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Decoupled ion mobility in nano-confined ionic
plastic crystal†

Haijin Zhu, *ab Aleksandra Grzelak,ab Ruhamah Yunis, c Jaime Martı́n de and
Maria Forsyth abd

Nanoconfined ions have dramatically different local environments compared to the bulk, which profoundly

affects the ion solvation and transport properties taking place in the confined space. Herein, we investigate the

rotational and translation mobility of both cation and anions of an OIPC (diethyl)(methyl)(isobutyl)phosphonium

hexafluorophosphate) confined in 40 and 180 nm straight-through Al2O3 pores. The results revealed that the

nanoconfined OIPC exhibit 44 times higher ionic conductivity than the bulk material at 30 1C. This

enhancement is attributed to both the reduced tortuosity and the increased population of mobile

species. More interestingly, the Al2O3 nanochannels were found to selectively enhance the rotation and

translational motion of [P122i4] cation at elevated temperatures, whilst leaving that of the [PF6] anion less affected.

1. Introduction

The ever increasing safety and stability concerns associated
with organic solvent based liquid electrolytes have encouraged
the use of all-solid materials for electrochemical device applica-
tions. Despite the tremendous efforts in both industry and
academia dedicated to developing solid electrolytes using inor-
ganic salts, ceramics, polymers, and their composites, most of
these materials suffer from a significantly lower conductivity
compared to the liquid electrolytes. A fully hydrated Nafions,
for example, can easily achieve conductivity of 410�1 S cm�1,1

whereas hardly any polymer electrolyte can achieve a bulk
conductivity (without solvent) of the order of 10�3 S cm�1 at
room temperature.2

Organic ionic plastic crystals (OIPCs) represent a unique
family of solid materials with demonstrated applications as
solid-state electrolytes for lithium and sodium ion batteries,3,4

fuel cells,5,6 and dye-sensitized solar cells.7–9 OIPCs typically
consist of a bulky organic cation coupled with a highly sym-
metric anion.10 The relatively large size and high symmetry of

ions give rise to a balance in interionic interactions, which are
strong enough to maintain the long-range crystalline lattice
structure, yet weak enough to allow local molecular rotation
and tumbling in their solid plastic crystal phases.10 These fast
local molecular motions, as well as the associated structural
disorder, not only can induce fast-ion transport of doped target
ions such as Li+,4 Na+,11 H+,12 but also confer the material with
good mechanical ductility, allowing a tight and durable contact
between electrolyte and the electrodes.13

Since the very first ammonium-based OIPCs reported in the
1980s by Nakamura and coworkers,14,15 many new OIPC
families have been discovered and applied in various devices,
including the first demonstration of OIPC in Na batteries
recently.11,16 Nevertheless, the ionic conductivities of bulk
OIPCs in their plastic crystal phases are moderate, roughly in
the range of 10�6–10�4 S cm�1 depending on sample prepara-
tion and thermal history. These values are still typically 1–2
order of magnitudes lower than their ionic liquid relatives. On
the other hand, the OIPC itself is often soft and waxy, thus a
support is required to provide structural and mechanical
integrity. For these considerations, various polymer matrices
including PVDF,17,18 PEO,19 Poly(ionic liquid)s,20,21 as well as
various inorganic fillers, e.g., TiO2,22 Al2O3,23 SiO2

23,24 have
been introduced, aiming to increase mechanical strength and
enhance the ionic conductivity simultaneously. Recent studies
have shown that adding a second phase does not only provide
a mechanical support, but also brings in an unique
interface which had synergistic effect in boosting their ionic
conductivities.25 Wang et al., demonstrated that co-electrospun
OIPC composites comprised of between 5 and 20 wt% of
[C2mpyr][BF4] combined with PVDF, had room temperature con-
ductivity that was enhanced by 7-fold (compared to neat OIPC).25
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The key mechanism for this conductivity enhancement was the
disruption of crystallization and enhanced ion dynamics in the
OIPC phase due to the ion–dipole interactions between OIPC
and PVDF molecules. A maximum conductivity was found at
15 wt% OIPC loading, and further increasing OIPC leads to a
sharp decrease in conductivity. This is attributed to the fact
that the ion conduction took place only along a thin layer of
(percolated) amorphous OIPC/PVDF interphase. At high OIPC
loadings there will be more ordered OIPC present and thus the
ion conduction will be ‘blocked’ by this crystalline OIPC phase.
This is strongly supported by the DSC heating thermograms
where no first-order transition was observed for the sample of
5–15 wt% OIPC loading, whereas the 20 wt% loading clearly
showed peaks corresponding to crystalline OIPC phase.

