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1. Introduction and Preliminaries

Suppose Y is a nonempty subset of a Banach space X. A mapping T : Y → Y is called
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ and a point z ∈ Y is a fixed point of T if Tz = z.
It is well-known that a nonexpansive mapping need not have a fixed point in a general
Banach space. However, by enriching the space with some geometric properties like
uniform convexity or normal structure, it is possible to have fixed points of nonexpansive
mappings. In 1965, the first existence results for nonexpansive mappings in Banach
spaces was obtained by Browder [1], Göhde [2] and Kirk [3], independently. Since then,
a number of generalizations and extensions of nonexpansive mappings and their results
have been obtained by many authors. Some of the notable extensions and generalizations
of nonexpansive mappings can be found in [4–14] and elsewhere.

In 2008, Suzuki [14] introduced a new class of nonexpansive type mappings known
as mappings satisfying condition (C) and obtained some important fixed point results
for these mappings. We note that, for this class of mappings, the nonexpansiveness
condition need not hold for all points but for a certain point in the domain. Suzuki [14]
also showed that these mappings need not to be continuous unlike the nonexpansive
mappings. We call this class of mappings as Suzuki generalized nonexpansive mapping
(SGNM for short). García-Falset et al. [5] considered a generalization of the SGNM, known
as mappings satisfying condition (E). Pant and Shukla [13] combined the SGNM with
Aoyama and Kohsaka [4] type α-nonexpansive mappings and introduced the notion of
generalized α-nonexpansive mappings. Pandey et al. [12] combined the SGNM with
other type of nonexpansive mappings and introduced a new class of mappings called
α–Reich–Suzuki nonexpansive mappings. They also showed that the class of α–Reich–
Suzuki nonexpansive mappings is contained in the class of mappings satisfying condition
(E). Recently, Atailia et al. [15] combined the SGNM and Hardy and Rogers [16] type
nonexpansive mappings and introduced a new class of mappings called as generalized
contractions of Suzuki type. They obtained some fixed point results for their new class
of nonexpansive type mappings. In this paper, we point out that the class of generalized
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contractions of Suzuki type mappings considered in [15] is contained properly in the class
of α–Reich–Suzuki nonexpansive mappings considered in [12] which is a sub-class of
mappings satisfying condition (E). Moreover, we show that results presented in [15] also
hold for the class of mappings satisfying condition (E). Some non-trivial examples are also
presented to illustrate facts. We also obtain a weak convergence theorem concerning the
trajectory (S(ζ))ζ>0 of a one parameter semigroup S of mappings satisfying condition
(E). Finally, we consider the Halpern iteration for finding a common fixed point of a
nonexpansive type semigroup and a countable family of mappings satisfying condition (E).
In this way, results in [5,15,17–19] have been extended, generalized and complimented.

Now, we recall some useful notations, definitions and results from the literature. We
denote F(T) as the set of all fixed points of mapping T, i.e., F(T) := {z ∈ Y : Tz = z}.
A Banach space X is said to be uniformly convex if, for each ε ∈ (0, 2] ∃ δ > 0 such that∥∥∥∥ x + y

2

∥∥∥∥ ≤ 1− δ for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ > ε. A Banach space X

is strictly convex if ∥∥∥∥ x + y
2

∥∥∥∥ < 1,

whenever x, y ∈ X with ‖x‖ = ‖y‖ = 1, x 6= y [20].

Theorem 1. [21]. Let X be a uniformly convex Banach space. Then for ε, Ω > 0 and x, y ∈ X
with ‖x− y‖ ≥ ε, ‖x‖ ≤ Ω, ‖y‖ ≤ Ω, there exists a δ > 0 such that∥∥∥∥1

2
(x + y)

∥∥∥∥ ≤ [1− δ
( ε

Ω

)]
Ω.

Theorem 2. [20]. Let X be a Banach space. The following conditions are equivalent:

(i) X is strictly convex.
(ii) If x, y ∈ X and ‖x + y‖ = ‖x‖+ ‖y‖, then x = 0 or y = 0 or y = cx for some c > 0.

Definition 1. [22]. A Banach space X satisfies Opial property if, for every weakly convergent
sequence (xn) with weak limit x ∈ X, it holds that:

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ X with x 6= y.

A Banach space which have a weakly sequentially continuous duality mapping also
have the Opial property. All finite dimensional Banach spaces and Hilbert spaces have
the Opial property. For p ∈ (1, ∞), `p spaces have the Opial property. However, Lp
(1 < p < ∞, p 6= 2) does not have the Opial property [21].

Definition 2. [23]. Suppose X is Banach space and Y is a nonempty subset of X. Suppose for
every element x ∈ X, there exists a, y ∈ Y such that for any z ∈ Y,

‖y− x‖ ≤ ‖z− x‖.

Then y is called a metric projection of x onto Y and is denoted by PY(x). If PY(x) exists and
determined uniquely for all x ∈ X, then the mapping PY : X → Y is called the metric projection
onto Y.

Definition 3. [20]. A mapping T : Y → Y is said to be a quasi-nonexpansive if for all x ∈ Y and
z ∈ F(T),

‖Tx− z‖ ≤ ‖x− z‖.
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It is well known that a nonexpansive mapping with a fixed point is quasi-nonexpansive.
However, the converse need not be true.

Definition 4. [14]. Suppose Y is a nonempty subset of a Banach space X. A mapping T : Y → Y
satisfies condition (C) if

1
2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ Y.

Definition 5. [5]. Suppose Y is a nonempty subset of a Banach space X. A mapping T : Y → Y
satisfies condition (Eµ) on Y if there exists µ ≥ 1 such that

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖

for all x, y ∈ Y. The mapping T satisfies condition (E) on Y when T satisfies (Eµ) for some µ ≥ 1.

Proposition 1. [5]. Suppose Y is a nonempty subset of a Banach space X and T : Y → Y satisfies
condition (E) with F(T) 6= ∅. Then T is quasi-nonexpansive.

Definition 6. [12]. Suppose Y is a nonempty subset of a Banach space X. A mapping T : Y → Y
is said to be a generalized α–Reich–Suzuki nonexpansive mapping if there exists an α ∈ [0, 1) such
that

1
2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ max{P(x, y), Q(x, y)} (1)

for all x, y ∈ Y, where

P(x, y) = α‖Tx− x‖+ α‖Ty− y‖+ (1− 2α)‖x− y‖
Q(x, y) = α‖Tx− y‖+ α‖Ty− x‖+ (1− 2α)‖x− y‖.

Definition 7. [15]. Suppose Y is a nonempty convex subset of a Banach space X and T : Y → Y a
mapping. A mapping Tα : Y → Y is said to be an α-Krasnosel’skiı̆ mapping associated with T if
there exists α ∈ (0, 1) such that

Tαx = (1− α)x + αTx

for all x ∈ Y.

