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Abstract: In this work, a fractional-order synthetic drugs transmission model with psychological
addicts has been proposed along with psychological treatment. The effects of synthetic drugs are
deadly and sometimes even violent. We have studied the local and global stability of the model with
different criterion. The existence and uniqueness criterion along with positivity and boundedness
of the solutions have also been established. The local and global stabilities are decided by the basic
reproduction number R0. We have also analyzed the sensitivity of parameters. An optimal control
problem has been formulated by controlling psychological addiction and analyzed by the help of
Pontryagin maximum principle. These results are verified by numerical simulations.

Keywords: Caputo fractional differential equation; synthetic drugs; stability; optimal control

1. Introduction

Synthetic drugs, also referred to as designer or club drugs, are chemically created in
a lab to mimic another group of drugs such as marijuana, cocaine, or morphine. There are
more than 200 to 300 identified synthetic drug compounds and many of them are cocaine,
methamphetamine, and marijuana compounds [1,2]. The effects of synthetic drugs are anxiety,
aggressive behavior, paranoia, seizures, loss of consciousness, nausea, vomiting, and even
coma or death [3]. Synthetic drugs are powerful, and when mixed with unknown chemical
compounds are extremely dangerous and can cause overdose very quickly. If an overdose has
occurred, immediate medical care is required. More lately, new designer drugs have emerged
with vigorous addictive potentials such as synthetic cathinones (“Bath Salts”), also labeled
as Bliss, Vanilla Sky, and Ivory Wave. These synthetic drugs stimulate the central nervous
system by inhibiting the retake of norepinephrine and dopamine, leading to serious adverse
effects on the Central Nervous System (CNS) or even death [1]. Moreover, many infectious
diseases such as hepatitis and AIDS can easily infect drug users due to the rampant use of
shared needles [4,5]. Drugs like amphetamine are mostly used in specific regions like Goa and
Ahmedabad in India. A recent study shows that drug use in India continues to grow rapidly,
and more disturbingly, heroin has replaced the natural opioids (opium and poppy husk). An
epidemiological study from Punjab has been revealed that the use of other synthetic drugs
and cocaine has also increased significantly [6]. Most synthetic drugs are manufactured in
an illegal laboratory, and there are no safety measures used in the manufacture of synthetic
drugs. When an addicted person attempts to quit, he/she may experience very uncomfortable
withdrawal symptoms which can lower their resolve to maintain abstinence and otherwise
complicate early recovery. Professional detoxification programs are needed for synthetic
drug addicts to withdraw safely from synthetic drugs. Behavioral therapies and counseling
are effective tools for changing negative behavior and thought patterns that may help for
improving the mental help they need.
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Ma et al. [7] have developed different forms of heroin epidemic models to study
the transmission of heroin epidemics. Sharomi and Gumel [8] have formulated different
smoking models for giving up smoking. Similarly, mathematical modeling can be also
used to describe the spread of synthetic drugs. Nyabadza et al. [9] have studied the
methamphetamine transmission model in South Africa. Liu et al. [10] have formulated
a synthetic drug transmission model with treatment and studied global stability and
backward bifurcation of the model. Saha and Samanta [11] have also studied the stability of
a synthetic drug transmission model with optimal control. There are many works that have
been performed on fractional-order epidemiological systems because a fractional-order
system has memory effect [12]. Fractional calculus is often utilized for the generalization of
their order, where fractional order is replaced with integer order [13]. During a systematic
study, it has been noted that the integer order model may be a special case of fractional
order model wherever the solution of fractional order system must converge to the solution
of integer order system as the order approaches one [14]. There are so many fields where
fractional order systems are more suitable than integer order systems. Phenomena that
are connected with memory and affected by hereditary cannot be expressed by integer
order system [15]. It is observed that the data collected from real-life phenomena fit better
with the fractional-order system. Diethelm [16] has compared the numerical solutions
of fractional-order system and integer order system, and concluded that the fractional
order system gives more relevant interpretation than integer order system. There are
many systems [17–22] that have been studied recently in fractional order framework. In
epidemiology, the Ebola virus model has been studied in Caputo differential equation
system in 2015 [23]. Agarwal [24] first studied optimal control problem in fractional order
system in 2004. In 2018, Kheiri and Jafari [25] have also worked on fractional order optimal
control for HIV/AIDS.

Motivation and Brief Overview

There are some relevant advantages of Caputo fractional differentiations and differen-
tial equations.

• Fractional derivatives provide an excellent instrument for the description of mem-
ory and hereditary properties of various systems and processes. Fractional-order
differential equations accumulate the entire information of the function in weighted
form.

• In fractional-order modeling, we have an additional parameter (order of the derivative)
which is useful for numerical simulations. In that regard, there are some systems
which are stable (unstable) for some parameter values near their equilibrium points
can be destabilized (stabilized) by controlling the order of the derivative.

• The Caputo derivative is very useful when dealing with real-world problem because
it allows traditional initial and boundary conditions to be included in the formulation
of the problem, and in addition the derivative of a constant is zero which does not
happen in the Riemann–Liouville fractional derivative.

Motivated by the aforementioned works and the advantages of Caputo fractional-
order differential equations, a model of fractional synthetic drug transmission with psy-
chological drug addicts has been formulated in this work using Caputo fractional-order
differential equations (Section 2). In this work, we have analyzed the drug transmission
model in the fractional-order framework, and the effect of the psychological treatment of
the awareness campaign has also been studied by formulating fractional-order optimal
control problem.

This work is presented in two different parts. In the first part (Section 3), we first
carried out a basic analysis, such as existence, oneness, non-negativity, and the limit of
solutions of the proposed system of equations. Dynamical behaviors of the different
equilibrium points are established in the same section. Though our main aim is to study the
system in fractional-order framework, a fractional-order control problem has also framed
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in Section 4 to study the control effect of treatment on psychological addict class which
may enhance our research.

In the beginning of our work, we recall some basic definitions and theories of fractional-
order differential equations (Section 3) followed by calculating equilibrium points
(Section 3.1). Next, we also discuss whether the solution of the proposed system is unique
(Section 3.2). We have also discussed the boundedness and feasible condition of the solutions
of the system (Section 3.3). Transfer dynamics has also been discussed with the help of the
reproduction number in the next section (Section 3.5). We also study sensitivity analysis
(Section 3.4) of the model with local and global stability of equilibrium points (both disease-
free and endemic) systematically (Sections 3.6). Then, we present our system as an optimal
control problem with psychological treatment as control variable and derived optimal condi-
tions (Section 4). Finally, numerical simulations are performed (Section 5), followed by some
conclusions of the whole work (Section 6).

2. Model Formulation

We have formulated a fractional-order synthetic drugs transmission model with
psychological addicts by taking susceptible (S), psychological addicts (P1), physiological
addicts (P2), and treatment class as four compartments.

C
t0

Dε
t x(t) = Aε − δεx− β1

εxy− β2
εxz, x(t0) = x0 > 0,

C
t0

Dε
t y(t) = β1

εxy + β2
εxz− (kε + δε + φε)y, y(t0) = y0 > 0,

C
t0

Dε
t z(t) = kεy + γεr− ξεz− δεz, z(t0) = z0 > 0,

C
t0

Dε
t r(t) = φεy + ξεz− γεr− δεr, r(t0) = r0 > 0,

(1)

where 0 < ε < 1, is the order of derivative and C
t0

Dε
t is notation due to Caputo fractional

derivative, and t0 = 0 is the initial time. Here, x(t), y(t), z(t), and r(t) represent the re-
spective size of susceptible population, psychologically addicted population, physiological
addicted population, and the class of addicts in treatment, respectively. From a survey on
synthetic drugs, it is evident that a large number of the young population are in the suscep-
tible class, which is roughly equivalent to the recruitment rate A of susceptible class and
which is assumed to be constant [26]. After contact with an addict, the susceptible addict
will first pass into the class of psychological addict, while after taking many drugs, the
psychological addict will become the physiological addict. Broadly speaking, a susceptible
addict is more likely to initiate drug abuse when he/she has contact with a physiological
addict compared to a psychological addict. We denote the corresponding contact rates
are β1

ε and β2
ε. Once psychological and physiological addicts accept treatment and reha-

bilitation, they will enter into treatment compartment. The treatment rates are denoted
by φε and ξε, respectively. In addition, some drug users in treatment may escape and
reenter physiologically addicted compartment with rate γε. The parameters kε and δε are
the escalation rate from psychological addicts to physiological addicts and natural death
rate, respectively. All parameters Aε, γε, δε, β1

ε, β2
ε, φε, ξε, kε are assumed to be positive

constants (briefly described in Table 1). Schematic diagram of system (3) is mentioned in
Figure 1.

