, r ∈ Ki(g).
Let G be the set of all feasible networks integrated by the agents in N. Set GFg ⊆ G is the subset of different
networks in G with degree distribution Fg(k) and size n:

GFg = {g ∈ G : |{i ∈ N : ki(g) = k}| = Dg(k), ∀k}
13According to the standard definition, i an l are structurally equivalent if and only if Ni(g) = Nl(g) (Burt, 1976). Since this

definition is too strict, different relaxations have been proposed (see e.g. Everett et al. 1990). Our relaxed definition increases the
set of structurally equivalent nodes; while the three nodes {i, j, k} composing a network triangle are not structurally equivalent
according to the standard definition, they are structurally equivalent according to ours. Observe that i and l with Ni(g) = {l}
and Nl(g) = {i} are structurally equivalent, since Ni(g) \ {l} = Nl(g) \ {i} = /O. However, neither i nor l are structurally
equivalent to an isolated node m, since Ni(g) \ {m} = {l} ̸= Nm(g) \ {i} = /O, and Nl(g) \ {m} = {i} ̸= Nm(g) \ {l} = /O.



CAPÍTULO 3. NETWORK PERCEPTION IN NETWORK GAMES 86

Suppose for example that N = {i, s,m}, Dg(1) = 2 and Dg(2) = 1. Then, GFg is integrated by three networks
in Figure 3.2, GFg (g) = {g, g1, g2}. In this example, all networks in GFg are isomorphic. However, GFg can
generally contain networks with different geometries.
Last, we define network cycles. A Q-cycle, denoted ZQ(g) is a sequence of distinct nodes i1, i2, ..., iQ−1, iQ
such that Q > 2, giq,iq+1 = 1 for each q ∈ (1, ..., Q − 1) and gi1iQ = 1. For example, i, j, k is a three cycle if
gij = gjk = gki = 1; i, j, k, l is a four cycle if gij = gjl = glk = gki = 1, and so on.

3.3. Network knowledge
This section introduces several settings that differ in the information that people possess about the

network they are embedded in (network g). In each setting, we use Ii(g) to denote the information set that
each i ∈ N has about network g. Agents have private information which is different depending on the setting,
while Fg(k) and n are common knowledge in all our setups.

3.3.1. Setting A
In this setting, Ii(g) = {ki, Fg(k), n}.14 That is, people know their degree, the degree distribution and

the network size. However, although people know their proclivity to interact with others, they do not know
the identity of the people with whom they are going to interact. This setting is similar to that in Galeotti,
et al. (2010).15 Such a setting applies, for example, to a recently hired employee: she may know the number
of people with whom she is going to interact in the company and their popularity, but not necessarily who
these people will be at the moment she is hired. Similarly, an actor considering to take part of a movie may
anticipate the status (popularity) of other actors involved in the project, but not the identity of these agents
when accepting the role.

Consider agent i in Figure 3.3, where network (a) displays the whole network architecture whereas network
(b) represents how i views the network under Setting A. The dashed lines in network (b) represent the links
in g that are not observed by i, while the solid lines represent the links that are observed by her. Note that
all nodes but i are unlabelled in graph (b) because i does not have information about the identity of these
agents.

Figure 3.3 Network g and Ii(g) under Setting A

3.3.2. Setting B
Under Setting B, the private information of each i ∈ N corresponds to her neighborhood and the degree

of each of her neighbors. Let kNi(g)=(k1, k2, ..., kki) be the vector of degrees of all agents in Ni(g), where
kj is the degree of neighbor j ∈ Ni(g) (j = 1, 2, ..., ki). Elements in this vector are indexed according to a
decreasing order, kj ≥ kj+1. Under setting B, Ii(g) =

{
Ni(g), kNi(g), Fg(k), n

}
.

Imagine network g is the network in Figure 3.4(a). From Ii(g) = {Ni(g), (kl, ko), [Fg(1), Fg(2), Fg(3)], 6} ={
{l, o}, (3, 2), [ 12 ,

1
3 ,

1
6 ], 6

}
, agent i knows that her neighbors are l and o, and kl = 3 and ko = 2. Nevertheless,

i does not know who are the agents in Nl(g) and in No(g). Hence, she does not know the geometry created by
14Equivalently, we could assume that the information set of each i is Ii(g) = {ki, Dg(k), ∀k} .
15The difference between our Setting A and the setup in Galeotti et al. (2010) is that players know the distribution of degree

frequencies in our setup, while in Galeotti et al. (2010) they know the probability degree distribution. Our assumption makes
sense for bounded populations of small size (e.g. a firm), while theirs does for large ones (e.g. a country).
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her neighbors’ links. Figure 3.4(b1) and 3. 4(b2) represents the two possibilities in which links of i′s neighbors
can be disposed given Ii(g).16 Agent i does not know which of these two configurations is the true one, hence,
Ii(g) is jointly represented by Figures 3.4(b1) and 3.4(b2).

Figure 3.4. Network g and Ii(g) under Setting B

In certain situations, an individual may have information about the popularity of her contacts without
necessarily knowing the identity of their respective neighbors. Think for instance about a faculty department.
In such a social environment, an agent may receive (directly or through three parties) information about
her colleagues: she may know how they usually spend the weekend, whether they are married or not, the
number of followers they have in their virtual networks, etc. These “signals” inform the agent about the
relative popularity of her coworkers, but not necessarily about the identity of the people composing their
neighborhoods.

3.3.3. Setting C
Under Setting C, the private information of each i ∈ N corresponds to her neighborhood and the neighborhood
of each of her neighbors. Define NNi(g) = (Nj(g), ..., Nm(g)) as the vector integrated by the neighborhoods of
i′s neighbors, Ni(g) = {j, ...,m}. Under Setting C, Ii(g) =

{
Ni(g), NNi(g), Fg(k), n

}
.

The difference between Setting C and Setting B is that under Setting C each i knows the identity of her
second-order neighbors, while she does not under Setting B. This informs her about the three- and four-cycles
that she forms with her neighbors, what in turn provides her information about the degree of her second-order
neighbors.
Consider for example network (a) in Figure 3.5, where Ii(g) =

{
{l, o},

{
{i,m, o}, {i, l}

}
, [ 12 ,

1
3 ,

1
6 ], 6

}
. Since i

knows Nl(g) = {i,m, o} and No(g) = {i, l}, she knows that l and o are linked. Since neighbors l and o are
simultaneously second-order neighbors of i, the degree of two second-order neighbors of i is known by her.17

Figure 3.5. Network g and Ii(g) under Setting C

Setting C applies for many real-life circumstances. A close familiar of an agent may be able to identify
the agents who comprise the circle of friends of her familiar. Similarly, a researcher may able to identify who
are her coauthors’ coauthors, even when she never met these people.

16In Figures 3.4(b1) and 3.4(b2), nodes different from i, j and l are unlabeled because i does not have information about their
identities. The dashed line in Figure 3.4(b1) represents the link that is not directly observed by i. In a subsequent section, we
show that i can learn such a link from Ii(g) (i.e. she can deduce that the degree-one agents integrate a dyad), despite not being
provided such an information directly.

17In a similar way, i could obtain some information about the degree of her second-order neighbors by observing the four-cycles
that she forms with her neighbors: if i observes that her second-order neighbor z is linked both to j ∈ Ni(g) and to k ∈ Ni(g),
i knows that kz ≥ 2. Analogously, if z is a common neighbor of x neighbors of i, i knows that kz ≥ x.
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3.3.4. Setting Z
Under Setting Z, all agents agents have complete network information. That is, Ii(g) = {g}. This is

the information setting considered in the main bulk of literature on network games (see e.g. Goyal and
Moraga-González, 2001; Ballester et al. 2006; Bramoullé and Karton, 2007, among others), and implies that
all network integrants have identical network knowledge.

3.4. Network perception

3.4.1. Network beliefs
From Ii(g), each i ∈ N forms beliefs about the network she is embedded in. Define Bi(g) ⊆ GFg as the
set of networks that are compatible with Ii(g) in each information setting, with bi(g) = |Bi(g)|. Namely,
Bi(g) is the set of feasible networks in i′s beliefs; each network in Bi(g) could be network g according to the
information of i. Depending on the information setup, Bi(g) is different:

Under Setting A, Bi(g) = {g′ ∈ GFg : |Ni(g′)| = ki(g)}

Under Setting B, Bi(g) = {g′ ∈ GFg : Ni(g′) = Ni(g), kNi(g′) = kNi(g)}

Under Setting C, Bi(g) = {g′ ∈ GFg : Ni(g′) = Ni(g), NNi(g′) = NNi(g)}

Set Bi(g) may differ across agents under any information setup. Furthermore, it is possible the coexistence
of individuals with complete and incomplete network knowledge. This can occur even within one information
setup (where the level of network information of all network integrants is the same), since the content of the
the information of different agents can be distinct. The following example illustrates.

Example 1. Consider network g in Figure 3.2. Given Fg(1) =
2
3 , Fg(2) =

1
3 and n = 3, GFg is integrated

by the three networks in Figure 3.2, GFg = {g, g1, g2}. Under Setting A, Ii(g) = {ki(g), [Fg(1), Fg(2)] , n} =
{2,

[
2
3 ,

1
3

]
, 3}, thereby, Bi(g) = {g}. On the contrary, Bs(g) = {g, g2} and Bm(g) = {g, g1}, since Is(g) =

Im(g) = {1,
[
2
3 ,

1
3

]
, 3} under this information setup. Hence, i knows the whole network, while the network

knowledge of s and m is incomplete. !

Since the private information of i does not include the probability distribution of the networks in Bi(g),
we assume that the networks in Bi(g) follow an uniform distribution. This means that each network in Bi(g)
is equally likely to be network g, in i′s beliefs.