An alternative strategy to increase the ionic conductivity of
OIPCs is through the addition of nanoparticles. Adding nano-
sized TiO2

22 or SiO2
26 into [C2mpyr][TFSI] was found to increase

ionic conductivity by approximately 1–2 orders of magnitude.
An optimum concentration of 10 wt% was observed for these
inorganic nanoparticle/OIPCs composites, which is similar to
the optimum OIPC loading of 15 wt% for [C2mpyr] [BF4]/PVDF
composites observed by Wang et al.25 These results therefore
suggested a percolation-dominated ion conduction mechanism
in these composites, although the positron annihilation life-
time spectroscopy (PALS) results suggested that the percolated
mobile phase may not be merely a thin layer of OIPC molecules
on the particle surfaces, but instead, an interface induced
disorder region that extends to the bulk OIPC with a length
scale of about 10 nm.26

In this study, we incorporate a well-known OIPC (diethyl)(methyl)
(isobutyl)phosphonium hexafluorophosphate ([P122i4][PF6]),4,27–29

into hexagonal aligned straight-through Al2O3 nano pores with
diameters of 40 and 180 nm. It is anticipated that the nan-
ometer pore size provides a large surface-to-bulk ratio and
boosts NMR signals from the interphase region, allowing us
to probe ion transport phenomenon within the interphases.
Secondly, using straight-through pores will also give unity
(smallest) tortuosity for ion transport. The effects of nano-
confinement on the rotational and translational mobility of
both cation and anion are investigated. We found that the
cation and anion exhibit decoupled ion motilities, and each
solid–solid phase transition is associated primarily with the
onset of motions of either cation or anion, not both. The cation
and anion transport behaviours within the 40 nm channels are
compared to that in the bulk [P122i4][PF6] material, with parti-
cular emphasis on the effect of tortuosity and surface interac-
tions between ionic species and the Al2O3 walls.

2. Experimental
2.1 Sample preparation

The mesoporous Al2O3 membranes with 40 and 80 nm through-
pores were purchased from Smartmembranes GmbH Germany.
The [P122i4][PF6] OIPC was synthesized following the procedures
described elsewhere.30 The OIPC was purified by crystallization

from a mixture of ethyl acetate and methanol. The molecular
structure is shown in Fig. 1, and the chemistry of the synthe-
sized material and the purity were confirmed by mass spectro-
scopy, 1H, 13C, 19F NMR and ICP-MS (residual potassium
contents). The cation and anion were identified in the
mass spectrum as shown in Fig. 1. The composite material
was prepared by melting the [P122i4][PF6] into nanopores on a
160 1C hot stage. The excess of OIPC material was wiped out
carefully with a doctor blade. Specifications of the membranes
and the composites are summarized in Table 1. As shown, the
porosity for the 40 and 180 nm membranes, as calculated by
Vpore

Vmembrane
, are 8 vol% and 11 vol%, respectively. The volume

percentages of the experimentally loaded OIPC, which were
calculated from the weight difference between the empty and
loaded membranes, are 10 vol% and 14 vol% respectively,
slightly larger than the porosity of the membranes. This suggest
an excess of OIPC material remained on the membrane surface,
which is beneficial for a good contact with electrodes during
conductivity measurements. For the ease of discussion, the
neat [P122i4][PF6] and the composites with 40 nm and 180 nm
Al2O3 membranes will be referred as neat, 40 nm and 180 nm in
the following text.

2.2 Ionic conductivity, SEM and DSC characterisations

Ionic conductivity was measured using a Solartron FRA 1296
-frequency response analyser, supported by Solartron software.
The neat [P122i4] [PF6] was pressed into a pellet with thickness of
1 mm and diameter of 13 mm. The neat OIPC pellet and
composite membranes were placed between two stainless steel
electrodes for conductivity measurements. Data were collected
over a frequency range from 10 MHz to 1 Hz using a signal
voltage of 0.1 V. A heating–cooling–heating temperature pro-
gram was applied between 20–160 1C with a step of 10 1C. The
samples were left to equilibrate for 10 min at each temperature.
A ZEISS SUPRA 55VP FEG scanning electron microscope was
used to characterize the surface morphology. The acceleration
voltage was 3 kV. The same samples after EIS measurements were
coated with Au and then submitted for SEM examination. The DSC
measurements were performed on a Netzsch DSC (214 polyma).
About 6–10 mg of the samples was sealed in an aluminum sample
pan in the glovebox. A three-step heating–cooling–heating program

Fig. 1 Molecular structure and mass spectroscopy of the OIPC [P122i4][PF6].
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between temperature range of �10–160 1C was applied, with a
heating and cooling rate of 10 1C min�1.

