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Abstract: The aim of this review is to present 3D bioprinting of skin substitutes as an efficient
approach of managing skin injuries. From a clinical point of view, classic treatments only provide
physical protection from the environment, and existing engineered scaffolds, albeit acting as a
physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the
basic principles of bioprinting, together with the most popular approaches and choices of biomaterials
for 3D-printed skin construct production, are explained, as well as the main advantages over other
production methods. Moreover, the development of this technology is described in a chronological
manner through examples of relevant experimental work in the last two decades: from the pioneers
Lee et al. to the latest advances and different innovative strategies carried out lately to overcome
the well-known challenges in tissue engineering of skin. In general, this technology has a huge
potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials
and production processes.
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1. Introduction

In today’s society, most of the medical effort is focused on conditions, such as heart
disease or cancer, which are considered top causes of death. However, other conditions,
which may not be directly associated with death, yet bring about impaired quality of life
and suffering, are also a crucial challenge for public health systems. A relevant example
would be skin injuries and trauma, such as burns and chronic wounds, since the number of
affected patients and the impact on the medical system is considerable. Chronic wounds, for
instance, have a profound effect on quality of life [1]. In fact, pressure, diabetic and venous
ulcers not only have an important impact on medical system expenditure—their economic
spending is estimated to increase to more than 25 billion US dollars per year [1-3]—but
also represent a burden for more than 7 million affected patients. In Europe, there are
around 2 million patients suffering from chronic wounds, and in countries like the United
Kingdom, the treatment of chronic wounds represents around 3%—>5 billion pounds
annually—of total health system costs [1].

Likewise, burns are also amongst the most common types of trauma worldwide.
Indeed, burn-related medical attention is needed by 11 million people each year [4]. Ap-
proximately 10% of those burn injury patients present burns covering 30% or more of
their total body surface. The mortality is substantially high among those patients, and,
furthermore, the survivors are left with lifelong disabilities and disfigurement [5].
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To understand why different scaffolds have been developed, we must first under-
stand the basic pathophysiology of skin injuries. An ordinary cutaneous healing response
consists of four distinct but overlapping phases: haemostasis, inflammation, proliferation
and maturation [6]. During the haemostatic and inflammatory phases, blood coagulates,
providing a shield, while blood flow to the wounded area is increased, allowing extrava-
sation of plasma, generation of fibrin matrix and invasion of immunocompetent cells to
clean the tissue. These cells, namely macrophages, with the aid of mesenchymal stem cells,
attracted during the inflammatory phase, are responsible for the activation of fibroblasts
and vascular endothelial cells. Subsequently, the proliferative phase begins, and the fibrin
matrix is replaced with collagen, produced and secreted by fibroblasts. At the same time,
angiogenesis is promoted in the granulation tissue, and keratinocytes migrate from the
wound edges to the surface, while re-epithelisation begins [6-8]. Finally, during the matu-
ration or remodelling stage, the newly formed dermis regains its strength [9,10]. This series
of chronologically arranged but overlapping steps are carefully regulated by cytokines and
different growth factors [11-14].

Although replacing the missing skin with healthy tissue from the donors, themselves
(autograft), or a donor (allograft) remains the gold standard treatment for skin injuries,
grafting is not a solution as simple as it seems. On the one hand, the patient may not have
enough skin available for grafting—e.g., after extensive burns—and a donor site wound cre-
ation may not be recommendable. On the other hand, allografts coming from living donors
or cadavers may be rejected by the patient’s immune system or may cause the transmission
of viruses, such as hepatitis B or C or Human Immunodeficiency Virus [6,15,16]. Addition-
ally, the existing shortage of donors worldwide must also be taken into consideration [17].

Taking all this into account, it is reasonable that new treatment strategies aim to
replace the damaged skin tissue and to enhance the production of new skin constituents,
such as skin cells, extracellular matrix, vasculature and skin appendages, to accelerate
the wound-healing process [9,18,19]. In the last 30 years, advances in tissue engineering
have allowed the development of alternatives to skin grafts, known as skin substitutes.
There is a broad range of them already commercialised, which can be mono- or bilayered,
cellular or acellular, biologic or synthetic [6,18,20-22]. The first developed scaffolds were
acellular and consisted of extracellular matrix (ECM) components [23], collagen being
the most commonly used material—e.g., bovine type I collagen—[23-25]. Products, such
as Integra®, composed of a bilaminate sheet of cross-linked bovine tendon collagen and
shark glycosaminoglycans with a silicone sheet cover, and Biobrane® which consists
on a bilaminate membrane of semipermeable silicone membrane bonded to a layer of
nylon mesh coated with porcine type 1 collagen, are examples of such acellular synthetic
scaffolds [21,26-28]. Some wound care devices were synthesised using decellularised
cadaveric dermis, a more complete ECM that could provide cells with a better mechanical
support and promote their migration [18]. Examples of these decellularised allogenic
dermis scaffolds are GraftJacket®, composed of cryopreserved cadaveric dermal collagen,
and Alloderm®, an allogeneic lyophilised cadaveric collagen skin substitute [21]. Taking
a step further, human placental membrane products have been developed, which are
obtained from healthy female donors during routine caesarean section deliveries. The
commercially available placental allografts can be bilayered, containing both the amnion
and chorion layers of the placenta, or monolayered, containing only amnion products.
Among bilayered products, there is Amnioband®, an aseptically processed, dehydrated
human amnion and chorion allograft, and among monolayer products is Amnioexcel®,
a dehydrated amniotic membrane allograft [29-31]. Those skin substitutes are clinically
used for the treatment of chronic wounds, such as diabetic foot ulcers or leg ulcers, and for
the treatment of superficial to extensive burns [21,26-28].