Definition 8. [24]. Let Y be a nonempty subset of a Banach space X. A mapping T : Y → Y is
called asymptotically regular if

lim
n→∞

‖Tnx− Tn+1x‖ = 0.

Theorem 3. (The Schauder fixed point theorem [20]). Let Y be a nonempty compact convex
subset of a Banach space X and a self-mapping T on Y. If T is continuous, then T has a fixed point
in Y.

Lemma 1. (Demiclosedness principle). Let Y be a nonempty subset of a Banach space X which has
an Opial property. Let T : Y → Y be a mapping satisfying condition (E). If (xn) is a sequence in Y
such that (xn) converges weakly to x and lim

n→∞
‖xn − Txn‖ = 0 then Tx = x. That is, I − T is

demiclosed at zero.

Proof. The proof directly follows from [5] (Theorem 1).

Song et al. [19] considered the following mappings:
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Definition 9. [19]. A mapping T : Y → Y is called α-nonexpansive if there is an α < 1 such that
for all x, y ∈ Y

‖Tx− Ty‖ ≤ α‖Tx− y‖+ α‖Ty− x‖+ (1− 2α)‖x− y‖.

Definition 10. [25]. An α-nonexpansive semigroup S = {S(ζ) : ζ > 0} is called uniformly
asymptotically regular (or, u.a.r.) if for any positive s and any bounded subset K of D(S),

lim
ζ→∞

sup
x∈K
‖S(s)(S(ζ)x)− S(ζ)x‖ = 0.

Definition 11. [19]. A family {Sn} of α-nonexpansive mappings is said to be uniformly asymp-

totically regular if, for any bounded subset K of
∞
∩

n=1
D(Sn) and for each positive integer m,

lim
n→∞

sup
x∈K
‖Sm(Snx)− Snx‖ = 0.

2. Previous Results and Discussions

Atailia et al. [15] considered the following type of nonexpansive mappings:

Definition 12. Suppose Y is a subset of a Banach space X. A mapping T : Y → Y is called
generalized contraction of Suzuki type if there exists β ∈ (0, 1) and α1, α2, α3 ∈ [0, 1] where
α1 + 2α2 + 2α3 = 1 such that for all x, y ∈ X,

β‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ α1‖x− y‖+ α2(‖x− Tx‖+ ‖y− Ty‖)
+ α3(‖x− Ty‖+ ‖y− Tx‖). (2)

The following proposition illustrates that the mapping considered in Definition 12 is
properly contained in the class of generalized α–Reich–Suzuki nonexpansive mappings.

Proposition 2. Let Y be a subset of a Banach space X. If T : Y → Y is a generalized contraction
of Suzuki type

(
with β = 1

2

)
then T is a generalized α–Reich–Suzuki nonexpansive mapping.

Proof. Since T is a generalized contraction of Suzuki type, we have

‖Tx− Ty‖ ≤ α1‖x− y‖+ α2(‖x− Tx‖+ ‖y− Ty‖) + α3(‖x− Ty‖+ ‖y− Tx‖). (3)

We consider the following two cases.

Case (i) (‖x− Tx‖+ ‖y− Ty‖) ≥ (‖x− Ty‖+ ‖y− Tx‖). Then, (3) becomes

‖Tx− Ty‖ ≤ α1‖x− y‖+ (α2 + α3)(‖x− Tx‖+ ‖y− Ty‖).

Take α2 + α3 = α, since α1 + 2α2 + 2α3 = 1, α1 = 1− 2α, thus the above condition
becomes

‖Tx− Ty‖ ≤ α‖x− Tx‖+ α‖y− Ty‖+ (1− 2α)‖x− y‖. (4)

Case (ii) (‖x− Tx‖+ ‖y− Ty‖) < (‖x− Ty‖+ ‖y− Tx‖). Then, (3) reduces to

‖Tx− Ty‖ ≤ α1‖x− y‖+ (α2 + α3)(‖x− Ty‖+ ‖y− Tx‖).

Again, taking α2 + α3 = α, and α1 = 1− 2α, we obtain

‖Tx− Ty‖ ≤ α‖x− Ty‖+ α‖y− Tx‖+ (1− 2α)‖x− y‖. (5)
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Let

P(x, y) = α‖Tx− x‖+ α‖Ty− y‖+ (1− 2α)‖x− y‖ and

Q(x, y) = α‖Tx− y‖+ α‖Ty− x‖+ (1− 2α)‖x− y‖.

Then, in view of (4) and (5), we can conclude that

‖Tx− Ty‖ ≤ max{P(x, y), Q(x, y)}.

Therefore, T : X → X is a generalized α–Reich–Suzuki nonexpansive mapping.

The following example illustrates that the reverse inclusion need not be true.

Example 1. Suppose X = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 5), (5, 4)} is a subset of R2 with
norm ‖ · ‖ := ‖(x1, x2)‖ = |x1|+ |x2|. Let T : X → X defined by

T :
(

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 5), (5, 4)
(0, 0), (0, 0), (1, 0), (2, 0), (3, 0), (0, 0), (0, 5)

)
.

It can be easily seen that, for all x, y ∈ X and α ≥ 6
10 ,

‖Tx− Ty‖ ≤ max{P(x, y), Q(x, y)}.

Thus, T is generalized α–Reich–Suzuki nonexpansive mapping.

However, for x = (4, 0) and y = (5, 4)

β‖x− Tx‖ = β ≤ ‖x− y‖ = 5, and ‖Tx− Ty‖ = 8.

Now, we have

α1‖x− y‖+ α2(‖x− Tx‖+ ‖y− Ty‖) + α3(‖x− Ty‖+ ‖y− Tx‖) = 5− 3α2 + 5α3.

Thus, for all α1, α2, α3 ∈ [0, 1]

‖Tx− Ty‖ > α1‖x− y‖+ α2(‖x− Tx‖+ ‖y− Ty‖) + α3(‖x− Ty‖+ ‖y− Tx‖).

Hence T is not a generalized contraction of Suzuki type.

Atailia et al. [15] obtained the following lemma:

Lemma 2. Suppose Y is a nonempty subset of a Banach space X, β ∈
[

1
2 , 1
)

and T : Y → Y is a
generalized contraction of Suzuki type. Then

‖x− Ty‖ ≤
(

2 + α1 + α2 + 3α3

1− α2 − α3

)
‖x− Tx‖+ ‖x− y‖.

Proposition 3. Suppose Y is a nonempty subset of a Banach space X and T : Y → Y is a
generalized contraction of Suzuki type. Then T satisfies condition (E).