2.3 Solid-state and pulse field gradient (PFG) NMR

Static 1H, 19F and 31P NMR were performed on a 500 MHz
Bruker Avance III wide-bore solid state NMR spectrometer
equipped with a 5 mm static double resonance probe. The
alumina membrane sample was broken into small pieces and
filled into a 4 mm ZrO2 MAS rotor which was then sealed with a
ZrO2 cap in an Argon filled glovebox. The sealed rotor was
transferred out of the glovebox and inserted into the sample
chamber of the static probe for static powder pattern NMR
experiments. The same rotors were used later for PFG-NMR
experiments, which were performed on a 300 MHz Bruker
Avance III widebore spectrometer equipped with a Diff50
diffusion probe. The maximum gradient strength of this
probe is 29 T m�1. Diffusion time was varied between 8 ms
and 400 ms in a log scale to probe the restricted diffusion
behaviour. Sample temperature in the static NMR probe was
calibrated with 207PbNO3 using the method described in the
literature.31 The Diff50 probe temperature was calculated using
the chemical shift separation between the OH and CH3 groups
of dry methanol.32

3. Results and discussion
3.1 Morphology, thermal property and ion conduction

Fig. 2a and b present typical SEM surface images of the 40 nm
and 180 nm raw Al2O3 membranes. As shown, the hexagonally
aligned nanopores are highly ordered with a narrow size
distribution. The ionic conductivities of 40 nm and 180 nm,
as shown in Fig. 2c, are dramatically higher than the neat OIPC
in phase II and III. This enhancement is particularly significant
at lower temperatures. For example, the 40 nm pore confined
OIPC shows conductivities of 4.5 � 10�4 and 5.5 � 10�6 S cm�1

at 120 and 30 1C, respectively, which are 5 and 44 times that of
the neat OIPC. It is interesting to note that, while a sharp non-
linear increase with temperature was observed upon phase III -
II transition for neat OIPC, this behaviour was not as evident
for the nanoconfined OIPCs, suggesting different ion conduc-
tion mechanisms. DSC traces of the neat OIPC show three
distinct solid–solid transition peaks at about 25 1C, 72 1C,
120 1C, and a melting transition at 150 1C with a low entropy
of fusion. These transitions are consistent with those reported
previously.30 The 40 nm and 180 nm composites show very
similar solid–solid transitions compared to the neat OIPC, except
for the melting transition of 40 nm which was a bit broader.
Note that the endothermic peaks in the DSC thermograms only

characterize first-order transitions which occur in the crystalline
region, while the differences in the amorphous or defect region
are not reflected in these DSC curves. Solid state NMR lineshape
analysis, on the other hand, is an extremely valuable analytical
tool for assessing the molecular dynamics in both crystalline and
amorphous regions.15,33 Indeed, static 1H NMR spectra in Fig. 2e
suggest that the key factor that leads to higher conductivity of the
nanoconfined OIPCs lies in the amorphous region in between the
grain boundaries, which is consistent with previous MRI visuali-
sation of an mobile amorphous grain boundary region with
thickness of a few hundreds of nanometres.28,34 At 20 1C for
example, neat OIPC shows a broad Gaussian line, with no sign of
a narrow resonance observed. This agrees well with what has been
reported in prior literature.30 The 180 nm sample clearly shows a
sharp narrow line on top of a broad line, which hints at the
existence of a fraction of mobile cation species. The 40 nm sample
shows an even larger portion of these mobile cations, as indicated
by the much stronger narrow line intensity.