It is observed that the time dimension of system (1) is correct because both sides of
the equations of system (1) have dimension (time)−ε [27]. Next, let us consider t0 = 0 and
omit the superscript ε to all parameters and redefine system (1) as
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C
0 Dε

t x(t) = A− δx− β1xy− β2xz, x(0) = x0 > 0,

C
0 Dε

t y(t) = β1xy + β2xz− (k + δ + φ)y, y(0) = y0 > 0,

C
0 Dε

t z(t) = ky + γr− ξz− δz, z(0) = z0 > 0,

C
0 Dε

t r(t) = φy + ξz− γr− δr, r(0) = r0 > 0,

(2)

We have considered N(t) to be the total human population and so N(t) = x(t) +
y(t) + z(t) + r(t). In the first phase, a susceptible individual becomes a psychological
addict after they come in contact with a drug addict. However, after becomes accustomed
to the persistent presence and influence of the drug, the individual is likely to become a
physiological addict. A psychological or physiological addict will enter into the treatment
compartment at the time of taking treatment and rehabilitation. It is shown in Section 3.3
that the number of total human population is bounded above and let N = inf

t∈[0,∞)
{M ∈

R+ : N(t) ≤ M}. Therefore, we can assume that the total population N(t) is constant
(N) for large time scale (t → ∞). Let us scale the state variables with respect to the total
population N:

S(t) =
x(t)
N

, P1(t) =
y(t)
N

, P2(t) =
z(t)
N

, R(t) =
r(t)
N

, Λ =
A
N

.

Therefore, system (2) becomes

C
0 Dε

t S(t) = Λ− δS− β1SP1 − β2SP2, S(0) = S0 > 0,

C
0 Dε

t P1(t) = β1SP1 + β2SP2 − (k + δ + φ)P1, P1(0) = P1,0 > 0,

C
0 Dε

t P2(t) = kP1 + γR− ξP2 − δP2, P2(0) = P2,0 > 0,

C
0 Dε

t R(t) = φP1 + ξP2 − γR− δR, R(0) = R0 > 0.

(3)

Figure 1. Schematic diagram of system (3).
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Table 1. Parameters of system (3).

Parameters Description

Λ Rate of recruitment of S

β1 Contact rates of psychological addicts

β2 Contact rates of physiological addicts

δ Natural death rate of human population

Proportion of psychological addicts
who become physiological drug addicts

k by taking drugs in a regular basis,
i.e., escalation rate from psychological

to physiological addicts.

φ, ξ
Per capita pharmaceutical treatment rates for

psychological and physiological addicts respectively.

γ Rate at which some drug users in treatment may escape
and re-enter the physiological addict state, i.e., relapse rate.

3. Preliminaries

Definition 1 ([28]). The Caputo fractional derivative with order ε > 0 for a function g ∈
Cn([t0, ∞+),IR) is denoted and defined as

C
t0

Dε
t g(t) =


1

Γ(n− ε)

∫ t

t0

g(n)(s)
(t− s)ε−n+1 ds, ε ∈ (n− 1, n), n ∈ N

dn

dtn g(t), ε = n.

where Γ(·) is the Gamma function, t ≥ t0 and n is a natural number. In particular, for ε ∈ (0, 1):

C
t0

Dε
t g(t) =

1
Γ(1− ε)

∫ t

t0

g
′
(s)

(t− s)ε ds

Lemma 1. (Generalized Mean Value Theorem) [29] Let 0 < ε ≤ 1, ψ(t) ∈ C[a, b] and if C
0 Dε

t ψ(t)
is continuous in (a, b], then

ψ(x) = ψ(a) +
1

Γ(ε)
(x− a)ε. C

0 Dε
t ψ(ζ)

where 0 ≤ ζ ≤ x, ∀x ∈ (a, b].

Remark 1. If C
0 Dε

t ψ(t) ≥ 0
(C

0 Dε
t ψ(t) ≤ 0

)
, t ∈ (a, b), then ψ(t) is a non-decreasing (non-

increasing) function for t ∈ [a, b].

Definition 2 ([13]). One-parametric and two-parametric Mittag–Leffler functions are described
as follows:

Eε(w) =
∞

∑
k=0

wk

Γ(εk + 1)
and Eε1,ε2(w) =

∞

∑
k=0

wk

Γ(ε1k + ε2)
, where ε, ε1, ε2 ∈ R+.
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Theorem 1 ([30]). Let ε > 0, n − 1 < ε < n, n ∈ N. Assume that g(t) is continuously
differentiable functions up to order (n − 1) on [t0, ∞) and nth derivative of g(t) exists with
exponential order. If C

t0
Dε

t g(t) is piecewise continuous on [t0, ∞), then

L
{

C
t0

Dε
t g(t)

}
= sαF(s)−

n−1

∑
j=0

sα−j−1gj(t0),

where F(s) = L {g(t)} denotes the Laplace transform of g(t).

Theorem 2 ([31]). Let C be the complex plane. For any ε1, ε2 ∈ R+ and M ∈ C, then

L
{

tε2−1Eε1,ε2(Mtε1)
}
=

sε1−ε2

(sε1 −M)
,

for R(s) > ‖M‖
1

ε1 , where R(s) represents the real part of the complex number s, and Eε1,ε2 is the
Mittag–Leffler function.

Theorem 3 ([28]). Consider the following fractional-order system:

C
t0

Dε
t X(t) = Ψ(X), Xt0 = (x1

t0
, x2

t0
, ..., xn

t0
), xi

t0
> 0, i = 1, 2, .., n

with 0 < ε < 1, X(t) = (x1(t), x2(t), ..., xn(t)) and Ψ(X) : [t0, ∞) → Rn×n. The equilibrium
points of this system are evaluated by solving the following system of equations: Ψ(X) = 0. These
equilibrium points are locally asymptotically stable iff each eigenvalue λi of the Jacobian matrix

J(X) =
∂(Ψ1, Ψ2, ..., Ψn)

∂(x1, x2, ..., xn)
calculated at the equilibrium points satisfy |arg(λi)| >

επ

2
.

3.1. Equilibria of System (3)

The equilibria of system (3) can be obtained by solving the system:

Λ− δS∗ − β1S∗P1
∗ − β2S∗P2

∗ = 0

β1S∗P1
∗ + β2S∗P2

∗ − (k + δ + φ)P1
∗ = 0

kP1
∗ + γR∗ − ξP2

∗ − δP2
∗ = 0

φP1
∗ + ξP2

∗ − γR∗ − δR∗ = 0

(4)

System (3) has two types of equilibrium points:

1. Drug-free equilibrium E0(
Λ
δ , 0, 0, 0)

2. Drug-addiction equilibrium E1(S∗, P∗1 , P∗2 , R∗), where

S∗ =
(k + δ + φ)P∗1
β1P∗1 + β2P∗2

P∗1 =
Λβ1δ(γ + δ + ξ) + Λβ2(kδ + kγ + φγ)− δ2(k + δ + φ)(γ + δ + ξ)

(k + δ + φ)[β1(γ + δ + ξ) + β2(kδ + kγ + φγ)]

P∗2 =
(kδ + kγ + φγ)P∗1

δ(γ + δ + ξ)

R∗ =
ξP∗2 + φP∗1

δ + γ
.

(5)
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For drug-addiction equilibrium E1 to exist in feasible region R4
+, it is necessary and

sufficient that Λβ1δ(γ + δ + ξ) + Λβ2(kδ + kγ + φγ) ≥ δ2(k + δ + φ)(γ + δ + ξ)

3.2. Existence and Uniqueness

Lemma 2 ([32]). Consider the system:

C
t0

Dε
t x(t) = g(t, x), t0 > 0 (6)

with initial condition x(t0) = xt0 , where ε ∈ (0, 1], g : [t0, ∞)×Ω → IRn, Ω ⊆ IRn, if local
Lipschitz condition is satisfied by g(t, x) with respect to x, then there exists a solution of (6) on
[t0, ∞)×Ω which is unique.