Proof. If we take µ = 2+α1+α2+3α3
1−α2−α3

≥ 1 in Lemma 2, then T satisfies the condition (E).

The following example ensures that the reverse inclusion may not be true.

Example 2. Suppose X =
(
R2, ‖ · ‖ 3

2

)
with the norm ‖(x, y)‖ 3

2
=

(
2
∑

j=1
|xj − yj|

3
2

) 2
3

, x =

(x1, x2), y = (y1, y2) and Y = [−1, 1]2 be subset of X. Let T : Y → Y be defined by
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T(x1, x2) =


(
|x1|

2 , x2

)
, |x1| < 1,

(−1, x2), x1 = 1,
(1, x2), x1 = −1.

First, we show that the mapping T satisfies condition (E). For this, the following cases are
considered:

Case (a) p = (x1, x2) and q = (y1, y2) with |x1| < 1 and |y1| < 1. Then,

‖Tp− Tq‖ 3
2
≤ ‖p− q‖ 3

2
and,

‖p− Tq‖ 3
2
≤ ‖p− Tp‖ 3

2
+ ‖Tp− Tq‖ 3

2
≤ ‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (b) |x1| < 1 and y1 = 1. Then,

‖p− Tq‖ 3
2
=
(
|x1 + 1|3/2 + |x2 − y2|3/2

)2/3
,

|p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3

and ‖p− Tp‖ 3
2
=

∣∣∣∣2x1 − |x1|
2

∣∣∣∣.
Since |x1| < 1, y1 = 1, we have |x1 + 1| ≤ |x1 − y1|+ 4

∣∣∣ 2x1−|x1|
2

∣∣∣. Thus,

‖p− Tq‖ 3
2
≤ 4‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (c) |x1| < 1 and y1 = −1. Then,

‖p− Tq‖ 3
2
=
(
|x1 − 1|3/2 + |x2 − y2|3/2

)2/3
,

‖p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3

and ‖p− Tp‖ 3
2
=

∣∣∣∣2x1 − |x1|
2

∣∣∣∣.
Since |x1| < 1, y1 = −1, we have |x1 + 1| ≤ |x1 − y1|+ 4

∣∣∣ 2x1−|x1|
2

∣∣∣. Thus,

‖p− Tq‖ 3
2
≤ 4‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (d) x1 = 1 and y1 = 1. Then,

‖p− Tq‖ 3
2
=
(
|x1 + 1|3/2 + |x2 − y2|3/2

)2/3
, ‖p− Tp‖ 3

2
= |x1 + 1|

and ‖p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3
.

Since x1 = 1 and y1 = 1, we have |x1 + 1| ≤ 2|x1 + 1|+ |x1 − y1|. Thus,

‖p− Tq‖ 3
2
≤ 2‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (e) x1 = 1 and y1 = −1. Then,

‖p− Tq‖ 3
2
=
(
|x1 − 1|3/2 + |x2 − y2|3/2

)2/3
, ‖p− Tp‖ 3

2
= |x1 + 1|

and ‖p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3
.
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Since x1 = 1 and y1 = −1, we have |x1 − 1| ≤ |x1 + 1|+ |x1 − y1|. Thus,

‖p− Tq‖ 3
2
≤ ‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (f) x1 = 1 and |y1| < 1. Then,

‖q− Tq‖ 3
2
=

∣∣∣∣2y1 − |y1|
2

∣∣∣∣ and ‖p− Tp‖ 3
2
= |x1 + 1|.

Since x1 = 1, |y1| < 1, we have ‖q− Tq‖ 3
2
≤ ‖p− Tp‖ 3

2
. Thus,

‖p− Tq‖ 3
2
≤ ‖p− q‖ 3

2
+ ‖q− Tq‖ 3

2
≤ ‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (g) x1 = −1 and y1 = −1. Then,

‖p− Tq‖ 3
2
=
(
|x1 − 1|3/2 + |x2 − y2|3/2

)2/3
, ‖p− Tp‖ 3

2
= |x1 − 1|

and ‖p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3
.

Since x1 = −1 and y1 = −1, we have |x1 − 1| ≤ 2|x1 − 1|+ |x1 − y1|. Thus,

‖p− Tq‖ 3
2
≤ 2‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (h) x1 = −1 and y1 = 1. Then,

‖p− Tq‖ 3
2
= |x2 − y2|, ‖p− Tp‖ 3

2
= |x1 − 1|

and ‖p− q‖ 3
2
=
(
|x1 − y1|3/2 + |x2 − y2|3/2

)2/3
.

Since x1 = −1 and y1 = −1,

‖p− Tq‖ 3
2
≤ ‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Case (i) x1 = −1 and |y1| < 1. Then,

‖q− Tq‖ 3
2
=

∣∣∣∣2y1 − |y1|
2

∣∣∣∣ and ‖p− Tp‖ 3
2
= |x1 − 1|.

Since x1 = −1, |y1| < 1, we have ‖q− Tq‖ 3
2
≤ ‖p− Tp‖ 3

2
. Thus,

‖p− Tq‖ 3
2
≤ ‖p− q‖ 3

2
+ ‖q− Tq‖ 3

2
≤ ‖p− Tp‖ 3

2
+ ‖p− q‖ 3

2
.

Therefore, in all the cases, T satisfies condition (E).
Furthermore, if p =

(
1
2 , x2

)
, q = (1, x2) then β‖p− Tp‖ 3

2
= β

4 ≤ ‖p− q‖ 3
2
= 1

2 and

‖Tp− Tq‖ 3
2
= 10

8 and
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α1‖p− q‖ 3
2
+ α2

(
‖p− Tp‖ 3

2
+ ‖q− Tq‖ 3

2

)
+ α3

(
‖p− Tq‖ 3

2
+ ‖q− Tp‖ 3

2

)
= α1

∥∥∥∥(1
2

, x2

)
− (1, x2)

∥∥∥∥ 3
2

+ α2

(∥∥∥∥(1
2

, x2

)
−
(

1
4

, x2

)∥∥∥∥ 3
2

+ ‖(1, x2)− (−1, x2)‖ 3
2

)

+ α3

(∥∥∥∥(1
2

, x2

)
− (−1, x2)

∥∥∥∥ 3
2

+

∥∥∥∥(1, x2)−
(

1
4

, x2

)∥∥∥∥ 3
2

)

=
1
2

α1 + α2

(
1
4
+ 2
)
+ α3

(
3
2
+

3
4

)
=

1
2

α1 +
9
4
(α2 + α3) =

1
2

α1 +
9
4

(
1− α1

2

)
=

9
8
− 5

8
α1.

Therefore, for all α1, α2, α3 ≥ 0, we have

‖Tp−Tq‖ 3
2
> α1‖p− q‖ 3

2
+ α2

(
‖p− Tp‖ 3

2
+ ‖q− Tq‖ 3

2

)
+ α3

(
‖p− Tq‖ 3

2
+ ‖q− Tp‖ 3

2

)
.