3.2 Tumbling and reorientation motion

To further understand the effect of nanoconfinement on the
local molecular motions of the OIPC ions, we performed a
detailed multinuclear static NMR study on the 40 nm sample,
which has a smaller pore size and consequently a larger surface
area. An interesting feature of this OIPC is that both cation and
anion contain a phosphorous nucleus which allows us to easily
compare the line-narrowing behaviour between cation and
anion in a single 31P spectrum. Fig. 3a shows progressive line
narrowing of both cation and anion in neat OIPC with tem-
perature. However, a close examination of the line narrowing

Table 1 Specification of the Al2O3 nanopores and composites

Pore
size [nm]

Pore
length [mm]

Pore
shape

Pitcha

[nm]
Porosity
vol%

OIPC
loading (mg)

40 100 Straight 125 8 5.5 � 1
180 100 Straight 480 11 6.8 � 1.2

a Centre-to-centre distance.

Fig. 2 Surface morphology, ionic conductivity and thermal behaviour of
the nano confined OIPC. (a) and (b) are the SEM images of the aligned
through-pores of the 40 nm and 180 nm raw membranes; (c) ionic
conductivities and (d) DSC heat-flow rate signals for neat, 40 nm and
180 nm samples. A heating–cooling–heating temperature program was
applied, and the second heating scans were reported for both conductivity
and DSC measurements. The conductivities of 40 nm and 180 nm samples
were normalized by the porosity of the membranes, which are 8 vol% and
11 vol%, respectively. (e) A comparison of static 1H NMR spectra of neat
OIPC, and that confined in 180 and 40 nm Al2O3 nanopores at 20 1C
(phase IV).
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behaviour revealed that the cation and anion exhibit very
different solid-phase transition dependency. Upon IV - III
transition, the cation lineshape narrowed significantly, whereas
the anion line showed nearly no change. Upon III - II
transition, the anion line narrowed sharply, exhibiting a feature
of J-coupling spitting which is typically observed for liquid
samples. The cation line, on the other hand only showed a
gradual narrowing with temperature. Then II - I transition is
featured by a sudden decrease in cation linewidth, whereas the
anion line remained essentially unchanged. The final melting
transition at about 153 1C leads to a sudden extreme narrowing
for both cation and anion lines. These results strongly suggest a
highly decoupled cation and anion dynamics throughout the
entire solid phases, and each of the solid–solid transitions are
mainly associated with the onset of motions in either cation or
anion, but not both. More specifically, the IV - III transition at
26 1C, and II - I transition at 120 1C are associated with the
cation, whereas the III - II transition at 72 1C is associated
with the anion. Using this understanding, we may explain
the extremely low phase III - II transition entropy of about
4 J K�1 mol�1, which might be related to the intrinsically high
symmetry of the PF6 anion. The highly decoupled cation and
anion dynamics is further confirmed by the static 1H NMR in
Fig. 4, and the 19F static NMR in Fig. 5. For the neat OIPC
sample, a sharp 1H line narrowing was observed over IV - III
and II - I transitions, while a sharp 19F line narrowing was
observed upon III - II transition.

The comparison of 1H spectra in Fig. 4 revealed significantly
different cation mobilities between the 40 nm and neat OIPC.
More specifically, a significant narrow component, which
represents the mobile species, is superimposed on the broader
1H peak for the 40 nm sample, even at low temperatures
(phase IV). However this narrow component was not observed
for the neat sample till the temperature raised up to 40 1C. With
further increasing temperature, only a tiny fraction (B1 mol%)
of this species presented till the temperature reaches phase I.
Interestingly, the 19F spectra in Fig. 5, shows similar anion

lineshapes in both samples in the studied temperature range.
This indicates that the nanoconfinment affects the cation and
anion mobility differently: the cation mobility is more
enhanced relative to the anion mobility as a result of nano-
confinement. This is highly consistent with our diffusion
measurements where we also observed enhancement in cation
diffusion, whereas the anion diffusion coefficients were very
close to the neat sample, as will be discussed in the following
Section 3.3. At 160 1C, both 1H and 19F spectra of the 40 nm
sample showed broader lines compared to the neat OIPC,
indicating restricted ion motilities in the melt state.

3.3 Translational motion

Ion diffusion is a key process that determines the conductivity
of the materials, and this process is known to behave differently
in a confined space than the bulk. In an infinitely large space,
the diffusion coefficient of a particle is independent of diffusion
time. In a confined space, however, the wall collisions cause the
diffusion coefficient to reduce. The observed diffusion coefficient
is a function of diffusion time, and the function varies for
different pore sizes and geometry.35 For isolated pores, the

Fig. 3 Stack plots of the variable temperature static 31P NMR spectra of (a) neat
OIPC and (b) the 40 nm sample, with separate peaks for cation and anion. The
temperature was increased from 10 to 160 1C with a step of 10 1C. The solid
transition temperatures are indicated on the arrow at left-side, and spectra of
each solid phase are grouped and coded with a different color.

