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A B S T R A C T

Sudden cardiac arrest (SCA) is one of the leading causes of death in the
industrialized world and it includes the sudden cessation of circulation
and consciousness, confirmed by the absence of pulse and breathing.
Cardiopulmonary resuscitation (CPR) is one of the key interventions for
patient survival after SCA, a life-saving procedure that combines chest
compressions and ventilations to maintain a minimal oxygenated blood
flow.

To deliver oxygen, an adequate blood flow must be generated, by
effective CPR, during the majority of the cardiac arrest time. Although
monitoring the quality of CPR performed by rescuers during cardiac
arrest has been a huge step forward in resuscitation science, in 2013, a
consensus statement from the American Heart Association prioritized
a new type of CPR quality monitoring focused on the physiological
response of the patient instead of how the rescuer is doing.

To that end, current resuscitation guidelines emphasize the use of
waveform capnography during CPR for patient monitoring. Among
several advantages such as ensure correct tube placement, one of
its most important roles is to monitor ventilation rate, helping to
avoid potentially harmful over-ventilation. In addition, waveform
capnography would enable monitoring CPR quality, early detection
of ROSC and determining patient prognosis. However, several studies
have reported the appearance of fast oscillations superimposed on the
capnogram, hereinafter CC-artifact, which may hinder a feasible use of
waveform capnography during CPR.

In addition to the possible lack of reliability, several factors need to
be taken into account when interpreting ETCO2 measurements. Chest
compressions and ventilation have opposing effects on ETCO2 levels.
Chest compressions increase CO2 concentration, delivering CO2 from
the tissues to the lungs, whilst ventilations remove CO2 from the
lungs, decreasing ETCO2. Thus, ventilation rate acts as a significant
confounding factor.
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This thesis analyzes the feasibility of waveform capnography as non-
invasive monitoring tool of the physiological response of the patient
to resuscitation efforts. A set of four intermediate goals was defined.
First, we analyzed the incidence and morphology of the CC-artifact
and assessed its negative influence in the detection of ventilations and
in ventilation rate and ETCO2 measurement. Second, several artifact
suppression techniques were used to improve ventilation detection
and to enhance capnography waveform. Third, we applied a novel
strategy to model the impact of ventilations and ventilation rate on
the exhaled CO2 measured in out-of-hospital cardiac arrest capnograms,
which could allow to measure the change in ETCO2 attributable to
chest compressions by removing the influence of concurrent ventilations.
Finally, we studied if the assessment of the ETCO2 trends during
chest compressions pauses could allow to detect return of spontaneous
circulation, a metric that could be useful as an adjunct to other decision
tools.
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1 I N T R O D U C T I O N

The human heart is a complex muscular organ that rhythmically pumps
blood through the blood vessels to provide an uninterrupted blood flow
throughout the body. It is divided into four different chambers: two
atria and two ventricles, the receiving and the discharging chambers,
respectively. The right atrium and ventricle, both together, pump blood
low in oxygen to the lungs where it receives oxygen and gives off
carbon dioxide. Meanwhile, oxygenated blood coming from the lungs
is pumped to the circulatory system by their left counterparts.

To ensure that the blood is pumped efficiently, the heart must contract
and relax in a precisely synchronous way. In a healthy heart, the normal
rhythmical heartbeat is established by a group of cardiac cells, known
as the sinoatrial (SA) node. There, an electrical impulse that travels
through an elaborate conduction system (Figure 1.1, left) is generated.
This electrical activity, recorded using skin electrodes placed on the
patient, is known as the electrocardiogram (ECG. Figure 1.1, right), and
its analysis provides useful information about the cardiac function.
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Figure 1.1. The electrical system of the heart (left) and an ECG segment of a
sinus rhythm heartbeat (right). Adapted from biologydictionary.net

The sequence of events in which the heart contracts and relaxes with
every heartbeat is known as the cardiac cycle. The SA node, acting as the
natural pacemaker, initiates an electric impulse that propagates through
the atrial muscle contracting the atria, which pump blood from the atria
to the ventricles (P-wave). To allow them to completely fill with blood,
the atrioventricular (AV) node collects and delays the electric impulse
(P-R segment). Then, it travels through the bundle of His, after which
it is divided into the right and left bundle branches, and further into
a highly conductive network called the Purkinje fibers. The impulse is
rapidly propagated through these conducting fibers producing a unified
contraction of the ventricles (QRS complex), pumping blood to the lungs
or the circulatory system. To conclude the cardiac cycle, ventricles return
to their relaxed state (T-wave) after a refractory period (S-T segment).

This sequence is continuously repeated producing an uninterrupted
blood flow and constitutes the normal functioning of the heart – normal
sinus rhythm or NSR –. Any rhythm different to the NSR in which the
cardiac cycle is too fast (tachycardia), too slow (bradycardia) or irregular
is known as an arrhythmia. Although most types of arrhythmias
are harmless, some may lead to severe complications such as heart
failure, stroke or even cardiac arrest. Life-threatening arrhythmias
impede efficient blood pumping and compromise proper lung and brain
functioning, which leads to a critical situation that requires immediate
intervention. All the efforts carried out to revert this situation and restore
spontaneous circulation are endorsed by the science of resuscitation.
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1.1 sudden cardiac arrest. the chain of
survival

Cardiac disease has been declared as one of the leading causes of death
of the industrialized world, comprising a 30% of the global mortality. It
is estimated that sudden cardiac arrest (SCA) is responsible for half of all
cardiac disease deaths.87,71 SCA is a life-threatening event defined as the
sudden cessation of circulation, breathing and consciousness resulting
from the failure of the heart to pump effectively.163 It usually results
from an electrical disturbance in the heart that suddenly disrupts the
mechanical activity of the heart, stopping blood flow to vital organs.95

The precise incidence of SCA is uncertain, reported annual deaths vary
between 150 000 and 535 000 depending on the inclusion criteria used in
each study.25,162 It is widely accepted an estimate of 275 000 victims per
year in Europe,8 and around 300 000 in the United States.76 Most SCAs,
around 80%, occur in an out-of-hospital setting,24,162 and at least two
thirds of them in patients without previous underlying heart disease.92

In addition, only a 60% of the out-of-hospital cardiac arrests (OHCA) are
treated by the emergency medical services (EMS),162 establishing SCA as
one of the leading public health problems in the world.

Reported outcomes vary depending on the geographic region, in general,
survival rate is dramatically low, around 10%, although it increases to
20% for some cardiac arrest etiologies.8,117 Availability of EMS personnel
and quality of the protocols are pivotal for a higher survival ratio. For
this reason, the probability of a successful resuscitation widely varies
between rural areas and certain cities, ranging from less than 2% to more
than 20%, respectively.13,40

In an effort to optimize cardiac arrest treatment guidelines with rec-
ommendations from organizations such as the European Resuscitation
Council (ERC), the American Heart Association (AHA) and resuscitation
councils from other parts of the world are published in 5-year cycles. To
allow a better cooperation between those regional resuscitation councils,
in 1992 the International Liaison Committee on Resuscitation (ILCOR)
was formed. Since then, international science and knowledge has been
identified and reviewed by committee members in order to achieve a
consensus on the science of resuscitation.
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The Chain of Survival

The ILCOR promotes the metaphor of the chain of survival (Figure 1.2),
a slogan first introduced in the 1980s and developed by the AHA in
the 1992 resuscitation guidelines.29 It refers to the series of actions that,
properly executed, connects the victim of OHCA with survival. The four
independent links are early access, early cardiopulmonary resuscitation
(CPR), early defibrillation, and early advanced care.

Figure 1.2. The chain of survival and its four independent links. Extracted from
learncpronline.net

• Early access: The first link involves the early recognition of the
symptoms and rapid activation of the EMS services, either by a
witness or by the person suffering from cardiac arrest.

• Early CPR: The second link refers to the first medical aid provided
by laypeople before EMS personnel arrives. It consists of chest
compression and ventilation cycles delivered to the patient to
maintain an artificial oxygenated blood flow to vital tissues.
Immediate CPR has shown to improve neurological outcome and
increase survival rates.61,153,160

• Early defibrillation: Defibrillation comprises the administration of
an electrical shock to the cardiac muscle in order to terminate
ventricular arrhythmias – i.e. shockable rhythms – and restore
spontaneous circulation.72 In out-of-hospital settings, it is normally
provided by automated external defibrillators (AED. Figure 1.3,
left). AEDs are easy-to-use portable devices that analyze the
victim’s ECG and determine whether an electrical shock is needed
or not.
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Both early CPR and early defibrillation are considered basic life
support (BLS) medical care and it is usually performed by trained
personnel, such as emergency medical technicians or qualified
bystanders.

• Early advanced care: The last link refers to the treatment provided
by qualified health care personnel, named as advanced life support
(ALS). On site SCA treatment by ALS personnel not only includes
CPR and defibrillation, but also intubation, drug administration
and advanced monitoring (Figure 1.3, right).142 The aim of these
interventions is to preserve a minimal brain and lung function,
which has shown to improve patient outcomes.99,142

Figure 1.3. Heartstart OnSite HS1 (Philips) AED (left) and Heartstart MRx
(Philips) monitor/defibrillator equipped with the defibrillation
pads and the CPR aid pad for chest compression feedback (right).

From these interventions, early CPR and early defibrillation are key for
a successful outcome of the patient. If bystander CPR is provided within
the first five minutes, probability of successful resuscitation declines
an average of 4% per minute.153 Whereas, if no CPR is provided, it
decreases a 7-10% for every minute that defibrillation is delayed.77,155

Thus, early CPR scenario increases survival between 2 to 3 times
compared to a scenario without early CPR, in which outcome is almost
fatal.63
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1.2 cardiopulmonary resuscitation

CPR is a life-saving procedure that combines external chest compres-
sions and ventilations in an effort to maintain a minimal oxygenated
blood flow.106 Its main purpose is to delay tissue death and preserve
some degree of cerebral perfusion, necessary to prevent brain death,
until advanced procedures are performed to restore spontaneous blood
circulation in victims suffering from cardiac arrest.

The mechanism by which external chest compressions generate blood
flow is still uncertain. Several hypothesis have been proposed, in all
of them the CPR technique generates a pressure gradient between
the arterial and venous vascular beds, oxygenating the blood and
maintaining a cardiac output to keep vital organs alive.55 In absence of
CPR the brain may sustain irreversible damage after blood flow has been
stopped for about seven minutes.153 Therefore, it is only effective when
performed within the first seven minutes of blood flow stoppage.155

Even if the maneuver is started on time, CPR by itself is unlikely to
restart the heart’s pumping function in the majority of cardiac arrest
victims. Administration of an electrical shock – defibrillation – is needed
in order to restore a perfusing heart rhythm. Although the physiological
process is not fully understood, the procured shock depolarizes a
critical mass of the myocardium, subduing the arrhythmia. Subsequently,
the body’s natural pacemaker is able to re-establish the coordinated
electrical activity of the heart.89

Resuscitation guidelines for BLS and ALS

Resuscitation guidelines describe how CPR and defibrillation should
be performed in both BLS and ALS settings. BLS comprises the wide
variety of non-invasive life-saving procedures that could be performed
to revert the life-threatening situation. BLS guidelines indicate that in
presence of an adult cardiac arrest, all rescuers should perform CPR
despite being trained or not.26,109 First responders should provide chest
compressions pressing down the center of the chest. Trained bystanders
should also perform mouth-to-mouth rescue breaths watching for the
chest to rise. CPR should be continuously performed until an AED
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is available, alternating cycles of 30 chest compressions with two
ventilations. Then, the AED should be attached to the patient and, if
needed, a defibrillation should be procured after rhythm analysis. This
process remains uninterrupted in two minute cycles, with intermediate
pauses for rhythm assessment, until professional help arrives and takes
over or the victim starts to move and breathe normally.

ALS guidelines indicate the procedures and interventions that would
require physicians themselves or physician’s orders to be delivered.
ALS personnel, skilled in laryngoscopy and intubation, should attempt
advanced airway placement while minimizing the interruption of chest
compressions.138 Maintaining airway integrity while providing proper
oxygenation to the brain is critical for a successful outcome. To that end,
a wide range of devices and techniques are available for ALS personnel
(Figure 1.4). Once the airway is placed, continuous chest compressions
and ventilations should be provided, pausing every 2 min for rhythm
assessment.

 

z 

a) b) c)

ADVANCED AIRWAY MANAGEMENT

Figure 1.4. Airway management devices. a) Bag-valve-mask (BVM).
b) Endotracheal tube (ETT). c) Supraglottic airway (SGA).

In ALS settings – hospitals or ALS ambulances – sophisticated devices
named monitor-defibrillators (Figure 1.3, right) are generally used by
professional healthcare providers. These devices are able to monitor
several biological signals such as the ECG, transthoracic impedance
(TTI), capnography (carbon dioxide (CO2) concentration), or pulse
oximetry (oxygen saturation). They can also measure CPR efforts
through CPR aid pads. In addition, this ALS equipment is able to deliver
external cardiac pacing and procure manual defibrillation. They are
generally used in manual mode, but most of them can also function
like AEDs. In manual mode, clinicians decide if an electrical shock
is required, using the analyzed rhythm and their medical knowledge,
every 2 min.
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1.3 cpr quality: a change in the paradigm

Oxygen delivery to vital tissues and organs is the main goal of
CPR during resuscitation. Thus, an adequate and sustained blood
flow must be generated, by effective CPR, during the majority of the
cardiac arrest time.86 Several animal studies have shown that return
of spontaneous circulation (ROSC) is highly dependent on adequate
myocardial blood flow and oxygen delivery during CPR.56,88,116

Coronary perfusion pressure (CPP) is the primary myocardial blood
flow determinant during CPR.107,127 Thus, maximizing CPP should be
the main physiological goal. However, CPP is not easily measurable
in the out-of-hospital setting. Therefore, rescuers should focus on CPR
performance metrics with enough clinical evidence that support its
improvement in patient hemodynamics or survival ratio.

Over time, five metrics of high-performance CPR have been identified
because of their contribution to blood flow and outcome.86 Understand-
ing the importance of these metrics and their relationships is essential
for providers to improve survival to hospital discharge.

• Minimize interruptions: CPR providers should minimize chest
compression interruptions to maintain adequate tissue oxygena-
tion and therefore maximizing the chest compression fraction
metric.14,150 Chest compression fraction is the proportion of time
that chest compression are performed during the total cardiac
arrest time, from cardiac arrest until first return of sustained
circulation. Expert consensus and data on OHCA indicate that
lower chest compression fraction values correlate with decreased
ROSC and lower survival ratio.23,152

• Chest compression rate: Guidelines for CPR have recommended a
chest compression rate above 100 compressions per minute (cpm)
since lower chest compression rates have shown a significant drop-
off in ROSC and outcome. However, there is clinical evidence
supporting that excessive rates may reduce coronary blood flow4

and worsen the percentage of compression that achieve the depth
target.90,141
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• Chest compression depth: Several studies suggested that a target
of ≥50 mm may improve defibrillation success and ROSC.12,36,74

In addition, a recent study concluded that a consistent depth
of <40 mm was associated with a decrease in ROSC and
survival rates.141 Thus, for every adult patient, a single minimum
compression depth of ≥50 mm is recommended. However, clinical
evidence suggests that, despite recommendations, rescuers often
do not compress the chest deeply enough. This could be associated
with factors such as compression rate, patient chest size or
environmental features.

• Full chest recoil: Incomplete chest release occurs when the rescuer
leans over the patient’s chest and does not allow the chest to
fully expand on completion of the decompression phase.10,161

It is known to decrease the blood flow throughout the heart
and can decrease venous return.164 Human studies have shown
that most healthcare providers often lean between consecutive
chest compression, not allowing a full chest recoil.43,97 Therefore,
leaning should be minimized.

• Ventilation rate: Providing oxygen to the blood without impeding
perfusion is the main goal of assisted ventilation during CPR.93

Guideline recommendations for ventilation rate depend on
whether an advanced airway is placed (8 to 10 ventilations
per minute (vpm)) or not (series of 30:2). However, excessive
ventilation, either by rate or tidal volume, is common in
resuscitation.3,11,104 Several animal studies reported mixed results
regarding the possible harm produced by high ventilation
rates,11,104,45 but there is no evidence that ventilating a patient at a
higher rate is beneficial.

In 2010, the ILCOR and other resuscitation councils updated their
resuscitation guidelines emphasizing the importance of high quality
CPR – proper depth and rate without excessive ventilations.30,94

Currently, optimal CPR technique for every adult patient comprises:
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• Providing chest compressions at a rate above 100 cpm, without
exceeding 120 cpm.

• Achieving a depth between 5 and 6 cm.

• Allowing a full chest release between compressions.

• Minimizing interruptions of chest compressions.

• BLS: Series of 30:2 compression-ventilation approach.
ALS: Continuous ventilations with simultaneous chest compres-
sions, if intubated, at a rate around 10 vpm.

Several studies reported that adequate rate, depth, chest recoil and
minimal interruptions improved the quality and effectiveness of
CPR.10,36,38,65 However, other studies have shown that providing too
fast chest compressions is very common, which in turn leads to shallow
compressions and frequent pauses between chest compressions due to
fatigue.42,90 In addition, excessive ventilation rates, as high as 30 vpm,
have been shown to be frequent during resuscitation.11 To alleviate this
problem, and based in reviewed studies reporting an improvement in
CPR quality, 2010 resuscitation guidelines encouraged the use of chest
compression feedback devices such as CPR aid pads during resuscitation
to be compliant with recommended rate and depth.30 Yet avoiding
hyperventilation with the use of mechanical ventilators, was the only
advice regarding such high ventilation rates.

Today, a large gap exists between current knowledge of CPR quality and
its optimal implementation. Monitoring the quality of CPR performed
by rescuers during cardiac arrest has been a huge step forward in
resuscitation science and clinical practice. However, resuscitation efforts
should be tailored to each patient. In 2013, a consensus statement from
the AHA prioritized a new type of CPR quality monitoring focused
on physiological metrics (how the patient is doing), instead of the
conventional CPR performance (how the rescuers are doing) metrics.86

Monitoring the patient’s physiological response to resuscitation efforts
requires invasive hemodynamic data (e.g. CPP) or non-invasive
surrogate markers of blood flow such as pulse or cerebral oximetry,
ultrasound or capnography.
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There is abundant clinical evidence to support that survival from cardiac
arrest is highly dependent on adequate myocardial oxygen and blood
flow delivery during CPR, which is directly related with CPP.55,88,107,125

Experts recommend that this physiological target should be the primary
end point. However, measurement of CPP is not a straightforward
practice in OHCA since it involves invasive procedures such as placing
arterial and central venous catheters.

Surrogate markers are based on physiological metrics associated with
blood flow and can be measured non-invasively. Oximetry measures
regional oxygen saturation (SpO2) using near-infrared spectroscopy
sensors placed in the skin (finger, earlobe or forehead). Ultrasound
imaging can be used to identify low cardiac output states. Finally,
capnography enables CO2 concentration measurement of the exhaled air.
CO2 concentrations during CPR are primarily dependent on pulmonary
blood flow and therefore indirectly reflect cardiac output.103,158 Low
CO2 concentrations during adult CPR reflects poor cardiac output and
strongly predicts unsuccessful resuscitation.19,78,124 Experts recommend
that, when available, exhaled CO2 concentration should be the primary
physiological metric when no arterial or venous catheter is present at
the time of cardiac arrest.

Current resuscitation guidelines (2015) include a new section on
monitoring during ALS treatment. There is an increased emphasis on
the use of waveform capnography during CPR for ventilation rate
guidance and patient monitoring. Ideally, CPR should be guided based
on the patient’s response since recommended CPR technique may not
be optimal for all individuals.143 Hence, the use of capnography during
resuscitation establishes a new milestone in CPR quality monitoring. It
could allow a change from an homogeneous CPR technique for every
adult in cardiac arrest to a more personalized cardiac treatment based
on the hemodynamic response of the patient during resuscitation.
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1.4 capnography during cpr

Capnography has become an essential component of standard
anesthesia monitoring since CO2 measuring and recording was first
introduced in 1943.69 Capnography represents a continuous non-
invasive measurement of the partial pressure of carbon dioxide (PCO2)
in the exhaled air. CO2 is produced in perfused tissues, diffused from
the cells into the blood and transported by the venous return to the
lungs where it is removed by ventilation.128 The CO2 concentration at
the end of the exhalation is known as end-tidal CO2 (ETCO2), and its
major determinants include CO2 production, cardiac output, pulmonary
blood flow and alveolar ventilation.151

The primary goal of anesthesiologists during anesthesia is to prevent
deprivation of adequate oxygen supply – hypoxia –. Improvements with
capnography in this field currently allow a rapid and reliable detection
of life-threatening conditions and to avoid potentially irreversible brain
damage. Because of these improvements and benefits for the patient, the
use of capnography has spread from the operating room into emergency
medicine environment. In fact, it is increasingly being used by EMS
personnel in the out-of-hospital environment to aid their assessment and
treatment of patients. Therefore, it could be a potential surrogate marker
of perfusion during cardiac arrest.

Evolution of CO2 feedback systems

Several methods have been used over the years to determine the
presence and concentration of CO2 in the field. The simplest form of
CO2 detection available is qualitative capnometry (Figure 1.5a). The
technology behind these devices is based on a paper filter that changes in
color in presence of CO2, from purple to yellow. It is fast, convenient, and
useful to verify correct tracheal intubation on scene, yet it may falsely
indicate correct tracheal placement in certain emergency situations
in which CO2 may be present in the esophagus.113 In addition, its
inability to accurately detect breath-to-breath changes hinders its use
for ventilation guidance.
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Figure 1.5. Evolution of capnometry in out-of-hospital emergency settings.
a) Qualitative capnometer, b) Semiquantitative capnometer, c)
Quantitative capnometer and d) Waveform capnography. Courtesy
of Ambu, Medtronic and Masimo.

Later, semiquantitative capnometers that provide a rough estimation
of the ETCO2 concentration were developed (Figure 1.5b). The device
consists of a clear dome overlying a piece of litmus paper that changes
in color as a result of chemical reactions in the presence of CO2.75

These devices report the ETCO2 value in a series of stacked colors
rather than providing a numerical value. A typical device would have
the ability to provide one of the following three readings: purple −
exhaled CO2 ≤ 0.5 mmHg; beige − exhaled CO2 of 0.5-2 mmHg; yellow
− exhaled CO2 > 2 mmHg.30,138,157

Semiquantitative devices are low cost, easy to use, and generally provide
reliable confirmation of tube placement. Studies have reported that all
erroneous – esophageal – intubations are correctly identified by the color
on the device remaining in purple. However, some correctly placed tubes
did not result in a color change, prompting paramedics to remove a
tracheally placed tube.83,124 Furthermore, these devices are limited by
their inability to provide reliable information in very low perfusion
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states such as prolonged cardiac arrests, and field care providers may
not find this system as useful as other methods for ventilation guidance.

More recently, quantitative capnometry, which involves infrared
absortion spectroscopy analysis of expired gases, has led to the most
accurate method to measure capnometry values (Figure 1.5c).124 This
technology provides a numerical end-tidal value of CO2 concentration
along with the ventilation rate, which allows an optimal control
of ventilation. In a similar way, continuous waveform capnography
represents an advance in CO2 monitoring that offers continuous
measurements and improved reliability (Figure 1.5d). It is already
available in many EMS systems and, in some regions, it is considered
a mandatory device for ALS systems.

Available gas sampling methods

Two different methods of gas sampling are used by quantitative
capnometry devices. The sensor unit may be placed in different locations,
depending on the method of sampling of exhaled gases, mainstream
or sidestream. These two techniques are illustrated in Figure 1.6. The
main difference between them is that in the former the sensor is directly
placed in the main flow of exhaled gases,75 while in the latter little
samples of the main flow are aspirated with a capillary sampling tube
in which the sensor is located.75,124

Sensor

Airway tube
to patient

Display
Electrical cord

Se
ns

or

Airway tube
to patient

Sampling tube

Detector

Infrared source

MAINSTREAM SIDESTREAM

Figure 1.6. Brief schemes of different sampling methods used with quantitative
capnometry devices, mainstream and sidestream.
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One of the advantages, as opposed to qualitative and semiquantitative
devices, is the threshold detection for exhaled CO2, which is significantly
lower for quantitative capnometry.100 Additionally, the CO2 tracing
– normal capnogram – produced from a properly placed tracheal
tube is characteristic and recognizable. The reliability of waveform
capnography during out-of-hospital treatment of cardiac arrest has been
verified in both animal and human studies.41,131 If the proper waveform
is present it confirms correct tube placement, even if the ETCO2 value is
below 10 mmHg.

Morphology of a normal capnogram

The evolution and morphology of CO2 concentration in the respiratory
cycle of a normal capnogram is depicted in Figure 1.7. Over the years,
there has been a considerable confusion in naming the various segments
of a capnogram. For instance, a wide variety of nomenclatures has been
used to describe each segment of the capnogram cycle, such us ABCDE
and phases I to IV.15 Bhavani-Shankar et al.16 described the terminology
shown in Figure 1.7 representing various segments and phases of a
capnogram based on logic, convention and tradition.

Figure 1.7. The normal capnogram. Capnography waveform representing
the variation of CO2 concentration during the respiratory cycle.
Segments and phases follow the nomenclature proposed by
Bhavani-Shankar K et. al.16
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The initial rapid decrease of CO2 concentration named as phase 0
represents the inspiration segment, where the lungs are filled with CO2-
free respiratory gases until a zero level is reached, defining the baseline
of the capnogram. The following phases represent the expiration
segment: during phase I, the CO2-free gas in the anatomical dead space
(between the alveoli and measurement device) is exhaled; in phase II a
mixture of gases from the anatomical dead space and the alveoli quickly
rises the level of CO2 concentration; finally in phase III, CO2 rich gases
coming from the alveoli slowly rise the CO2 concentration until a peak
level is reached, corresponding to the ETCO2 value.50

1.5 motivation

Respiratory assessment is of crucial importance since gas exchange is a
primordial function of the lungs and the conductive airways. Moreover,
the ability to safely and effectively manage the airway is among the
most fundamental and challenging aspects of out-of-hospital emergency
medical treatment.

For over five decades, capnography has been used as a ventilation
monitoring tool inside the operating rooms. Measurement of exhaled
CO2 is an established standard of care, and its main development has
been as a monitoring tool used by anesthesiologists and intensive care
personnel.6 However, it is increasingly being employed in the out-of-
hospital setting. In fact, in 2018, emergency medicine, either in-hospital
or out-of-hospital, became the main area of application (Figure 1.8).

Emergency Medicine

Pain Management

Procedural Sedation

Critical Care

Others

Source: www.grandviewresearch.com

Figure 1.8. Global capnography device market share by application in 2018.
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Capnography enables continuous real-time ETCO2 to be monitored in
the field. Besides prevention of unrecognized esophageal intubation,136

there is currently no evidence that the use of waveform capnography
during CPR results in improved patient outcome. However, new
potential uses of waveform capnography are emphasized in current
resuscitation guidelines,79,138 including monitoring of ventilation
rate7 and quality of chest compressions,33,114 early detection of
ROSC119,121 and determining patient prognosis.112,149,156 Nevertheless,
since capnometers were not designed for such a tough environment, are
these devices reliable enough during resuscitation efforts? This thesis
work expects to shed light to this question and some of the potential
uses of waveform capnography during CPR.





2 B A C KG R O U N D

The use of capnographs during resuscitation was initially proposed by
the ILCOR in 2010, and since 2015 it is becoming a standard of care in
advanced high-quality CPR.73,86,105 In patients with cardiac arrest, CPR
temporarily restores cardiac output. Several studies have shown that
adequate perfusion to vital organs is key during cardiac arrest.96,107,126

However, direct organ blood flow measurement during OHCA is not
clinically feasible. Capnography represents a non-invasive measurement
of the effectiveness of CPR in terms of generated blood flow.

Among the several advantages of waveform capnography emphasized in
current resuscitation guidelines such as ensure correct tube placement,
one of its most important roles is to monitor ventilation rate, helping
to avoid over-ventilation. Given that ventilations cause downstrokes and
upstrokes in waveform capnography, monitoring the capnogram allows
tracking respiratory cycles. In addition, waveform capnography would
enable monitoring quality of chest compressions during CPR, early
detection of ROSC and determining patient prognosis.79,128,138

19
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2.1 uses of capnography in resuscitation

Ensuring tracheal tube placement

Performing a rapid and successful tracheal intubation during resusci-
tation from cardiac arrest is of vital importance. However, given the
difficulties and complexity of securing the airway in the field, it is not
unexpected that unrecognized esophageal intubation may occur.59,136

Detection of CO2 in exhaled air, along with visualizing tracheal tube
placement through the vocal cords are the most specific methods for
confirming tracheal tube placement.79,80,138 While not ideal, correct
tracheal tube placement can be qualitatively confirmed using a
qualitative capnometry device.44 Upon correct placement, a color change
from purple to yellow will prompt. Whereas tube placement should be
verified to rule out esophageal intubation in the absence of color change.
Unfortunately, this devices showed low sensitivity and specificity,
limiting its utility in the out-of-hospital setting, and should be avoided
if waveform capnography is available.

With waveform capnography, obtaining the normal capnogram wave-
form (Figure 1.7) accurately confirms endotracheal tube placement.
Whereas a flattened capnogram is more indicative of an esophageal
intubation. Several studies containing a total of 440 OHCA patients who
underwent out-of-hospital airway management showed that waveform
capnography had a 100% specificity and a varying sensitivity between
57% to 100%.52,144,147,148 All esophageal intubations were properly
detected. However, CO2 concentration was not measurable in 52
properly positioned airways.147

In summary, the presence of a detectable waveform capnography
accurately confirms endotracheal tube placement, while its absence does
not completely rule out a successful intubation.128 Nevertheless, in case
of an unrecognized esophageal intubation, removing the airway seems
to be the reasonable strategy, since it is potentially fatal.
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Monitoring ventilation rate

Satisfactory levels of oxygen are only available during the first minutes
of cardiac arrest. However, as the resuscitation progresses, ventilation
becomes more important as oxygen is exhausted and CO2 levels begin
to rise.20,102,137 Thus, proper ventilation management in low blood flow
states like cardiac arrest turns a delicate balance between ensuring
adequate oxygenation and removal of CO2.

Current ALS resuscitation guidelines support the use of bag-valve-
mask and advanced airways to assist with oxygenation and ventilation
during OHCA. Before placement of any advanced airway, interrupted
ventilation cycles of 2 ventilations every 30 compressions is the
recommended ventilation strategy. Whereas after advanced airway
placement, guidelines recommend asynchronous ventilation with
continuous chest compression at a rate of 10 vpm.

Despite guidelines recommendations, excessive ventilation rates are
common in resuscitation. A majority of EMS personnel ventilate
at significant high rates during CPR, which may have clinical
importance.84,104,110 In a clinical observational study, Aufderheide et al.
reported ventilation rates of 30 vpm or more as a norm.9 Subsequent
clinical studies have also confirmed the tendency to ventilate with such
high rates.84,104 In addition, a porcine model revealed that animals
ventilated at 30 versus 12 vpm showed increased intrathoracic pressures
and decreased survival rates.11 However, another animal study by
Gazmuri et al.45 reported no adverse hemodynamic effects during CPR
after increasing ventilation rate and tidal volume over recommended
values, although they observed a decrease in ETCO2 values.

Although the association between hyperventilation and cardiac arrest
outcome needs to be better elucidated, current guidelines recommend
using waveform capnography feedback, as shown in Figure 2.1, to
monitor ventilation rate in order to provide high-quality ventilations
and prevent over-ventilation. Automated measurement of ventilation
rate and algorithms to detect over-ventilation using capnography
were first explored by Edelson et al.37 in 2010 as an alternative to
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algorithms based on the detection of slow fluctuations in the TTI
signal.5,49,120 Authors stated that visual inspection of the capnogram
allows tracking respiratory cycles, since the onset of each ventilation
causes a downstroke in the waveform capnography.

Figure 2.1. Capnogram segment acquired during cardiac arrest. High-quality
ventilations are provided to the patient at a consistent rate of 11
ventilations per minute. Feedback is shown in the right side of
the figure. Adapted from the Australian Resuscitation Council ALS
guidelines.

Monitoring quality of chest compressions

In patients with cardiac arrest, chest compressions temporarily restore
cardiac output. Both experimental and clinical studies have reported
that survival from cardiac arrest depends on provision of adequate
blood flow to vital organs.96,107,126 However, direct organ blood flow
measurements is not feasible in out-of-hospital settings.

Studies, both animal33,66 and human17,114,135, have shown an excellent
correlation between ETCO2 and cardiac output during states of low
flow and during CPR, if chest compression rate and ventilation rate
are relatively constant.17,44 Therefore, interpretation of ETCO2 in the
field must always take into account that constant controlled chest
compressions and ventilations may be difficult or impossible, as this
could affect the correlation between ETCO2 and cardiac output.68,135

Several researchers have suggested that the close correlation between
cardiac output and ETCO2 might be used to monitor the effectiveness
of CPR in real time.17,44,54 However, to date, few studies have supported
whether this can be used to guide care or improve outcome. Hamrick
et al.57 stated that ETCO2 values are associated with compression depth
and ventilation rate and that a greater depth will increase ETCO2. Later,
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in a multicenter observational study including both in-hospital and
out-of-hospital cardiac arrests, Sheak et al.134 showed that for every
10 mm increase in depth, ETCO2 increased by 1.4 mmHg. However, in a
larger prospective study conducted by Murphy et al.91 the same 10 mm
increase was associated with a 4.0% increase in ETCO2. In addition,
a 10 cpm increase in chest compression rate and a 10 vpm increase in
ventilation rate was associated with a 1.7% increase and a 17.4% decrease
in ETCO2, respectively.

In summary, waveform capnography could perform as a non-invasive
measurement of the effectiveness of CPR in terms of generated blood
flow. Although the first use of capnography during CPR appears to
have come in 1978,70 resuscitation guidelines did not specify any
method or strategy to assess the effectiveness of chest compressions until
recently. In 2013, a consensus document from the AHA recommended
capnography as the primary physiological metric during CPR and
suggested a CPR performance target of ETCO2 > 20 mmHg, while
values of ETCO2 < 10-15 mmHg are considered suboptimal.86 On
the contrary, ERC guidelines on ALS suggest the use of waveform
capnography to asses quality of CPR but do not provide a specific
ETCO2 target during resuscitation.138 In any case, if ETCO2 is low or
diminishes over time as depicted in Figure 2.2, either chest compression
technique should be improved or a different EMS provider should
perform chest compressions.

Figure 2.2. Capnogram segment acquired during ongoing chest compressions.
ETCO2 decreases over time with a constant ventilation rate. Chest
compression technique or rescuer should be changed. Adapted
from the Australian Resuscitation Council ALS guidelines.
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Identifying ROSC during CPR

Survival chances of a victim of cardiac arrest highly depend on provision
of oxygenated blood flow. Hence, providing an uninterrupted high
quality CPR treatment to the patient is critical. In fact, several studies
have reported that shorter duration of chest compression interruption –
larger chest compression fraction – is associated with greater likelihood
of ROSC,133 survival to hospital discharge22 and improved outcomes.152

Whereas any kind of CPR interruption is potentially detrimental.

Current ALS resuscitation guidelines indicate that to avoid unnecessary
CPR interruptions, pulse check in search of ROSC should only be made
in two circumstances. When the ECG shows a pulsatile rhythm during
rhythm assessment, or when the victim shows spontaneous breathing
or movements.79,138 Thus, to avoid useless and potentially harmful CPR
interruptions, an objective and continuous measurement of ROSC would
be preferable.

Carbon dioxide concentration is strongly connected with cardiac output
and blood flow through venous return. A return of a perfusing rhythm
will increase cardiac output, which will in turn allow for accumulated
peripherial CO2 to reach the lungs, subsequently causing a rapid rise in
ETCO2.111,137 Thus, an abrupt increase in the CO2 concentration could be
an early indicator of ROSC and predict resuscitation success.35,18,82,132,134

It is important to note that, when evaluating for ROSC, the absolute
ETCO2 values are less important that the change between pre-ROSC to
post-ROSC values.