Hence T is not a generalized contraction of Suzuki type.

3. α-Krasnosel’skiı̆ Type Mappings

We prove some convergence results for mappings satisfying condition (E).

Theorem 4. Let Y be a nonempty convex subset of a uniformly convex Banach space X and a
mapping T : Y → Y satisfies condition (E) with F(T) 6= ∅. Then the α-Krasnosel’skiı̆ mapping
Tα for α ∈ (0, 1) is asymptotically regular.

Proof. Let y0 ∈ Y. For each n ∈ N∪ {0}, define yn+1 = Tαyn. Thus,

Tαyn = yn+1 = (1− α)yn + αTyn

and
Tαyn − yn = Tαyn − Tαyn−1 = α(Tyn − yn).

Now, to prove Tα is asymptotically regular, it is sufficient to show that lim
n→∞

‖Tyn −
yn‖ = 0. By Lemma (1) for all x0 ∈ F(T), we have

‖x0 − Tyn‖ ≤ ‖x0 − yn‖, (6)

and

‖x0 − yn+1‖ = ‖x0 − Tαyn‖ = ‖x0 − (1− α)yn − αTyn‖
≤ (1− α)‖x0 − yn‖+ α‖x0 − Tyn‖
= (1− α)‖x0 − yn‖+ α‖x0 − yn‖
= ‖x0 − yn‖. (7)

Therefore, the sequence (‖x0− yn‖) is bounded by u0 = ‖x0− y0‖. If yn0 = x0 for any
n0 ∈ N then from (7), yn → x0 as n→ ∞. If yn 6= x0 for all n ∈ N, take

zn =
x0 − yn

‖x0 − yn‖
and z

′
n =

x0 − Tyn

‖x0 − yn‖
. (8)
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If α ≤ 1
2 and from (8), we have

‖x0 − yn+1‖ = ‖x0 − Tαyn‖ = ‖x0 − (1− α)yn − αTyn‖
= ‖x0 − yn + αyn − αTyn − 2αx0 + 2αx0 + αyn − αyn‖
= ‖(1− 2α)x0 − (1− 2α)yn + (2αx0 − αyn − αTyn)‖
≤ (1− 2α)‖x0 − yn‖+ α‖2x0 − yn − Tyn‖

= 2α‖x0 − yn‖
‖zn + z

′
n‖

2
+ (1− 2α)‖x0 − yn‖. (9)

Using the uniform convexity of the space X with ‖zn‖ ≤ 1, ‖z′n‖ ≤ 1 and ‖zn − z
′
n‖ =

‖yn−Tyn‖
‖x0−yn‖ ≥

‖yn−Tyn‖
u0

= ε (say) (noting that modulus of convexity, δ(ε), is a non-decreasing
function of ε), we obtain

‖zn + z
′
n‖

2
≤ 1− δ

(
‖yn − Tyn‖

u0

)
. (10)

From (9) and (10),

‖x0 − yn+1‖ ≤
(

2α

(
1− δ

(
‖yn − Tyn‖

u0

))
+ (1− 2α)

)
‖x0 − yn‖

=

(
1− 2αδ

(
‖yn − Tyn‖

u0

))
‖x0 − yn‖.

Using induction in the above inequality, it follows that

‖x0 − yn+1‖ ≤
n

∏
j=0

(
1− 2αδ

(‖yj − Tyj‖
u0

))
u0. (11)

We shall prove that lim
n→∞

‖Tyn − yn‖ = 0. On the other hand, consider that ‖Tyn −
yn‖ does not converge to zero. Then, there exists a subsequence (ynk ) of (yn) such that
‖Tynk − ynk‖ converges to η > 0. Since δ(·) ∈ [0, 1] is non decreasing and α ≤ 1

2 , we have

1− 2αδ
(
‖yk−Tyk‖

u0

)
∈ [0, 1] for all k ∈ N. Since ‖Tynk − ynk‖ → η so, for sufficiently large k,

‖Tynk − ynk‖ ≥
η
2 , from (11), we have

‖x0 − ynk+1‖ ≤
(

1− 2αδ

(
η

2u0

))(nk+1)

u0. (12)

Making k→ ∞, it follows that ynk → x0. By (6), we get Tynk → x0 and ‖ynk − Tynk‖ →
0 as k→ ∞, which is a contradiction.
If α > 1

2 , then 1− α < 1
2 because α ∈ (0, 1). Now,

‖x0 − yn+1‖ = ‖x0 − (1− α)yn − αTyn‖
= ‖x0 − yn + αyn − αTyn + (2− 2α)x0 − (2− 2α)x0 + Tyn − Tyn

+ αTyn − αTyn‖
= ‖(2x0 − yn − Tyn)− α(2x0 − yn − Tyn) + 2α(x0 − Tyn)− (x0 − Tyn)‖
≤ (1− α)‖2x0 − yn − Tyn‖+ (2α− 1)‖x0 − yn‖

≤ 2(1− α)‖x0 − yn‖
‖zn + z

′
n‖

2
+ (2α− 1)‖x0 − yn‖

and, by the uniform convexity of X, we obtain

‖x0 − yn+1‖ ≤
(

2(1− α)− 2(1− α)δ

(
‖yn − Tyn‖

u0

)
+ (2α− 1)

)
‖x0 − yn‖.
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Using induction in the above inequality, we get

‖x0 − yn+1‖ ≤
n

∏
j=0

(
1− 2(1− α)δ

(‖yj − Tyj‖
u0

))
u0.

Using the similar argument as in the previous case, it can be easily shown that
‖Tyn − yn‖ → 0 as n→ ∞. Therefore, in both cases, Tα is asymptotically regular and this
completes the proof.

Theorem 5. Suppose Y is a nonempty and closed subset of a Banach space X. Let T : Y → Y be a
mapping satisfying condition (E) with F(T) 6= ∅. Then:

(i) F(T) is closed in Y.

(ii) If the subset Y is convex and space X is strictly convex then F(T) is convex.

(iii) If the subset Y is convex compact and space X is strictly convex. If T is continuous, then,
for any w0 ∈ Y, α ∈ (0, 1), the α-Krasnosel’skiı̆ process (Tn

α (w0)) converges to some
w∗ ∈ F(T).

Proof. (i) Let (wn) ⊆ F(T) such that wn → w ∈ Y as n → ∞. Thus, Twn = wn, we show
that Tw = w. Since T is quasi-nonexpansive, we get

‖wn − Tw‖ ≤ ‖wn − w‖.

This implies that Tw = w and F(T) is closed.

