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by
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Abstract

The concept of Intelligent Transport Systems (ITS) refers to the appli-

cation of communication and information technologies to transport with

the aim of making it more efficient, sustainable, and safer. Computer vi-

sion is increasingly being used for ITS applications, such as infrastructure

management or advanced driver-assistance systems. The latest progress

in computer vision, thanks to the Deep Learning techniques, and the

race for autonomous vehicle, have created a growing requirement for an-

notated data in the automotive industry. The data to be annotated is

composed by images captured by the cameras of the vehicles and LI-

DAR data in the form of point clouds. LIDAR sensors are used for tasks

such as object detection and localization. The capacity of LIDAR sen-

sors to identify objects at long distances and to provide estimations of

their distance make them very appealing sensors for autonomous driving.

This thesis presents a method to automate the annotation of lane mark-

ings with LIDAR data. The state of the art of lane markings detection

based on LIDAR data is reviewed and a novel method is presented. The

precision of the method is evaluated against manually annotated data.

Its usefulness is also evaluated, measuring the reduction of the required

time to annotate new data thanks to the automatically generated pre-

annotations. Finally, the conclusions of this thesis and possible future

research lines are presented.
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Visual computing techniques for automated LIDAR
annotation with application to intelligent transport

systems

por

José Javier Barandiarán Martirena

Resumen

El concepto de Sistemas Inteligentes de Transporte (ITS) se refiere a la

aplicación de tecnologías de la comunicación e información al transporte

con el objetivo de hacerlo más eficiente, sostenible y seguro. La visión

por computador es cada día más utilizada en aplicaciones ITS, como

el mantenimiento de infraestructuras o sistemas avanzados de ayuda a

la conducción. Los últimos avances en la visión por computador, gra-

cias a las técnicas de aprendizaje profundo, y la carrera por el vehículo

autónomo, ha provocado en la industria de la automoción una necesi-

dad creciente de datos anotados. Los datos para anotar se componen de

imágenes captadas por las cámaras de vídeo instaladas en los vehículos y

datos LIDAR en forma de nubes de puntos. Los sensores LIDAR se uti-

lizan para tareas como detección de objetos y localización. La capacidad

de los LIDAR para detectar a largas distancias y proveer de estimaciones

de su distancia, los hace muy provechosos para la conducción autónoma.

Esta tesis presenta un método para la anotación automática de líneas de

carril con datos LIDAR. Revisa el estado del arte de la detección de líneas

de carril basado en LIDAR y presenta un método novedoso. La precisión

del método es evaluada con datos anotados manualmente. Su utilidad

también es evaluada, midiendo la reducción del tiempo requerido para

anotar nuevos datos gracias a las preanotaciones generadas automática-

mente. Finalmente, se presentan las conclusiones de esta tesis y posibles

líneas futuras de trabajo.
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Chapter 1

Resumen

Introducción

En la última década, la Visión por Computador ha experimentado un importante

progreso en áreas como la detección objetos, reconocimiento, o segmentación gracias

a los avances en redes neuronales, renombradas como redes de aprendizaje profundo

(deep learning) [13]. Este renacimiento de una vieja aproximación ha sido facili-

tado por el creciente poder computacional de las tarjetas GPU y la abundancia de

datos etiquetados. El rendimiento de los sistemas basados en deep learning depende

fuertemente de la calidad y cantidad de los datos disponibles para su entrenamiento.

Con la carrera por los vehículos autónomos, muchas empresas de la industria

de la automoción, de tecnología, y de alquiler de vehículos con conductor están

generando cantidades masivas de datos utilizando sus flotas de vehículos equipados

con cámaras, LIDARs, radares y otros sensores. Esos son necesarios para el de-

sarrollo y validación de sus propios sistemas avanzados de ayuda a la conducción

(ADAS) o vehículos autónomos. La cantidad de a anotar es tan grande, que la tarea

de anotación es uno de los cuellos de botella del progreso de estos sistemas De hecho,

muchas de esas compañías utilizan simuladores virtuales para generar datos sintéti-

cos automáticamente anotados para no depender tanto de datos reales anotados.

Aunque modelos entrenados solo con datos sintéticos puede tener un rendimiento

muy bueno [14], los datos reales anotados siguen siendo necesarios para obtener una

mejor precisión en dominios específicos.
1
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Los datos reales registrados deben ser anotados manualmente. La anotación o

etiquetado consiste en la identificación y segmentación de cada grupo de píxeles

o puntos 3D correspondientes a cada uno de los actores o elementos (vehículos,

peatones, señales, carretera, etc.) presentes en las imágenes o escaneos LIDAR.

Esta tarea es repetitiva y muy ardua. Hay que tener en cuenta que cada cámara

graba un mínimo de 30 imágenes por segundo, y cada vehículo suele estar equipado

con cuatro o más cámaras. Los sensores LIDAR registran cientos de miles de puntos

por segundo. Un vehículo puede estar equipado con más de un LIDAR.

Un anotador humano debe procesar cada fotograma de cada cámara, dibujando

una caja alrededor de cada peatón, vehículo, señal, etc. Esta tarea puede acelerarse

utilizando detecciones automatizadas y herramientas de seguimiento. Con estas her-

ramientas el anotador se dedica únicamente a verificar y corregir las preanotaciones

y completar los elementos que no hayan sido detectados.

La anotación con datos LIDAR es similar. Los actuales LIDAR mecánicos com-

pletan entre 10 y 20 revoluciones o escaneos por segundo. Cada escaneo individual

de los LIDAR instalados en el vehículo pueden registrarse formando una única nube

de puntos 3D. La tarea del anotador consiste en procesar cada nube de puntos, cre-

ando cajas 3D en torno a cada vehículo, peatón, señal edificio, etc., y dibujar líneas

2D en el suelo identificando elementos como bordillos, líneas de carril o señales

horizontales.

Las marcas viales horizontales son un elemento visual fundamental da la in-

fraestructura viaria porque proporcionan información para la navegación, seguridad

y normas de conducción. Las líneas que delimitan los carriles y los propios límites

de la carretera son particularmente importantes. La detección de estas marcas es

requerida para funciones como sistemas de mantenimiento del carril, salida del car-

ril, y la planificación automática de maniobras con posicionamiento preciso. Los

sistemas ADAS y los vehículos autónomos requieren tecnologías de localización con

una precisión de unos pocos centímetros. Igualmente importantes son los mapas de

alta definición con información a nivel de carril.

La anotación de líneas de carril puede realizarse con las imágenes de las cámaras

que rodean al vehículo, pero es difícil obtener una reconstrucción 3D de las líneas
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utilizando cámaras. En cambio, la anotación utilizando datos LIDAR proporciona

una reconstrucción 3D directa de los puntos que forman las líneas. Los LIDAR

además de información de distancia, proporcionan información de la intensidad con

la que cada superficie refleja el láser, permitiendo una identificación de las líneas

respecto al resto de la carretera porque están trazadas con pintura reflectante. Otra

ventaja es que los escaneos individuales pueden ser acumulados en una única nube

de puntos, de forma que los anotadores solo tienen que enfocarse en una fuente de

datos.

Objetivos

El principal objetivo de esta tesis es investigar en el uso de sensores LIDAR y

métodos de computación para la detección y anotación automática de líneas de

carril. El trabajo se ha enfocado en la realización de un sistema de asistencia a la

anotación para operarios humanos proporcionándoles información de detección que

puede ser empleada para acelerar y aliviar su trabajo.

Los objetivos operacionales implementados para alcanzar el objetivo general son:

• Implementación de una herramienta basada en web para la anotación de datos

LIDAR que ha sido empleada y validad por anotadores profesionales.

• Definición e implementación de los pasos de preprocesado de los datos para la

anotación automática, incluyendo la calibración de los sensores y el filtrado de

las nubes de puntos.

• Colecta de un conjunto de datos experimental desde vehículos reales que se ha

utilizado para la evaluación cuantitativa del sistema propuesto.

• Definición de un proceso de evaluación con anotadores humanos.

• Realización de experimentos computacionales para la evaluación del sistema

propuesto.

Contribuciones

Las contribuciones de esta tesis son las siguientes:
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• Un método de anotación automática de líneas de carril utilizando datos LI-

DAR. Este método está dirigido a asistir a los anotadores humanos. Las

anotaciones de líneas de carril se están utilizando para el desarrollo de nuevos

sistemas ADAS que contribuirán a mejorar la seguridad y reducir el impacto

ambiental del transporte por carretera. El método fue publicado en [15].

• La integración del método implementado como un proceso back-end permite

la explotación de los recursos computacionales ofrecidos por arquitecturas en

la nube.

• El desarrollo de una herramienta de anotación basada en web que permite

entornos de trabajo remoto. Esta herramienta está todavía siendo desarrollada

por un grupo de investigadores en Vicomtech. El autor ha colaborado en la

implementación de la sincronización, procesado y visualización de vídeo y datos

LIDAR. La herramienta se presentó en la conferencia Web3D 2019 [6].

• Una metodología para la evaluación de la precisión de las anotaciones au-

tomáticas de líneas de carril.

Método para la anotación automática

El método utiliza como entrada nubes de puntos 3D con valores intensidad y datos

de odometría generados con un LIDAR 3D y un sistema de navegación GPS/IMU

instalado en un vehículo. La odometría se utiliza para acumular los escaneos en

una nube de puntos para todo el trayecto recorrido, aumentando así la densidad

de puntos. Antes de la detección, los escaneos individuales y la nube de puntos

acumulado sufren una serie de preprocesos para eliminar ruido, reducir el número

de puntos de a procesar y mejorar el contraste de las líneas de carriles.

Un paso fundamental del preprocesado consiste en la calibración de la inten-

sidad del LIDAR. La intensidad medida por los láseres que componen un sensor

LIDAR debe ser calibrada para compensar las diferentes sensibilidades de estos.

La calibración consiste en organizar los puntos en una rejilla horizontal y calcular

un factor de compensación para cada láser de forma que todos observen la misma



Chapter 1. Resumen 5

intensidad en las mismas celdas de la rejilla de calibración.

Para la detección de las líneas, la nube de puntos acumulada y filtrada se procesa

mediante bloques transversales a lo largo de la trayectoria definida por la odometría.

En cada bloque se obtiene un perfil de la intensidad de la carretera y se detectan las

líneas de carril como máximos en dicho perfil y una estimación del ancho de la línea

en ese punto. Bloque tras bloque, los nuevos puntos detectados son emparejados

con las líneas detectadas anteriormente. De esta forma se van trazando una serie de

polilíneas 3D. Finalmente las líneas son clasificadas como continuas o discontinuas

en función del patrón formado por los puntos detectados.

Las líneas detectadas son finalmente refinadas para cumplir con los criterios

de anotación exigidos a los anotadores. En el caso de las líneas continuas, son

muestreadas con una distancia constante y prefijada para reducir el número de

puntos. Para las líneas discontinuas solo se conservan los puntos que delimitan

cada uno de los segmentos. Además, se aplica un proceso para mejorar la posición

longitudinal de estos extremos.

Evaluación

Para la evaluación cuantitativa de la precisión del método se ha generado un conjunto

de datos anotados manualmente. Se propone una nueva metodología de evaluación

enfocada en medir la precisión del posicionamiento de las líneas de carril. El método

propuesto compara polilíneas 3D muestreándolas con una distancia fija, convirtién-

dolas la comparación de polilíneas 3D en una comparación de puntos 3D. De esta

forma la comparación puede hacerse mediante la distancia Euclídea entre puntos

y permite evaluar la precisión de las anotaciones variando un umbral de precisión

requerido.