To study the existence and uniqueness of system (3), let us consider the region
Ω × [t0, γ],where Ω = {(S, P1, P2, R) ∈ R4 : max(|S|, |P1|, |P2|, |R|) ≤ M} and γ <
+∞. Denote X = (S, P1, P2, R) and X = (S̄, P̄1, P̄2, R̄). Consider a mapping L(X) =
(L1(X), L2(X), L3(X), L4(X)), where

L1(X) = Λ− δS− β1SP1 − β2SP2

L2(X) = β1SP1 + β2SP2 − (k + δ + φ)P1

L3(X) = kP1 + γR− ξP2 − δP2

L4(X) = φP1 + ξP2 − γR− δR

For any X, X ∈ Ω:

∥∥L(X)− L(X)
∥∥

=
∣∣L1(X)− L1(X)

∣∣+ ∣∣L2(X)− L2(X)
∣∣+ ∣∣L3(X)− L3(X)

∣∣+ ∣∣L4(X)− L4(X)
∣∣

=
∣∣Λ− δS− β1SP1 − β2SP2 −Λ + δS̄ + β1S̄P̄1 + β2S̄P̄2

∣∣
+
∣∣β1SP1 + β2SP2 − (k + δ + φ)P1 − β1S̄P̄1 − β2S̄P̄2 + (k + δ + φ)P̄1

∣∣
+
∣∣kP1 + γR− ξP2 − δP2 − kP̄1 − γR̄ + ξ P̄2 + δP̄2

∣∣
+|φP1 + ξP2 − γR− δR− φP̄1 − ξ P̄2 + γR̄ + δR̄|

≤ δ
∣∣S− S̄

∣∣+ 2β1
∣∣SP1 − S̄P̄1

∣∣+ 2β2
∣∣SP2 − S̄P̄2

∣∣
+(δ + 2φ + 2k)|P1 − P̄1|+ (δ + 2ξ)|P2 − P̄2|+ (2γ + δ)|R− R̄|

≤ (δ + 2β1M + 2β2M)
∣∣S− S̄

∣∣+ (2β1M + 2k + 2φ + δ)|P1 − P̄1|

+(2β2M + 2ξ + δ)|P2 − P̄2|+ (2γ + δ)|R− R̄|

≤ H1
∣∣S− S̄

∣∣+ H2|P1 − P̄1|+ H3|P2 − P̄2|+ H4|R− R̄|

≤ H
∥∥X− X

∥∥, where H = max{H1, H2, H3, H4},
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and
H1 = (δ + 2β1M + 2β2M)

H2 = (2β1M + 2k + 2φ + δ)

H3 = (2β2M + 2ξ + δ)

H4 = (2γ + δ)

Therefore, L(X) satisfies Lipschitz’s condition with respect to X. Therefore, Lemma 2
confirms that there exists a unique solution X(t) of system (3) with initial condition X(0) =
(S0, P1,0, P2,0, R0). The following theorem is the consequence of this result.

Theorem 4. There exists a unique solution X(t) ∈ Ω of system (3) for all t ≥ 0 with initial
condition X(0) = (S0, P1,0, P2,0, R0) ∈ Ω.

3.3. Non-Negativity and Boundedness

In this section, we have established the criterion for feasibility of the solution of
system (3). Suppose IR+ stands for the set of all non-negative real numbers and Γ+ ={
(S, P1, P2, R) ∈ IR4

+

}
represents the first quadrant.

Theorem 5. (Non-negativity): The solutions X(t) = (S, P1, P2, R) of system (3) remain in Γ+

if X(0) = (S0, P1,0, P2,0, R0) ∈ Γ+.

Proof.
C
t0

Dε
t S(t)

∣∣
S(t)=0 = Λ > 0 (7)

C
0 Dε

t P1(t)
∣∣
P1(t)=0 = βSP2 (8)

C
0 Dε

t P2(t)
∣∣
P2(t)=0 = kP1 + γR (9)

C
0 Dε

t R(t)
∣∣
R(t)=0 = ξP2 + φP1 (10)

From (7), we have
C
t0

Dε
t S(t)|S(t)=0 = Λ > 0.

From Lemma 1, we can say S(t) is increasing in a neighborhood of time t where
S(t) = 0 and S(t) cannot cross the axis S(t) = 0. Therefore, S(t) > 0 for all t ≥ 0. Now, we
claim that the solution P1(t) starts from Γ+ and remains non-negative. If not, then there
exists τ1 such that P1(t) crosses P1(t) = 0 axis at t = τ1 for the first time and the following
conditions hold: 

P1(t) > 0, for 0 ≤ t < τ1,
P1(τ1) = 0,
P1(τ

+
1 ) < 0.

From (8), we have C
0 Dε

t P1(t)
∣∣
P1(τ1)=0 = β2S(τ1)P2(τ1). Now, we have two cases

Case 1: If P2(τ1) ≥ 0 then by the Remark 1 of Lemma 1, we can say that P1(t) is non-
decreasing in a neighborhood of t = τ1 and which concludes P1(τ

+
1 ) = 0. Therefore, we

have arrived at a contradiction.

Case 2: If P2(τ1) < 0, then there exists a τ2 such that 0 < τ2 < τ1 with
P2(t) > 0, for 0 ≤ t < τ2,
P2(τ2) = 0,
P2(τ

+
2 ) < 0.
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From (9), we have

C
0 Dε

t P2(t)
∣∣
P2(τ2)=0 = kP1(τ2) + γR(τ2)

Now we have two sub-cases.

Sub-case 1: If kP1(τ2) + γR(τ2) ≥ 0, then P2(τ2
+) ≮ 0 and it contradicts our assumption.

Sub-case 2: If kP1(τ2) + γR(τ2) < 0, then P1(τ2) > 0 as 0 < τ2 < τ1 and R(τ2) must be
negative. In this case, we can find a τ3 such that 0 < τ3 < τ2 < τ1 with

R(t) > 0, for 0 ≤ t < τ3,
R(τ3) = 0,
R(τ+

3 ) < 0.

From (10), we have

C
0 Dε

t R(t)
∣∣
R(τ3)=0 = ξP2(τ3) + φP1(τ3) > 0

which contradicts our assumption that R(τ+
3 ) < 0. Therefore, we have P1(t) ≥ 0,

∀t ∈ [0, ∞).
Again from (9), we have C

0 Dε
t P2(t)

∣∣
P2(t)=0 = kP1 + γR. If R(t) > 0 then P2(t) is non-

decreasing (remark of Lemma 1) and P2(t) > 0, t ∈ [0, ∞). If possible, let R(t) crosses
R(t) = 0 axis for the first time at t = t1. Then, we have

R(t) > 0, for 0 ≤ t < t1,
R(t1) = 0,
R(t1

+) < 0.

From (10), we have

C
0 Dε

t R(t)
∣∣
R(t1)=0 = ξP2(t1) + φP1(t1) > 0

and this opposes our assumption R(t1
+) < 0. Hence P2(t) > 0, t ∈ [0, ∞). Again from

(10), it is evident that C
0 Dε

t R(t)
∣∣
R(t)=0 = ξP2 + φP1 > 0 and assures that R(t) > 0 and also

P2(t) > 0 , t ∈ [0, ∞).
Thus, all solutions of system (3) (and thus system (2)) starting in Γ+ are confined in

the region Γ+.

Theorem 6. (Boundedness): Solutions X(t) = (x, y, z, r) of system (2) are uniformly bounded.

Proof. From the first equation of (2), it is noted that

C
0 Dε

t x(t) ≤ A− δx

Taking Laplace transforms on both sides, we have

sεL {x(t)} − sε−1x(0) + δL {x(t)} ≤ A
s

, where L {·}is the Laplace transform operator

⇒ L {x(t)} ≤ A
sε−(1+ε)

sε + δ
+ x(0)

sε−1

sε + δ

Taking inverse Laplace transforms (using Theorem 2),

x(t) ≤ x(0)Eε,1(−δtε) + AtεEε,ε+1(−δtε) (11)
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∴ x(t) ≤ M1[Eε,1(−δtε) + δtεEε,ε+1(−δtε)] =
M1

Γ(1)
= M1,

where M1 = max
{

A
δ

, x(0)
}

and, as it is from the properties of Mittag–Leffler function [33],

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)

In this case
Eε,1(−δtε) = (−δtε)Eε,ε+1(−δtε) +

1
Γ(1)

(12)

Let N(t) = x(t) + y(t) + z(t) + r(t) represent the total population, then

C
0 Dε

t N(t) =C
0 Dε

t x(t) +C
0 Dε

t y(t) +C
0 Dε

t z(t) +C
0 Dε

t r(t)

= A− {δx(t) + δy(t) + δz(t) + δr(t)}

= A− δN(t).