In a pilot study from Pokorna et al.111 ROSC was associated with a
sudden and sustained increase of ETCO2 ≥ 10 mmHg. With this in
mind, and due to the lack of relevant evidence to support a specific
target, the latest resuscitation guidelines suggested using an increase in
ETCO2 to detect ROSC during CPR, without providing an exact value.
Later, in a paper published by Lui et al.82 the diagnostic accuracy of an
ETCO2 sustained (3 min) increase greater than 10 mmHg was evaluated
to predict ROSC. The authors included a total of 178 adult patients
with non-traumatic OHCA, from which 34% of them had ROSC. Results
showed that the post-ROSC median ETCO2 value was 9 mmHg higher
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that the median pre-ROSC value, a very similar value to the 10 mmHg
difference reported by Pokorna et al.

Reported sensitivity for predicting ROSC of the 10 mmHg threshold was
33% with an specificity of 97%. However, despite the low sensitivity
value, results of the study were promising. Reported specificity value
was higher than the value reported by Pokorna et al., and when using
a tool to take a potentially harmful decision like stopping CPR, a
high specificity is extremely important in order to limit inadvertent
interruptions.

In conclusion, providers should look for a jump of at least 10 mmHg
on capnometry (Figure 2.3). However, an abrupt rise in ETCO2 is a non-
sensitive marker for ROSC, meaning that the lack of an abrupt rise of
ETCO2 does not necessarily mean absence of ROSC.129

Figure 2.3. Capnogram segment showing a sudden increase in ETCO2 as a
result of the return of spontaneous circulation. Adapted from the
Australian Resuscitation Council ALS guidelines.

Prognosis during CPR

Since ETCO2 indirectly reflects organ perfusion during CPR, it may
not only represent a target for resuscitation effectiveness, but it also
may help guide clinicians in assessing whether continued resuscitation
in cardiac arrest is futile or not.112,149,156 Values < 10 mmHg after 20
minutes of ongoing resuscitation have been associated with minimal
chances of survival.78 This was confirmed in a study by Kolar et al.
where non of the patients presenting < 10 mmHg at any time survived.
In addition, a target of > 10 mmHg has been used as a criterion
for considering extracorporeal life support in patients with refractory
cardiac arrest,139 although two recent studies did not find any evidence
supporting the use of ETCO2 in this context.32,34
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Other prognostic indication of ETCO2 may be prediction of successful
defibrillation. A recent study including 62 OHCA episodes showed
that non of the patients presenting ETCO2 values < 7 mmHg before
shock had successful defibrillation. Whereas patients whose ETCO2

value was > 45 mmHg had a 100% chance of successful defibrillation.130

Nevertheless, this preliminary data needs further confirmation from
other studies.

Unfortunately, large differences in etiology and influence of cause of
cardiac arrest, lack of controlled ventilation during CPR, inconsistent
or undefined timings of ETCO2 measurements, and the need for an
advanced airway to reliably measure ETCO2 limits the confidence in the
use of capnometry for prognostication. Additional studies are needed to
better identify the optimal measurement of ETCO2 and timing targets.
Thus, resuscitation guidelines do not recommend using ETCO2 as the
only factor in the determination to stop CPR efforts.

To conclude, ETCO2 presents a decreasing trend in patients in whom
resuscitation is unsuccessful, while there is an increase tendency in those
who survive, indicating a progressive improvement in tissue perfusion
and venous return.52,78 Hence, ETCO2 variations could be more suitable
than punctual measurements to predict ROSC and subsequent survival,
although evidence on this field is still scarce.18

2.2 capnogram waveform during cpr: the
phenomenon of chest compression
artifact

To ensure a reliable analysis, either visual or automated, and to
enable emphasized advantages during resuscitation, quality of the
recorded capnogram waveform is essential. All phases of the capnogram
(Figure 1.7) must be clearly identifiable in the capnogram during CPR.
However, non-distorted capnograms (Figure 2.4, left), in which all
different phases of the respiratory cycle (inspiratory downstroke and
baseline, expiratory upstroke and alveolar plateau, where the ETCO2

is measured) are identifiable cannot always be observed during CPR.
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Among others, some artifact sources include issues related with the
capnography device (such as CO2 circuit occlusion or leaking) as well
as ongoing resuscitation efforts like provided chest compressions and
patient movement during transportation.62,145

Figure 2.4. Waveform capnography signal segment during ongoing chest
compressions.

Several studies have reported the appearance of fast oscillations
synchronized with chest compressions (Figure 2.4, right), at different
rates and with varying amplitude, superimposed on the capnogram;
often completely obscuring the normal tracing.31,115,154 Nevertheless,
this phenomenon has received little attention in the literature and it was
not systematically addressed until 2010 in an abstract of a preliminary
study presented at the AHA Resuscitation Science Symposium.64

Authors reported the presence of, what they called, chest compression
oscillations, in more than 70% of the capnograms in a cohort of 210
OHCA episodes. Since then, only a few studies aimed to explain the
origin of the chest compression oscillations have been published.

Origin of induced chest compression oscillations

The mechanism by which external chest compression induce chest
compression oscillation on the capnogram is still not clear. There are
a few hypothesis that have been proposed. Deakin et al.31 suggested
that, during compression-only CPR delivered by the LUCAS, external
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chest decompression – chest recoil –, which generates a negative
intrathoracic pressure, allows air to enter through an open airway, and
thus ventilation may occur passively as shown in Figure 2.5.

Figure 2.5. Waveform capnography and tidal volume signals recorded during
resuscitation, showing manual (A) and passive (B) ventilations
generated by chest compressions with volumes around 700 and
60 ml, respectively. Corresponding induced chest compression
oscillations are also shown. Extracted from Deakin et al.31

In a similar way, Idris et al.64 proposed that, during active chest
compression and decompression phases, oscillations could be caused
by gas moving in and out of the airway and passing in front of the CO2

sensor.

This phenomenon of passive ventilations has been scarcely reported in
the literature. Deakin et al.30 found that the median tidal volume of
these passive ventilation was 41.5 ml, ranging between 33.0 and 62.1 ml.
In a subsequent study, Vanwulpen et al.154 quantified the inspiratory
volumes generated by manual chest compressions in the out-of-hospital
setting. Their results were in line with the study by Deakin et el.,
although the found a wider range of inspiratory volumes, between 4
and 62 ml. In a recent human study of patients with prolonged CPR,
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McDannold et al.85 reported that passively generated median tidal
volume was 7.5 ml. They did observe tidal volumes above 40 ml but
most (80%) measured volumes were below 20 ml. Authors concluded
that generated tidal volumes were far less than average anatomical dead
space, impeding effective alveolar ventilation.

Although these volumes are considerably less than the typical
anatomical dead space of an adult patient (≈150 ml), they seem to be
enough to induce a distortion on the capnogram, hereinafter CC-artifact,
as it can be seen in the top panel of Figure 2.5. However, little is known
about the potential factors influencing the appearance of the CC-artifact.
Indeed, Idris et al.64 reported that oscillations appeared in 70% of the
episodes, not in all of them. This suggests that factors like airway type,
rescuer’s chest compression technique, capnography technology or even
patient condition could have a role in CC-artifact generation.

In a recent study published by Cordioli et al.28, authors describe a
phenomenon associated with lung volume reduction called intrathoracic
airway closure, which impedes chest compressions to generate passive
ventilations and, overall, limits effective alveolar ventilation. This
phenomenon represents the physiological lack of communication
between the intrathoracic compartment and the airway opening.51 The
presence of airway closure during CPR impedes the transmission of
generated inspiratory flow despite the significant negative pressure
produced by chest decompressions.21 Hence, no passive tidal volumes
can be produced and the appearance of CC-artifact is virtually null.
Nevertheless, despite the huge clinical relevance of their findings,
additional studies on the topic are required in order to assess the relative
contribution of airway closure in the generation of CC-artifact.118

In summary, provided chest compressions generate tidal volumes, that,
despite being way smaller than anatomical dead space, they are able to
induce CC-artifact oscillations in the capnogram. Recent studies have
reported that the appearance of the CC-artifact could be limited by
intrathoracic airway closure, which hinders expiratory tidal volumes
to be transmitted to the airway opening and impedes correct alveolar
ventilation.
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Possible adverse effects of CC-artifact on ventilation feedback

One of the main hypothesis of this work, never before explored in
the literature, was that CC-artifact could negatively affect waveform
capnography feedback in three aspects: causing errors in the automated
detection of ventilations and consequently in the estimation of
ventilation rate, impeding a reliable measurement of ETCO2 values, and
limiting CPR providers’ clinical decisions since distorted capnogram are
difficult to interpret.

In line with this hypothesis, in a brief letter to the editor, Raimondi
et al.115 described a mismatch between capnometry feedback values
(ventilation rate and ETCO2) and the values that could be visually
inferred from the capnogram waveform. Figure 2.6 shows two examples
of capnogram segments obtained from a waveform capnography device
during manual and mechanical CPR in which differences in provided
feedback can be observed.

Authors concluded that displayed ventilation rate and ETCO2 were,
respectively, over- and underestimated and continuously changed in the
presence of CC-artifact. They suggested looking at the curves instead of
the values for proper clinical interpretation. However, there is still room
for further research since heavily distorted capnograms could lead to a
lack of confidence in the interpretation of the signal.

2.3 factors complicating the clinical
interpretation of etco2

In addition to the possible lack of reliability of capnography in presence
of CC-artifact, several factors need to be taken into account when
interpreting ETCO2 measurements during cardiac arrest. First, chest
compressions and ventilation have opposing effects on ETCO2 levels.
While chest compressions increase CO2 concentration proportionally
to generated blood flow, delivering CO2 from the tissues to the
lungs, ventilations remove CO2 from the lungs, decreasing ETCO2 as
ventilation rate or tidal volume increases.27
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Figure 2.6. Mainstream capnography during manual (top) and mechanical
(bottom) CPR performed to the same patient. Extracted from
Raimondi et al.115

In an animal model of cardiac arrest Gazmuri et al.45 demonstrated that
increasing either respiratory rate (from 10 to 33 vpm) or tidal volume
(from 6 to 18 ml kg−1) during CPR had similar effects on ETCO2, which
decreased from 43 to 20 mmHg (Figure 2.7). In addition, when both were
increased, ETCO2 decreased to 14 mmHg but in a lower extent, showing
that ETCO2 exponentially decreases when either rate or tidal volume
increases.
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Figure 2.7. ETCO2 plotted as a function of the ventilation minute-volume
delivered during CPR. RR = Respiratory rate; TV = Tidal volume.
Adapted from Gazmuri et al.45

Second, in patients with an asphyxial cause of arrest, initial ETCO2

levels may be higher than in cardiac causes. During a respiratory arrest,
cardiac output remains stable for a short period of time before cardiac
standstill. Meanwhile, the CO2 produced in the tissues will continue to
be delivered to the lungs, increasing CO2 concentration.53,60 This means
that, in the absence of respiration, CO2 will stay in the lungs and, as
remaining oxygen is being utilized, more CO2 will be delivered.

Finally, both ETCO2 values and its clinical significance may vary during
resuscitation depending on the several drugs provided to the patient.
Several studies have shown that right after administration of adrenaline
an increase in coronary an cerebral perfusion pressure is produced,
in parallel with a rapid decrease of ETCO2 values.58,146 Conversely,
administration of sodium bicarbonate momentaneously raises ETCO2

values by a mean increase of 6.4 ± 0.5 mmHg.101



3 O B J E C T I V E S

Nowadays, waveform capnography is considered a standard of care
in advanced CPR. Quality of the recorded capnogram is essential for
reliable monitoring of ventilation quality and patient’s hemodynamic
response. By the time this thesis work started, the phenomenon of
high-frequency oscillations superimposed on capnogram waveform
during CPR had received little attention in the literature, only a few
communications had alerted that accuracy of clinical values derived
from waveform capnography in the presence of chest compressions
could be called into question.

One of the main hypothesis of this thesis was that the presence
of CC-artifact in the capnogram during resuscitation interventions
could severely affect ventilation monitoring as well as accurate
measurement of ETCO2, therefore compromising the reliability of
waveform capnography in resuscitation. In addition, at the beginning of
this thesis work, capnography was the standard of care to ensure correct
airway placement and to prevent over-ventilation. However, there was a
large gap of knowledge addressing other potential roles of waveform
capnography that were highlighted in the resuscitation guidelines in
force.

33
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In this context, the main objective of this thesis work was to analyze
the feasibility of waveform capnography as a reliable non-invasive
indicator of CPR quality and ROSC during out-of-hospital cardiac
arrest. In order to accomplish this objective, a set of intermediate goals
was defined.

1. To analyze and quantify the impact of CC-artifact on a capnogram-
based monitoring system during CPR. Although capnographs were
initially designed for patient monitoring during in-hospital
medical interventions, its use has spread out to out-of-hospital
emergency medicine. This could lead to device malfunctioning
during resuscitation since capnograph manufacturers may have
not taken into account such tough environment. In particular, the
following tasks were defined:

• To address the incidence and morphology of CC-artifact on
resuscitation capnograms. (A1, C1, C2, BC1)a

• To quantify the influence of CC-artifact on the automated
detection of ventilations and therefore on the accuracy of
ventilation rate feedback. (A1, C1, C2, BC1)

• To address the impact of CC-artifact on the reliability of
ETCO2 measurements. (A2, C3)

2. To design signal processing techniques to remove CC-artifact from
the capnogram to improve ventilation rate feedback and to enhance
capnogram clinical interpretation. Under the assumption that CC-
artifact would negatively affect capnogram reliability, this work
sought to suppress or mitigate its effects. Here two main
approaches were studied:

• To design filtering techniques to suppress the CC-artifact from
the capnogram and to evaluate their goodness through the
improvement on ventilation detection. (A3, C4, C5, BC1)

a Related publications. A: Article, C: Conference, BC: Book Chapter
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• To develop a novel technique to enhance the capnogram
waveform in the presence of CC-artifact in order to improve
its clinical usefulness. (A4, C6, C7, BC1)

3. To characterize the influence of ventilations on ETCO2 measurement.
Chest compressions and ventilations during CPR have opposing
effects on the exhaled carbon dioxide CO2 concentration, which
need to be better characterized. The aim was to obtain a model
for explaining the variation of exhaled CO2 concentration with
ventilations. This could allow for explaining the effect of chest
compressions on ETCO2 once the influence of ventilations is
compensated. (A5, C8)

4. To develop novel strategies to identify ROSC using the capnogram as the
reference. Accurate ROSC detection using waveform capnography
during CPR still remains a challenge. Existing methods are based
on the detection of a sudden increase in the ETCO2 level. The aim
was to derive a new metric that could allow for accurate detection
of ROSC using the ETCO2 values of consecutive ventilations. (A6)

The accomplishment of these objectives would contribute ultimately to
improve the quality of CPR during cardiac arrest. Methods resulting
from the first and second objectives could be integrated into commercial
capnographs, improving measurement of ventilation rate and ETCO2.
Results from the third objective could help to understand the role of
ETCO2 in monitoring chest compression quality. Finally, results from
the fourth objective would provide knowledge about the significance of
ETCO2 as an adjunct to detect ROSC.





4 M AT E R I A L S A N D
M E T H O D S

This chapter presents an overview of the materials and methods used
in the development of this thesis work. The chapter is organized in
two sections. The first one introduces the OHCA databases used as
the data source for all the studies. The second section provides an
overview of the annotation process and of the methodology followed
to address each objective. Study results are presented in chapter 5,
while the main conclusions of the thesis are described in chapter 6.
Finally, the Appendix A compiles all the related publications for further
information.

4.1 ohca databases

All studies in this thesis work were retrospective. OHCA episodes
were obtained from two prospective collections. The first database
was collected by Tualatin Valley Fire & Rescue (TVF&R), an ALS
first response EMS agency serving eleven incorporated cities in
Oregon (USA). The second database was collected by an ALS agency
of Emergentziak-Osakidetza (E-O), located in Artaza (Leioa, Spain),
serving eight municipalities.

37



38

TVF&R database

Since April 2006, TVF&R has recorded data during resuscitation
efforts for cardiac arrest victims. Until December 2017 these agencies
have participated in the Resuscitation Outcomes Consortium (ROC)
Epidemiological Cardiac Arrest Registry, an effort that has included
careful association of clinical data with the technical data obtained
during resuscitation. Episodes were recorded using Heartstart MRx
(Philips, USA) monitor-defibrillators equipped with real-time CPR
feedback technology (Q-CPR) and MicrostreamTM (Oridion, Israel)
sidestream capnography technology. Access to the database was
achieved thanks to a collaboration between the GSCa research group
and OHSU.

In the early years, CPR followed the 30:2 compression-ventilation ap-
proach. Later, following the High-Quality CPR recommendations made
by the AHA in 2012 the approach was changed to manual continuous
chest compressions without pauses for ventilation. Ventilations were also
manually provided using a bag-valve-mask or an advanced airway. The
choices for the latter were ETT or the King LT-D SGA. The data collection
for the ROC Epistry was approved by the Oregon Health & Science
University (OHSU) Institutional Review Board (IRB00001736).

E-O database

Since June 2018, Emergentziak-Osakidetza has made an effort to
consistently develop a new OHCA database including a careful
association between clinical and monitor-defibrillator data. Episodes
were recorded using Reanibex 500 EMS (Bexen Cardio, Spain) monitor-
defibrillators equipped with a proprietary real-time CPR feedback
technology known as Push-Pad and Masimo ISATM CO2 (Masimo,
Sweden) sidestream capnography technology. This data collection was
possible thanks to the collaboration between Emergentziak-Osakidetza
and the GSC research group.

a The Signal and Communications Group (GSC by its Spanish acronym) is the research
group in which this thesis work has been developed.
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For every cardiac arrest episode, alternating series of 30 chest
compressions with two ventilations were provided until an ETT airway
was placed. Then, continuous chest compressions were manually
provided following the ERC guidelines. Ventilations were also manually
provided. The data collection for this project was approved by the
Ethical Committee of Research with Medicines of the Basque Countryb

(PI2018003).

Available signals and clinical information

For each OHCA episode, data were provided anonymous and
contained no personal information, but Utstein style sheets with
clinical information of the patient such as age, gender, initial rhythm,
airway type, ROSC (yes/no), disposition and neurological outcome were
available for every episode. In addition, defibrillators acquired and
stored the following concurrent signals (Figure 4.1):

• ECG signal. Obtained from the defibrillation pads, or from limb
or precordial leads. Sampling rate of 250 Hz (TVF&R) or 100 Hz
(E-O).

• TTI signal. Measured by injecting a sinusoidal current through the
defibrillation pads. Sampling rate of 200 Hz (TVF&R) or 100 Hz
(E-O).

• Force signal. Acquired through the pressure sensor in the Q-CPR
feedback pad at a sampling rate of 100 Hz. Only available for
TVF&R episodes.

• Acceleration signal. Obtained by the accelerometer inside the CPR
feedback pads. Sampling rate of 100 Hz (TVF&R) or 35 Hz (E-O).

• Compression depth signal. Calculated from the acceleration signal
using two different algorithms: for TVF&R the algorithm described
in Aase and Myklebust2 which also needs the force signal; for

b Comité de Ética de la Investigación con medicamentos de Euskadi (CEIm-E)
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E-O the algorithm developed by González-Otero and Ruiz48 which
only needs the acceleration signal.

• Capnography signal. Obtained from a CO2 detector. Sampling rate
of 125 Hz. (TVF&R) or 20 Hz (E-O).

Figure 4.1. Example segment extracted from an OHCA episode from the
TVF&R database.
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4.2 annotation and methodology

In general, only episodes with concurrent ECG, compression depth, TTI
and capnography signals were included. Signals were reviewed and
annotated using custom-made Matlab® (Mathworks, USA) programs.
Episodes with unreliable raw signals caused by disconnections or
excessive noise were discarded. For each episode, capnograms were
time-shifted to compensate for the delay introduced by the sidestream
technology with respect to the other recorded signals.

Several biomedical engineers with experience in the analysis of
OHCA defibrillator signals participated in the annotation process and
methodology design of each study. As a normal practice, one third of
the cases were jointly reviewed defining needed annotation rules. The
rest of the episodes were randomly split into sets and each of them was
examined by a single reviewer. At the end of the process, undecided
annotations were conjointly solved.

Depending on the particular study, different annotation procedures
and methodologies were designed. Next subsections summarize the
procedure followed to develop each of the objectives described in
chapter 3. For a more detailed explanation, please consult the
corresponding journal article in Appendix A.

Objective 1: To analyze and quantify the impact of CC-artifact on a
capnogram-based monitoring system during CPR

To address the incidence and morphology of CC-artifact on resuscitation
capnograms, episodes were classified into non-distorted and distorted
groups regarding the appearance of CC-artifacts on the capnogram.
Episodes were grouped as distorted if evident CC-artifact appeared
during more than 1 min of the total chest compression time. Otherwise,
episodes were grouped in the non-distorted category. Distorted episodes
were then grouped into three categories: type I, when the CC-artifact
was located in the ventilation plateau; type II, located in the capnogram
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baseline; type III, with CC-artifact spanning from the plateau to the
baseline. Figure 4.2 summarizes the classification process.

non-distorted

distorted

type I type II type III

Classification

Figure 4.2. OHCA waveform capnography classification chart.

Then, the morphology of the CC-artifact was characterized by the
spectral analysis of non-distorted and distorted capnograms. We,
computed the power spectral density (PSD) of the capnogram segments,
located the frequency components associated with the artifact and
compared with the chest compression rate derived from the chest
compression depth signal.

To quantify the influence of CC-artifact on the automated detection of
ventilations and therefore on the accuracy of ventilation rate, ventilation
instances were annotated using the TTI signal (Figure 1 in A1).
Ventilations induce slow fluctuations in the TTI signal acquired
through defibrillation pads. During inspiration TTI increases due
to the increment of the gas volume inside the chest and the
longer distance between electrodes which produces a decrease in
the conductivity.37,81,108 To enhance the slow fluctuations caused by
ventilations, the raw TTI signal was low-pass filtered.

The processed signal was visually examined to manually annotate the
position of each single ventilation. Ventilations were annotated at the
instant corresponding to a rise in the impedance (vertical red lines). The
capnogram was used to visually confirm the presence of ventilations.
Resulting ventilation annotations were used to evaluate the effectiveness
of the proposed filtering techniques and to compute the ventilation rate.
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To assess the influence of CC-artifact in the detection of ventilations,
a capnogram-based ventilation detection algorithm was used. Figure 2
in A1 shows a detailed scheme of the detector. Basically, the algorithm
locates series of consecutive upstrokes (tup) and downstrokes (tdw) in
the capnogram by applying a fixed amplitude threshold (Thamp). The
durations between those instants, Dex and Din, are the two features used
to discriminate true ventilations from the potential candidates, according
to a simple decision tree based on thresholds. Similar algorithms to
detect ventilations in the capnogram have been previously described in
the literature.37

Finally, ventilation detection performance was evaluated in terms of
its sensitivity (Se) and positive predictive value (PPV). To assess the
influence of the CC-artifact in the estimation of ventilation rate, the
ventilation rate value per minute was computed using the ventilations
detected by our algorithm and compared to the values obtained
annotated ventilations.

To address the impact of CC-artifact on the reliability of ETCO2 measurements,
1-min length capnogram segments containing series of complete
ventilations were extracted (Figure 1 in A2). Only segments with
regularly reported capnometry events were included. Two types of
segments were identified: non-distorted capnograms and distorted
capnograms of any type. Each individual ventilation was identified
as described above and corresponding ETCO2 values were manually
annotated as the maximum CO2 level in each ventilation cycle.51

To conclude, differences between the annotated and the capnometer
ETCO2 value per ventilation in the segment were analyzed. Measure-
ment error was defined as the difference between the extracted and
the annotated ETCO2 values. Comparisons between airway types and
between capnometers were also assessed.
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Objective 2: To design signal processing techniques to remove CC-
artifact from the capnogram to improve ventilation rate feedback and
to enhance capnogram clinical interpretation

Using the database developed for the previous objective, the next step
was to remove the CC-artifact from the capnogram and test if ventilation
feedback improved. Moreover, recovered capnogram had to be suitable
for clinical interpretation.

To suppress the CC-artifact from the capnogram, three different filtering
techniques were used. In addition to the annotations previously
made, chest compression instances were annotated at the local
minima corresponding to the maximum depth reached for each
chest compression. Chest compression rate was calculated from the
annotations as the inverse of the distance between consecutive maxima,
expressed in compressions per minute.

Filtering techniques have been typically used for the suppression of
chest compression artifact present in most of the signals acquired by
monitor-defibrillators, especially in the ECG and TTI signals.46 Likewise,
the objective was to apply some of these techniques to distorted
capnograms:

• Fixed-coefficient filtering. Observation of the spectral content of the
distorted signal sometimes supports the use of a simple filter with
fixed coefficients to suppress the undesired frequencies.47,49,140

Observation of the PSD (Figure 2 in A3) supports the use of a
simple filter to suppress the spectral content of the capnogram
above 1 Hz (60 cpm). To that end, we implemented a digital infinite
impulse response low-pass Butterworth filter.

• Adaptive filtering. Variability of chest compression rate may
affect the effectiveness of the fixed-coefficient filter.4,86 Adaptive
approaches in which the filter configuration is adjusted in time
according to the varying characteristics of the artifact could be
a suitable solution.1,39,67,123 Two adaptive filtering configurations
were designed, an open-loop and a closed-loop adaptive filter.159

Both approaches used the annotated chest compression instances
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as a reference to adjust the parameters of the adaptive filter. Details
of the adaptive filters are addressed in the supporting materials
in A3.

To enhance the capnogram waveform in the presence of CC-artifact in order to
improve its clinical usefulness, a novel CC-artifact suppression technique
was proposed. Although classic filtering techniques may improve
ventilation detection, artifact oscillations cannot always be successfully
removed (Figure 1 in A4). This new approach relies on the hypothesis
that the envelope of the capnogram contains the information needed to
suppress the CC-artifact and to rebuild a reliable capnogram waveform.

To quantitatively assess the goodness of the proposed techniques, the
previously designed ventilation detection algorithm was used before and
after applying the suppression techniques. For each episode, we also
computed the number of ventilations provided every minute (ventilation
rate) and compared ventilation rate measurements computed from the
estimated ventilations before and after filtering with those computed
from the annotated ventilations.

Objective 3: To characterize the influence of ventilations on ETCO2

measurement

Many factors influence ETCO2 during CPR, and ventilation rate is a
significant confounding factor. The hypothesis was that that the effect
of ventilations on ETCO2 could be modeled separately from other
confounders. First, modeling the impact of ventilation on the capnogram
would facilitate a better assessment of the relationship between chest
compression quality and waveform capnography. Second, it would allow
accounting for the confounding factor of ventilation rate in studies
analyzing the correlation between ETCO2 values and ROSC or patient
outcome.

The aim of this study was to model the decrease in exhaled CO2

concentration with ventilations. For that purpose, capnogram segments
during chest compression pauses (no flow time), and with no perfusing
rhythm (no circulation) were selected (Figure 1 in A5). Absence of chest
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compression was verified using compression depth and TTI signals.
Ventilation instances were identified following the procedure described
in the first objective. Absence of pulse-generating rhythm was verified
by inspecting the ECG. Pulseless electrical activity and perfusing rhythm
were distinguished by additional checking of the circulatory component
of the TTI signal.122

When analyzing the capnogram segments, the duration of each
ventilation cycle was different within each segment. This phenomenon
affects the ETCO2 value since the plateau phase usually presents a low
ascendant slope. In order to compare analogous points, decreasing CO2

values at a fixed delay from the beginning of the expiratory upstroke
were annotated. This novel metric, named ensemble plateau CO2 or
epCO2, was defined to represent the end-tidal values obtained if all
ventilations had the same exhalation time (Figure 2 in A5).

The decay in epCO2, as illustrated in Figure 3 in A5, suggested an
exponential decay model. Thus, the trend in epCO2 variation was
modeled through a Matlab® curve fitting tool using an exponential
decay function. The decay factor between consecutive ventilations D was
computed and goodness of fit of the model was evaluated using the
coefficient of determination R2, which provides a measure of the epCO2

variation that is explained by the model. Differences in the decay factor
D with respect to the airway, ETT or SGA, was also analyzed.

Objective 4: To develop novel strategies to identify ROSC using the
capnogram as the reference

The working hypothesis for this objective was that the variation of
ETCO2 between consecutive ventilations during chest compression
pauses would allow for a reliable ROSC detection. The analysis of the
ETCO2 trend could help to confirm ROSC if an organized rhythm is
observed. A decay in the ETCO2 values would indicate the absence of
pulse (i.e. no ROSC). Whereas a constant or increasing ETCO2 trend
would indicate the presence of pulse and therefore ROSC.



materials and methods 47

Segments of capnography signal during chest compression pauses were
identified (Figure 1 in A6). In this case, only segments shorter than
20 s, with at least three ventilations, and with ETCO2 values equal
or greater than 10 mmHg were included in the analysis. The selected
segments were then grouped into ROSC and non-ROSC groups. The
clinical ROSC annotations, made by ALS providers, and the presence
of an organized rhythm in the ECG were reviewed in order to classify
the segments. In case of doubt between an organized pulseless electrical
activity (PEA) or a pulsatile rhythm (PR), TTI singal was examined to
locate a possible circulation component.122 A single ROSC segment was
selected per patient. Conversely, several non-ROSC segments per patient
were included.

Once a segment met the inclusion criteria, several values were annotated
such as segment duration, number of ventilations per segment and
the ETCO2 value per ventilation (ETn), obtained as the maximum CO2

concentration reached in the capnogram plateau. Segments were then
characterized by: the mean ventilation rate, the ETCO2 value for the
first ventilation (ET0), percentage ETCO2 variation between consecutive
ventilations (ETn) and the mean percentage variation (∆ETavg).

Discrimination between ROSC and non-ROSC groups was conducted
using the ∆ETavg feature as an indicator of the positive or negative slope
of the ETCO2 trend. Based on a simple decision threshold, segments
presenting greater ∆ETavg were classified as ROSC and values equal
to or less than the threshold were classified as non-ROSC. Finally, the
predictive ability of the discrimination method was evaluated in terms
of its sensitivity (Se) and specificity (Sp).





5 R E S U LT S A N D
D I S C U S S I O N

This chapter summarizes and discusses the results of this thesis work,
all of which have been published in indexed JCR journals. The chapter
is organized by the objectives defined in chapter 3.

Objective 1: To analyze and quantify the impact of CC-artifact on a
capnogram-based monitoring system during CPR

The incidence and nature of the artifact was not previously studied in
the literature. To our knowledge, only one prior study examined the
impact of chest compressions and reported that 73% (154/210) of the
episodes were distorted by oscillations. In our retrospective study (A1) a
lower incidence (42%) of distorted capnograms was found with a similar
number of OHCA episodes, although this difference could be partly
explained by different annotation criteria. Oscillations did not appear
in the episodes where BVM was used. However, it appeared in both
advanced airway types, although the incidence was higher for SGA. In
addition, the conducted spectral analysis quantitatively confirmed the
pure sine wave nature of the artifact, with a frequency matching the
chest compression rate.

49
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Waveform capnography is currently a standard monitoring tool used
during resuscitation. Unfortunately, our findings demonstrated the
negative impact of CC-artifact on the reliability of capnogram guided
ventilation monitoring. Detection of ventilations was accurate for non-
distorted capnograms, Se and PPV median values were 99.4% and 98.6%,
respectively. However, detection performance significantly decreased in
the presence of CC-artifact to Se and PPV values well below 80% and
errors in ventilation rate measurement were as high as 50%.

Once demonstrated that the presence of CC-artifact diminishes the
accuracy of automated capnogram-based ventilation detectors, we also
wanted to analyze if this could also have a negative impact on ETCO2

measurement. When obscured by CC-artifact, the capnogram tracing
becomes difficult to interpret; clinicians might then rely on capnometry
values reported on the monitor screen. However, the reliability of these
numbers has also been questioned.

In another retrospective study (A2), we quantified the influence of
the CC-artifact in the automated ETCO2 measurements performed by
capnometers from TVF&R and E-O. After extensive analysis of the
extracted capnogram segments, we demonstrated that the presence of
CC-artifact also affects reported ETCO2 values. For capnogram segments
without CC-artifact, the obtained measurement error was negligible.
However, errors increased in the presence of CC-artifact to 1.3 mmHg,
but, more importantly, we found errors exceeding 10 mmHg in 9% of
the distorted ventilations (15 mmHg in 5%). Moreover, we found errors
as high as 20 mmHg in some capnogram segments. No significant
differences were found between capnometers (p = 0.41) nor airway
types (p = 0.28).

In conclusion, CC-artifact provokes continuous and significant errors in
the algorithm designed to detect ventilations and, therefore, to estimate a
single ETCO2 value per ventilation. If ventilation rate and ETCO2 values
were displayed on the monitor-defibrillator screen, clinicians would see
them changing rapidly, and ventilation monitoring as well as clinical
decision rules could be seriously compromised.
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Objective 2: To design signal processing techniques to remove CC-
artifact from the capnogram to improve ventilation rate feedback and
to enhance capnogram clinical interpretation

From a clinical perspective, the presence of CC-artifact has several
important drawbacks: firstly, it impedes a reliable automated detection
of ventilations, causing inaccuracies in the measurement of ventilation
rate. Moreover, a distorted capnogram tracing becomes difficult to
interpret by clinicians; and finally, measurement of reliable ETCO2

values becomes impossible. Hence, CC-artifact may jeopardize most
potential uses of waveform capnography during resuscitation. In
this context, we hypothesized that recommended uses of waveform
capnography would improve if the oscillations induced by chest
compressions could be successfully removed from the capnogram.

The initial approach, reported in A3, focused on the improvement
of automated detection of ventilations using three different filtering
techniques, a fixed coefficient and two adaptive filters (open-loop and
closed-loop); to pre-process the raw capnogram before the ventilation
detector is used. All the proposed filters performed similarly, reporting
improved results for the distorted episodes, with Se and PPV values
well above 97% and 96%, respectively. This also caused an improvement
in the measurement of ventilation rate with a median error decreasing
from values as high as 50% to values below 3.6%.

Despite the improvement achieved in ventilation detection, the filtered
capnogram is still difficult to interpret by clinicians. The capnogram
waveform achieved after filtering approximates the mean peak-to-peak
amplitude of the oscillations, as shown in Figure 5.1. The resulting
capnogram waveform hinders the reliable analysis of ETCO2 values and
trends, a very useful clinical information during OHCA.

In a subsequent study (A4) we proposed a CC-artifact suppression
technique aimed to preserve the real tracing of the waveform
capnography. The development of the method relied on the hypothesis
that the envelope of the capnogram could be a reliable tracing for clinical
interpretation. An example of the method performance is illustrated in
Figure 5.2. For a detailed explanation of the method please consider
reading the supplementary materials available in the attached A4 article.
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Figure 5.1. Example of filtering performance. Original capnogram with non-
distorted and distorted capnogram cycles depicted in gray. Filtered
capnogram (in blue) superimposed to the original capnogram.
Detected ventilations are depicted with vertical dashed red lines.

The resulting corrected waveform is useful to improve the automated
assessment of ventilations, real-time estimation of ventilation rate, and,
more importantly, it allows a reliable measurement of ETCO2 values.
Performance results were comparable and even better than the ones
obtained using classic filtering approaches. In most cases, the envelope
of the distorted capnogram resembled the CO2 tracing observed in the
preceding and following non-distorted respiratory cycles. Therefore, this
method could enhance capnometer algorithms to account for the chest
compression artifact effect.

Figure 5.2. Example of envelope filtering performance. A distorted capno-
gram interval is depicted by the gray line. The blue line illustrates
the waveform capnography envelope extraction process. Upper
envelope (dashed blue line) is extracted through the detection of
each local maxima (downward arrowheads), and lower envelope
(dotted blue line) is extracted through the detection of each local
minima (upward arrowheads). Detected ventilations are depicted
with vertical red arrows.
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Objective 3: To characterize the influence of ventilations on ETCO2

measurement

During CPR, ETCO2 values mainly depend on the blood flow generated
by chest compressions, on ventilation rate and tidal volume, and on the
metabolic activity of the patient tissues. Several studies have tried to
model the influence of chest compression quality or to early detect ROSC
relying on the direct comparison of measured ETCO2 values. However,
some animal studies have suggested that ventilation rate significantly
influences ETCO2 levels, which may act as an important confounding
factor in the mentioned studies.