More recent products have taken these approaches one step further by housing skin-
derived cells and growth factors within the scaffolds, with the aim of replicating the skin’s
physiological structure. For example, some therapeutic approaches comprise a lower
layer of fibroblasts representing the dermis and an upper layer of keratinocytes as an
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epidermis. This design confers similar mechanical properties to those of natural skin and,
furthermore, would also recapitulate the paracrine function of skin cells to promote a
faster and more efficient healing of the damaged tissue [32-34]. In particular, it would
act as a sustained delivery system of growth factors, which are key factors in wound
healing regulation, and their exogenous administration has been proven to accelerate
healing [35]. Examples of cells containing skin substitutes would be Apligraf®, bovine
type I collagen seeded with allogeneic neonatal foreskin fibroblasts and keratinocytes;
Dermagraf®, synthetic polyglycolic or polylactic acid (PGA orPLA), ECM and allogeneic
neonatal foreskin fibroblasts; or GRAFIX-Prime (viable cryopreserved placental membrane),
which are clinically indicated for chronic wounds, such as diabetic foot ulcers, and partial
and full thickness burns [36—40].

Even if there is some evidence that existing cell-containing skin substitutes provide
advantages in wound healing over acellular formulations [41], there are also studies that
question these cellular products’ cost-efficacy. In a comparative study carried out by Zelen
et al., acellular skin substitute Oasis® reported similar efficacy to Apligraf®, achieving
complete wound closure within 4-6 weeks at a considerably lower cost [42]. Another
study compared Theraskin® and Apligraf®. Despite reporting no statistically significant
differences in the healing rates, the expenditure using Apligraf® was 42.2% lower [43].

There are still several challenges tissue engineering must overcome to achieve a fully
functional artificial skin product [33,34,44], starting with the simplified bilayered structure.
The more accurate the microarchitecture of the artificial skin, the better cell-cell, cell-matrix
and dermo—epidermal interactions become, thus allowing a faster healing process and
tissue recuperation, as well as having better mechanical properties. However, conventional
methods of scaffold fabrication, such as electrospinning, fibre deposition, hydrogel casting,
freeze drying or gas—foaming, lack strict control of structural features, making it impossible
to recreate the skin’s complex structure and, consequently, its functionality [45]. The second
shortcoming is the fact that skin substitutes fail to address the need of neovascularisation in
the wounded area [46]. An insufficient blood supply compromises the amount of oxygen
and nutrients available for cell division and interaction through cytokine production,
slowing down the healing process and leading to rejection of the implanted skin substitute.
In a nutshell, for cell-laden bioscaffolds to become a more clinically relevant substitute of
skin grafts, a novel fabrication method is required that overcomes both poor perfusability
and lack of anatomical accuracy [3,47,48].

In this context, the emerging technology of 3D bioprinting (3DBP) has been turning
heads as a possible solution [46]. Three-dimensional BP is an advanced manufacturing
platform that enables the predefined deposition of biomaterials, living cells and growth
factors by means of computer-aided design (CAD). In this manner, it is possible to fabricate
custom-designed tissue constructs by an additive manufacturing—layer-by-layer—printing
process with a high degree of flexibility and repeatability [49]. This allows creation of
complex, heterocellular structures with anatomical precision and provides control over
different parameters essential for promoting cell adhesion and migration—e.g., pore size,
interconnectivity and density of ECM—whilst maintaining good cell viability [46,50].
Moreover, bioprinting technology has been rapidly advancing over the past few years and
its accessibility has never been greater [46,50,51].

2. Bioprinting: Principles and Techniques

There are different bioprinting techniques that have been used for the development of
scaffolds. The common denominator is the computer-aided design that serves as a template
to guide the bioprinting hardware into accurately patterned depositing of biomaterials [45].
The approaches described in the following paragraphs are successful tools for obtaining
3D-printed skin models.
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2.1. Inkjet Bioprinting

Inkjet printing is a noncontact printing technology based on desktop printers that
reproduces the initial digital design onto a substrate with tiny ink drops; the resolution that
can be achieved with this technique is about 20-100 um [45,52]. Depending on what type
of energy is used to create the drops and eject the bioink from the nozzle, inkjet bioprinting
may be thermal (Figure 1a) or piezoelectric (Figure 1b) [45,52]. In piezoelectric inkjet
bioprinting, ink is ejected through the nozzle with the use of an electric pulse, which causes
the piezoelectric actuator to increase its size, pushing the ink droplet forwards. Although
some biomolecules, like DNA, have been successfully printed, this approach is not optimal
for printing living cells, since their viability may be significantly affected by the electric
pulse [45,52]. On the other hand, thermoelectric inkjet-bioprinting has proven to be more
biocompatible, because the biomaterial drop temperature only rises about 4-10 degrees
above room temperature during printing.
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Figure 1. Schematic image of different bioprinting approaches: Two different types of inkjet droplet-
based bioprinting approaches: (a) Thermal: The droplets are generated via a heating device that
produces vapour in the thermal inkjet bioprinting approach. The bioink is ejected by deformation of
the liquid cavity caused by the thermal action. (b) Piezoelectric inkjet bioprinting: the device respon-
sible for generating the desired droplets is a piezoelectric actuator, also marked with a green arrow.
In this case, the piezoelectric device increases its size, deforming the liquid cavity, and generates a
droplet. In both cases, the cartridge is loaded with bio ink. (c) Pressure-assisted bioprinting. The green
arrow is showing air entrance; the compressed air inside the cartridge forces the piston down onto the
loaded bioink, and the movement of the piston extrudes the bioink through the nozzle in a continuous
filament. (d) Laser-induced forwards transfer (LIFT) technique representation. (1) Laser source or
diode. (2) Mirror. (3) Focusing lens. (4) Surface receiving laser irradiation. (5) Bioink containing cells.
(6) Receiving substrate. (7) Laser beam. When (4) absorbs the laser beam, a vapour bubble is induced
in (5), and a droplet encapsulating bioink and cells is created.