Fig. 4 Stack plots of the variable temperature static 1H NMR spectra of
cation in (a) neat OIPC and (b) 40 nm sample. The temperature was
increased from 10 to 160 1C with a step of 10 1C.

Fig. 5 Stack plots of the variable temperature static 19F NMR spectra of
anion in (a) neat OIPC and (b) the 40 nm sample. The temperature was
increased from 10 to 160 1C with a step of 10 1C.
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diffusion coefficients approach zero when
ffiffiffiffiffiffiffiffiffiffi
6D0t
p

� d, where
D0 is the diffusion coefficient, t is the diffusion time and d is the
characteristic length of the closed space. For interconnected
pores, the diffusion coefficient decreases with increasing diffu-
sion time and reaches an asymptotic value DN, DN = D0/a,36

where a is the tortuosity, a = 1 for a straight line and a = N for a
circle. In an ideal one dimensional nanochannel where theffiffiffiffiffiffiffiffiffiffi
6D0t
p

� d (d is the diameter of the channel), the diffusion is
fully restricted in two directions that are perpendicular to the
length of the channel, and is free along the length direction.
Powder averaging of the diffusion in randomly oriented ion
channels would result in an apparent diffusion coefficient

Dapp ¼
1

3
D0,37 where D0 is the diffusion coefficient we would

obtain when all the channels are perfectly aligned with the
direction of the magnetic field gradient.

As shown in Fig. 6(a) and (b), the diffusion coefficients of
cation and anion in neat OIPC decrease with diffusion time,
indicating a restricted diffusion within a confined space. This
observation is consistent with the previous MRI study that
showed the mobile ions are confined within a grain boundary
phase with a characteristic thickness of a few hundreds of
nanometres.34 The [PF6] anion shows systematically higher
diffusion coefficients than the [P122i4] cation in the neat OIPC
at all temperatures and diffusion times measured. The nano-
confined OIPC, on the other hand, showed constant diffusion
coefficients with increasing diffusion time for both cation and
anion, as shown in Fig. 6(c) and (d). This is because the size
of the confined space of 40 nm is significantly smaller than

the mean-square diffusion displacement
ffiffiffiffiffiffiffiffiffiffi
6D0t
p

, which is esti-
mated to be in the order of 1–5 mm. Therefore, the observed
diffusion coefficient reached an asymptotic value DN. Interestingly,
the cation and anions show very similar diffusion coefficients in
the nanoconfined sample, which is in stark contrast with the neat
OIPC where a significantly higher anion diffusion is observed in

this study, as well as the previous experimental28 and MD
simulation38 studies. Note that the ionic diffusion in neat OIPC
is time-dependent and the measured self-diffusion is underesti-
mated because ions hit the walls of pores, thus direct comparison
of the diffusion between neat and nanoconfined species is invalid.
To obtain a time independent (free diffusion) coefficient, an
extremely short diffusion time is required, which is not accessible
by our instrument due to hardware limitations on the gradient
strength as well as RF pulse lengths.

The Padé approximation has been used to fit the experi-
mental data,39,40 and to interpolate between short time limit
(D0) and the long-time asymptotic limit DN. This method uses
an adjustable fitting parameter, y, which has units of time and
is expected to scale with the square of the pore size:

Dt

D0
¼ 1� 1� 1

a

� �
�

4
ffiffiffiffiffiffiffiffi
D0t
p

9
ffiffiffi
p
p � S

V
þ 1� 1

a

� �
� t
y

1� 1

a

� �
þ 4

ffiffiffiffiffiffiffiffi
D0t
p

9
ffiffiffi
p
p � S

V
þ 1� 1

a

� �
� t
y

; (1)

where a is the tortuosity,
S

V
is the surface to volume ratio of the

confined space. Using this model to fit the experimental data
shown in Fig. 6(a) and (b) allows us to estimate the free
diffusion coefficients of cation and anion in neat OIPC, and
the results are compared with the 40 nm confined OIPC in
Fig. 7. Interestingly, at higher temperatures of 90 & 80 1C, the
diffusion coefficients of [PF6] anion and [P122i4] cation confined
in the 40 nm pores, as well as the [PF6] anion in neat OIPC are
similar, whereas the [P122i4] cation of the neat OIPC shows
notably lower diffusion. This result suggests that the cation
diffusion, which was suppressed in neat OIPC, is enhanced
in the nanoconfined sample, mostly likely due to the surface
interactions between the ions and the Al2O3 walls. At lower
temperatures of 50 and 60 1C, while the error of fitting is large
due to the poor signal-to-noise ratio, it may still be valid to

