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Complex Formalism of the Linear Beam Dynamics
Julio Lucas and Victor Etxebarria

Abstract— It has long been known that the ellipse normally
used to model the phase space extension of a beam in linear
dynamics may be represented by a complex number which can be
interpreted similar to a complex impedance in electrical circuits,
so that classical electrical methods might be used for the design of
such beam transport lines. However, this method has never been
fully developed, and only the transport transformation of single
particular elements, like drift spaces or quadrupoles, has been
presented in the past. In this article, we complete the complex
formalism of linear beam dynamics by obtaining a general
differential equation and solving it, to show that the general
transformation of a linear beam line is a complex Moebius
transformation. This result opens the possibility of studying the
effect of the beam line on complete regions of the complex plane
and not only on a single point. Taking advantage of this capability
of the formalism, we also obtain an important result in the
theory of the transport through a periodic line, proving that
the invariant points of the transformation are only a special
case of a more general structure of the solution, which are
the invariant circles of the one-period transformation. Among
other advantages, this provides a new description of the betatron
functions beating in case of a mismatched injection in a circular
accelerator.

Index Terms— Linear beam dynamics, Moebius transforma-
tion, particle accelerators, Twiss parameters.

I. INTRODUCTION

COMPLEX variable methods have been widely used
in the past to conveniently represent 2-D fields and

phenomena by essentially identifying the components of a
planar vector with the real and imaginary parts of a complex
number. This approach has been applied to most branches
of science, but particularly it is worth mentioning that in
the very early days of electromagnetic theory, even Maxwell
included complex variable methods in a chapter of one of his
major works to set up potential functions satisfying Laplace’s
equations in two dimensions [1]. Since then, many complex
variable formulations elegantly describing a wide variety of
electromagnetic phenomena have been proposed. Interestingly
enough, this complex formulation has been repeatedly applied
in the past to describe different electromagnetic properties
and systems in relation to dynamics, transport, and optics of
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charged particle beams, including electrostatic space-charge
phenomena [2], [3], 2-D magnetic fields [4], [5], or phase
plane linear beam optics [6]. However, the idea was never very
popular, as far as beam-line dynamics design is concerned,
in comparison with transport matrices or Twiss parameters,
probably because of the lack of a complete complex formalism
which could boost the method to its full potential as applied
to this field.

In this article, we extend and develop the idea originally pro-
posed by Hereward [6] of using a complex number to represent
the phase space ellipse describing the motion in a linear beam
line. Instead of just using this formulation to treat beam trans-
port lines as electrical circuits by analogy, as it was intended in
principle, here the general differential equation governing the
complex representation of the phase plane ellipse is obtained
and solved. As a result, it is demonstrated that the general
transformation of a linear beam line is a subgroup of the
well-known complex Moebius transformation. Apart from the
elegance and compactness of the general obtained solution
in complex formulation, the result contributes to improve our
fundamental knowledge of linear beam-line dynamics as well
as to be able to transform complete regions of the complex
phase space instead of single points, as it is the case with the
conventional Twiss parameters approach.

As a practical example of using the new formalism pro-
posed, the method is applied to the important case of beam
transport through a periodic line (for instance, through a
circular accelerator). By means of the complex formalism,
we prove the existence of invariant circles under such periodic
transformation, which generalizes the classical concept of
invariant points of the transformation determined through
the Twiss parameters methods, meaning that invariant points
in a periodic transport line are indeed invariant circles of
null radius. This allows us to reinterpret and more accu-
rately describe, predict, quantify, and control important effects
measured in practice, such as betatron oscillations and their
beating, among other properties.

As described in the following, both in theory and illus-
trated through example, it becomes clear that the proposed
complex formalism gives us a deeper insight on linear beam
dynamics, generalizes classical concepts, and has clear impli-
cations both in theoretical beam optics and in practical com-
putation and design of present and future beam transport
lines.