Feasible network geometries. So far we provide the example of a simple network (Example 1), where all
networks in Bi(g) have the same geometry, ∀i ∈ N . However, some networks in Bi(g) may have different
network geometries, while others may be different but isomorphic. We say that a particular network geometry
is a feasible geometry if some graph in Bi(g) have such a geometry. Let Ωi(g) = {1, 2, ...,ωi(g)} be the set
of feasible geometries in i′s beliefs, with ωi(g) = |Ωi(g)|. The set of (isomorphic) networks in Bi(g) with
geometry z ∈ Ωi(g) is denoted Bz

i (g), and bzi (g) = |Bz
i (g)|. Networks in Bz

i (g) differ in how agents are
allocated within the network, but they all have the same network geometry.
Each i can infer the probability that network g has a particular geometry z by counting the number of
(isomorphic) networks in Bi(g) with this geometry and dividing this number by the total number of feasible
networks, bi(g). In other words, agent i believes that network g has geometry z with probability bzi (g)

bi(g)
. Agent i

may assign more probability to some network geometries than to others, as we show in the following example.

Example 2. Suppose we are under Setting A, and Ii(g)={ki(g), [Fg(1), Fg(2), Fg(3)] , n}=
{
ki(g),

[
1
2 ,

1
3 ,

1
6

]
, 6
}

From Ii(g), a fully rational i can infer that there are three feasible network geometries, depicted in Figure
3.6. Depending on how agents are allocated in the network, there are different networks with each of these
geometries. In particular, there exist bi(g) = 450 different networks that are feasible in the beliefs of an i
with ki(g) = 1: b1i (g) = 180 networks have geometry 1, b2i (g) = 90 have geometry 2, and b3i (g) = 180 have
geometry 3, as we show in the following sections.
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Figure 3.6. Feasible geometries in Example 2
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Table 3.1 provides the number of feasible networks for other values of ki(g). Observe that the value of bzi (g)
is relevant as it affects the probabilistic weight that i assigns to each network geometry. Thus, i believes that
geometries 1 and 2 are more likely than geometry 3, since b1i (g)

bi(g)
= b3i (g)

bi(g)
= 180

450 = 40% > b2i (g)
bi(g)

= 90
450 = 20%.

Table 3.1. Network beliefs of each i ∈ N

ki(g) b1i (g) b2i (g) b3i (g) bi(g)

ki(g) = 1 180 90 180 450
ki(g) = 2 120 60 120 300
ki(g) = 3 60 30 60 150∑

360 180 360
∣∣GFg

∣∣ = 900

!

Notice that in Example 2 all agents have identical beliefs about the feasible geometries regardless of their
degree: they assign probability 180

450 = 120
300 = 60

150 = 0,4 to geometry 1, probability 90
450 = 60

300 = 30
150 = 0,2 to

geometry 2, and probability 0,4 to geometry 3. As we show below, this not by chance. Rather, it is a general
property of agents’ beliefs under Setting A.

Under other information setups, on the contrary, network integrants may have different beliefs about the
set of feasible geometries and their probabilities. Consider, for instance, network g in Figure 3.5(a). Under
Setting B, i ∈ N knows that she has a degree-two neighbor (agent o). Hence, the only geometries that are
feasible given Ii(g) are geometry 1 and geometry 2 in Figure 3.6.18 Conditional on Il(g), on the contrary, the
feasible geometries are geometries 2 and 3 in Figure 3.6, while conditional on Ij(g) the only feasible one is
geometry 2 in the same figure.

3.4.2. Isomorphisms of a graph
Let N̄ ⊆ N be a subset of nodes in a network g, with n̄ =

∣∣N̄
∣∣. We compute the number of distinct

labelings of the nodes in N \ N̄ . In other words, we compute the number of distinct isomorphic networks to
g that can be obtained by permuting exclusively the labels of the nodes in N \ N̄ . We denote this number
y(g | N̄).19

Labels of the nodes in N̄ are not permuted, they are maintained fixed. Notice that in some cases we may
permute the labels of some nodes in N \ N̄ without any incidence in the adjacency matrix of the network:
given g we may permute the labels of some nodes in N \ N̄ and get a network g′ = g. The set of different
ways in which we can (exclusively) permute the labels of the nodes in N \ N̄ without affecting the adjacency
matrix of g is given by the stabilizer of N̄ , stab(N̄). The stabilizer of a subset of nodes N̄ is characterized as
the set of all automorphisms that map each node in N̄ into itself, stab(N̄) = {f ∈ Aut(g) : f(v) = v, ∀v ∈ N̄}
(Erwin and Harary, 2006). Consider for example network g2 in Figure 3.7. Since r ≡s m and l ≡s o,
Stab(i) = {f, f ′, f ′′, f ′′′}, resulting in g2, g′2, g

′′

2 and g′′′2 in Figure 3.7, respectively.
18Observe that no degree-two agent has a degree-two neighbor in the third network of Figure 3.6. Hence, geometry 3 is not a

feasible geometry given Ii(g).
19For example, suppose network g is the network in Figure 3.2, and N̄ = {s}. Maintaining fixed the position of agent s

in that network, there are two different networks that are isomorphic to g: network g and network g2 in Figure 3.2. Hence,
y(g | N̄) = y(g | {s}) = 2.
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Figure 3.7. Actions of the automorphisms in Stab(i) in network g2.

Lemma 1. Let g = (N,E). The total number of distinct isomorphic networks to g that can be obtained by
exclusively permuting the labels of the nodes in N \ N̄ is:

y(g | N̄) =
(n− n̄)!∣∣stab(N̄)

∣∣

Proof. There are (n− n̄)! possible permutations of the labels of the nodes in N \N̄ . For each of these (n−n)!
possible labelings, there are

∣∣stab(N̄)
∣∣ that are equal, as there are

∣∣stab(N̄)
∣∣ different ways in which we can

permute the labels of the nodes in N \ N̄ without any incidence in the adjacency matrix of the network.
Thereby, y(g | N̄) = (n−n̄)!

|stab(N̄)| . !

Example 3. Suppose N̄ = {i}, n̄ = 1.

(a) Consider network g1 in Figure 3.8. Since there is no pair of automorphically equivalent nodes in N \ N̄ ,
each permutation of the labels of the nodes in N \N̄ gives rise to a different network. Therefore, Stab(i) = {f},
where f(i) = i for all i, and |Stab(i)| = 1. Hence, y(g1 | {i}) = (n−1)!

1 = 120. Similarly, y(g6 | {i}) = 120.20

Figure 3.8. Networks from Example 3.

(b) Consider now network g2 in Figure 3.8. Since r ≡s m and l ≡s o, Stab(i) = {f, f ′, f ′′, f ′′′}, resulting in
g2, g′2, g′′2 , and g′′′2 in Figure 3.7, respectively. Since |Stab(i)| = 4, y(g2 | {i}) = (n−1)!

4 = 30.
(c) As for network g3 in Figure 3.8, since m ≡ r and l ≡ o, |Stab(i)| = 2, as shown in Figure 3.9. Therefore,
y(g3 | {i}) = (n−1)!

2 = 60. Analogously, y(g4 | {i}) = y(g5 | {i}) = 60.
20Recall from Section 3.2 that automorphically equivalent nodes have the property that their labels can be interchanged to

form a new network that is identical to the original one. Since j ≡ r in g6, we could interchange the labels of these two nodes
and relabel all other nodes in the network to obtain a network that is identical to g6 . Notwithstanding, there is no way to
exchange the labels of any nodes different from i and obtain network g6 maintaining fixed the label of i, since all nodes different
from i are located at a different distance from her.
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Figure 3.9. Actions of the automorphisms in Stab(i) in network g3

!

Example 3 calculates the number of distinct isomorphic networks that exist conditional on a given position
of i making use of Lemma 1. For instance, there exist 120 different networks with the geometry of g1 in Figure
3.8 in which i occupies her position in this network; all these networks differ in how agents different from i
are allocated. Lemma 1 is necessary to compute bzi (g) and bi(g), as we show in the next section.

3.4.3. Beliefs about the network geometry
In our incomplete information setups, no i is informed about all the details of her network position. Her

information set only describes some aspects of her positioning in the network, but there may exist distinct
positions compatible with such an information. We say that a position is feasible in i′s beliefs if it is consistent
with Ii(g): if it exists a positive probability that i occupies this position according to her beliefs.

Suppose for example that we are under Setting A, and Ii(g) = {ki(g), [Fg(1), Fg(2), Fg(3)] , n}
=

{
ki(g),

[
1
2 ,

1
3 ,

1
6

]
, 6
}
. All the feasible geometries given Ii(g) are depicted in Figure 3.6. Agents i and l in

network g1 ∈ Bi(g) of Figure 3.8 occupy a feasible position of i, and constitute a maximal i-ed set in g1,
Ki(g1) = {i, l}. The same applies for i and l in network g2 ∈ B2

i (g) in Figure 3.8, and for i and l in network
g3 ∈ B3

i (g) in the same figure.
The following proposition calculates bzi (g) and bi(g) under Setting A. It takes into account that, if gz ∈ Bz

i (g)
and Ki(gz) is a maximal i-ed set in gz, then each agent in Ki(gz) occupies a feasible position of i under
Setting A.