2.2. Pressure-Assisted Bioprinting

Pressure-assisted bioprinting (PAB), also referred to as extrusion-based bioprinting,
relies on a piston-driven, screw-driven or pneumatic force to push the ink through the
nozzle onto the building platform in the form of a continuous filament with a maximum
resolution of 200 um (Figure 1c) [34,45]. Because of this printing mechanism, the cell-
laden biomaterials used as bioinks for the production of 3D scaffolds must have certain
rheological properties to ensure the flow of the bioink along the nozzle and its physical
stability once printed. Although PAB allows less resolution in the obtained bioprinted
scaffold (200 pm) compared to other bioprinting strategies, a wider range of biomaterials
with different viscosities can be printed at room temperature [53-57].

2.3. Laser-Assisted Bioprinting

Both printing technologies described above involve the ejection of a bioink through
a tiny nozzle. To avoid nozzle clogging or damage to cells due to shear stress at the
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orifice, the viscosity and cell density of the bioinks used is limited [58]. However, there
are other approaches known as “orifice-free” that have overcome these drawbacks. One
of the most popular approaches is laser-assisted bioprinting. This technique is based on
laser-induced forwards transfer (LIFT) [59], which consists of a laser source irradiating
a surface coated with the bioink of interest and a receiving substrate. When the laser
irradiates the surface, a bioink droplet is created upon evaporation from the irradiated
surface, and it is transmitted to the receiving surface (Figure 1d). This approach allows
cell-level resolution—about 20 pm—and the possibility to print using higher cell densities,
thus reducing the cultivation time of printed grafts, since printing techniques that don’t
allow very viscous bioinks require postprocessing in order to obtain the desired cell density
through cell proliferation. This only partly solves the problem, since production time is
increased [3,45,59]. Moreover, published work support that the laser pulse does not harm
living cells or promote stem cell differentiation in any way [58,60,61].

3. Bioink Choice
3.1. Biomaterials

Bioink is the term used to refer to a biomaterial, usually a hydrogel with the desired
cells embedded within it, ready for the bioprinting process [17]. In order to obtain a stable
and accurately bioinspired printed construct, bioinks must be biocompatible and have
certain rheological properties (Figure 2) [62].

Functionality

-Physical support

-Cell stimulation:
Via growth factors
Via biomaterial

‘Immunomodulation

\ Ideal
‘Rheolo o PN )
-Viscositgyy& shear b.l,o,ln k -Non-immunogenic
thinning | -Degradation rate & non-
-Gelation / toxic byproducts

-Suitable Crosslinking

Printability . Biocompatibility

Figure 2. Requirements for bioinks. The ideal bioink must present the characteristics described in
the figure above, and it should be suitable for the bioprinting device to be used, biocompatible and
actively aid tissue reconstitution.

Regarding the biomaterial form, hydrogels have been widely used in tissue engi-
neering, thanks to their advantages. Their high-water content mimics natural tissue, and
their porosity offers good permeability to oxygen and nutrients. These features create
an environment that protects the cells during the bioprinting process and allows them
to carry out their clinical function once the printed construct is applied to the damaged
tissue [63—65]. In this context, hydrogel viscosity is also an important factor to consider. A
more viscous hydrogel will remain in the desired shape once printed; however, increasing
viscosity entails applying a higher shear stress during the printing process, which has been
demonstrated to reduce cell viability greatly. A possible solution for this limitation would
be immediate crosslinking of low viscosity hydrogels right after printing [66-70]. Accord-
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ing to open literature, hydrogel viscosity should be aimed at 306 x 10”7 mPa, whilst storage
modulus in the final bioprinted construct is suggested to stand within 10?~103 Pa [66].

Printability of a specific bioink mainly depends on rheological parameters, such as
viscosity and shear-thinning, especially in inkjet-printed products. Gelation is also a key
step, since the process must be fast so the printed filaments remain in the desired shape, yet
not too aggressive, as it could affect the viability of cells embedded in the bioink [11,66,71].
Biocompatibility is also necessary. Ideally, bioinks must be nonimmunogenic and degrad-
able at a rate similar to that of the targeted tissue recovery, and they should allow cell
attachment and proliferation. Ideally, the biomaterial’s mechanical properties should also
be skin-matching, and, regarding shape and structure, suitable porosity and homogeneity
are required [62,72].

Due to the many requirements, choosing the right biomaterial for 3DBP of skin
substitutes is a challenge that lies in finding the correct balance between biocompatibility
and mechanical properties [62,73,74]. In general, biomaterials that provide good mechanical
properties to the printed construct are not optimal for cell housing, whereas materials that
simulate a tissue-like environment for living cell protection lack the physical characteristics
needed to ensure printability and stability [62,73-75]. In any case, biomaterials can be
divided in two main classifications: based on their source, they can be synthetic or natural.
According to the characteristics of the materials they are composed of, the bioinks can be
classified as structural, fugitive, support and functional [62]. These are summarised in
Table 1.

Table 1. Table summarising different bioink components according to their function and characteris-
tics they provide in bioprinted tissues. (PCL: Polycaprolactone, PLGA: Poly lactic co-glycolic acid,
GAGs: Glycosaminoglycans).

Function Characteristics Cells Examples References
They allow adhesion, proliferation and Collagen [81-85]
Structural differentiation of printed cells, as well as cells from Yes Alginate [68,69,84-88]
patient’s tissue [76-80]. Chitosan [19,89-94]
Sacrificial materials that can be rapidly dissolved Alginat 384
Fugitive  once their function is completed. Used strategically No Ggllgt?ne [5[8 8]7]
to create voids and channels within 3D structures. Polyurethanes \[9'5]
Support Usually synthetic materials used to provide physical No PCL [85,96,97]
strength and integrity. PLGA [98]
P ional They influence cell behaviour and development Both Heparins [99]
unctiona through signalling and binding with growth factors. ot GAGS [25,99]

Naturally occurring biomaterials are a popular choice in the field of tissue engineer-
ing, because of their resemblance to native ECM, linking them with optimal biological
characteristics, such as biocompatibility, biodegradability and hydrophilicity. Most are
proteins—e.g., albumin, collagen, thrombin, fibrinogen—or polysaccharides—e.g., chi-
tosan, chitin, cellulose, alginate, hyaluronic acid. Nevertheless, besides poor mechanical
characteristics, low reproducibility in their production process and elevated price are other
drawbacks implied in the use of these biomaterials [100].