En la evaluación realizada se ha obtenido una precisión del 92% con un error

lateral máximo de 5 cm. Esto significa que los anotadores que utilizan las pre-

anotaciones automáticas solo tendrán que arreglar o completar el 8% del total de

líneas de carril presentes en los datos. Para validar esta observación, se ha realizado

un experimento con anotadores profesionales midiendo el tiempo que necesitaban
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para anotar varias grabaciones desde cero y utilizando las preanotaciones. El resul-

tado obtenido indica que los anotadores necesitaron un 60% menos de tiempo para

finalizar la tarea cuando anotaban utilizando las preanotaciones.

Conclusiones y futuras líneas de trabajo

Esta tesis has presentado un método para la anotación de líneas de carril utilizando

datos LIDAR. La aproximación ha sido validad en un conjunto de datos real generado

con un vehículo sensorizados. Como resumen del trabajo realizado:

• Hemos implementado el preprocesado y preparación de los datos LIDAR.

• Hemos implementado un sistema de anotación basado en web. El sistema

se está utilizando en distintos proyectos en Vicomtech y por compañías para

explotación comercial. La herramienta permite la anotación de vídeo y LIDAR

directamente en un navegador web, sin requerir instalación, utilizando un PC

de bajo coste. Este tipo de instalación permite la distribución remota y masiva

de tareas de anotación.

• Se ha definido e implementado un método de detección de líneas de carril

eficiente y preciso.

• Se han llevado a cabo experimentos para la evaluación de la precisión método

y para comprobar su validez para la asistencia en tareas de anotación manual.



Chapter 2

Introduction

This chapter presents the motivation for this Thesis in section 2.1. Section 2.2

describes the objectives of this research work. A summary of the generated contri-

butions is given in section 2.3. The research environment and context are described

in section 2.4. The related publications are listed in section 2.5. Section 2.6 presents

the structure of this Thesis.

2.1 Motivation

2.1.1 The importance of transportation

Transportation is an important Human activity. Its relevance stands clear by ob-

serving the number of deaths in traffic accidents, the impact on the environment,

the number of jobs associated with the transportation sector or the amount of time

we spent commuting every day.

2.1.1.1 Safety

In its global status report on road safety for the year 2018 [16]1, the World Health

Organization (WHO) estimated that 1.35 million people die each year in road traffic

accidents and between 20 and 50 million are injured. Road traffic injuries are the

8th leading cause of death, the first among children and young adults aged between

1http://www.who.int/violence_injury_prevention/road_safety_status/2018/

7
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5 and 29 years. In Spain, 102,299 accidents occurred during 2018, with 1,806 deaths

and 8,935 hospitalizations [17]2.

2.1.1.2 Environmental impact

Transportation generates about the 23% of carbon dioxide emissions and is the

fastest growing contributor [18]3. In the U.S.A., transportation represented the 28%

of greenhouse gas emissions in 2018 as shown in Figure 2.14. Road transportation

causes around the 70% of emissions, mostly generated by light-duty vehicles, such

as cars, and freight transport. Air pollution contributes to the death of 4.2 million

people per year [19]5.

2.1.1.3 Economical value

The transportation sector is one of the biggest employment generators. In Europe

more than 11 million people work in the this sector, accounting for 5% of total

employment [20]6. The European Commission expects that, in the period from

2010 to 2050, passenger and freight transportation will grow by about 42% and

60%. In the U.S.A. there are 3.6 million truck drivers and 7.95 million people work

in jobs related to trucking activity [21]7.

2.1.1.4 Social impact

Figure 2.2 shows the household expenditure of the Europeans. We spent the 13%

of total household expenditure on transport, the second largest expenditure after

housing 24% [2]8.

2http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/publicaciones/principales-
cifras-siniestralidad/

3https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018-highlights
4https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
5https://www.who.int/health-topics/air-pollution
6https://ec.europa.eu/transport/sites/transport/files/mobility-package-factsheet-overall.pdf
7https://www.trucking.org/economics-and-industry-data
8https://ec.europa.eu/eurostat/statistics-explained/index.php/Household_consumption_by_purpose
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Figure 2.1: Total U.S.A. greenhouse gas emissions by economic sector in 2018 [1].
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In 2018, the average commute time (one way) was 27 minutes in the U.S.A..

There were 4.3 million workers with commutes of 90 minutes or more. On average,

the Americans dedicated 225 hours to commuting that year [22]9.

Figure 2.2: Household expenditure by consumption purpose in 2018 in Europe [2].

2.1.2 Intelligent transportation systems

The concept of Intelligent Transportation Systems (ITS) refers to the application

of communication and information technologies to human and goods transportation

with the aim of making it more efficient, sustainable and safer. ITS can be applied

9https://www.washingtonpost.com/business/2019/10/07/nine-days-road-average-commute-
time-reached-new-record-last-year
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to all the elements of the transportation system: infrastructure, vehicles, drivers,

and users. Some of these applications are:

• Traffic monitoring, congestion and accident detection

• Vehicle counting and classification, vehicle tracking, license plate recognition

• Free flow tolling

• High occupancy lane control

• Parking management

• Information panels, adaptive signal control

• Infrastructure maintenance

• Traveler information systems, route guidance

• Driver monitoring

• Advanced driver-assistance systems (ADAS)

• Autonomous Vehicles (AV)

ITS require data acquisition, processing, communication and visualization. Data can

be acquired with sensors, such as, inductive loops, rubber tubes, weather stations,

light sensors, cameras, radar, LIDAR (light detection and ranging), etc. Data can

be processed in-place by an embedded computer or remotely in a control center.

Data can flow between vehicles, between vehicles and infrastructure, and between

infrastructure and control center. The visualization of data can be done on a mobile

device, on the vehicle screen, on variable-message road panel or at the control center.

2.1.3 Computer Vision for ITS

Computer Vision is now incorporated in many vehicles, as it is one of the main

technologies of ADAS, such as Lane Departure Warning (LDW), Lane Keeping

Assist (LKA) or Adaptive Cruise Control (ACC). This progress in automation is
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leading the automotive industry towards fully autonomous vehicles. Figure 2.1.310

identifies the diverse levels of driving automation. At the fifth level of driving

automation a human driver is not needed. Below, at third and fourth automation

levels, vehicles will require driver monitoring capabilities, such as gaze tracking or

drowsiness detection for knowing if the driver is able to remain safely at the controls.

Figure 2.3: Levels of driving automation defined by the Society of Automotive
Engineers (SAE) [3].

Computer Vision is also being used by ITS products deployed at the road infras-

tructures such as:

• Free flow tolling where the vehicles are not required to slow down using Au-

tomatic Number Plate Recognition (ANPR).

• Vehicle tracking or re-identification through different video surveillance cam-

eras.

10https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
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Figure 2.4: Driver monitoring [4].

• High occupancy lane control by counting the number of passengers inside the

vehicles.

• Traffic monitoring, jam detections, vehicle counting and classification by speed,

length, number of axles, brand, or vehicle type.

• Red light and speed cameras.

• Road maintenance decision support systems.

• Automated road asset inventory.

2.1.4 Data annotation

In the last decade, the field of Computer Vision has shown an important progress

in areas such as object detection, recognition, and segmentation thanks to the ad-

vances in neural networks, revived as deep learning [13]. This renaissance of an old

approach has been facilitated by the increased computational power of GPUs and

the increasing availability of labeled data. The performance of systems based on
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Figure 2.5: Vehicle counting and classification by its length [5].

deep learning strongly depends on the quality and amount of the available training

data.

With the race to achieve Autonomous Vehicles, many automotive, IT, and ride-

hailing companies are recording massive amounts of data using fleet of vehicles

equipped with cameras, LIDARs, radars, and other sensors. That data is required

for the development and validation of their own ADAS and AV. The amount of data

to be annotated is so big, that the annotation task is one of the key bottlenecks in

achieving improvements. In fact, most of those companies are using virtual simu-

lators to generate automatically annotated synthetic data for training and testing.

Although, models trained with synthetic data only can have a very good perfor-

mance [14], real data is still required for better accuracy in specific domains.

The recorded data is manually annotated. The annotation consists in the iden-

tification and segmentation of the group of pixels or 3D points corresponding to the

actors and elements (vehicles, pedestrians, signals, road, etc.) present in the images

or LIDAR scans. This task is very repetitive and slow. Each camera records at least

30 images per second, usually an AV is equipped with four or more cameras, and
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LIDARs records hundreds of thousands points per second.

A human annotator must process each frame of all the cameras, drawing a box

around each pedestrian, vehicle, signals, etc. This task can be accelerated using

automated pre-detection and tracking tools. With these tools the annotator task is

reduced to verify and correct the pre-annotations and complete missing elements.

Another kind of annotation is pixel-wise annotation. In this task, the annotator

should identify the correspondence of each pixel, drawing a color mask over the

image where the color of each pixel identifies an individual element (pedestrian

number one, pedestrian number two, etc.). This automated process is known as

instance segmentation.

The annotation with LIDAR data is similar. Current spinning LIDARs complete

around 10 and 20 revolutions (aka scans) per second. The individual scans of all the

LIDARs installed on a vehicle can be registered on a single 360 degrees scan stored

as 3D point cloud. The task of the annotator is to process each scan, creating 3D

boxes around each vehicle, pedestrian, signal, building, etc., and drawing 2D lines

on the ground identifying elements like curbs or the road markings. Fig. 2.6 shows

the web-based user interface of the annotation application developed by Vicomtech.

Data annotation is nowadays a growing market employing many thousands of

workers. There are many companies that offer data annotation services, for instance:

• Offering specialized software for annotation with automated tools (Scale11),

• human annotators (Amazon Mechanical Turk12, Clickworker13), and

• their own annotation platforms and annotators (Mindy Support14, Hive15,

Playment16, Humans in the loop17, Superannotate18).

11http://www.scale.com
12http://www.mturk.com
13http://www.clickworker.com
14http://www.mindy-support.com
15http://www.thehive.ai
16http://www.playment.io
17http://www.humansintheloop.org
18http://www.superannotate.com
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Figure 2.6: Web-based annotation interface [6].

• There are also open-source tools for annotation (makesense.ai19, labelme20,

coco-annotator21, VoTT22, CVAT23, VGG Image Annotator24, Semantic seg-

mentation editor25).

Tools that provide support in the annotation task of large volumes of data are

required. These tools should be capable of exploiting the computing resources and

adaptability offered by cloud architectures to pre-annotate the data automatically.

19http://www.makesense.ai
20http://www.labelme.csail.mit.edu
21https://www.github.com/jsbroks/coco-annotator
22https://www.github.com/Microsoft/VoTT
23http://www.github.com/openvinotoolkit/cvat
24http://www.robots.ox.ac.uk/~vgg/software/via
25https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor
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2.1.5 LIDAR sensors

LIDAR sensors are capable of measuring distances. 2D LIDARs use a single laser

beam deflected by a spinning mirror to measure distances in a single plane. 3D

LIDARs combine multiple lasers with different altitude angles, being capable of

generating 3D point clouds 360˚ around the sensor. The latest Velodyne26 Alpha

Prime 3D LIDAR includes 128 laser beams and can sense points at 200m distance

with a frequency of 20 revolutions per second. Recently, solid state LIDARs, without

mechanical parts, are being commercialized. These LIDARs have a limited field of

view, they cannot sense the 360˚ environment, but they are smaller and therefore

they could be better integrated in the vehicles and they promise to be cheaper.