In this context, we separately modeled the effect of ventilation on the
capnogram by analyzing CO2 concentration variations during chest
compression pauses (published in A5). When all the segments were
included, the median decay factor was 10.0% (7.8–12.9) with R2 equal
to 0.98 (0.95–0.99). The model fitted the annotated data very well as
proven by the obtained high median R2 value. The moderate dispersion
of the estimated decay factor could be related with differences in patient
anatomic dead space and in the ventilation volumes provided with each
breath. Nevertheless, a decay factor of 10% per ventilation may be useful
as a reference level.

One of the potential clinical applications of this study is to facilitate the
analysis of the relationship between ETCO2 and CPR quality. Two recent
studies have investigated this relationship.134,91 Sheak et al. reported that
for every 10 mm increase in depth, ETCO2 rose 1.4 mmHg; that for every
10 vpm increase in ventilation rate, ETCO2 dropped 3.0 mmHg; and that
compression rate was not not a predictor of ETCO2 variation. Murphy
et al. concluded that a 10 mm increase in depth was associated with a
4.0% increase in ETCO2; a 10 vpm increase in ventilation rate with a
17.4% decrease in ETCO2; and a 10 cpm increase in chest compression
rate with a 1.7% increase in ETCO2.

Direct comparison between both studies is challenging because Sheak et
al. reported absolute differences (mmHg) while Murphy et al. reported
relative differences (%). The conclusions of both studies significantly
diverge from what would be expected during resuscitation episodes. In
addition, the main factor compromising the applicability of their models
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is that the nature of dependence between ETCO2 variations and the
source of that variation may not be linear or logarithmic for all the
studied variables. According to the novel approach modeled in this
study, the change in ETCO2 in a given interval which is attributable
to chest compressions could be estimated by removing the influence
of concurrent ventilation, which we can now model. However, further
analysis of resuscitation episodes is required in order to confirm the
validity of the model during ongoing chest compressions.

Objective 4: To develop novel strategies to identify ROSC using the
capnogram as the reference

Advanced CPR techniques require minimizing interruptions in chest
compressions, and pauses for pulse assessment should be kept as short
as possible to optimize blood perfusion. In this context, a reliable and
automated detection of ROSC based on the signals acquired by monitor-
defibrillator would be of high benefit. It could prevent prolonged
detrimental interruptions in patients in PEA and avoid unnecessary
chest compression and drug administration to patients with a PR.

The initial ETCO2 value measured within the chest compression pause
is influenced by several factors such as the quality of chest compressions
and ventilations. Therefore, absolute values are not a reliable indicator
of ROSC. Our method did not rely on absolute measurements, but on
the ETCO2 variation. This work (A6) demonstrated that the decay or
increment of the ETCO2 levels during chest compression pauses allows
for a reliable automated classification between non-ROSC and ROSC
segments.

This method yielded a sensitivity and specificity for predicting the
presence of ROSC of 95.4% and 94.9%, respectively. Nevertheless, pauses
no longer than 20 s were included and ALS guidelines recommend
not interrupting chest compressions for more than 10 s.138 To test the
algorithm with pauses closer to the recommendations, we applied the
method to the first three and two ventilations of the included segments.
In case of three ventilations, the permormance was similar to the global
results, although the median duration of the segments was 11 s. In case
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of two ventilations, the median duration was 7.7 s and the performance
slightly decreased to Se and Sp values of 90.0% and 81.3%, respectively.

In conclusion, during chest compression pauses for rhythm assessment
by the ALS, the ECG can be directly analyzed to establish whether the
electrical activity of the heart is organized or not. Organized rhythms
can be PEA (non-ROSC) or PR (ROSC). Our method would allow to
determine whether there is ROSC or not by the assessment of the
evolution of ETCO2 values. ROSC is more likely if the level of ETCO2

is maintained or increased, whereas if the level clearly decreases non-
ROSC should be suspected. Figure 3 in A6 illustrates this idea.





6 C O N C L U S I O N S

This chapter highlights the main findings and contributions of the thesis
work and provides a detailed list of the articles published in indexed
journals (A1-A6), the abstracts or proceedings presented at indexed
international conferences (C1-C8) and book chapters (BC1).

Main contributions of the thesis work

The main objective of this thesis work was to analyze the feasibility and
reliability of waveform capnography as a non-invasive indicator of CPR
quality and ROSC during OHCA resuscitation. Its main contributions
are those presented as intermediate goals in chapter 3, and can be
summarized in the following points:

• The important role of waveform capnography in ventilation
monitoring is compromised by the high-incidence of CC-artifact.
It affects ventilation detection, and, consequently, ventilation
rate feedback and increases ETCO2 measurement errors. This
finding suggests that filtering techniques or adapted capnometer
algorithms should be implemented to reliably perform during
CPR, avoiding the detection of false ventilations when CC-artifact
appears in the capnogram.
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• Several filtering alternatives for suppressing the CC-artifact have
been designed and ventilation detection improved after CC-artifact
was removed from distorted capnograms. Moreover, the envelope
algorithm enhanced the capnogram tracing, potentially favoring
its interpretation during CPR. Nevertheless, further research in
clinical settings is required to understand the feasibility and utility
of these methods.

• We obtained a model to explain the decrease on exhaled CO2

concentration with each ventilation during chest compression
pauses. Our results provide a novel framework to explain the effect
of chest compressions on ETCO2, compensating for ventilation rate
as a confounder. However, further work is required to confirm the
validity of the model during ongoing chest compressions.

• ETCO2 trend during chest compression pauses is a valuable metric
to detect ROSC during resuscitation. A decreasing trend suggests
a non-ROSC state, whereas constant or positive trends reflect
ROSC. The proposed metric could help to confirm the presence
or absence of pulse during pauses for rhythm assessment in those
ALS agencies that have ETCO2 monitoring capability.
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a b s t r a c t

Background: Capnography has been proposed as a method for monitoring the ventilation rate during
cardiopulmonary resuscitation (CPR). A high incidence (above 70%) of capnograms distorted by chest
compression induced oscillations has been previously reported in out-of-hospital (OOH) CPR. The aim of
the study was to better characterize the chest compression artefact and to evaluate its influence on the
performance of a capnogram-based ventilation detector during OOH CPR.
Methods: Data from the MRx monitor–defibrillator were extracted from OOH cardiac arrest episodes.
For each episode, presence of chest compression artefact was annotated in the capnogram. Concurrent
compression depth and transthoracic impedance signals were used to identify chest compressions and
to annotate ventilations, respectively. We designed a capnogram-based ventilation detection algorithm
and tested its performance with clean and distorted episodes.
Results: Data were collected from 232 episodes comprising 52 654 ventilations, with a mean (±SD) of
227 (±118) per episode. Overall, 42% of the capnograms were distorted. Presence of chest compression
artefact degraded algorithm performance in terms of ventilation detection, estimation of ventilation rate,
and the ability to detect hyperventilation.
Conclusion: Capnogram-based ventilation detection during CPR using our algorithm was compromised
by the presence of chest compression artefact. In particular, artefact spanning from the plateau to the
baseline strongly degraded ventilation detection, and caused a high number of false hyperventilation
alarms. Further research is needed to reduce the impact of chest compression artefact on capnographic
ventilation monitoring.

© 2017 Elsevier B.V. All rights reserved.

Introduction

Capnography is now considered a standard of care in advanced
cardiopulmonary resuscitation (CPR) [1–3]. As emphasized in cur-
rent resuscitation guidelines, advantages of capnography during
CPR include assessment of the correct placement of the endotra-
cheal tube [4], monitoring quality of chest compressions [5,6], early

� A Spanish translated version of the summary of this article appears as Appendix
in the final online version at https://doi.org/10.1016/j.resuscitation.2017.12.013.

∗ Corresponding author.
E-mail address: sofia.ruizdegauna@ehu.es (S. Ruiz de Gauna).

identification of restoration of spontaneous circulation (ROSC) [7],
and determination of patient prognosis [3,8,9].

Another important role of capnography during CPR is ventila-
tion rate monitoring to prevent inadvertent hyperventilation [8].
Guidelines recommend ventilating the lungs at approximately 10
breaths per minute. However, excessive ventilation rates are com-
mon in resuscitation. In a clinical observational study, Aufherheide
et al. reported ventilation rates of 30 breaths per minute or more
as a norm [10]. Subsequent clinical studies have also confirmed
the tendency to ventilate with such high rates [11,12]. One animal
study revealed that similar excessive ventilation rates increased
intrathoracic pressures and decreased coronary perfusion pres-
sures and survival rates [13]. Another animal study by Gazmuri
et al. reported no adverse hemodynamic effects during CPR after

https://doi.org/10.1016/j.resuscitation.2017.12.013
0300-9572/© 2017 Elsevier B.V. All rights reserved.
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increasing ventilation rate and tidal volume over the recommended
values, although they observed a decrease in end-tidal CO2 values
[14].

Current guidelines recommend using capnography during CPR
to monitor ventilation rate and avoid hyperventilation. Visual
inspection of the capnogram allows tracking respiratory cycles,
since the onset of each ventilation causes a downstroke in the
capnography waveform. Automated measurement of ventilation
rate and algorithms for hyperventilation detection using capnog-
raphy were first explored by Edelson et al. in 2010 [15], as an
alternative to customary algorithms based on the transthoracic
impedance recorded through defibrillation pads [16].

Quality of the recorded capnogram is essential for a reliable anal-
ysis, either visual or automated. However, a clean capnogram, in
which the different phases of the respiratory cycle are identifiable
(inspiratory downstroke, inspiratory baseline, expiratory upstroke,
and alveolar plateau, where end-tidal CO2 value is measured) can-
not always be observed during CPR. Sources of artefact include
issues related to the capnography device (occlusion in the CO2 cir-
cuit, leaking) as well as the ongoing resuscitation efforts [1,17,18].
In this study, we focused on analysing the artefact induced on the
capnogram by chest compressions during CPR. This artefact appears
in the form of fast oscillations at different rates and with vary-
ing amplitude superimposed on the capnogram. This phenomenon
has received little attention in the literature to date. An abstract
presented at the 2010 American Heart Association Resuscitation
Science Symposium reported chest compression artefact presence
in greater than 70% of capnograms in a sample of 210 out-of-
hospital (OOH) cardiac arrest episodes [19]. To our knowledge
there are no published studies that systematically analyse the mor-
phology of this artefact. We hypothesized that chest compression
artefact may impede a reliable analysis of the capnogram, compro-
mising its application for ventilation rate monitoring.

The purpose of this study was three-fold. First, we identified
capnograms distorted by chest compression artefact in a large
dataset of OOH cardiac arrest episodes in order to confirm the high
incidence of this artefact during CPR. Second, we characterized the
morphology of chest compression artefact. Third, we assessed the
impact of chest compression artefact on the reliability of automated
capnogram-based guidance of ventilation rate.

Materials and methods

Data collection

Data were extracted from a database of 691 OOH episodes col-
lected between 2011 and 2016 by Tualatin Valley Fire & Rescue
(TVF&R), an advanced life support first response Emergency Medi-
cal Services (EMS) agency serving eleven incorporated cities (about
1015 km2) in Oregon, USA. Episodes were collected as part of the
Resuscitation Outcomes Consortium (ROC) Epidemiological Car-
diac Arrest Registry. The data collection for the ROC Epistry was
approved by the Oregon Health & Science University (OHSU) Insti-
tutional Review Board (ID: IRB00001736). No patient private data
was required for this study.

Episodes were recorded with Heartstart MRx
monitor–defibrillators (Philips, USA), equipped with real-time
CPR feedback technology (Q-CPR). Capnography was acquired
using sidestream technology (Microstream, Oridion Systems Ltd.,
Israel). Ventilation was provided with a bag-valve-mask or an
advanced airway. The choices for the latter were the endotracheal
tube or the King LT-D (supraglottic). Defibrillator signals used
in the study were the capnogram, the compression depth (CD)
signal measured by the Q-CPR chest pad, and the transthoracic
impedance (TI) signal acquired from defibrillation pads.

Fig. 1. Example of ventilations annotated using the low frequency component of the
TI signal (top panel, blue line). This signal was obtained after low pass filtering the
raw TI signal (top panel, grey line). Each ventilation was identified at the instant cor-
responding to a rise in each TI fluctuation (vertical dashed red lines). The capnogram
(bottom panel) is depicted with the annotations to visually confirm ventilations at
the instants where CO2 concentration rapid decays to zero.

Episodes with at least 20 min of continuous and simultane-
ous signals, and with a minimum of 500 chest compressions were
included in the study, which yielded a total of 301 episodes.

Data annotation

Signals were reviewed and annotated using a custom-made
Matlab (Mathworks, USA) program. Intervals with unreliable raw
TI signal or capnogram caused by disconnections or excessive noise
were discarded. For each episode, capnograms were time-shifted
to compensate for the delay with respect to CD and TI signals.

Three biomedical engineers with experience in the analysis
of OOH defibrillator signals participated in the annotation pro-
cess. They reviewed one third of the cases jointly, and defined
the annotation rules for identifying capnograms distorted by chest
compression artefact, and for annotating ventilations using the TI
signal. The rest of episodes were randomly split in three parts, each
of them examined by a single reviewer. At the end of this process,
the three experts joined again to solve by consensus undecided
annotations.

Experts annotated intervals in which capnograms were dis-
torted by chest compression artefact, with the support of the CD
signal. Episodes were classified as distorted if evident chest com-
pression artefact appeared during more than 1 min of the chest
compression time. In addition, they annotated the location of the
artefact with respect to the respiratory phase (e.g. appearing mainly
on the expiratory phase or on the inspiratory phase).

Ventilations were manually annotated using the low frequency
component of the TI signal. A low-pass filter was applied to the raw
TI signal to suppress fast oscillations caused by chest compressions
and enhance slow fluctuations caused by ventilations. Fig. 1 (top
panel) shows the raw TI signal in grey with the low frequency TI
component superimposed in blue. Each ventilation was annotated
at the instant corresponding to a rise in each TI fluctuation (marked
with a vertical dashed red line in Fig. 1). The capnogram is depicted
in the bottom panel to visually confirm the presence of ventilations.
The resulting annotations were used as our gold standard to test
the performance of the automated capnogram-based ventilation
detection algorithm.

Automated capnogram-based ventilation detection algorithm

The algorithm used in this study processes the capnogram,
and was designed following a finite-state-machine model. Fig. 2
shows the flow chart of the algorithm (top) and the definition
of the main parameters of the algorithm (bottom). Basically, the
algorithm searches for an abrupt upstroke in the capnogram, ti

up,
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Fig. 2. Flow chart of the ventilation detector (top). Main parameters of the algorithm (bottom). Capnogram ascents and descents crossing the shadowed area (amplitude
threshold) are depicted with dashed/dotted lines. Downward arrow marks the position of the detected ventilation.

which is detected when the amplitude of the capnogram exceeds a
fixed threshold, Thamp (mmHg). Then, the algorithm searches for
an abrupt downstroke, ti

dw, detected when the capnogram goes
below the same threshold, Thamp. To detect a ventilation, the dura-
tion of the interval Dex = ti

dw − ti
up and the duration of the interval

Din = ti+1
up − ti

dw must exceed thresholds Thex and Thin, respectively.
If both conditions are satisfied, the ventilation is annotated at the
instant when the inspiratory downstroke occurs, ti

dw.
To account for observed double ventilation effects (Fig. 2, bottom

right), the algorithm discards any ventilation for which the inter-
val Din is below Thin, and searches for the next downstroke and
upstroke until Din exceeds Thin.

Data analysis

Ventilation detector performance was evaluated in terms of its
sensitivity (Se) and positive predictive value (PPV). Se was defined
as the proportion of annotated ventilations detected by the algo-
rithm. PPV was the proportion of detections that were indeed
annotated ventilations. We allowed a tolerance of ±0.5s between
the detection and the annotation instant. The algorithm was trained
with a subset of clean (non-distorted) episodes applying the crite-
rion of maximum Se while assuring a PPV >98%.

In order to assess the influence of the artefact in the estima-
tion of ventilation rate, we computed, for each episode, ventilation
rate value per minute, updated every 10 s. These ventilation rate
measurements were computed using the gold standard (annotated
ventilations) and using the ventilations detected by our algorithm.

We also computed hyperventilation alarms from the ventilation
rate per minute measurements. Results were obtained for hyper-
ventilation thresholds set at 10, 15, and 20 min−1. Then, we tested
the ability of our algorithm to correctly detect hyperventilation.
In this case, Se was defined as the proportion of annotated hyper-
ventilation alarms that were given by the algorithm, and PPV as
the proportion of hyperventilation alarms given that were indeed
annotated.

Data were reported as mean (±SD) if they passed Lilliefors nor-
mality test, and as median (IQR) otherwise. Distribution of Se and

PPV per record, and distributions of the percent error in the esti-
mation of ventilation rate were depicted with boxplots.

Finally, the morphology of the artefact was characterized by the
spectral analysis of clean and distorted capnograms. We computed
the power spectral density (PSD) of the capnogram and located the
frequency components associated with the artefact. We used the
chest compression rate derived from the CD signal as reference.

Results

From the original dataset of 301 episodes, 69 were discarded
(23%) due to unreliable capnogram or TI signals. Reasons for
elimination were: permanent signal disconnection or saturation,
capnogram below 5 mmHg along the entire episode or without
variations associated to respiratory cycles, and failure to observe
ventilation waves in the filtered TI signal. Thirty-two episodes out
of 69 were discarded due to unreliable capnogram, 20 to unreliable
TI signal, and 17 due to unreliability of both signals. Overall, unre-
aliable capnograms were found in 16.3% of the episodes included
in the study. The remaining 232 episodes had a mean duration
of 31 (±9.5) min, with a mean of 2301 (±1230) annotated chest
compressions per episode.

Ninety-eight episodes (42%) were annotated as distorted. We
classified the artefact into three types: observed primarily in the
expiratory plateau of the capnogram (type I), in the baseline (type
II), and spanning from the plateau to the baseline (type III). Fig. 3A
shows examples of capnogram intervals observed during chest
compressions.

We conducted an spectral analysis to characterize the wave-
form nature of the chest compression artefact. This is illustrated
in Fig. 3B, which depicts an interval of corrupted capnogram (top),
the concurrent CD signal (middle) and the PSD of the capnogram.
A primary peak is clearly observed at 1.94 Hz, with no peaks at fre-
quencies multiple of this fundamental frequency, i.e. no harmonic
components. This value corresponds to the fundamental frequency
of the artefact, fart, and matches the average compression rate in
that interval (fart · 60 = 116 compressions per minute). This proves
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Fig. 3. (A) Examples of chest compression artefact observed in OOH capnograms
during chest compressions: clean capnogram; Type I artefact, located in the plateau;
Type II, located in the baseline; Type III, spanning from the plateau to the baseline.
(B) Spectral characterization of chest compression artefact in a distorted capno-
gram (top). CD signal, with average chest compression rate of 116 compressions
per minute (middle). PSD of the distorted capnogram (bottom): the observed sin-
gle peak corresponds to the fundamental frequency of the artefact, i.e. a sine wave
superimposed to the lower frequency capnogram waveform.

that the artefact is mainly sinusoidal and that it is directly caused
by chest compressions during CPR.

Table 1 shows the incidence of each artefact type in relation to
the airway system used in each case. Type I artefact was annotated
in 48% of the distorted episodes, type II in 21%, and type III in 31%
of the episodes. Artefact did not appear in the episodes where bag-
valve-mask was used. However, all types of artefact appeared in
every advanced airway type, although the incidence was higher for
supraglottic cases. Incidence of type III artefact (plateau to baseline)
was more prevalent in endotracheal intubation, and incidence of
type I (plateau) was more prevalent in supraglottic.

A total number of 52 654 ventilations were annotated, with
a mean of 227 (±118) ventilations per episode. Clean episodes
comprised 30 814 ventilations, and distorted episodes 21 840 ven-
tilations (Type I: 10 119, Type II: 5228, and Type III: 6493).

The ventilation detection algorithm was trained with a subset
of 30 clean episodes. Optimal values for algorithm parameters Thex

and Thin were achieved for a Se/PPV of 99.8/99.0%. Fig. 4A shows
the performance results of the ventilation detector algorithm using
the test subset. Boxplots depict the distribution of the Se and
PPV calculated per episode. For the whole test subset, median
(IQR) Se was 99.4 (97.8–100)%, and PPV was 98.6 (96.4–99.5)%.
For the distorted test subset, Se was 97.4 (90.3–99.3)%, and PPV
was 95.6 (85.9–98.3)%. For type III episodes, Se decreased to 85.2

Fig. 4. (A) Performance of the ventilation detector algorithm. (B) Distribution of the
error in the estimation of ventilation rate. Results are provided globally and for the
different subgroups. The boxes show the median and IQR and the whisker shows
the last datum within the ±1.5 IQR. Outliers are represented by dots.

(59.2–92.7)%, and PPV to 76.9 (47.0–90.5)%. Fig. 4B shows the dis-
tribution of the percent error in the estimation of the ventilation
rate. For the clean episodes, median error was −0.6 (−1.9 to 0.0)%.
For the distorted test subset, error was −6.1 (−16.9 to 1.2)%. For
type III episodes, error was −18.8 (−39.1 to 6.7)%.

Table 2 shows the algorithm performance in the detection of
hyperventilation alarms. Hyperventilation was accurately detected
regardless of the hyperventilation threshold in the clean episodes.
Performance decreased in the distorted group, particularly with
respect to PPV. Detection of hyperventilation was particularly com-
promised in the presence of type III artefact.

Discussion

Monitoring ventilation rate is one of the recommended uses of
capnography waveform during CPR. However, the presence of high-
frequency oscillations in the capnogram during chest compressions
may compromise the interpretation of the signal.

Our findings demonstrated the impact of this artefact on the
reliability of capnogram guided ventilation monitoring. Detection
of ventilations was accurate for clean episodes (Se and PPV were
above 95% for all episodes), but algorithm performance significantly
decreased when artefact was present. For some of the cases Se and
PPV were well below 80%, and errors in the measurement of venti-
lation rate were as high as 50%. This means that, with such a degree
of distortion, reliable ventilation rate guidance would not be feasi-
ble for those patients. These poor results were mainly attributable
to type III artefact, annotated in 31% of the distorted episodes (13%
of all episodes). Oscillations disturbing the capnogram from the
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Table 1
Distribution of episodes according to artefact classification and type of ventilation.

Episodes Ventilation type

BVM ETT SGA NA Total

Total 7 149 73 3 232
Clean 7 90 35 2 134
Distorted 0 59 (39.6%)a 38 (52.1%)a 1 98 (42.2%)a

Type I 0 19 (32.2%)b 28 (73.7%)b 0 47 (47.9%)b

Type II 0 15 (25.4%)b 6 (15.8%)b 0 21 (21.4%)b

Type III 0 25 (42.4%)b 4 (10.5%)b 1 30 (30.7%)b

BVM: bag-valve-mask; ETT: endotracheal tube; SGA: supraglottic airway.
NA: not available.

a Referred to the total number of episodes in the category (column).
b Referred to the total number of distorted episodes in the category (column).

Table 2
Algorithm performance (Se and PPV) in the detection of hyperventilation alarms; n (total) is the number of ventilation rate per minute measurements annotated in the test
subset, and n is the number of annotated ventilation rate per minute measurements above the hyperventilation threshold.

Group n (total) Alarms (>10 min−1) Alarms (>15 min−1) Alarms (>20 min−1)

n Se (%) PPV (%) n Se (%) PPV (%) n Se (%) PPV (%)

Total 31 760 17 901 99.1 92.6 8966 98.1 87.2 3567 95.1 86.8
Clean 17 413 10 511 99.7 98.0 5710 99.5 96.8 2502 97.7 95.1
Distorted 14 347 7390 98.2 85.8 3256 95.7 73.9 1065 88.8 70.9

Type I 7167 3398 98.9 90.8 1275 95.9 79.5 431 88.4 82.5
Type II 2826 1837 99.8 96.6 1120 99.2 92.1 355 97.2 86.0
Type III 4354 2155 95.5 72.1 861 90.9 53.2 279 78.9 46.6

plateau to the baseline impeded the reliable detection of CO2 con-
centration changes associated to a true ventilation.

Ventilation rates above the recommended 10 breaths per
minute were common in our database, with a 56.4% of annotated
hyperventilation alerts. Regardless the established hyperventila-
tion threshold, sensitivity for alarm detection was high for clean
and also for distorted cases in general. However, the presence of
artefact caused an increase in the number of false hyperventila-
tion alarms, and this was especially noticeable for type III cases.
This shows the tendency of the algorithm to overestimate ventila-
tion rate, as the presence of artefact caused many false ventilation
detections.

The incidence and nature of the artefact has not been studied in
the literature. To our knowledge, only one prior study has examined
the impact of chest compression artefact on the capnogram during
OOH CPR [19]. In this study only published as a conference abstract,
Idris et al. reported that 73% (154/210) of the episodes were dis-
turbed by oscillations due to chest compressions. In our study, we
found a lower incidence (42%) of corrupted capnograms for a sim-
ilar number of OOH records (232 vs. 210). This difference could
be partly explained by different annotation criteria for corrupted
episodes. Nevertheless, characterization and analysis of potential
effects of such artefact on the interpretation of the capnogram are
warranted.

We quantitatively confirmed the pure sine wave nature of the
chest compression artefact, with a frequency matching the chest
compression rate. This suggests that the artefact is directly caused
by chest compressions during CPR. We consider that chest com-
pressions cause incidental ventilations of sufficient volume to alter
the CO2 concentration sensed by the capnography device, distort-
ing the capnogram. Few studies have documented low ventilation
volumes incidental to chest compressions [20,21]. These volumes
were lower than the anatomical dead space, and therefore gen-
erated limited gas exchange. Additionally, in our study artefact
appeared when advanced airway was used, and was more predomi-
nant for supraglottic (King LT-D). However, the most compromising
type III artefact was more pronounced with endotracheal intuba-
tion. Differences in the seal position and the cuff size might explain
this, but more studies are necessary to interpret these findings.

One of the hypothesis we will explore in further research is that
automatic ventilation detection would improve if the artefact could
be successfully removed from the capnogram. Designing filtering
approaches for this aim will be our next step, exploring different
alternatives. We will focus on the preservation of the capnogram
waveform after filtering in order to allow the clinical interpretation
of the signal.

Our study has several limitations. First, almost a quarter of
episodes were discarded due to poor signal quality. Unreliable
capnogram represented the 10% of the study dataset. Recordings
of unreliable capnograms would limit its use to determine venti-
lation rate. In addition, our gold standard for ventilation detection
was derived from the TI signal, and the annotation of TI fluctu-
ations caused by ventilations is not straightforward during CPR.
We had to discard several episodes because of unreliable TI signal
(noisy, disconnections) and for those included in the study, filtering
was needed to remove the artefact due to chest compressions from
the TI signal. Unfortunately, no other reference signal (such as air-
way pressure or volume) was available to be used as an alternative
gold standard. The inability to control for tidal volume was thus a
clear limitation of the study. Another limitation is that ventilations
corresponding with capnogram amplitudes below the algorithm
amplitude threshold (3 mmHg) could not be detected. However, in
our data that was rarely observed. Finally, data came from a single
EMS system and so results may not be generalizable. Further stud-
ies are needed to clarify our findings with other EMS agencies and
monitor–defibrillators.

Conclusions

The important role of capnography waveform in ventilation rate
monitoring and hyperventilation prevention during CPR is compro-
mised by the high-incidence of chest compression artefact. Among
the different locations in which it may present, artefact spanning
from the plateau to the baseline strongly affected ventilation detec-
tion, and caused a high number of false hyperventilation alarms.
Further research could explore filtering techniques to suppress
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chest compression artefact in order to improve ventilation mon-
itoring for corrupted capnograms.
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increase in partial pressure end-tidal carbon dioxide (PETCO2) at the moment
of return of spontaneous circulation. J Emerg Med 2010;38(5):614–21.

[8]. Soar J, Nolan JP, Böttiger BW, et al. European Resuscitation Council guidelines
for resuscitation 2015. Section 3. Adult advanced life support. Resuscitation
2015;95:100–47.

[9]. Touma O, Davies M. The prognostic value of end tidal carbon dioxide during
cardiac arrest: a systematic review. Resuscitation 2013;84(11):1470–9.

[10]. Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-
threatening problem during cardiopulmonary resuscitation. Crit Care Med
2004;32(9):S345–51.

[11]. O’Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients? Resuscita-
tion 2007;73(1):82–5.

[12]. Maertens VL, De Smedt LE, Lemoyne S, et al. Patients with cardiac arrest
are ventilated two times faster than guidelines recommend: an observa-
tional prehospital study using tracheal pressure measurement. Resuscitation
2013;84(7):921–6.

[13]. Aufderheide TP, Sigurdsson G, Pirrallo RG, et al. Hyperventilation-
induced hypotension during cardiopulmonary resuscitation. Circulation
2004;109(16):1960–5.

[14]. Gazmuri RJ, Ayoub IM, Radhakrishnan J, Motl J, Upadhyaya MP. Clinically plau-
sible hyperventilation does not exert adverse hemodynamic effects during CPR
but markedly reduces end-tidal PCO2. Resuscitation 2012;83(2):259–64.

[15]. Edelson DP, Eilevstjønn J, Weidman EK, Retzer E, Hoek TLV, Abella BS. Capnog-
raphy and chest-wall impedance algorithms for ventilation detection during
cardiopulmonary resuscitation. Resuscitation 2010;81(3):317–22.

[16]. Alonso E, Ruiz J, Aramendi E, et al. Reliability and accuracy of the thoracic
impedance signal for measuring cardiopulmonary resuscitation quality metrics.
Resuscitation 2015;88:28–34.

[17]. Takla G, Petre JH, Doyle DJ, Horibe M, Gopakumaran B. The problem of artifacts
in patient monitor data during surgery: a clinical and methodological review.
Anesthes Analg 2006;103(5):1196–204.

[18]. Herry CL, Townsend D, Green GC, Bravi A, Seely AJE. Segmentation and classi-
fication of capnograms: application in respiratory variability analysis. Physiol
Meas 2014;35(12):2343.

[19]. Idris AH, Daya M, Owens P, et al. High incidence of chest compression oscil-
lations associated with capnography during out-of-hospital cardiopulmonary
resuscitation. Circulation 2010;122:A83.

[20]. Idris AH, Banner MJ, Wenzel V, Fuerst RS, Becker LB, Melker RJ. Ventila-
tion caused by external chest compression is unable to sustain effective gas
exchange during CPR: a comparison with mechanical ventilation. Resuscitation
1994;28(2):143–50.

[21]. Vanwulpen M, Wolfskeil M, Duchatelet C, Monsieurs K, Idrissi SH. Quantifying
inspiratory volumes generated by manual chest compressions during resusci-
tation in the prehospital setting. Resuscitation 2017;118:e18.

88 publications



Clinical paper

Chest compressions induce errors in end-tidal carbon
dioxide measurement

Mikel Leturiondo a,*, Sofı́a Ruiz de Gauna a, José Julio Gutiérrez a, Daniel Alonso b,
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Abstract

Background: Real-time measurement of end-tidal carbon dioxide (ETCO2) is used as a non-invasive estimate of cardiac output and perfusion during

cardiopulmonary resuscitation (CPR). However, capnograms are often distorted by chest compressions (CCs) and this may affect ETCO2

measurement. The aim of the study was to quantify the effect of CC-artefact on the accuracy of ETCO2 measurements obtained during out-of-hospital

manual CPR.

Methods: We retrospectively analysed monitor-defibrillator recordings collected by two advanced life support agencies during out-of-hospital cardiac

arrest. These two agencies, represented as A and B used different side-stream capnometers and monitor-defibrillators. One-minute capnogram

segments were reviewed. Each ventilation within each segment was identified using the transthoracic impedance signal and the capnogram. ETCO2

values per ventilation were manually annotated and compared to the corresponding capnometry values stored in the monitor-defibrillator. Ventilations

were classified as distorted or non-distorted by CC-artefact.

Results: A total of 407 1-min capnogram segments from 65 patients were analysed. Overall, 4095 ventilations were annotated, 2170 (32.4% distorted)

and 1925 (31.8% distorted) for agency A and B, respectively. Median (IQR) unsigned error in ETCO2measurement increased from 1.5 (0.6�3.1)% for

non-distorted to 5.5 (1.8�14.1)% for distorted ventilations; from 0.7 (0.3�1.2)% to 3.7 (1.0�9.9)% in agency A and from 2.3 (1.2�3.9)% to 8.3 (3.9

�19.5)% in agency B (p < 0.001). Errors were higher than 10 mmHg in 9% and higher than 15 mmHg in 5% of the distorted ventilations.

Conclusion: CC-artefact causes ETCO2 measurement errors in the two studied devices. This suggests that capnometer algorithms may need to be

adapted to reliably perform in the presence of CC-artefact during CPR.

Keywords: Cardiopulmonary resuscitation, Advanced life support, Capnometry, Waveform capnography, End-tidal CO2, Chest compressions,

Ventilations

Introduction

Capnometry includes the measurement of the end-tidal carbon
dioxide (ETCO2) value in the exhaled air during the breathing cycle,
described as the partial pressure of carbon dioxide (PCO2) at the end

of expiration.1 Since 2010, advanced life support (ALS) resuscitation
guidelines2,3 have recommended the adoption of capnometry and
continuous waveform capnography as a noteworthy non-invasive
monitoring tool during cardiopulmonary resuscitation (CPR) that
reflects ventilation and perfusion of the patient.1 The value of
waveform capnography for monitoring the effectiveness of CPR
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during out-of-hospital cardiac arrest (OHCA) was then further
emphasized in an expert consensus statement.4

Waveform capnography (the capnogram) has currently several
important roles during cardiac arrest.5 It can be used to assess the
correct placement of the airway tube6 and for ventilation rate
monitoring.7�9 Furthermore, monitoring of ETCO2 may allow for the
assessment of the quality of CPR,10,11 early detection of ROSC10,12,13

and prediction of survival from cardiac arrest.14�16 Accuracy of
measured ETCO2 values is essential for the validity and reliability of
clinical decision rules that might be used during the resuscitation
attempt. For a reliable automated ETCO2 measurement during CPR,
all phases of the respiratory cycle must by identifiable in the
capnogram. However, oscillations induced in OHCA capnograms at
the same rate of chest compressions (CC) are frequent17 and these
can obscure capnogram measurements during chest compres-
sions.18,19 In a letter to the editor, Raimondi et al. described the
differences observed between the capnometry numbers and the
values that could be inferred by the observation of the CO2

waveform.20 They concluded that the displayed ETCO2 value was
underestimated and changed continuously in the presence of chest
compressions, and suggested looking at the curves for interpretation.
However, CO2 waveform distortion caused by chest compressions
could lead to a lack of confidence in the interpretation of the signal.

This phenomenon was previously assessed in an observational
study aimed at characterizing the CC-artefact in OHCA capno-
grams.19 This study quantified the negative effect of the CC-artefact
on the automated detection of ventilations. Chest compression
fluctuations in the capnogram caused false ventilation detections. We
observed that these oscillations also made detection of the ends of
expirations very difficult. Thus, we hypothesized that the accuracy and
reliability of the measured ETCO2 obtained in the presence of CC-
artefact could be inaccurate, which is in line with the observations
made by Raimondi et al.20

The aim of the study was to quantify the impact of CC-artefact on
ETCO2 measurement provided by two different CO2 detectors during
manual CPR. For that purpose, we collected OHCA recordings from
two ALS agencies, each one using a different brand of CO2 detector
and monitor-defibrillator. We manually annotated the ETCO2 values
using the capnogram waveforms and compared them with the
capnometry values obtained directly from the recordings.

Methods

Data collection

Episodes included in the study were obtained from two OHCA
databases. Several episodes were extracted from a large database of
OHCA episodes collected by Tualatin Valley Fire & Rescue (TVF&R),
an ALS first response emergency medical services (EMS) agency
serving eleven incorporated cities in Oregon, USA. Other episodes
were extracted from a database collected by the ALS of Emergentziak-
Osakidetza, the EMS system of the Basque Country (Spain). Data
collections were approved by the Oregon Health & Science University
(OHSU) Institutional Review Board (IRB00001736) and by the Ethical
Committee of Research with Medicines of the Basque Country
(PI2018003), respectively. Each agency used different side-stream
capnography technology and monitor-defibrillators: Heartstart MRx
(Philips, USA) equipped with MicrostreamTM (Oridion, Israel) capnog-
raphy technology and Reanibex 500 EMS (Bexen Cardio, Spain)

equipped with Masimo ISATM CO2 (Masimo, Sweden) capnometer,
respectively. Endotracheal tube (ETT) or supraglottic King LT-DTM

devices were used to secure the airway. After the airway was secured,
continuous CCs and ventilations were provided manually.