(ii) Since X is strictly convex, Y is convex, fix β ∈ (0, 1) and x, y ∈ F(T) such that x 6= y,
take w = βx + (1− β)y ∈ Y. Since mapping T satisfies condition (E),

‖x− Tw‖ ≤ ‖x− Tx‖+ ‖x− w‖ = ‖x− w‖.

Similarly,
‖y− Tw‖ ≤ ‖y− w‖.

From strict convexity of X, there is a µ ∈ [0, 1] in such a way that Tw = µx + (1− µ)y

(1− µ)‖x− y‖ = ‖Tx− Tw‖ ≤ ‖x− w‖ = (1− β)‖x− y‖, (13)

and
µ‖x− y‖ = ‖Ty− Tw‖ ≤ ‖y− w‖ = β‖x− y‖. (14)

From (13) and (14), we obtain

1− µ ≤ 1− β and µ ≤ β ⇒ µ = β.

Hence, Tw = w and w ∈ F(T).

(iii) Let us define (wn) by wn = Tn
α w0, w0 ∈ Y, where Tαw0 = (1− α)w0 + αTw0, α ∈ (0, 1).

Since Y is compact, then there exists a subsequence (wnk ) of (wn) that converges to
some w∗ ∈ Y. Since T is continuous, by the Schauder theorem, we have F(T) 6= ∅.
Now, we show that w∗ ∈ F(T). Let y0 ∈ F(T)

‖wn − y0‖ = ‖Tn
α w0 − y0‖

≤ ‖Tn−1
α w0 − y0‖ = ‖wn−1 − y0‖.

Therefore, (‖wn − y0‖) is decreasing sequence which bounded below by 0. So, it
converges. Furthermore, since Tα is continuous,
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‖w∗ − y0‖ = lim
k→∞
‖wnk+1 − y0‖ ≤ lim

k→∞
‖wnk+1 − y0‖

= lim
k→∞
‖Tαwnk − y0‖

= ‖Tαw∗ − y0‖
= ‖(1− α)w∗ + αTw∗ − y0‖ (15)

≤ (1− α)‖w∗ − y0‖+ α‖Tw∗ − y0‖.

Since α 6= 0, it implies that

‖w∗ − y0‖ ≤ ‖Tw∗ − y0‖.

Since T is quasi-nonexpansive,

‖Tw∗ − y0‖ ≤ ‖w∗ − y0‖.

From the above two equations, we obtain

‖w∗ − y0‖ = ‖Tw∗ − y0‖. (16)

In addition, from (15), we have

‖w∗ − y0‖ ≤ ‖(1− α)w∗ + αTw∗ − y0‖
≤ (1− α)‖w∗ − y0‖+ α‖Tw∗ − y0‖ = ‖w∗ − y0‖.

This follows that

‖(1− α)w∗ + αTw∗ − y0‖ = (1− α)‖w∗ − y0‖+ α‖Tw∗ − y0‖.

Since X is strictly convex, either Tw∗ − y0 = c(w∗ − y0) for some c > 0 or w∗ = y0.
From (16), it follows that c = 1, then, Tw∗ = w∗ and w∗ ∈ F(T). Since limn→∞ ‖wn −
y0‖ exists and (wnk ) converges strongly to w∗, (wn) converges strongly to w∗ ∈ F(T).

Theorem 6. Let Y be a nonempty closed convex subset of a uniformly convex Banach space X and
T : Y → Y a mapping satisfying condition (E) with F(T) 6= ∅. Suppose P is the metric projection
from X into F(T). Then, for each x ∈ Y, the sequence (PTnx) converges to some y ∈ F(T).

Proof. Let x ∈ Y, for n, m ∈ N such that n ≥ m. Then

‖PTnx− Tnx‖ ≤ ‖PTmx− Tnx‖. (17)

Since PTnx ∈ F(T) for all n ∈ N and T is quasi-nonexpansive

‖PTmx− Tnx‖ = ‖PTmx− T(Tn−1x)‖ ≤ ‖Tn−1x− PTmx‖.

Therefore, for n ≥ m, it follows that

‖PTmx− Tnx‖ ≤ ‖Tmx− PTmx‖. (18)

From (17) and (18), n ≥ m, we get

‖PTnx− Tnx‖ ≤ ‖PTmx− Tmx‖,

it implies that lim
n→∞

‖PTnx− Tnx‖ exists. Take lim
n→∞

‖PTnx− Tnx‖ = θ.
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If θ = 0, then, for all ε > 0, there exists an integer n0(ε) such that

‖PTnx− Tnx‖ < ε

4
(19)

for all n ≥ n0. Therefore, if n ≥ m ≥ n0 and using (18) and (19), it follows that

‖PTnx− PTmx‖ ≤ ‖PTnx− PTn0 x‖+ ‖PTn0 x− PTmx‖
≤ ‖PTnx− Tnx‖+ ‖Tnx− PTn0 x‖+ ‖PTmx− Tmx‖

+‖Tmx− PTn0 x‖
≤ ‖PTnx− Tnx‖+ ‖Tn0 x− PTn0 x‖+ ‖PTmx− Tmx‖

+‖Tn0 x− PTn0 x‖

≤ ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

Thus, (PTnx) is a Cauchy sequence in F(T), which is closed (by Theorem (5)) and X
is complete, then (PTnx) must converge to a point in F(T). Now, letting θ > 0, we claim
that the sequence (PTnx) is a Cauchy sequence in X. On the other hand, there exists an
ε0 > 0 such that, for every n0 ∈ N, there exists r0, s0 ≥ n0 such that

‖PTr0 x− PTs0 x‖ ≥ ε0,

we choose Θ0 > 0 small enough so that

(θ + Θ0)

(
1− δ

(
ε0

θ + Θ0

))
< θ,

and m0 sufficiently large so that, for all p ≥ m0,

θ ≤ ‖PTpx− Tpx‖ ≤ θ + Θ0.

For this m0, there exist p1, p2 such that p1, p2 > m0 and

‖PTp1 x− PTp2 x‖ ≥ ε0.

Thus, for p0 ≥ max(p1, p2), we have

‖PTp1 x− Tp0 x‖ ≤ ‖PTp1 x− Tp1 x‖ < θ + Θ0

and
‖PTp2 x− Tp0 x‖ ≤ ‖PTp2 x− Tp2 x‖ < θ + Θ0.

Since X is uniformly convex, we get

θ ≤ ‖PTp0 x− Tp0 x‖ ≤
∥∥∥∥PTp1 x + PTp2 x

2
− Tp0 x

∥∥∥∥
≤ (θ + Θ0)

(
1− δ

(
ε0

θ + Θ0

))
< θ

which is a contradiction and it completes the proof.