The ability of sensing the 360˚ environment of the vehicle in 3D and at long dis-

tances, makes LIDAR a very powerful sensor for autonomous driving. LIDARs are

used in autonomous driving for detection of objects and localization and mapping

mainly. In addition to measuring distances, LIDARs can also measure the reflectiv-

ity of the surfaces, making them useful for detecting the horizontal road markings.

Recently, many companies commercializing LIDAR sensors have emerged, focus-

ing their products for the automotive industry. Velodyne, the pioneer company,

developed their first 3D LIDAR for the DARPA Grand Challenge in 2007. Many

other companies have followed: Ouster, Robosens, Hesai, Livox, Ibeo, LeddarTech,

LeiShen, Luminar, Quanergy, Innoviz, Sense, Cepton, Benewake.

Mobile mapping systems, such as the RIEGL VMX-2HA27, use high performance

2D LIDARs combined with cameras and a global positioning system for generating

geo-referenced high-density 3D point clouds [23]. These expensive systems are de-

signed to be installed on specialized vehicles and to generate dense and very precise

3D reconstructions for mapping or infrastructure management.

26https://www.velodynelidar.com
27http://www.riegl.com
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Figure 2.7: Velodyne Alpha Prime 3D LIDAR and RIEGL VMX-2HA mobile
mapping system

2.1.6 Horizontal road markings

Horizontal road markings are a key visual element of the road infrastructure as they

provide guidance and information about navigation, safety, and enforcement. The

lane markings that delimit the lanes and road boundaries are particularly impor-

tant. The detection of these markings is required for functions such as lane keeping

assisted system (LKAS), Lane Departure Warning (LDW), and automatic maneu-

ver planning with precise positioning. Advanced driver-assistance systems (ADAS)

and autonomous driving (AV) both require self-localization technologies accurate to

a few centimeters. This precision can be achieved with a combination of multiple

sensors [24] such as video cameras, Integrated Navigation Systems (INS), combin-

ing Global Navigation Satellite Systems (GNSS) and Inertial Measurement Units

(IMU), and LIDAR. Moreover, High Definition (HD) maps with lane-level informa-

tion are necessary for safe maneuver planning. The creation of these maps on a

global scale would be an unfeasible challenge without automation.

Road markings suffer extraordinary degradation due to wearing from atmo-

spheric and traffic conditions. Road administrations require tools to accelerate the

creation of an inventory of road assets and for maintenance purposes [23,25]. There-

fore, many researchers have focused on the automated detection and evaluation of

markings [26–28].

The advantage of LIDAR sensors for road marking detection compared to image-

based methods is that they are less sensitive to illumination or weather conditions.
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On the other hand, the data density of LIDAR could be lower depending on the sen-

sor and they are expensive. LIDAR estimates metric information directly, thereby

avoiding the difficulties associated with stereo cameras or ground plane calibration;

it is also easier to remove vertical objects.

2.2 Objectives

The main objective of this thesis is to research on the use of LIDAR sensors and

computational methods for the automated detection and annotation of lane mark-

ings. Specifically, the work has focused on the realization of an annotation assisting

system for the human operators that provides them with a detection information

that can be used to speed up and ease their work.

Operational objectives implemented in the pursue of this general objective are:

• Implementation of a web-based annotation tool for LIDAR data that has been

used and validated by professional annotators.

• Definition and implementation of preprocessing steps that prepare the data for

automated annotation, including sensor calibration and filtering noisy points.

• Gathering an experimental dataset from real life vehicles that can be used for

quantitative evaluation of the proposed system.

• Definition of an evaluation process involving human operators.

• Carrying out computational experiments for the assessment of the proposed

system.

2.3 Contributions

The contributions of this thesis are:

• A method for the automatic annotation of lane markings using LIDAR data.

This method is intended as a support for the human operator doing the com-

mercial annotation of road markings. The lane markings annotations are being
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used as ground-truth for the development of new ADAS systems that will con-

tribute to increase the safety and reduce the environmental impact of road

transportation. The method was published in [15].

• The integration of the implemented method as a back-end allows the exploita-

tion of the computing resources offered by cloud architectures.

• The developed web-based tool allows distributed remote working environment.

This tool is still being developed by a group of researchers at Vicomtech. The

author has collaborated in the synchronization, processing and visualization of

video and LIDAR data. The tool was presented at the Web3D 2019 conference

[6].

• A methodology for the evaluation of the precision of these automatic annota-

tions.

2.4 Research environment and context

The research work reported in this Thesis was done during the participation of

the PhD candidate in different research projects at the Intelligent Transport Sys-

tems and Engineering department of the applied research center Vicomtech, with

the collaboration and guidance of Professor Manuel Graña (Computational Intelli-

gence Group from the University of the Basque Country UPV/EHU), PhD Oihana

Otaegui (Director of Intelligent Transport Systems and Engineering at Vicomtech),

PhD Marcos Nieto (Principal Researcher of Intelligent Transport Systems and En-

gineering at Vicomtech) and PhD Julián Flórez (General Director of Vicomtech).

2.4.1 Projects

The most important related R&D projects funded under H2020:

• Headstart: Will define testing and validation procedures of Connected and

Automated Driving (CAD) functions including its key enabling technologies

(i.e., communications, cyber-security, positioning) by cross-linking of all test
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instances such as simulation, proving ground and real world field tests to

validate safety and security performance according to the needs of key user

groups (technology developers, consumer testing groups and type approval

authorities).

– Full title: Harmonised eruropean solutions for testing automated road

transport

– Funded under: H2020-EU.3.4.2.2., H2020-EU.3.4.1.2., H2020-EU.2.1.6.3.

and H2020-EU.2.1.6.1.2..

– Duration: 1 February 2018 – 31 January 2021

– Project coordinator: Daimeler AG

• TransSec: The project addresses terrorism attacks with trucks in European

countries. The project aims to initiate the development of security trucks that

cannot be misused for other purposes such as terror attacks.

– Full title: Autonomous emergency manoeuvring and movement monitor-

ing for road transport security

– Funded under: H2020-EU.3.4.

– Duration: 1 January 2019 – 31 December 2021

– Project coordinator: Idiada Automotive Technology

• Autopilot: The project aimed to bring IoT into the automotive world trans-

forming connected vehicles into highly and fully automated vehicle.

– Full title: AUTOmated driving Progressed by Internet Of Things

– Funded under: H2020-EU.3.1.4 and H2020-EU.2.1.1.

– Duration :1 January 2017 – 31 December 2019

– Project coordinator: ERTICO

• Cloud-LSVA: European project aimed to build a software platform for efficient

and collaborative semiautomatic labelling and exploitation of large-scale video

data. The project addresses the needs of the automotive industry for tools that
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can manage the extremely large volumes of data required for the development

of ADAS and cartography market. The works of the Thesis are fully aligned

with the objectives of this project.

– Full title: Cloud Large Scale Video Analysis

– Funded under: H2020-EU.2.1.1

– Duration: 1 January 2016 – 31 December 2018

– Project coordinator: Vicomtech

• inLane: European project with the vision to develop a low-cost, lane-level,

precise turn-by-turn navigation application through the fusion of EGNSS and

Computer Vision technology.

– Full title: Low Cost GNSS and Computer Vision Fusion for Accurate

Lane Level Navigation and Enhanced Automatic Map Generation

– Funded under: H2020-EU.2.1.6.

– Duration: 1 January 2016 – 30 June 2018

– Project coordinator: Vicomtech

• VI-DAS: This project goals are improved road safety by development and

deployment of ADAS and navigation aids in societally acceptable and per-

sonalised manner, based on a reliable combination of the overall traffic scene

understanding and essential consideration of the driver’s physical, mental, de-

mographic and behavioural state.

– Full title: Vision Inspired Driver Assistance Systems

– Funded under: H2020-EU.3.4.

– Duration: 1 January 2016 – 31 August 2019

– Project coordinator: Vicomtech

2.5 Publications

Publications related with the research done for this thesis:
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• Barandiarán, J, Nieto, M, Cortés, A., Otaegui, O., Flórez, J. and Graña,

M., Automated Annotation of Lane Markings Using LIDAR and Odometry, in

IEEE Transactions on Intelligent Transportation Systems, October 2020, doi:

10.1109/TITS.2020.3031921.

• Cortés, A., Rodríguez, C., Vélez, G., Barandiarán, J. and Nieto, M., Anal-

ysis of Classifier Training on Synthetic Data for Cross-Domain Datasets, in

IEEE Transactions on Intelligent Transportation Systems, July 2020, doi:

10.1109/TITS.2020.3009186.

• Mujika, A., Dominguez, A., Tamayo, I., Senderos, O., Barandiarán, J.,

Aranjuelo, N., Nieto, M. and Otaegui, O. (2019). Web-based Video-Assisted

Point Cloud Annotation for ADAS validation. In Web3D 2019 – The 24th

International ACM Conference on 3D Web Technology (pp. 1–9), doi: 10.1145

/ 3329714.3338128.

Previous publications related with the application of computer vision for ITS:

• De-Maeztu, L., Elordi, U., Nieto, M., Barandiarán, J. and Otaegui, O.,

A temporally consistent grid-based visual odometry framework for multi-core

architectures. Journal of Real-Time Image Processing 10, 759–769 (2015), doi:

10.1007/s11554-014-0425-y.

• Nieto, M., Ortega, J. D., Otaegui, O., Cortés, A., Barandiarán, J., Unzueta,

L., Computer vision: the emerging cost-effective technology for vehicles, 9th

ITS European Congress, ERTICO 2013.

• Unzueta, L., Nieto. M., Cortés, A.,Barandiarán, J., Otaegui, O.and Sanchez,

P., Adaptive Multicue Background Subtraction for Robust Vehicle Counting

and Classification, in IEEE Transactions on Intelligent Transportation Sys-

tems, vol. 13, no. 2, pp. 527-540, June 2012, doi: 10.1109/TITS.2011.2174358.

• Nieto, M., Unzueta, L.,Barandiarán, J., Cortés, A., Otaegui, O.and Sanchez,

P., Vehicle tracking and classification in challenging scenarios via slice sam-

pling. EURASIP J. Adv. Signal Process. 2011, 95 (2011), doi: 10.1186/1687-

6180-2011-95
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• Nieto, M., Unzueta, L., Cortés, A.,Barandiarán, J., Otaegui, O.and Sanchez,

P., Real-time 3D Modeling of Vehicles in Low-cost Monocamera Systems. Pro-

ceedings of the Sixth International Conference on Computer Vision Theory and

Applications VISAPP 2011, pp. 459-464, March 2011.

• Muñoz, O., Gloria, P., Hernández, J., Gozálvez, J., Unzueta, L., Cortés, A.,

Barandiarán, J., Otaegui, O.and Sanchez, P., INTELVIA-An Integral Sys-

tem for Safe and Intelligent Traffic Operational Management, 17th ITS World

Congress 2010.

Previous publications related with other applications of computer vision:

• Congote, J., Barandiarán, I., Barandiarán, J., Montserrat, T., Quelen, J.,

Ferran, C., Mindan, P. J, Mur, O., Tarres, F., Ruiz, O., Real-time depth

map generation architecture for 3D videoconferencing, 3DTV-Conference: The

True Vision - Capture, Transmission and Display of 3D Video 2010, pp. 1-4,

doi: 10.1109/3DTV.2010.5506599.

• Barandiarán, J, Murguia, B. and Boto, F., Real-Time People Counting Us-

ing Multiple Lines, Ninth International Workshop on Image Analysis for Multi-

media Interactive Services, Klagenfurt, 2008, pp. 159-162, doi: 10.1109/WIAMIS.2008.27.