II. DEFINITION OF THE COMPLEX PARAMETERS

Although the complex formalism of linear beam dynamics
may be obtained without using the Twiss parameters, here
we will refer to them for the sake of completeness and for
easier comparison between the standard and the new proposed
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Fig. 1. Twiss parameters defining the phase space ellipse.

formulation. The phase space ellipse is parameterized by (1)
[7], [8], where the Twiss parameters, α, β, and γ define the
shape of the ellipse, and the emittance ε is related to its area.
In addition, because of the symplecticity of the dynamics,
the relation βγ − α2 = 1 holds among the ellipse parameters

γ x2 + 2αxx ′ + βx ′2 = ε. (1)

The relationships between the Twiss parameters and the
shape of the beam space ellipse may be seen in Fig. 1.

When the beam is transported through a drift space,
the point of maximum divergence will keep its divergence
γ2 = γ1 = γ , while its position will shift according to x ′ and
the drift length L. This may be stated as

−α2

√
ε

γ2
= −α1

√
ε

γ1
+ L

√
εγ1. (2)

So, through a drift space, it holds

1

γ2
= 1

γ1
(3)

−α2

γ2
= −α1

γ1
+ L . (4)

It can be shown in the same way that through a thin
lens of focal length f , the following relationships will
follow:

1

β2
= 1

β1
(5)

−α2

β2
= −α1

β1
− 1

f
. (6)

Now two complex numbers can be defined as

Z = 1

γ
− j

α

γ
(7)

Y = 1

β
+ j

α

β
. (8)

It may be seen by direct multiplication that ZY = 1.
In addition, through a drift space we will have, Z2 = Z1 + j L,
and through a thin lens Y2 = Y1 + j/ f . We can obtain the
effect of an infinitesimal drift space and an infinitesimal lens
of strength d(1/ f ) = k(s) ds as

d Zdrift = j ds (9)

dYlens = jk(s) ds. (10)

Fig. 2. Shape of the phase space ellipses according to their location in the
Y -plane. Each ellipse is drawn in a local x–x ′ system.

The effect of the infinitesimal drift can be expressed in terms
of the Y complex variable as

dYdrift = d

(
1

Z

)
drift

= −d Zdrift

Z 2
= −Y 2 j ds. (11)

If the Y parameter is used, the size of the beam will be
proportional to (ε/ReY )1/2, while the lines passing through
the origin are of constant α. The upper part of the complex
plane corresponds to converging beams and the lower one to
diverging ones. Fig. 2 shows a qualitative representation of the
shape of the phase space ellipses according to their position
in the Y -plane.

III. GENERAL DIFFERENTIAL EQUATION

OF THE COMPLEX FORM

Starting with the report by Hereward [6], which is cited
extensively [9], [10], [11], all the previous material have been
studied; but as far as it is known to the authors, the general
differential equation governing the complex representation of
the phase space ellipse has never been obtained. In order
to obtain this equation, in the following, an infinitesimal
displacement through a lens of strength per unit length k will
be analyzed [12].

Because the displacement is infinitesimal, the effect of the
lens, which is straightforward in Y , can be superposed with
the effect of the drift ds, which is straightforward in Z . This
superposition may be expressed either in terms of Z or Y , but
the latter representation is preferred, because the real part of
Y is related to β, which, in turn, is related to the beam size.
For an infinitesimal transformation, we can directly add the
effect of the drift space and the lens, as the cross term will be
of order O(ds2). We can use the results of (10) and (11):

dY = dYlens + dYdrift = jkds + d

(
1

Z

)
drift

= jkds + −d Zdrift

Z 2
= jkds − Y 2 jds

= (k − Y 2) jds. (12)

And finally, this results in the following Riccati differential
equation:

dY

ds
+ jY 2 = jk(s). (13)
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To solve this equation, we start by applying a substitution

Y = − j
u′

u
(14)

which converts the Riccati equation into the—well-known to
beam-line practitioners—Hill’s1 second-order linear differen-
tial equation

u′′ + k(s)u = 0 (15)

whose solutions may be expressed, using the linearity of the
equation, as a linear combination of the fundamental functions
C(s) and S(s), which satisfy C(0) = 1, C ′(0) = 0, S(1) = 0,
S′(0) = 1 [14]. Moreover, two particular solutions of (13) can
be found, which may be written as

Y1 = − j
C ′

C
(16)

Y2 = − j
S′

S
. (17)

With one particular solution, for instance, the one based
on C , the Riccati equation can be reduced to a first-order
linear equation using the substitution

Y = Y1 + 1

z
(18)

thus obtaining

z′ − 2
C ′

C
z = j. (19)

Since a second particular solution of the Riccati equation is
already known, a particular solution of (19) can be found as
well

z1 = 1

Y2 − Y1
= jC S (20)

where it has been used the fact that C S′ − C ′S = 1 because
of the constancy of the Wronskian of (15).