Therefore,
C
0 Dε

t N(t) + δN(t) = A

Applying Laplace transformation, we have (using Theorem 1):

sεF(s)− sε−1N(0) + δF(s) =
A
s

, where F(s) = L {N(t)}

⇒ F(s) = A
s−1

sε + δ
+

N(0)sε−1

sε + δ
=

sε−1N(0)
sε + δ

+
Asε−(1+ε)

sε + δ

Taking inverse Laplace transforms (using Theorem 2),

N(t) = N(0)Eε,1(−δtε) + AtεEε,ε+1(−δtε) (13)

From (12) and (13), we get

N(t) ≤ M2[Eε,1(−δtε) + δtεEε,ε+1(−δtε)] =
M2

Γ(1)
= M2,

where M2 = max
{

A
δ

, N(0)
}

Thus, x(t), N(t) are bounded and thus (using Theorem 5) the solutions X(t) =
(x(t), y(t), z(t), r(t)) are bounded uniformly in {(x(t), y(t), z(t), r(t))|x + y + z + r ≤ M2;
x ≤ M1} for t ∈ [0, ∞)

3.4. Reproduction Number and Sensitivity Analysis

The basic reproduction number is defined as the number of new addicted individuals
produced by a single addicted individual during infectious period when contacted into
susceptible compartment (R0 = 2 means a person who has the synthetic drug addiction
will transmit it to an average of 2 other people). Reproduction number R0 of system (3) for
ε = 1 can be calculated as the maximum eigenvalue of the next generation matrix FV−1

computed at the drug-free equilibrium [34]. Here,

F =


β1

Λ
δ

β2
Λ
δ

0 0

; V =


δ + φ + k 0

−k δ + ξ

 (14)
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Thus, we get

R0 =
Λ[β1(ξ + δ) + kβ2]

δ(ξ + δ)(δ + φ + k)
=

β1(ξ + δ)Λ
δ(ξ + δ)(δ + φ + k)

+
kβ2Λ

δ(ξ + δ)(δ + φ + k)
(15)

The first part is due to the psychologically addicted people and the second part is due
to the physiological addicted people.

The drug–addiction equilibrium E1(S∗, P∗1 , P∗2 , R∗) of system (3) can be rewritten as

S∗ =
(k + δ + φ)P∗1
β1P∗1 + β2P∗2

P∗1 =
B0(R0 − 1) + B1

B2
, where

B0 = [δ2(k + δ + φ)(δ + ξ) +
γ

δ + ξ
]

B1 =
γ

δ + ξ
[λβ2kξ + Λβ2φ(δ + ξ)]

B2 = (k + δ + φ)[β1δ(γ + δ + ξ) + β2(kγ + kδ + φγ)]

P∗2 =
(kδ + kγ + φγ)P∗1

δ(γ + δ + ξ)

R∗ =
ξP∗2 + φP∗1

δ + γ

(16)

Therefore, if R0 > 1, the drug–addict equilibrium E1 exists.
The basic reproduction number (R0) of system (3) relies upon seven parameters: per

capita contact rates β1, β2, rate of recruitment Λ (of S), escalation rate from psychological
to physiological addicts (k), per capita treatment rates for psychological and physiological
addicts respectively (φ , ξ), and natural death rate (δ). Among these parameters, we cannot
control the parameters Λ, k, and δ. Therefore, the basic reproduction number (R0) mainly
depends on ξ, φ, β1, β2 and the value of R0 = 0.0266 according to Table 2. To examine
the sensitivity of R0 to any parameter (say, θ), normalized forward sensitivity index with
respect to each parameter has been computed as [11,34]

χθ =
∂R0

∂θ

θ

R0

The sensitivity index may depend on some system parameters but also can be constant
or independent of some parameters. These values are very important to estimate the
sensitivity of parameters, which should be done cautiously, as a small perturbation in a
parameter causes relevant quantitative changes. Merely, the estimation of a parameter with
a lower sensitivity index does not demand caution, because a small perturbation in that
parameter causes small changes. In this context, we have examined the sensitivity of R0
to the parameters β1, β2, φ, and ξ, normalized forward sensitivity index with respect to
Table 3.

∂R0

∂φ
= − Λ[β1(ξ + δ) + kβ2]

δ(δ + ξ)(k + δ + φ)2

χφ =
φ

R0

∂R0

∂φ
= − φ

k + δ + φ
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∂R0

∂ξ
= − Λkβ2

δ(δ + ξ)2(k + δ + φ)

χξ =
ξ

R0

∂R0

∂ξ
= − kβ2ξ

(δ + ξ)[β1(ξ + δ) + kβ2]

∂R0

∂β1
=

Λ
δ(k + δ + φ)

χβ1 =
β1

R0

∂R0

∂β1
=

β1(δ + ξ)

[β1(ξ + δ) + kβ2]

∂R0

∂β2
=

Λk
δ(k + δ + φ)((δ + ξ))

χβ2 =
β2

R0

∂R0

∂β2
=

kβ2

[β1(ξ + δ) + kβ2]

If β1 = bβ; β2 = β, where b is a nonzero real number, then

∂R0

∂β
=

Λ[b(ξ + δ) + k]
δ(ξ + δ)(δ + φ + k)

χβ =
β

R0

∂R0

∂β
=

β

βΛ[b(ξ + δ) + k]
δ(ξ + δ)(δ + φ + k)

Λ[b(ξ + δ) + k]
δ(ξ + δ)(δ + φ + k)

= 1

Here, χβ1 , χβ2 , χξ , χφ are the sensitivity indexes correspond to the respective param-
eters β1, β2, ξ, φ. Therefore, it is clear that the basic reproduction number (R0) is most
sensitive to changes in β (χβ = 1), where β1 = bβ; β2 = β and b is a nonzero real num-
ber, probability of transmission from susceptible to drug addicts (both psychological and
physiological).

Table 2. Sensitivity indices of different parameters of system (3) corresponding to Table 3.

Parameters Sensitivity Index

φ −0.6154

ξ −0.0593

β1 0.9259

β2 0.0741

Table 3. Parameter values used in system (3) when E0 = (1, 0, 0, 0) and R0 = 0.3151.

Parameters Λ β1 β2 δ k φ ξ γ ε

Values 0.02 0.01 0.001 0.02 0.1 0.2 0.1 0.1 0.95

Reference [35] [35] [35] [36] [36] [36] [36] [35] Assumed

If β1, β2 increases, R0 also increases, whereas R0 decreases when φ, ξ increases, or vice
versa. However, the increase in φ, i.e., the treatment rate for psychological addicts, cannot
help as much as the treatment rate for physiological addicts ξ. In this way, it is smarter to
concentrate either β1, β2 (the contact rates ) and φ, treatment rate for mental addicts. It is
also noticeable that R0 is more sensitive to β1 rather than β2 according Table 2.
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3.5. Local Stability

To analyze the local stability of disease free and endemic equilibrium points, we need
the following.

Definition 3 ([37]). The discriminant ∇( f ) of a polynomial f (x) = xn + α1xn−1 + α2xn−2 +
... + αn is defined by

∇( f ) = (−1)
n(n− 1)

2 |Sn( f , f ′)|.

Where Sn( f , g) is the Sylvester matrix of f (x) and g(x) of order (n + l)× (n + l) and g(x) =
xl + β1xl−1 + β2xl−2 + ... + βl .

For n = 3, we have f (x) = x3 + α1x2 + α2x + α3 and f ′(x) = 3x2 + 2α1x + α2.

|S3( f , f ′)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α1 α2 α3 0

0 1 α1 α2 α3

3 2α1 α2 0 0

0 3 2α1 α2 0

0 0 3 2α1 α2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −18α1α2α3 − (α1α2)
2 + 4α2

1α3 + 4α2
2 + 27α2

3

Therefore, ∇( f ) = −|S3( f , f ′)| = 18α1α2α3 + (α1α2)
2 − 4α2

1α3 − 4α2
2 − 27α2

3

Lemma 3. (Routh–Hurwitz conditions for fractional calculus) [38]: If∇(P) is the discriminant of
the characteristic equation P(λ) = λn + a1λn−1 + a2λn−2 + ... + an of Jacobian matrix of system
(1) evaluated at equilibrium point, then for n = 3 the system is asymptotically stable if any of the
following conditions hold:

1. ∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3

2. ∇(P) < 0, a1 ≥ 0, α2 ≥ 0, a3 > 0 and α < 2
3

3. ∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and α ∈ (0, 1).