• Barandiarán, J., and Borro, D., Edge-Based Markerless 3D Tracking of Rigid

Objects, 17th International Conference on Artificial Reality and Telexistence

(ICAT 2007), Esbjerg, Jylland, 2007, pp. 282-283, doi: 10.1109/ICAT.2007.62.

2.6 Structure of the thesis

This thesis is structured as follows:

• Chapter 3 presents the state of the art of computer vision techniques related

to lane markings detection and annotation.

• Chapter 4 presents the proposed method for the automatic annotation of lane

markings. The preprocessing steps of the data are detailed, providing the

fundamental justification of the proposed system.
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• The evaluation of this method is presented in Chapter 5. The data used for

the evaluation is introduced. The overall methodological considerations are

detailed. Finally, we provide quantitative results of the evaluation process,

both from the point of view of quantitative measures of recognition accuracy

and human related improvement of their performance.

• Finally, Chapter 6 presents the conclusions and future lines of work.
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Chapter 3

State of the art

This Chapter presents in Section 3.1 a review of research works related with the

processing of LIDAR data for road marking detection, which is the main objective

of this Thesis. Section 3.2 reviews the different approaches for road detection. Sec-

tion 3.3 reviews LIDAR intensity calibration issues and approaches. Finally, works

focused on the automated generation of annotations are reviewed in section 3.4.

3.1 Road markings detection

This section presents a review of previous research works about the detection and

annotation of road marking using LIDAR data.

3.1.1 Non real-time methods

This category contains research works that focus on the creation of high definition

(HD) maps, roadway feature mapping, 3D street modeling and road asset inventory,

where real-time processing is not required [26–37]. Most of these works used one

or more single-layer high-performance LIDAR instrument mounted on the roof of

a vehicle which is oriented perpendicular to the road level to generate high-density

scans of the road surface. As the data is processed offline, consecutive scans are

accumulated using the odometry estimated with a GNSS/IMU system to obtain a

point cloud with high density of points. For example, in [26] a density of 4,000–7,000

points/m2 was reported. Among these methods two sub-categories exists:
27
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3.1.1.1 Image Processing

These methods apply image processing techniques to top-view or bird’s eye view

raster images of the road surface generated rendering the point cloud [7, 26, 28, 29,

31,32,34–36].

In [31], a geo-referenced reflectance intensity image was generated for the en-

tire point cloud using inverse distance weighted interpolation. Road markings were

detected by applying a fixed threshold to the intensity value, finding connected com-

ponents in the resulting binarized image, and filtering by shape moments. Finally,

the progressive probabilistic Hough transform was used to extract the segments of

dashed lines. The same kind of image was generated in [29], but instead of gen-

erating an image for the entire point cloud, the data was partitioned into blocks

around each position of the vehicle, and a reflectance image was generated for each

block. Multi-threshold segmentation dependent on the point-density was then used

to extract the road markings. Finally, authors apply morphological operators to

reduce detection noise. This method was improved in [26] using dynamic threshold-

ing based on weighted neighboring difference histogram-based dynamic thresholding

and multi-scale tensor voting to remove noise.

In [32] raster images were generated for sections that are 30 m wide and 10 m

long around the navigation points. The intensity of the 3D points that fall within

each pixel was averaged and normalized with respect to their global minimum and

maximum, using a pixel size of 6cm2. The images were segmented by applying range

dependent thresholding. In [35] a Gaussian mixture model with two components was

used to detect points belonging to the road markings before creating the intensity

image. This step reduced the amount of noise in the image. The image is segmented

in cells with similar laser beam angle markings and Otsu thresholding was used for

each cell. In [28] the holes in the image were filled using an in-painting algorithm.

The markings were segmented using an Expectation-Maximization algorithm.

In [34] top-view images of the point clouds were used to train an end-to-end

segmentation Convolutional Neural Network (CNN). Images with a fixed size of

6, 144×3, 072 pixels were generated for each patch of the point cloud with 1cm2 per

pixel. These images were cropped to patches of 512×512 pixels to use as input for the
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Figure 3.1: Road markings segmented and classified by conditional GAN [7].

CNN. The output of the CNN was a probability image that was smoothed to remove

detection noise. Afterwards it was thresholded, so that lane markings were detected

as connected components and fitted by third-degree polynomial curves. Similarly,

in [36] a CNN encoder-decoder network was trained to extract road markings from

interpolated top-view images.

Another deep-learning approach was proposed in [7]. A conditional generative

adversarial network (cGAN) was used to directly segment and classify road markings

in top-view images of the point cloud. The network generated colorized images with

the segmented and classified road markings, assigning a color for each class (solid

lines, dashed lines, arrows, crosswalk, etc.). Then, the road markings were clustered

and vectorized using different methods depending on the class. Fig. 3.1 shows a

visualization of results from this approach.

Regarding data fusion approaches, [38] proposed to segment and classify the road

marking fusing image and LIDAR information. They used a DeepLabV3 network

[39] to segment the top-view of the camera image and combined the segmented

image with a top-view of the point cloud as input of another segmentation network.

3.1.1.2 Scan line Processing

Instead of converting the point clouds to images, some methods directly process

the points analyzing the scan lines produced by the LIDAR [27, 30, 33, 37]. In
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[30] intensity peaks were detected in each scan line using adaptive thresholding.

The detected candidate points were projected to a 2D image and lane markings

were detected using the Hough transform. After removing false positives using the

trajectory of the vehicle and geometry checks, RANSAC curve fitting was used to

localize each marking accurately. In [37] the intensity values of each scan line were

smoothed using median filtering and peaks were detected in the intensity gradient.

In [27] markings were detected as local maxima in the intensity response of each

LIDAR profile. Then, points were grouped based on distance. Segments of dashed

lines were grouped based on their principal direction. Finally, spline curves were

fitted to each lane mark. A lane-level map generation method is presented in [33],

where lane marking points were detected by applying a 1D Laplacian filter to the

intensity of each laser beam. Then line-segments were detected with the RANSAC

algorithm. These segments were used in a particle filter for lane estimation.

3.1.2 Real-time methods

One of the purposes of lane marking detection is the localization of the vehicle either

inside the ego-lane or globally using an HD map. This application requires the data

to be processed in real-time. This is a challenge, not only because the algorithms

must be very fast, but because the amount of available data is significantly reduced.

The following papers presented real-time methods that detected lane markings by

processing each LIDAR scan independently or by using an accumulation of the

past scans in a short interval [8, 9, 24, 40–43]. These studies used multi-layer and

multipurpose scanners that were not specifically installed to scan the road, resulting

in point clouds with a much lower density. In addition, the accumulation of past

scans is limited owing to the real-time requirement.

In [40] a real-time method is presented for lane markings detection using data

from a four-plane laser scanner. The points were projected in the traveling direction

to create a histogram quantizing them into bins. The sensitivity of the scanner was

adjusted to detect only the lane markings. Consecutive scans were accumulated in

the histogram and an adaptive threshold based on the histogram gradients was used.

In the last step, linear regression was applied to the detected points.
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The lane markings detection approach developed by Team AnnieWAY for the

DARPA Urban Challenge 2007 is described in [41]. A LIDAR with 64 layers was

used. Consecutive scans were registered and accumulated using GNSS/INS informa-

tion. Points with a high-intensity gradient were thresholded and lane segments were

detected using the Radon transform. The detected segments were used to estimate

an offset with a digital map.

In [42] an image or reflectivity map was composed by stacking the consecutive

scan-lines of a one-dimensional laser scanner. This map was thresholded with dy-

namic thresholding and the Canny edge detection filter was applied. Lane markings

of the ego-lane were detected by accumulating white pixels from the thresholded

and edges of images in two detection windows at both sides of the position of the

vehicle. The lanes were modeled with a clothoid curve and tracked with a Kalman

filter.

In [43], lane markings were detected by processing the reflectivity signal of each

scan line of a 64-layer LIDAR. After applying a FIR band-pass filter to remove noise,

candidate points were found using a fixed threshold. The points were grouped and

fitted to clothoid curves. In sequential frames the lanes markings were tracked using

a Kalman filter.

In [9], a LIDAR sensor with 32 layers was used. A modified version of Otsu

thresholding was applied to each scan line. A localization method was presented

based on the extracted road markings. The same sensor was used in [8]. Road

marks were extracted using the laser intensity with a fixed threshold and road lines

were detected by searching for a set of parallel lines. The detected road lines were

represented as 3D points and integrated to generate a lane-level digital map using a

GNSS/INS system. Fig. 3.2 shows instances of the capture of point clouds in both

systems with the identification of the detected road marks.

In [24], a navigation filter combining GNSS, IMU, LIDAR, and camera was

presented. The LIDAR and camera were used to estimate the lateral position inside

the ego-lane. Using four-layer LIDAR, the ego-lane markings were detected by fitting

an ideal scan intensity profile to the actual LIDAR data.

The point clouds we used in our experimentation have a relatively low density,
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Figure 3.2: Real-time road markings detection: above [8], below [9].

between 50 and 1,000 points per m2, which means that the methods based on the

rasterization of top-view images are unsuitable to solve our problem. The low point-

density causes the lane markings to appear blurred on the raster images, which

complicates the segmentation. On the other hand, methods based on the scan-line

based methods do not leverage the accumulation of previous and future scans, as is

possible in offline processing. This paper presents a batch processing offline method

based on the analysis of histograms, similar to the scan-line based method presented

in [40], but generating virtual scan-lines using the accumulated point clouds. A

similar idea was proposed in [29] for road surface extraction to detect the curbs in

pseudo scan-lines.

3.2 Road points segmentation

Most of the previously reviewed methods, require a first step to detect the points of

the road surface. This step, also known as road extraction, prevents problems with

moving vehicles or low objects as barriers and reduces the number of points to be

processed for the road markings detection. Some of the works proposed to segment

the road points aim at detecting the curbs present in urban environments. In [26,29],



3.2. Road points segmentation 33

the point cloud was processed by blocks along the trajectory of the vehicle. At each

block, a vertical profile of the point cloud was generated perpendicularly to the

trajectory and the curbs were detected via slope and elevation-difference thresholds.

In [9], curbs were detected by thresholding the distance between consecutive rings

generated by a 3D LIDAR. In [44], the road limits were detected applying a principal

component analysis to the local neighborhood of each point of each scan-line.

In a different approach, [45] partitioned the point cloud using an octree and re-

moved the non-road voxels thresholding by height. [46], knowing that the orientation

of the road surface changes gradually, proposed to extract the road by fitting planes

using RANdom SAmple Consensus (RANSAC) to sections of the point cloud and

applying a Kalman filter to track the change of the local planes. A similar approach

was used in [47], the road surface at each scan-line was approximated by a second

order polynomial using RANSAC.

In [32], the road limits were detected using parametric active contour models

applied to 2D top-view images generated with the elevation, intensity, and pulse

width attributes of the point cloud. The pulse width helps to distinguish different

types of surfaces. The images were generated by sections of 30x10x5 m with an

overlap of 2 m for consecutive sections. The final road contour was calculated

intersecting the snake curve estimated from consecutive sections. They obtained

very good results in rural, urban, and national primary roads.

A real-time localization method was presented in [10]. Using a 3D LIDAR the

road limits were detected by analyzing the scan-lines or rings data. Assuming that

the road is a flat and smooth surface, the points were segmented fitting circular

arcs and checking the fitting error. Lane markings were detected accumulating two

consecutive scans using inertial data and applying a fixed threshold and the Hough

transform to a top-view image.

A fully convolutional neural network was used in [48] for detecting the road

using top-view images encoding mean elevation and density of the point cloud.