Proposition 1. Let gz ∈ Bz
i (g). Under Setting A,

bzi (g) =
(n− 1)!Dg(ki)

|Aut(gz)|
and bi(g) =

∑

z∈Ωi(g)

bzi (g)

Proof. Let Ki(gz) = {j, l, ...,m} be a maximal i-ed set in gz. Each agent in Ki(gz) occupies a (distinct)
feasible position of i. That is, there exist at least one network in Bi(g) in which i occupies the position of
j ∈ Ki(gz) in gz.21 Precisely, there are y(gz | {j}) (isomorphic) networks in Bz

i (g) in which i occupies the
position of j in gz; all these networks differ in how agents different from i are allocated. Similarly, there are
y(gz | {l}) (isomorphic) networks in Bz

i (g) where i occupies the position of l in gz, an analogously for other
agents in Ki(gz). Hence, if Ki(gz) = {j, l, ...,m}, bzi (g) = y

(
gz | {j}

)
+ y

(
gz | {l}

)
+ ...+ y

(
gz | {m}

)
.

By Lemma 1:

bzi (g) = y
(
gz | {j}

)
+ y

(
gz | {l}

)
+ ...+ y

(
gz | {m}

)
=

(n− 1)!∣∣Stab({j})
∣∣ +

(n− 1)!∣∣Stab({l})
∣∣ + ...+

(n− 1)!∣∣Stab({m})
∣∣

Applying the Orbit-Stabilizer Theorem (in the Appendix A1) this is equal to:

(n− 1)!∣∣Aut(gz)
∣∣/
∣∣Oj(gz)

∣∣
+

(n− 1)!∣∣Aut(gz)
∣∣/
∣∣Ol(gz)

∣∣
+ ...+

(n− 1)!∣∣Aut(gz)
∣∣/
∣∣Om(gz)

∣∣

=
(n− 1)!

[∣∣Oj(gz)
∣∣+

∣∣Ol(gz)
∣∣+ ...+

∣∣Om(gz)
∣∣
]

∣∣Aut(gz)
∣∣ =

(n− 1)!Dg(ki)∣∣Aut(gz)
∣∣

21Note that the number of distinct positions that i can occupy if network g has geometry z is |Ki(gz)|.
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!

The following example illustrates Proposition 1.

Example 4. Consider the information structure of Example 2. Networks g1 ∈ B1
i , g2 ∈ B2

i and g3 ∈ B3
i are

depicted in Figure 3.8. Assume Ki(g1) = Ki(g2) = Ki(g3) = {i, l} and ki = 1. Then:

b1i (g) = y
(
g1 | {i}

)
+ y

(
g1 | {l}

)
= 120 + 60 = 18022

b2i (g) = y
(
g2 | {i}

)
+ y

(
g2 | {l}

)
= 30 + 60 = 90

b3i (g) = y
(
g3 | {i}

)
+ y

(
g3 | {l}

)
= 60 + 120 = 180

Hence, bi(g) = b1i (g) + b2i (g) + b3i (g) = 450. !
Example 4 shows that, an agent i with information set Ii(g) =

{
1,
[
1
2 ,

1
3 ,

1
6

]
, 6
}

believes that there are 450
feasible networks: 180 have geometry 1 in Figure 3.7, 90 have geometry 2, and 180 have geometry 3, as we
introduced in Example 2. Following the same procedure as for the degree-one agent, it can be obtained the
number of feasible networks in the beliefs of each i ∈ N with ki ̸= 1 (see Table 3.1).

Proposition 1 provides an expression for bzi (g) and another for bi(g). Dividing both expressions, we get the
probabilistic weight that i assigns to geometry z ∈ Ωi(g). Corollary 1 gives such a probability, and shows its
relation with the order of the network automorphism group.

Corollary 1. Let gz ∈ Bz
i (g) be a network with geometry z ∈ Ωi(g). Under Setting A, each i ∈ N believes

that network g has geometry z with probability ρz = bzi (g)
bi(g)

= 1

1+
∑

x∈Ωi(g)\{z}

|Aut(gz)|
|Aut(gx)|

.

Under Setting A, the set of all feasible geometries Ωi(g) is the same for all agents: the feasibility of a network
geometry only depends on Fg(k) and on n. Since all agents have the same information regarding Fg(k) and
n, the set of feasible geometries is identical for all network integrants. Corollary 1 further shows that all
network integrants assign the same probability to each feasible geometry under Setting A, even if they have
different degrees. In contrast, their beliefs about the feasible geometries and their probabilities generally
differs under Settings B and C, because the private information can provide information that is not conveyed
by the common knowledge one. Consider for example network g1 in Figure 3.8. The fact that kj = 3 and
kr = 2 implies that i and l have different information about their neighbors’ degrees. As a consequence, their
beliefs about the network under Setting B are distinct: the three network geometries in Figure 3.6 are feasible
given Ii(g1), while only geometry 1 and 3 are feasible given Il(g1).
The second implication of Corollary 1 is that each i ∈ N believes more likely to be immersed in a network
with a more asymmetric structure than in a network with a more symmetric one. The degree of symmetry of
a network gz is captured |Aut(gz)|: the lower |Aut(gz)|, the lower the number of nodes that occupy identical
positions in gz and the more asymmetric the network is. Observe in Corollary 1 that bzi (g)

bi(g)
decreases as

|Aut(gz)| increases, which means that bzi (g)
bi(g)

<
byi (g)
bi(g)

if |Aut(gz)| >
∣∣Aut(gy)

∣∣, gz ∈ Bz
i (g) and gy ∈ By

i (g).
This results holds also under settings B and C. Under Setting B(C), the probabilistic weight that i assigns
to geometry z is ρz = bzi (g)

bi(g)
, where bzi (g) and bi(g) are the sizes of Bz

i (g) and Bi(g) under Setting B(C). Note
that Bz

i (g) under Setting B(C) is a subset of Bz
i (g) under Setting A, and bzi (g) under Setting A is strictly

decreasing in |Aut(gz)| (see Proposition 1). Then, bzi (g) must be also decreasing in |Aut(gz)| under Setting
B(C), what means that ρz < ρy under Setting B(C) if |Aut(gz)| > |Aut(gy)|.
The following Lemma stress the relation between the automorphism group of a network and the notions of
equivalence among nodes presented in Section 3.2. By construction, the automorphism group of a network
increases as the number of automorphically equivalent nodes in the network increases, ceteris paribus. Yet,
maintaining constant the orbit of each node in the network, |Aut(g)| increases as the number of structurally
equivalent nodes increases. The following lemma captures this result.

22In Example 3 we showed y(g4 | {i}) = y(g5 | {i}) = 60 and y(g6 | {i}) = 120. Clearly, y(g4 | {i}) = y(g1 | {l}),
y(g5 | {i}) = y(g2 | {l}), and y(g6 | {i}) = y(g3 | {l})
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Lemma 2. Let g = (N,E) and g′ = (N ′, E′) two networks such that (i) N = N ′, (ii)
∣∣Oi(g)

∣∣ ≥
∣∣Oi(g′)

∣∣
and

∣∣Si(g)
∣∣ ≥

∣∣Si(g′)
∣∣, ∀i ∈ N , (ii) ∃m ∈ N :

∣∣Om(g)
∣∣ >

∣∣Om(g′)
∣∣ and (or)

∣∣Sm(g)
∣∣ >

∣∣Sm(g′)
∣∣, then∣∣Aut(g)

∣∣ >
∣∣Aut(g′)

∣∣.

In words, given two networks g and g′ such that (i) the orbit of each node in g is not lower than its orbit in
g′ and (ii) the set of structurally equivalent nodes of each node in g is no lower than such a set in g′, then∣∣Aut(g)

∣∣ >
∣∣Aut(g′)

∣∣ if either the orbit of any node is higher in g than in g′ and/or the set of structurally
equivalent notes to any node in g′ is higher than in g′. Consider for instance g2 and g3 in Figure 3.8. Although∣∣Oi(g2)

∣∣ =
∣∣Oi(g3)

∣∣ ∀i ∈ N ,
∣∣Sr(g2)

∣∣ >
∣∣Sr(g3)

∣∣ for r ∈ {r,m, o, l} and
∣∣Sj(g2)

∣∣ =
∣∣Sj(g3)

∣∣ for j ∈ {j, i}.
Hence,

∣∣Aut(g2)
∣∣ >

∣∣Aut(g3)
∣∣.

To conclude, we illustrate how the knowledge of the set of feasible geometries and their probability
distribution enables agents to learn different network features, such as the probability that their neighbors
have particular degrees. As we show below, this will be relevant for the strategic interactions that take place
within the network.

Example 5. Assume we are under Setting A, and Ii(g) =
{
ki(g),

[
Fg(1), Fg(2), Fg(3)

]
, n

}
=

{
1,
[
1
2 ,

1
3 ,

1
6

]
, 6
}
.

Figure 3.6 shows the set of feasible geometries, given Ii(g). Table 3.1 displays bi(g) as a function of ki(g). A
degree-one agent i expects to have degree-three neighbor if she occupies either her position in g1 in Figure
3.8, her position in g2 in the same figure, or her position in g3. Hence, she expects to have a degree-three
neighbor with probability:

y
(
g1 | {i}

)
+ y

(
g2 | {i}

)
+ y

(
g3 | {i}

)

bi(g)
=

210

450
=

7

15

In a different way, degree-two agent m expects to have a degree-three neighbor if she occupies either the
position of m in network g1 in Figure 3.8, the position of m in g2, or the position of this agent in g3 in the
same figure. That is, with probability:

y
(
g1 | {m}

)
+ y

(
g2 | {m}

)
+ y

(
g3 | {m}

)

bi(g)
=

240

300
=

8

10
=

4

5

!

The example further illustrates how, in finite networks, the probability that i has a neighbor of degree k
is not independent of ki(g). This fact will be key to understand the equilibrium patterns of games played on
networks, as we illustrate in the next section.

3.5. Network Games
In this section, we exploit the belief formation framework developed in the previous section and its im-

plications on behavior in network games. In particular, we show how the fact that people can estimate−and
sometimes even learn−different network aspects, together with the cognitive bias they have towards asym-
metric structures, has an incidence on their equilibrium behavior.