To study the local stability of the system (3), we need to compute Jacobian matrices at
the equilibrium points E0 and E1. At the drug-free equilibrium point E0:

J

{(
Λ
δ

, 0, 0, 0

)}
=



−δ −β1
Λ
δ

−β2
Λ
δ

0

0 β1
Λ
δ
− (k + δ + φ) β2

Λ
δ

0

0 k −(ξ + δ) γ

0 φ ξ −(γ + δ)


The eigenvalues of the system are λ1 = −δ, and the other three eigenvalues can be

found from the equation Q(λ) ≡ λ3 + c1λ2 + c2λ + c3 = 0, where
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c1 = −(K1 + K5 + K3)

c2 = K1K5 + K1K9 + K5K9 − K2K4 − K3K7 − K6K8

c3 = −K1K5K9 + K1K6K8 + K2K4K9 − K2K6K7 − K3K4K8 + K3K7K5

K1 = β1
Λ
δ
− (k + δ + φ)

K2 = β2
Λ
δ

K3 = 0
K4 = k
K5 = −(ξ + δ)
K6 = γ
K7 = φ
K8 = ξ
K9 = −(γ + δ)

(17)

Suppose ∇(Q) = 18c1c2c3 + (c1c2)
2 − 4c2

1c3 − cc2
2 − 27c2

3, then by the Routh–Harwitz
conditions for the fractional differential equation, the endemic equilibrium point E0 is
locally asymptotically stable if any of the following conditions hold:

1. ∇(Q) > 0, c1 > 0, c3 > 0 and c1c2 > c3

2. ∇(Q) < 0, c1 ≥ 0, c2 ≥ 0, c3 > 0 and ε < 2
3

3. ∇(Q) < 0, c1 > 0, c2 > 0, c1c2 = c3 and ε ∈ (0, 1)

Jacobian matrix at E1(S∗, P∗1 , P∗2 , R∗) is given by

J(E1) =



−δ− β1P∗1 − β2P∗2 −β1P∗1 S∗ −β2P∗2 S∗ 0

β1P∗1 + β2P∗2 β1S∗ − (k + δ + φ) β2S∗ 0

0 k −(ξ + δ) γ

0 φ ξ −(γ + δ)


Characteristic equation of this matrix is P(λ) ≡ λ3 + a1λ2 + a2λ + a3 = 0, where

a1 =
e23e32 + e12e22 − e22e33 − e22e44 − e11e12

e22

a2 = [e11e22e33 + e11e22e44 − e11e23e32 + e22e33e44 − e22e34e43 − e23e32e44
+e34e23e42 − e22e12e33 − e22e12e44 + e32e13e21]/e22

a3 = [e11e22e34e43 − e11e22e33e44 + e11e23e32e44 − e11e23e34e44 + e12e21e33e44
−e12e21e34e43 − e21e13e32e44]/e22

(18)

and eij, i, j = 1, 2, 3, 4 are as follows:
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e11 = −δ− β1P∗1 − β2P∗2
e12 = −β1P∗1 S∗

e13 = −β2P∗2
e14 = 0
e21 = β1P∗1 + β2P∗2
e22 = β1S∗ − (k + δ + φ)
e23 = β2S∗

e24 = 0
e31 = 0
e32 = k
e33 = −(ξ + δ)
e34 = γ
e41 = 0
e42 = φ
e43 = ξ
e44 = −(γ + δ)

(19)

Therefore, λi, i = 1, 2, 3, can be found from this equation. Suppose ∇(P) = 18a1a2a3 +
(a1a2)

2 − 4a2
1a3 − 4a2

2 − 27a2
3, then by the Routh–Hurwitz conditions for fractional differen-

tial equations, the endemic equilibrium point E1 is locally asymptotically stable if any of
the following conditions hold:

1. ∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3

2. ∇(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 and ε < 2
3

3. ∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and ε ∈ (0, 1)

The following theorems are the consequence of these discussions.

Theorem 7. The drug-free equilibrium E0 of system (2) is locally asymptotically stable if any of
the following conditions holds with (17):

1. ∇(Q) > 0, c1 > 0, c3 > 0 and c1c2 > c3

2. ∇(Q) < 0, c1 ≥ 0, c2 ≥ 0, c3 > 0 and ε < 2
3

3. ∇(Q) < 0, c1 > 0, c2 > 0, c1c2 = c3 and ε ∈ (0, 1).

Here ∇(Q) = 18c1c2c3 + (c1c2)
2 − 4c2

1c3 − cc2
2 − 27c2

3.

Theorem 8. The endemic equilibrium E1 of system (2) is locally asymptotically stable if any of the
following conditions holds with (18) and (19):

1. ∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3

2. ∇(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 and ε < 2
3

3. ∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and ε ∈ (0, 1).

Here, ∇(P) = 18a1a2a3 + (a1a2)
2 − 4a2

1a3 − 4a2
2 − 27a2

3.

3.6. Global Asymptotic Stability

We need following useful lemmas about Lyapunov direct method related with global
stability of the equilibrium points in fractional order models.

Lemma 4 ([32]). Suppose u(t) ∈ R+ be a continuous and differentiable function. Then, for

any moment of time t > 0, C
0 Dε

t

[
u(t)− u∗ − u∗ ln

u(t)
u∗

]
≤
(

1− u∗

u(t)

)
C
0 Dε

t u(t), u∗ ∈ R+,

∀ε ∈ (0, 1).

Lemma 5. (Uniform Asymptotic Stability Theorem) [39]:
Consider the non-autonomous system

C
0 Dε

t x(t) = f (t, x), x ∈ Ω ⊆ Rn (20)
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Let x∗ be an equilibrium point of the system (x∗ ∈ Ω ⊆ Rn) and Φ(t, x(t)) : [0, ∞)×Ω→
R be a continuously differentiable function such that

C
0 Dε

t Φ(t, x(t)) ≤ −Θ3(x),

Θ1(x) ≤ Φ(t, x(t)) ≤ Θ2(x), ∀ε ∈ (0, 1), ∀x(t) ∈ Ω

where Θi, i = 1, 2, 3, are continuous positive definite functions on Ω. Then, the equilibrium point
x∗ of system (20) is globally asymptotically stable.

Theorem 9. If 1 >
[kγξ + γφ(ξ + δ)]Λβ2

δ2(k + φ + δ)(ξ + δ + γ)(ξ + δ)
, then the disease-free equilibrium E0 of

system (3) is globally asymptotically stable when

R0 ≤ 1− [kγξ + γφ(ξ + δ)]Λβ2

δ2(k + φ + δ)(ξ + δ + γ)(ξ + δ)
.

Proof. We have considered a positive definite function:

L =
1
M

P1 +
β2(γ + δ)

δ(ξ + δ + γ)
P2 +

β2γ

δ(ξ + δ + γ)
R, where M =

Λ
δ

.

Clearly, L ≥ 0 and L = 0 only when P1 = 0, P2 = 0 and R = 0.
Taking the ε order Caputo derivative C

0 Dε
t of L along the solution of system (3), we

have (for large time t)

C
0 Dε

t L =
1
M

C
0 Dε

t P1 +
β2(γ + δ)

δ(ξ + δ + γ)
C
0 Dε

t P2 +
β2γ

δ(ξ + δ + γ)
C
0 Dε

t R

=
1
M

[β1SP1 + β2SP2 − kP1 − (δ + φ)P1] +
β2(γ + δ)

δ(ξ + δ + γ)
[kP1 + γR− ξP2 − δP2]

+
β2γ

δ(ξ + δ + γ)
[φP1 + ξP2 − γR− δR]

≤ 1
M

β1MP1 −
1
M

(k + δ + φ)P1 +
β2(γ + δ)

δ(ξ + δ + γ)
kP1 +

β2γφ

δ(ξ + δ + γ)
P1

=

[
δR0

Λ
(k + δ + φ)− β2k

ξ + δ
+

β2k(γ + δ) + β2γφ

δ(δ + ξ + γ)
− (k + δ + φ)

M

]
P1

=
δ(k + δ + φ)

Λ
[R0 − L0]P1,

where

L0 = 1 +
Λβ2k

δ(ξ + δ)(k + φ + δ)
− Λ

δ2
β2k(γ + δ) + β2γφ

(k + φ + δ)(ξ + δ + γ)

= 1− [kγξ + γφ(ξ + δ)]Λβ2

δ2(k + φ + δ)(ξ + δ + γ)(ξ + δ)
≤ 1

Therefore, C
0 Dε

t L ≤ 0 if R0 ≤ L0. Therefore, using Lemma 5:

lim
t→∞

P1(t) = lim
t→∞

P2(t) = lim
t→∞

R(t) = 0.

Thus, in the limit S(t) is given by the solutions of C
0 Dε

t S(t) = Λ− δS. As S(0) > 0, the
theorem follows.
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Theorem 10. If R0 > 1, then the endemic equilibrium E1(S∗, P∗1 , P∗2 , R∗) of system (3) is globally
asymptotically stable.