Fig. 6 Time-dependent diffusion coefficients of the neat and 40 nm confined OIPC measured at variable temperatures, from top to bottom, red 90 1C,
blue 80 1C, green 70 1C, purple 60 1C and black 50 1C. (a) [P122i4] cation diffusion in neat OIPC; (b) [PF6] anion diffusion in neat OIPC; (c) [P122i4] cation
diffusion in 40 nm sample; (d) [PF6] anion diffusion in 40 nm sample. The dots represent experimental data points. The solid lines in (a) and (b) represent
the best fit using Padé approximation (eqn (1)), whereas solid lines in (c) and (d) are drawn to guide the eyes only. To achieve a better reproducible thermal
history, the temperatures were cooled down from 90 to 50 1C for all the experiments.
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claim that the difference between the two samples is significant
relative to the error. A clear plateau in the temperature region of
70–60 1C was observed for the neat OIPC sample, which
corresponds to the phase II to III transition of the OIPC, and
this discontinuity is also observed in the Arrhenius plot of
conductivity of neat OIPC in Fig. 2(c). The nanoconfined
sample, however, showed a typical Arrhenius diffusion beha-
viour in the studied temperature range, and fitting of the
experimental results revealed an activation energy of 70 � 4
and 72 � 3 kJ mol�1 for the cation and anion, respectively.

It is worth noting that the diffusion coefficients of the 40 nm
sample were measured in a powder sample where the nano-
channels are randomly oriented in all possible directions. If the
channels were aligned, which is the case for conductivity
measurements, the obtained diffusion coefficient could be 3
times the observed diffusion coeffients shown in Fig. 6 and 7.
The allignment dependency of the PFG-NMR measured diffu-
sion coefficient due to the fact that the magnetic gradient is one
dimensional: only the diffusion along the gradient direction is
considered effective, whereas that perpendicular to the gradi-
ent is measured to be zero.41,42 This would mean systematically
higher diffusion coefficients for both cation and anion in the
nano-confined ion channels compared to the neat OIPC, and
this enhancement is a direct consequence of using the nano-
confined through pores. As discussed earlier, the conductivity
enhancement at lower temperatures was way beyond 3 fold.
At 30 1C for example, the enhancement was 44 times. This means
that the alignment effect was not the only factor that contributes
to the conductivity, other reasons such as enhancement in the
population of mobile species, as evident from the static 1H NMR
spectra in Fig. 4a, must have played a role. At 120 1C, on the other
hand, the enhancement was 5 times, suggesting that the align-
ment of conduction pathways was one of the major factors that
contribute to the ionic conductivity enhancements.

4. Conclusions

In this study, we investigated the effect of nano-confinement on
the ion conduction, rotational dynamics and translational

motions (diffusion) of an organic ionic plastic crystal (OIPC)
material, [P122i4][PF6] in mesoporous Al2O3 membranes with
hexagonally aligned through pores. Our multi-nuclear static
NMR lineshape analysis suggested a highly decoupled cation
and anion dynamics throughout the entire solid phases of
[P122i4][PF6], and each solid-solid transition is primarily asso-
ciated with onset of motions of one ion species. The phase IV -

III transition at 26 1C, and phase II - I transition at 120 1C are
mainly associated with the onset of motions of cation, whereas
the phase III - II transition at 72 1C is associated with that of
the anion. The nano-confinement affects the populations and
dynamics of the mobile ions located in the amorphous or
defect regions only, while leaving the crystalline regions less
affected. The nanoconfined OIPC was found to exhibit 44 times
higher ionic conductivity at 30 1C, and this was attributed to the
combination of (1) alignment of ionic conduction pathways,
and (2) significantly higher population of mobile species.
At higher temperatures above 120 1C where all the ionic species
become mobile, the alignment of conduction pathways
becomes one of the major factors that contributes to the ionic
conductivity enhancements. Last but not the least, the meso-
porous Al2O3 substrate was found to selectively change the
rotation and translational motion of [P122i4] cation, whereas
leaving that of the [PF6] anion less affected.
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