3.5.1. Players’ types and strategies
We analyse the strategic interactions that take place in the network under the information settings

presented above. Network integrants correspond to the players of a Bayesian Game in which they have
partial information about the network position of other players. The type of each player is a particular aspect
of her network position contained in her private information (for instance, her degree). Depending on the
information setting, the type of each player is defined differently. Later on, we provide a precise definition
of the type of each player in each information setting. The type of each i ∈ N is assigned by the function
τi : G → Ti; each network in G can be interpreted as a feasible state of nature. The set of feasible types of
i, denoted Ti, is the set of different types that i can be considering all networks in G, with |Ti| = η. In every
setting, Ti = Tj = T, ∀i, j ∈ N . We write ti to denote the type of player i under each setting.

A strategy σ is a mapping that specifies which action is chosen as a function of each player’s type. Strategy
σ is symmetric if σ(ti) = σ(tj) as long as ti = tj . Following Galeotti et al. (2010), we focus on the symmetric
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equilibria of the game in most part of our analysis; we only consider asymmetric strategies when exploring
the effects of varying players’ network information on equilibria (Section 3.5.4.2). Since we analyse binary
games (where players choose an action in {0, 1}), σ(ti) is the probability that player i takes action 1. Strategy
σ is non-decreasing if σ(k′) first-order stochastically dominates (FOSD) σ(k), for all k′ > k. Analogously, σ
is non-increasing if σ(k) FOSD σ(k′), for all k′ > k.

In our games, players only have incomplete information about the network; all other ingredients of the
games (e.g. their payoff functions) are common knowledge.

3.5.2. A game of strategic substitutes
Each player has to choose independently and simultaneously an action in the set X = {0, 1}. Action 1

may be interpreted as acquiring a certain technology, acquiring a piece of information, or contributing to the
provision of a public good, and action 0 as not doing so. Agents incur in a cost c when they play action 1,
with 0 < c < 1, but not when they play action 0. This game is a simplified version of the public good game
in Bramoullé and Kranton (2007). Define xi as the action played by i ∈ N , and xNi(g) =

∑
i∈N xi as the sum

of her neighbors actions. The utility of each i is ui(xi, xNi(g)), and takes the following values:

ui

(
0, xNi(g)

)
= 1 if xNi(g) ≥ 1

ui

(
0, xNi(g)

)
= 0 if xNi(g) = 0

ui

(
1, xNi(g)

)
= 1− c for any xNi(g)

It is readily seen that each player prefers that any of her neighbors takes action 1 rather than taking this
action herself. However, if none of her neighbors plays 1, she prefers playing 1 than playing 0.
Assume i ∈ N has ki neighbors, Ni(g) = {j, ..., v}. When all agents play the pure symmetric strategy σ, the
expected utility of i of taking action 0 is the probability that at least one of her neighbors plays action 1.
That is, the probability that at least one neighbor of i is a type for which σ assigns action 1:

EUi

(
0,σ, Bi(g)

)
=

|{g ∈ Bi(g) : ∃j ∈ Ni(g) : σ(tj) = 1}|
bi(g)

(3.5.1)

In equilibrium, each type of i plays 0 if her expected utility of playing 0 is at least as high as her expected
utility of playing 1, EUi

(
1,σ, Bi(g)

)
= 1− c.

3.5.3. A game of strategic complements
Consider the game in Jackson (2010), where each i ∈ N has to choose independently and simultaneously

an action in X = {0, 1}. Action 1 represents an activity that is enjoyed if at least one other person participates,
and has a cost c. For example, i has to choose whether to book a tennis court (action 1) or not (action 0),
and c is the booking fee, 0 < c < 1. Or i has to choose whether to buy a particular software or not, and the
software is only enjoyed if at least one neighbor uses it. The utility of i depends on the same arguments as
in the previous game, but it takes different values:

ui

(
1, xNi(g)

)
= 1 if xNi(g) ≥ 1

ui

(
0, xNi(g)

)
= 0 for any xNi(g)

ui

(
1, xNi(g)

)
= −c if xNi(g) = 0

The expected utility of playing 1 when all agents play the symmetric strategy σ is:

EUi

(
1,σ, Bi(g)

)
= −c+

|{g ∈ Bi(g) : ∃j ∈ Ni(g) : σ(tj) = 1}|
bi(g)

(3.5.2)

Each type of i is best responding with action 1 if EUi

(
1,σ, Bi(g)

)
≥ EUi

(
0,σ, Bi(g)

)
= 0.
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3.5.4. Equilibrium
3.5.4.1. Setting A

As in Galeotti et al. (2010), the type of each player corresponds to her degree. Each i believes that j ∈ N

is type tj = kj with probability pi(tj) = pi(kj) =
|{g∈Bi(g):τj(g)=kj}|

bi(g)
.

Galeotti et al. (2010) prove the existence of a unique symmetric equilibrium in both games. They show that
such an equilibrium is monotone non-decreasing (non-increasing) in players’ degrees under strict strategic
complements (substitutes),23 if nodes have degrees either with independent probabilities or with probabilities
that are positively (negatively) correlated.24 Their result is intuitive: under degree independence i and z have
the same beliefs about the degree of each of their respective neighbors, even when ki > kz. This implies that
i and z face the same probability distribution over the action of each of her respective neighbors, since the
action of each player is determined by her type (her degree). However, since i has a more neighbors, the
probability that at least one neighbor of her plays action 1 is greater than the probability that at least one
neighbor of z does. As a result, the incentives of i to play action 1 under strict complements (substitutes)
are higher (lower) than the incentives of z, and the equilibrium is necessarily non-decreasing (non-increasing)
in players’ degrees.25 If there is not degree independence but degrees are positively (negatively) correlated,
the monotonicity property of equilibrium maintains under strategic complements (substitutes): high degree
players are more likely to have at least one neighbor playing action 1, since they are more likely to be have
at least one high degree (low degree) neighbor, and the result follows.
Under our Setting A, players’ do not posses information about the assortativity patterns in the network. But,
each i can learn the probability that a neighbor of her has degree k from Ii(g) (see Example 5). Since such
a probability may vary positively with ki(g) (nodes may have degrees neither with independent probabilities
nor with probabilities that are negatively correlated) the equilibrium predictions in Galeotti et al. (2010)
under strategic substitutes may fail to hold, as the following example illustrates.

Example 6. Consider the game of strategic substitutes. For each i ∈ N , let Ii(g) = {ki(g), [Fg(1), Fg(2), Fg(3)] , n}
=

{
ki(g), [

1
5 ,

3
5 ,

1
5 ], 5

}
and Ti = {ki, k′i, k′′i } = {1, 2, 3}, referred as types 1, 2 and 3, respectively. Figure 3.10

shows the two feasible geometries, in the beliefs of each i ∈ N .

Figure 3.10. Feasible geometries of network g in Example 6.

There are three strategies that constitute a pure-strategy symmetric equilibrium:

(a) σ1: σ1(2) = 0 and σ1(ki) = 1 for ki ∈ {1, 3}, ∀i ∈ N and 1
6 ≤ c ≤ 1

2 .
(b) σ2: σ2(3) = 1 and σ2(ki) = 0 for ki ∈ {1, 2}, ∀i ∈ N and c ≥ 1

2 .
(c) σ3: σ3(1) = 1 and σ3(ki) = 0 for ki ∈ {2, 3}, ∀i ∈ N and c ≥ 5

6 .

Table 3.2 lists the expected utility of playing 0 of each type of i ∈ N when all agents follow each of these
equilibrium strategies.26

23Strictness is important for their result: when players are indifferent between actions, non-monotone equilibria are possible.
24Under degree independence, the probability that i has a high-degree neighbor does not depend on ki(g). Under positive

(negative) degree correlation, the probability that i has a high-degree neighbor depends positively (negatively) on ki(g).
25Recall that in games of strategic complements (substitutes), players incentives to play higher actions are higher (lower) as

their neighbors’ actions are higher.
26See the Appendix for details.
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Table 3.2. Expected utilities of playing 0 for each type

Type of i ∈ N EUi

(
0,σ1, Bi(g)

)
EUi

(
0,σ2, Bi(g)

)
EUi

(
0,σ3, Bi(g)

)

ki = 1 1/2 1/2 0
ki = 2 5/6 5/6 1/6
ki = 3 1/2 0 1/2

The equilibria structure in Galeotti et al. (2010) does not maintain. First, equilibria are not unique, but mul-
tiple equilibria can coexist depending on the cost value. Second, equilibria can be monotone non-increasing,
monotone non-decreasing as well as non-monotone under strategic substitutes, even when players are only
informed about their degree and the degree distribution of the network. !
Example 6 shows that the equilibrium predictions for strategic substitutes in Galeotti et al. (2010) are
not robust to relaxing their assumptions: (i) nodes have degrees with independent probabilities or (ii) with
probabilities that are negatively correlated.27 For the sake of simplicity, suppose that the only agents that
play action 1 are those with degree k. If (i) does not hold, a degree-k1 player may expect to have a neighbor
of degree k with a greater probability than a degree-k2 does, even if k2 > k1. This implies that the expected
utility of playing 0 may be greater for the degree-k1 player than for the degree-k2 one. As a result, the high-
degree player may be best responding with a higher action than the low degree one, and the equilibrium may
be increasing in players’ degrees under strategic substitutes. The intuition is similar if we relax the assumption
of negative degree correlation. Suppose that the agents playing action 1 are the “low degree players”, say,
those with degree equal or lower than k, while “high degree players” (with degree greater than k) play action
0. If (ii) does not hold, low degree players may expect to have low degree neighbors (neighbors playing 1) with
a higher probability than high degree players. As a consequence, high degree players may be best responding
with higher actions than low degree ones, and equilibria are not necessarily monotone non-increasing under
strategic substitutes.
As for strategic complements, the results of Galeotti et al. (2010) tend to maintain. The reason is that high
degree players have a greater tendency to be connected to high degree nodes, even if links are formed in
a fully random way (Newman, 2003; Jackson and Rogers, 2007; Jackson, et al. 2010). Since Galeotti et al.
(2010) guarantee that equilibria are monotone non-decreasing under strategic complements under positive
degree assortativity, their results for this type of games tend to maintain.