With this particular solution of (19), its general solution
may be obtained as the sum of the general solution of the
homogeneous equation and the particular solution

z = AC2 + jC S (21)

where A is an integration constant. By replacing (21) in (18),
the general solution of the Riccati equation is readily obtained

Y = − j
C ′

C
+ 1

AC2 + jC S
. (22)

The integration constant can be found by imposing
Y (0) = Y0, to get A = Y −1

0 . After some algebra, the final
result is obtained

Y = S′Y0 − jC ′

j SY0 + C
(23)

and therefore, it is concluded that the transformation of the
complex parameter is a Moebius transformation of the shape
given by (23). A similar expression is found in [6], but the
proof is restricted to drift spaces and lenses, both thin and

1Because we are not specifying any periodicity of k(s), it is an abuse of the
language to call this equation Hill’s and we should better call it a variable
rigidity harmonic oscillator, but this name is a bit long.

thick, with no reference to any general method of solution and
specially without any identification of the beam transformation
as a complex plane conformal mapping associated with the
beam transport.

This result applies to any transformation deriving from a
quadratic Hamiltonian in a 2-D phase space or any initial
lattice functions which describes a stable distribution, of which
Hill’s equation is a particular case. One can check that (23) is
true for any symplectic matrix M . Actually, as it is shown
in [13], there is a general relationship between symplectic
mappings and the Moebius transform, of which the present
article may be seen as a particular (and useful) implementation
for the linear case.

We should note now that this result is very important,
because the Moebius transformations form group, that is,
the composition of Moebius transformations is a new transfor-
mation. Since any general transformation following (13) may
be expressed as a composition of individual transformations,
it may be concluded that if each single beam-line element is
described by a Moebius transform, then also the line will be
described by a Moebius transform.

IV. SOME USEFUL PROPERTIES OF THE

MOEBIUS TRANSFORMATION

The general result given by (23) can be further exploited
by considering the mathematical properties of the Moebius
transformations, which have been extensively studied [12],
[16], [17]. In this section, some results useful for the analysis
of beam transfer lines as proposed in this article are presented
and commented.

A. Matrix Representation of the Moebius Transformation

A general Moebius transformation

w = az + b

cz + d
with ad − bc �= 0 (24)

may be represented by a matrix

H =
[

a b
c d

]
(25)

and the composition of Moebius transformations corre-
sponds to the matrix multiplication. In our case, taking into
account (23), the matrix H will be given by the more restricted
form

H =
[

S′ − jC ′
j S C

]
(26)

which somewhat resembles the transport matrix for a single
particle. However, it should be noted here that this case deals
with a complex number representing the whole phase space
ellipse of the beam. As |H| = 1, the Moebius transformation
is normalized.

The matrix representation becomes particularly clear if the
complex numbers w and z are expressed by homogeneous
coordinates, and in turn, we represent the homogeneous
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coordinates using a column vector, which we indicate by
underlining the symbol

z = z1

z2
→ z =

[
z1

z2

]
(27)

w = w1

w2
→ w =

[
w1

w2

]
. (28)

In this case, the Moebius transform may be written as

w1

w2
= a z1

z2
+ b

c z1
z2

+ d
= az1 + bz2

cz1 + dz2
(29)

which is equivalent to[
w1

w2

]
=

[
a b
c d

][
z1

z2

]
. (30)

Thus, since it is possible to represent a complex number z
by its column vector of homogeneous coordinates, z, the trans-
formation will be

w = Hz. (31)

B. Fixed Points of the Transformation

In this section, we will look for the Twiss parameters ε
that are left invariant under a given transformation m, that is,
the equation

ε = ε ◦ m. (32)

Of course, in our case, we will limit the analysis to the linear
case, in which the beam matrix σ is transformed by the one-
period transport matrix M through a congruence relationship
to itself, providing the matched Twiss parameters