Episodes contained no personal information. Only recordings
containing concurrent capnogram, compression depth (CD) and
transthoracic impedance (TI) signals were included in the study.
Signal recordings were exported to a common format using Matlab
(Mathworks, USA). Additionally, capnometry values and their
corresponding timestamps were extracted from the monitor-defibril-
lator recordings.

Segment selection and data annotation

Episodes were examined and annotated by ML and reviewed by JG
and SRG, all with experience in analysing monitor-defibrillator signals.
A custom-made program was used to concurrently visualize the three
signals and the capnometry events extracted from each recording.
Intervals with signal disconnections or noise were discarded. Within
each episode, capnogram segments containing series of complete
ventilations of approximately 1-min length were extracted. A 1-min
interval was used in order to have a sufficient number of ventilations for
averaging our annotations, and to accommodate any undisclosed
differences in the proprietary algorithms used to record the ETCO2

values to which we compared our annotations. Only segments with
regularly reported capnometry events were included. The CD signal
was used as the reference to determine when CCs were provided.
Two types of segments were identified: distorted segments, when
evident CC-artefact appeared in the whole interval; and non-distorted
segments, with no ventilation distorted by CC-artefact in its entire
duration.

Compressions and ventilations induce fluctuations in the TI
signal.21,22 TI increases during inspiration due to the rise in the gas
volume of the chest, therefore ventilations induce slow fluctuations in
the TI signal around patient's impedance baseline. In order to enhance
slow fluctuations caused by ventilations, a low-pass filter was applied
to the raw TI signal to suppress fast oscillations caused by chest
compressions. Each individual ventilation was identified using both
the filtered TI signal and the original capnogram. Fig. 1 shows an
example of non-distorted segment (a) and an example of distorted
segment (b), showing the TI signal (top panel) and the capnogram. In
the top panel, the low frequency TI component allowing tracking of
ventilations is depicted in blue superimposed to the raw TI signal in
grey. As shown in the bottom panel, ventilations were annotated at the
instant corresponding to the peak in the TI confirmed by a zero level in
the capnogram (green dashed vertical lines). Each ventilation was
classified as distorted or non-distorted by CC-artefact using the
criteria applied in a previous work. 19 Finally, ETCO2 level was
manually annotated as the maximum CO2 level in each ventilation
cycle (red dots).23

Data analysis

Differences between the annotated and the capnometer ETCO2 value
per each ventilation in the segment were analysed. Measurement
error was defined as the difference between the extracted and the
annotated ETCO2 values. Data were reported as median (IQR) since
no distribution passed the Lilliefors normality test. Comparison
between groups was assessed using the Wilcoxon rank sum test.
p-values <0.05 were considered significant.
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Table 1 – Summary of the characteristics of the dataset. Statistics are reported as median (IQR). N/A stands for Not
Available.

Agency A Agency B Global

Episodes 47 18 65
1-min segments 237 170 407
Distorted 104 (43.8%) 50 (29.4%) 154 (37.8%)

Duration (s) per segment 60.2 (57.5�63.9) 60.8 (58.6�63.4) 60.6 (58.1�63.6)
Num. ventilations 2170 1925 4095

Distorted 703 (32.4%) 612 (31.8%) 1315 (32.1%)
Vent. per segment 8 (6�12) 11 (10-13) 10 (7�12)
Vent. rate per segment (vpm) 8.2 (6.1�12.1) 10.9 (9.6�12.3) 9.9 (7.4�12.2)
Mean ETCO2 per segment (mmHg) 40.6 (26.5�51.1) 16.9 (13.2-22.4) 25.7 (16.5�44.6)
Airway type

ETT 104 170 274
King LT-DTM 113 � 113
N/A 20 � 20

Fig. 1 – Example of identification of non-distorted (a) and distorted (b) 1-min capnogram segments. Top panel: The raw
TI signal is depicted in grey, showing CC activity (fast oscillations) and ventilation activity (slow oscillations). The low-
pass filtered TI signal (only ventilation activity) is depicted in blue. Bottom panel: capnogram signal where each
ventilation is marked with a green vertical dashed line. Manually annotated ETCO2 values are depicted with red dots.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Results

Henceforth, results from each data subset (agency) are identified as
from agency A and agency B. Thus, we avoid tracking of the
capnometer and monitor-defibrillator type associated to each subset.

Data characteristics

Episodes from agency A were collected from 2016 through 2017 and
episodes from agency B were collected from 2018 to 2019. All
available episodes from agency B by the time we initiated our study
were analysed (n = 26). Since the dataset from agency A was much
larger, we arbitrarily selected twice the former number. Five episodes
from agency A and 8 from agency B were discarded since they did not
contain all concurrent signals and/or capnometry values. The included
episodes had a median (IQR) duration of 19 (13�27) min,
corresponding to a total capnogram duration of 1303 min (A:
947 min, B: 355 min).

Table 1 summarises the characteristics of the database. A total of
407 1-min segments from 65 episodes comprising 4095 ventilations,
with a median (IQR) of 10 (7�12) ventilations per segment, were
included in the study. Overall, 37.8% of the segments were distorted
by CC-artefact, corresponding to 32.1% distorted ventilations.
Segments from agency A had a total of 2170 ventilations (32.4%
distorted), whereas segments from agency B had 1925 ventilations
(31.8% distorted). Median (IQR) ventilation rate was 9.9 (7.4�12.2)
ventilations per minute (vpm). Despite ventilation rates were higher for
agency B (p < 0.001), both were close to the guidelines recommen-
dation of 10 vpm after placement of an advanced airway.24,25 Mean
ETCO2 per segment was higher for agency A (p < 0.001), with a
median (IQR) of 40.6 (26.5�51.1) mmHg, than for agency B, with a
median (IQR) of 16.9 (13.2�22.4). Airway type was ETT in 67.3% of
these segments and supraglottic King LT-DTM in 27.8% (not used by
agency B). Airway type was unknown for 4.9% of the segments.

Analysis of ETCO2 errors

Fig. 2 shows the distributions of the unsigned error for non-distorted
and distorted ventilations, in percentage (top panel) and in mmHg
(middle panel), for each agency and for all analysed ventilations.
Median unsigned error in ETCO2 measurement for all non-distorted
ventilations was 1.5 (0.6�3.1)%; it was 0.7 (0.3�1.2)% for agency A
and 2.3 (1.2�3.9)% for agency B. In pressure units, median unsigned
error was 0.4 (0.2�0.6) mmHg; 0.3 (0.1�0.5) mmHg for agency A and
0.4 (0.2�0.7) mmHg for agency B; no statistical differences were
found between agencies (p = 0.41). However, errors significantly
increased for distorted ventilations (p < 0.001). Global median error
was 5.5 (1.8�14.1)%; 3.7 (1.0�9.9)% for agency A and 8.3 (3.9
�19.5)% for agency B. In pressure units, median unsigned error was
1.3 (0.5�3.6) mmHg, 1.2 (0.4�4.1) mmHg for agency A and 1.2 (0.6
�2.9) mmHg for agency B (p < 0.001). Globally, the error was higher
than 10 mmHg in 9% of the distorted ventilations and higher than
15 mmHg in 5% of the distorted ventilations. Bottom panel in Fig. 2
shows the error with respect to the annotated ETCO2 range. As
expected, error in mmHg increased with the rise of ETCO2.

Fig. 3 shows one scatter plot per agency depicting the
measurement error in mmHg as a function of the annotated ETCO2

value per ventilation. Errors for non-distorted and distorted ventila-
tions are depicted with red dots and blue circles, respectively. Error

dispersion increased substantially in the presence of CC-artefact, with
values close or even exceeding 20 mmHg.

Finally, we found no significant differences in the ETCO2

measurement error with respect to the airway type, ETT or supraglottic
King LT-DTM (p = 0.28).

Case examples

Fig. 4 (a) shows an example of a clean capnogram with ETCO2 values
reported correctly by the monitor-defibrillator. Panels (b) and (c) in
Fig. 4 illustrate how the measurement errors increase in the presence
of CC-artefact. Annotated ETCO2 values are depicted with green dots
and values extracted from the monitor-defibrillator with red triangles.
Green vertical dashed lines separate ventilation cycles. Middle panel
shows several false detections due to CC-artefact within the
ventilation. Oscillations in the capnogram seem to be confounded

Fig. 2 – Distribution of the unsigned error in ETCO2

measurement in percentage (top panel) and in mmHg
(middle panel), for each agency (dataset) and globally.
Error was computed as the difference between the
annotated and the reported capnometry value per
ventilation. non-D: non-distorted segments. D: distorted
segments. Bottom panel: distribution of the unsigned
error in mmHg clustered by annotated ETCO2 range. The
boxes show the median and IQR and the whisker shows
the last datum within the �1.5 IQR.
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with fast ventilations. Fig. 4(c) depicts a typical occurrence where
ETCO2 values quickly alternate between 20 mmHg (true value) and
10 mmHg (artefact-originated). These rapid changes could confound
clinicians during capnometry assessment.

Discussion

The clinical use of real-time waveform capnography during CPR
24,25 could be seriously compromised since CO2 waveform is often
distorted by chest compressions.17,19 Observational human
studies have reported that ventilation volumes incidental to chest
compressions are smaller than the anatomical dead space18,26�28

suggesting little change in the alveolar PCO2. However, such low
volumes are sufficient to produce oscillatory patterns in the
capnogram that compromise capnometry accuracy.20 It has been
demonstrated that the presence of CC-artefact diminishes the
accuracy of automated capnogram-based ventilation detectors.19

This may have a negative impact on the guidance of ventilation
rate during CPR. More importantly, the capnogram tracing
becomes difficult to interpret when obscured by CC-artefact;
clinicians might then rely on the capnometry numbers displayed
on the monitor screen. However, the reliability of these numbers
has been also questioned.20

In this retrospective observational study, we quantified the
influence of CC-artefact in the automated measurement of ETCO2

during OHCA. After extensive analysis of the extracted capnograms,
an overall 37.8% of 1-min segments were distorted by CC-artefact.
We demonstrated that the presence of CC-artefact also affects the
ETCO2measurements reported by different monitor-defibrillators and
capnometers from different manufacturers. For capnograms without

Fig. 3 – ETCO2 measurement error (difference between the extracted and the annotated values) as a function of the
annotated value per ventilation. Errors for non-distorted and distorted ventilations are depicted with red dots and blue
circles, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4 – Examples of the negative effect of CC-artefact in
the ETCO2 measurement. (a) Example of correctly
reported ETCO2 values. (b) Example of several false
ETCO2 values within each ventilation (red triangles)
caused by CC-artefact. (c) Measurement alternation
between 20 mmHg (true) and 10 mmHg (false) within
each ventilation. (For interpretation of the references to
color in this figure legend, the reader is referred to the
web version of this article.)
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CC-artefact, the obtained unsigned error was 0.4 (0.2�0.6) mmHg.
However, these errors increased in the presence of the CC-artefact to
1.3 (0.5�3.6) mmHg. More importantly, we found errors exceeding
10 mmHg in 9% of the distorted ventilations and exceeding 15 mmHg
in 5% of the distorted ventilations. In some 1-min intervals, we found
errors as high as 20 mmHg. Finally, since we found no error
differences between the use of ETT or supraglottic King LT-DTM to
secure the airway, the airway type does not appear to be an
influencing factor.

Fast oscillations provoke continuous and significant errors in
the algorithm designed to estimate a single ETCO2 value per
ventilation. CC-artefact provokes many false ventilation detections
with a corresponding erroneous ETCO2 value. This is illustrated in
the examples shown in Fig. 4, panels b and c. If ETCO2 values
were displayed on the monitor screen, clinicians would see the
numbers changing rapidly, and ETCO2 monitoring as well as
clinical decision rules could be seriously compromised.20 The
scatter plot depicted in Fig. 3 suggests that CC-artefact induces
errors in both directions although negative errors (ETCO2

underestimation) are more profound. ETCO2 values lower than
real ones might lead to earlier termination of resuscitation whereas
positive errors might lead to prolonged resuscitation efforts and
possibly hospital transport for OHCA. Finally, segments from
agency A presented larger errors than those from agency B. This
could be in part explained by the higher ETCO2 values per
ventilation in the subset of agency A. This is illustrated in Fig. 3
where larger errors were associated with annotated values greater
than 40 mmHg.

Our main conclusion is that the decrease in ETCO2 measurement
accuracy is related to the characteristics of the proprietary algorithms
inside CO2 devices. Commercial capnometers perform well during
resuscitation when there is no artefact induced by chest compressions
in the capnogram. In this case, ventilations are accurately detected
and reported ETCO2 values are reliable. However, we hypothesize
that detection algorithms have not been designed to distinguish
between actual ventilations and pseudo-ventilations caused by chest
compressions.

Although statistical differences were found in ventilation rate
and ETCO2 values between agencies, we found no statistical
differences in measurement errors during normal operating (i.e.
during absence of CC-artefact). However, errors were slightly
higher for agency B in the presence of CC-artefact. In this case,
differences between agencies could be related with how each
proprietary algorithm reports ETCO2 values during CC-artefact.
One algorithm seemed to provide an average ETCO2 value from
the previous ventilations instead of the instantaneous ETCO2

value. Averaging could reduce the impact of CC-artefact in the
ETCO2 measurement.

We propose two main approaches to address the problem of
erroneous computation of ETCO2 in the presence of CC-artefact.
One approach could be to enhance current capnometer detection
algorithms in order to avoid confounding fast oscillations caused
by CC-artefact with true ventilations. Another approach could be to
preprocess the capnogram to remove the oscillations, e.g. with an
envelope-based technique.29 Since the incidence of CC-artefact is
significant and there is still lack of knowledge about how to avoid
the artefact, we suggest that commercial capnometers and
monitor-defibrillator devices should be adapted to improve the
accuracy and reliability of ETCO2 measurements during
resuscitation.

Limitations

This study has several limitations. We found considerably fewer
eligible capnogram segments per episode from agency A than from
agency B. Due to the strict inclusion criteria, we could only use 25% of
the total time in recordings from agency A and 50% in the recordings
from agency B. Segments were required to have either not distortion at
all in the whole minute or being severely distorted most of the time. In
addition, many segments from agency A did not have the
corresponding capnometry values stored in the monitor-defibrillator,
so they were not included in the analysis. In addition, we did not have
information about the details of the measurement capnometer
algorithm or the frequency of data storage in the monitor-defibrillator,
since those are proprietary to the device manufacturer. Our
conclusions are derived from the available capnometry events from
two representative monitor-defibrillator devices, but additional
research with other manufacturers would contribute to the generaliz-
ability of these results.

Conclusion

Currently, ETCO2 measurement is the only widespread non-invasive
clinical tool for estimating blood flow and organ perfusion during
resuscitation. However, the presence of CC-artefact increased
ETCO2 measurement errors in the analysed CO2 detector devices.
This finding suggests that capnometer algorithms need to be adapted
to reliably perform during CPR, avoiding false ventilation detections
when CC-artefact oscillations appear in the capnogram.
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Purpose of the study: Chest compressions have been shown
to provide limited passive ventilation during adult out-of-hospital
cardiac arrest (OHCA) [1]. In the only available study, data was gath-
ered after arrival of the patient in the emergency department. In the
prehospital setting, patients have greater chest and lung compli-
ances [2]. Currently available respiratory monitors are not suitable
for prehospital use [3]. Our aim was to develop a device enabling
quantification of inspiratory volumes generated by manual chest
compressions during prehospital cardiopulmonary resuscitation.

Materials and methods: A medical-grade airflow sensor
(SFM3200-AW, Sensirion AG, Switzerland) was linked to a battery-
powered microcomputer. This device was used by a prehospital
medical team during resuscitation of adult patients with OHCA, at
the discretion of the attending physician. Immediately after endo-
tracheal intubation, the airflow sensor was placed between the
endotracheal tube and the mechanical ventilator (Oxylog 3000,
Dräger AG, Germany). Manual chest compressions were performed.
The chest compressions registered in the initial period follow-
ing endotracheal intubation, during which mechanical ventilations
were not yet being performed, were analysed.

Results: The device was used in six adults (3 male) with OHCA,
aged 45–84. Return of spontaneous circulation was achieved in
three patients. Chest compressions and mechanical ventilations
were identifiable in the airflow data. We analysed 75 compressions
without mechanical ventilations. The median number of com-
pressions analysed per patient was 10 (range 8–21). The median
compression rate was 123/min (range 115–150/min). The median
inspiratory volume generated by manual chest compressions was
15 ml (range 4–62 ml).

Conclusion: Using a novel device, we could quantify inspiratory
volumes in patients with OHCA. In the small number of patients
included in this feasibility study, chest compressions performed
in the prehospital setting generated limited inspiratory volumes.
These volumes were not higher than the anatomical dead space,
and therefore generated limited gas exchange [1,3,4].
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Introduction: Resuscitation guidelines emphasize the impor-
tance of capnography for monitoring ventilation during cardiopul-
monary resuscitation (CPR). A high incidence (above 70%) of chest
compression (CC) induced oscillations in the capnogram has been
reported. CC oscillations are of high frequency and overlap the
capnogram (Fig. 1b–d). Thus, we hypothesized that they could
affect the reliability of capnogram-based ventilation guidance.

Fig. 1. Examples of OOH capnograms.

Purpose of the study: To evaluate the influence of CC oscilla-
tions in the performance of a capnogram-based ventilation detector
during out-of-hospital (OOH) CPR.

Materials and methods: Data were extracted from 209 OOH
records from a cardiac arrest registry maintained by TVF&R Emer-
gency Medical System (OR, USA). For each record, we analysed
the continuous capnogram and the transthoracic impedance signal,
which was used to annotate ventilations. Records with presence of
CC oscillations in the capnogram corresponding to at least 50% of
the total duration of CC intervals were classified as corrupted. Three
different types of CC oscillations were identified: observed primar-
ily in the plateau phase of the capnogram (type I, Fig. 1b), in the
baseline (type II, Fig. 1c), and from the plateau to the baseline (type
III, Fig. 1d). We evaluated the sensitivity (Se) and the positive pre-
dictive value (PPV) of an algorithm for ventilation detection based
solely on the continuous analysis of the capnogram.

Results: 47467 ventilations were annotated. Detector results
are reported in Table 1.

Table 1
Ventilation detector performance.

Record type n Se (%) PPV (%)

Non-corrupted 132 99.5 99.2
Corrupted 77 90.6 90.7

Type I 29 97.4 97.3
Type II 20 98.9 98.1
Type III 28 75.7 76.6

Conclusions: Detector’s performance degraded in the presence
of chest compressions. Development of signal processing tech-
niques to suppress CC oscillations in the capnogram could be useful
to�improve�automated�ventilation�detection,�limiting�the�need�for�
interruptions�in�compressions.
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Abstract 

During cardiopulmonary resuscitation, excessive 
ventilation rates reduce the chance of survival. We have 
developed a simple method to automatically detect 
ventilations based on the analysis of the capnography 
signal recorded with monitor-defibrillators. We used 60 
out-of-hospital cardiac arrest episodes that contained both 
clean and chest compressions (CC) corrupted 
capnograms. The detection algorithm first identified 
ventilation candidates in the capnography signal. Then, it 
characterized every candidate by features related to 
inspiration and expiration durations, and finally a decision 
system based on static thresholds was applied in order to 
determine whether each candidate corresponded to a true 
ventilation. Sensitivity (Se) and positive predictive value 
(PPV) for the clean set (3905 ventilations) were 99.8% and 
99.1%, respectively. With the corrupted set (6778 
ventilations) Se and PPV decreased to 85.3% and 85.6%, 
respectively. For the whole test set (10683 ventilations) Se 
and PPV were 90.6% and 90.6%, respectively. Detector’s 
performance clearly degraded when applied to corrupted 
episodes, this demonstrates the need for techniques to 
suppress CC artefact to improve ventilation detection. 

1. Introduction

Cardiac arrest is the sudden cessation of the heart’s 
effective pumping function. Medical treatment of cardiac 
arrest involves early cardiopulmonary resuscitation (CPR) 
and early defibrillation. During CPR, ventilations and 
chest compressions (CC) provide oxygen to the lungs and 
help oxygenated blood circulate to the vital organs. High-
quality CPR is an important factor for the successful 
resuscitation of cardiac arrest patients. Current 
resuscitation guidelines recommend providing continuous 
CC and ventilations with a ventilation rate around 10 per 
minute for intubated patients in cardiac arrest [1]. 

Nevertheless, hyperventilation is often reported for in-
hospital and out-of-hospital cardiac arrest (OHCA) 
interventions [2,3]. Previous animal studies revealed that 
excessive ventilation rates resulted in decreased coronary 
perfusion pressures and poor outcomes [4]. 

Continuous guidance of satisfactory ventilation rate is 
usually achieved from the analysis of the capnography 
signal. Figure 1 depicts two capnograms in which two 
ventilation cycles can be observed. Capnography signal 
fluctuates during ventilation because of changes in the CO2 
partial pressure. The partial pressure increases during 
expiration (exhaled air contains more CO2) and decreases 
during inspiration. However, the presence of high-
frequency oscillations induced by CC in the capnogram is 
frequent during resuscitation [5]. An example of a 
capnogram corrupted by CC artefact is shown in Figure 
1B. Fast oscillations caused by the rhythmic compression 
of the chest overlap the capnogram waveform, highly 
distorting the signal. The presence of CC artefact may 
affect the reliability of capnogram-based ventilation 
detection [6]. 

Figure 1. OHCA capnography signal segments. A) Clean 
waveform; B) Capnogram corrupted by oscillations 
induced by CC. 
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In this study, we present a simple method for automated 
detection of ventilations during CPR, based on the analysis 
of the capnography signal acquired by monitor-
defibrillators during OHCA interventions. 

2. Materials and methods

2.1. Database description and annotation 

The dataset used in this study was a subset (60 episodes) 
of a large database collected between 2011 and 2016 
maintained by Tualatin Valley Fire & Rescue (TVF&R), 
an advanced life support first response Emergency Medical 
Services (EMS) agency (Oregon, USA). Episodes were 
recorded using Heartstart MRx monitor-defibrillators 
(Philips USA) equipped with a real-time CPR feedback 
system (QCPR, Laerdal Medical, Norway). For each 
episode, we extracted three concurrent signals: the 
transthoracic impedance (TI) signal, acquired from the 
defibrillation pads; the compression depth (CD) signal 
obtained from the QCPR system; the capnogram, acquired 
using sidestream technology (Microstream, Oridion 
Systems Ltd., Israel). 

Signals were reviewed and annotated using a custom-
developed Matlab program. Capnograms were time-
shifted to compensate delay with respect to CD and TI 
signals. Three biomedical engineers independently 
classified the capnograms as clean or corrupted using the 
CD signal. A capnogram was classified as corrupted if 
evident CC artefact appeared during more than 1 min of 
the CC time. Experts also annotated the position of each 
ventilation using the TI signal as the reference. TI signal 
was low-pass filtered (2nd-order Butterworth, cut-off 
frequency of 0.6 Hz) to remove oscillations caused by CC. 
Thus, slow oscillations caused by ventilations could be 
more clearly observed in the filtered TI. Figure 2 shows an 
example of the annotation process. Ventilations were 
annotated in the position corresponding to a raise in the TI, 
associated to the inspiration onset (Figure 2, vertical lines). 
Filtered TI (top panel) appears overlapped to the raw TI 
(where both oscillations caused by CC and by ventilations 
are observed).  

Figure 2. Example of ventilation annotation.  

The resulting annotations were used as the gold standard 
to test the reliability of the automated capnogram-based 
ventilation detection algorithm. Clean episodes (30) were 
randomly and equally split into a training and a test set. 
Corrupted episodes were added to the test set. 

2.2. Capnogram-based ventilation detection 

Ventilations produce identifiable variations in the 
capnogram. A capnogram cycle is composed of a short 
inspiration time (starting with a CO2 rapid fall to zero) and 
a longer expiration time (slow raising expired CO2 
followed by a plateau). The basis of the ventilation 
detection algorithm is the identification of the changes 
between inspiration and expiration phases.  

The flowchart of the algorithm is presented in Figure 3, 
and can be described in three main steps: 

Figure 3. Flowchart of the ventilation detection algorithm. 

• Candidate identification: the algorithm searches
for abrupt upstrokes, , and downstrokes, , as 
potential onsets of the expiratory and inspiratory 
phases, detected when the amplitude of the 
capnogram exceeds or goes below a fixed 
threshold,  

• Feature extraction: every candidate is
characterized by two features extracted from the 
capnogram signal: 

STATE 0 (i = 1)
Search upstroke of

first likely ventilation
(CO2 > Thamp)

tiup ← t

Search downstroke
(CO2 < Thamp)

tidw ← t

Search upstroke
of next likely

ventilation ti+1
up ← t

ti+1
up − tidw > Thin

Search downstroke
tidw ← t

tidw − tiup > Thex

Ventilation
detected
tv ← tidw

i ← i + 1

no

yes

yes

no
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− : Duration of the expiratory phase of a
ventilation,  

− : Duration of the inspiratory phase of
the next ventilation,  

• Candidate classification: each candidate is
classified as true ventilation if the computed 
parameters are above certain thresholds. We 
applied static thresholds for the expiratory phase 
duration ( ) and the inspiratory phase duration 
( ). 

Figure 4 provides a graphical example of the features 
computed by the algorithm. To take account for observed 
“double inhalation” effects (Figure 4B), the algorithm 
discards any candidate for which the inspiratory phase  
is below , and searches for the next downstroke and 
upstroke until  exceeds . 

Figure 4. Graphical definition of the detector parameters. 

2.3. Performance evaluation 

We evaluated the algorithm in terms of its sensitivity 
(Se) and its positive predictive value (PPV). Se was 
defined as the percentage of annotated ventilations that 
were correctly detected. PPV was defined as the 
percentage of detected ventilations that were correct. The 
maximum admissible tolerance for the position of the 
detection and the annotation was 500ms.  

We optimized the algorithm parameters with the clean 
training set to maximize Se while maintaining PPV above 
98%. 95% confidence intervals (95%CI) were computed 
for both metrics. 

3. Results

The amplitude threshold  for candidate 
identification was fixed to . Algorithm 
optimization was achieved for  and 

. For the training set (4614 annotated 
ventilations), Se and PPV were 99.7% (95%CI, 99.5-99.9) 

and 99.0% (98.7-99.3), respectively. 
Table 1 summarizes Se and PPV results. For the whole 

test set, comprising 10683 ventilations, global Se and PPV 
were 90.6% and 90.6%, respectively. For the clean set 
(3905 ventilations) Se and PPV were 99.8% and 99.1%, 
respectively. However, with the corrupted set (6778) Se 
and PPV decreased to 85.3% and 85.6%, respectively. 

Table 1. Algorithm performance with the test set. n: 
number of annotated ventilations. 

n Se (95% CI) PPV (95% CI) 
Whole set 10683 90.6 (90.0-91.1) 90.6 (90.0-91.1) 
Clean 3905 99.8 (99.7-99.9) 99.1 (98.7-99.3) 
Corrupted 6778 85.3 (84.4-86.1) 85.6 (84.8-86.4) 

Figure 5 shows some examples of algorithm’s 
performance. For each example, the capnogram with the 
detected ventilations is depicted in the top panel and the TI 
signal with the annotated ventilations is depicted in the 
bottom panel.  

Figure 5. Graphical examples of the algorithm’s 
performance. (A) Good performance; (B) Ventilation 
misdetection; (C) False positive; (D) Very poor 
performance caused by CC artefact. 
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4. Discussion

Monitoring ventilation rate is one of the recommended 
uses of the capnogram during CPR, according to current 
resuscitation guidelines for advanced life support. 
However, the presence of high-frequency oscillations in 
the capnogram during CC may compromise the 
interpretation of the signal. Although a high incidence of 
this CC artefact has been reported in OHCA episodes [5], 
the influence of this artefact on the reliability of 
capnogram-based ventilation detection has not been 
previously studied. 

Our algorithm was simple and presented a very good 
performance with clean capnograms, not affected by CC 
artefact. One example of good performance was shown in 
Figure 5A. A few cases of misdetections (Figure 5B) or 
false positives (Figure 5C) had not a great impact on 
performance. 

However, Se and PPV significantly degraded when the 
algorithm was applied to the corrupted capnograms. CC 
artefact often appeared overlapping the capnogram from 
the plateau to the baseline and in the inspiration phase, 
making detection unreliable (Figure 5D).  

Other studies proposing alternatives for ventilation 
detection either with the TI signal or the capnogram have 
also mentioned the signal limitations due to the presence 
of CC artefact [6]. Our study has been the first to 
quantitatively characterize and measure the impact of CC 
artefact on OHCA capnograms. Our subsequent hypothesis 
is that automatic ventilation detection would improve if the 
artefact could be successfully removed from the 
capnogram. Designing filtering approaches for this aim 
will be our next step, exploring different alternatives. 

Our study has several limitations. First, the annotation 
of TI fluctuations was not straightforward during CPR. 
Some intervals were discarded because of unreliable TI 
signal (noise, disconnections) and filtering was needed to 
remove the CC artefact. The capnogram was sometimes 
used to confirm the presence of ventilations. No other 
reference signal was available to be used as an alternative 
gold standard. Second, ventilations delivered to patients 
with capnogram below the algorithm amplitude threshold 
( ) cannot be detected. However, in our data this 
was rarely observed. Finally, data came from a single EMS 
system and so results may not be generalizable. We need 
to characterize this further with other EMS systems and 
monitor-defibrillators. 

5. Conclusions

The important role of capnography waveform in 
ventilation rate monitoring during CPR is compromised by 
CC artefact superimposed on the capnogram. Further 
research should explore filtering techniques to suppress 
CC artefact in order to improve ventilation monitoring for 
corrupted capnograms. 
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Defibrillation success in out-of-hospital cardiac
arrest: Point in time of ventricular fibrillation
recurrence after successful shock during early
phase of cardiopulmonary resuscitation

Martin Christian Sassen 1,∗, Dana Maresa Spies 1,
Jonathan Kiekenap 1, Susanne Betz 1, Clemens
Kill 2

1 Center of Emergency Medicine, Philipps-University,
Marburg, Germany
2 Center of Emergency Medicine, University Hospital
Essen, Essen, Germany

Purpose of the study: In case of an out-of-hospital cardiac
arrest (OHCA) due to ventricular fibrillation (VF) guidelines rec-
ommend early defibrillation followed by chest-compressions for
two minutes before analyzing shock success. If rhythm analysis
reveals VF again, it is obscure whether VF persisted or reoc-
curred within the two-minutes-cycle of chest-compressions after
successful defibrillation. We investigated the point in time of
VF-recurrence.

Materials and Methods: Between February 2014 and March
2018 we examined retrospectively 185 consecutive shocks of all
patients presenting with initial VF at arrival of ALS-ambulance in
OHCA (Marburg-Biedenkopf-County, 252.000 inhabitants). Three
independent investigators analyzed ECG-recordings of the defibril-
lator Corpuls.3 We enclosed ECG-data from CPR-beginning until
2 min after the third shock. Using filters from 2–10 Hz we reduced
chest-compression-artifacts. Successful shock was defined as VF-
termination within 5s after a shock. A relapse was defined as
VF-recurrence in the interval 5s after a shock and the following
shock.

Results: We enclosed 185 shocks of 82 patients. 74.1% (n = 137)
of the shocks were successful, recurrence-rate of VF was 88.3%
(n = 121). The median of point in time of VF-recurrence was 33s
(16s/106s) after shock. 47.1% (n = 57) of VF-recurrence occurred
≤30s after shock, 12.4% (n = 15) of VF-recurrence occurred 31-
60s after shock, 13.7% (n = 16) of VF-recurrence occurred 61-90s
after shock, 27.3% (n = 33) of VF-recurrence occurred >90s after
shock.

Conclusions: Although VF was terminated by rectilinear-
waveform-defibrillation in 74%, VF recurred within two minutes
of chest-compressions in 88%. Thus, VF reappears frequently and
early. It is unclear to which extend chest-compressions influ-
ence VF-relapse. Further studies need to re-evaluate the best
shock-compression-analysis-algorithm and the regime of antiar-
rhythmic therapy in the early phase of CPR in OHCA with initial
VF.
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Chest compression artefact compromises
real-time feedback capnometry: quantification
of differences in end-tidal measurements by
two capnometers
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Purpose of the study: Real-time capnometry is a valuable mon-
itoring tool during cardiopulmonary resuscitation (CPR). However,
waveform capnography is often distorted by chest compressions
(CC)1 and CC artefact might compromise the end-tidal CO2 (ETCO2)
measurements provided by capnometers.2 We quantified the dif-
ferences in ETCO2 measurements by two CO2 detector devices
caused by CC artifact during manual CPR.

Materials and methods: We retrospectively analysed out-of-
hospital cardiac arrest monitor-defibrillator recordings from two
different agencies (n = 30 from agency A and n = 14 from agency
B). Each agency used a different side-stream capnography tech-
nology and monitor-defibrillators. Capnograms were reviewed in
3-min segment and each segment was classified as distorted or
non-distorted by CC artefact. Ventilations were identified using
both the transthoracic impedance signal and the capnogram. ETCO2
level was manually annotated as the maximum CO2 level in each
ventilation, and compared to values extracted from the monitor-
defibrillators.

Results: Eighty capnogram segments were analysed, containing
a total of 2,087 ventilations with a 43.5% of them distorted by CC
artifact. Segments from agency A had a total of 1,125 ventilations
(50.5% distorted), whereas those from agency B had 962 venti-
lations (35.1% distorted). Globally, ETCO2 median (IQR) unsigned
error in percentage for non-distorted and distorted intervals was
3.2 (2.1-4.6)% and 9.4 (6.9-12.9)%, respectively. In device A the
median unsigned error was 2.1 (1.3-3.1)% and 8.4 (6.4-10.4)%, while
in device B the median error was 3.9 (3.3-6.0)% and 13.9 (10.6-
15.8)%, respectively.

Conclusion: Presence of CC artefact increased ETCO2 measure-
ment errors in the assessed CO2 detector devices. CC artefact
suppression techniques are needed to enhance waveform capnog-
raphy, allowing reliable and clinically useful ETCO2 analysis during
CPR.
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objective 2: to design signal processing
techniques to remove cc-artifact from the
capnogram to improve ventilation rate
feedback and to enhance capnogram clinical
interpretation
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Abstract
Background

During cardiopulmonary resuscitation (CPR), there is a high incidence of capnograms dis-

torted by chest compression artifact. This phenomenon adversely affects the reliability of

automated ventilation detection based on the analysis of the capnography waveform. This

study explored the feasibility of several filtering techniques for suppressing the artifact to

improve the accuracy of ventilation detection.

Materials and methods

We gathered a database of 232 out-of-hospital cardiac arrest defibrillator recordings con-

taining concurrent capnograms, compression depth and transthoracic impedance signals.

Capnograms were classified as non-distorted or distorted by chest compression artifact. All

chest compression and ventilation instances were also annotated. Three filtering techniques

were explored: a fixed-coefficient (FC) filter, an open-loop (OL) adaptive filter, and a closed-

loop (CL) adaptive filter. The improvement in ventilation detection was assessed by compar-

ing the performance of a capnogram-based ventilation detection algorithm with original and

filtered capnograms.

Results

Sensitivity and positive predictive value of the ventilation algorithm improved from 91.9%/

89.5% to 97.7%/96.5% (FC filter), 97.6%/96.7% (OL), and 97.0%/97.1% (CL) for the dis-

torted capnograms (42% of the whole set). The highest improvement was obtained for the

artifact named type III, for which performance improved from 77.8%/74.5% to values above

95.5%/94.5%. In addition, errors in the measurement of ventilation rate decreased and

accuracy in the detection of over-ventilation increased with filtered capnograms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0201565 August 2, 2018
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Conclusions

Capnogram-based ventilation detection during CPR was enhanced after suppressing the

artifact caused by chest compressions. All filtering approaches performed similarly, so the

simplicity of fixed-coefficient filters would take advantage for a practical implementation.

Introduction

Sudden cardiac arrest is defined as the sudden and often unexpected cessation of the effective

contraction of the heart, confirmed by the absence of signs of circulation and breathing [1].