On the other hand, synthetic biopolymers like polyglycolic (PGA) or polylactic acid
(PLA), polycaprolactone (PCL) or polylactic-co-glycolic acid (PLGA) are also popular in the
field of bioprinting, due to their good mechanical properties [95-98]. However, the use of
synthetic biopolymers also entails certain limitations, since they differ greatly from natural
tissue and have poor or no cell recognition sites [100,101]. It is clear that no biomaterial
by itself has the optimal requirements to be used as a bioink. Hence, the trend has been
to combine biomaterials of different sources to overcome the setbacks encountered when
used individually [44,66]. The choice of biomaterials should be such that it matches the
mechanical properties of the target tissue and the requirements of the bioprinting device.
However, it is printability that usually has the last say, when it comes to tuning bioink
characteristics. In a general overview, we could highlight certain biomaterial combinations
that have been used in multicomponent bioinks.
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Alginate, a natural polymer extracted from seaweed, is a popular choice in bioprint-
ing, since it is biocompatible and easily cross-linkable by ionic exchange with divalent
cations at room temperature [66,67]. It also ensures protection to cells during the print-
ing process [66,68]. Alternatively, given that it is a bioinert material, bioinks containing
alginate are often functionalised by blending with other polymers, such as gelatin, which
contains tripeptide Arg-Gly-Asp (RGD sequences), or fibrin to allow cell interaction with
the bioink and enhance cell attachment and growth [66,68-70]. Another possible need of
functionalising an alginate-based bioink would be with the aim of modifying its mechanical
properties. Due to low viscosity, bioprinted alginate constructs tend to suffer from poor
shape-fidelity [66,102]. In this regard, suspending cellulose nanocrystals in the bioink
has proven to be a good strategy to confer shear-thinning properties and, thus, obtain a
modified bioink optimal for printing [66,102-104].

Other combinations that have been proven successful are silk fibroin and gelatin [66,77,80],
agarose and collagen [66,105] or chitosan and gelatin [89].

Mixtures of natural and synthetic polymers have also proven to yield functional
bioinks. For example, alginate was added to polyethylene glycol diacrylate (PEGDA) in
order to modify its printability. In this case, the mentioned mixture resulted in an increase
of the bioink’s elastic modulus, from 5 kPa to 75 kPa [66].

The biomaterials used for bioink development described in this section act mainly as a
structural component and facilitate the inclusion of cells and active biomolecules essential
for tissue reconstruction, which will be discussed in the following section.

3.2. Bioink: Cellular and Biomolecular Component

Despite skin’s relatively simple layered primary structure, it is a complex tissue regard-
ing different cell types; appendages, e.g., sweat grands or hair follicles; microvasculature;
nerves and ECM components. Tailoring every single element into a bioink seems, at this
stage of skin bioprinting, too difficult a task. Nevertheless, native skin tissue functionality
and microarchitecture is achieved by endowing the 3D constructs with the capacity to self-
assemble and develop, which is mainly done through the interactions of cells embedded in
the bioink and their environment [33,89,106-112].

The choice of cells in bioinks has been mainly led by two native skin cell types:
fibroblasts and keratinocytes [34,108,113-115]. Fibroblasts are distributed in the lower
layers of the bioprinted skin construct, simulating a dermal compartment. Their function
is to secrete glycosaminoglycans, proteoglycans and collagen, the main components of
the ECM, giving structural integrity back to the damaged tissue. Superficial layers of the
construct, destined to temporarily replace the missing epidermis, contain keratinocytes,
which initiate the healing process and re-epithelisation. It has been demonstrated that the
continuous crosstalk between these two cell types via cytokine and growth factor signalling
is essential for correct wound healing, steering away from inflammation and into a state of
cellular proliferation and synthesis [7,15,116,117]. An example of this interaction is shown
in Figure 3.
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Figure 3. Schematic representation of double paracrine action between keratinocytes and fibroblasts.
Keratinocyte-produced Interleukin-1 (IL-1) has an important role in this paracrine loop, as it targets
fibroblasts and enhances the production of both fibroblast and keratinocyte growth factors (FGF-
KGF). The production of Interleukin 6 (IL-6) is also initiated, and further stimulation of epidermal
cells is given. Moreover, fibroblasts also release Granulocyte Macrophage Colony-Stimulating
Factor (GM-CSF), in order to stimulate other cells for control and regulation of the wound healing
process [116,118].

However, these two types of cells are not the only ones present in healthy skin tissue.
There are others which are also involved in wound healing and maintaining homeostasis.
Mesenchymal stromal cells (MSC), naturally found within the pilosebaceous unit, are
known for their immunomodulatory effect, fine tuning of the cytokine microenvironment
and important role in correct scar formation [63,81,88,105,119]. Adipose Tissue-derived
Mesenchymal Stem cells (AT-MSC) have also received attention, due to their regenera-
tive potential and ECM remodelling functions [63,120-123]. Moreover, they have been
found to promote neovascularisation through vascular epithelial growth factor (VEGF)
secretion [63,121]. In this same context, different kinds of endothelial cells have been incor-
porated into 3D bioprinted scaffolds, yielding some degree of vascularisation [33,108-112].
Regarding pigmentation, melanocytes have also been incorporated successfully into
bioinks [113,124,125]. Table 2 summarises the types of cells that have been used for print-
ing skin constructs. The combination of the mentioned cell types in bioink formulations
could help achieve a more physiologically relevant tissue (development of hair follicles,
pigmentation, etc.) with better functionality. Generating more complex bioinks, in terms of
cell types, also adds further difficulties to the existing formulation challenge, since finding
media that will suit all cell types is not an easy task.
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Table 2. Table summarising the cell types used in the development of bioprinted skin constructs. (FB: fibroblasts, KC: ker-

atinocytes, PAB: pressure-assisted bioprinting, LAB: laser-assisted bioprinting, HUVEC: human umbilical vein endothelial

cells, iPSC: induced pluripotent stem cell, HECFCs: human endothelial cells cord blood human endothelial colony-forming

cells, MC: melanocytes).