σ = Mσ MT . (33)

Now, we will see how this formalism can be expressed in
terms of the points left fixed by the Moebius transformation.
These points can be obtained by imposing the condition that
the complex point is not changed by the transformation

Y = aY + b

cY + d
. (34)

Alternatively, the fixed points are defined by the eigenvec-
tors of (31). The solution for the particular case of the beam
transport is the following equation:

Y (s)±

= j (C(s + λ) − S′(s + λ)) ± √
4−(C(s+λ)+S′(s + λ))2

2S(s + λ)
(35)

where λ is the period and the C and S are the cosine and sine
solutions at the start of the period[

C(s) C ′(s)
S(s) S′(s)

]
=

[
1 0
0 1

]
. (36)

There are three possibilities: if |C + S′| < 2, (35) will
have two complex solutions symmetrical with respect to the
imaginary axis; if |C + S′| = 2, there will be only one double
solution in the imaginary axis; and if |C + S′| > 2, there will
be two solutions contained in the imaginary axis.

C. Circle-Preserving Properties

One interesting possibility that opens when considering a
beam line transformation as a complex plane transformation is
that entire regions of the complex plane may be transformed
as conformal mappings [18]. For instance, one of the prop-
erties of the Moebius transform is that generalized circles
are transformed to generalized circles. It is possible then to
find a set of initial conditions, envelope them within a circle,
and transform the circle along the beam line. All the initial
conditions will remain inside the transformed circle. Because
it is possible to analyze the evolution of the radius of the
circle along the transformed planes, it is possible, for instance,
to know whether the solutions converge or not and at which
speed.

Next, we will proceed as in [21]. In order to prove the
circle-preserving property, first the equation of the circle in
the complex plane will be expressed in a more general way.
A circle of radius ρ and center at γ , may be expressed as

|z − γ | = ρ (37)

or

(z − γ )(z − γ ) = ρ2 (38)

zz − zγ − zγ + (γ γ − ρ2) = 0. (39)

Multiplying (39) by an arbitrary factor A, and writing it in
matrix form, it results

[z 1]
[

A −Aγ
−Aγ A(γ γ − ρ2)

][
z
1

]
= [z 1]

[
A B
C D

][
z
1

]

= 0. (40)

In this way, the circle will be represented by the Hermitian
matrix C = [AB|C D], and (40) describing the circle will be
compactly expressed as

zH Cz = 0 (41)

where the superindex H represents the transpose conjugate of
a matrix. It can be seen that by construction C must be Her-
mitian, as the diagonal elements are real and the nondiagonal
elements are conjugate of each other. The arbitrary factor A
has been introduced in order to include the straight lines as
a particular case of the circles. In the projective plane, a line
may be considered as a circle with a point at infinity. With
the representation of (41), all circles and lines of the complex
plane may be represented as the quadratic form of a Hermitian
matrix with respect to the homogeneous coordinates of the
complex plane.

The determinant of the circle matrix C is equal to −Aρ2,
and it is called the discriminant of the circle. Real circles
will have a negative discriminant. The discriminant will be
zero if C represents a line or a zero radius circle. A positive
discriminant is due to a circle of imaginary radius, which
cannot be represented in the ordinary complex plane.

In order to check how the Moebius transform changes
a given circle, consider a circle defined at the start of the
transformation by

zH C1z = 0. (42)
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Fig. 3. Effect of a drift on the Z - and Y -planes.

If W is the reverse transformation, that is, the one causing

z = Wω (43)

then the circle will be transformed in the target plane to

ωH WH C1Wω = 0. (44)

The matrix inside the quadratic form of (44) is Hermitian as
well and will represent a new circle in the transformed plane

C2 = WHC1W. (45)

So, it is readily established that the Moebius transformation
maps circles into circles in the complex plane.

V. EXAMPLES OF COMMON BEAM LINE

ELEMENTS IN COMPLEX FORM

By introducing the well-known transport matrices values
of common beam line elements [19], [20] in the general
result of (23), some illustrative examples of the Moebius
transformations associated with these common elements can
be built.