The key techniques during resuscitation of cardiac arrest include airway, breathing and circu-

lation support by means of cardiopulmonary resuscitation (CPR) and defibrillation. In out-of-

hospital (OOH) settings, advanced life support (ALS) includes manual defibrillation, advanced

airway management, and drug administration during CPR [2, 3].

Capnography is increasingly used by ALS Emergency Medical Services (EMS) systems dur-

ing the treatment of OOH cardiac arrest [4, 5]. Capnography allows the assessment of the par-

tial pressure of carbon dioxide (CO2) in the respiratory gases. The concentration of CO2 at the

end of the exhalation (ETCO2) is considered a surrogate measurement of the pulmonary circu-

lation generated during resuscitation efforts [6]. Customarily, monitoring the capnogram is

widely used for guiding ventilation. Excessive ventilation rate has been shown to be frequent

and detrimental to the patient during CPR [7–9]. Other uses of capnography in EMS include

assessment of the correct positioning of the endotracheal tube [10], monitoring the effective-

ness of CPR, identification of restoration of spontaneous circulation [11], and determination

of patient prognosis [2, 5, 12].

Quality of the recorded capnogram is essential for a reliable analysis, either visual or auto-

mated. However, several authors have reported the appearance of oscillations synchronized

with chest compressions distorting capnograms recorded during OOH cardiac arrests [13–

17]. Idris et al. specifically reported a high incidence of 70% of distorted OOH capnograms

[13]. This phenomenon was not systematically assessed until a recent observational study, in

which researchers retrospectively analyzed more than 200 capnograms collected during OOH

cardiac arrests [17]. The episodes were classified into distorted (42%) or undistorted (58%),

restricting the number of distorted capnograms to those with at least 1 min of distorted venti-

lations. Three types of artifact were defined according to the location of the oscillations in the

respiratory cycle. Finally, the authors reported the negative influence of chest compression

artifact in automated detection of ventilations, compromising the reliability of capnogram-

based ventilation guidance during CPR.

In this context, we hypothesized that suppressing chest compression artifact from the cap-

nogram was possible using adequate filtering techniques. Filtering would improve the capno-

gram signal quality and consequently the reliability of automated ventilation detection even in

the presence of chest compression oscillations.

The purpose of this study was to explore different filtering techniques to eliminate chest

compression artifact from the capnogram. Fixed-coefficient filtering as well as classical adap-

tive schemas were examined. To assess the filter performance we compared the accuracy of a

capnogram-based algorithm for automated detection of ventilations before and after filtering

OOH capnograms. We also evaluated the improvement in the measurement of ventilation rate

and in the detection of over-ventilation after artifact suppression.

Enhancing ventilation detection during CPR by filtering chest compression artifact from the capnogram
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Chest compression artifact in the capnogram during CPR

Fig 1 shows the morphology of a normal capnogram, representing the evolution of CO2

concentration in the airway with time. Typical intervals and phases are named according to

the terminology used by Bhavani-Shankar et al. [18]. During inspiration or phase 0, the air-

way is filled with CO2-free gases, resulting in a rapid decrease of CO2 concentration to a

zero level that defines the baseline of the capnogram. Expiration comprises three intervals:

phase I represents the CO2-free gas in anatomical dead space, between the patient’s alveoli

and the measurement device; phase II represents the mixture of gases from the anatomical

dead space and the alveoli; phase III defines the alveolar plateau, representing the rising of

the CO2 concentration produced by CO2 rich gases coming from the alveoli. The alveolar

plateau ends up at a peak level corresponding to the end-tidal CO2 concentration (ETCO2)

[6].

The studies presented in references [14, 15] reported that during CPR, chest compres-

sions generate a fluctuation of little gas volumes that are detected by the capnography sen-

sor, producing oscillations in the capnogram waveform. This artifact has been recently

examined in more detail by our research team in a retrospective observational study [17].

We worked with a set of undistorted (clean) and distorted capnograms from patients in

OOH cardiac arrest and observed that the artifact appeared as oscillations of varying ampli-

tudes and locations in the capnogram. In that study, we identified three types of artifact,

depending on the location of the oscillations: type I, if oscillations appeared in the alveolar

plateau; type II, in the baseline; and type III, the most confounding artifact, if the artifact

spanned from the plateau to the baseline. No induced oscillations were found in the slopes

of phases 0 and II.

Fig 2A shows examples of distorted capnograms corresponding to the three observed types

of artifact (upper panel). The compression depth (CD) signal depicted below each capnogram

shows that the artifact is synchronous with the CD waveform. Fig 2B shows the normalized

power spectral density (PSD) estimated for both the capnogram (in solid blue line) and the CD

signal (in dotted red line). The PSD of the capnogram presents a low frequency band associ-

ated to the ventilation rate (close to 10 per minute in the three examples), and a single peak

corresponding to the artifact oscillation frequency. This frequency is exactly the fundamental

frequency of the CD signal (fcc), that is, the chest compression rate. Hence, the artifact presents

a sinusoidal characteristic with a fundamental frequency equal to the frequency of the chest

compressions.

Fig 1. A normal capnogram. The waveform represents the varying CO2 levels during the respiratory cycle. Typical segments and

phases are named according to [18].

https://doi.org/10.1371/journal.pone.0201565.g001

Enhancing ventilation detection during CPR by filtering chest compression artifact from the capnogram
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Materials and methods

Data collection and annotation

For this study, data were extracted from OOH cardiac arrest episodes from the Resuscitation

Outcomes Consortium (ROC) Epidemiological Cardiac Arrest Registry approved by the Ore-

gon Health & Science University (OHSU) Institutional Review Board (IRB00001736). No

Fig 2. The three different types of observed artifact. (A) Type I, located in the plateau of the capnogram; type II, in the baseline, and type III,

spanning from the plateau to the baseline. Each capnogram is depicted with the corresponding CD signal. (B) Power spectral density (PSD) of each

capnogram (in solid blue line) and CD signal (in dotted red line). Capnograms present a significant peak at the fundamental frequency of the

artifact, fcc, with highest amplitudes in type III samples.

https://doi.org/10.1371/journal.pone.0201565.g002

Enhancing ventilation detection during CPR by filtering chest compression artifact from the capnogram
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patient private data was required for this study. All episodes were recorded using Heartstart

MRx monitor-defibrillators (Philips, USA), equipped with real-time CPR feedback technology

(Q-CPR) and capnography monitoring using sidestream technology (Microstream, Oridion

Systems Ltd, Israel). As the database for this study was the same used in reference [17], we pro-

vide here a brief description of the materials. Readers are encouraged to consult the original

reference for additional details.

We gathered 232 episodes with the concurrent capnogram, compression depth (CD) signal

computed by the Q-CPR technology, and transthoracic impedance (TI) signal acquired from

defibrillation pads. Experts participating in the review process manually and visually examined

each capnogram and the concurrent CD signal. The CD signal was used as the reference to

determine whether chest compressions were provided or not. Episodes were classified as dis-

torted if evident chest compression artifact appeared during more than 1 min of the total chest

compression time. Otherwise, episodes were grouped in the clean category. Distorted episodes

were then categorized into the artifact categories type I, type II, or type III.

Ventilations were annotated using the TI signal. Ventilations induce slow fluctuations in

the TI signal acquired by defibrillators. TI increases during inspiration due to the increment

of the gas volume of the chest and to the longer distance between the electrodes, that pro-

duces a decrement in the conductivity [19–21]. The raw TI signal was low-pass filtered to

enhance the slow fluctuations caused by ventilations. Experts visually examined the pro-

cessed TI signal to manually annotate the position of each single ventilation. Fig 3 shows an

example of the ventilation annotation. The top panel depicts the raw TI signal in gray with

the enhanced low frequency component in blue. Ventilations were annotated at the instant

corresponding to a rise in the impedance (vertical red lines). To visually confirm the pres-

ence of ventilations the capnogram is depicted in the middle panel. Resulting ventilation

annotations were used as the gold standard to evaluate the effectiveness of the proposed fil-

tering techniques. Chest compression instances were annotated at the local minima (Fig 3,

bottom panel red dots) corresponding to the maximum depth reached for each chest

compression.

Methods

Algorithm for ventilation detection. To assess filtering performance we applied a capno-

gram-based ventilation detection algorithm before and after artifact suppression [17]. A sim-

plified scheme of the detector is shown in Fig 4. Basically, the algorithm locates series of

consecutive upstrokes (tup) and downstrokes (tdw) in the capnogram applying an amplitude

threshold (Thamp). Durations between those instants, Dex and Din, are the two features used to

classify potential candidates as true ventilations, according to a simple decision tree based on

thresholds Thex and Thin, respectively. Other similar detection algorithms have been previously

described in the literature [21].

In the next sections the filtering techniques used for the suppression of the chest compres-

sion artifact are presented. We studied three different alternatives: a simple fixed-coefficient

filter and two more computationally intensive adaptive filtering techniques.

Fixed coefficient (FC) filtering. Observation of the PSD in Fig 2B supports the use of a

simple filter with fixed coefficients to suppress the spectral content of the capnogram above 1

Hz (60 cpm). To that end, we implemented a digital infinite impulse response low-pass Butter-

worth filter.

Adaptive filtering. Variability of chest compression rate may affect the efficacy of the FC

filter [8, 9, 22, 23]. Adaptive techniques in which the filter parameters are adjusted in time

according to the varying characteristics of the artifact could be a suitable solution. In the
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literature, adaptive filtering has been extensively used for the suppression of the artifact

induced by chest compressions in the electrocardiogram recorded by defibrillators during

CPR [24–28].

In this study, we designed two different adaptive filtering configurations, an open-loop and

a closed-loop adaptive filter [29]. Details of the adaptive filters are addressed in the supporting

information S1 Appendix.

Fig 5 illustrates the performance of the filters. The three filtering techniques were applied

to the same capnogram (top panel), and the resulting filtered waveforms are depicted in the

lower panels (blue line) superimposed on the original capnogram (gray line). Ventilations

detected before and after filtering are marked with vertical red dotted lines. Ventilations with

chest compression artifact (the four consecutive ventilations in the center of the tracing) were

not detected in the original capnogram, but they were successfully identified after artifact

cancellation.

Data analysis and performance evaluation

Ventilation annotations in the database constituted the gold-standard used to evaluate the per-

formance of the automated ventilation detection algorithm applied to the original and to the

Fig 3. Annotation of ventilations and chest compressions. Ventilations were annotated using the low frequency component of

the TI signal (upper panel, in blue), obtained by low-pass filtering the raw TI signal (in gray). Each ventilation was annotated at

the rise of a TI fluctuation (red vertical lines). In the capnogram (middle panel), these annotations corresponded to CO2

concentration’s rapid decay to zero. Chest compression instances were annotated in the CD signal (lower panel), and are depicted

with red dots corresponding to the instants where the maximum compression depth was achieved.

https://doi.org/10.1371/journal.pone.0201565.g003
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filtered capnograms. The reliability of the proposed filtering techniques was assessed by com-

paring the sensitivity (Se) and positive predictive value (PPV) of the ventilation detector before

and after filtering. Se was defined as the proportion of annotated ventilations that were cor-

rectly detected by the algorithm and PPV was the proportion of detected ventilations that were

true ventilations.

Filter parameters were optimized for all filtering strategies with a training subset of 15 clean

and 15 distorted capnograms. Optimization criteria was maximum Se for a minimum PPV of

95%. Filter performance was reported for the remaining 202 episodes comprising the test subset.

For each episode in the whole set, we computed the number of ventilations provided every

minute (ventilation rate), using a 1 minute sliding window with an overlap factor of 1/6, i.e.

the ventilation rate value was updated every 10 s. We compared the ventilation rate measure-

ments computed from the estimated ventilations before and after filtering with those com-

puted from the gold-standard ventilations.

We also tested the accuracy in the detection of over-ventilation, defined as a ventilation rate

greater than 10 per minute. This value was selected according to the general recommendation

in current resuscitation guidelines [2, 3]. For that purpose, Se was defined as the proportion of

annotated over-ventilation intervals that were detected by the algorithm, and PPV as the pro-

portion of true over-ventilation instances among all the over-ventilation alarms provided by

the algorithm.

Results

Table 1 shows a summary of the episodes included in the study. Mean (±standard deviation)

duration of the episodes was 31 (±10) min. Airway types were endotracheal tube (ETT) in

Fig 4. Scheme of the ventilation detector. The algorithm locates upstrokes (tup) and downstrokes (tdw) in the capnogram signal (right) applying a fixed amplitude

threshold Thamp. It extracts the duration of the intervals Dex and Din. Finally, fixed duration thresholds Thex and Thin are used to discriminate true ventilation from the

potential candidates. Detected ventilations are depicted with vertical red dotted lines in the bottom panel.

https://doi.org/10.1371/journal.pone.0201565.g004
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64.2%, supraglottic airway (SGA) in 31.7%, and bag-valve-mask (BVM) in 0.03% of the epi-

sodes. Distorted episodes comprised 42.2% of the whole set. Type I artifact was annotated in

48%, type II in 21% and type III in 31% of the distorted episodes. A total of 52654 ventilations

were annotated, with a mean of 224 (±115) ventilations per episode. A total of 532597 chest

compressions were annotated, with a mean of 2296 (±1230) per episode. Mean chest compres-

sion rate was 114.0 (±14.4) compressions per minute.

Fig 5. Examples of filtering performance. Original capnogram with clean and distorted respiration cycles (top panel). Detected ventilations are

depicted with vertical lines. Distorted ventilations could not be detected by the algorithm. Lower panels show the filtered capnogram (in blue)

superimposed to the original capnogram (in gray), for the three filtering alternatives. Detected ventilations are depicted with vertical red dashed

lines. In this example, all ventilations were correctly detected after filtering.

https://doi.org/10.1371/journal.pone.0201565.g005
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Ventilation detection performance

Table 2 shows the performance of the ventilation detection algorithm for the test set before

and after filtering. For the whole test set, Se/PPV improved from 96.4%/95.0% before filtering

to values above 98.2%/97.7%. The results for the clean subset stayed stable before and after fil-

tering. In the distorted subset, Se/PPV improved from 91.9%/89.5% before filtering to values

above 97.0%/96.5%. The improvement was much higher for type III records, for which Se/

PPV improved from 77.6%/73.5% to values above 95.5%/94.5%.

The box plots in Fig 6A show the distribution of Se and PPV per episode for each type of

artifact, before and after filtering with the three proposed techniques. Box plots graphically

show median (central line in the box) and interquartile values (edges of the box), maximum

and minimum values (extreme values of the whiskers), and outliers (red dots). In general, Se

and PPV improved after filtering. Furthermore, the high dispersion among type III episodes

was drastically reduced after artifact cancellation with all three filtering approaches.

Ventilation rate estimation

Fig 6B shows the distributions of the unsigned error in percentage per episode between the

estimated ventilation rate and the gold-standard value. Again, errors for type III subgroup

decreased notably after filtering, as well as errors for type I subgroup, although to a much lesser

extent.

Detection of over-ventilation

Table 3 shows the influence of filtering in the detection of over-ventilation (ventilation rate

above 10 min-1). From the annotations of the whole dataset, there was a 56.4% (17 901/31 760)

of 1-minute intervals with over-ventilation. Globally, the algorithm yielded a Se/PPV of

Table 1. Characteristics of the episodes included in the study. Values are expressed as mean (±standard deviation).

Group Episodes Ventilation type Duration (min) Ventilations Compressions

BVM ETT SGA NA

Total 232 7 149 73 3 31 (±10) 224 (±115) 2296 (±1230)

Clean 134 7 90 35 2 30 (±8) 227 (±124) 1994 (±1247)

Distorted 98 0 59 38 1 32 (±12) 221 (±102) 2708 (±1084)

Type I 47 0 19 28 0 31 (±7) 212 (±105) 2893 (±1089)

Type II 21 0 15 6 0 29 (±6) 249 (±108) 2507 (±1079)

Type III 30 0 25 4 1 34 (±18) 214 (±92) 2558 (±1068)

BVM: bag-valve-mask; ETT: endotracheal tube; SGA: supraglottic airway; NA: not available

https://doi.org/10.1371/journal.pone.0201565.t001

Table 2. Performance of the ventilation detection algorithm before and after filtering for each type of artifact.

Group Episodes Before Fixed-coefficient Open-loop Closed-loop

Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV(%)

Total 202 96.4 95.0 98.4 97.7 98.5 97.9 98.2 98.3

Clean 119 99.6 99.0 99.0 98.5 99.2 98.7 99.1 99.2

Distorted 83 91.9 89.5 97.7 96.5 97.6 96.7 97.0 97.1

Type I 42 97.6 96.2 98.3 97.2 98.3 97.1 98.0 97.6

Type II 16 98.5 97.2 98.2 97.7 98.1 98.0 96.5 98.1

Type III 25 77.6 73.5 96.3 94.5 96.0 95.1 95.5 95.5

https://doi.org/10.1371/journal.pone.0201565.t002
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99.1%/92.6% before and above 97.9%/97.2% after filtering. For the distorted subset, Se/PPV

was 98.2%/85.8% before and above 96.3%/95.2% after filtering. Improvement was higher for

type III episode, with Se/PPV of 95.5%/72.1% before and above 94.8%/91.1% after filtering.

Discussion

In 2010, Idris et al. observed “chest compression oscillations” in more than 70% OOH capno-

grams [13]. In a recent study, we reported 42% of distorted capnography tracings during CPR

Fig 6. (A) Distributions of Se/PPV values per episode in each artifact category, before and after filtering. (B) Distribution of the

unsigned error in percentage in the estimation of ventilation rate. Results are provided for all categories: C: clean. D: distorted. I: type I

artifact. II: type II; III: type III.

https://doi.org/10.1371/journal.pone.0201565.g006
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[17]. Among the distorted episodes, artifact appearing in the capnogram plateau (type I) was

the most prevalent (48%), followed by artifact spanning from the plateau to the baseline (type

III) in 31%, and artifact appearing in the capnogram baseline (type II) in 21% of the episodes.

The nature of the artifact is a sinusoid at the frequency of the chest compressions, with vary-

ing amplitude. Our findings are in line with the few studies to date which have reported low

ventilation volumes incidental to chest compressions [13, 14]. These volumes, although lower

than the anatomical dead space, are sufficient to alter the measurement of the capnogram

device.

From a clinical perspective, the presence of chest compression artifact has three important

drawbacks: first, it impedes the automated detection of ventilations, causing inaccuracies in

the measurement of ventilation rate and false over-ventilation alarms. Moreover, the distorted

capnogram tracing is difficult to interpret by clinicians. Measurement of reliable ETCO2 values

becomes impossible, compromising the analysis of ETCO2 trends. In conclusion, chest com-

pression artifact may jeopardize most potential uses of capnography during resuscitation,

including CPR quality assessment, detection of restoration of spontaneous circulation and

prognosis assessment.

The present study focused on the improvement of automated ventilation detection using

filtering techniques to pre-process the raw capnogram before the application of the detector

algorithm. All the proposed filter schemes performed similarly, reporting favourable Se and

PPV values well above 97% and 96%, respectively, for the distorted episodes. This caused an

improvement in the measurement of ventilation rate with errors in median below 3.6%, and

over-ventilation detection, with Se and PPV values above 96% and 95%, respectively, for the

distorted episodes.

The highest improvement was obtained in type III episodes, the most challenging distor-

tion, with Se/PPV in ventilation detection improving from 78%/74% to values higher than

94%. The detector was designed to detect inspiration and expiration downstrokes in a normal

capnogram. In the presence of type I artifact the capnogram remains well-above the baseline,

i.e. oscillations do not cause false detections of inspiration onsets. Similarly, in the presence

of type II artifact, the value of the distorted CO2 is not high enough to detect the expiration

upstroke. On the contrary, type III artifact spanning from the plateau to the baseline strongly

decreases the ventilation detection. Consequently, the positive impact of filtering is much bet-

ter observable in type III episodes. In addition, the few studies addressing the artifact phenom-

enon showed graphical examples of type III capnograms, highlighting the importance of this

confounding effect [13, 15].

The adaptive filters should present a better performance than the fixed coefficient filter

since compression rates tend to vary during CPR. However, none of the approaches showed a

Table 3. Detection of over-ventilation (ventilation rate>10 min-1).

Group Gold Standard Before Fixed-coefficient Open-loop Closed-loop

nv nhv Se(%) PPV(%) Se(%) PPV(%) Se(%) PPV (%) Se(%) PPV(%)

Total 31 760 17 901 99.1 92.6 98.6 97.3 98.4 97.2 97.9 98.0

Clean 17 413 10 511 99.7 98.0 99.1 98.3 99.0 98.4 98.9 98.9

Distorted 14 347 7 390 98.2 85.8 97.9 95.6 97.4 95.2 96.3 96.6

Type I 7 167 3 398 98.9 90.8 98.9 96.8 98.4 96.4 98.0 97.0

Type II 2 826 1 837 99.8 96.6 97.6 98.2 97.2 97.8 95.2 98.3

Type III 4 354 2 155 95.5 72.1 96.5 91.5 95.9 91.1 94.8 94.2

nv is the number of annotated ventilation rate values in the gold standard (whole set), and nhv is the number of annotated over-ventilation intervals.

https://doi.org/10.1371/journal.pone.0201565.t003
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distinctive superiority in terms of performance. The main reason is that, in our recordings,

chest compression rate is generally ten times greater than ventilation rate. In this scenario the

fixed coefficient filter shows a good performance. The adaptive approaches would be more effi-

cient in case of an excess of ventilation rate with low compression rates. Hence, selection of the

filtering algorithm could be analyzed in terms of complexity and computational burden. In

this case, adaptive filtering is at a disadvantage compared to the simplicity of a fixed-coefficient

filter. Consequently, it seems adequate to apply a filter with fixed coefficients to suppress the

chest compression artifact from the capnogram. Nevertheless, the implementation of the three

filtering approaches would operate the capnogram signal in real time, being transparent to the

user.

The capnogram waveform achieved after filtering approximates the mean peak-to-peak

amplitude of the artifact, as illustrated in Fig 5 in the Methods section). After filtering, the cap-

nogram is still difficult to interpret by clinicians. The filtered capnogram waveform hinders

the reliable analysis of ETCO2 trends, a very useful clinical information during CPR. In the fig-

ure, reliable ETCO2 values could only be measured in the undistorted tracing before and after

the distorted interval. In practice, capnogram filtering would be an intermediate stage in the

ventilation detection algorithm if implemented in the monitor-defibrillator but the resulting

waveform would not be displayed on the screen, the raw capnogram would appear instead.

The development of other techniques aimed at removing the artifact (to improve ventilation

tracking) and at the same time preserving the capnogram tracing would favor clinical

interpretation.

Conclusion

We assessed three filtering alternatives for suppressing the artifact caused by chest compres-

sions on OOH capnograms and analyzed their performance in terms of the improvement of the

automated detection of ventilations during CPR. All approaches yielded good results, so sim-

plicity and low computational burden could determine the best alternative to be implemented.
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S1 Appendix: Adaptive filtering

Variability of chest compression and ventilation rates during cardiopulmonary resuscitation (CPR) may affect
the efficacy of the fixed-coefficient filter [1–4]. Adaptive techniques in which the filter parameters are adjusted
in time according to the varying characteristics of the artifact could be a suitable solution. In the literature,
adaptive filtering has been extensively used for the suppression of the artifact induced by chest compressions
in the electrocardiogram recorded by defibrillators during CPR [5–9].

For the capnogram artifact issue, we designed two different adaptive filtering configurations, an open-loop
and a closed-loop adaptive filter [10].

Open-loop (OL) adaptive filter:

The OL adaptation is illustrated in Figure 1A. This technique is based on the adaptive adjustment of the
filter to the information extracted from the compression depth (CD) signal, used as a reference in this case.

The filter was a stop-band Butterworth filter whose central frequency is adaptively adjusted according
to the chest compression rate. We estimated the average chest compression rate in 2-s intervals, using the
annotated compression instances in the CD signal. Thus, the coefficients of the filter were updated every
2 s [10].

Filter

Adaptation
algorithm

Capnogram

CD signal

Clean capnogram

Adaptive filter

LMS

+
Capnogram

Reference signal

+

-

Estimated artifact

Clean capnogram

(A)

(B)

Figure 1: (A) Open-loop adaptive filter. The adaptation algorithm uses the capnogram and the CD signal
to adjust the filter coefficients every 2-s. (B) Closed-loop adaptive filter. Configuration for adaptive
cancellation of the chest compression artifact.

Closed-loop (CL) adaptive filter:

Figure 1B shows the scheme of the CL adaptive filter applied to canceling sinusoidal interference [10]. This
system requires an additional reference input signal. In our approach, this reference signal is modeled as a
pure cosine wave of time-varying amplitude and phase, with a fundamental frequency matching the chest
compression rate. The chest compression instants detected in the CD signal were used to estimate the
instantaneous chest compression rate, which may vary between compressions.
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In this configuration, the artifact is adaptively estimated and subtracted from the input capnogram
to obtain a clean capnogram. The filter coefficients are updated sample by sample by applying the
Least-Mean-Square algorithm (LMS). The resulting system is equivalent to a notch filter at the frequency of
chest compressions, capable of adaptively tracking the exact frequency of the artifact [10].
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A B S T R A C T

Background: Current resuscitation guidelines emphasize the use of waveform capnography to help guide res-
cuers during cardiopulmonary resuscitation (CPR). However, chest compressions often cause oscillations in the
capnogram, impeding its reliable interpretation, either visual or automated. The aim of the study was to design
an algorithm to enhance waveform capnography by suppressing the chest compression artefact.
Methods: Monitor-defibrillator recordings from 202 patients in out-of-hospital cardiac arrest were analysed.
Capnograms were classified according to the morphology of the artefact. Ventilations were annotated using the
transthoracic impedance signal acquired through defibrillation pads. The suppression algorithm is designed to
operate in real-time, locating distorted intervals and restoring the envelope of the capnogram. We evaluated the
improvement in automated ventilation detection, estimation of ventilation rate, and detection of excessive
ventilation rates (over-ventilation) using the capnograms before and after artefact suppression.
Results: A total of 44 267 ventilations were annotated. After artefact suppression, sensitivity (Se) and positive
predictive value (PPV) of the ventilation detector increased from 91.9/89.5% to 98.0/97.3% in the distorted
episodes (83/202). Improvement was most noticeable for high-amplitude artefact, for which Se/PPV raised from
77.6/73.5% to 97.1/96.1%. Estimation of ventilation rate and detection of over-ventilation also upgraded. The
suppression algorithm had minimal impact in non-distorted data.
Conclusion: Ventilation detection based on waveform capnography improved after chest compression artefact
suppression. Moreover, the algorithm enhances the capnogram tracing, potentially improving its clinical in-
terpretation during CPR. Prospective research in clinical settings is needed to understand the feasibility and
utility of the method.

Introduction

Treatment of out-of-hospital cardiac arrest (OHCA) by advanced life
support (ALS) usually includes advanced airway placement, adminis-
tration of medications along with high quality cardiopulmonary re-
suscitation (CPR) [1–3].

Most monitor-defibrillators are equipped with electronic carbon
dioxide (CO2) detectors which allow end-tidal CO2 (ETCO2) measure-
ment. ETCO2 is the partial pressure of carbon dioxide at the end of an
exhaled breath, and reflects ventilation and perfusion of the patient [4].
Electronic CO2 detectors can be of two types: those that report the re-
sults in a numeric display (non-waveform detectors), and those that
provide waveform graphical display where the respiratory cycle can be
directly observed [2,5]. The latter have become more important, since

the last release of international resuscitation guidelines emphasized the
use of waveform capnography for ALS guidance and patient monitoring
[2,3]. Currently, waveform capnography can be used for assessing the
correct placement of the tracheal tube and monitoring ventilation rate.
Other potential uses of waveform capnography include monitoring of
CPR quality [5–7], early detection of restoration of spontaneous cir-
culation [5,8] and determining patient prognosis during CPR [9,10].

To be clinically interpretable, the different phases of the respiratory
cycle must be identifiable in the capnogram during CPR, including the
end of expiration where ETCO2 is measured. However, several studies
have reported the appearance of fast oscillations synchronized with
chest compressions superimposed on the capnogram [11–13], often
completely obscuring the normal tracing. This distortion could nega-
tively affect waveform capnography in three aspects: causing errors in
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the automated detection of ventilations and consequently in the esti-
mation of ventilation rate, impeding reliable measurement of ETCO2
values, and limiting CPR providers since distorted capnograms are
difficult to interpret.

In a recent study, we retrospectively analysed monitor-defibrillator
recordings from OHCA episodes and reported that 42% of capnograms
were distorted by chest compression oscillations [14]. That study also
quantified significant errors in the capnogram-based estimation of
ventilation rate, attributable to the oscillations interference. In a follow-
up study, we proposed a solution to remove chest compression oscil-
lations from the capnogram by filtering, which improved the automated
detection of ventilation rate. Unfortunately, filtered capnograms were
far from being reliable for clinical interpretation [15].

In this study, we explored an alternative method to suppress chest
compression oscillations from the capnography waveforms. The method
was designed to improve ventilation detection and more importantly, to
provide a capnogram that was reliable for clinical interpretation. For
quantitatively assessing the goodness of the method, the accuracy of a
capnogram-based algorithm for ventilation detection was tested before
and after applying the suppression method. In addition to ventilation
detection, we also quantified the improvement in the computation of
ventilation rate and in the detection of excessive ventilation rates.

Materials and methods

Data collection and annotation

Data were extracted from a database of OHCA episodes collected
between 2011 and 2016 as a part of the Resuscitation Outcomes
Consortium (ROC) Epidemiological Cardiac Arrest Registry. The data
collection for the ROC Epistry was approved by the Oregon Health &
Science University (OHSU) Institutional Review Board (IRB00001736).
Patient private data was not available for the study. Episodes were
recorded using Heartstart MRx monitor-defibrillators (Philips, USA),
equipped with real-time CPR feedback technology (Q-CPR) and wave-
form capnography using sidestream technology (Microstream, Oridion
Systems Ltd, Israel). Ventilation was provided through an endotracheal
tube, supraglottic airway (King Laryngeal Tube) or with a bag-valve
mask device.

This study analysed the monitor-defibrillator recordings of 202
patients, containing at least 20 min of concurrent capnogram, com-
pression depth (CD) signal, and transthoracic impedance (TI) signal

acquired through the defibrillation pads. We used the annotations from
a previous study [14], in which biomedical experts classified the epi-
sodes as distorted if chest compression artefact appeared during more
than one minute of the chest compression time. Furthermore, experts
classified the artefact into three types according to its location: type I
(chest compression oscillations appearing in the expiratory plateau of
the capnogram), type II (in the baseline), and type III (oscillations
spanning from the plateau to the baseline) [14]. Finally, experts an-
notated each ventilation using the low frequency component of the TI
signal, as the impedance of the chest measured through defibrillation
pads fluctuates during each ventilation [16–18]. Resulting ventilation
annotations were used in the present study as the gold standard to
quantify the effectiveness of the suppression method.

Chest compression artefact suppression method

Filtering techniques have been widely proposed in the literature to
remove chest compression artefact from the electrocardiogram during
CPR [19–23]. Likewise, those techniques can be applied to a distorted
capnogram. An example of filtering is shown in Fig. 1. A segment of a
distorted capnogram is depicted in the top panel. Each vertical arrow
indicates a ventilation. Oscillations of type III impede the correct de-
tection of the second ventilation. The middle panel represents (in red)
the resulting capnogram after applying one of the filters proposed by
Gutierrez et al. [15]. The filtered capnogram appears highly distorted
and, although all ventilations are correctly detected, the waveform is
not easily interpretable.

The principle of the method proposed in the present study relies on
the hypothesis that the envelope of the capnogram could be a reliable
tracing for clinical interpretation. An example of the method's perfor-
mance is given in the bottom panel of Fig. 1. As the artefact morphology
and location is variable [14] the algorithm distinguishes between low
and high CO2 concentration intervals to determine how to extract the
envelope of the capnogram. The algorithm, which can operate in real-
time, detects the local maxima in the plateau phase and applies a
smoothing filter to restore the upper envelope of the capnogram (see
the dashed red line depicted in the bottom panel of Fig. 1). Similarly,
local minima are detected in the capnogram baseline to extract the
lower envelope (see the dotted red line). A detailed explanation of the
algorithm is provided in the supplementary materials published online
with the electronic version of this article.

Fig. 1. Alternatives for chest compression ar-
tefact suppression. A distorted capnogram is
depicted at the top. Each vertical arrow in-
dicates a ventilation. Oscillations of type III
impede the correct detection of the second
ventilation. The middle panel represents in red
the resulting waveform after applying one of
the filters proposed in reference [15]. The
bottom panel illustrates the extraction of the
envelope waveform capnography through the
detection of, respectively, the local maxima of
the original capnogram in the plateau and the
local minima in the baseline.
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Automated ventilation detection algorithm

For the automated detection of ventilations in the waveform cap-
nography, we used an algorithm designed and tested in a previous study
[14], quite similar to others used in the literature [24]. The algorithm
was computationally simple, and relied on the automated identification
of CO2 concentration downstrokes and upstrokes during inspiration and
expiration, respectively, as the basis for detecting ventilations in real-
time.

Data analysis

The artefact suppression algorithm was applied to the raw capno-
gram of each OHCA episode. Sensitivity (Se) and positive predictive
value (PPV) of the automated ventilation detection algorithm were
computed before and after artefact suppression to be used as figures of
merit. Se values were calculated as the proportion of correctly detected
ventilations among all ventilations that were annotated. PPV values
were the proportion of correctly detected ventilations among all the
detections.

We also evaluated the performance of the algorithm in the estima-
tion of ventilation rate as follows: we computed, for each episode,
ventilation rate values per minute (the number of ventilations given in
the last minute), updated every 10 s. The ventilation rate measurements
obtained before and after applying the artefact suppression method to
the raw capnograms were compared with the measurements computed
from the gold standard by calculating the unsigned percent error in
each case.

According to the general recommendation in current resuscitation
guidelines, ventilation rates above 10min−1 during CPR can be con-
sidered as excessive [2,3]. The accuracy in the detection of excessive
ventilation rates was also tested. For that purpose, an alarm was an-
notated when a ventilation rate measurement was higher than
10min−1. In this case, Se was defined as the proportion of annotated
alarms that were correctly detected, and PPV as the proportion of de-
tected over-ventilation alarms that were indeed annotated.

Data were reported as mean (± SD) if they passed the Lilliefors test
of normality, and as median (IQR) otherwise. Distribution of Se and
PPV per episode and distribution of the percent error were depicted
with box plots, which graphically show median, IQR values and pos-
sible outliers.

Results

Table 1 shows a summary of the characteristics of the episodes,
clustered according to the artefact type. From the 202 OHCA episodes
that were analysed, 83 (41.1%) were classified as distorted. Among the
distorted espisodes, type I artefact was primarily annotated in 50.6%,
type II in 19.3% and type III in 30.1% of the cases. A total of 44 267
ventilations were annotated, with a mean of 219 (± 115) ventilations
per episode. From these, 25 936 (58.6%) corresponded to non-distorted
episodes and 18 331 (41.4%) to distorted episodes.

The performance of the automated ventilation algorithm with the
raw capnograms and after applying the suppression method is de-
scribed in Table 2. For the whole set, global Se/PPV improved from
96.4%/95.0% to 98.5%/98.3%. The algorithm had minimal impact in
non-distorted episodes, whereas Se/PPV largely increased from 91.9%/
89.5% to 98.0%/97.3% for distorted episodes. Performance particularly
improved in type III episodes, for which Se/PPV increased from 77.6%/
73.5% to 97.1%/96.1%. Fig. 2A depicts through box plots the dis-
tribution of Se and PPV per episode given by the ventilation detection
algorithm. In general, medians of both figures of merit increased after
artefact suppression, but to a greater extent for type III episodes. Dis-
persion in Se and PPV also reduced for all groups, but this reduction
was more noticeable for type III episodes, as Se/PPV IQR reduced from
20.1%/29.2% to 1.6%/3.8%.

Fig. 2B illustrates performance regarding the estimation of ventila-
tion rate. Box plots depict the distribution of the unsigned error in
percentage between the estimation and the gold-standard ventilation
rate value. Error reduced in all cases, but again, the error decreased
noticeably in type III subset after artefact suppression: median error
reduced from 19.6% to 4.5%, and IQR from 32.6% to 6.3%.