Cell type Function Source Technique Ref.
Human dermal FB—neonatal
and adult—NIH 3T3 FB
Cellular component of Human foreskin FB PAB
. the dermis: secrete ECM . [33,58,83,84,108,109,
Fibroblasts . Porcine dermal LAB
components, giving - L 111,113,115,125-132]
. . FB—autologous and In situ bioprinter
structural integrity L. .
allogeneic in a porcine
animal model
Human epidermal
KC—neonatal and
Epidermis component: adult—HacCaT cells PAB
Keratinocvtes initiate the healing Human foreskin KC LAB [33,58,83,84,108,109,
y process and Porcine epidermal In situ bioprinter 111,113,115,125-132]
re-epithelisation KC—autologous and st bioprinte
allogeneic in a porcine
animal model
HUVEC
iPSC-derived endothelial
cells
. - Endothelial progenitor cells ~ PAB
Endothelial cells Vascularisation HECFCs Injekt bioprinting [108,109,111,115,128]
Human dermal
microvascular endothelial
cells
Stimulate vascularisation =~ Adipose-derived
. ) : PAB
Mesenchimal stem and wound healing mesenchimal stem cells Iniekt bioprintin [81,99,115]
cells through growth factors Amniotic fluid-derived jest boprinting T
. ) . In situ bioprinter
and cytokines secretion mesenchimal stem cells
Stabilisation of
. microvessels and .
Perycites regulation of vessel Human placental pericytes PAB [108]
guidance in angiogenesis
L . Human epidermal MC
Melanocytes Skin pigmentation (neonatal and adult) PAB [113,125,128]
Help to modulate Human hipodermis
Preadipocytes immune response and p PAB [128]

. L. readipocytes
improve vascularization p pocy

4. Advances in Skin Bioprinting
4.1. First Breakthroughs

The first bioprinted skin construct dates back to 2009, when pioneers Lee et al. em-
ployed a solid free-form fabrication system to produce a multilayered skin substitute
containing superposed collagen precursor, rat-tail source type I collagen; human fibroblasts
and human keratinocyte layers [83]. Their results, although only tested in vitro, showed
good cell proliferation in both planar and nonplanar surfaces and certainly served as a
boost to the idea of using 3D printing as an on-demand skin graft fabrication method.
Later on, in 2011, Binder and collaborators were the first to evaluate their 3D inkjet-printed
skin equivalents—human fibroblasts and keratinocytes in a fibrin and collagen matrix—in
full-thickness wounds on athymic mice. They demonstrated the feasibility of wound
healing by obtaining improved results over the controls—untreated, allogenic implant and
hydrogel matrix [130].

In terms of technological development, inkjet and extrusion bioprinting techniques
presented some drawbacks. Inkjet bioprinting only allowed printing inks with low cell
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densities to avoid high shear stress and clogging, and although this could be solved
by using an extrusion method with a slightly larger diameter, it was at the expense of
resolution [126,133]. When these drawbacks became well known, the scientific community
then directed is efforts towards a manufacturing approach that would overcome the
mentioned limitations in 3D printers. Against this background, the work of Koch et al.
served as proof to demonstrate the advantages of laser-assisted bioprinting (LAB) [58,126].
The LAB printing procedure not only did not affect cell viability but also provided higher
resolution in the printed construct and allowed printing at higher cell densities and any
desired viscosity. Koch et al. used this printing technique to obtain a bilayered skin
substitute composed of 20 sublayers of collagen—NIH 3T3 fibroblasts and 20 sublayers
of collagen-HaCaT keratinocytes, stabilised onto a Matriderm® sheet. To assess their
product’s postprinted functionality, they relied on cadherin and gap—junction expression
as an indicator of correct skin tissue development [58]. An in vivo wound healing study
of this tissue engineered skin construct was carried out using dorsal skin-fold chamber
approach. Although this method limits observation time, due to the chamber weight, it
avoids wound contraction and prioritises re-epithelisation, which is the major healing
method in humans. The results showed better vascularisation and tissue integration than
the control construct maintained in vitro, since the in vivo implanted engineered constructs
exhibited behaviours similar to those of physiological skin. However, as the experiment
duration was short, keratinocyte differentiation was not clearly visible [134]. Despite laser-
assisted bioprinting being a technological breakthrough in the tissue engineering field, its
high cost is a main concern, since novel fabrication methods aim to provide reproducibility
and high throughput at low cost [49].

Advances have also been made in the characterisation and control of printing parame-
ters in order to optimise printing processes. Lee et al. identified optimum parameters of air
pressure, pulse duration, droplet volume and droplet spacing, as well as density, for both
fibroblast and keratinocyte bioprinting. Moreover, they also describe a process of collagen
gelation—they used a collagen matrix for bioprinting—by using aerosolised NaHCO3 as a
cross-linker for collagen, which provided homogenous gelation and improved mechan-
ical properties of the construct [33]. As mentioned before, progress in bioprinted tissue
engineering products does not only depend merely on fabrication methods but also in
the formulation of reliable bioinks. Novel strategies and compositions have also been
worked on in recent years. In this context, Pourchet et al. developed a multifunctional
bioink, which could maintain a suitable gel rheology during extrusion process, consolidate
during postprocessing and allow a desired 3D network where tissue maturation could
occur. This was obtained by using three different components. Gelatin was used as a
rheological component and sacrificial material, which would be eliminated in subsequent
steps; alginate to provide structure and the desired mechanical strength and fibrinogen
for structure and cell-adhesion [127]. To finalise their study and present further proof
supporting the feasibility of their bioink and technique, they produced a more complex
bioprinted structure, using their dermal bioink and, subsequently, seeding keratinocytes.
They also compared the histological appearance of their bioprinted skin against natural
human skin. Although the bioprinted construct was able to support correct epidermal
stratification and differentiation and was physiologically representative of human skin,
a difference in Mason’s Trichrome colour could be observed in the dermal compartment
(Figure 4). This was due to the fact that mature human skin possesses more ECM and a
complex cocktail of cells, whereas the bioprinted skin only contained fibroblasts.
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Figure 4. 3D Bioprinted organ. (A) 3D computer-aided design (CAD). (B,C) 3D bioprinted adult-
sized ear constituted of fibroblast containing dermal bioink. As can be seen, the complex architecture
was retained during culture (i.e., immersion in Dulbecco’s Modified Eagle Medium (DMEM) culture
medium). (D) Mason’s Trichrome staining of human skin. (E) Mason’s Trichrome staining of
Pourchet’s bioprinted skin construct. Image reproduced with permission from Pourchet et al. [127].
Copyright 2017 John Wiley & Sons.