Efficient network structures. Under Setting A, the set of equilibria is the same in all networks with the
same degree sequence.28 However, the payoffs that players receive may differ across these networks, if their
respective geometries are different. Consider, for example, networks: g1 and g2 in Figure 3.10. Under Setting
A, the three strategies in Example 6 are equilibrium strategies. However, when all agents play σ1, the sum
of their payoffs is 2(1 − c) + 3 in network g1, while this sum is 2(1 − c) + 2 in network g2. Thus, although
players’ choices are identical, the aggregate welfare is not.
We want to understand how the equilibrium welfare relates to the geometry of the network. To that purpose,
we adopt the utilitarian approach: welfare in network g when all agents play the strategy σ corresponds to
the sum of the payoffs obtained by all players when they all follow such a strategy:

W (σ, g) =
∑

i∈N

ui(xi, xNi(g))

where xi and xNi(g) are the action of i and the sum of the actions of i′s neighbors when all agents follow the
strategy σ, respectively.
Network g is said to be efficient if there is not any other network g′ with the same degree sequence that yields
higher welfare at any pure-strategy symmetric equilibrium. Formally, g is efficient if ✁∃g′ : Dg(k) = Dg′(k)
∀k such that W (σ∗, g′) > W (σ∗, g), for any σ∗ that constitutes a pure-strategy symmetric equilibrium under
Setting A.29 Proposition 2 provides a sufficient condition for a network to be efficient, both for the game of

27As we show in the Appendix, beliefs of each i about her neighbors’ degrees depends on ki(g) but there is not a monotone
relation between both issues: the likelihood of having a neighbor of degree k does not vary monotonously with ki(g).

28Under Setting A, each i with degree ki(g) has the same beliefs about the network in all networks with the same degree
sequence (see Section 3.4.3). Hence, her best response to her neighbors’ actions is identical across all these networks.

29The concept is similar to that in Goyal and Vega-Redondo (2007). However, our definition focus on equilibrium welfare.
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strategic substitutes as well as for the game of strategic complements. Such a condition depends on ρz, which
is the probability that all agents assign to geometry z under Setting A (see Corollary 1).

Proposition 2. Assume network g has geometry z, k =arg max Dg(k) and we are under Setting A:
1. For the game of strategic substitutes, network g is efficient if c < ρz

Dg(k)

2. For the game of strategic complements, network g is efficient if 1− c < ρz

Dg(k)
.

To illustrate Proposition 2, consider the information structure in Example 6, and let g1 and g2 be two networks
with the geometry of networks 1 and 2 in Figure 3.10, respectively. Since |Aut(g1)| = |Aut(g2)| = 2, all agents
in g1 believe that the network they are immersed in has geometry 1 with probability ρ1 = 1

2 , and geometry 2
with the same probability, ρ2 = 1

2 . Since arg max Dg1(k)=arg max Dg2(k) = 2 and Dg1(2) = 3, Proposition
2 implies that network g1 is efficient for c < ρ1

Dg(2)
= 1

6 under strategic substitutes and analogously for g2.
Note that for c ≥ 1

6 , network g2 is not efficient: when all agents play the equilibrium strategy σ1, welfare is
2(1− c) + 2 in this network, while it is equal to 2(1− c) + 3 in network g1.

Under strategic substitutes (complements), the set of values of c (1−c) for which Proposition 2 guarantees
that g is efficient decreases as the automorphism group of g increases. The intuition of this result is the
following. When players choose their actions, they infer the feasible allocations of types that can exist in the
network by considering all the network geometries that are feasible; each feasible geometry has associated a
particular allocation of types. For example, a degree-one player in Example 2 infers that her neighbor is type
1 if network g has geometry 2, but not if g has geometry 1 or geometry 3. However, all feasible geometries are
not equally likely, but the probability that g has the geometry of gz ∈ Bz

i (g) decreases as |Aut(gz)| increases.
This means that the allocations of types associated to asymmetric network geometries have a higher weight
in the decision of agents when they choose their strategies. Since players aim to maximize their payoffs
when choosing their strategies and assymetric geometries are more likely in their beliefs, networks with more
assymetric geometries are guaranteed to be efficient for a greater range of values of c (1− c) under strategic
substitutes (complements) in Proposition 2.

3.5.4.2. Information effects

This section explores the effects of varying the depth of players’ network information on equilibria. We first
compare the equilibria that arise under different information setups, and show how increasing players’ network
information neither has a monotone effect on the number of equilibria nor on their structure (Example 7).
We then illustrate how a subtle variation in players’ network information (the knowledge of neighbors’ neigh-
borhoods vs. the knowledge of neighbors’ degrees) can largely affect players’ equilibrium behavior (Example
8).

Example 7. Players are embedded in network g of Figure 3.2. Figure 3.11 shows the pure-strategy equilibria
that arise under strict strategic substitutes under different information setups. The green (black) nodes in
Figure 3.11 represent agents playing action 1(0).

Figure 3.11. Pure-strategy equilibria in Example 7
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a) Galeotti et al. (2010). For all i ∈ N , let Ii(g) = {ki(g), Pg(k)}, where Pg(k) is the probability degree
distribution. Suppose that, according Pg(k) each node has degree k = 1 with probability p1 and degree k = 2
with probability p2 = 1− p1, independently on the degree of other nodes.
Under strict strategic substitutes, the only equilibrium strategy is σ1 : σ1(ki) = 1, ∀ki = 1 and σ1(ki) = 0,
∀ki = 2. Clearly,

EUi

(
0,σ1, Ii(g)

)
= 1− pki(g)

1

which is greater than EUi

(
1,σ1, Ii(g)

)
= 1−c for ki(g) ≥ 2 and p21 < c < p1 and lower than 1−c for ki(g) = 1

and the same cost values. On the contrary, strategy σ2 : σ2(ki) = 0, ∀ki = 1 and σ2(ki) = 1, ∀ki = 2. is
not an equilibrium strategy: since the expected utility of playing zero is always greater for the degree-two
players than for the degree-one ones, for any cost value for which the second agents are best responding with
action 0, the former ones must be best-responding with this action as well. Then, σ1 is the unique equilibrium
strategy under strict strategic substitutes.30

b) Setting A. For all i ∈ N , Ii(g) = {ki(g), [Fg(1), Fg(2)] , n} =
{
ki(g),

[
2
3 ,

1
3

]
, 3
}
. Hence, Bs(g) = {g, g2},

Bm(g) = {g, g1} and Bi(g) = {g}, where g, g1 and g2 are depicted in Figure 3.2.
Since each i can infer the unique feasible geometry from Ii(g), both σ1 and σ2 in (a) are equilibrium strategies
for any cost value.
Suppose all players follow an asymmetric strategy σ3: σ3(ks) = 1 for ks and σ3(km) = σ3(ki) = 0. Agent
i knows that s ∈ Ni(g), and since EUi

(
0,σ3, Bi(g)

)
= 1, i is best responding with action 0. The opposite

occurs for s: when all agents play σ3, EUs

(
0,σ3, Bs(g)

)
= 0, and she is best responding with action 1.

Last, the probability that at least one neighbor of m plays 1 when all agents follow the strategy σ3 is
EUm

(
0,σ3, Bm(g)

)
= |{g1}|

bm(g)=
1
2 . Then, under srict strategic substitutes (c > 1

2 ), σ3 and σ4 are equilibrium
strategies, where σ4: σ4(km) = 1 for km and σ4(ks) = σ4(ki) = 0.

c) Complete information. Under Setting B, C and Z, all players have complete network information.
Each i is best responding with action 0 if she is linked to at least one neighbor playing 1, and with action 1
otherwise. Then, the only possible equilibrium strategies are σ1 and σ2. !

Example 7 illustrates how reducing players’ information does not necessarily solve the equilibrium selection
problem: although the shift from Setting Z to the information setting in Galeotti et al. (2010) eliminates any
ambiguity in behavior, the shift from Setting Z to Setting A does not. Notice that the set of equilibria under
our Setting A and the information setup in Galeotti et al. (2010) is markedly different even when the difference
between both setups is subtle (under our Setting A, players’ know the distribution of degree frequencies in
the network while in Galeotti et al. (2010) they know the probability degree distribution).

Example 8. Consider the networks in Figure 3.12. The three networks have the same degree distribution,
whereas only networks (b) and (c) have the same joint degree distribution.31 We analyse (i) whether players’
behavior may change depending on whether they have information about their second-order neighbors’ iden-
tities or not (Setting B vs. Setting C) and (ii) whether players with the same degree and neighbors’ degrees
may behave differently depending on the observed geometry of links in their local network (Setting C). To
that aim, the type of each i is jointly defined by her degree and her neighbors’ degrees under settings B and
C, (ki, kNi(g)), and we compare the symmetric equilibria that arise in different networks within and across
these settings.
Table 3.3 contains the symmetric equilibrium strategies in the networks of Figure 3.12 for the game of strategic
substitutes. The range of cost values for which each of these strategies constitutes an equilibrium in each
network is displayed in Figure 3.13. As can be seen in this figure, equilibria can be different within and across
setups, since the different information of players traduce in different beliefs about the network and in turn
in different equilibrium choices.