Proof. Consider a positive definite function:

V =

(
S− S∗ − S∗ ln

S
S∗

)
+

(
P1 − P∗1 − P∗1 ln

P1

P∗1

)

+
β2(γ + δ)

δ(ξ + δ + γ)

(
P2 − P∗2 − P∗2 ln

P2

P∗2

)
+

β2γ

δ(ξ + δ + γ)

(
R− R∗ − R∗ ln

R
R∗

) (21)

It is observed that V ≥ 0 and V = 0 only at E1. Taking the ε order Caputo derivative
C
0 Dε

t of V and using Lemma 4, we have

C
0 Dε

t (V) ≤
(

1− S∗

S

)
C
0 Dε

t S +

(
1−

P∗1
P1

)
C
0 Dε

t P1

+
β2(γ + δ)

δ(ξ + δ + γ)

(
1− P∗2

P2

)
C
0 Dε

t P2 +
β2γ

δ(ξ + δ + γ)

(
1− R∗

R

)
C
0 Dε

t R

(22)

From the steady-state of equilibrium point (4), we have

Λ = δS∗ + β1S∗P1
∗ + β2S∗P2

∗

β1S∗P1
∗ + β2S∗P2

∗

P1
∗ = (k + δ + φ)

kP1
∗ + γR∗

P2
∗ = (ξ + δ)

φP1
∗ + ξP2

∗

R∗
= (γ + δ)

(23)

Let a =
S
S∗

, b =
P1

P∗1
, c =

P2

P∗2
, d =

R
R∗

.

From (22) and (23), we have
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C
0 Dε

t (V) ≤ (S− S∗)
S

[
− δ(S− S∗)− β1(P1S− P∗1 S∗)− β2(P2S− P∗2 S∗)

]
(

1−
P∗1
P1

)[
β1SP1 + β2SP2 − (β1S∗ + β2S∗P∗2 )

P1

P∗1

]

+
β2(γ + δ)

δ(δ + ξ + γ)

(
1− P∗2

P2

)[
kP1 + γR− P2

kP1
∗ + γR∗

P2
∗

]

+
β2γ

δ(δ + ξ + γ)

(
1− R∗

R

)[
φP1 + ξP2 −

φP1
∗ + ξP2

∗

R∗

]

= − δ

S
(S− S∗)2 + β1P∗1 S∗

[
(1− ab)

(
1− 1

a

)
+

(
1− 1

b

)
ab− b

(
1− 1

b

)]

+β2P∗2 S∗
[
(1− ac)

(
1− 1

a

)
+

(
1− 1

b

)
ac− b

(
1− 1

b

)]

β2(γ + δ)

δ(ξ + δ + γ)
kP∗1

(
1− 1

c

)
(b− c) +

β2(γ + δ)

δ(ξ + δ + γ)
γR∗

(
1− 1

c

)
(d− c)

+
β2γ

δ(ξ + δ + γ)
φP∗1

(
1− 1

d

)
(b− d) +

β2γ

δ(ξ + δ + γ)
ξP∗2

(
1− 1

d

)
(c− d)

= − δ

S
(S− S∗)2 + β1P∗1 S∗

(
2− 1

a
− a

)

+

[
β2

(kγ + kδ + φγ)

δ(γ + δ + ξ)
P∗1

](
2− 1

a
+ c− ac

b
− b

)

Using P∗2 =
(kγ + kδ + φγ)

δ(γ + δ + ξ)
P∗1

+
β2(γ + δ)

δ(ξ + δ + γ)
kP∗1

(
b− c− b

c
+ 1

)
+

β2γ

δ(ξ + δ + γ)
(φP∗1 + ξP∗2 )

(
d− c− d

c
+ 1

)

Using R∗(δ + γ) = (φP∗1 + ξP∗2 )

+
β2γ

δ(ξ + δ + γ)
φP∗1

(
b− d− b

d
+ 1

)
+

β2γ

δ(ξ + δ + γ)
ξP∗2

(
c− d− c

d
+ 1

)
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= − δ

S
(S− S∗)2 + β1P∗1 S∗

(
2− 1

a
− a

)

+
β2(γ + δ)

δ(ξ + δ + γ)
kP∗1

(
3− 1

a
− ac

b
− b

c

)

+
β2φγ

δ(ξ + δ + γ)
P∗1

(
4− 1

a
− ac

b
− d

c
− b

d

)
(24)

Using the inequality A.M. ≥ G.M., we have 2 − 1
a
− a ≤ 0; 3 − 1

a
− ac

b
− b

c
≤

0; 4 − 1
a
− ac

b
− d

c
− b

d
≤ 0. From relation (24) it is clear that C

0 Dε
t (V) ≤ 0 and thus

C
0 Dε

t (V) is negative definite with respect to E1. Thus E1 is globally asymptotically stable by
Lemma 5.

4. Fractional Optimal Control Problem

The applications of Fractional-ordered optimal control problem (FOCP) have grown
in recent decades. Agrawal has introduced the general form of FOCPs in the Riemann–
Liouville sense and suggests a numerical method to solve FOCP using Lagrange multiplier
technique [24]. In traditional integer-order optimal control problems, the calculus of varia-
tions is the common method. Pontryagin’s principle is one of the most useful approaches to
solve optimal control problem. There are several works where these methods are employed
in Fractional ordered optimal control problems [25,40].

Let x be the pseudo-state vector, u = [u1, u2, ..., um] ∈ U ⊆ Rm is the input vector, and
U is the set of admissible control of the dynamical system C

0 Dε
t x = f (x, u, t), x(0) = x0. The

system’s pseudo-state is supposed to reach final condition x f in the unknown final time
Tf < ∞. The control u ∈ U must be chosen for all t ∈ [0, Tf ] to minimize the objective
functional J which is defined by the application and can be abstracted as

J = Θ(x(Tf )) +
∫ Tf

0
F(x(t), u(t))dt

The constraints on the system dynamics can be adjoined to the Lagrangian F by
introducing time-varying Lagrange multiplier vector λ, whose elements are called the
co-states of the system. This motivates the construction of the Hamiltonian H defined for
all t ∈ [0, Tf ].

H(x(t), u(t), λ(t)) = λT(t) f (x(t), u(t)) + F(x(t), u(t)).

where λT stands for transpose of λ. Pontryagin’s minimum principle states that the optimal
state trajectory x∗, optimal control u∗, and corresponding Lagrange multiplier vector λ∗

must minimize the Hamiltonian H so that [41]

1. H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u(t), λ∗(t))

2.
∂Θ(x)

∂Tf
|x=x(Tf )

+ H(Tf ) = 0

3. RL
t Dε

Tf
λT =

∂H
∂x
|x=x∗

4.
∂H
∂u
|u=u∗ = 0 and

∂2H((x∗(t), u∗(t), λ∗(t)))
∂u2 ≤ 0

where
RL
t Dε

T f (t) =
−1

Γ(1− ε)

d
dτ

∫ T

t
(τ − t)−ε f (τ)dτ, ∀t ∈ [0, T]



Mathematics 2021, 9, 703 20 of 34

is the Right Riemann–Liouville derivative of order ε. The notation “RL” stands for Right
Riemann–Liouville derivative. These four conditions are the necessary conditions, but not
sufficient for optimal control.

Our point is to limit the number of synthetic drug addicts by considering the impact of
“awareness program, mental directing and other preventive measures” as a control strategy.
We have thought about system (3) with this control system. Empowering the mindfulness
mission and advising program in a successive premise can impact conduct change among
mental addicts. Mindfulness crusades keep the populace from ingesting medications as
well as make them mindful about the repercussions of engrossing manufactured medica-
tions. Considering this, a treatment rate work cηP1 has been introduced in system (3) to get
system (26). Here, c speaks to the therapy rate (through directing) alongside the effect of
awareness missions and η is the power of treatment. There are various costs included like
analysis, drugs, and different costs when advising is given. In this way, η can be utilized as
a potential instrument to create a constructive outcomes on mental addicts with 0 ≤ η ≤ 1.
Here, 0 portrays no improvement throughout the directing time frame, while 1 is speaking
to full improvement. Consequently, the control force η completely depends on the exertion
of the mental addicts to prevent themselves from consuming synthetic drugs.

In the following, we have focus on determining the optimal treatment via counseling
with minimum cost by implementing the control. From the previous discussions, we have
deduced that the acceptable set for the control variable η(t) is

Θ = {η(t)|η(t) ∈ [0, 1], t ∈ [0, Tf ]}.

where Tf represents the final time up to which the control policy can be implemented. It is
assumed that the control functions η(t) is measurable.