A. Drift Space of Length L

Y2 = Y1

j LY1 + 1
. (46)

The effect on the complex plane of the drift space in
Z = Y −1 is a vertical displacement in the upward direction.
The complex inverse of a straight line in the complex plane is
a circle passing through the origin. Therefore, the trajectory
in the Y -plane will be a sector of a circle passing through
the origin and tangent to the imaginary axis. The particle will
move clockwise, because the inversion implies a change of
sign with respect to the movement as seen from the origin.
Fig. 3 shows the effect of a drift on the Z - and Y -planes.

It can also be seen that the length of the drift is measured as
the difference in the vertical distance of the two extreme points
defining the drift, A and B , in the Z -plane. If all the horizontal
lines of the Z -plane were labeled by their constant pure
imaginary coordinate −α/γ , these lines would be transferred
to the Y -plane as circles passing through the origin and
tangent to the real axis. Each of these circles correspond to a
certain −α/γ .

B. Sector Dipole

A sector dipole will have two different transport Moebius
transformation, one for the deflecting and one for the nonde-
flecting plane. For the deflecting plane, we can translate the
standard transport matrix using (23) to obtain

Y2 = cos θY1 + j/ρ sin θ

jρ sin θY1 + cos θ
(47)

where ρ is the bending radius of the dipole and θ the bending
angle. For the nondeflecting plane, we can use the expression
of the drift space (46).

For the particular case of a bending of 90◦, we obtain

Y1Y2 = 1

ρ2
(48)

so that the parameters at the entrance and exit of the dipole
are related by an inversion of radius 1/ρ.

As in the standard formalism, it is possible to include the
effect of the entrance and exit angles through a thin lens
transformation.

C. Thin Lens of Focal Length f

Y2 = Y1 + j

f
. (49)

This represents a vertical displacement upward when the lens
is focusing and downward when it is defocusing.

D. Thick Lens of Strength k and Thickness l

We assume here an ideal horizontally focusing thick quadru-
pole of length l with constant focusing strength k(s) = −k
with k positive

Y2 = cos(
√

kl)Y1 + j
√

k sin(
√

kl)

j sin(
√

kl)/
√

kY1 + cos(
√

kl)
. (50)

A similar equation is given in [15] without proof.
This transformation is, as well, a circle centered in the

real axis. This may be seen by dividing the numerator and
denominator of (50) by cos

√
kl and considering

Y2 = Y1 + j
√

k tan(
√

kl)

j tan(
√

kl)/
√

kY1 + 1
= Y1 + j

√
ku

ju/
√

kY1 + 1
(51)

as a Moebius transform of u = tan(
√

kl), that is, the real
axis. As it is known, Moebius transformations convert lines
to circles (or lines in some cases). In order to obtain the
parameters of the circle, the Riccati equation can be written
in terms of its real and imaginary components, Y = x + j y:

dx

ds
= −2xy (52)

dy

ds
= k − (x2 − y2). (53)

It is observed in the above equation that when the sign of y
changes, only the horizontal derivative changes its sign. This
is the expected behavior from a circle centered on the real axis
following the equation:

(x − xc)
2 + y2 = R2 (54)
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where xc represents the center coordinate on the real axis and
R is the radius of the circle.

The circle parameters can be readily obtained by noting that
when the vertical derivative (53) is zero, this corresponds to a
maximum y, that is, the point with (xc, R) coordinates. Thus,
the following pair of equations defining the circle passing
through the point (x0, y0) and with a focusing strength of k,
can be written as

(x0 − xc)
2 + y2

0 = R2 (55)

k − x2
c + R2 = 0 (56)

so that the desired parameters will be

xc = k + x2
0 + y2

0

2x0
(57)

R =
√

x2
c − k. (58)

It is worth to notice here that, when k > 0, the circle is fully
contained in the right part of the complex plane, so that the
complex parameter is bounded, while when k < 0, the circle
is partly contained on the left part of the complex plane.