They generated images of 200x400 pixels with a resolution of 10 cm per pixel. They

trained and tested the algorithm with the KITTI-ROAD dataset [49] that includes

road area annotations in the camera frames, LIDAR data and the camera-LIDAR
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Figure 3.3: Road detection [10].

calibration. To generate the training data, the point clouds were interpolated and

projected to the camera frame and each point was labeled using the annotated road

mask. The segmented point clouds were then transformed to the top-view images.

To augment the training data, each image was rotated around the vertical axis and

mirrored.

In [10], a real-time LIDAR-Camera road detection method was presented. The

LIDAR point cloud was transformed to images with the LIDAR’s perspective and

a road mask was generated using a height difference threshold between adjacent

pixels. This sparse mask was projected to the camera image an up sampled using

a Delaunay triangulation. The camera images were also segmented using a CNN.

LIDAR and image segmentations were finally fused using a multi-modal conditional

random field model. Fig. 3.3 shows a visualization of the road detection achieved

with this approach.

3.3 LIDAR reflectivity calibration

The intensities or reflectivity values measured by the sensor cannot be directly used

because they usually suffer from calibration problems. In some sensors, the intensity

attenuates with the distance and angle of incidence. This attenuation must be

compensated applying some functions supplied by the manufacturer or the sensor

must be calibrated. In [50], the wall of a building with a constant color plane was

used to estimate the attenuation of the lasers. With 3D LIDARs, the intensities

measured by the different lasers that compose the sensor usually do not agree with
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Figure 3.4: Before and after intensity calibration [11].

each other, meaning that they measure different reflectivity for the same physical

point. These differences in response should be calibrated and compensated. This

calibration can be performed analyzing a recorded sequence of scans where the sensor

was moved back and forth in an environment that contains surfaces with different

known reflectivity [9, 11, 51]. For each intensity value reported by each laser, a

compensation factor should be estimated to minimize the intensity difference with

the other lasers. The result of the calibration process is a look up table, where each

cell represents the calibrated intensity for each measured intensity by each laser.

Fig. 3.4 gives an instance of data cloud before and after the sensor calibration.

A data-driven computational mapping method of the ground reflectivity with

multiple LIDARs was presented in [52]. The aim of the work was to generate ground

maps that preserve the edge sharpness. Individual gradient maps were generated for

each laser, which are then fused applying selection fusion and de-noising operators.

The final map is reconstructed from the fused gradient map.
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3.4 Image and point cloud annotation

In this Section, some works focused on automated LIDAR data annotation are

reviewed. [12] proposed to reduce the time required for semantic instance labelling

by annotating 3D point clouds and transferring the information to the images. They

said that the annotation in 3D is more time efficient because objects are easily

separated in 3D and the annotations from a single point cloud can be transferred

to multiple sequential images. The point clouds were manually annotated, placing

cuboids and ellipsoids around static objects, and drawing 2D polygons in bird’s eye

view, that are then extruded into 3D, around the road, sidewalks, grass, etc. They

proposed a method for transferring the 3D annotations to image segmentations using

a conditional random field model. Fig. 3.5 shows some results of this process.

A similar strategy was applied in the Apolloscape dataset [53] for annotating

static objects. Additionally, dynamic objects were automatically pre-annotated us-

ing an image segmentation network. Lane markings were manually labelled drawing

2D polygons on a bird’s eye view of the point cloud.

In [54], a ground-truth generation method for 3D object detection is presented.

The annotators were asked to make mouse clicks on all instances of a single object

class, one click per object, on a colorized LIDAR point cloud. Then a PointNet

model [55] was modified to automatically segment the points belonging to each

object taking the annotated clicks as input. Then, with the segmented points, a

second network was used to estimate an approximate centroid of the bounding box

of each object, and another network to estimate the final bounding box.

In [56], an image-based lane detection method and a framework for an automated

ground truth generation are presented. They proposed to annotate the position of

lane markings using time-sliced (TS) images, that are generated stacking specific

rows of pixels from consecutive video frames. The annotators had to place a few

points along the lane marking in two or more TS images. The annotated points

are interpolated using a spline. The interpolated points are then transformed to

the input frames and interpolated again to generate the ground truth for each lane

marking.

A method for annotation of road and ego-lane using a single dashboard camera
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Figure 3.5: 3D annotation and annotations transferred to 2D segmentations [12].

was presented in [57]. In the first place, 3D reconstructions of 200 m sequences

were computed using a structure from motion framework. Then, the road points are

segmented knowing the camera position inside the vehicle and assuming that the

road is flat. The limits of the ego-lane are fixed, and it is assumed that the vehicle

travels parallel to and centered in the ego-lane. This automatic 3D annotations

are then projected to the images and manually corrected by annotators. With the

generated dataset they trained a SegNet model [58] for automatic segmentation of

the road and the ego-lane.
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Chapter 4

Lane markings automated

annotation

This Chapter presents the problem of lane markings annotations and the outline of

the proposed approach in Sections 4.1 and 4.2. Section 4.3 describes the different

preprocessing steps required for the preparation of the data before applying the

proposed automated detection system. Finally, Section 4.4 gives the details of the

proposed approach for lane markings detection.

4.1 Problem statement

As said in Chapter 2, lane markings are a key visual element of the road infras-

tructure for navigation and safety. The development of AV and ADAS require large

amounts of annotated lane markings data providing the ground-truth to train and

validate deep learning approaches [13]. The manual annotation of lane markings is

a very slow and tough task as the edge of each line must be precisely located.

The annotation can be directly done on the images from the cameras surround-

ing the vehicle. However, the relative positions between the cameras and the road

surface plane must be known to correctly project the annotated points to the road

surface. The positions between the cameras and the ground plane can be previously

calibrated, but the road surface is usually not strictly planar introducing discrep-

ancies between the cameras, where a point appears correctly located in one camera
39
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and incorrectly in another one. To fix the projection, the annotator should change

the height of each point to locate them over the road surface. Another possibility is

to reconstruct the 3D surface of the road, but this can be very difficult depending

on the weather and illumination conditions.

Alternatively, the annotation of lane markings can be done using LIDAR data.

As these sensors directly measure 3D points of the road surface, the annotations

are correctly located per se. If the relative positions between the cameras and

LIDARs were previously calibrated, the annotations done with the LIDAR data can

be projected onto the images, as shown in Fig. 4.1. Another advantage of LIDAR

data over optical images is that the individual scans can be accumulated to generate

a single point cloud if the odometry of the vehicle is known. For the annotators it

is easier to move through a continuous point cloud that jumping back and forth

between scans or images. These reasons make LIDAR data rather attractive for the

task of the annotation of lane markings.

Despite the advantages of LIDAR data over images for the annotation of lane

markings, the manual annotation using point clouds is still a very slow process.

Therefore, it is very interesting to develop tools that can automate as much as

possible the annotation task. The problem is how to automatically pre-annotate

LIDAR data to help the annotators to finish their task faster. The automated

annotation tool should process the LIDAR data and detect the position and width

of each lane marking.

The use of a multi-layer low-frequency general-purpose LIDAR mounted on a

vehicle driving at normal speed for identification and segmentation of road markings

imposes a dire challenge due to low contrast markings and low-density point clouds,

which are in the order of hundreds of points per square meter, as opposed to point

clouds with thousands of points generated by high performance scanning systems, as

reported in [36]. The different sensitivity of each laser is also challenging because the

combined signal becomes very noisy. Reflectivity calibration of the lasers is required

for lane markings detection, but this calibration is difficult with low density of points

because it requires many observations of multiple lasers for each area. The extrinsic

calibration of the LIDAR is also very important, because the accumulation of the
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Figure 4.1: Detected lines back-projected to the images from the cameras of the
vehicle.

scans using the odometry must be precise to maximize the contrast of the lane

markings against the road. However, despite these challenges, such low-frequency

systems are the focus of this work, since they are notoriously simpler and cheaper

to set-up and can support multi-purpose recording stages, decreasing costs, and

favoring the generation of larger datasets in less time.

The main objective of this research work is to efficiently generate annotations

by batch processing large amounts of data daily recorded by test vehicles under

natural driving conditions. The exponential growth of annotation time and cost can

be controlled with automatic pre-annotation if it is efficient and the hourly cost of

the required computational cluster is kept low [59].

4.1.1 Manual annotation

In a manual annotation task, the human annotator is asked to draw the lane mark-

ings by placing points over one edge of each line and defining their width. If the

line is solid, the points must be spaced regularly at a fixed distance. If the line

is dashed, the points must be placed at the extremes of each segment. This task
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is performed using a specifically designed application that presents the top-view of

the point cloud colored with the intensity information. The back-projection of the

annotations to the images is also shown to the human annotator. The annotator

creates the points with the mouse by clicking over the point cloud and can delete or

correct the created points. The view of the point cloud can be moved and zoomed to

increase the precision of annotations. The view can be reset to the default position

over the vehicle by pressing a key. With another key, the time of the recording can

be advanced to follow the vehicle as it travels the road until the end of the data

section to be annotated.

The human annotator is also asked to specify additional information about the

lane markings, such as type, color and condition, and information about the scene,

such as the weather and the type, condition, and color of the road surface. Fig. 4.2

shows the user interface of the web-based application used for data annotation that

includes the camera view as well as the point cloud visualization.

4.2 Outline of the proposed approach

This Thesis reports the work towards a principled model for the automatic anno-

tation of lane markings on highways and non-urban roads. This model does not

require pre-annotated data as opposed to supervised machine learning approaches,

including the deep learning architectures that are the current fashion in many signal

processing tasks. The method works on point clouds with reflectivity and odometry

information generated by a mobile multi-layer LIDAR. The odometry is used to

accumulate the scans in an overall point cloud defined on a system of coordinates

centered at the beginning of recorded travel. Odometry information is also used to

process the LIDAR data decomposing it into blocks centered at different points in

the trajectory of the vehicle. At each block, candidate lane marking points are de-

tected by generating virtual scan-lines and applying a dynamically optimized filter

function to the LIDAR intensity values. The lane markings are tracked block wise,

annotating the centerline as a 3D polyline and their width is estimated and classified

as either solid or dashed. Fig. 4.3 presents an overview of the annotation pipeline.
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Figure 4.2: The user interface of the web-based application used for the annota-
tion of lane markings.
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Figure 4.3: Annotation pipeline.

At the end of this pipeline the automatic annotations are manually corrected and

validated.

The main contributions of this approach are:

(i) a novel method for the automatic annotation of lane markings. The

method is efficient and robust also with low-density point clouds;

(ii) a new method for evaluating the precision of the annotations. To evalu-

ate the benefits of including this method into an annotation pipeline, an

experiment was conducted to measure the time required by professional

annotators using the automatic pre-annotations.

4.3 Point cloud preprocessing and preparation

Before carrying out the lane markings detection, the LIDAR data must be prepared

to leverage the odometry information, reduce the amount of noise and improve the

contrast of the lines. Instead of processing each LIDAR scan point cloud individ-

ually, it is better to build an accumulated point cloud combining the scans using
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Figure 4.4: Point cloud preprocessing steps

the odometry. In this section, the steps required to prepare this point cloud are

described. Fig. 4.4 shows the preprocessing steps that are applied to generate the

accumulated and filtered point cloud.

4.3.1 Filtering scan points by distance and height

The first step consists in decreasing the number of points to be processed during

the detection and reduce the amount of noise present in the point clouds. The

uncertainty of the measure increases with the distance to the sensor. For each scan,

distant points must be removed because they may contain too much error, so that

if they are included in the accumulated point cloud, they would introduce more
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noise than useful information. Another motivation to remove distant point is that

any small error in the calibrated extrinsic parameters of the sensor respect to the

vehicle, will introduce big errors in the accumulation point cloud for distant points.