4. One Parameter Eµ Nonexpansive Semigroup

In this section, first we coin the definition of one parameter Eµ nonexpansive semi-
group.
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Definition 13. Suppose Y is a closed and convex subset of a Banach space X and S = {S(ζ) :
ζ > 0} is a family of mappings with domain D(S) = ∩

ζ>0
D(S(ζ)) and range R(S), where

D(S(ζ)), R(S) ⊆ Y. A one parameter Eµ nonexpansive semigroup is a family S = {S(ζ) : ζ > 0}
of mappings satisfying the following conditions:

1. For each ζ > 0, S(ζ) is a mapping satisfying condition (E), i.e., there exists µ ≥ 1 and for all
x, y ∈ D(S)

‖x− S(ζ)y‖ ≤ µ‖x− S(ζ)x‖+ ‖x− y‖; (20)

2. S(0)x = x for all x ∈ D(S);
3. S(ζ + ξ)x = S(ζ) · S(ξ)x for all ζ, ξ > 0 and x ∈ D(S).

The weak convergence of trajectories of one parameter semigroups of nonexpansive
mappings was studied by many mathematicians, especially by Baillon [26], Bruck [27],
Pazy [28], Miyadera [29], and Reich [30]. Motivated by the [17] (Theorem 1’) and [18]
(Theorem 3.2), we present our next result. Now, present a weak convergence theorem
concerning the trajectory (S(ζ))ζ>0 of a one parameter semigroup S of mappings satisfying
condition (E).

Theorem 7. Suppose Y is a closed convex subset of a uniformly convex Banach space X having
the Opial property. Let S = (S(ζ) : ζ > 0) be a semigroup of Eµ-nonexpansive mappings on Y.
Then, for each x ∈ Y, (S(ζ)x)ζ>0 converges weakly to a common fixed point of S , provided that
(S(ζ + β)x− S(ζ)x)ζ>0 converges strongly to 0 for all β > 0, and (S(ζ)x)ζ>0 is bounded.

Proof. Since (S(ζ)x)ζ>0 is bounded, there is a subsequence (S(ζi)x)i>0 of (S(ζ)x)ζ>0 such
that S(ζi)x ⇀ u†, where ζi → ∞ as i → ∞. Since, for all β > 0, (S(ζ + β)x − S(ζ)x)ζ>0
converges strongly to 0, we have that S(ζi + ξ)x ⇀ u†, where ζi → ∞ as i → ∞ for any
ξ > 0. By Opial property, we get

rξ+ζ = lim
i→∞

sup ‖S(ζi + ξ + ζ)x− u†‖

≤ lim
i→∞

sup ‖S(ζi + ξ + ζ)x− S(ζ)u†‖. (21)

Now, by the triangle inequality and (20), we obtain

‖S(ζi + ξ + ζ)x− S(ζ)u†‖ ≤ ‖S(ζi + ξ + ζ)x− S(ζi + ξ)x‖+ ‖S(ζi + ξ)x− S(ζ)u†‖
≤ ‖S(ζi + ξ + ζ)x− S(ζi + ξ)x‖
+ µ‖S(ζ) · S(ζi + ξ)x− S(ζi + ξ)x‖+ ‖S(ζi + ξ)x− u†‖
= (µ + 1)‖S(ζi + ξ + ζ)x− S(ζi + ξ)x‖+ ‖S(ζi + ξ)x− u†‖.

Thus,

lim
i→∞

sup ‖S(ζi + ξ + ζ)x− S(ζ)u†‖ ≤ lim
i→∞

sup(µ + 1)‖S(ζi + ξ + ζ)x− S(ζi + ξ)x‖

+ lim
i→∞

sup ‖S(ζi + ξ)x− u†‖.

Since (S(ζ + β)x− S(ζ)x)ζ>0 converges strongly to 0 for all β > 0, we have

lim
i→∞

sup ‖S(ζi + ξ + ζ)x− S(ζ)u†‖ ≤ lim
i→∞

sup ‖S(ζi + ξ)x− u†‖,

and from (21)
rξ+ζ ≤ rξ
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for all ξ, ζ > 0. Thus, (rξ) is a monotone decreasing and convergent to r = inf{rξ : ξ > 0}.
If r = 0, then there is a sequence (S(pi)x) with pi → ∞, which converges strongly to u†.
Furthermore,

lim
i→∞

S(pi + ζ)x = lim
i→∞

S(ζ) · S(pi)x

= lim
i→∞

S(ζ)u† (22)

for all ζ > 0. Now, we show that S(pi + ζ)x → u† as pi → ∞.

‖S(pi + ζ)x− u†‖ ≤ ‖S(pi + ζ)x− S(pi)x‖+ ‖S(pi)x− u†‖ → 0.

Thus, S(pi + ζ)x → u†. From (22), it follows that S(ζ)u† = u† for all ζ > 0. Again, let
r 6= 0 and assume that, for some ε > 0 and ζ0 > 0, ‖S(ζ0)u† − u†‖ ≥ ε. We can find an
ε1 > 0 such that (r + ε1)

[
1− δ

(
ε

r+ε1

)]
< r, where δ is the modulus of convexity of the

norm. Choose ξ0 > 0 such that rξ−ζ0 ≤ r + ε1 for all ξ ≥ ξ0. Then,

lim
i→∞

sup ‖S(ζi + ξ − ζ0)x− u†‖ ≤ r + ε1. (23)

By the triangle inequality and (20), we get

lim
i→∞

sup ‖S(ζi + ξ)x− S(ζ0)u†‖ ≤ lim
i→∞

sup ‖S(ζi + ξ)x− S(ζi + ξ − ζ0)x‖

+ lim
i→∞

sup ‖S(ζi + ξ − ζ0)x− S(ζ0)u†‖

≤ (µ + 1) lim
i→∞

sup ‖S(ζi + ξ)x− S(ζi + ξ − ζ0)x‖

+ lim
i→∞

sup ‖S(ζi + ξ − ζ0)x− u†‖.

Since (S(ζ + β)x− S(ζ)x)ζ>0 converges strongly to 0 and by (23), we obtain for all ξ > ξ0

lim
i→∞

sup ‖S(ζi + ξ)x− S(ζ0)u†‖ ≤ r + ε1. (24)

Since S(ζi + ξ)x ⇀ u† and in view of the Opial property, we get

lim
i→∞

sup ‖S(ζi + ξ)x− u†‖ ≤ r + ε1

for all ξ ≥ ξ0. Since X is uniformly convex and X has the Opial property, we have that, for
each ξ ≥ ξ0,

r ≤ lim
i→∞

sup ‖S(ζi + ξ)x− u†‖

≤ lim
i→∞

sup
∥∥∥∥S(ζi + ξ)x−

(
S(ζ0)u† + u†

2

)∥∥∥∥
≤ (r + ε1)

[
1− δ

(
ε

r + ε1

)]
< r,

a contradiction. This implies that u† is a common fixed point of S . Moreover, we claim
that there exists a v† ∈ F(S) such that lim

ζ→∞
PF(S)S(ζ)x = v†, where PF(S) is the metric

projection on F(S). From Theorem 5, we see that F(S) is a convex and closed subset of Y,
thus the metric projection PF(S) is well defined in F(S). Take

σ(ζ + ξ) = ‖S(ζ + ξ)x− PF(S)S(ζ + ξ)x‖.
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By the definition of metric projection,

‖S(ζ + ξ)x− PF(S)S(ζ + ξ)x‖ ≤ ‖S(ζ + ξ)x− PF(S)S(ζ)x‖.