VI. COMPLEX PARAMETERS FOR

A CIRCULAR ACCELERATOR

In accelerator physics, the symbols β(s) and α(s) are used
in two closely related but different meanings. On the one hand,
they are the beam parameters that are used to characterize
the shape of the phase space region bounded by an ellipse
that we are transporting along the beam line. This is the
situation of Fig. 1 and (2), and this is the proper meaning of
the Twiss parameters. They must be calculated as a problem
with initial conditions and a known evolution law. It is in
this sense that we have been and will continue using them.
On the other hand, for periodic focusing structures, they
are used to represent the betatron or lattice functions which
are just a function of the beam-line components along the
period. In this second meaning, α and β are calculated as an
eigenvalue problem, imposing the additional requirement that
they must be periodic with the same period that the lattice.
Of course, in purely linear dynamics and in the absence of
any damping force or synchrotron radiation, a beam will have
no tendency to converge to the shape given by the lattice
functions. Simply stated, the circular accelerator will look to
the linear beam as a very long, unwrapped, transfer line in
which the phase space will evolve according to the initial
conditions at the injection in the periodic focusing structure.

In the language of the complex transformation, the lattice
functions are equivalent to the fixed points of transformation
of (23). Since the fixed point must have a real part, we will
reproduce here the classical condition |C + S′| < 2 required
in order to have a periodic solution for a periodic lattice.
We maintain the symbol Y+ to represent the fixed point of
the one turn transformation with positive real part, which may
be identified with the lattice function.

This result can be expressed in the language of Moebius
transforms via the classification of the transformation through

the parameter σ . This parameter is invariant through any
equivalence transformation and is obtained as

σ = (a + d)2

ad − bc
− 4 = (C + S′)2 − 4 (59)

which is the quotient of the square of the trace and the
determinant minus four. This definition of the transformation
invariant is made so as to have a zero value for the identity
transformation. Regarding this parameter, all Moebius trans-
formations may be classified as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Elliptic if − 4 ≤ σ < 0

Proper hyperbolic if σ > 0

Improper hyperbolic if σ ≤ −4

Loxodromic if σ is not real

. (60)

The behavior of an iterative application of the same Moebius
transform with respect to the fixed points is fully described
by the transformation type. The most important aspect for the
transverse beam dynamics study is that only for the elliptic
transformation, none of the invariant points represent attrac-
tors. That is, for all other transformation types, the iterative
application of the transformation has one of the invariant
points as a limit. In addition, the invariant points for the case
|C + S′| ≥ 2 lie on the imaginary axis and therefore, β → ∞,
which shows that the beam will grow without limit in size
for the hyperbolic case. This condition will ensure that only
Moebius transformations of the elliptic type lead to periodic
solutions in periodic lattices.

A. Structure of the Periodic Solutions of Beam Transport in
Complex Form

The Twiss parameters can readily be expressed as a function
of the fundamental solutions

β(s) = 1

ReY+
= 2S(s + λ)√

4 − (C(s + λ) + S′(s + λ))2
(61)

α(s) = ImY+
ReY+

= C(s + λ) − S′(s + λ)√
4 − (C(s + λ) + S′(s + λ))2

(62)

using the same notation that in (35).
This is, of course, a classical result of the theory of the

Twiss parameters. We will use now the theory of the complex
transformation to obtain the structure of the solutions of the
beam transport on a periodic line. Note that these solutions
are not easily obtained from the classical theory and that
a beautiful and useful structure can be unveiled for these
solutions when seen in the light of the Moebius transformation.

First, we will prove that if there are two circles invariant
under the Moebius transformation, a 1-D set of circles being
also invariant can be found. A pencil of circles is formed by
the linear combination of two circles

C(λ1, λ2) = λ1C1 + λ2C2. (63)

It can be easily proved, by applying the congruence transfor-
mation of (45) to both members of (63), that if C1 and C2 are
invariant circles, all the circles of their pencil are invariant. The
pencil is 1-D, because (63) may be multiplied by a constant
without modifying the circle of the pencil.
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Now we can use the zero radius circles with center in
the fixed points of the transformation as the basis of the
pencil of invariant circles. These zero radius circles are fully
valid members of the pencil and they are, obviously invariant,
as they are only made of one point which is invariant. The
fact that there is no other point in the zero radius circle can
be immediately deduced by the construction of Section IV-C.
We will call the two fixed points Y+ and Y−, respectively,
according to the sign of the real part of the fixed points given
by (35). Their respective Hermitian matrices are