Each scan is also filtered by height to remove most of the non-road points. To filter

by height, first, the points must be transformed to the coordinates system of the

vehicle applying the extrinsic parameters of the sensor. With this transformation,

the points are correctly leveled, correctly aligned with the horizontal plane and with

the zero height at the road surface.

4.3.2 Scans accumulation

Once the scans are filtered, they are accumulated using the odometry information

to increase the points density. The odometry of the vehicle is provided as a list

of transformation matrices, each composed of a rotation and a translation. To

transform each scan to its accumulated position, the points are transformed to the

coordinate system of the vehicle multiplying by the extrinsic transformation matrix

of the sensor, and to the global coordinates system multiplying by the odometry

matrix of the vehicle. A spinning LIDAR senses each point sequentially, meaning

that each point has its own timestamp. The vehicle motion during the completion

of the scan or 360˚ revolution must be considered. To estimate the correct global

position of each point, the odometry of the vehicle must be interpolated at its precise

timestamp. Ideally, the odometry information should have a much higher frequency

than the LIDAR to reduce errors due to the timestamp interpolation. Fig. 4.5 shows

the accumulated point clouds without and with filtering applied.

4.3.3 Noise reduction

Although the amount of noise is reduced with the filters applied to the individual

scans, the point cloud still contains noise due to errors in the calibrated extrinsic

parameters of the sensor or sensors. The data analyzed in this research, contains

alignment errors in the vertical axis which are mostly as shown in Fig. 4.6. Longitu-

dinal and transversal alignment errors are also present, but these are more difficult
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Figure 4.5: Accumulated point cloud before (left) and after (right) filtering

Figure 4.6: Alignment error introduced by incorrect extrinsic calibration

to fix due to the low density of the point cloud and the lack of abundant points in

vertical structures, such as walls, on the non-urban environment. Section 5.2 gives

details about the analyzed data. The alignment error in the vertical axis produces

that the road surface points do not compose a perfect plane but a very noisy cloud.

To further reduce the noise in the vertical axis, the point cloud is processed by

blocks extracted along the driving trajectory, with the same algorithm that will be

explained in Section 4.4.1. To preserve the longitudinal and transversal slopes of the

road surface, the accumulated point cloud is cropped into longitudinally short blocks.

Each block is transformed back to the vehicle coordinates system, multiplying by the

inverse transformation of the odometry, then the vertical coordinate of the points

is set to zero, so that they are flattened on the road surface. Finally, the blocks

are transformed to its global position. This way, the resultant point cloud is flat,

but preserves the slopes of the road surface. Fig. 4.7 shows the result of the noise

reduction.
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Figure 4.7: Point cloud before and after noise reduction

4.3.4 Intensity calibration

The intensity measured by the different lasers that compose the LIDAR sensor

must be calibrated to compensate for the different sensitivity of the lasers. This

calibration reduces the amount of noise of the histogram of intensities and improves

the contrast of the lane markings. The implementation is based on the method

proposed by Levinson and Thrun [11].

The calibration consists in the estimation of a compensation factor for each

laser to reduce its differences with the other lasers. This compensation factor must

be estimated for each intensity value measured by the lasers, because their response

functions are nonlinear. The result of the calibration is a look-up table that contains

the compensated intensity value for each intensity observed by each laser beam.

Usually, LIDARs measure intensity as an integer value between 0 and 255, therefore

for a LIDAR with 32 lasers, the calibrated look-up table has a size of 32∗256 entries.

If the data was recorded with multiple LIDARs simultaneously, the calibration can

be performed jointly, generating a look-up table for each LIDAR.

To estimate the compensation factor for each laser j, for each of the points

measured by each laser, the neighbor points measured by the other lasers must be

found. To accelerate this process, the points are projected to a 2D grid map that

stores the intensity values associated with each laser identifier, eliminating the cost

of finding the neighbor points. The calibrated intensity c(j, a) for laser j is the

conditional expectation (conditional mean) of all the intensities measured by the

other lasers in the same cells where laser j observed an intensity a. The intensity

values of the look-up table that are not observed can be interpolated.
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The size of the grid cells is an important parameter for the result of the calibra-

tion. It must be configured considering the density of the point cloud. Ideally, this

size should be very small to ensure that each cell contains points with similar real

intensity only. However, if the size of the grid cells is too small, there would be a

lot of empty cells or cells with a single point, while the calibration requires at least

two points per cell. On the other hand, if the size is too big, the cells would contain

distant points that do not belong to the same physical surface point, such as white

points from a line marking and dark points from the surrounding asphalt. Therefore,

the calibration would not be accurate, reducing the overall contrast of the resulting

point cloud, which will directly impact the later detection of lane markings.

4.3.4.1 Angle of incidence

The intensities measured by the lasers depend on the angle of incidence with the

road surface. If the LIDAR is perfectly leveled with the ground plane, the angle

of incidence of each laser is constant, because they draw cones that intersect the

ground as circles. In this case, there is no need to use the angle of incidence for

the calibration. However, when the LIDAR is tilted, for example to concentrate

more lasers on the road surface, the angle of incidence of the lasers changes with the

spinning angle of the sensor. Therefore, a laser can measure different intensities for

the same surface. In this case, the angle of incidence must be considered to obtain

a correct calibration. Fig. 4.8 shows a representation of how the angle of incidence

changes with the orientation of the LIDAR.

The angle of incidence can be calculated for each point by knowing the position

of the LIDAR at the time of the pulse firing. It is calculated as the angle between the

road surface normal vector and the vector defined by the measured 3D point and the

position of the LIDAR. The normal vector of the surface can be approximated with

the vertical axis of the vehicle defined by the known odometry, assuming a planar

road and that the vehicle is leveled with the ground. Under these assumptions, the

calculation of the angle of incidence can be completely avoided using the spinning

angle of the sensor as a proxy, because there is a direct and constant relation between

them.
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Figure 4.8: Angle of incidence with LIDAR without (a) and with tilt (b)

The angle of incidence is incorporated to the calibration as another dimension

of the look-up table, by quantizing the values into bins of one degree. This way,

the calibrated intensity c(j, a, α) for laser j is the conditional expectation of all

intensities measured, by the other lasers or laser j with a different angle, where

laser j measured an intensity a with an angle α. Following the previous example,

for a LIDAR with 32 lasers, that measures intensity as an integer value between 0

and 255 and quantizing the angle into 360 bins, the calibrated look-up table has a

size of 32 ∗ 256 ∗ 360 entries.

4.3.5 Lane markings contrast enhancement

After the intensity calibration, the contrast of the lane markings can be further

improved knowing that their average intensity is brighter than the rest of the road

surface and the points corresponding to the lane markings are much less abundant.

The histogram h of intensities and the corresponding cumulative distribution func-

tion cdf are calculated as:

h (i) = ni

n
, 0 ≤ i < 256, (4.1)

cdf (i) =
i∑

j=0
h (j) , (4.2)
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Figure 4.9: Point cloud before (a) and after (b) intensity calibration, and after
(c) contrast enhancement

where ni is the number of points with intensity i and n is the total number of points.

The intensities below a threshold are clamped to zero to remove most of the road

points. This threshold is calculated as a combination of the intensity value whose

cdf is greater than the 90% of the total mass of the histogram, and the intensity

value at which the cdf has the steepest slope. The remaining part of the histogram is

equalized applying equation 4.3, to increase the contrast between the lane markings

and the rest of the road surface.

h (i) = round

(
cdf(i)− cdfmin

n− cdfmin

∗ 254
)

+ 1 (4.3)

Fig. 4.9 shows the result of the intensity calibration and the contrast enhance-

ment steps.

4.4 Lane markings detection

This Section describes the computational pipeline of the proposed method for the

detection of the lane markings using the previously accumulated and preprocessed

point cloud. An overview of the proposed computational pipeline is presented in Fig.

4.10. The accumulated point cloud composed of the registered scans is progressively
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Figure 4.10: Computational pipeline of the method.

processed using a decomposition of the accumulated point cloud into blocks following

the trajectory of the vehicle. At each block, candidate lane marking points are

detected and matched with those found in previous blocks. Once the trajectory is

completely processed, lane markings are classified as solid or dashed. In the last

step, the position of the extremes of the dashed segments is refined.

4.4.1 Block cropping

First, the trajectory defined by the odometry is discretized into nodes that are

separated by a fixed distance blod. At each node, a block of the point cloud is
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Figure 4.11: Point cloud block extraction with a cropping box (red) centered at
the position of the vehicle (green) and oriented perpendicularly to its travelling
direction.

extracted using a cropping box of fixed dimensions, centered at the position of the

vehicle and oriented perpendicularly to the travelling direction, as shown in Fig.

4.11. The cropping box is blol long and blow wide.

The cropping process is computationally expensive if it is repeated over the entire

accumulated point cloud. To make it more efficient, only a small subset of the scans

is used. This subset is updated as the vehicle traverses the point cloud. The scans

used are those of which the bounding box intersects the cropping box. As the scans

are ordered by the scanning time, the subset can be updated very efficiently. The

intersection is calculated using 2D axis-aligned bounding boxes.

The cropped points are transformed, applying the inverse transformation matrix

of the sub-sampled odometry, to the vehicle coordinate system. In this reference

system, the position of the vehicle is at (0,0,0), the XY plane is aligned with the

road surface and the traveling direction is aligned to the Y-axis as shown in the

upper part of Fig. 4.12. In this approach it is assumed that the vehicle is traveling

approximately parallel to the centerline of the road, which is true most of the times,

even when the vehicle is executing a lane change maneuver (lateral displacement is

typically much smaller than longitudinal translation).

4.4.2 Candidate lane marking points detection

An average intensity profile is computed from the extracted point cloud block. This

process can be regarded as virtual scan-line generation that leverages the accu-

mulation of scans produced by a multi-layer LIDAR. The horizontal axis is di-



4.4. Lane markings detection 54

vided into bins with a fixed width binw. The total number of bins is calculated as

nb = blow/binw. The average intensity at each bin bi is calculated using Inverse

distance weighting as:

bi =
∑np

j=1 wijij∑np
j=1 wij

(4.4)

wij =


1− (dij/bind) dij < bind

0 otherwise

(4.5)

where ij is the intensity of each contributing point pj and dij is the distance between

the point pj and the center of the bin bi. Each point contributes to the bins of which

the central position is at a maximum horizontal distance bind. The total number of

points of the block is np.

To remove the influence of variations in the ground intensity, a strongly smoothed

version of the projection is subtracted. Smoothing is achieved applying a windowed

median filter binm. Furthermore, after removal of the ground intensity, the result is

smoothed with a Gaussian smooth filter bing for noise removal, and negative values

are thresholded as illustrated in the lower part of Fig. 4.12.

Candidate lane marking points are detected as local maxima whose intensity

value is greater than a dynamic threshold, which is set calculated with the mean

and standard deviation of the data. A nonlinear windowed optimization mechanism

is proposed, which automatically adapts the top-hat filter to the lane marking shape,

including its width, accounting for variations from road to road and different types

of lane markings. Compared to previous approaches, which select a fixed expected

width, or compute heuristics to find the parameters [60], our approach is guaranteed

to converge to the best fit using a flat-top Gaussian function:

f(x) = p0e
−((x−p1)/p2)4 (4.6)

The fitting process uses the Levenberg-Marquardt algorithm to find the param-

eters that minimize the difference between the function f(x) and the local environ-

ment of the maximum:
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Figure 4.12: Extracted point cloud block corrected after transformation with the
odometry data and vertical projection of the average intensity.