Since PF(S)S(ζ)x ∈ F(S) and S(ζ) is a mapping satisfying condition (E), we have

‖S(ζ + ξ)x− PF(S)S(ζ)x‖ ≤ µ‖PF(S)S(ζ)x− S(ζ)PF(S)S(ζ)x‖+ ‖S(ζ)x− PF(S)S(ζ)x‖
= ‖S(ζ)x− PF(S)S(ζ)x‖ = σ(ζ). (25)

Therefore, for all ξ, ζ > 0, σ(ζ + ξ) ≤ σ(ζ). This follows that (σ(ζ))ζ>0 is monotonically
decreasing and converging to σ = inf(σ(ζ) : ζ > 0). Let σ = 0. Thus, for ξ, ζ > 0, using
triangle inequality and (25), we have

‖PF(S)S(ζ + ξ)x− PF(S)S(ζ)x‖ ≤ ‖PF(S)S(ζ + ξ)x− S(ζ + ξ)x‖
+ ‖S(ζ + ξ)x− PF(S)S(ζ)x‖
≤ ‖PF(S)S(ζ + ξ)x− S(ζ + ξ)x‖+ ‖S(ζ)x− PF(S)S(ζ)x‖
= σ(ζ + ξ) + σ(ζ).

Since lim
ζ→∞

σ(ζ) = σ = 0, it implies that (PF(S)S(ζ)x)ζ>0 is convergent to some point

v† ∈ F(S) (here F(S) is a closed subset of Y). Again, let σ > 0. If (PF(S)S(ζ)x)ζ>0 does
not converge strongly, then there is a sequence (PF(S)S(ζi)x) with i→ ∞, for given ε > 0,
the following holds: for all j, i ≥ 1, j 6= i,

‖PF(S)S(ζ j)x− PF(S)S(ζi)x‖ ≥ ε. (26)

We can choose ε2 > 0 such that (σ + ε2)
[
1− δ

(
ε

σ+ε2

)]
< σ and ζ > 0 such that

σ(ζ) ≤ σ + ε2 for all ζ ≥ ζ. Now, for all ζ j > ζi ≥ ζ, we have

σ(ζi) = ‖S(ζi)x− PF(S)S(ζi)x‖ ≤ σ + ε2, (27)

σ(ζ j) = ‖S(ζ j)x− PF(S)S(ζ j)x‖ ≤ σ + ε2. (28)

Since ζ j > ζi and from (25), we have

‖S(ζ j)x− PF(S)S(ζi)x‖ ≤ ‖S(ζi)x− PF(S)S(ζi)x‖.

From above inequality and (27), we have

‖S(ζ j)x− PF(S)S(ζi)x‖ ≤ σ + ε2. (29)

Since X is uniformly convex and, from (26), (28), and (29), we have that, for all
ζ j > ζi ≥ ζ,

σ ≤
∥∥∥∥∥S(ζ j)x−

(
PF(S)S(ζ j)x + PF(S)S(ζi)x

2

)∥∥∥∥∥
≤ (σ + ε2)

[
1− δ

(
ε

σ + ε2

)]
< σ,

a contradiction. Thus, (PF(S)S(ζ)x)ζ>0 converges strongly to some point v† ∈ F(S). Next,
we show that (S(ζ)x)ζ>0 converges weakly to v† = lim

ζ→∞
PF(S)S(ζ)x. We have shown that

S(ζi)x ⇀ u† where ζi → ∞ as i → ∞ and u† ∈ F(S). If u† 6= v†, then, by the Opial
property, we get
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lim
i→∞

sup ‖S(ζi)x− v†‖ = lim
i→∞

sup ‖S(ζi)x− PF(S)S(ζi)x‖

≤ lim
i→∞

sup ‖S(ζi)x− u†‖

< lim
i→∞

sup ‖S(ζi)x− v†‖,

a contradiction. Therefore, u† = v† and this completes the proof.

In 2018, Song et al. [19] considered the α-nonexpansive mapping semigroups and
obtained a common fixed point of this class of semigroup using the Halpern iteration
process [31]. They considered the one-parameter α-nonexpansive semigroup as follows:

Definition 14. A one-parameter α-nonexpansive semigroup is a family S = {S(ζ) : ζ > 0} of
mappings with domain D(S) = ∩

ζ>0
D(S(ζ)) and range R(S) such that:

1. For each ζ > 0, S(ζ) is α-nonexpansive, that is, there exists α < 1 and for all x, y ∈ D(S),

‖S(ζ)x− S(ζ)y‖ ≤ α‖S(ζ)x− y‖+ α‖S(ζ)y− x‖+ (1− 2α)‖x− y‖;

2. S(0)x = x for all x ∈ D(S);
3. For all ζ, s > 0 and x ∈ D(S), S(ζ + s)x = S(ζ)S(s)x.

Song et al. [19] proved the following lemma:

Lemma 3. Let Y be a convex closed subset of a Hilbert space M. Let T : Y → Y be an α-
nonexpansive mapping. Then, for all x, y ∈ Y, we have

‖Tx− Ty‖ ≤ ‖x− y‖+
(

2|α|
(1− α)

)
‖Tx− x‖. (30)

Proposition 4. Suppose Y is a nonempty subset of a Hilbert space M and T : Y → Y is an
α-nonexpansive mapping. Then T satisfies condition (E).

Proof. By the triangle inequality and (30), we get

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖

≤ ‖x− Tx‖+ ‖x− y‖+
(

2|α|
(1− α)

)
‖x− Tx‖

≤
(

1 +
2|α|

(1− α)

)
‖x− Tx‖+ ‖x− y‖.

Take µ =
(

1 + 2|α|
(1−α)

)
; then, T is a mapping satisfying condition (E).

The following example demonstrates that the inclusion in the above proposition is
strict.

Example 3. Suppose R is the set of real numbers with the standard norm and Y = [0, 4] a subset
of R. Let T : Y → Y defined as

Tx =

{
0, if x 6= 4,
3, if x = 4.