The previously mentioned work served as a proof of concept, demonstrating that
3DBP of cells and biomaterials is a good approach for producing synthetic biomimetic
skin [87,115,126,130,134].

4.2. Vascularisation Strategies

Since this technology has been under the spotlight for over a decade, new challenges
have emerged and, with them, different strategies to overcome them. One of the most
important challenges is the need of a vascular network to ensure the transport of oxygen
and nutrients, both to the printed cells in the graft and the healing tissue [53,135]. In
2014, the work of Lee et al. suggested that printed blood vessels could not replicate the
function of natural blood vessels, primarily due to the many components and complicated
microstructure of the latter [136,137]. Other 3D printing approaches involved micropat-
terning a perfusable vascular network within a skin construct [109]. Three-dimensional
printing technology was used to print out moulds for sacrificial microchannels of cross-
linked alginate that would remain embedded in the dermal compartment of the skin model
(Figure 5). After keratinocyte differentiation and once the fibroblast and collagen layer had
undergone contraction, the alginate was dissolved by perfusing a sodium citrate solution,
and endothelial cells were seeded inside the channels. This resulted in a skin equivalent
that was not only perfusable but also promoted neovascularisation, a property very much
desired in the search for more physiologically relevant skin constructs.
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Figure 5. Vascular channels in bioprinted skin constructs. (A) Mori and colleagues’” work: skin
integrated with perfusable vascular channels on a chip [109]. Histological analysis and barrier
function assessment. Both perfused and nonperfused samples were cryosectioned for evalua-
tion (i) Hematoxylin-eosin (H&E)-stained sections of perfused and nonperfused skin equivalents.
(if) Magnified images of the H&E-stained epidermal layers. (iii,iv) Immunostained vascular channels:
(iii) Immunostaining with HUVEC marker CD31 and (iv) basal membrane protein (type IV collagen).
(v) Barrier function evaluation by observing the repellence of water by the epidermal layer. (B) Abaci
and colleagues” work: human skin constructs with spatially controlled vasculature using primary
and iPSC-derived endothelial cells. (i) Image showing H&E staining of the bioprinted skin equivalent
showing normal skin physiology, and the lumen of the vascular channel is exposed. (ii,iii,iv) Im-
munofluorescent staining of histological sections of vascularised human skin equivalents generated
using iPSC-derived endothelial cells. The sections were immunolabeled with K10, K14 and loricirin
(red) and CD31 (green) to evaluate epidermal integrity and endothelial coating in the microchannels.
Scale bars: 250 pm. Images reproduced with permission from Mori et al. and Abaci et al. [109,111].
Copyrights 2017 Elsevier; 2016 John Wiley & Sons.

The use of sacrificial materials has also been popular in attempts to overcome poor
mechanical integrity in printed tissues and even organs. For example, Kang et al. developed
an integrated tissue—organ printer. They incorporated microchannels to overcome the
perfusion limit of 100-200 um and sacrificial layers to retain shape, which allowed them to
print tissues with higher complexity, as well as solid organs [114].

Another study describes the application of 3D printing to fabricate perfusable vascular
channels coated with endothelial cells within a cultured skin equivalent. The skin construct
was perfused via an external pump and tubes to provide nourishment. To assess their
method, they ran a histological and cell-distribution analysis, which showed normal dermal
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and epidermal morphology, good barrier function and correct adhesion of the endothelial
cells to the vascular channel wall, as seen in Figure 5. Absorption was also confirmed.
These results put forward for consideration the idea of using perfusable skin constructs as
models for systemic drug testing [111].

Another way to address the need for vascularisation and engraftment viability is
through the development of bioinks that can provide more physical stability and tissue-
specific microenvironment to cells, in addition to growth factors that promote vasculari-
sation. For example, the work of Kim et al. presented a skin-derived extracellular matrix
(S-dECM) bioink containing most of the ECM components, as well as cytokines and growth
factors. When printing using this bioink, endothelial progenitor cells and AT-MSCs ac-
celerated wound closure, and neovascularisation was observed. These data are shown
in Figure 6. Despite proving their formulated bioink was more physiologically relevant
than type I collagen bioink, they also noted that decellularisation methods needed to be
improved, due to possible immunogenicity [115].
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Figure 6. Kim et al.’s 3D cell printing of in vitro stabilised skin model and in vivo prevascularised
skin patch using tissue-specific extracellular matrix bioink. (a) Development of decellularised
extra cellular matrix bioink. (b) Representative photographs during 21 days of wound healing.
(c) Variations of wounds gaps. (d) Re-epithelialisation values in the wounds areas on various days
during wound healing. Data indicate mean + SD. * p < 0.05 versus Hank Balanced Salt Solution
(HBSS), # p < 0.05 versus dECM-ASC (skin equivalent composed of derived extracellular matrix and
containing adipose-derived mesenchymal stem cells (n = 8-11). (e) In vivo vascularisation evaluation.
Representative photographs of skin wound tissues on day 7 after immunostaining with anti-CD31
(green). Image reproduced with permission from Kim et al. [115]. Copyright 2018 Elsevier.
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In a more recent work, Baltazar and collaborators were able to obtain a construct
that was vascularised and biologically similar to human skin by incorporation of human
foreskin dermal fibroblasts, human endothelial cells derived from cord blood endothelial
colony-forming cells and human placental pericytes suspended in rat tail type I collagen
into their dermal bioink. In their epidermal compartment, a second bioink formulation
containing human foreskin keratinocytes was used. Rather than patterning and printing the
actual vascular network, they observed that the endothelial cells and pericytes associated
self-assembled into micro vessels in vitro. Moreover, in the presence of these cell types,
keratinocyte maturation seemed to improve, since the implanted grafts were able to develop
rete-ridges, a structure present in physiological skin histology that had been missing in
previous studies [108].