Our main objective is to minimize the given objective function J, which represents
cost involved in counseling and awareness programs in time interval [0, Tf ], by finding
optimal control η∗ as follows:

J(η∗) = J(min{η(t) ∈ Θ}). (25)

Here,

J(η) =
∫ Tf

0

[
ω1P1(t) +

ω2

2
η2(t)

]
dt,

(where ω1 6= 0, ω2 6= 0 are the cost of treatment of psychological class and cost of imple-
mentation of control strategy, respectively )

subject to

C
0 Dε

t S(t) = Λ− δS− β1SP1 − β2SP2, S(0) > 0,

C
0 Dε

t P1(t) = β1SP1 + β2SP2 − (k + δ + φ)P1 − cηP1, P1(0) > 0,

C
0 Dε

t P2(t) = kP1 + γR− ξP2 − δP2, P2(0) > 0,

C
0 Dε

t R(t) = φP1 + ξP2 − γR− δR + cηP1, R(0) > 0,

(26)

The existence of optimal control η∗ can be established in the next theorem.

Theorem 11. Let the control function η ∈ Θ be measurable on [0, Tf ] with value of each of η(t)
lies in [0,1]. Then, there exist adjoint variables λ1, λ2, λ3, λ4 and optimal control η∗ minimizing
the objective function J(η) of (26) satisfying



Mathematics 2021, 9, 703 21 of 34

RL
t Dε

Tf
λ1(t) = λ1(δ + β1P1 + β2P2)− λ2(β1P1 + β2P2)

RL
t Dε

Tf
λ2(t) = λ1β1S− λ2[β1S− (k + δ + φ + cη)]− λ3k− λ4(φ + cη)−ω1

RL
t Dε

Tf
λ3(t) = λ1β2S− λ2β2S + λ3(ξ + δ)− λ4ξ

RL
t Dε

Tf
λ4(t) = −λ3γ + λ4(γ + δ)

with transversality conditions λi(Tf ) = 0 (i = 1, 2, 3, 4) and

η∗ = max{min{η̄, 1}, 0}

η̄ =
cP1(t)(λ2(t)− λ4(t))

ω2

(27)

where S∗, P∗1 , P∗2 , R∗ are the corresponding optimal state solutions of (26) associated with control
variable η.

Proof. We have constructed the Hamiltonian as

H = ω1P1(t) +
ω2

2
η2(t)

+λ1{Λ− δS− β1SP1 − β2SP2}

+λ2{β1SP1 + β2SP2 − (k + δ + φ)P1 − cηP1}

+λ3{kP1 + γR− ξP2 − δP2}+ λ4{φP1 + ξP2 − γR− δR + cηP1}

(28)

with (λ1, λ2, λ3, λ4) being the associated adjoint variables with λi(Tf ) = 0 (i = 1, 2, 3, 4),
which satisfy the following canonical equations:

RL
t Dε

Tf
λ1(t) = −

∂H
∂S

= λ1(δ + β1P1 + β2P2)− λ2(β1P1 + β2P2)

RL
t Dε

Tf
λ2(t) = −

∂H
∂P1

= λ1β1S− λ2[β1S− (k + δ + φ + cη)]− λ3k− λ4(φ + cη)−ω1

RL
t Dε

Tf
λ3(t) = −

∂H
∂P2

= λ1β2S− λ2β2S + λ3(ξ + δ)− λ4ξ

RL
t Dε

Tf
λ4(t) = −

∂H
∂R

= −λ3γ + λ4(γ + δ)

(29)

Therefore, the problem of finding η∗ that minimizes J subject to (26) is converted to
minimizing the Hamiltonian with respect to the control. Then, by Pontryagin principle, we
have achieved the optimal condition:

∂H
∂η

= ω2η − λ2cP1 + λ4cP1 = 0
(30)

which can be solved in terms of the state and adjoint variables to give

η̄ =
cP1(t)(λ2(t)− λ4(t))

ω2
(31)



Mathematics 2021, 9, 703 22 of 34

For the optimal control η∗, which requires considering the constrains on the control

and the sign of
∂H
∂η

, we have

η∗ =



0, if
∂H
∂η

< 0

η̄, if
∂H
∂η

= 0

1, if
∂H
∂η

> 0

(32)

and

η∗ = max{min{η̄, 1}, 0}, where η̄ =
cP1(t)(λ2(t)− λ4(t))

ω2
. (33)

The optimal state can be found by substituting η∗ into the system (26).

5. Numerical Simulations

Analytical study is incomplete without numerical verification of the results. In this
section, we have presented numerical simulation of system (3) and fractional order control
problem (27). We have used FDE12 MatLab function which is designed on predictor–
corrector scheme based on Adams–Bashforth–Moulton algorithm introduced by Roberto
Garrappa [42]. Diethelm [16,43] used the predictor–corrector scheme based on Adams–
Bashforth–Moulton algorithm which is used in FDE12. We have used FDE12 function
directly for system (3) just like ODE45, ODE23.

We have also used iterative scheme (Euler’s forward and backward) in MatLab inter-
face to develop fractional order optimal control problem. The process is briefly described
below. The optimality system constitutes a two-point boundary value problem including a
set of fractional-order differential equations. The state system (26) is an initial value and
the adjoint system (29) is a boundary value problem. The state system is solved by forward
iteration method and the costate system is solved by backward iteration method by the
following algorithm through Matlab.

State system (26) is solved using the iterative scheme below:

S(i) = [Λ− δS(i− 1)− β1S(i− 1)P1(i− 1)− β2S(i− 1)P2(i− 1)]hε

−∑i
j=1 c(j)S(i− j)

P1(i) = [β1S(i− 1)P1(i− 1) + β2S(i− 1)P2(i− 1)− (k + δ + φ)P1(i− 1)

−cηP1(i− 1)]hε −∑i
j=1 c(j)P1(i− j)

P2(i) = [kP1(i− 1) + γR(i− 1)− ξP2(i− 1)− δP2(i− 1)]hε −∑i
j=1 c(j)P2(i− j)

R(i) = [φP1(i− 1) + ξP2(i− 1)− γR(i− 1)− δR(i− 1) + cηP1(i− 1)]hε

−∑i
j=1 c(j)R(i− j)

where c(0) = 1 and c(j) = (1− 1+ε
j )c(j− 1), j ≥ 1 and hε is the time step length. Here, S(i)

is the value of S(t) at ith iteration. The last term of each of the above system of equations
stands for memory. The adjoint system (29) is solved by backward iteration method with
terminal conditions λi(Tf ) = 0, i = 1, 2, 3, 4 using the following iterative scheme:
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λ1(i) = [λ1(i− 1)(δ + β1P1(i) + β2P2(i))− λ2(i− 1)(β1P1(i) + β2P2(i))]hε

−∑i
j=1 c(j)λ1(i− j)

λ2(i) = [λ1(i)β1S(i)− λ2(i− 1){β1S(i)− (k + δ + φ + cη)} − λ3(i− 1)k

−λ4(i− 1)(φ + cη)−ω1]hε −∑i
j=1 c(j)λ2(i− j)

λ3(i) = [λ1(i)β2S(i)− λ2(i)β2S(i) + λ3(i− 1)(ξ + δ)− λ4(i− 1)ξ]hε

−∑i
j=1 c(j)λ3(i− j)

λ4(i) = [−λ3(i)γ + λ4(i− 1)(γ + δ)]hε −∑i
j=1 c(j)λ4(i− j)

The optimal control is updated by the scheme below.

η∗ = max{min{η̄, 1}, 0}, where η̄ =
cP1(i)(λ2(i− 1)− λ4(i− 1))

ω2
.

We have developed MatLab code using the above algorithm and chosen h = 0.02
throughout the numerical simulation. In fitting the test data of memory phenomena from
different fields, it has been found that the fractional order can be physically explained as an
index of memory. The higher the value of order ε, the slower the forgetting is and most of
the epidemic transmission dynamics depend on memory (previous stages) [15]. The value
of order of fractional derivative (ε) needs to be close to 1. Theoretically, we may study the
fractional order system for any value lies between 0 to 1, but it is better to choose the value
close to 1. There are some cases where we have found interesting results if we reduce the
order of derivative, but for very small values of ε (less than 0.5) the MatLab code become
erroneous. Therefore, we have to chose the order wisely and in our context we choose the
value 0.95 (it may be any value from 0.9 to 0.99) for numerical simulation. The value of the
order can be estimated by least-squares method of curve fitting with real data from field
survey or by graphical study [21].