C± =
[

1 −Y±
−Y ± Y±Y±

]
. (64)

The parameterization of the invariant circles will be

Cλ = (1 + λ)C+ − λC−. (65)

This parametrization ensures that the A term of Cλ [see (40)]
is equal to unity, so that the circle is normalized, and that
λ = 0 corresponds to the invariant point with positive real
part. It is now possible to obtain the invariant circle of the
invariant pencil that passes through any point y, by solving λ
from the equation

yH Cλy = 0. (66)

The solution of the invariant circle passing through point y
will be

Cλ = −yH C−y

y H C+y − y H C−y
C+ + y H C+y

y H C+y − y HC−y
C−. (67)

The general result of (67) can be particularized to the case
of the movement around the fixed points given by (35) for
the elliptic case. For this transformation, the two fixed points
are symmetric with respect to the imaginary axis, that is,
Y− = −Y +. If we call y0 the fixed point with positive real
part (the one with physical meaning), then the matrices of the
two zero radius fixed points will be

C+ =
[

1 −y0

−y0 y0 y0

]
C− =

[
1 y0
y0 y0 y0

]
. (68)

Now, by applying (67), it is possible to find the invariant
circle that passes through a certain point y. The solution is a
circle centered at a point yc given by

yc = |y|2 + |y0|2 − 2Im(y) Im(y0)

2Re(y)
+ i Im(y0) (69)

meaning that the invariant circles have the center at the same
horizontal line as the fixed points. The radius of the invariant
circle will then be

R = |y − y0| |y + y0|
2Re(y)

. (70)

With the knowledge of the invariant circle, it is possible to
obtain the maximum beam phase-space limit, which will be
given by

1

β
≥ |y|2 + |y0|2 − 2Im(y) Im(y0) − |y − y0| |y + y0|

2Re(y)
. (71)

This result may be very useful to determine the maximum
beam size that may be caused by a mismatch in the injection
of the beam into a periodic line.

Fig. 4. Trajectory on the Y -plane of a beam through a thin lens FODO cell.

Fig. 5. Horizontal Twiss parameters in the example cell. β is in meters.

B. Numerical Example

As an example of the use of the theory of invariant circles
on a periodic transport line, let us analyze the structure of
the solutions of the beam when injected, not necessarily well
matched, on a FODO line. In a qualitative way, we can show
the evolution of the beam along the line for a well matched
condition in Fig. 4. The focusing thin lens is the line C D; the
upper circle arc D A is the drift going to the defocusing lens;
AB is the defocusing lens and BC is the drift space going to
the focusing lens.

It may be worth to notice that the relationship between the
Twiss parameters and the complex ones in beam dynamics
is similar to that existing between the Bode and the Nyquist
plots in control theory. In the first one, the amplitude and the
phase are expressed in two different plots, but in exchange,
the position (frequency) at which the gain is expressed is
explicitly indicated in the chart. In the second one, a complex
number provides all information but as a drawback, the posi-
tion (frequency) at which the value is given, must be provided
with a label attached to a certain number of points.

To illustrate the complex formulation in a more quantitative
situation, next we will define a thick lens FODO cell with
quadrupoles of length 0.2 m and drift spaces 2 m long. The
strength of the quadrupoles is ±4 m−2. Arbitrarily, we will
analyze the behavior of the horizontal solution at one-third
of the length of the focusing quadrupole. The cell, with the
horizontal Twiss parameters for the injection matched at the
invariant point, may be seen in Fig. 5.
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Fig. 6. Same cell described in the complex plane. Units [m−1] for both
axes. The dots indicate points along the beam line. The separation of the
points represented by the dots is 100 mm for the drift space and 16.7 mm for
the quadrupoles. The points with α zero are at the center of the quadrupoles.

Fig. 7. Horizontal Twiss parameters in the example cell for the case of a
nonmatched injection. β in m.

The same cell may be described by the movement of the
beam point in the complex plane. This is shown in Fig. 6.
The matching parameters at the injection point are β ≈ 9 m
and α ≈ 1.1, or the corresponding complex parameter. This
figure may be compared with the thin lens FODO of Fig. 4.
In both cases, the periodic trajectory in Y space is traversed
clockwise. The focusing quadrupole corresponds to the left
vertical arc (although the curvature is hard to see) and the
defocusing quadrupole to the right vertical arc. In each of the
parts of the FODO cell, the red dots are equally spaced.