4.3. Pigmentation

Since bioprinting of relatively simplified, cellular skin constructs has already been
proved feasible, the objective is now to get closer to mimicking natural skin. One of the most
basic features of natural skin is its pigmentation. Because of this, and with melanocytes
being the main source of skin pigmentation, Min et al. decided to incorporate these cells
into their biomimetic skin model. First, a dermal equivalent structure of collagen and
fibroblasts was printed out, followed by the melanocytes, which were printed over the
dermis in two different configurations, a 6 mm side square and 2 mm diameter single
spots, the latter representing freckles [113]. Up to the date of their work, melanocytes
added to scaffolds had not been able to produce visible signs of pigmentation or required
activation through UV external stimuli [113,124,138]. In addition, Ng and co-workers put
efforts towards facilitating the use of three different skin cell types when bioprinting. They
identified the correct balance for a culture medium that would allow the proliferation and
growth of fibroblasts, keratinocytes and melanocytes in co-culture. Moreover, the use of
3D printing technology allowed the design of hierarchical porous structures, mimicking
those of natural skin, which contributed to the homogeneous distribution of the melanin
granules produced in the epidermal region, yielding a naturally pigmented full-thickness
skin graft [125].

In another recent experimental work, Jorgensen and collaborators produced a trilay-
ered structure incorporating fibroblasts, keratinocytes, melanocytes, dermal microvascular
endothelial cells, follicle dermal papillar cells and adipocytes, all suspended in a fibrinogen
bioink [128]. The resulting tissue was implanted in athymic mice and harvested after
21 days for testing. Immunostaining revealed correct barrier function, dermal develop-
ment, vascularisation and host cell integration. Moreover, wound healing occurred through
re-epithelisation, unlike the case of the hydrogel group, where wound contraction was the
primary mechanism seen. As a novelty, the group reported the formation of collagen basket
bundles, compared to parallel fibres in hydrogel and untreated wounds after picrosirius
red staining.

4.4. In Situ Bioprinting of Skin

Other important drawbacks associated with 3DBP technology include the need of
specialised personnel, high production costs and the amount of time it takes to print out
a clinically relevant skin construct [49,129]. Nevertheless, improvements in such aspects
have been kicked off by Cubo et al. and, more recently, also by Quilez et al. These research
groups have been able to print a skin substitute by combining human plasma, human
fibroblasts (hFBs) and keratinocytes (hKCs) that was later on polymerised and grafted in
less than 35 min, suggesting important potential for clinical applications [129,139]. In vivo
analysis and the bioprinting process scheme is shown in Figure 7.
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Figure 7. Cubo et al.’s 3D bioprinting of functional human skin: production and in vivo analysis.
Histological analysis (8 weeks postgrafting) of bioprinted human skin grafted to immunodeficient
mice. (A) Visual appearance of the grafted human skin. The dotted line marks the boundary between
human and mouse skin. (B) H&E staining of the regenerated human skin. (C) H/E staining of
normal human skin. The white dotted line in (B,C) indicates the dermo-epidermal junction (basal
membrane, BM). Ep and De in (B,C) denote the epidermal and the dermal compartments, respectively.
Scale bar: 100 um. (D) Scheme of the bioprinting process. The extrusion module contained four
syringes, loaded with human fibroblasts (hFBs) (a), plasma (b), CaCl, (c) and human keratinocytes
(hKCs) (d), respectively. The contents of the syringes (a—c) were continuously pumped out at the
appropriate speed, mixed as they arrived at the head, extruded through the needle and deposited on
the corresponding plate type (P100 or transwell), following the trajectories dictated by the control
unit. This mixture was allowed to polymerise for 30 min at 37 °C to form a fibroblast-containing
fibrin hydrogel, which became the dermal compartment of the skin equivalent. Immediately after
this polymerisation step, the hKCs suspension contained in syringe (d) was similarly deposited on
top of this hydrogel to form a confluent monolayer. (i) Equivalents printed on transwell inserts were
allowed to differentiate at the air-liquid surface for 17 d and then analysed. (ii) Equivalents printed
on P100 plates were grafted on to the backs of immunodeficient mice for eight weeks and then
analysed. Reproduced with permission from Cubo et al. [129]. Copyright 2016 IOPscience.

Following the urge of quick and instant bioengineered skin constructs for immediate
implantation, the idea of in situ bioprinting was born and started to develop independently
of in vitro bioprinting, as depicted in Figure 8. This figure also summarises the whole
development of 3D bioprinting of skin, from its first steps in 2008 and its upswing to come
in the following years.
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Figure 8. Timeline depicting the different advances and trends in bioprinted skin. The top blue
line represents the in vitro approach, whilst the bottom parallel green line represents the in situ
strategy. The evolution of bioprinted skin constructs is reflected, from the first simplified bilayered
structures containing only two cell types, to the most recent work and notable achievements, such as
the vascularisation, the inclusion of different cell types and the development of portable bioprint-
ers. Reproduced with permission from Lee et al., Koch et al., Cubo et al., Abaci et al., Ng et al.,
Skardal et al., Albanna et al. and Hakimi et al. [81-83,111,125,129,131,132]. Copyrights2012, 2016
John Wiley & Sons; 2016, 2018 IOPscience; 2009 Elsevier; 2018 Royal Soci-ety of Chemistry; 2019
Nature-Springer.