30Note that there is not equilibrium where all players play the same actions. If all agents play 1, EUi

(
0,σ, Ii(g)

)
= 1 > 1− c

for all i, so each player wants to deviate and play action 0. The same applies if all they play 0; since EUi

(
0,σ, Ii(g)

)
= 0 < 1− c,

each player wants to change her action to 1.
31Networks g=(N,E) and g′=(N ′, E′) with N=N ′ have the same joint degree distribution if (ki; kNi (g))= (k′i; k

′
Ni (g)

) ∀i ∈ N .
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Figure 3.12. Networks in Example 8.

Table 3.3. Symmetric equilibrium strategies in Example 8

Type of i ∈ N σ1(tx) σ2(tx) σ3(tx) σ4(tx) σ5(tx) σ6(tx) σ7(tx) σ8(tx) σ9(tx)

t1 =
(
2; (2, 2)

)
0 0 1 1 1 0 0 0 1

t2 =
(
2; (3, 2)

)
1 1 0 0 0 0 0 0 0

t3 =
(
2; (3, 3)

)
1 1 0 0 1 0 0 1 1

t4 =
(
3; (2, 2, 2)

)
0 0 1 1 0 1 1 0 0

t5 =
(
3; (3, 2, 2)

)
0 1 0 1 1 1 0 1 0

Figure 3.13. Symmetric equilibria in Example 8

!

Examples 7 and 8 provide a crucial message: although the framework of Galeotti et al. (2010) eliminates
the problem of multiplicity of equilibria in network games, their uniqueness and monotonicity results are
largely not robust to relaxing their information assumptions. As a result, their approach fails to refine the
set of predictions in many situations in which people still have local network information. Such situations
abound.
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The introduction of incomplete information as a way of solving the problem of multiplicity of equilibria
has faced a major critique: the equilibrium achieved depends on the way incomplete information is introduced
(Weinstein and Yildiz, 2007). While this critique applies generally to all incomplete information games, it
seems particularly relevant for those played on networks, given the variety of network aspects that players can
infer from the information they are given.32 Examples 7 and 8 illustrate that behavior is particularly sensitive
to subtle changes in players’ network information. This implies that, even when it is clear the network aspects
that are unknown for players in specific contexts (e.g. the degree of agents that are two-link separated from
them), fine differences in the information assumptions (e.g. assuming that players know the identity of their
second-order neighbors or not) can bias the results in a particular direction.

3.6. Concluding Remarks
Cognitive network research has showed how people form mental representations about their networks that

influence their behavior (e.g. Brewer, 2011 or Pittinsky and Carolan, 2008). Literature on network games has
primarily opted for a simplification of people’s network perception, setting aside players’ beliefs about finer
details of the network structure (e.g. Galeotti et al. 2010). The principal innovation of this chapter is the
modeling of richer cognitive maps of networks, and their placement in relation with sociological notions of
equivalence among nodes. Although these notions have broadly been studied by sociologists, they have not
been theoretically related, to the best of our knowledge, to network perception.

We identify a bias in people’s perception towards asymmetric network structures. If we order a set of
networks with the same degree distribution according to the size of their automorphism group, such an order
reflects a likelihood ranking of network geometries in people’s beliefs. An implication for the analysis of
network games under incomplete network information is that people’s choices are to a great extent shaped
by the features of more asymmetric structures, as these structures have a higher probabilistic weight in their
network beliefs. Network symmetry can also have an incidence in people’s welfare, as we have shown.

Our theoretical framework provides a way of capturing players’ beliefs about a variety of network fea-
tures that are absent in canonical models of network analysis (e.g. in random-graph models), which allows
to analyse their incidence on behavior in incomplete information contexts. Yet, it presents two major draw-
backs. First, since players’ infer a variety of network features from the information they are given, a subtle
variation in players’ network information can change completely the spectrum of equilibria. This requires
a deeper understanding of the network knowledge that people actually have in different contexts, and calls
for experimental research analysing this issue. Second, the great range of equilibria that emerge under each
information setup makes it hard to draw conclusions on the incidence that each specific feature has on beha-
vior. A prospective way to address this matter might be to impose some ceteris paribus restrictions on the
set of feasible geometries (similarly as in Espinosa et al. 2020) in such a way that players’ are only uncertain
about one specific network feature, while they have a founded knowledge of its probability distribution. We
leave this for future research.

32The interdependency between different network features implies that players’ information does not end in their information
set, but they may learn different network aspects from the network information they are given. Observe that such a learning
process may not occur in other Bayesian games.
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3.7. Appendix

A. Network Perception.
A1. The Orbit Stabilizer Theorem.

Orbit-Stabilizer Theorem. Let Stabv(g) = {g ∈ Aut(g) : f(v) = v} be the stabilizer of node v ∈ N :
the set of all automorphisms of g that map node v to itself. Then,

∣∣Aut(g)
∣∣ =

∣∣Ov(g)
∣∣ ∗

∣∣Stabv(g)
∣∣

A2. Proof of Lemma 2.

Proof of Lemma 2. Since neither the orbit nor the number of structurally equivalent nodes to any node
in g is higher than in g′, for each automorphism f : N → N exists there is an identical automorphism
f : N ′ → N ′. If ∃m ∈ N :

∣∣Om(g)
∣∣ >

∣∣Om(g′)
∣∣, then there exist at least one automorphism in g that does not

exist in g′. Thereby,
∣∣Aut(g)

∣∣ >
∣∣Aut(g′)

∣∣.
We still have to prove that if

∣∣Oi(g)
∣∣ =

∣∣Oi(g′)
∣∣ ∀i ∈ N, and ∃m ∈ N :

∣∣Sm(g)
∣∣ >

∣∣Sm(g′)
∣∣ ,

∣∣Aut(g)
∣∣ >∣∣Aut(g′)

∣∣. Suppose ∃m ∈ N : |Sm(g)| > |Sm(g′)|. Since Nm(g) \ {r} = Nr(g) \ {m} ∀r ∈ Sm(g) \ Sm(g′),
there exists an automorphism f : N → N between m and each r ∈ Sm(g) \ Sm(g′) such that:

f(w)

⎧
⎪⎨

⎪⎩

r if w = m

m if w = r

w otherwise

On the contrary, since r /∈ Sm(g′) it does not exist such an automorphism between m and r in network g′.
As a result,

∣∣Aut(g)
∣∣ >

∣∣Aut(g′)
∣∣. !
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B. Network Games
B1. Examples

Example 6. Let N = {i, j, l,m, r}, and ki = 2. The feasible positions of i are depicted in Figure A3.1. By
Lemma 1, y

(
g0 | {i}

)
= y

(
g2 | {i}

)
= 24, y

(
g1 | {i}

)
= y

(
g3 | {i}

)
= 12, b1i (g) = b2i (g) = 24 + 12 = 36, and

bi(g) = 72, so i assigns the same probability to both network geometries, b1i (g)
bi(g)

= b2i (g)
bi(g)

= 1
2 .

Figure A3.1. Feasible positions of an i with ki = 2 in Example 6

!!!!!!!!!!g0 ! ! ! !!!!!!!!!!!g1 ! ! ! ! !!g2 !! ! !! !!!!!!!!!g3 !

i i i

i

Agent i has at least one neighbor of type 1 or of type 3 if she occupy either her position in g0, g1 or in g2.
Therefore, EUi

(
0,σ1, Bi(g)

)
= y(g0|{i})+y(g1|{i})+y(g2|{i})

bi(g)
= 24+12+24

72 = 5
6 . Since she has at least one neighbor

of type 3 if she occupies either her position in g0, g1 or in g2, EUi

(
0,σ2, Bi(g)

)
= y(g0|{i})+y(g1|{i})+y(g2|{i})

bi(g)
=

24+12+24
72 = 5

6 . Analogously, EUi

(
0,σ3, Bi(g)

)
= y(g1|{i})

bi(g)
= 12

72 = 1
6 , given that i has at least one neighbor of

type 1 if she occupies her position in g1.

By Corollary 1, each i ∈ N assigns the same probability to each feasible network geometry, b1i (g)
bi(g)

= b2i (g)
bi(g)

= 1
2 .

Agent i with ki = 1 believes that her neighbor has degree 3 if network g has the geometry 2, and degree 2
otherwise. Hence, if ki = 1, EUi

(
0,σ1, Bi(g)

)
= EUi

(
0,σ2, Bi(g)

)
= 1

2 , and EUi

(
0,σ3, Bi(g)

)
= 0. Similarly,

an i with ki = 3 expects to have a neighbor of type 1 if network g has geometry 1; otherwise, all her
neighbors are expected to have degree-two. Hence, if ki = 3, EUi

(
0,σ1, Bi(g)

)
= EUi

(
0,σ3, , Bi(g)

)
= 1

2 , and
EUi

(
0,σ2, Bi(g)

)
= 0.

Table A3.1 shows the probability that i has a neighbor of each type as a function of ki(g). As can be seen
from this table, the probability that i has a neighbor of degree k varies with ki(g), but it does not vary
monotonously with ki(g).

Table A3.1 Probability that i has a neighbor of degree k

p[∃j ∈ Ni(g) : kj = k] k = 1 k = 2 k = 3

ki(g) = 1 0 1/2 1/2
ki(g) = 2 1/6 5/6 5/6
ki(g) = 3 1/2 1 0

!

Example 7.
A) Symmetric equilibria under Setting B.
Network (a). Network (a) is integrated by types 1, 2, 3 and 4. Hence, there is an equilibrium if all these
types are playing their best response to their neighbors’ actions.