We can now use the theory of invariant circles to study the
behavior of the periodic FODO in the case of a mismatched
injection. In this case, the beam will oscillate around the
periodic parameters in such a way that it will be difficult
to find any apparent order. For instance, at Fig. 7, the beam
has been injected with a β = 5 m and α = 0.5. Under this

Fig. 8. Pencil of invariant circles at one-third of the length of the quadrupole.
The position of the beam passes during several periods, as well as the fixed
point, are shown. Units [m−1] for both axes.

Fig. 9. Same FODO cell but with unstable parameters. It can be seen that
the movement of the beam converges to one of the stable points located at
the imaginary axis. Note the logarithmic scale that is required to show all
points as the convergence toward the fixed point is exponential. Units [m−1]
for both axes.

condition, the beam wiggles around the ideal fixed point. Nev-
ertheless, the classical theory does not provide any information
about the maximum amplitude of the Twiss parameters during
the oscillation.

The situation becomes much clearer when the different
complex points are plotted in the complex plane after each
period. This is shown in Fig. 8. The points must remain
in the circle of the invariant pencil of circles that passes
through the point defined by the injection parameters. At some
passages, the point will be at the right side of the fixed
point, corresponding to a smaller beam and at other passages,
the point will be at the left side, which corresponds to a
larger beam. Nevertheless, the beam size will be bounded
by the leftmost side of the invariant circle, which is easily
obtained through the parameters of the Cλ invariant circle
of (67).

As a final example, for the sake of comparison, we have
increased the strength of the quadrupoles until the Moe-
bius transformation becomes hyperbolic. In this case, the
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movement of the particles change dramatically both qualitative
and quantitatively, and instead of showing a rotation around
one of the fixed points, now the beam trajectory converges
to one of the fixed points, which actually is located at the
imaginary axis and therefore, it represents a beam of infinite
size, β → ∞. This situation is shown in Fig. 9.

VII. CONCLUSION

A general formulation of the complex formalism of 1-D
linear beam dynamics has been presented. Through determin-
ing and solving the general differential equation governing
the beam dynamics in complex form, it has been shown
that the general complex transformation of a beam line is a
subgroup of the Moebius transformation. Using the proposed
formalism, the transformation of several common beam line
components has been obtained and graphically represented.
It has been shown that, although the complex formulation is
equivalent to the Twiss parameters approach, it generalizes
and complements the classical analysis of a beam transport
line, it allows to prove some theorems of beam dynamics in
a simpler way, and it opens the possibility of transforming
complete regions of the complex phase space instead of just
single points, as is the case in the classical formalism of beam
transport lines.

Furthermore, for beam transport through periodic lines,
the proposed complex formalism has allowed us to prove the
existence of invariant circles under a periodic transformation.
In the classical formalism, only the invariant points are consid-
ered, and they are identified with the actual Twiss parameters
for this point location of the transport line. Now, we have seen
that the invariant points are nothing but invariant circles of zero
radius. In this way, it is possible to obtain a higher bound of
the maximum beam excursion at any point. Through the usual
approach, the mismatched injection on a periodic line is treated
as if the Twiss parameters in the injected line were those of the
fixed point of the one-period transformation (actually turning
an initial conditions problem into an eigenvalue problem), and
assuming that a larger volume of phase space is occupied by
the beam in order to be enclosed by an ellipse corresponding to
the shape of the matched parameters. Although this may be the
best representation for a circular accelerator, where millions
of turns under the nonlinear field will smear the beam phase
space, it may be too pessimistic for a long periodic transfer
line. In this case, the description of the present article, in which
the transformed point moves in the invariant circle may be a
better description of reality.

As a general conclusion, it can be stated that the proposed
complex formalism provides a deeper complementary under-

standing of linear beam dynamics when compared to the
classical formalism, it allows to map complete regions of the
complex phase plane instead of single points, and, in general,
it contributes to improve our fundamental knowledge of beam
transport dynamics.
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