The influence of artefact suppression in the detection of excessive
ventilation rates (above the recommended 10min−1) is illustrated in
Table 3. Globally, Se/PPV were 99.3%/93.1% before and 98.9%/97.8%
after applying the method. For the distorted subset, Se/PPV was 98.8%/
86.7% before and 98.4%/96.3% after, i.e. the increase in PPV implied a
reduction in false over-ventilation alarms. Once again, the improve-
ment was significantly higher for type III subgroup, with Se slightly
increasing from 97.2% to 98.7%, but PPV increasing from a poor 73.9%
to 93.6% after artefact cancellation.

Finally, Fig. 3 visually illustrates the performance of the method.
Each example corresponds to one artefact category (A: type I, B: type II,
C, D: type III). The raw capnogram is depicted in blue and the resulting
waveform in red superimposed to the raw capnogram.

Discussion

The presence of fast oscillations of varying amplitude superimposed
on waveform capnography is common during pre-hospital CPR. Two
recent studies have characterized the nature of the oscillations ap-
pearing on OHCA capnograms during chest compressions, demon-
strating that oscillations have a sinusoidal waveform with a funda-
mental frequency matching the chest compression rate [14,15].

The origin of this phenomenon has been scarcely studied. Deakin
et al. found that compression-only CPR induces passive ventilations of
limited volumes, with a median tidal volume per compression of
41.5 ml (range 33.0–62.1ml) [13]. These volumes are considerably less
than typical adult dead space, which is on the order of 150ml. These
authors also suggested the possibility of a minor diaphragmatic activity
caused by manual chest compressions after the observation of matching
oscillations in the aligned volume and CO2 curves. In a conference

Table 1
Characteristics of the episodes included in the study clustered by the type of
artefact. Values are expressed as mean (± SD).

Group Episodes Ventilation type Duration
(min)

Ventilations

BVM ETT SGA NA

Total 202 6 126 68 2 30 (± 10) 219 (± 115)
Non-distorted 119 6 79 33 1 30 (± 8) 218 (± 123)
Distorted 83 0 47 35 1 31 (± 12) 221 (± 102)
Type I 42 0 17 25 0 31 (± 7) 203 (± 96)
Type II 16 0 10 6 0 29 (± 7) 274 (± 110)
Type III 25 0 20 4 1 34 (± 20) 216 (± 99)

BVM: bag-valve-mask; ETT: endotracheal tube; SGA: supraglottic airway (King
Laryngeal Tube); NA: information not available.

Table 2
Performance of the ventilation detection algorithm before and after artefact
suppression. Global sensitivity (Se) and positive predictive value (PPV) are
reported for the whole set, and for each artefact category.

Group Episodes Before After

Se(%) PPV(%) Se(%) PPV(%)

Total 202 96.4 95.0 98.5 98.3
Non-distorted 119 99.6 99.0 99.0 99.0
Distorted 83 91.9 89.5 98.0 97.3
Type I 42 97.6 96.2 98.4 97.7
Type II 16 98.5 97.2 98.0 97.9
Type III 25 77.6 73.5 97.1 96.1
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abstract, Vanwulpen et al. quantified the inspiratory volumes during
manual chest compressions in the pre-hospital setting [12]. Their
measurements were in line with the study by Deakin et al., with a
median inspiratory volume generated by manual chest compressions of
15ml (range 4–62ml).

On the other hand, little is known about potential factors influen-
cing the appearance of the artefact. According to the amplitude varia-
bility and the location of the oscillations in the respiratory cycle, type I

(plateau) had an incidence in our data of 20.8%, type II (baseline) of
7.9%, and type III (spanning from plateau to baseline) of 12.4%. In
episodes where patients were ventilated with bag-valve-mask no arte-
fact was observed, although the sample was very small. Type III, the
most confounding artefact, appeared mostly in episodes with en-
dotracheal intubation. Type I was the most prevalent in the cases where
a supraglottic device was used. However, the correlation between the
morphology of the artefact and the airway type deserves further in-
vestigation. From our experience, we hypothesize that in addition to the
airway type, other factors should be explored, such as rescuer's chest
compression technique, capnography technology, or even patient con-
dition could have a role in the artefact generation.

Automated ventilation detection is negatively affected by the pre-
sence of chest compression artefact on OHCA capnograms.
Consequently, real time monitoring of ventilation rate as well as over-
ventilation with feedback to rescuers, could become unreliable in these
instances. Whether the artefact will appear during chest compressions is
unknown. Using the suppression algorithm to continuously process the
acquired capnogram could be a reasonable approach to enhance cap-
nography waveform.

Different approaches have been designed to mitigate this problem:
sophisticated ventilation detection methods based on the extraction of
several features from the capnogram [25], or filtering methods to

Fig. 2. (A) Distribution of Se and PPV per episode given by the ventilation detection algorithm before and after artefact suppression. (B) Distribution of the unsigned
error in percentage per episode in the estimation of ventilation rate. The boxes represent the median and IQR and the whiskers indicate the last value within± 1.5·
IQR. Outliers are represented by dots. Results are provided for all categories: non-D: non-distorted. D: distorted. I: type I artefact. II: type II. III: type III.

Table 3
Detection of excessive ventilation rates during CPR (> 10min−1): nvr is the
number of annotated ventilation rate values in the gold standard, and nov is the
number of annotated over-ventilation alarms.

Group Gold standard Before After

nvr nov Se(%) PPV(%) Se(%) PPV(%)

Total 25 833 15 237 99.3 93.1 98.9 97.8
Non-distorted 14 889 8873 99.7 98.2 99.3 98.9
Distorted 10 944 6364 98.8 86.7 98.4 96.3
Type I 5823 2961 99.1 90.7 98.7 97.2
Type II 2160 1570 99.8 97.8 97.5 97.7
Type III 2961 1833 97.2 73.9 98.7 93.6

S. Ruiz de Gauna et al. Resuscitation 133 (2018) 53–58

126



remove the oscillations from the capnogram [15]. Classic low pass fil-
tering, with either fixed or adaptive schemas, improved ventilation
detection accuracy considerably and was suitable to operate in real
time. However, these methods present an important limitation. In the
intervals where the artefact appeared, filtered capnogram represents
the average of the original CO2 concentration, as shown in the middle
panel of Fig. 1. This averaged waveform does not accurately represent
the CO2 concentration, limiting the application of filtering to a pre-
processing stage of the automated ventilation algorithm. In other
words, filtered waveform capnography is not suitable for visual analysis
so it would not be appropriate to show this signal on the monitor-de-
fibrillator screen.

The presence of oscillations superimposed on capnograms during
CPR may impede the correct assessment of clinically relevant in-
formation, e.g. visual tracking of ventilation instances or more im-
portantly, analysis of the evolution of ETCO2 values during the re-
suscitation attempt. In this study, we proposed an artefact suppression
method which tries to preserve the waveform capnography. We de-
monstrated that the resulting corrected waveform is useful to improve
automated assessment of ventilation occurrences, real-time estimation
of ventilation rate, and detection of excessive ventilation rates, parti-
cularly in the presence of artefact spanning from the plateau to the
baseline (type III). Our results were comparable and even slightly better
than those obtained using linear filtering [15]. The term “preserve”
refers to the extraction of a capnogram useful for clinical interpretation.
We visually analysed capnogram segments showing adjacent non-dis-
torted and distorted ventilations (Fig. 3). In the majority of the cases,
the envelope of the distorted capnogram resembles the CO2 tracing
observed in the preceding and following undistorted respiratory cycles
(Fig. 3, examples A, B, and C). Only in a few cases, the envelope does

not follow the pattern of adjacent non-distorted ventilations, as in the
example shown in Fig. 3, panel D.

Limitations of the study

Our study presented some limitations. First, data came from a single
monitor-defibrillator model and a single capnograph model, which
could limit the generalizability of the results. In addition, we did not
have access to patient data associated to the monitor-defibrillation files.
On the other hand, lack of knowledge about the origin of the artefact
and factors that may cause its appearance could limit the clinical im-
pact of the study.

We have not found any publications analysing how chest com-
pressions artefact affects ETCO2 measurement performed by capno-
graphs. We were also limited in this regard; our recordings contained
the waveform capnography but not the ETCO2 values measured by the
capnograph and their corresponding time line, so we could not statis-
tically quantify the improvement after implementing our method.
Clinical utility of envelope extraction from distorted capnograms de-
serves further investigation and discussion.

Conclusions

Automated ventilation detection, estimation of ventilation rate and
detection of excessive ventilation rates based on waveform capno-
graphy improved after chest compression artefact suppression.
Moreover, the algorithm enhances the capnogram tracing, potentially
favouring its interpretation during CPR. Further prospective research in
clinical settings is needed to understand the feasibility and utility of the
method.

Fig. 3. Examples of method performance. The raw capnogram (in blue) and the resulting waveform (in red) for: A: type I, B: type II, C, D: type III).
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Supplementary materials

Chest compression artefact suppression method

The algorithm for chest compression artefact suppression was designed based on the assumption of that the
envelope of the capnogram could be a reliable tracing for clinical interpretation. An example of the method’s
performance is given in Figure 1. A segment of a distorted capnogram is depicted in the top panel. The
capnogram obtained after applying the algorithm is represented in the bottom panel.

Due to variability in the morphology of the artefact and its location, the algorithm distinguishes between
low and high CO2 concentration intervals to determine how to extract the envelope of the capnogram. The
algorithm operates in real-time with one second buffered delay to process the waveform. During this second,
local maxima in the plateau phase are located in the capnogram. Then, a smoothing filter is applied to
restore the upper envelope of the capnogram (Figure 1, bottom panel, bold red line). Similarly, local minima
are located in the baseline to extract the lower envelope (Figure 1, bottom panel, dotted red line).

Figure 1: Graphical example of the suppression of chest compression artefact. A distorted
capnogram is depicted at the top. The bottom panel illustrates how the envelope of the capnogram is
extracted by detecting the local maxima of the original capnogram in the plateau and the local minima in
the baseline.

Feature computation

The detailed operation of the suppression algorithm is described through Figure 2. The algorithm applies two
amplitude thresholds, Thlo and Thhi, to distinguish low and high CO2 concentration intervals, respectively. In
the figure, areas of high CO2 concentration are shadowed in grey. For each capnogram cycle both thresholds
are updated according to a percentage of the last CO2 value in the high concentration interval (red diamond).
The algorithm then computes the duration of each CO2 concentration interval, Dlo and Dhi.

Figure 2: Example of feature computation. Thlo and Thhi separate low and high CO2 concentration
intervals. Dlo and Dhi are the computed durations of low and high (grey areas) CO2 concentration phases,
respectively.

A4 129



The algorithm operates differently depending on whether a high or a low CO2 concentration interval is
being analysed:

• During low CO2 concentration intervals, the algorithm uses Dhi feature to detect the presence of
chest compression oscillations. Oscillations are detected when Dhi value (see bold Dhi in Figure 2) is
less than or equal to an established threshold. In that case, the algorithm extracts the lower envelope
(dotted red line) after locating each local minimum (see upward arrowheads).

• During high CO2 concentration intervals, the algorithm works in the same way, but uses Dlo to
detect the presence of chest compression oscillations. Oscillations are detected if Dlo value (see bold
Dlo in Figure 2) is less than or equal to an established threshold. In that case, it calculates the upper
envelope (bold red line) of the capnogram extracting each local maximum (see downward arrowheads).
Additionally, a sliding window average filter is applied to obtain a smooth upper envelope tracing.
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Abstract 

Capnography is often used for the guidance on 
ventilation rate during cardiopulmonary resuscitation 
(CPR). However, capnogram waveform frequently 
presents oscillations induced by chest compressions (CC), 
affecting the reliability of ventilation detection. The aim of 
the work was to evaluate the performance of an open-loop 
adaptive filter in the cancellation of CC oscillations in the 
capnogram during CPR. For that purpose, we analyzed 60 
episodes from an out-of-hospital (OOH) cardiac arrest 
registry maintained by TVF&R agency (USA). In 50% of 
the episodes the capnogram was corrupted by CC 
oscillations. The goodness of the filtering scheme was 
assessed by comparing the sensitivity (Se) and the positive 
predictive value (PPV) of an automated ventilation 
detector before and after filtering. A fixed-coefficient low-
pass filter was also designed for comparison. The results 
showed that both filters reported a good performance 
although the adaptive scheme presented a slightly higher 
PPV (+1.2 points globally). The simpler fixed-coefficient 
scheme avoids the reference signal, but requires validation 
with larger datasets to ensure stability.  

1. Introduction

Current resuscitation guidelines recommend high 
quality chest compressions (CC) and ventilations during 
cardiopulmonary resuscitation, in order to increase 
survival from out-of-hospital (OOH) cardiac arrest [1]. 
However, the optimal application of the CPR procedure is 
not easy for both laypeople and well-trained rescuers [2]. 
Consequently, different indicators of CPR quality during 
the intervention are used for this purpose. 

Capnography is a non-invasive indicator of the 
concentration of carbon dioxide in the respiratory gases. 
Monitoring capnography during CPR is widely used for 
monitoring ventilation rate in order to prevent 
unintentional hyperventilation [3]. A clean capnogram is 
fundamental for a reliable visual analysis of the patient 

response (Fig. 1A). Unfortunately, different artefacts can 
frequently be observed in the capnogram during CPR. One 
of them is induced by CC, and appears superimposed on 
the capnogram as oscillations at the rate of the 
compressions and with varying amplitude (Fig. 1B,C). The 
CC artefact complicates the analysis of the capnogram, 
compromising the accurate detection of ventilations [4]. 

This work evaluates the performance of an open-loop 
adaptive filtering strategy for the cancellation of CC 
oscillations in the capnogram during CPR. For this 
purpose, we used a large dataset of OOH cardiac arrest 
episodes and selected those that were corrupted by CC 
oscillations. We designed an adaptive stop-band filter to 
supress the oscillations from the capnogram. We assessed 
the performance of the filtering scheme by comparing the 
sensitivity (Se) and the positive predictive value (PPV) of 
an automated ventilation detector before and after filtering. 

Figure 1. OOH capnograms. A) Clean capnogram B) 
Corrupted capnogram, with oscillations from CC 
appearing in the baseline. C) Corrupted capnogram with 
CC artefact spanning from the plateau to the baseline. 
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2. Materials and methods

2.1. Database description and annotation 

The dataset consisted of a 60 episodes from a large 
OHCA registry collected between 2011 and 2016 by 
Tualatin Valley Fire & Rescue (TVF&R), an advanced life 
support first response Emergency Medical Services (EMS) 
agency in Oregon (USA). Episodes were recorded using 
Heartstart MRx monitor-defibrillators (Philips Medical 
Systems, Andover, MA, USA) equipped with real-time 
CPR feedback technology (QCPR, Laerdal Medical, 
Norway). Capnography was acquired using sidestream 
technology (Microstream, Oridion Systems Ltd, Israel). 
The signals used in the study were the capnogram, the 
compression depth (CD) signal from the QCPR system, 
and the transthoracic impedance (TI) signal acquired from 
the defibrillation pads.  

We annotated a capnogram as corrupted if evident CC 
oscillations appeared during more than 1 min of CC time. 
Half of the 60 episodes were corrupted by the CC 
oscillations. Clean and corrupted capnograms were 
randomly allocated into a training set (30 episodes, 15 
clean + 15 corrupted) and a test set (30 episodes, 15 clean 
+ 15 corrupted).

Ventilations and CC instances were annotated in all the
episodes. Figure 2 shows an example of the annotation 
process. Ventilations were manually annotated using the 
TI signal which was low-pass filtered in order to suppress 
CC oscillations (Fig. 2 middle panel, filtered TI depicted 
in blue, raw TI in grey). Ventilations were annotated in the 
position associated to the inspiration onset (vertical lines) 
corresponding to a rise in the TI. CC instances were 
annotated in every relative maxima of the CD signal (Fig. 
2, top panel, red dots) corresponding to the maximum 
depth reached at each CC. 

Figure 2. Example of ventilation and CC instance 
annotation. 

2.2. Ventilation detector 

The ventilation detection algorithm processes the 
capnogram and is based on a finite-state-machine model. 
The capnogram consists of a short inspiration time (low 
values of CO2 pressure) and a longer expiration time (high 
CO2 values). The aim of the detector to identify the instants 
corresponding to CO2 downstrokes and upstrokes. 

The algorithm first distinguishes inspiration from 
expiration identifying potential ventilations. These 
candidates are characterized by their duration ( ) and 
classified as ventilation or non-ventilation, following a 
decision system based on thresholds (Figure 3). The 
algorithm is fully described in reference [4]. 

Figure 3. Graphical definition of the detector parameters. 

2.2. Filtering strategies 

2.2.1 Open-loop adaptive filter 

The suppression of the oscillations induced by the CC 
on the capnogram was based on an open-loop adaptive 
filter. According to Figure 4, the open-loop adaptive filter 
is based on the application of the information obtained 
from a reference input signal to the adjustment of the 
settings of the filter. In this kind of systems there is no 
feedback from the output [5]. 

Figure 4. Open-loop adaptive filter diagram. 

The open-loop adaptive filtering strategy was designed 
as a Butterworth band-stop filter, continuously tuned to the 
average CC rate in 2-s analysis windows. The design 
parameters were: the order,  and the 3dB bandwidth,  
of the filter, as well as the central frequency of the stop 
band, f0. The frequency  was obtained from the 
annotations of the CC instances on the CD signal (Figure 
5). The parameter  was calculated as the average CC rate 

Filter 

Adaptation 
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CD signal 

Capnogram 
Clean 
capnogram 
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during 2s-intervals. If the 2s-interval contained less than 3 
CC,  was the same as the one used in the previous 
interval. 

Figure 5. Calculation of parameter . 

The order and the bandwidth of the adaptive filter 
optimized with the training set, selecting finally  
and , respectively. 

2.2.2 Fixed-coefficient filter 

We also used a fixed-coefficient low-pass Butterworth 
filter for comparison. The design parameters were the 
order,  and the 3dB cut-off frequency of the filter, . 
After analyzing the spectral characteristics of different 
capnograms and CD signals, the final values of both 
parameters were optimized with the training set. 

2.3. Performance evaluation 

The goodness of the filtering strategy was assessed by 
comparing the sensitivity (Se) and the positive predictive 
value (PPV) of the ventilation detector, before and after 
filtering. Se was defined as the percentage of annotated 
ventilations that were correctly detected. PPV was defined 
as the percentage of detected ventilations that were correct. 
The maximum admissible tolerance for the position of the 
detection and the annotation was 500ms. We provide 
separate results for clean and corrupted subsets. 

We optimized the adaptive filter parameters ( , ) 
and the fixed-coefficient filter parameter ( , ) with the 
training set to maximize Se while maintaining PPV above 
92%. 

3. Results

The order and the bandwidth of the adaptive filter were 
optimized to  and , respectively. 
Similarly, the order and the bandwidth of the fixed-
coefficient filter were  and . 

Table 1 summarizes Se and PPV results for the test set, 
comprising 7195 ventilations. Globally, Se and PPV before 
filtering were 93.0% and 92.2%, respectively. In case of 

the fixed-coefficient filter, Se and PPV increased to 97.7% 
and 94.8%, respectively. The increments were similar in 
case of the open-loop adaptive filter, with a Se of 97.7% 
and a PPV of 95.3%. 

For the clean set (3905 ventilations), the results stayed 
stable: Se and PPV were close to 99%, before and after 
filtering, for both filtering strategies. However, for the 
corrupted subset (3290) Se and PPV were low: 84.8% and 
84.0%, respectively, before filtering. After applying the 
fixed-coefficient filter, Se increased to 95.4% and PPV to 
90.3%. Applying the open-loop filter the increment of the 
values of Se and PPV are similar to those ones obtained 
with the fixed coefficient filter (95.6/91.5%, respectively), 

Table 1. Se and PPV for the test set, before filtering and 
after fixed-coefficient (FC) and Open-loop (OL) adaptive 
filtering. 

Before 
(Se/PPV) 

FC 
(Se/PPV) 

OL 
(Se/PPV) 

Whole set 93.0/92.2 97.7/94.8  97.7/95.3 
Clean 99.8/99.1 99.6/98.7 99.5/98.7 
Corrupted 84.8/84.0 95.4/90.3 95.6/91.5 

Figure 6 shows the boxplots of Se and PPV values 
before and after filtering with both strategies. For both 
filters, the dispersion of Se and PPV was very low before 
as well as after filtering, in case of the clean episodes. 
However, the dispersion of both parameters was quite 
relevant for corrupted episodes before filtering.  

The results demonstrate that filtering the capnogram in 
case of clean episodes maintains good results of Se and 
PPV, and improve them in presence of artefact. 

4. Conclusions

The current resuscitation guidelines for advanced life 
support recommend the use of the capnogram during CPR. 
The presence of high-frequency oscillations in the 
capnogram during CC may difficult the interpretation of 
the signal. 

The work presents two filtering techniques to suppress 
the oscillations induced during CC: a simple fixed-
coefficients filter and an open-loop adaptive filter. 

The results demonstrate that the filtering of the 
capnogram provides a larger reliability in the automated 
detection of ventilations. The global results obtained for 
the complete test set, where clean and corrupted episodes 
were analyzed, are quite similar for both techniques. The 
improvement is specifically relevant in the presence of the 
artefact induced by CC. In this case, the open-loop 
adaptive strategy provides better results, with a better 
balance between the sensitivity and the positive predictive 
value. For the clean subset, the results stay stable before 
and after filtering. 
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Figure 6. Se and PPV for the test set before filtering (NF, 
left), after fixed-coefficient filtering (FC, middle) and after 
closed-loop adaptive filtering (CL, right). Boxes show the 
median and IQR. Outliers are represented by dots 
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Abstract 

Capnography is widely used by the advanced-life-
support during cardiopulmonary resuscitation (CPR). 
Continuous analysis of the capnogram allows guidance of 
adequate ventilation rate, currently 10 breaths/min for 
intubated patients. We used 60 out-of-hospital cardiac 
arrest episodes containing both clean and CC corrupted 
capnograms. Chest compressions (CC) induce high-
frequency oscillations in the capnography waveform 
impeding reliable detection of ventilations. Thus, a clean 
capnogram is essential for a better ventilation detection 
performance. To clean the capnogram, an adaptive noise 
cancellation notch filter was designed using a Least Mean 
Square algorithm to minimize filtering error. A fixed-
coefficient low-pass filter was optimized for comparison. 
For the whole test set, global Se/PPV improved from 
93.0/92.2% to 97.6/96.2% after adaptive filtering and to 
97.7/94.8% after fixed-coefficient filtering. For the clean 
subset, Se/PPV maintained stable and for the corrupted 
subset, Se/PPV improved from 84.8/84.0% to 95.2/92.7% 
and 95.4/90.3%, respectively. Filtering allowed reliable 
automated detection of ventilations in the capnogram even 
in the presence of CC oscillations during CPR. 
Nevertheless, further evaluation of these techniques in 
large datasets is warranted. 

1. Introduction

Cardiac arrest is one of the main causes of death in 
developed countries. Patient survival to cardiac arrest is 
related to several factors. The most important is the early 
start of cardiopulmonary resuscitation (CPR) which 
combines chest compressions and ventilations. 
Hyperventilation is common during CPR for both in-
hospital and out-of-hospital cardiac arrests even among 
highly trained rescuers. Although resuscitation guidelines 
recommend providing 10 breaths per minute to intubated 

patients, some clinical studies have documented 
ventilation rates over 30 breaths per minute [1], which have 
been shown to impair hemodynamics and worsen 
outcomes at cardiac arrest. 

The latest resuscitation guidelines recommend the use 
of capnography waveform to monitor ventilation rate 
during CPR [2]. A clean capnogram is essential for a 
reliable analysis of patient response (Figure 1a). However, 
chest compressions (CC) administered to the patient 
frequently induce high-frequency oscillations 
(Figure 1b,c,d) in the capnogram [3] impeding reliable 
detection of ventilations [4]. 

Figure 1. OHCA capnogram segments. a) Clean 
capnograms; b,c,d) Corrupted capnograms with CC 
oscillations in the plateau, baseline and form the plateau to 
the baseline, respectively. 

In this context, the present paper describes the 
observational study performed to assess the performance 
of an adaptive closed-loop filter for suppressing CC 
oscillations in the capnogram during CPR. For this aim, we 
used a previously recorded out-of-hospital cardiac arrest 
(OHCA) registry. 
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2. Materials and methods

2.1. Database description and annotation 

The dataset analysed in this study was a subset (60 
episodes) of a large OHCA registry collected and 
maintained by Tualatin Valley Fire & Rescue (TVF&R), 
an advanced life support first response Emergency Medical 
Services (EMS) agency in Oregon (USA). Episodes were 
recorded using Heartstart MRx monitor-defibrillators 
(Philips Medical Systems, Andover, MA, USA), equipped 
with a real-time CPR feedback system (QCPR, Laerdal 
Medical, Norway). Three concurrent signals were 
extracted: the transthoracic impedance (TI) signal, the 
compression depth (CD) signal and the capnogram. 

For each episode, capnograms were time-shifted to 
compensate delay with respect CD and TI signals. A 
capnogram was classified as corrupted if evident CC 
oscillations appeared during more than 1 min of CC time. 

Ventilation and CC instances were also annotated using 
the TI and the CD signal as the reference, respectively. TI 
signal was low-pass filtered (2nd-order Butterworth, cut-off 
frequency of 0.6 Hz) to remove oscillations caused by CC. 
Thus, slow oscillations caused by ventilations could be 
better observed in the filtered TI. Figure 2 depicts an 
example of the annotation process. Ventilations were 
annotated in the position associated to the inspiration onset 
(Figure 2, vertical lines) corresponding to a rise in the TI. 
CC instances were annotated in every relative maxima 
(Figure 2, red dots) corresponding to the maximum depth 
reached for each chest compression. 

Figure 2. Example of ventilation and CC instance 
annotation. 

Resulting ventilation annotations were our gold-
standard to test the reliability of the ventilation detection 
algorithm. Meanwhile, CC instances were used to control 
the configuration of the adaptive closed-loop filter. Clean 
and corrupted capnograms were randomly and equally split 
into a training and a test set. 

2.2. Closed-loop adaptive filtering 

Quality of the recorded capnogram is essential for a 
reliable analysis. However, a clean capnogram, where the 
different phases of the respiratory cycle are identifiable 
cannot always be observed during CPR [4,5]. Sometimes 
ongoing resuscitation efforts induce fast sinusoidal 
oscillations at different rates and with varying amplitude 
superimposed on the capnogram. The most common way 
to suppress this kind of artefact consist of using a notch 
filter. Nevertheless, in this study an adaptive noise 
cancellation notch filter is proposed, adjusting the filter to 
the same frequency and phase of the artefact [6]. A Least 
Mean Square (LMS) algorithm has been used. The main 
objective of this algorithm is to minimize the error 
sequence power ( ) produced between the filter 
response ( ) and the desired response ( ). 

The LMS filter, shown in Figure 3, is based on 
estimations, so it achieves an error power  higher than 
the minimum error power (  reached by the Wiener 
solution. In order to control the coefficient correction 
applied from a previous iteration to the next one, the LMS 
algorithm uses a parameter called step size ( ). When  is 
high, the adjustment is fairly fast, but the difference 
between the final error power  and the minimum value 

 is higher than with lower  values. 

Figure 3. Adaptive noise cancellation LMS filter diagram. 

Following the diagram depicted in Figure 3, the main 
input, , is the capnography signal with induced CC 
oscillations, while the reference input, , is a pure cosine 

, where  and  is the instant 
frequency of the CC. When CC are provided, the cosine 
amplitude  is ‘1’, and ‘0’ otherwise. 

The output of the adaptive filter,  is an estimation 
of the artefact and the output of the noise cancellation 
system, , represents the capnography signal without 
induced CC oscillations. Using  and the reference 
signals the LMS algorithm adjusts the impulse response of 
the filter used in the next iteration. 

The transference function (1) of this filter demonstrates 
that the noise cancellation system has the same properties 
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of a notch filter designed to supress . The unique design 
parameter of this adaptive filter is the 3dB bandwidth (2). 

 

 

2.3. Performance evaluation 

We evaluated the performance of the adaptive filter in 
terms of its sensitivity (Se) and its positive predictive value 
(PPV) given by the ventilation detection algorithm and the 
gold-standard. Se was defined as the percentage of 
annotated ventilations that were correctly detected. PPV 
was defined as the percentage of detected ventilations that 
were correct. The maximum admissible tolerance for the 
position of the ventilation detection and the gold-standard 
annotation was 500ms. 

We optimized the adaptive filter parameter ( ) 
with the training set to maximize Se while maintaining 
PPV above 92%. A fixed-coefficient low-pass filter was 
designed and optimized (8th-order Butterworth, cut-off 
frequency of 1.5 Hz) for comparison. The 95% confidence 
intervals (95%CI) were computed for both metrics. 

3. Results

Adaptive closed-loop filter optimization was achieved 
for . For the training set (8102 ventilations), 
the Se and PPV were 98.4% (95%CI, 98.0-98.6) and 96.6% 
(96.2-97.0), respectively.  

Table 1 summarizes Se and PPV results for the LMS 
filter. Table 2 summarizes Se/PPV before filtering and 
after applying the fixed-coefficient filter. For the whole 
test set, global Se/PPV improved from 93.0/92.2% to 
97.6/96.2% after adaptive filtering and to 97.7/94.8% after 
fixed-coefficient filtering. For the clean subset, Se/PPV 
maintained stable (99.8/99.1% before, 99.8/99.1% and 
99.6/98.7% after, respectively). For the corrupted subset, 
Se/PPV improved from 84.8/84.0% to 95.2/92.7% and 
95.4/90.3%, respectively. 

Figure 4 shows the boxplots of Se and PPV values 
before and after filtering. For both fixed-coefficient and 
adaptive closed-loop the dispersion of Se and PPV was 
very low before as well as after filtering, in case of clean 
episodes. However, the dispersion of Se and PPV was quite 
relevant for corrupted episodes before filtering. 

Table 1. Se and PPV for the test set after adaptive filtering. 
n: number of annotated ventilations. 

n Se (95% CI) PPV (95% CI) 
Whole set 7195 97.6 (97.3-98.0) 96.2 (95.7-96.6) 
Clean 3905 99.8 (99.6-99.9) 99.1 (98.8-99.4) 
Corrupted 3290 95.2 (94.4-95.8) 92.7 (91.8-93.6) 

Table 2. Se and PPV for the test set before filtering (left) 
and after fixed-coefficient filtering (right). 

Before Fixed-coefficient
Se(%) PPV(%) Se (%) PPV (%) 

Whole set 93.0 92.2 97.7 94.8 
Clean 99.8 99.1 99.6 98.7
Corrupted 84.8 84.0 95.4 90.3 

Figure 4. Se and PPV for the test set before filtering (NF, 
left), after fixed-coefficient filtering (FC, middle) and after 
closed-loop adaptive filtering (CL, right). Boxes show the 
median and IQR. Outliers are represented by dots 
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4. Discussion

According to current resuscitation guidelines for 
advanced life support, ventilation rate monitoring during 
CPR is one of the recommended uses of the capnogram. 
However, the presence of high-frequency oscillations in 
the capnogram during CC may compromise a reliable 
detection of ventilations. 

Our adaptive noise cancellation filter presented a very 
good ventilation detection performance. Thus, the results 
demonstrate that filtering the capnogram in case of clean 
episodes maintains good results of Se and PPV, and 
improve them in presence of artefact. 

Comparing the results between adaptive and fixed-
coefficient filtering, it seems that fixed-coefficient filtering 
would be enough. Nevertheless, due to CC rate variability, 
a study with a larger database is needed, while our adaptive 
filter is CD signal dependent, allowing us to adjust our 
filter to any kind of CC rate, but this requires using a CPR 
feedback system providing this signal. 

Other studies proposing alternatives for ventilation 
detection with either the TI signal or the capnogram have 
also mentioned the signal limitations due to the presence 
of CC artefact [5]. Although the influence of CC artefact 
on the reliability of capnogram-based ventilation detection 
has been demonstrated [4], the suppression of this artefact 
has not been previously studied. 

Our study has been the first to quantitatively 
characterize and measure the impact of an adaptive CC 
artefact suppression on OHCA capnograms. Our 
subsequent hypothesis is that automatic ventilation 
detection would improve if the capnogram waveform 
could be successfully restored. Designing new filtering 
approaches for this aim will be our next step, exploring 
different alternatives. 

Our study has several limitations. First, the annotation 
of ventilations on the TI was not straightforward during 
CPR. We discarded some intervals because of unreliable 
TI signal (noise, disconnections) and filtering was needed 
to remove the CC artefact. No other reference signal was 
available as an alternative gold-standard. Finally, data 
came from a single monitor-defibrillator and so results 
may not be generalizable. We would need to characterize 
this further with other monitor-defibrillators. 

5. Conclusions

Filtering allowed reliable automated detection of 
ventilations in the capnogram even in the presence of CC 
oscillations during CPR. Nevertheless, further evaluation 
of these techniques in large datasets is warranted given the 
variability of out-of-hospital CC and ventilation rates. 
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Incorporating�basic�life�support�training�into
cardiac�rehabilitation�programs:�The�CAREBAS
project.�Analysis�of�patients’�performance
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Hospital�Clínico�Universitario�de�Santiago�de
Compostela,�Santiago�de�Compostela,�Spain

Purpose:�To�examine�the�effectiveness�of�CPR�rolling�refreshers�
embedded�in�a�cardiac�rehabilitation�program�at�enhancing�practi-
cal�basic� life�support�(BLS)�skills�and�self-efficacy�of�patients�with�
coronary�heart�disease.

Methods:� 114� patients� enrolled� on� an� exercise-based� cardiac�
rehabilitation�program�were� invited� to�participate.�Standard�one-
time�training�in�BLS�(standard�group,�G-Stan)�was�compared�to�CPR�
hands-on� rolling� refreshers� incorporated� into� the� 2-month� exer-
cise�program�(CPR�group,�G-CPR).�BLS�skills�and�compressions-only�
CPR�quality�were�assessed�at�baseline,� following�brief� instruction�
and� after� the�program�on� a� simulated� scenario.� Self-efficacy�was�
evaluated�using�a�10-cm�visual�analogue�scale.

Results:�108�participants�(G-Stan:58;�G-CPR:50)�completed�the�
final�evaluation� (91.2%male,�mean� age�53.7�±�6.4years)� and�data�
from�105�was�available�for�the�CPR-quality�analysis.�BLS�sequence�
performance� was� equally� poor� at� baseline� and� improved� sig-
nificantly� after� instruction.� G-CPR� showed� better� retention� at� 2�
months,� significantly� superior� for� “checking� safety”�and� “sending�
for� a� defibrillator”.� Low� initial� CPR� quality� improved� irregularly�
after� instruction� in�both�groups;�skill�deterioration� in�G-Stan�at�2�
months� contrasted� with� further� improvement� in� G-CPR,� which�
achieved� superior� results� regarding� %of� correct� compressions� by�
depth,�rate,�hands�position�and�global�CPR�quality,�and�greater�CPR�
self-efficacy�(p�<�0.01�in�all�analysis).

Conclusions:� Integrating�CPR�hands-on� rolling� refreshers� into�
an� exercise-based� cardiac� rehabilitation� program� is� effective� at�
improving�patients’�BLS�skill�retention�and�self-efficacy�compared�
to�standard�one-time�training.�Exporting�this�formula�may�result�in�
increased�numbers�of�trained�citizens,�enhanced�social�awareness�
and�bystander�resuscitation.
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Suppression�of�chest�compression�artefact�to
enhance�reliability�of�capnography�waveform
analysis�during�cardiopulmonary�resuscitation
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Leturiondo�1,� James�Knox�Russell�2,�Mohamud
Daya�2
1�University�of�the�Basque�Country,�UPV/EHU
2�Oregon�Health�&�Science�University,�OHSU

Introduction:� Real-time� capnography� is� an� important� mon-
itoring� tool� to� guide� ventilation� rates� during� cardiopulmonary�
resuscitation� (CPR).� However,� during� CPR� capnograms� are� com-
monly�distorted�by�chest�compressions� (CC)� [1].�The�reliability�of�
automated� ventilation� detection� based� on� the� capnogram�
decreases�in�the�presence�of�CC�artefact�[1].

Purpose� of� the� study:� To� design� a� CC� artefact� suppression�
technique� to� improve�ventilation�detection�while�preserving�CO2�
concentration�values�produced�by�ventilations.