When all agents play the strategy σ1, the expected utility of playing 0 of each type of i is the probability
that she has at least one neighbor that plays action 1, i.e. the probability that she has either a neighbor of
type 2 or a neighbor of type 3:

EUi(0,σ1, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (3, 2

)
∨ τj(g) =

(
2; (3, 3

)
}
∣∣

bi(g)
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Similarly,

EUi(0,σ2, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (3, 2

)
∨ τj(g) =

(
2; (3, 3

)
∨ τj(g) =

(
3; (3, 2, 2

)
}
∣∣

bi(g)

EUi(0,σ3, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (2, 2

)
∨ τj(g) =

(
3; (2, 2, 2

)∣∣
bi(g)

EUi(0,σ4, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (2, 2

)
∨ τj(g) =

(
3; (2, 2, 2

)
∨ τj(g) =

(
3; (3, 2, 2

)∣∣
bi(g)

EUi(0,σ5, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (2, 2

)
∨ τj(g) =

(
2; (3, 3

)
∨ τj(g) =

(
3; (3, 2, 2

)∣∣
bi(g)

Tables A3.2 and A3.3 provide the expected utility of playing 0 of each type of i ∈ N when all agents play
the same strategy: a strategy in {σ1,σ2,σ3,σ4,σ5}. From these tables, it can be checked that each of these
strategies is an equilibrium strategy for the range of cost specified in Table A3.4.
Note that players of types 1 and 2 must play different actions in equilibrium. If both types play 1(0), the
expected utility of playing 0 of a type-one player is 1(0), since each neighbor of her is either type 1 or type
2 with probability 1. Therefore, i is not best responding with action 1(0) but with action 0(1).
Similarly, there cannot exist an equilibrium in which type-two players and type-four players take both action
1: if type-two players play 1, best response of type-four players is playing 0, since type-four players have
a type-two neighbor with probability 1 (see Figure A3.5 in this Appendix). Analogously, there is not an
equilibrium such that type-three players and type-four players play both action 1 (type-four players have a
type-three neighbor with probability 1).
Note that there is neither an equilibrium in which types 3, 4 and 5 take action 0(1): if all these types play
0(1), the expected utility of playing 0 of each type-three player is 0(1), since each neighbor of her is either
type 4 or type 5 with probability 1. Hence, best response of each type-three player is not playing 0(1) but
playing 1(0).

Considering this, the only additional equilibrium strategies that could exist would be the followings:

σ9 : σ9(tx) = 0, for x ∈ {2, 4, 5} (types 2, 4 and 5), and σ9(tx) = 1 for x ∈ {1, 3} (types 1 and 3),
∀i ∈ N .

σ10 : σ10(tx) = 0, for x ∈ {1, 3, 4} and σ10(tx) = 1 for x ∈ {2, 5}, ∀i ∈ N .

σ11 : σ11(tx) = 0, for x ∈ {1, 3, 4} and σ11(tx) = 1 for x ∈ {1, 5}, ∀i ∈ N .

where,

EUi(0,σ9, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (2, 2

)
∧ τj(g) =

(
2; (3, 3

)
}
∣∣

bi(g)

EUi(0,σ10, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (3, 2

)
∧ τj(g) =

(
3; (3, 2, 2

)
}
∣∣

bi(g)

EUi(0,σ11, Bi(g)) =

∣∣{g ∈ Bi(g) : ∃j ∈ Ni(g) : τj(g) =
(
2; (2, 2

)
∧ τj(g) =

(
3; (3, 2, 2

)
}
∣∣

bi(g)

for all i ∈ N .

Table A3.5 shows EUi(0,σ9, Bi(g)), EUi(0,σ10, Bi(g)) and EUi(0,σ11, Bi(g)) for all i ∈ N . Observe that,
when all agents play the strategy σ9, type-one players are best responding with action 1 if 1 − c ≥ 0,529,
while type-two players are best responding with action 0 if 1 − c ≤ 0,5. Since both things cannot occur
simultaneously, strategy σ9 is not an equilibrium strategy. Analogously, when all agents play the strategy
σ10, type-two players are best responding with action 1 if 1 − c ≥ 0,916, while type-three players are best
responding with action 0 if 1− c ≤ 0,4. Hence, strategy σ10 is not an equilibrium strategy. The same happens
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for strategy σ10: in this case type-one players are best responding with action 1 if 1 − c ≥ 0,529, while
type-three players are best responding with action 0 if 1− c ≤ 0,4. Then, σ10 is not an equilibrium strategy.

Networks (b) and (c). Networks (b) and (c) are integrated by types 2, 3 and 4; there exist an equilibrium
if all these types are playing their best response to their neighbors’ actions.
As explained above, there cannot exist an equilibrium such that σ(t1) = σ(t2) = 1, for all i ∈ N . However,
since there are not type-one players neither in network (b) nor in network (c), strategies σ6, σ7 and σ8

are equilibrium strategies for certain values of c in both networks. Table A3.6 provides EUi(0,σ6, Bi(g)),
EUi(0,σ7, Bi(g)) and EUi(0,σ8, Bi(g)) for all i ∈ N . Table A3.7 provides the symmetric equilibria in pure
strategies that exist for each range of c.
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Figure A3.2. Feasible positions of an i of type
(
2; (2, 2)

)
under Setting B

Figure A3.3. Feasible positions of an i of type
(
2; (3, 2)

)
under Setting B
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Figure A3.4 Feasible positions of an i of type
(
2; (3, 3)

)
under Setting B

Figure A3.5 Feasible positions of an i of type
(
3; (2, 2, 2)

)
under Setting B

B) Symmetric equilibria under Setting C.
Network (a). Tables A3.8 and A3.9 show the expected utility of playing 0 of types 1 and 2 for each
equilibrium strategy. Under Setting C, type-three players observe that her two neighbors are not linked.
Thereby, they know that their neighbors are type 4. If all type-four players play 1, best response of type-
three players is playing 0 and viceversa. Consequently, the strategies σ10 and σ11 (defined in point A) are not
equilibrium strategies for any value of c.
Each type-four player can deduce the whole network from the information she is given. Hence, she can
deduce that two neighbors of her are type 2 and one neighbor of her is type 3. Then, a type-four player is
best responding with action 1 if neither type-two players nor type-three players play action 1, and with action
0 if either type-two players or type-three players (or both) play action 1.
Table A3.10 provides the symmetric equilibria in pure strategies that exist for each range of c. Note that
strategies σ6, σ7 and σ8 are not equilibrium strategies: as explained above, if all players of type 1 and 2 play
0, best response of a type-one player is not playing 0 but playing 1.
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Figure A3.6. Feasible positions of an i of type
(
2; (2, 2)

)
under Setting C

Figure A3.7. Feasible positions of an i of type
(
2; (3, 2)

)
under Setting C
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Network (b). Recall that network (b) is exclusively integrated by players of types 2, 3 and 4, and there
exist an equilibrium as long as these types are playing their best response to their neighbors’ actions.

Each type-two player observes that her degree-two neighbor is type 3. As a consequence, there is not any
symmetric equilibrium in which type-two players play action 1: if all players of type 2 play action 1, the
expected utility of playing 0 of each type-two player is 1, so this player is not best responding with action 1
but with action 1. Note that σ9 is not an equilibrium strategy in this network: since EUi(0,σ9, Bi(g)) = 0 for
each i with type 2, best response of i is playing action 1 and not action 0.

Figure A3.8 shows the feasible positions of each i of type 2, according to Bi(g). Considering these positions:

EUi(0,σ3, Bi(g)) = EUi(0,σ7, Bi(g)) =
y(g0 | {i, j, l,m})

bi(g) =
∑1

x=0 y(g0 | {i, j, l,m})
=

3

6
= 0,5

EUi(0,σ5, Bi(g)) = EUi(0,σ8, Bi(g)) =
y(g1 | {i, j, l,m})

bi(g) =
∑1

x=0 y(g0 | {i, j, l,m})
=

3

6
= 0,5

and EUi(0,σ4, Bi(g)) = EUi(0,σ6, Bi(g)) = 1, for each i of type 2.

Figure A3.8. Feasible positions of an i of type
(
2; (3, 2)

)
under Setting C.

As for network (a), players of type 3 and 4 deduce her neighbors’ types from Ii(g). Players of type 3 are best
responding with action 0(1) if players of type 4 play 1(0), while players of type 4 are best responding with
action 1(0) if neither players with type 2 nor players with type 3 take this action.

Table A3.11. Symmetric equilibria in network (b) under Setting C
Equilibrium strategies c

σ3 c ≥ 0,5
σ4 0 ≤ c ≤ 1
σ5 c ≥ 0,5
σ6 0 ≤ c ≤ 1
σ7 c ≥ 0,5
σ8 c ≥ 0,5

Network (c). As in the previous case, network (c) is exclusively integrated by players of types 2, 3 and 4;
if these types are playing their best response to their neighbors’ actions there exist an equilibrium.

Under Setting C, type-two players have identical beliefs about their neighbors’ types in network (c) as in
network (a), since the geometry created by their neighbors’ links is identical in both networks. Hence, the
expected utility of playing 0 of a type-two player when all agents play a strategy in {σ1,σ2,σ3,σ4,σ5,σ9} is
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given by Table A3.8 and Table A3.9. As in network (a), players of type 3 and type 4 deduce their neighbors’
types from Ii(g).

Table A3.12 lists the expected utility of playing 0 of each type-two player when all agents play either the
strategy σ6, σ7 or σ8. Tables A3.13 provides the symmetric equilibrium strategies in network (c) for each
range of cost under Setting C.