First, we show that T satisfies condition (E). We consider three nontrivial cases:

Case (1) x ≤ 3 and y = 4. Then

‖x− Ty‖ = ‖3− x‖ ≤ ‖x‖+ ‖4− x‖
= ‖x− Tx‖+ ‖y− x‖.
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Case (2) x > 3 and y = 4. Then

‖x− Ty‖ = ‖x− 3‖ ≤ 1 + ‖4− x‖
≤ ‖x‖+ ‖4− x‖
≤ ‖x− Tx‖+ ‖y− x‖.

Case (3) If x = 4, y 6= 4, then

‖x− Ty‖ = ‖4‖ ≤ 4‖1‖+ ‖4− y‖
≤ 4‖x− Tx‖+ ‖x− y‖.

Moreover, for x = 3, y = 4 and for any, α < 1

‖Tx− Ty‖ = 3 > 1 + 2α = 4α + 1− 2α

= α‖3− 3‖+ α‖4− 0‖+ (1− 2α)‖4− 3‖
= α‖x− Ty‖+ α‖y− Tx‖+ (1− 2α)‖x− y‖.

Hence, T is not an α-nonexpansive considered by Song et al. [19] or in Definition 9.

Remark 1. From proposition 4, we see that the class of a one-parameter α-nonexpansive semigroup
contained in the class of a one-parameter Eµ nonexpansive semigroup.

Song et al. presented the following theorem as the main result in [19].

Theorem 8. Let Y be a nonempty convex closed subset of a Hilbert space M. Let S = {S(ζ) : ζ >
0} be the u.a.r. semigroup of α-nonexpansive mappings from Y into itself with F(S) 6= ∅. For a
fixed u, x0 ∈ Y, and for each n ∈ N the sequence defined by

xn+1 = γnu + (1− γn)S(ζn)xn, (31)

where γn ∈ (0, 1), ζn > 0 and the following assumptions hold:

lim
n→∞

γn = 0,
∞

∑
n=1

γn = ∞, lim
n→∞

ζn = ∞. (32)

Then, the sequence (xn) converges strongly to u† = PF(S)u.

Now, we extend Theorem 8 for the class of one-parameter Eµ-nonexpansive semi-
groups.

Theorem 9. Let Y and M be defined as in Theorem 8. Let S = {S(ζ) : ζ > 0} be the u.a.r.
semigroup of Eµ-nonexpansive mappings from Y into itself with F(S) 6= ∅. For a fixed u, x0 ∈ Y,
and, for each n ∈ N, the sequence defined by

xn+1 = γnu + (1− γn)S(ζn)xn, (33)

where γn and ζn are the same as in Theorem 8. Then, the sequence (xn) converges strongly to
u† = PF(S)u.

Proof. Let v† ∈ F(S). From Proposition 1, we have

‖S(ζ)x− v†‖ ≤ ‖x− v†‖
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for all x ∈ Y and ζ > 0. Thus, from (33), we get

‖xn+1 − v†‖ = ‖γn(u− v†) + (1− γn)(S(ζn)xn − v†)‖
≤ γn‖u− v†‖+ (1− γn)‖S(ζn)xn − v†‖
≤ γn‖u− v†‖+ (1− γn)‖xn − v†‖
≤ max{‖u− v†‖, ‖xn − v†‖}.

Consequently, the sequence (xn) is bounded. Since ‖S(ζn)xn − v†‖ ≤ ‖xn − v†‖,
the sequence (S(ζn)xn) is bounded. From (32) and (33), we have

lim
n→∞

‖xn+1 − S(ζn)xn‖ = lim
n→∞

γn‖u− S(ζn)xn‖ = 0. (34)

Let C be a bounded subset of Y containing (xn) and (S(ζn)xn). Since S = (S(ζ)) is
u.a.r. Eµ-nonexpansive semigroup and from (32), i.e., lim

n→∞
ζn = ∞, we have that, for any

ξ > 0,

lim
n→∞

‖S(ξ)S(ζn)xn − S(ζn)xn‖ ≤ lim
n→∞

sup
x∈C
‖S(ξ)S(ζn)x− S(ζn)x‖ = 0. (35)

Thus, for all ξ > 0, from the triangle inequality and (20), we get

‖xn+1 − S(ξ)xn+1‖ ≤ ‖xn+1 − S(ζn)xn‖+ ‖S(ζn)xn − S(ξ)xn+1‖
≤ ‖xn+1 − S(ζn)xn‖+ µ‖S(ζn)xn − S(ξ)S(ζn)xn‖+ ‖xn+1 − S(ζn)xn‖
= 2‖xn+1 − S(ζn)xn‖+ µ‖S(ζn)xn − S(ξ)S(ζn)xn‖.

From (34) and (35), it implies that, for all ξ > 0,

lim
n→∞

‖xn+1 − S(ξ)xn+1‖ = 0. (36)

Since the sequence (xn) is bounded in Y, it has a subsequence (xnj) such that xnj ⇀ w†,
for some w† ∈ Y. Moreover, for all ξ > 0, from (36),

lim
j→∞
‖xnj − S(ξ)xnj‖ = 0.

By the demiclosedness principle for mapping S(ξ), we have w† ∈ F(S(ξ)). Since ξ is
an arbitrary, w† ∈ F(S). From Theorem 5, it implies that F(S) is closed and convex subset
of Y. Therefore, metric projection PF(S) : M → F(S) is well defined. Now, it remains to
prove that (xn) converges strongly to u† = PF(S)u. The rest of the proof directly follows
from [19] (Theorem 3.3).

Now, we extend [19] (Theorem 3.4) from a family of u.a.r. α-nonexpansive mappings
to a family of u.a.r. Eµ-nonexpansive mappings.

Theorem 10. Let Y and M be defined as in Theorem 8. Suppose {Sn} is a family of u.a.r. Eµ-

nonexpansive mappings on Y such that F =
∞
∩

n=1
F(Sn) 6= ∅. For fixed u, x0 ∈ Y and n ∈ N,

define the sequence (xn) by
xn+1 = γnu + (1− γn)Snxn,

where γn is same as in Theorem 8. Then, the sequence (xn) converges strongly to u† = PFu.

Proof. By replacing S(ζn) and S(ξ) with Sn and Sm, respectively in Theorem 9, we can
easily obtain the desired conclusion.
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5. Conclusions

In this paper, we showed that the class mapping considered in [15] is properly con-
tained in the class of generalized α–Reich–Suzuki nonexpansive mappings. We also showed
that a generalized contraction of Suzuki type mapping satisfies the condition (E) but not
conversely. Finally, we obtained some new fixed point results for α-Krasnosel’skiı̆ mappings
and one parameter nonexpansive type semigroups.
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