In this section, we have portrayed some time series of system (3) and variation of R0
with respect to β1, β2, ξ, φ. Next, we have discussed about the effect of control intervention.
Figure 2 represents the situation when the drug free equilibrium E0 = (1, 0, 0, 0) is asymp-
totically stable corresponds to the Table 3. Next, let us consider the following three cases:

1. β1 > β2 (Table 4)
2. β1 = β2 (Table 5)
3. β1 < β2 (Table 6)

Figure 3 depicts the time series and phase portrait of system (3) (case 1) when the drug
addict equilibrium is E1 = (0.1254, 0.0519, 0.5429, 0.0783) and R0 = 1.6246. Figures 4 and 5
represent the cases 2 and 3 when corresponding equilibrium points are

(0.0567, 0.0572, 0.5984, 0.0864), (0.051, 0.0576, 0.6081, 0.0871)

respectively. Figure 6 represents the variation of time series of state variables when ε varies
and other parameters are fixed as in Table 5. Figures 7–10 depict the change in R0 with
respect to parameters β1, β2, φ, ξ, respectively. Figures 2 and 3 justify Theorems 7 and 8,
respectively. Figure 11 depicts the variation of time series with the control parameter η.

Now, let us consider Table 7 for simulating optimal control problem (26). We have used
Forward-backward iterative scheme to solve this optimal control problem [44]. For η = 0,
the drug-free equilibrium point is E0 = (0.83, 0, 0, 0) and R0 = 0.508. We have considered
final time Tf = 20 days and t = 1 day. Note that there are more addicted population in
physiological state than in psychological state. Now, we shall discuss about the effect of
control intervention. The positive weights have been considered as ω1 = 1.6, ω2 = 10.
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Figure 11 shows the variation of time series of state variables when the control parameter η
changes. Figure 12 represents the time series of state variables of optimal control problem
(26). Figure 13 represents time series of optimal control variable (η∗) and optimal cost
function (J∗). Figure 14 depicts the case when no control is applied. There is a significant
number of psychological and physiologically addicted population present in the scenario
(η = 0) which will create economic burden in terms of loss of productivity, morbidity,
and mortality and in obtaining protective measures (Figure 14). It has been found from
Figures 13 and 14 that if the control strategy is applied, then the number of psychologically
addicts and number of addicts in treatment class decrease but the number of physiological
addicts increases. The values of S, P1, P2, R in the without control stage after 20 days are
0.5823, 0.003934,0.01343, and 0.023, respectively, but after applying control those values
change to 0.5823, 0.003917, 0.01345, and 0.02297. Though the change is smaller in fraction,
it is effective in large populated countries like India and China. In Figure 13, it has been
observed that the value of optimal control is increasing between 0 to 8 days and then
decreases. A certain time is required to persuade a psychologically addicted person that
ingesting drugs in a frequent manner is harmful and can even cause physical damages.
However, once a person starts understanding these deadly affects, it becomes easy for them
to take medicines and to do the other needful to make them free of this addiction. We have
performed the cost design analysis for optimal control policy mentioned in Figure 13.
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Figure 2. Time series of system (3) corresponds to Table 2 when E0 = (1, 0, 0, 0) and R0 = 0.3151.
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Table 4. Parametric values used in system (3) when β1 > β2 , E1 = (0.1254, 0.0519, 0.5429, 0.0783) and R0 = 1.6246.

Parameters Λ β1 β2 δ k φ ξ γ ε

Values 0.02 0.5 0.2 0.025 0.1 0.2 0.1 0.8 0.95

Reference [35] [35] [35] [36] [36] [36] [36] [35] Assumed
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Figure 3. Time series of system (3) corresponds to Table 3 when E1 = (0.1254, 0.0519, 0.5429, 0.0783)
and R0 = 1.6246.

Table 5. Parametric values used in system (3) when β1 = β2, E1 = (0.0567, 0.0572, 0.5984, 0.0864) and R0 = 2.2154.

Parameters Λ β1 β2 δ k φ ξ γ ε

Values 0.02 0.5 0.5 0.025 0.1 0.2 0.1 0.8 0.95

Reference [35] [35] [35] [36] [36] [36] [36] [35] Assumed
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Figure 4. Time series of system (3) corresponds to Table 4 when E1 = (0.0567, 0.0572, 0.5984, 0.0864)
and R0 = 2.2154.
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Figure 5. Time series of system (3) corresponds to Table 5 when E1 = (0.051, 0.0576, 0.6081, 0.0871)
and R0 = 1.4277.
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Figure 6. Variation of time series of system (3) with ε corresponds to Table 4 when R0 = 2.2154.

Table 6. Parametric values used in system (3) when β1 < β2, E1 = (0.051, 0.0576, 0.6081, 0.0871) and R0 = 1.4277.

Parameters Λ β1 β2 δ k φ ξ γ ε

Values 0.02 0.1 0.6 0.025 0.1 0.2 0.1 0.8 0.95

Reference [35] [35] [35] [36] [36] [36] [36] [35] Assumed
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Figure 7. Variation of R0 of system (3) with respect to β1 while values of other parameters are taken
from Table 3.
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Figure 8. Variation of R0 of system (3) with respect to β2 while values of other parameters are taken
from Table 3.
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Figure 9. Variation of R0 of system (3) with respect to φ while values of other parameters are taken
from Table 3.
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Figure 10. Variation of R0 of system (3) with respect to ξ while values of other parameters are taken
from Table 3.
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Table 7. Parametric values used in system (26).

Parameters Value

Λ 0.1 person day−1 Estimated
β1 0.2 person−1 day−1 [9]
β2 0.03 person−1 day−1 [9]
δ 0.12 person day−1 Estimated
k 0.1 day−1 [36]
φ 0.2 day−1 [36]
ξ 0.1 day−1 [35]
γ 0.1 day−1 Estimated
c 0.15 day−1 Estimated
ε 0.8–0.99 Assumed
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Figure 11. Variation of time series of system (26) with different control η corresponds to Table 4.
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Figure 12. Time series of state variables of system (26) for Table 6 when ε = 0.95 , ω1 = 1.6, ω2 = 10.
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ε = 0.95 , ω1 = 1.6, ω2 = 10.
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Figure 14. Time series of state variables of system (26) for Table 6 when ε = 0.95 and η = 0.

6. Conclusions

Fractional calculus plays an important role in dynamical processes. It gives us an
extra parameter ε by which we can simulate our model properly. Here, we have studied
on the fractional-order synthetic drugs transmission model with psychological addicts
incorporating memory effects. We have observed that the dynamics of system (3) depends
on the strength of memory effects, controlled by the order of fractional derivative ε [13].

In our work, we have framed a model in Caputo-fractional differentiation formalism
where people are addicted to drugs both psychologically and physiologically. By next-
generation matrix method, we have found the basic reproduction number R0, and this R0
gives (or, is consistent with) the local and global stability conditions of the drug-free and
drug addiction equilibria. It has been observed from numerical examples that if R0 < 1, the
system has only drug-free equilibrium and this equilibrium is stable (Figure 2). If R0 > 1,
the drug addiction equilibrium persists and locally stable (Figures 3–5). By analyzing
sensitivity of parameters β1, β2, ξ, φ, we have reached the conclusion that controlling the
transmission of the synthetic drugs is better than providing treatment to the addicts. There-
fore, we have designed a control strategy to prevent drug transmission. From Figure 6, it
has also been found that by lowering the value of fractional order, susceptible and psycho-
logical addicted populations decrease but the physiological population and population in
treatment class increase.

In the next section of this work, we have discussed an optimal control problem
related to the drug abuse epidemic model where we have tried to minimize the drug-
addicted population along with the cost of treatment. We have reformulated our model by
considering the effect of “counseling and awareness campaigns” as control variable and
calculated the total cost. Analytically, we have used Pontryagin’s Principle for fractional
calculus to determine the value optimal control parameter [45]. The analytical results
and numerical simulations are quite relevant, and by the numerical computations we can
deduce certain observations that have been discussed earlier.
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Nowadays, an enormous number of the populace, particularly the young population,
is presented to the universe of medications because of different reasons. For guiding
purposes, we hope to hone in on those populaces. As by taking a gander at them as
a helpless populace, it is easier to evaluate how to best acquaint normal guiding with
the mental addicts in the general public through the model. Instructive foundations and
families should remind adolescents about the significance of well-being training just as
the Government needs to assume some responsibility to build mindfulness among the
individuals. In goodness of missions and social projects, individuals may understand the
human impacts of manufactured medications and decrease interest, which could prompt a
lower contact rate. The proposed model shows the effect of guiding mental addicts through
mathematical re-enactments. Besides, the result of an ideal reaction because of directing
can limit the cost to, and quantity of, dependent people. The approach can limit the general
monetary burden. In this circumstance, we ask a legitimate control strategy which will be
powerful in the feeling of the study of disease transmission and financial matters.
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