Materials�and�methods:�Episodes�from�an�out-of-hospital�car-
diac� arrest� (OHCA)� registry� (n�=�202)� with� a� mean� duration�
of� 30� (±9.5)� min� were� analysed.� Each� record� comprised�
concur-rent� capnogram,� compression� depth,� and� transthoracic�
impedance� (TI)� signals.� The� suppression� algorithm� detects�
distorted� venti-lations� in� the� capnography� waveform� (Fig.� 1a).�
It� calculates� the� upper� envelope� of� the� capnogram� during� the�
alveolar� plateau� and� extracts� the� lower� envelope� during�
capnogram� baseline,� obtaining� a� non-distorted� capnogram�
waveform�(Fig.�1b).�The�algorithm�was�assessed�by� comparing� the�
performance� of� a� ventilation� detector� before� and� after� artefact�
suppression.

Results:� A� total� of� 44,267� ventilations� were� annotated� using�
the� TI� signal.� Table� 1� shows� the� detector� performance� for� dis-
torted�(n�=�83)�and�non-distorted�episodes.�For�distorted�episodes,�
sensitivity� and�positive�predictive�value� (Se/PPV)� improved� from�
91.9/89.5%�to�98.0/97.3%.�The�unsigned�error�of�the�estimated�ven-
tilation� rate� for� distorted� episodes� decreased� from� 6.3%� to� 3.1%,�
improving�detection�of�hyperventilation.�The�algorithm�had� little�
effect�in�non-distorted�data.

Fig. 1. (a) before (b) after CC artefact suppression.

Table 1
CC artefact suppression method performance.

Record type n Before After

Se (%) PPV (%) Se (%) PPV (%)

Non-distorted 119 99.5 99.0 99.0 99.0
Distorted 83 91.9 89.5 98.0 97.3

Conclusions:�Ventilation�detection�during�CPR�improved�after�
CC� artefact� suppression.� Moreover,� the� method� preserved� the�
capnogram�tracing�caused�by�ventilations,�enhancing�reliability�of�
clinical�interpretation�of�capnography�during�CPR�for�OHCA.

Reference

[1]� Leturiondo,�et�al.�Resuscitation�2018;124:63–8.
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Abstract 

Capnography-based ventilation rate guidance is 
valuable and widely used by advanced life support during 
cardiopulmonary resuscitation (CPR). However,  there is 
a high incidence of induced chest compression (CC) 
oscillations that decreases the reliability of automated 
ventilation detection. We used 30 out-of-hospital cardiac 
arrest episodes containing the capnogram and 
transthoracic impedance signals. The algorithm detects 
the presence of distorted ventilations in the capnogram. It 
calculates the artifact envelope during the alveolar plateau 
and removes the artifact during capnogram baseline, thus 
obtaining a non-distorted waveform. The goodness of the 
method was assessed by comparing the performance of a 
ventilation detection algorithm before and after artifact 
suppression. From a total of 6387 annotated ventilations, 
34% of them were classified as distorted. Global sensitivity 
and positive predictive value (Se/PPV, %) improved from 
77.9/74.0 to 97.0/95.8. Median value of the unsigned error 
(%) of the estimated ventilation rate decreased from 19.6 
to 4.5 and the accuracy for detection of over-ventilation 
increased with cleaned capnograms. Capnogram-based 
ventilation guidance during CPR was enhanced after CC 
artifact suppression. Our method preserved the tracing of 
CO2 concentration caused by ventilations, allowing other 
clinical uses of the capnography during resuscitation. 

1. Introduction

During out-of-hospital cardiac arrest (OHCA) episodes, 
advanced life support (ALS) treatment usually involves 
advanced airway placement, high-quality cardiopulmonary 
resuscitation (CPR) and early defibrillation [1,2].  

Guidance on ventilation rate is key during CPR, thus, 
capnography is widely used by the ALS, but for this 
purpose, a clinically interpretable waveform where the 

different phases of the respiratory cycle must be clearly 
identifiable. Several studies have reported the appearance 
of fast oscillations synchronized with provided chest 
compressions (CCs) superimposed on the capnogram, 
often completely distorting the normal tracing [3,4]. 

Filtering approaches have been widely proposed to 
remove chest compression artifact from the 
electrocardiogram during CPR [5]. In a recent study, we 
proposed a few filtering techniques to remove those 
oscillations from the capnogram [6]. All of them improved 
the automated detection of ventilations. However, these 
frequency domain techniques present an important 
limitation where the artifact appears. Resulting capnogram 
waveform represents only the average of the original CO2 
concentration. Thus, filtered capnograms are not suitable 
for clinical analysis. 

In this study, we explored an alternative method to 
suppress chest compression oscillations from the 
capnography waveform. Our proposal is based on a time 
domain analysis, and was not only designed to improve 
ventilation detection, but also to provide a capnogram that 
resembles the “real” tracing caused by ventilations. 

2. Materials and methods

2.1. Database description and annotation 

The dataset analyzed in this study was a subset (30 
episodes) of highly distorted capnogram waveforms 
extracted from a large OHCA registry collected by 
Tualatin Valley Fire & Rescue (TVF&R), an advanced life 
support (ALS) Emergency Medical Services (EMS) 
agency, between 2011 and 2016. Episodes were recorded 
using Heartstart MRx monitor-defibrillators (Philips USA) 
equipped with real-time CPR feedback (QCPR, Laerdal 
Medical, Norway) and sidestream capnography 
(Microstream, Oridion Systems Ltd, Israel) to provide a 
High-Quality CPR. For each episode, we extracted two 
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concurrent signals: the transthoracic impedance (TI) 
signal, acquired from the defibrillation pads and the 
capnogram, acquired using sidestream technology. 

Ventilation annotations from a previous study were 
used [4]. In that study, episodes with more than 1 min of 
evident CC artifact were classified as distorted. Distorted 
episodes were then grouped into type I, type II and type III 
(highly distorted) artifact categories. Ventilations were 
annotated using the raw TI signal as reference. TI signal 
was low-pass filtered to remove oscillations caused by CC. 
Thus, enhancing slow fluctuations caused by ventilations. 
All processed TI signals were visually examined to 
manually annotate the position of each ventilation. 
Resulting highly distorted episodes and ventilation 
annotations were used in the present study as our gold 
standard to prove the reliability of the artifact suppression 
method. Additionally, in this study we also classified each 
capnogram cycle (ventilation) as distorted or non-distorted 
by CC artifact following the pattern shown in Figure 1. 

Figure 1. Capnography signal segments. 

2.2. Chest compression artifact suppression 

Following the hypothesis that the real CO2 
concentration produced by ventilations remains in the 
envelope of the induced CC artifact, we designed a method 
that restores the “real” tracing of the capnography 
waveform. A graphical explanation of the method 
performance is given in Figure 2, where a segment of a 
distorted capnogram (blue line) is depicted with the 
resulting capnogram after applying the method (dotted red 
line). 

Figure 2. Graphical explanation of the artifact 
suppression method. 

The artifact suppression algorithm operates in real-time, 
with one second buffered delay, to process, detect and fix 
the capnography waveform. Due to artifact origin and type 
variety [4], the suppression method divides its operation 
into low and high CO2 concentration intervals. This 
division helps to determine how to extract the envelope of 
the capnography waveform. 

The functioning of the algorithm can be divided into 
three main steps: 

• Feature computation: The algorithm applies two
thresholds to distinguish between low CO2

concentration phase (Figure 3, grey line) and high
CO2 concentration phase (Figure 3, blue line),
𝑇ℎ#$ and 𝑇ℎ%& respectively. This thresholds
determine the beginning instances of each interval
(𝑡#$(  and 𝑡%&( ). For every capnogram fluctuation,
both thresholds are updated using the last high
CO2 value (red diamond). Finally, every
capnogram fluctuation is characterized by two
features:
- 𝐷#$: Low CO2 interval duration, 𝐷#$ = 𝑡%&( − 𝑡#$(

- 𝐷%&: High CO2 interval duration, 𝐷%& = 𝑡#$(,- − 𝑡%&(  

Figure 3. Example of feature computation. 

• Artifact detection and reconstruction: The
operation of the method depends on which
interval is analyzing. During a low CO2 interval,
the algorithm analyzes the following CO2 interval
and vice versa, as shown in Figure 4. The
algorithm detects the presence of artifact when:
- During low CO2 interval (Figure 4, left

panel), the following high CO2 interval
duration (𝐷%&) is less than or equal to a high
interval duration threshold, 𝐷𝑡ℎ%&.

- During high CO2 interval (Figure 4, right
panel), the following low CO2 interval
duration (𝐷#$) is less than or equal to a low
interval duration threshold, 𝐷𝑡ℎ#$.

Only in presence of artifact, the algorithm extracts 
the local minima (upward arrowheads) and local 
maxima (downward arrowheads) of the 
oscillations, during low and high intervals 
respectively. Finally, it connects these points with 
a linear interpolation obtaining the lower and 
upper envelopes. 

Figure 4. Detection of chest compression oscillations. 
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• Envelope smoothing: Additionally a sliding
window average filter (i.e. moving average) is
applied only to smooth the upper envelope, as
shown in Figure 5.

Figure 5. Upper envelope moving average smoothing. 

2.3. Performance evaluation 

We computed the effectiveness of the artifact 
suppression method in terms of the sensitivity (Se) and 
positive predictive value (PPV) of an automated 
ventilation detection algorithm before and after artifact 
suppression. Se values were defined as the proportion of 
correctly detected ventilations among all annotated 
ventilations. PPV values were defined as the proportion of 
correctly detected ventilations among all detections. 

We also evaluated the performance of the method in the 
estimation of ventilation rate; we computed, for each 
episode, the number of ventilations given in the las minute 
updated every 10s. Ventilation rate measurements obtained 
before and after applying the artifact suppression method 
were compared with the measurements computed form the 
gold standard by calculating the unsigned percent error. 

Finally, accuracy in the detection of excessive 
ventilation rates was also tested. According to the general 
recommendation in current resuscitation guidelines, 
ventilation rates above 10min-1 during CPR can be 
considered as excessive [1,2]. In this case, Se was defined 
as the proportion of annotated alarms that were given by 
the algorithm, and PPV as the proportion of given alarms 
that were indeed annotated.  

3. Results

From the 30 OHCA episodes that were analyzed, with a 
mean duration of 34 (±18) minutes, a total of 6387 
ventilations were annotated, with a mean of 213 (±92) 
ventilations per episode. From these, 4215 (66%) 
corresponded to non-distorted ventilations and 2172 (34%) 
to distorted ventilations. 

The performance of the automated ventilation detection 
algorithm was computed before and after applying the 
suppression method. For the whole set, global Se/PPV 
improved from 77.9%/74.0% to 97.0%/95.8%. Figure 6A 

illustrates the distribution of Se and PPV per episode given 
by the ventilation detection algorithm. Overall, both 
medians increased and dispersion in Se and PPV was also 
reduced. Se/PPV IQR decreased from 20.1%/29.2% to 
1.6%/3.8%. 

Figure 6. A) Distribution of Se and PPV per episode. 
B) Distribution of the unsigned error in percentage per

episode in the estimation of ventilation rate.

Figure 6B depicts through box plots the distribution of 
the unsigned error in percentage between the estimation 
and the gold-standard ventilation rate value. As is the case 
with Se/PPV, the median error noticeably decreases from 
19.6% to 4.5% and the IQR from 32.6% to 6.3%. 

The influence of the artifact suppression in the detection 
of excessive ventilation rates was also computed. Globally, 
Se/PPV were 95.5%/71.9% before and 98.7%/93.5% after 
artifact suppression. In this case the improvement was 
significantly higher for PPV values with a slightly increase 
in Se. An increase in PPV implied a reduction in false over-
ventilation alarms. 

Finally, Figure 7 visually illustrates the performance of 
the method. The raw capnogram is depicted in blue and the 
resulting artifact suppression waveform in red, 
superimposed to the raw capnogram. 

Figure 7. Examples of restored capnograms. 
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4. Discussion

During OHCA resuscitation episodes a high incidence 
of induced oscillations has been reported. Induced CC 
artifact on OHCA capnograms negatively affects the 
automated detection of ventilations. This means that real 
time monitoring of ventilation rate could become 
unreliable in some circumstances. Filtering approaches 
have been designed to reduce the impact of this problem: 
classic low pass filtering, with either fixed or adaptive 
schemas, improved ventilation detection accuracy. 
However, the resulting capnogram did not accurately 
represent the “real” tracing caused by ventilations, limiting 
the application just to improve the automated detection of 
ventilations. 

Visual tracking of ventilation instances and the analysis 
of the evolution of ETCO2 values during CPR may be 
interfered by the presence of induced CC oscillations 
superimposed on capnograms. In this study, we proposed 
an artifact suppression method that extracts the envelope 
of the chest compression oscillations. It has been 
demonstrated that the resulting artifact suppression output 
resembles the CO2 fluctuations caused by ventilations. We 
also validated the improvement in the automated detection 
of ventilations, real-time ventilation rate estimation and 
detection of excessive ventilation rates. Unfortunately, we 
could not numerically assess the goodness of the resulting 
capnogram waveform and the error committed. Thus, we 
visually analyzed capnogram segments showing adjacent 
distorted and non-distorted ventilations (Figure 5). In most 
of the cases, the envelope of the distorted capnogram 
preserves the CO2 tracing of preceding and following non-
distorted ventilations (Figure 5A,B). Only a few of them 
did not follow the pattern of adjacent non-distorted 
respiratory cycles (Figure 5C). 

5. Conclusions

Capnogram-based ventilation guidance during CPR was 
enhanced after CC artifact suppression. Our method 
preserved the tracing of CO2 concentration caused by 
ventilations, allowing other clinical uses of capnography 
during resuscitation. 
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Abstract
Aim

Current resuscitation guidelines recommend waveform capnography as an indirect indicator

of perfusion during cardiopulmonary resuscitation (CPR). Chest compressions (CCs) and

ventilations during CPR have opposing effects on the exhaled carbon dioxide (CO2) concen-

tration, which need to be better characterized. The purpose of this study was to model the

impact of ventilations in the exhaled CO2 measured from capnograms collected during out-

of-hospital cardiac arrest (OHCA) resuscitation.

Methods

We retrospectively analyzed OHCA monitor-defibrillator files with concurrent capnogram,

compression depth, transthoracic impedance and ECG signals. Segments with CC pauses,

two or more ventilations, and with no pulse-generating rhythm were selected. Thus, only

ventilations should have caused the decrease in CO2 concentration. The variation in the

exhaled CO2 concentration with each ventilation was modeled with an exponential decay

function using non-linear-least-squares curve fitting.

Results

Out of the original 1002 OHCA dataset (one per patient), 377 episodes had the required sig-

nals, and 196 segments from 96 patients met the inclusion criteria. Airway type was endotra-

cheal tube in 64.8% of the segments, supraglottic King LT-D™ in 30.1%, and unknown in

5.1%. Median (IQR) decay factor of the exhaled CO2 concentration was 10.0% (7.8 − 12.9)

with R2 = 0.98(0.95 − 0.99). Differences in decay factor with airway type were not statistically

significant (p = 0.17). From these results, we propose a model for estimating the contribution

of CCs to the end-tidal CO2 level between consecutive ventilations and for estimating the

end-tidal CO2 variation as a function of ventilation rate.
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Conclusion

We have modeled the decrease in exhaled CO2 concentration with ventilations during chest

compression pauses in CPR. This finding allowed us to hypothesize a mathematical model

for explaining the effect of chest compressions on ETCO2 compensating for the influence of

ventilation rate during CPR. However, further work is required to confirm the validity of this

model during ongoing chest compressions.

Introduction

As emphasized by current resuscitation guidelines, high quality cardiopulmonary resuscitation

(CPR) is essential to improving outcomes of cardiac arrest victims [1]. CPR providers should

deliver chest compressions of adequate depth (50–60 mm) with a rate of 100–120 compres-

sions per minute (cpm). Observational studies have established that high quality chest com-

pressions are associated with favorable outcomes [2–4]. However, the recommended values

may not be optimal for all individuals [5]. Ideally, CPR should be guided based on patient’s

response, e.g. using a non-invasive haemodynamic indicator [6, 7]. In this way, rescuers could

adapt their CPR technique to optimize perfusion.

End-tidal carbon dioxide (ETCO2) is the partial pressure of carbon dioxide at the end of an

exhaled breath. Experimental studies have shown that ETCO2 correlates with cardiac output

and coronary perfusion pressure during CPR [8, 9]. Low ETCO2 values during resuscitation

reflect the low cardiac output generated by chest compressions [10]. ETCO2 may serve as a

non-invasive hemodynamic indicator, albeit with complexities of interpretation. A consensus

statement published by the American Heart Association in 2013 recommended using the

ETCO2 level as a physiological measure during CPR when an arterial or central venous cathe-

ter is not available [11]. Waveform capnography, i.e., continuous measurement of CO2 con-

centration with time, enables monitoring of ETCO2 during CPR. Current advanced life

support (ALS) resuscitation guidelines [12, 13] emphasize the potential role of waveform cap-

nography in monitoring CPR quality [14, 15], in the early recognition of return of spontaneous

circulation (ROSC) during CPR [16, 17], and as a potential indicator of patient outcome [18–

20].

During CPR, ETCO2 values depend on the blood flow generated by chest compressions, on

ventilation rate and tidal volumes of each breath, and on the metabolic activity of the patient

tissues [21, 22]. Chest compressions and ventilations have opposing effects on ETCO2 during

CPR: compressions generate blood flow that delivers CO2 from the tissues to the lungs, with

the amount of delivered CO2 being proportional to the amount of generated blood flow; venti-

lations, conversely, remove CO2 from the lungs, and thus ETCO2 decreases as ventilation rate

is increased [23].

Recent studies have modeled the influence of chest compression quality (compression

depth and rate) and ventilation rate on ETCO2 during CPR using multivariate analysis [14,

15]. Studies on ROSC detection and patient outcome rely on the comparison of measured

ETCO2 levels [16–20, 24]. However, animal studies have suggested that ventilation rate signifi-

cantly influences ETCO2 levels [25]. Consequently, when interpreting ETCO2 during CPR,

ventilation rate acts as a significant confounding factor [22].

We hypothesized that the effect of ventilation on the capnogram could be modeled sepa-

rately by analyzing variations in CO2 concentration during chest compression pauses. Model-

ing the impact of ventilation on the capnogram would have two main areas of application.

Impact of ventilations on the capnogram in out-of-hospital cardiac arrest

PLOS ONE | https://doi.org/10.1371/journal.pone.0228395 February 5, 2020

support in the form of a grant for research projects

(RTI2018-094396-B-I00) for authors Jose Julio

Gutierrez, Jesus Marı́a Ruiz, Sofı́a Ruiz de Gauna,

and Mikel Leturiondo; and in the form of the

program Torres Quevedo (PTQ-16-08201) for

author Digna Marı́a González-Otero (http://www.
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First, it would facilitate a better assessment of the relationship between chest compression

quality and capnography. Second, it would allow accounting for the confounding factor of

ventilation rate in studies analyzing the correlation between ETCO2 and ROSC or patient out-

come. In this context, the purpose of this study was to apply a novel strategy to model the

impact of ventilations and ventilation rate on the exhaled CO2 measured in out-of-hospital

cardiac arrest capnograms.

Materials and methods

Data collection

The data set used in this study was a subset of a large database of out-of-hospital cardiac arrest

(OHCA) episodes collected from 2006 through 2016 by Tualatin Valley Fire & Rescue

(TVF&R), an ALS first response emergency medical services (EMS) agency serving nine incor-

porated cities in Oregon, USA. The database is part of the Resuscitation Outcomes Consor-

tium (ROC) Epidemiological Cardiac Arrest Registry collected by the Portland Regional

Clinical Center. The data collection was approved by the Oregon Health & Science University

(OHSU) Institutional Review Board (IRB00001736). Data were provided anonymous and con-

tained no personal information.

Episodes were recorded using Heartstart MRx monitor-defibrillators (Philips, USA),

equipped with capnography monitoring using sidestream technology (Microstream, Oridion

Systems Ltd, Israel) and CPR quality monitors (Q-CPR). TVF&R used endotracheal tube or

supraglottic (King LT-D™) devices to secure the airway. Ventilations were provided manually

before and after patient intubation. For this study, we only included recordings with concur-

rent capnogram, compression depth signal, electrocardiogram (ECG) and transthoracic

impedance (TI) signals.

Segment selection

Two biomedical experts (JJG and JMR) used a custom-made Matlab (Mathworks, USA) pro-

gram to visually inspect the four signals extracted from each recording. Within each episode,

they selected segments with no chest compressions where two or more complete ventilations

were provided, and where the patient presented no spontaneous circulation. It was assumed

that during those intervals, the decrease in the exhaled CO2 concentration was caused only by

ventilations. Absence of chest compressions was verified using compression depth and TI sig-

nals. Ventilation instances were identified using both the capnogram and the TI signal. Absence

of a pulse-generating rhythm was verified by inspecting the ECG. Pulseless electrical activity

and perfusing rhythm were distinguished by checking the circulatory component of the TI sig-

nal [26]. The beginning of each segment meeting the inclusion criteria was annotated 3 seconds

after the interruption of chest compressions, to reject the period where blood pressures change

rapidly and blood flow induced by chest compressions decreases to a sustained low flow level

[27–29]. Fig 1 shows an example of a selected segment, highlighted in blue. This segment pres-

ents five complete ventilations, which can be observed in the capnogram and in the TI signal as

slow fluctuations. The flat line in the compression depth signal indicates the absence of chest

compressions, confirmed by the cessation of the fast fluctuations caused by chest compressions

in the TI signal. Finally, the artifact-free ECG segment reveals ventricular fibrillation.

Data annotation

When analyzing the capnogram in the segments included in this study, we found that the

duration of each ventilation cycle was different within each segment (see Fig 1). The duration

Impact of ventilations on the capnogram in out-of-hospital cardiac arrest
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of each ventilation affects the ETCO2 value since the plateau usually presents a low ascendant

slope. To compare analogous points of exhaled CO2 pressure values in the ventilations of each

segment, we annotated the CO2 value at a fixed delay from the beginning of the expiratory

upstroke. We took the shortest plateau duration within each segment as the reference delay,

and named this new metric ensemble plateau CO2 or epCO2. In the absence of spontaneous

circulation, CO2 concentration during pauses in chest compressions decreases with each venti-

lation. However, this decrease may not be reliably measured since ETCO2 value is highly

dependent on the duration of the expiratory plateau. Fig 2 illustrates this idea depicting a short

Fig 1. Example of segment selection. Required concurrent signals, with the segment highlighted in blue. From top to

bottom: capnogram, compression depth, TI signal, and ECG.

https://doi.org/10.1371/journal.pone.0228395.g001

Fig 2. Example illustrating the metric epCO2. Short capnogram interval with three ventilations and the

corresponding annotated ETCO2 (green squares) and epCO2 (red dots) values. The novel metric epCO2 was defined to

represent the end-tidal values obtained if all ventilations had the same exhalation time. In the example, epCO2 value

decays with each ventilation.

https://doi.org/10.1371/journal.pone.0228395.g002
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capnogram interval with three ventilations and the corresponding annotated ETCO2 values

(green squares). The value annotated in the second ventilation is higher than the value anno-

tated in the first ventilation. The novel metric epCO2 was defined to represent the end-tidal

values obtained if all ventilations had the same exhalation time. The values of epCO2 depicted

with red dots in Fig 2, clearly show the expected decay with each ventilation.

Top panel of Fig 3 shows the same capnogram segment from Fig 1 with the annotated

epCO2 values depicted as red dots.

Model fitting

The decay in epCO2, as illustrated in Fig 3, suggested an exponential decay model. Thus, we

modeled the trend in epCO2 variation using the following expression:

epn ¼ k � epn� 1 for n ¼ 1; 2 . . .N � 1; ð1Þ

where epn represents the epCO2 value corresponding to the ventilation of index n within the

segment and N the total number of ventilations in the segment. The decay factor between con-

secutive ventilations D (%) was computed as:

Dð%Þ ¼ 100 � ð1 � kÞ ð2Þ

Factor k was adjusted through a Matlab curve fitting tool using a decay exponential func-

tion as follows:

epn ¼ a � bn for n ¼ 0; 1 . . .N � 1 ð3Þ

Fig 3. Data annotation and model fitting. Top panel: the annotated epCO2 values within the segment selected in Fig 1 are marked in the capnogram

with red dots. Bottom panel: the epCO2 values are depicted as a function of the ventilation index, with the curve fitted using Eq (3) (dashed black line),

and the decay factor and the coefficient of determination for the analyzed segment.

https://doi.org/10.1371/journal.pone.0228395.g003
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where a is an estimate of the initial epCO2 value (n = 0) in the segment and b provides the

adjusted k factor for each segment. We used non-linear least squares as the fitting method.

Fig 3 illustrates the process of curve fitting for one segment. In the example, the fitting pro-

cess yielded a = 16.7 mmHg and b = 0.90, indicating that on average epCO2 declined 10% with

each ventilation.

Statistical analysis

Values that did not follow a normal distribution according to the Lilliefors normality test were

reported as median (IQR). Goodness of fit of the model was evaluated using the coefficient of

determination R2, which provides a measure of the epCO2 variation that is explained by the

model.

The distributions of the initial epCO2 values (annotated at the beginning of the segment),

of the decay factor D and of R2 were represented using boxplots (a graphical depiction of the

median, quartiles, and potential outliers). The relationship between D and the initial epCO2

value was analyzed using linear regression, and the coefficient of determination R2 was

reported.

We also analyzed differences in the decay factor D with respect to the airway management

technique (endotracheal or supraglottic). ANOVA analysis of variance was used to perform

between groups comparisons since distributions were normal. P-values < 0.05 were consid-

ered significant.

Results

The original database comprised 1002 distinct OHCA episodes. In 377 of them (37.6%) the

four signals of interest (capnogram, compression depth, TI, and ECG) were concurrently

available. After visual inspection, 196 segments from 96 episodes meeting the inclusion criteria

were extracted for the study. Airway type was endotracheal tube in 64.8% of these segments

and supraglottic in 30.1%. Airway type was unknown for 5.1% of the segments. The median

ventilation rate measured in the included segments was 15.1 (10.5–20.9) ventilations per min-

ute (vpm), much higher than the guidelines recommendation of 10 vpm after placement of an

advanced airway.

Fig 4 shows an example segment. Eleven ventilations were provided to the patient during

the chest compression pause. The model fitting results are depicted in the figure.

Fig 4. Example of epCO2 decay with ventilations during a pause in chest compressions.

https://doi.org/10.1371/journal.pone.0228395.g004
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Table 1 shows the median (IQR) of the decay factor D, of the coefficient R2 of the model fit-

ted, and of the initial epCO2 value as a function of the number of ventilations in the segment

(N). When all the segments were included, the median decay factor was 10.0% (7.8–12.9) with

R2 equal to 0.98 (0.95–0.99), and the initial epCO2 value was 20.0 mmHg (11.9–31.0). Fig 5

shows the distributions of these three measures using boxplots.

Decay factor (D) was unrelated to initial epCO2 (R2 = 0.03).

We did not find significant differences in the decay factor with respect to the airway type,

endotracheal or supraglottic (p = 0.17).

Application of the findings

We have assessed the decrease in CO2 concentration caused by ventilations during chest com-

pression pauses. Our results provide a potentially novel framework for the accurate interpreta-

tion of ETCO2 variation when chest compressions are provided. Our approach is based on the

two hypotheses described below:

• First hypothesis: Contribution of chest compressions to the ETCO2 level between two conse-

cutive ventilations.

• Suppose that ET1 is the ETCO2 level after a given ventilation, and that ET2 is the ETCO2

level reached after the following ventilation when chest compressions are ongoing, as in

intermittent ventilations after securing the airway.

• In the absence of chest compressions, the ETCO2 level in the second ventilation would be

k � ET1, in accordance to our model.

Table 1. Number of segments (n), decay factor D (%), coefficient of determination R2 of the model, and initial epCO2 (ep0) in mmHg, as a function of the number of

ventilations provided per segment (N). Values are reported as median (IQR).

N = 2 N = 3 N = 4 N = 5 N >= 6 Total

Segments (n) 40 58 31 22 45 196

D (%) 12.0 (10.1–15.9) 10.3 (8.6–13.2) 8.9 (7.4–10.2) 9.6 (6.4–12.3) 8.8 (6.1–11.7) 10.0 (7.8–12.9)

R2 0.99 (0.96–1.00) 0.97 (0.96–0.99) 0.97 (0.94–0.99) 0.99 (0.96–0.99) 0.98 (0.96–0.99) 0.98 (0.95–0.99)

ep0 (mmHg) 21.0 (15.1–36.0) 20.7 (11.6–28.5) 21.9 (15.3–30.9) 17.2 (11.5–20.9) 22.7 (10.0–36.0) 20.0 (11.9–31.0)

https://doi.org/10.1371/journal.pone.0228395.t001

Fig 5. Distribution of the decay factor D, the coefficient R2 for the model, and the initial epCO2 value for all the

segments included in the study.

https://doi.org/10.1371/journal.pone.0228395.g005
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• We propose that the contribution of chest compressions to the ETCO2 level between two

consecutive ventilations could be estimated as ET2 − k � ET1.

• Thus, that contribution per time unit could be expressed as:

ET2 � k � ET1

t2 � t1
; ð4Þ

where t2 − t1 is the duration of the ventilation.

• Second hypothesis: Variation of the ETCO2 level with respect to ventilation rate.

• Suppose that the ETCO2 level keeps stable at ET1 mmHg during 1 minute of chest com-

pressions when ventilation rate is vr1 vpm.

• In the absence of chest compressions, the achieved ETCO2 level after vr1 ventilations

would be ET1 � kvr1 according to our model.

• We could then estimate the contribution of chest compressions to the ETCO2 level in that

1-min interval as:

ET1 � ET1 � kvr1 ¼ ET1 � ð1 � kvr1Þ ð5Þ

• Now, for a different ventilation rate of vr2 vpm, and a stable ETCO2 level of ET2, the con-

tribution of chest compressions would be ET2 � (1 − kvr2).

• For chest compressions contributing equally to the ETCO2 level, we could write:

ET1 � ð1 � kvr1Þ ¼ ET2 � ð1 � kvr2Þ

ET2

ET1
¼

1 � kvr1

1 � kvr2
ð6Þ

Taking the recommended ventilation rate of 10 vpm as the reference, i.e., vr1 = 10 vpm, Eq

(6) expresses the ETCO2 level relationship as a function of ventilation rate. Fig 6 shows a

graphical depiction of Eq (6) normalized to vr1 = 10 vpm, and for k = 0.9 (the median

value reported in our results). For example, the ETCO2 level at a ventilation rate of 5 vpm

would be 1.59 times the level at 10 vpm, chest compression performance being equal. Simi-

larly, the estimated ETCO2 level at 15 vpm would be 0.82 times the ETCO2 at 10 vpm for

the same compression performance. Thus, we could convert all ETCO2 measurements to a

normalized ETCO2 value, by applying the corresponding correction factor (the inverse of

the corresponding value in the vertical axis of Fig 6). Ultimately, we propose using this

expression (6) for accurately comparing the ETCO2 level of different CPR intervals by cor-

recting the confounding factor of ventilation rate.

Discussion

We investigated the decrease in the exhaled CO2 concentration with each ventilation provided

to the patient during CPR. Our aim was to isolate the effect of ventilations on CO2 concentra-

tion. This required that we identify pauses in chest compressions to select our analysis seg-

ments. Another advantage of this selection is that we had reliable capnogram tracings, since

there is no presence of artifact caused by chest compressions compromising the analysis of

ventilations [30, 31]. As the EMS agency that collected these episodes achieved very high chest
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compression fractions (minimal pauses), we could only identify 197 segments from the 1002

recordings.

When there is no CO2 exchange in the lungs, ventilation adds oxygen to highly CO2 con-

centrated volumes, so that CO2 concentration decreases (CO2 dilutes) in the lungs. The new

concentration depends on the functional residual capacity, on the patient anatomic dead space

and on the ventilation volume. Since we analyzed consecutive ventilations in each segment,

similar volumes were assumed. For this reason, our model fitted the data very well, as proven

by the high R2 obtained (Fig 5, middle panel). However, the estimated decay factor D per seg-

ment showed a moderate dispersion (Fig 5, left panel) with a median (IQR) of 10% (7.8–12.9).

This dispersion could be attributable to differences in patient functional residual capacity and

anatomic dead space, and in the ventilation volumes provided with each breath. Since those

parameters are unknown in the field, the median decay factor of 10% per ventilation may be

useful as a sensible reference level. For example, in the absence of perfusion replenishing CO2,

the median decrease after 10 ventilations could be estimated as 65.1% (i.e, 100 � (1 − 0.910)) of

the initial epCO2 value. Fig 4 shows a segment of our database in which 10 ventilations were

administered after the initial epCO2 value. In this case, the actual decrease in epCO2 after 10

ventilations was 69.6%, very close to the estimated value (1.59 and 0.82, respectively).

The decay factor D had no correlation with the initial epCO2 value (R2 = 0.03), i.e., the ini-

tial epCO2 predicted almost none of the variation in the decay factor, favoring the strength of

the model. This finding shows that the decay factor is not related to the factors that condition

the initial epCO2 value of each segment, such as the cardiac arrest etiology, the initial rhythm,

the airway type, or the chest compression quality (rate, depth, recoil) and the ventilation rate

being administered before the analyzed segment. We found a considerable number of seg-

ments (13.8%, 27/196) with initial epCO2 values higher than 40 mmHg (Fig 5, right panel).

Most of these segments corresponded to the beginning of the capnogram in the file, when CO2

concentrations different from zero started to be measured. A possible explanation is that these

episodes could correspond to primary respiratory failure leading to cardiac arrest [32],

although we were unable to confirm this since we did not have any clinical data regarding eti-

ology of the cardiac arrest. Other segments with high epCO2 values were linked to low ventila-

tion rates in the previous minute (between 2 and 4 vpm).

Fig 6. Graphical representation of the mathematical relationship of Eq (6) for a reference ventilation rate of 10

vpm and k = 0.9.

https://doi.org/10.1371/journal.pone.0228395.g006
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Our study has allowed us to model the ETCO2 variation with ventilation rate during CPR.

In a swine model of cardiac arrest, Gazmuri et al. used mechanical ventilation controlling tidal

volume and respiratory rate [25]. Authors adjusted a curve to their experimental data which

provided the variation of ETCO2 level as a function of the ventilation exchanged volume in

time (measured in liters per minute). Considering an average swine weight of 33 kg and a con-

stant tidal volume of 6 ml/kg per ventilation, the ETCO2 level at a constant ventilation rate of 5

vpm was 1.75 times the ETCO2 level at 10 vpm. The ETCO2 at 15 vpm was 0.75 times the level

at 10 vpm. Their curve was similar to the one we have depicted in Fig 6, and reported values by

Gazmuri et al. were comparable to those obtained applying our hypothesis.

One of the potential clinical applications of our study is to facilitate the analysis of the rela-

tionship between ETCO2 and CPR quality. Resuscitation guidelines encourage the use of

waveform capnography to monitor CPR quality. However, the variation of ETCO2 with venti-

lation rate and chest compression quality parameters is not yet well understood, and current

guidelines do not establish any specific ETCO2 target to provide guidance on CPR quality.

Two recent studies have investigated these relationships [14, 15]. Sheak et al. conducted a

multicenter cohort study of 583 in-hospital and out-of-hospital cardiac arrests. After averaging

ETCO2 values, compression depth, compression rate and ventilation rate over 15-s epochs,

they used a multiple linear regression model to predict ETCO2 variation based on the other

three variables [14]. In their study, for every 10 mm increase in depth, ETCO2 rose 1.4 mmHg

(p< 0.001); for every 10 vpm increase in ventilation rate, ETCO2 dropped 3.0 mmHg

(p< 0.001); and compression rate was not a predictor of ETCO2 variation. Murphy et al. con-

ducted an observational prospective study with similar objectives including 230 patients [15].

In this case, ETCO2 level, chest compression data and ventilation rate were averaged over

1-min epochs. The association between log-transformed ETCO2 and CPR variables was

assessed through linear mixed effect models. The authors concluded that a 10 mm increase in

compression depth was associated with a 4.0% increase in ETCO2 (p< 0.0001); a 10 vpm

increase in ventilation rate with a 17.4% decrease in ETCO2 (p< 0.0001); and a 10 cpm

increase in compression rate with a 1.7% increase in ETCO2 (p = 0.02) [15].