• p0: Controls the height of the function. The resultant value should be like the

average intensity value at the found maximum.

• p1: Shifts the position of the maximum horizontally. The resultant value

should not shift the position more than half of the estimated width.

• p2: Controls the width of the function to fit narrower or wider markings. The

width of the marking is calculated as 2 ∗ p1 and it should be between marmw

and marMw.

The detected candidate lane markings points are converted to 3D points. The X-

coordinate is equal to the position of the corresponding maximum in the vertical

projection and the Y and Z coordinates are equal to zero. After applying the odome-

try transformation, the points are aligned perpendicularly to the travelling direction

and their vertical position is defined by the translation and rotation of the odometry

that contain the actual height of the road at that point and its transversal slope.
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4.4.3 Tracking detected lane markings

In the previous step some candidate points have been detected. In this step, they

must be connected with the previously detected lane markings or create a new one

if it is detected for the first time. Associated with each previously detected line, a

Kalman filter [61] is maintained to predict its X-coordinate or lateral position. Each

point is connected with the closest point of a previously detected lane marking if

these criteria are met:

• If the previous marking has only one point:

– Distance between the current point and the point of the marking is smaller

than tral.

– The estimated line width at both points is similar.

• If the previous marking has more than one point:

– Distance between the current point and the last point of the marking

is smaller than the maximum distance between dashed segments segMd.

The current point could be the first point of a new segment of a dashed

line.

– Distance between the X-coordinate of the current point and the predicted

one of the line is smaller than trat. The prediction allows to connect

dashed segments in curves.

In both cases the angle between the direction of the line that connects the current

and previous points, and the travelling direction of the vehicle must be smaller

than traa. This prevents incorrect connections assuming that the lane markings are

always almost parallel to the travelling direction. Some margin is allowed to track

lines of exit an entrance lanes.

Each candidate point that has not been connected is discarded as a false positive

detection or creates a new marking detection if is farther than the minimum distance

between markings mard to all the previously detected markings. Fig. 4.13 shows a

graphical representation of the involved parameters.
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Figure 4.13: (a) Tracking and (b) road definition parameters.

At the end of this step, the Kalman filter of the lines that have received a new

point is updated and it is initialized for the new lines.

4.4.4 Lane markings classification

The cropping, detection and tracking steps are repeated at each block until the last

step of the odometry. Finally, each lane marking is represented as a polyline or a

list of 3D points in the coordinate system of the accumulated point cloud and its

estimated average width.

In this step, the detected markings are classified as either solid or dashed lines.

The points of each line are grouped based on a minimum segmd and maximum

segMd expected distance between segments and a minimum segml and maximum

segMl segment length. A section of a line is classified as dashed when it presents

a series of segments of similar length that are approximately equally spaced and

is classified as continuous otherwise. Finally, the intermediate points inside each

segment of dashed lines are removed. The result is shown in Fig. 4.15.
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4.4.5 Refinement of dashed segment extremes

The detected extreme points of the dashed segments present a longitudinal error

because the virtual scan-line approximates the real intensity of the road above the

central line of the cropped point cloud block. This error must be reduced to obtain

precise annotation of the dashed segments.

For each segment, the point cloud is cropped with a cropping box whose width

doubles the estimated width of the line and the length of the detected segment plus

a margin segr before and after the extremes. The vertical projection of the cropped

points is calculated and smoothed with a median filter. The projection is calculated

using the same method used for the detection of lane markings, with nb being the

number of bins. The precise longitudinal positions of the extremes, represented by

n and m, are found in the projection as the positions that maximize equation 4.7,

which combines the first derivatives of the projection and the difference between the

average intensities inside and outside the extremes:

g(n,m) = 2(b′n − b′m) + d(n,m), (4.7)

where b′n and b′m are the first derivatives of the projection at n and m. d(n,m) is

the difference between the average intensities of the projection inside and outside

the extremes n and m:

d(n,m) =
∑m

i=n bi

m− n+ 1 −
(∑n−1

j=0 bj +∑nb
j=m+1 bj

nb− (m− n+ 1)

)
, (4.8)

where bi and bj are the intensity of each bin inside and outside the extremes. Fig.

4.14 shows an example projection of a dashed segment. With this step the longitu-

dinal error of the segment extremes is significantly reduced concluding the detection

of the lane markings.

4.4.6 Annotations output

The result of the detection method is a set of polylines classified as either solid or

dashed, as shown in Fig. 4.15. Note that, as mentioned before, the dashed lines
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Figure 4.14: Vertical projection of a point cloud block cropped around a dashed
segment.

have points at the extremes of the segments only. The detected polylines are written

to a JSON text file, following the Video Content Description (VCD) annotation

format [62]. VCD is being developed at Vicomtech and is presented as an open-

source metadata structure for labeling 2D and 3D objects, pixel-wise segmentation,

actions, events, contexts, semantic relations, odometry, and calibration.

Specifically, the lane markings are formatted as static objects, containing the

list of 3D points, the estimated width, and type (solid or dashed). The generated

VCD file can be loaded in the annotation tool to serve as pre-annotations to be

refined by a human annotator. Once the annotator finishes the task, the annotation

tool updates the VCD file that can be finally used as ground-truth information for

training and testing.
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Figure 4.15: Detected lane markings points (red) and polylines classified as either
solid (green) or dashed (blue).



Chapter 5

Evaluation

This chapter presents the evaluation of the lane markings detection method. Section

5.1 describes the followed system evaluation methodology. Section 5.2 describes the

dataset used for the evaluation. Finally, Section 5.3 presents the results achieved by

the proposed system.

5.1 Evaluation methodology

The method presented in Chapter 4 was evaluated against the ground truth gener-

ated by manual annotation of the lane markings using a web-based tool [6]. This

tool allows interactive annotation of the markings in a top-view of the point cloud.

The users (human annotators) are asked to annotate the extremes of the dashed

segments of dashed lines and the solid lines by placing points at approximately ev-

ery 2 m. The annotators also classified the markings as either dashed or solid and

estimated the line width. This task can be carried out with high accuracy and effi-

ciently owing to the graphical display of the annotation tool, which can be seen in

Fig. 5.1.

One of the key difficulties associated with measuring the quality of human an-

notations is that the 3D polylines to be compared do not necessarily contain the

same number of segments, neither is the number of points per polyline equal or even

sampled with the same criteria. To overcome these difficulties, this Thesis proposes

an approach that compares 3D polylines after sampling them with a certain metric
61
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Figure 5.1: Instance of the visualization of manual annotation of lane markings
used as ground truth for training and evaluation.

step samd, to convert sets of 3D polylines into sets of 3D points. This comparison

can be achieved by using 3D Euclidean distances, ensuring that the maximum error

in the distance measurement is half the discretization step.

After sampling the polylines, a set of ground truth 3D points, G, and a set of

predicted 3D points under evaluation, E, are obtained. For each point g ∈ G, its

Euclidean distance to all other points e ∈ E can be calculated, keeping the minimum

distance d∗(g) = min(d(g, E)). This distance d∗(g) approximates the transversal

distance from the point g to the closest detected line.

The accuracy of the mapping of ground truth points G to predicted points E is

computed as follows: a point g is considered as a True Positive TP if d∗(g) ≤ ε,

being ε a certain tolerance value. Otherwise, it is a False Negative. Iterating over

all g ∈ G, the total number of TPs and FNs is computed. Consequently, FP

can be approximated by FP = |E| − TP , where |E| is the cardinality of E. This

approximation is correct if the defined sampling step is sufficiently small compared

to the actual distance between points in the 3D polyline. In our demonstration

experiments a sampling step of 1 cm is enough to ensure that the approximation is
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correct.

Once TP , FN , and FP are computed, Recall R and Precision P curves against

the selected tolerance value are calculated. Additionally, the F-measure F can be

also computed to provide a single-value metric. These performance measures are

especially suitable for LKA and LDW systems, as the results can be evaluated given

a required maximum lateral error ε.

R = TP/(TP + FN); (5.1)

P = TP/(TP + FP ); (5.2)

F = 2(RP )/(R + P ) (5.3)

These three values range from zero to one. R can be interpreted as the number

of ground truth lines that are detected, P measures the number of correctly detected

lines given that they are closer than the chosen tolerance to a ground truth line,

and F is a global quality measure of the detection algorithm. If the R value is equal

to one means that the algorithm detected all ground truth lines, i.e. the number

of FNs was zero. If the P value is equal to one means that all detected lines were

correct, i.e. none of them was a FP detection. The F metric is equal to one, only

when both R and P are equal to one, i.e. the algorithm detected all ground truth

lines and without any FP detection.

The main goal of the automated annotation tools is to reduce the time required by

human annotators. Therefore, an additional evaluation with professional annotators

was performed asking them to annotate the traces without and with the automatic

pre-annotations. Fig. 5.2 shows a diagram description of the evaluation process

encompassing the quantitative comparison.

5.2 Dataset description

The dataset used for experimentation was recorded with a 64-layer LIDAR and a

GNSS/INS system. All the point clouds are previously registered using the odometry

information: the motion of the sensor during the scans is therefore compensated
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Figure 5.2: Diagram of the evaluation process.

and accumulated to have a rough estimate of the actual position of the vehicle

along the path. However, the relationship between each LIDAR point and the

corresponding scan ID is maintained and the points are ordered by increasing scan

ID. The odometry information contains the position of the vehicle and orientation.

Fig. 5.3 shows an example LIDAR trace from the dataset. The blue dots correspond

to the sensor locations where the scans where captured, thus the line provides an

estimation of the trajectory followed by the vehicle while recording LIDAR and video

data.

A total of 10 km was recorded on 12 different days travelling along highways

and non-urban roads at driving speeds between 50 and 120 km/h. The LIDAR was

installed on the roof of the vehicle to serve as a general 3D sensor for autonomous

driving experiments and it was not specifically oriented to concentrate the lasers on

the road surface, so only a small fraction of the points of each scan were relevant

for our study. Its point-density is in the range of 50 and 1,000 points per m2 (350

in average) depending on the travelling speed, traffic, and weather conditions. The

dataset includes 6 straight and 6 curved roads with up to 4 lanes, and a total of 3 exit

and 3 entrance lanes appeared during the recordings. Other road markings such as

arrows, triangles, or text signs (such as STOP) are not present. The characteristics

of each trace are listed in Table 5.1. Fig. 5.4 shows a frame extracted from video
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Figure 5.3: Dataset examples: accumulated LIDAR scans and trajectory of the
vehicle (blue dot lines).

Figure 5.4: A sample frame extracted from of the video recorded along each trace
ordered from left to right and top to bottom.
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Table 5.1: Traces characteristics
Trace Weather Hour Lanes Type Road
1 sunny 18 4 straight concrete
2 sunny 15 2 slight curve grey asphalt
3 sunny 12 2 straight grey asphalt
4 sunny 15 3 slight curve grey asphalt
5 foggy 11 3 straight grey asphalt
6 sunny 16 3 slight curve dark asphalt
7 sunny 17 3 straight dark asphalt
8 clear evening 19 4 straight dark asphalt
9 cloudy wet 14 1-3 tight curve dark asphalt
10 sunny 16 3 slight curve dark asphalt
11 sunny 9 2 straight dark asphalt
12 sunny 11 3 slight curve concrete

captured during each trace by the front-view camera of the vehicle.

The point cloud was previously preprocessed as describe in Section 4.3. The

intensity calibration was performed for each trace without the angle of incidence

because it was recorded with a vertically oriented LIDAR.