Table A3.12 in Example 7
Figure Feasible positions of i of type 2 EUi (0,σ6, Bi(g)) EUi (0,σ7, Bi(g)) EUi (0,σ8, Bi(g))

C3.2
y(gx | {i, j, l,m, r, o}) = 1

∑
x∈{0,5,6} y(gx|{i,j,l,m,r,o})

bi(g)=
∑6

x=0 y(gx|{i,j,l,m,r,o}) = 3
7

7−
∑

x∈{0,5,6} y(gx|{i,j,l,m,r,o})
bi(g)=

∑6
x=0 y(gx|{i,j,l,m,r,o}) = 4

7

for x ∈ {0, 1, 2, 3, 4, 5, 6} 1 = 0,428 = 0,571

Table A3.13. Symmetric equilibria in network (c) under Setting C
Network (c)

c

σ1 c ≤ 0,714
σ2 c ≤ 0,143
σ3 0 ≤ c ≤ 1
σ4 0 ≤ c ≤ 1
σ5 c ≥ 0,286
σ6 0 ≤ c ≤ 1
σ7 c ≥ 0,572
σ8 c ≥ 0,429
σ9 c ≥ 0,286

!

B2. Equilibrium welfare under Setting A
Lemma A. Let g = (N,E) and g′ = (N ′, E′) be two networks such that Dg(k) = Dg′(k), ∀k. Let σ be a

symmetric strategy under Setting A in g and in g′.

1. For the game of strategic substitutes,

θk(σ, g) = |{i ∈ N : σ(ki) = 0 ∧ σ(kj) = 1, for some j ∈ Ni(g), ki = k}|

2. For the game of strategic complements,

θk(σ, g) = |{i ∈ N : σ(ki) = 1 ∧ σ(kj) = 1, for some j ∈ Ni(g), ki = k}|

3. In both games, let θ(σ, g) =
∑n−1

k=1 θk(σ, g). If W (σ, g) < W (σ, g′), then θk(σ, g) < θk(σ, g′), for at least
one k ∈ {1, ..., n− 1}.

Proof. Since Dg(k) = Dg′(k) ∀k, when all integrants of g and all integrants of g′ play the strategy σ, the
number of agents who play action 1(0) is the same in g as in g′. This means that:

1. For the game of strategic substitutes,
∑

i∈N :σ(ki(g))=1

ui

(
1, xNi(g)

)
=

∑
i∈N ′:σ(ki(g′))=1

ui

(
1, xNi(g′)

)

2. For the game of strategic complements,
∑

i∈N :σ(ki(g))=0

ui

(
0, xNi(g′)

)
=

∑
i∈N ′:σ(ki(g′))=0

ui

(
0, xNi(g′)

)
= 0
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Hence, welfare in g can only be lower than in g′ if θ(σ, g) < θ(σ, g′). If θk(σ, g) ≥ θk(σ′, g) ∀k, then
θ(σ, g) ≥θ(σ, g′), and W (σ, g) ≥ W (σ, g′). Therefore, if W (σ, g) < W (σ, g′), θk(σ, g) must be strictly lo-
wer than θk(σ, g′) for at least one k ∈ {1, ..., n− 1}. !

Proof of Proposition 2.
1. Game of strategic substitutes.
Recall that Ωi(g) = {1, 2, ...,ωi(g)} is the set of feasible geometries, and this set is identical for all i ∈ N
under Setting A (see Section 4.1). Hence, Ωi(g) = Ω and ωi(g) = |Ωi(g)| = ω under Setting A. We assume
that gz ∈ Bz

i (g), ∀z ∈ Ωi(g) (i.e. g1 is a feasible network with geometry 1, g2 is a feasible geometry with
geometry 2, and so forth).

Step 1 . We first calculate EUi

(
0,σ∗, Bi(g)

)
.

Let Ki(gz) = {j, l, ...,m} be a maximal i-ed set in gz ∈ Bz
i (g). Each agent in Ki(gz) occupies a feasible

position of i under Setting A; given Ii(g) there exist a positive probability that i occupies the position that
each agent occupies in Ki(gz). Let K̄i(gz) ⊆ Ki(gz) be a subset of agents in Ki(gz):

K̄i(gz) = {j ∈ Ki(gz) : ∃q ∈ Nj(gz) : σ
∗(kq) = 1}

Agent i deduces that, if network g (the network she is embedded in) has geometry z, she has a neighbor that
plays action 1 if she occupies the position that an agent in K̄i(gz) occupies in gz. Assume K̄i(gz) = {j, l, ..., y}.
Applying Lemma 1 and the Orbit-Stabilizer Theorem, there exist y(gz | {j}) = (n−1)!

|Stab({j})| = (n−1)!|Oj(gz)|
|Aut(gz)|

distinct networks in Bi(g) in which i occupies the position that j occupies in gz, y(gz | {l}) = (n−1)!
|Stab({l})| =

(n−1)!|Ol(gz)|
|Aut(gz)| distinct networks in Bi(g) in which i occupies the position that l occupies in gz, and analogously

for all other agents in K̄i(gz) = {j, l, ..., y}. Hence, there are
∑

j∈K̄i(gz)

(n−1)!|Oj(gz)|
|Aut(gz)| (isomorphic) networks in

Bz
i (g) ⊆ Bi(g) in which i has a neighbor that plays action 1.

The expected utility of i of playing 0 when all agents play the symmetric strategy σ∗ is the probability
that at least one of her neighbors is a type that plays action 1, considering all feasible network geometries
Ωi(g) = {1, 2, ...,ω}:

EUi

(
0,σ∗, Bi(g)

)
=

∑

j∈K̄i(g1)

(n−1)!|Oj(g1)|
|Aut(g1)| +

∑

j∈K̄i(g2)

(n−1)!|Oj(g2)|
|Aut(g2)| + ...+

∑

j∈K̄i(gω)

(n−1)!|Oj(gω)|
|Aut(gω)|

bi(g)
(3.7.1)

When all agents play the stategy σ∗, θk(σ∗, g) is the total number of agents in g with degree k = ki that
play 0 and are linked to some agent that plays 1 (see Lemma A point 1 in the Appendix B2). Then, the right
side of (3.7.1) is equal to:

=
(n− 1)!

bi(g)

[
θk(σ∗, g1)

|Aut(g1)|
+

θk(σ∗, g2)

|Aut(g2)|
+ ...+

θk(σ∗, gω)

|Aut(gω)|

]
(3.7.2)

Note that bi(g) = b1i (g) + b2i (g) + ...+ bωi (g) =
(n−1)!Dg(ki)

|Aut(g1)| + (n−1)!Dg(ki)
|Aut(g2)| + ...+ (n−1)!Dg(ki)

|Aut(gω)| (see Proposition
1). Taking into account this and operating, (3.7.2) becomes:

α1θk(σ∗, g1) + α2θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
(3.7.3)

where αz = 1
|Aut(gz)| , ∀z ∈ Ω. In equilibrium, i plays action 0 if EUi

(
0,σ∗, Bi(g)

)
≥ 1 − c, that is, if (3.7.4)

holds:
1− α1θk(σ∗, g1) + α2θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
≤ c (3.7.4)

Step 2 . We show now that, when all agents play σ∗, network g is efficient if ρz

Dg(k)
> c.

Suppose network g has geometry 1, and there exist a network g2 (with geometry 2) with the same degree
sequence as g at which W (σ∗, g2) > W (σ∗, g). By Lemma A (in the Appendix B2), this can only occur if
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θk(σ∗, g2) > θk(σ∗, g) = θk(σ∗, g1) for at least one k ∈ {1, ..., n − 1}, say, k = ki. Imagine this is the case,
θk(σ∗, g1) = θk(σ∗, g2)− π, π > 0. Then the left part of (3,7,4) can be expressed as:

1− α1 (θk(σ∗, g2)− π) + α2θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
=

1− (α1 + α2)θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
+

πα1

Dg(ki) [α1 + α2 + ...+ αω]
(3.7.5)

Observe that α1
Dg(ki)[α1+α2+...+αω ] =

ρz

Dg(ki)
(see Corollary 1). If ρz

Dg(ki)
= ρz

Dg(k)
> c, EUi

(
0,σ∗, Bi(g)

)
< 1− c

for all i ∈ N , and no player is best responding with action 0. Hence, it cannot exist a symmetric equilibrium
at which welfare is greater in g2 than in g.

2. Game of strategic complements.
Reasoning is analogous for the game of strategic complements. In this case,

EUi

(
1,σ∗, Bi(g)

)
= −c+

α1θk(σ∗, g1) + α2θk(σ∗, g2) + ...+ αωθk(σ∗
w, g)

Dg(ki) [α1 + α2 + ...+ αω]

where θk(σ∗, gx) (x = 1, 2, ...,ω) is defined in Lemma A (point 2) in Appendix B2. Player i is best
responding with action 1 if EUi

(
1,σ∗, Bi(g)

)
≥ 0.

Suppose network g has geometry 1. Consider a network g2 with geometry 2 and the same degree sequence
as g. By Lemma A, W (g2, x∗N) > W (g, x∗N) = if θk(σ∗, g2) > θk(σ∗, g) = θk(σ∗, g1) for some k ∈ {1, ..., n− 1}.
Suppose this is the case, θk(σ∗, g1) = θk(σ∗, g2)− π, π > 0. Then,

EUi

(
1,σ∗, Bi(g)

)
= −c+

α1 (θk(σ∗, g2)− π) + α2θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]

= −c+
(α1 + α2)θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
− πα1

Dg(ki) [α1 + α2 + ...+ αω]

and i is best responding with action 1 if

(α1 + α2)θk(σ∗, g2) + ...+ αωθk(σ∗, gω)

Dg(ki) [α1 + α2 + ...+ αω]
− πα1

Dg(ki) [α1 + α2 + ...+ αω]
≥ c (3.7.6)

Note that the left side of (3.7.6) cannot be greater than 1 − ρz

Dg(ki)
= 1 − α1

Dg(ki)[α1+α2+...+αω ] . Then, if
ρz

Dg(ki)
> 1 − c, (3.7.6) does not hold, and no i is best responding with action 1. Hence, it does not exist a

symmetric equilibrium at which welfare is greater in network g2 than in network g. !
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