Comparison of the studies is challenging because Sheak et al. reported absolute differences,

while Murphy et al. reported relative differences. In any case, their results are quite distinct.

Estimated variations with compression depth in both studies would only match for an average

ETCO2 level of 35 mmHg, and variations with ventilation rate only for an average ETCO2 level

of 17.2 mmHg. Additionally, the conclusions of both studies significantly diverge from what

would be expected during resuscitation episodes. According to their results, increasing com-

pression depth from 30 to 50 mm (from suboptimal to the minimum recommended depth)

would only raise ETCO2 by 2.8 mmHg (or 8%). The main factor compromising the applicabil-

ity of their models is that the nature of dependence of ETCO2 variations with compression var-

iables and with ventilation rate may differ, i.e., it may not be linear or logarithmic for all the

studied variables. Including all of them in the same model may have an additional confound-

ing effect. According to the novel approach presented in our study, the change in ETCO2 in a

given interval which is attributable to chest compressions could be estimated by removing the

influence of concurrent ventilations, which we can now model.

Another clinical application of our findings is related to the interpretation of ETCO2 as an

indicator of ROSC and prognostication during CPR. Resuscitation guidelines highlight that an

increase of ETCO2 during CPR may indicate ROSC, and that low ETCO2 values may reflect a

poor patient prognosis. However, studies in this field have not yet achieved high sensitivity

and specificity in ROSC detection, nor reported a strong correlation between the ETCO2 level

and resuscitation outcome [16–20, 24]. We suggest that, since the ETCO2 level varies signifi-

cantly with ventilation rate, this parameter may act as an important confounding factor in the
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cited studies. Our results provide a way of compensating for the effect of ventilation rate when

analyzing ETCO2 values.

Limitations

There are several limitations in our study that could be grouped in two categories. The first cat-

egory refers to the proper definition of the model during pauses in chest compressions, and

the other one to the extrapolation of the model to the scenario of ventilations during ongoing

chest compressions.

The mathematical model for the epCO2 decay with each ventilation has been obtained

under the assumption of equal tidal volume per ventilation. Although ventilations are consecu-

tive within each segment, there is no evidence that consecutive ventilations are administered

with a similar tidal volume. The value of ETCO2 depends on the ventilation rate and tidal vol-

ume provided with each ventilation [25]. Absence of volume data, a common situation in pre-

hospital settings is an important limiting factor of the model.

Considerably different duration of plateau phases found in our capnograms compelled us

to rely on a modified measure of ETCO2 for a systematic comparison of consecutive ventila-

tions. This does not correspond to how ETCO2 is formally measured (at the end of the plateau

phase), so we defined a new metric: epCO2. This metric attempts to estimate the value of

ETCO2 that would have been measured if all ventilations in the compression pause would

have had the same duration. This approximation may introduce an error in the model.

Approximately 75% of the ventilation rates measured in our segments were above the rec-

ommended 10 vpm. Our data are consistent with previous works reporting that excessive ven-

tilation rates are common in resuscitation [33, 34]. Hyperventilation may result in

significantly increased intrathoracic pressure and decreased coronary perfusion pressures and

survival rates.

We applied a 3-s guard to annotate the beginning of each segment, considering that a sus-

tained low flow state is reached after that delay from the interruption of chest compressions.

This time may not be generalized for every patient.

When the model is extrapolated to the ongoing chest compressions scenario we only took

into account the influence of ventilation rate on the variation of ETCO2. We did not consid-

ered factors associated to chest compressions that have a role in ETCO2 variation, such as the

following:

Chest compressions with a depth compliant with current guidelines produce measurable

and substantial ventilation volumes [35], with 81% of the passive tidal volumes recorded dur-

ing chest compressions being lower than 20 ml. Chest compressions alone do not provide

physiologically significant tidal volumes but may produce alterations in the capnogram.

During compressions, intrathoracic pressure increases and the lung volume decreases [36].

Lung volume becomes lower than the functional residual capacity, which is recovered only

when CPR is interrupted. Lung volume reduction during chest compressions can promote

progressive atelectasis and pulmonary congestion. These interactions caused by chest com-

pressions may involve alterations of the ETCO2 level, not contemplated in our model.

Intrathoracic airway closure is a phenomenon associated with lung volume reduction limit-

ing the delivered ventilation [36]. The negative pressure produced by chest compressions in

the alveoli cannot be transmitted at airway opening and no inspiratory flow is generated. No

respiratory tidal volume can be produced during decompression affecting the exhaled CO2.

Studies related to ventilation during CPR are scarce. The complex relations between com-

pressions and ventilations during CPR, although still not well understood, could somehow

modulate the exhaled CO2 concentration [33, 36].

Impact of ventilations on the capnogram in out-of-hospital cardiac arrest

PLOS ONE | https://doi.org/10.1371/journal.pone.0228395 February 5, 2020

A5 157



We are aware of the simplicity of the proposed model and of the role of the confounding

factors that affect ETCO2 values during resuscitation besides ventilation rate, such as the etiol-

ogy of the cardiac arrest or the administration of drugs [22], which were unavailable in our ret-

rospective data. These other considerations may be unknown during treatment as well,

necessitating reliance on the limited data available in real time. Our method may overcome

one of the many confounders of ETCO2 interpretation during chest compressions. The formu-

lae proposed in the present study are promising hypotheses, but need to be confirmed with

further analysis of resuscitation recordings.

Conclusion

We have modeled the decrease in exhaled CO2 concentration with ventilations during chest

compression pauses in CPR. On average, each ventilation produced a decrease of 10% in the

measured exhaled CO2 value. This finding allowed us to hypothesize a mathematical model for

explaining the effect of chest compressions on ETCO2 compensating for the influence of venti-

lation rate during CPR. However, further work is required to confirm the validity of this

model during ongoing chest compressions.
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12. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European Resuscitation Council

Guidelines for Resuscitation 2015: Section 3. Adult advanced life support. Resuscitation. 2015;

95:100–147. https://doi.org/10.1016/j.resuscitation.2015.07.016 PMID: 26477701

13. Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, et al. Part 7: adult advanced

cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary

resuscitation and emergency cardiovascular care. Circulation. 2015; 132(18 suppl 2):S444–S464.

https://doi.org/10.1161/CIR.0000000000000261 PMID: 26472995

14. Sheak KR, Wiebe DJ, Leary M, Babaeizadeh S, Yuen TC, Zive D, et al. Quantitative relationship

between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac

arrest. Resuscitation. 2015; 89:149–154. https://doi.org/10.1016/j.resuscitation.2015.01.026 PMID:

25643651

15. Murphy RA, Bobrow BJ, Spaite DW, Hu C, McDannold R, Vadeboncoeur TF. Association between pre-

hospital CPR quality and end-tidal carbon dioxide levels in out-of-hospital cardiac arrest. Prehospital

Impact of ventilations on the capnogram in out-of-hospital cardiac arrest

PLOS ONE | https://doi.org/10.1371/journal.pone.0228395 February 5, 2020

A5 159



Emergency Care. 2016; 20(3):369–377. https://doi.org/10.3109/10903127.2015.1115929 PMID:

26830353
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ence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital

cardiopulmonary resuscitation. Resuscitation. 2018; 124:63–68. https://doi.org/10.1016/j.resuscitation.

2017.12.013 PMID: 29246741

31. Gutierrez JJ, Leturiondo M, Ruiz de Gauna S, Ruiz JM, Leturiondo LA, Gonzalez-Otero DM, et al.

Enhancing Ventilation Detection During Cardiopulmonary Resuscitation by Filtering Chest Compres-

sion Artifact from the Capnography Waveform. PLOS ONE. 2018; 13(8):e0201565. https://doi.org/10.

1371/journal.pone.0201565 PMID: 30071008
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Shock�success�and�its�determinants�in
refractory�ventricular�fibrillation�during
out-of-hospital�cardiac�arrest

Joris�Nas�1,∗,� Judith�Bonnes�1,� Jos�Thannhauser�1,
Eliene�Starreveld�1,�Pierre�van�Grunsven�1,�Gjerrit
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Menko�Jan�de�Boer�1,�Marc�Brouwer�1

1�Radboudumc,�Nijmegen,�Netherlands
2�University�of�Twente,�Enschede,�Netherlands

Purpose�of�the�study:�Optimising�timing�of�shocks�using�pre-
dictors� of� shock� success� may� contribute� to� a� more� personalised�
resuscitation�strategy,�and�is�currently�under�investigation�for�ini-
tial�ventricular�fibrillation�(VF).�However,�the�majority�of�patients�
requires�additional�shocks�during�the�course�of�the�resuscitation.�
More�information�is�needed�on�shock�success�and�its�determinants�
in�this�particular�subset�of�patients�with�refractory�VF.

Methods�and�materials:�Per-shock�analysis�on� cardiac�arrest�
patients� (Nijmegen,� the� Netherlands,� 2008–2011)� receiving� >1�
shock�on�VF�(107�patients;�342�shocks).�Following�current�guide-
lines,� shocks� were� divided� into� shocks� on� recurrent� (previous�
shock� terminated� VF)� or� on� persisting� VF� (previous� shock� did�
not�terminate�VF),�Fig.�1.� Initial�shocks�were�excluded.�Predictors�
included� defibrillator-derived� parameters:� amplitude� spectrum�
area� (AMSA,� a� VF-waveform� measure),� VF� time� intervals� (e.g.�
pre-shock� VF� duration)� and� the� number� of� preceding� success-
ful� shocks.� Shock� success� was� defined� as� return� of� organized�
rhythm.

Results:� Shock� success� was� markedly� higher� for� shocks� on�
recurrent� VF� (n�=�214)� vs.� persisting� VF� (n�=�128):� 65%� vs.� 32%,�
p�<�0.001.� For� recurrent� VF,� higher� AMSA� and� increasing� num-
bers�of�preceding�successful�shocks�were�independently�associated�
with� shock� success� (adjusted� odds� ratio� [aOR]� 1.15� per� mV�Hz�
increase,� p�=�0.001;� aOR�=�1.43� per� additional� preceding� shock,�
p�=�0.03).�C-statistic� for�AMSA�=�0.63.� For�persisting�VF,�we� found�
that� longer� pre-shock� VF� duration� was� significantly� associated�
with� reduced� shock� success� (OR�=�0.96�per�30�s� increase,�p�=�0.04,
C-statistic = 0.72).

Conclusions: This study underscores the importance of distin-
guishing different types of refractory VF, given the considerable
differences in shock success and its determinants. Defibrillation
failure for a shock on persisting VF is twice as likely as on recurrent
VF. For persisting VF, shocks following longer periods of pre-shock
VF duration had lower defibrillation success, which warrants future
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A�model�for�quantifying�the�influence�of
ventilations�on�end-tidal�carbon�dioxide
variation�during�out-of-hospital�cardiac�arrest

Jose�Julio�Gutiérrez�1,�Sofía�Ruiz�de�Gauna�1,∗,
Jesus�María�Ruiz�1,�Mikel�Leturiondo�1,� James�Knox
Russell�2,�Mohamud�Daya�2

1�University�of�the�Basque�Country,�UPV/EHU,�Bilbao,
Spain
2�Oregon�Health&Science�University,�OHSU,�Portland
(OR),�USA

Introduction:� End-tidal� carbon� dioxide� (ETCO2)� depends� on�
pulmonary�blood�flow�therefore�provides�a�surrogate� indicator�of�
cardiac�output�generated�by�cardiopulmonary�resuscitation�(CPR).�
Advanced� life� support� resuscitation�guidelines� recommend�using�
capnography�for�CPR�quality�assessment.�Chest�compressions�and
ventilations� have� opposing� effects� on� ETCO2� during� CPR:� com-
pressions�generate�blood�flow�causing�a�rise�in�pulmonary�CO2
concentration�while�ventilations�exchange�high�CO2� concentrated�
volumes�with�air�or�oxygen,�decreasing�CO2� concentration� in� the�
lungs.

Purpose of the study: To quantify ETCO2 decrease per each
administered ventilation during out-of-hospital CPR.

Materials and methods: Fifty out-of-hospital cardiac arrest
episodes containing the continuous capnogram, the compression
depth and transthoracic impedance signals, and the ECG acquired
from defibrillation pads were randomly selected from a larger
database [1]. To isolate the effect of ventilations on ETCO2 we
located chest compression pauses between consecutive compres-
sion series, where more than three ventilations were provided,
and with a non-pulsatile rhythm. In each selected pause, we anno-
tated the ETCO2 values corresponding to each ventilation (Fig. 1,
red dots). We analysed the relationship xn+1 = K·xn, where xn and
xn+1 were the ETCO2 levels of two consecutive ventilations. Fac-
tor K was calculated using least-square curve fitting (Fig. 1, dashed
line). Adjusted R2 was used to examine the goodness of fit.

Fig. 1. Annotated capnogram and curve fitting.studies�on� the� impact�of�a�strategy�with�earlier�and/or�repetitive�
defibrillation�attempts.

https://doi.org/10.1016/j.resuscitation.2018.07.056

Results:�Twenty-two� (22)�pauses�were� included� in� the� study.�
Median�(IQR)�adjusted�K�factor�was�0.91�(0.89–0.93).�Adjusted�R2

was�0.98�(0.95–0.99).�This�means�that�each�ventilation�produces�an�
ETCO2�decrease�of�about�9%.

Conclusions:�Knowledge�of�ETCO2�variation�with�each�assisted�
ventilation�could�be�used�to�help�better�assess�the�influence�of�chest
compression�metrics� such�as�depth�and� rate�on�ETCO2� measure-
ments�during�CPR.

Reference

[1] Leturiondo,�et�al.�Resuscitation�2018;124:63–8.
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Izaskun Azcarate1 Digna Maŕıa González-Otero1,2 Juan Francisco Urtusagasti3 James
Knox Russell4 Mohamud Ramzan Daya4

1 Department of Communications Engineering, University of the Basque Country,
UPV/EHU, Bilbao, Spain
2 Bexen Cardio, Ermua, Spain
3 Emergentziak-Osakidetza, Basque Country Health System, Basque Country, Spain
4 Oregon Health & Science University (OHSU), Portland,USA

* sofia.ruizdegauna@ehu.eus

Abstract

Background: Measurement of end-tidal CO2 (ETCO2) can help to monitor circulation
during cardiopulmonary resuscitation (CPR). However, early detection of restoration of
spontaneous circulation (ROSC) during CPR using waveform capnography remains a
challenge. Several factors may affect ETCO2 level during CPR, especially the quality of
chest compressions and ventilations. If ventilation volume and rate remain stable,
ETCO2 gradually decreases in the absence of circulation when chest compressions are
discontinued. If ETCO2 remains constant or tends to increase, spontaneous circulation
may be present. The aim of this study was to demonstrate that the assessment of the
ETCO2 variation during chest compression pauses could be a valuable adjunct to detect
ROSC.
Methods: We conducted a retrospective analysis of adult out-of-hospital cardiac arrest
(OHCA) episodes treated by the advanced life support (ALS). Continuous chest
compressions and ventilations were provided manually. Segments of capnography signal
during pauses in chest compressions were selected, including at least three ventilations
and with durations less than 20 s. Segments were classified as ROSC or non-ROSC
according to case chart annotation and examination of the ECG and transthoracic
impedance signals. The percentage variation of ETCO2 between consecutive
ventilations was computed and its average value, ∆ETavg, was used as a single feature
to discriminate between ROSC and non-ROSC segments.
Results: A total of 481 OHCA episodes (one per patient) were included in the study.
After segment selection, 384 segments (130 ROSC, 254 non-ROSC) from 205 episodes
(30.7% female, median age 66) were included in the study. Median (IQR) ∆ETavg was
0.0 (-0.7, 0.9)% for ROSC segments and -11.0 (-14.1, -8.0)% for non-ROSC segments
(p < 0.0001). Best performance for ROSC detection yielded a sensitivity of 95.4% (95%
CI: 90.1%, 98.1%), a specificity of 94.9% (91.4%, 97.1%), and a positive predictive value
of 90.5% (84.3%, 94.5%). Our method allowed for ROSC detection during the first
compression pause in 95.4% of the patients.
Conclusion: Assessment of ETCO2 variation during pauses in chest compressions is a
valuable metric for detecting ROSC. This metric could help confirm ROSC during
pauses for rhythm assessment in ALS settings.
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Introduction

Waveform capnography provides a continuous non-invasive measure of the concentration
of partial pressure of carbon dioxide (PCO2) during the breathing cycle. The value of
PCO2 at the end of expiration is known as end-tidal carbon dioxide (ETCO2), and can
be used to indirectly monitor cardiac output and pulmonary blood flow [1–3]. During
resuscitation chest compressions generate low cardiac output, resulting in low ETCO2

values [4].
According to current advanced life support (ALS) guidelines [5, 6], monitoring

ETCO2 level during resuscitation is beneficial for several reasons including: supervision
of cardiopulmonary resuscitation (CPR) quality [7–10], prediction of patient’s
outcome [11–15], and early recognition of return of spontaneous circulation
(ROSC) [16–19]. ROSC may be identified through an increase in ETCO2 during CPR.
Early recognition of ROSC prevents unnecessary administration of chest compressions
and adrenaline [20, 21]. However, inappropriate interruptions of chest compressions can
reduce the chance of survival [22–24]. In order to provide optimal therapy, interruptions
in CPR for assessing the presence of ROSC should be minimized [5, 6].

Accurate detection of ROSC using waveform capnography in pre-hospital ALS
settings remains a challenge. Existing methods are based on the detection of sudden
increases in the level of ETCO2 [16–19]. However, the obtained results lack sensitivity
and specificity. The level of ETCO2 during CPR depends, among other factors, on
patient’s tissue metabolic activity, on the blood flow generated by chest compressions,
on the volume of each breath, and on the rate of ventilation [20,21]. High quality chest
compressions can raise ETCO2, while an increase in ventilation volume or rate reduces
ETCO2 levels [25]. If ventilation volume and rate remain constant and chest
compressions are discontinued, ETCO2 levels decrease in the absence of a perfusing
rhythm (PR).

The aim of this study was to investigate if the assessment of the evolution of ETCO2

during chest compression pauses could allow for ROSC detection. If an organized
rhythm is observed in the electrocardiogram (ECG) during the compression pause for
rhythm assessment, the analysis of the ETCO2 trend could help confirm ROSC. A
decay in ETCO2 would indicate pulseless electrical activity (PEA), and therefore no
ROSC. Conversely, if the ETCO2 level remained constant or increased, the presence of a
PR and, therefore, ROSC could be presumed.

Methods

Data collection

This is a retrospective study of adult out-of-hospital cardiac arrest (OHCA) cases
attended by Tualatin Valley Fire & Rescue (TVF&R), an ALS emergency medical
service agency (Tigard, Oregon, USA) from 2006 through 2017. The database is part of
the Portland Resuscitation Outcomes Consortium Epidemiological Cardiac Arrest
Registry approved by the Oregon Health&Science University (OHSU) Institutional
Review Board (IRB00001736). The database does not include patient identifying
information.

Episodes were recorded using Heartstart MRx monitor-defibrillators (Philips, USA),
equipped with capnography monitoring using sidestream technology (Microstream™,
Oridion Systems Ltd., Israel) and CPR quality monitoring (Q-CPR™). Airway
management techniques included Bag-valve-mask (BMV) ventilation, supraglottic
airway (SGA) devices and endotracheal tube (ETT). In the early years, CPR followed
the 30:2 approach moving to continuous chest compressions (without pauses for
ventilations) in 2012.
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Segment selection

Our working hypothesis was that the variation of ETCO2 between consecutive
ventilations during chest compression pauses would allow for reliable ROSC detection.
Two biomedical engineers (JJG and JMR) visually inspected four signals extracted from
the OHCA defibrillator recordings: capnogram, compression depth signal, ECG and
transthoracic impedance (TTI). A capnogram with minimal artefact was required to
reliably annotate ETCO2 values. Segments of capnography signal during pauses in chest
compressions were identified. Only segments shorter than 20 s, with at least three
ventilations, and with ETCO2 values equal or higher than 10 mmHg were included in
the analysis. ETCO2 values lower than 10 mmHg were assumed to indicate absence of
ROSC [5].

The selected segments were then classified as ROSC or non-ROSC. We reviewed the
ROSC annotations by the ALS providers and confirmed the presence of an organized
rhythm in the ECG. Then, in case of doubt between an organized non-perfusing (PEA)
or PR, we examined the TTI signal to locate its circulation component [26]. We
selected a single ROSC segment per patient, the first segment without chest
compressions after the first clinical annotation of ROSC. Conversely, several non-ROSC
segments per single patient were included. Fig. 1 shows two segments corresponding to
ROSC (panel A) and non-ROSC (panel B). Capnogram, compression depth, ECG and
TTI signals are depicted for each segment. In both segments, the compression depth
signal is a flat line, reflecting the absence of chest compressions. The ECG in panel A
shows a PR confirmed by the presence of low amplitude ripples between the large
fluctuations caused by ventilation in the TTI [26]. Conversely, the ECG in panel B
corresponds to a non-perfusing rhythm, confirmed by the absence of ripples in the TTI.

Segments characterization

For each included segment, the following values were annotated in the capnogram
(Fig. 1): the start and end of each segment in seconds (ts, te), depicted in the figure
with vertical red lines; the number of ventilations within each segment (nv); and the
ETCO2 value per ventilation (ETn), for n = 1...nv. ETn were calculated as the
maximum concentration of CO2 reached in the capnogram plateau, and are depicted in
the figure with red dots. Once a segment met the inclusion criteria, it was characterized
by four features:

• Mean ventilation rate (ventilations per minute, vpm): vr = nv
te−ts

· 60.

• ET0 (mmHg): the ETCO2 value for the first ventilation.

• ∆ETn (%): percentage variation of ETn between consecutive ventilations

calculated as ∆ETn = ETn−ETn−1

ETn−1
· 100 for n = 1...nv− 1. Positive ∆ETn means

a positive trend in ETCO2 between consecutive ventilations while negative ∆ETn

means a negative trend. A zero value indicates a stable ETCO2.

• ∆ETavg (%): the average variation calculated as the mean of percentage variation
∆ETn.

Method for ROSC detection

Discrimination between ROSC and non-ROSC segments was conducted using the
∆ETavg feature, as a metric of the positive or negative trend in ETCO2 variation. We
compared the ∆ETavg values with a detection threshold, Th: segments presenting
∆ETavg greater than the threshold were classified as ROSC. Values equal to or less than
Th were classified as non-ROSC.
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Fig 1. Examples of segment annotation. (A) ROSC segment and (B) non-ROSC
segment. Capnogram, compression depth, ECG and transthoracic impedance (TTI) are
depicted for each segment.
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Statistical analysis

Different threshold values Th were used to test the accuracy of ROSC detection using
the feature ∆ETavg. Ten-fold cross-validation (multiple train/test split) was used to
assess the predictive ability of the discrimination method. Sensitivity (Se) was defined
as the proportion of ROSC segments that had a positive result. Specificity (Sp) was
defined as the proportion of non-ROSC segments that had a negative results. Positive
predictive values (PPV) and negative predictive values (NPV) were also calculated.
Their corresponding 95% confidence intervals (CI) were also reported.

Results were reported as median (IQR) since distributions did not pass the Lilliefors
normality test. Comparison between groups was performed using the Wilcoxon rank
sum test. P -values lower than 0.05 were considered significant. The distribution of ET0,
vr and ∆ETavg per segment were depicted using box plots.

We also analysed the results with respect to the airway management technique, ETT
or SGA.

Results

Concurrent signals of interest (capnogram, compression depth, ECG and TTI signals)
were available in 980 adult OHCA cases (one per patient), as illustrated in Fig. 2, of
which 390 included information regarding clinical ROSC annotation. Cases with poor
ECG, TTI or chest compression signal quality were discarded (173 ROSC; 61
non-ROSC). We also excluded episodes with high proportion of non-legible capnogram
signals (40 ROSC; 225 non-ROSC). A total of 481 (177 ROSC; 304 non-ROSC) OHCA
cases were eligible for analysis and segment selection.

Monitor-defibrillator episodes
with concurrent signals

n = 980
(390 ROSC, 590 non-ROSC)

Episodes with good ECG, TTI
and chest compression signals

n = 746
(217 ROSC, 529 non-ROSC)

Episodes included in the study

n = 481
(177 ROSC, 304 non-ROSC)

Discarded poor ECG, TTI or
chest compression signals

n = 234
(173 ROSC, 61 non-ROSC)

Discarded non-legible
capnograms

n = 265
(40 ROSC, 225 non-ROSC)

Fig 2. Flowchart of episode selection.
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Table 1. Segments characterization as a function of the airway type and ROSC condition. Values are
reported as median (IQR).

SGA ETT TOTAL
ROSC non-ROSC ROSC non-ROSC ROSC non-ROSC

Episodes 48 39 80 35 130 75
Segments 48 115 80 132 130 254
Duration (s) 17.0 (16.0,18.6) 15.3 (12.4,18.2) 17.7 (16.2,19) 16.2 (13.0,18) 17.5 (16.1,18.7) 15.9 (12.6,18.0)
nv 4 (3,5) 3 (3,4) 4 (3,5) 3 (3,5) 4 (3,5) 3 (3,4)
vr (vpm) 12.8 (11.0,17.2) 14.5 (12.3,17.8) 13.6 (9.8,17.8) 14.6 (10.6,19.1) 13.3 (10.4,17.5) 14.5 (11.1,18.6)
ET0 (mmHg) 50.9 (40.3,60.8) 30.3 (22.2,39.9) 41.8 (32.0,55.8) 24.9 (15.1,37.7) 45.8 (34.7,58.4) 29.4 (19.1,39.6)
∆ETavg (%) 0.0 (-0.7,1.1) -10.2 (-12.8,-7.3) 0.3 (-0.5,1.3) -11.4 (-14.5,-7.9) 0.0 (-0.7,0.9) -11.0 (-14.1,-8.0)

nv: ventilations per segment; vr: ventilation rate in ventilations per minute (vpm); ET0: initial ETCO2; ∆ETavg:
average ETCO2 variation.

The inclusion criteria were met by 384 (130 ROSC; 254 non-ROSC) segments from
205 patients. The median age of the patients was 66 years (55-79), and 63 of them
(30.7%) were female. Eighty seven (87) patients had their airway managed with SGA
(42.4%), and 115 with ETT (56.1%). Airway type was not known for the remaining 3
episodes (1.5%).

Fig. 3 shows some examples of the calculation of the parameter ∆ETavg for ROSC
and non-ROSC segments.
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Fig 3. Illustration of the behavior of ∆ETavg. ROSC (A) and non-ROSC (B)
capnogram segments with different ∆ETavg values.

Table 1 shows the distributions (median, IQR) of the analysed parameters. The
median (IQR) vr was 13.3 (10.4, 17.5) vpm for ROSC segments, and 14.5 (11.1,
18.6) vpm for non-ROSC segments (p < 0.0002). The obtained results of ET0 values
were 45.8 (34.7, 58.4) mmHg for ROSC segments, and 29.4 (19.1, 39.6) mmHg for
non-ROSC segments (p < 0.0001). ∆ETavg presented values of 0.0 (-0.7, 0.9)% for
ROSC segments, and -11.0 (-14.1, -8.0)% for non-ROSC segments (p < 0.0001).

Fig. 4 shows the distributions of ET0, vr and ∆ETavg, for ROSC and non-ROSC
segments. Distributions of ET0 and vr presented wide overlapping ranges for ROSC and
non-ROSC populations, while for ∆ETavg a small overlap was observed.

Table 2 shows the ROSC/non-ROSC classification performance of our proposed
classifier. Results are provided considering all ventilations in the segment, only the first
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Fig 4. Statistical distributions for ROSC and non-ROSC segments. Initial
ETCO2 (ET0), ventilation rate (vr), and average variation (∆ETavg) for all ROSC and
non-ROSC segments included in the study.

Table 2. ROSC detection results, as a function of the number of considered
ventilations per segment. Durations are reported as median (IQR). The 95%
confidence intervals are in parenthesis.

All ventilations First 3 ventilations First 2 ventilations

Duration (s) 16.3 (12.9, 18.1) 11.9 (9.3, 14.8) 7.7 (6.0, 10.2)
Se (%) 95.4 (90.1, 98.1) 93.8 (88.1, 97.0) 90.0 (83.5, 94.2)
Sp (%) 94.9 (91.4, 97.1) 95.3 (91.8, 97.4) 89.4 (84.9, 92.6)

PPV (%) 90.5 (84.3, 94.5) 91.0 (84.9, 94.9) 81.3 (74.0, 86.8)
NPV (%) 97.6 (94.7, 99.0) 96.8 (93.7, 98.5) 94.6 (90.9, 96.9)

Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV:
negative predictive value.

three ventilations, and only the first two ventilations. When all the ventilations of each
segment were considered, the median (IQR) of the duration was 16.3 (12.9, 18.1) s, and
the obtained results were Se = 95.4% (95% CI: 90.1%, 98.1%) and Sp = 94.9%
(91.4%, 97.1%). Considering the first 3 ventilations of each segment the duration was
11.9 (9.3, 14.8) s, with Se = 93.8% (88.1%, 97.0%) and Sp = 95.3% (91.8%, 97.4%).
Considering the first 2 ventilations of each segment the duration was 7.7 (6.0, 10.2) s,
with Se = 90.0% (83.5%, 94.2%) and Sp = 89.4% (84.9%, 92.6%). This method
confirmed the clinical decision of ROSC during the first chest compression pause in
95.4% of the episodes.

There were statistically significant differences between airway types for ET0 with
the ROSC and non-ROSC populations (p = 0.01 in both cases). However, no significant
differences were found for vr (p = 0.87 and p = 0.97 for ROSC and non-ROSC,
respectively) and for ∆ETavg (p = 0.2 and p = 0.1, respectively). Se and Sp values
tended to be higher for ETT segments than for SGA segments. For ETT, Se and Sp
were 98.8% (92.3%, 99.9%) and 99.2% (95.2%, 99.9%), respectively; whereas for SGA, Se
was = 95.8% (84.6%, 99.3%) and Sp was = 95.7% (89.7%, 98.4%).

Discussion

High quality CPR requires minimizing interruptions in chest compressions, and needed
pauses should be kept as short as possible to maximize perfusion [27]. For a prompt
detection of ROSC, current ALS guidelines recommend pulse assessment if, after two
minutes of CPR, the ECG shows a rhythm compatible with pulse, or when the patient
shows movement or spontaneous breathing [5]. The reliable and automated detection of
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ROSC based on the signals and data provided by the monitor-defibrillator would be
valuable, on the one hand, to prevent prolonged detrimental interruptions of CPR with
PEA, and, on the other hand, to avoid potentially harmful chest compressions and
unnecessary drug administration to patients with PR.

Several methods for the automated detection of circulation based on the ECG and
the TTI signals can be found in the literature [26,28–33]. In general, they rely on the
analysis of the signals during chest compression pauses, looking for an organized rhythm
in the ECG and the circulation component of the TTI. Since ECG and TTI signals are
typically the only available signals in automated external defibrillators, these methods
were intended primarily for basic life support (BLS) settings.

During ALS, the capnogram can be useful for ROSC detection, as it is an indirect
indicator of perfusion. Pokorná et al. studied the significance of a sudden increase in
ETCO2 during ALS OHCA episodes [18]. ETCO2 values were higher when ROSC was
achieved (p < 0.0001). Analyzing an increase of 10 mmHg in the measured ETCO2

during two min periods, they obtained a sensitivity of 80% with a specificity of 59%.
Davis et al. analysed the prediction of ROSC based on the heart rate and ETCO2 [34].
For a heart rate greater than 40 bpm and a ETCO2 level above 20 mmHg, ROSC was
detected with PPV = 95% and NPV = 99%. Lui et al. evaluated the diagnostic
accuracy of an abrupt and sustained increase in ETCO2 to indicate ROSC in OHCA
patients [19]. For an ETCO2 rise greater than 10 mmHg, ROSC was detected with a
sensitivity of 33% and a specificity of 97%. Brinkrolf et al. assessed the detection of
ROSC by identifying ETCO2 trends in real time [16]. The study showed that ROSC
time series presented larger percentages of positive trends than non-ROSC time series
(p = 0.003). ROSC was detected with a sensitivity of 73.9% and a specificity of 58.4%.
Finally, Elola et al. used the ECG and the TTI for ROSC assessment during chest
compression pauses. When they included the mean ETCO2 value of the minute before
the beginning of the chest compression pause in the classifier, they obtained high
sensitivity and specificity values [35].

In spite of the efforts made, to the best of our knowledge there is no
monitor-defibrillator providing an automated assessment for the detection of ROSC [22].
In general, the proposed methods present either low sensitivity and specificity values or
are based in parameters which can not be automatically obtained by the equipment.

In this work we demonstrated that the decay or increment of the level of ETCO2

during chest compression pauses allows differentiation between non-ROSC and ROSC
segments. In non-ROSC scenarios when chest compressions are interrupted there is no
blood flow and therefore, the level of ETCO2 decreases with each ventilation; whereas
when ROSC is achieved, blood flow exists and the level of ETCO2 should increase or at
least remain constant. The ETCO2 value measured in the first ventilation within the
chest compression pause is influenced by several factors, such as the quality of chest
compressions and ventilations. Therefore, this value is not a reliable indicator of ROSC.
Our method does not rely on absolute measurements, but on the ETCO2 variation.
This approach yielded a sensitivity of 95.4% and specificity of 94.9% for predicting the
presence of ROSC.

ALS guidelines recommend not interrupting chest compressions for more than
10 s [5]. With our criterium of pauses no longer than 20 s we obtained good performance
results, above 90% for all metrics. To test the algorithm with pauses closer to the
recommended 10 s, we applied the method to the first three and two ventilations of the
included segments. In case of three ventilations, the median duration of the segments
was 11 s and the performance was similar to the global results. In case of two
ventilations, the median duration was 7.7 s and the performance slightly decreased, with
values close to 90%, except for PPV (81.3%).

Our study has a direct clinical application. During chest compression pauses for
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pulse check, the ECG signal is not affected by the artefact caused by compressions and
it can be directly analysed to establish whether the electrical activity of the heart is
compatible with a pulse-generating rhythm. ECGs compatible with pulse-generating
rhythms can be PEA (non-ROSC) or PR (ROSC). Direct observation of the evolution
of ETCO2 in the capnogram would allow us to determine whether there is ROSC or not.
ROSC is more likely if the level of ETCO2 is maintained or increased, whereas if the
level clearly decreases non-ROSC should be suspected. Fig. 3 illustrates this idea. In
the top panel, three ROSC segments with four ventilations each are depicted, in which
the level of ETCO2 remains constant (left), slightly rises (middle), or significantly
increases (right). In the bottom panel, three non-ROSC segments with four ventilations
are represented. The level of ETCO2 slightly decreases (left), sharply decays (middle),
and significantly decreases (right).

Limitations

Our study did not consider the variability in ventilation volumes (unavailable in our
database and generally in the field). We hypothesize that our method would be a
reliable tool in clinical practice when ventilations are administered with stable volumes.

In our study, ROSC was confirmed by clinicians’ annotations and by the analysis of
the ECG and of the circulation component in the TTI. This methodology has been
widely used in the literature as a surrogate for circulation assessment, and constitutes
the best possible approach in the absence of invasive indicators. Still, we recognize the
challenge of a real determination of ROSC in pre-hospital settings.

The database was completed over a long period of time. Guidelines changed and the
EMS systems moved from 30:2 compression-ventilation ratio to continuous compressions.
Recommended depth and rate of chest compressions also changed (2010 and 2015
guidelines). However, the results of this study should not be affected as the analysis was
performed during chest compression pauses.

All the recordings of the database were obtained using the capnograph Microstream™,
Oridion Systems Ltd., Israel. ETCO2 levels could be slightly influenced by the
equipment, so it would be helpful to validate our findings using different capnographs.
Also, a large number of recordings were discarded due to poor signal quality. This work
would deserve validation with more data to ensure that our results are generalizable.

Conclusion

Assessment of ETCO2 variation during pauses in chest compressions is a valuable
metric to detect ROSC. Decrease suggests a non-ROSC state while constant or positive
variation reflects ROSC. The metric we propose in our study could help confirm the
presence or absence of circulation during pauses for pulse check, for ALS agencies that
have ETCO2 monitoring capability.

Supporting information

S1 File. Segment Characterization. Detailed results per recording, segment and
individual ventilation within each segment (see Table 1 for reference).
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