All the previously described studies involve bioprinting of skin in in vitro conditions,
postprocessing and subsequent engrafting in animal models. However, real clinical appli-
cation in patients could bring up potential complications, such as damage of the construct
while transporting or manipulating and incorrect placement on the wound, which will
most likely have a complicated 3D topology [3,49]. These issues could be avoided if the
printing device allowed in situ bioprinting of the skin graft directly onto the patients’
wounds, regardless of the size, using their body as a bioreactor where the engrafted skin
construct could functionally develop.
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The first in situ bioprinting work was done in 2011 by Binder and collaborators,
being also one of the first breakthroughs in bioprinting technology (see Section 4.1) [130].
Another important group developing advances in this area has been Skardal et al., who first
printed amniotic fluid-derived stem-cells embedded in a fibrin—collagen bioink onto mice
wound models [81]. Later on, they developed a tuneable hydrogel containing hyaluronic
acid, which was designed to promote cytokine release [99]. Even if the stem cells in the
first piece of work did not undergo permanent integration, their paracrine function was
very much beneficial, as the release of trophic factors and cell-cell communication led
to vascularisation enhancement and shorter wound closure time. On the other hand,
Hakimi et al. developed a portable printer that allowed in situ formation of biomaterial
and its deposition [131]. Albanna et al. also described a proof of concept of a portable
skin bioprinting device that enabled the in situ imaging and precise deposition of cells and
biomaterials onto extensive wounds. They applied this technology onto a porcine model,
and it resulted in rapid wound closure and re-epithelisation in 8 weeks [132].

However, there are also disadvantages to this approach, as some bioinks used in
tissue bioprinting require processes, such as chemical or UV treatment, to crosslink their
materials and provide structural integrity, adding more complexity to in situ treatment of
the patient [3].

5. Concluding Remarks and Future Perspectives

There is no doubt that 3DBP technology has a great potential to become a source
of extremely precise, reproducible and fully functional synthetic organs. Nevertheless,
despite the advances that have been described in this review, there are still many pending
challenges on the road to develop a fully functional, clinically applicable and affordable
3D-printed skin constructs.

It is true that, as with any innovative technology, there has been an initial stage where
expectations were unrealistically high, but 3DBP has already overcome that stage, and
now problems are being successfully identified and tackled. To begin with, the complexity
of any human tissue needs to be approached. To obtain a functional human organ, the
bioprinted construct needs to contain multiple cell types embedded in different bioinks that
confer adequate properties, hierarchical structure and interactions to each tissue. Perhaps
that can be slightly more achievable in the case of 3D-printed skin, as its soft tissue and
naturally layered structure make the design of the construct and deposition of biomaterials
easier than with other organs. Bioprinters are not able to reproduce the structure of the
skin yet, and, thus, they need to be upgraded, in terms of resolution, speed and number of
channels available, to fulfil the requirements of skin tissue engineering.

Another crucial step related to bioprinters that needs to be overcome is the scaling
up of 3D-printed skin manufacture to allow the treatment of large tissue defects and of
a great number of patients. Some challenges that scaling up presents are achieving an
acceptable resolution while printing large volumes of skin and the storage of produced
skin substitutes, as they are living constructs. A possible alternative is to develop in situ
bioprinters, which eliminates the necessity of scaling up. However, there are multiple
technological issues to develop a bioprinter able to produce a functional skin construct in
situ, along with logistical issues of storage of the bioinks containing living cells or issues
related to the crosslinking process.

The convergence of different fabrication techniques can be helpful to overcome the
technological problems that bioprinting of skin constructs presents. Using different bio-
printing techniques or even adding other types of fabrication, such as electrospinning or
casting, can bestow unique properties to the constructs, combining their advantages. For
instance, the combination of laser-assisted and pressure-assisted bioprinting can achieve
optimal resolution where needed, while being able to produce large volumes of construct
in a faster way. Another benefit of convergence of techniques is the capacity to obtain
layers with very different properties in the same constructs, due to the different fabrication
methods. Finally, combining 3DBP with other techniques allows the use of biomaterials
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that cannot be included in a bioprinted skin construct, widening the range of possibilities
to develop a skin substitute.

The development of an ideal bioink is also a challenge that needs to be addressed, for
example, the obtention of a bioink with desirable porosity, viscosity, mechanical properties
and ability to maintain cell viability. Regarding cell viability in skin constructs, although no-
table advances have been made in achieving some degree of vascularisation in the printed
constructs, a challenge remains, to some extent, and the heterogeneity of experimental
work suggests that the ideal approach to obtain vascularised tissue engineered skin has
not yet been attained. The addition of different cell types to skin constructs is definitely
a step forward to obtain more realistic products. However, obtaining skin annexes in
3D-bioprinted constructs, such as sebaceous glands and hair follicles, is a milestone which
still seems far away. Even if melanocytes have been added to skin constructs to obtain
pigmentation, the presence of melanocytes does not ensure a uniform pigmentation, and
even less the obtaining of a pigmented skin construct that matches the skin tone of the
patient, two challenges for the future that remain to be faced.

Innervation is an issue that has not been addressed yet in 3D-bioprinted skin constructs
but represents an important objective to obtain a functional skin construct. Although there
are multiple options to approach nerve regeneration, some strategies that have been fol-
lowed to develop 3D-printed scaffolds for the treatment of neural damage include Schwann
cells [140,141] or neural stem cells in the bioink [95,142], combined with dopamine-laden
bioinks to enhance neural differentiation [143].

Accordingly, the ideal skin construct contains several cell types. However, there is
a lack of information about the effect of these cells long-term. Safety studies are needed
to dismiss the possible negative outcomes of the application of allogeneic cells, such as
immune reactions, due to the breakdown of products; ectopic tissue growth, due to cell
migration; and even the formation of teratomas, depending on the cell types [144].

Finally, to incorporate 3DBP into clinical practice, standardisation of the production
process and regularisation are essential. The regularisation should include the tools, assays,
markers, animal models and quality controls needed to ensure the safety and effectiveness
of the skin constructs prior to their acceptance in clinical practice.

In all, if the scientific community makes a multidisciplinary effort to accomplish the
aforementioned goals, 3DBP is undoubtedly on the way to becoming the next medical
revolution.
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