The point clouds were stored in files using the pcd format of the PCL library1

using a custom point type. The information for each point contains six fields: the

3D coordinates, the intensity, the number of the scan (LIDAR revolution) to which

it belongs, and the identifier of the LIDAR that measured it to allow recording with

multiple LIDARs. The odometry was recorded in csv files containing the timestamp

in microseconds, the 3D position of the vehicle and the rotation as Euler angles.

Additionally, the timestamps of the LIDAR scans were recorded in another csv file

to be able to interpolate the odometry readings.

5.3 Results

The parameters of the approach and their values used for the quantitative evaluation

are listed in Table 5.2. Table 5.3 lists the road definition parameters.

Fig. 5.5(a) shows the global quality F measure for each trace for increasing

values of tolerance ε. Fig. 5.5(b) plots the average of F over all traces. Depending

1https://pointclouds.org/
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Table 5.2: Parameters of the proposed approach and their values used for the
quantitative evaluation experiments.

Parameter Value Description
blod 0.5 m distance between blocks
blol 1 m block length
blow 20 m block width
binw 1 cm bin width
bind 4 cm maximum distance to center of the bin
binm 35 cm median filter width
bing 25 cm gaussian filter width
tral 1.5 m tracking maximum longitudinal distance
trat 0.5 m tracking maximum transversal distance
traa 7 degrees tracking maximum degrees
segr 2 m margin for dashed segments refinement

Table 5.3: Road definition parameters
Parameter Value Description
marMw 50 cm lane marking maximum width
marmw 10 cm lane marking minimum width
mard 15 cm minimum distance between lane markings
segMd 15 m maximum distance between dashed segments
segmd 1 m minimum distance between dashed segments
segml 1 m minimum length of the dashed segments
segMl 9 m maximum length of the dashed segments
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Table 5.4: F-measure obtained with ε = 5 cm at each trace. Also shown their
average speed and point-density per square meter.

Trace R P F Speed (km/h) Points per m2

1 0.97 0.96 0.96 84 303
2 1.00 1.00 1.00 109 449
3 0.88 0.89 0.88 51 768
4 0.77 0.80 0.79 105 507
5 1.00 1.00 1.00 124 376
6 0.80 0.80 0.80 113 461
7 0.94 0.94 0.95 47 1033
8 0.97 0.98 0.97 99 40
9 0.69 0.64 0.66 62 49
10 0.99 0.99 0.99 111 320
11 1.00 1.00 1.00 115 367
12 0.99 0.99 0.99 113 375

on the tolerance value, some sections of the detected lines are counted as FPs

and the corresponding sections of the ground truth as FNs. With ε = 5 cm an

average F = 0.92 was obtained. This value means that, on average, 92% of the lane

markings were correctly detected with a precision of ε = 5 cm. In other words, if

ε = 5 cm is the requested precision for the manual annotators, they will only have

to correct 8% of the lane markings identified by the automated annotation system.

That F measure cannot be compared with the values reported by other works such

as [36], not only because different datasets were used, but because they use an

intersection over union metric that does not represent the transversal distance error

of the detections.

Table 5.4 lists the values of R, P , and F obtained with ε = 5 cm, and the speed

of the vehicle and point-density of each trace. The achieved values of R and P are

almost equal because the actual number of FPs and FNs are very low.

The scores obtained for traces 3, 4, 6, and 9 are exceptionally low. Trace 9 was

recorded during a rainy day, consequently the point cloud presents many holes and

low point-density. On top of that, the road markings were in a poor condition. In

traces 3, 4, and 6 the forward and backward LIDAR points are misaligned in the

transversal direction because of an inaccurate calibration of the LIDAR extrinsic

parametrers that was detected lately. This error has a direct impact on the detection

of markings as the average intensity in the projection is halved. This problem is
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Figure 5.5: (a) F-measure obtained for each trace, and (b) average F-measure
over the traces, for increasing tolerance values ε.
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Figure 5.6: Lane markings in poor condition from traces (a) 3, (b) 4, (c) 6, and
(d) 9.

even worse in trace 3 with a double solid-dashed line because the gap between the

lines does not exist in the point cloud. In addition, the markings present a poor

condition. Examples of these markings are shown in Fig. 5.6.

To measure the quality of the detection of extremes of the dashed lines, sam-

pling of the polylines is unnecessary because only the extremes of the segments are

detected and annotated. This means that each detected point should have one and

only one matching point in the ground truth. In this case, the distance between

points includes a transversal and longitudinal error because the line sampling is not

applied. Fig. 5.7(a) shows the obtained values of F for dashed segments for each

trace for increasing tolerance δ values. Fig. 5.7(b) shows the average F over the

traces. Trace 3 is not shown because the dashed line could not be detected due to a

LIDAR calibration error. Trace 10 is also not shown because it only contains solid

lines. With δ = 20 cm, an average F = 0.94 was obtained. Table 5.5 shows the

obtained values of R, P , and F with δ = 20 cm for each trace.

The algorithm was implemented in C++ and takes an average of 30 s to process

each trace, with an average travelled distance of 800 m and 6 million points per

trace, on an Intel i5-4590 3.3 GHz CPU.

Finally, an evaluation experiment with three professional annotators was con-
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Figure 5.7: (a) F-measure obtained for each trace, and (b) average F-measure
for dashed segments while increasing the tolerance δ.
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Table 5.5: F-measure obtained for detection of dashed segments with tolerance
δ = 20 cm at each trace

Trace R P F

1 0.95 0.95 0.96
2 0.90 0.90 0.90
4 0.85 0.99 0.91
5 1.00 1.00 1.00
6 0.77 0.76 0.76
7 0.97 0.97 0.97
8 0.98 0.98 0.98
9 0.92 0.92 0.91
11 1.00 0.98 0.99
12 0.98 0.98 0.98

Figure 5.8: Time required to manually annotate each trace without and with
automated pre-annotation.

ducted. They were asked to annotate all the traces twice, one starting from zero

without pre-annotations and a second one starting with the automated pre-annotations

changing the order of presentation of the traces between evaluations to avoid learn-

ing bias. Fig. 5.8 shows the average time required by the annotators to annotate

each trace. On average, the use of pre-annotation saves 60% of the time required for

manual annotation. The average time for annotating each trace was 20 min starting

from zero and 8 min when provided with an automatically generated pre-annotation.

Using the pre-annotation, the annotators required approximately around 1 min for

every 100 m of road.
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Figure 5.9: F-measure (ε = 5 cm) varying parameter blol.

5.3.1 Parameter sensitivity analysis

A sensitivity analysis was carried out to find the best values of the parameters. The

following figures show the obtained F varying one of the parameters while keeping

the other parameters fixed to the values shown in Table 5.2. Fig. 5.9 shows the F

obtained varying the block length blol. With blol = 0.25 m the distance between

blocks must be at least blod = 0.25 m, otherwise there would be unprocessed blocks.

Values of blol lower than 0.25 m would generate too small blocks with very few

points. Values greater than 2 m would generate too big blocks that would produce

unreliable virtual scan-lines.

Fig. 5.10 shows the F obtained varying the width of the bins binw and the

maximum distance bind to generate the virtual scan-lines. Fig. 5.11 shows the F

obtained varying the size of the filters binm and bing.

The parameter blow was set to the maximum road width in the dataset. The

tracking parameters (tral, trat and traa) and the margin for dashed segments re-

finement (segr) have less influence on the results. Changing them resulted in no

significative change of the F measure.
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Figure 5.10: F-measure (ε = 5 cm) obtained varying parameters bind and binw.
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Figure 5.11: F-measure (ε = 5 cm) obtained varying parameters binm and bing.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has presented a method for the automatic annotation of lane markings

using LIDAR data. The approach has been validated on a dataset of LIDAR traces

collected by sensorized vehicle on several test trips.

As a summary of the work done:

• We have implemented the collection, preprocessing and preparation of the

LIDAR data in order to achieve the test of the proposed solutions.

• We have implemented the web-based annotation system for the assessment of

our system by human experts. This system is also being used by other projects

at Vicomtech and other companies for commercial exploitation. The tool

allows the annotation of video and LIDAR data within a web browser, without

installation, using a low-end PC. This setup allows the remote distribution of

annotation tasks.

• We have defined and implemented the computational pipeline for the detection

of the line markings in the road LIDAR data. This pipeline is founded on

fundamental concepts and training is reduced to fitting some of the parameters

of the computational processes, which can be done very efficiently in short time

for specific sensor systems.
77
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• We have carried out the validation experiments both as automatic annotation

predictor and as human annotator assistance.

The validation results showed that 92% of the lines and 94% of the dashed segments

were correctly detected with a tolerance of 5 cm and 20 cm, respectively. The

automatic annotations produced by the method were evaluated with the help of

professional human annotators, showing a reduction of 60% in the time required

for manual annotation of large datasets. The processing time of our automated

approach is in the order of 4 s per 100 m of travelled road. The results showed that

the automatically annotated lane markings are sufficiently precise, requiring very

few interventions by manual annotators, who required only one minute to annotate

100 m of road when provided with the automatically generated pre-annotations.

6.2 Future work

The work presented in this thesis can be extended in several ways that will be

commented in the following subsections.

6.2.1 Detect other road markings

The presented method is focused on the detection of the lane markings that separate

the driving lanes and it could be not suitable to detect other road markings such as

arrows, texts, speed signs, etc. To detect those elements has more sense to implement

an image-based detector that works with rasterized top-view images of the point

cloud. Current approaches based on deep learning architectures have received great

attention in the recent years. It is possible that YOLO kind of detectors would be

useful for demonstration of concept, though they have been reported as not robust

to changing environmental conditions in some independent empirical evaluations.

6.2.2 Detect road edges

Another interesting feature of road infrastructure assessment system is the detection

of the road limits. These limits could be defined by concrete barriers, guardrails,
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curbs, or it could be a direct transition from asphalt to grass or any other type

of terrain. These could be detected using the vertical information of the LIDAR

to detect guardrails, barriers, or curbs, or measuring the flatness of the surfaces

combined with changes in the intensity to detect the end of the asphalt or concrete

surface. Techniques of texture analysis of the LIDAR data may be rather useful for

the discrimination of the different surfaces in this case. The deep learning approaches

that could be more relevant are the semantic segmentation networks, already used

for the processing of visual information in assistive driving systems.

6.2.3 Improve LIDAR extrinsic parameters

One of the main difficulties for the lane markings detection was that the given

extrinsic calibration of the LIDAR was not perfect. This misalignment produced

that the accumulated point cloud presented a big quantity of noise that directly

impacts the detections. Some filters were applied to reduce the problem, but the

main cause was not faced. A possible solution could be to refine the calibrated

extrinsic parameters of the sensor. This could be done using global optimization

method that tries to minimize the noise in the point cloud by adjusting the extrinsic

parameters. The challenge is how to measure that noise. A possibility is to measure

the variance in the vertical coordinate of the points along the point cloud. Another

possibility could be to use a point cloud alignment algorithm, such as Iterative

Closest Point (ICP), to measure the alignment error between the scans.

6.2.4 Combine LIDAR with cameras

The combination of cameras and LIDARs is a research line that is already obtaining

good results for object detection. The annotation of lane markings could also be

improved with this combination, benefiting from the greater data density and color

information of cameras and the depth and intensity information of LIDARs. To

achieve this combination, the calibration between the sensors must be very accurate,

because the objects to be detected can be as small as a 5 cm thick line. Similarly to

the previous point, this calibration could be improved driven by the lane markings
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detection, trying to maximize the alignment between camera and LIDAR data.
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