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The aim of this research work is to find out some results in fixed point theory for a pair of families of multivalued mappings
fulfilling a new type of U-contractions in modular-like metric spaces. Some new results in graph theory for multigraph-dominated
contractions in modular-like metric spaces are developed. An application has been presented to ensure the uniqueness and
existence of a solution of families of nonlinear integral equations.

1. Introduction and Preliminaries

If the image of a point x under two mappings is x itself, then
x is called a common fixed point of those mappings. Theory
of fixed point has a basic role in analysis (see [1-39]).
Chistyakov [7] established the concept of modular metric
spaces and showed briefly about modular convergence,
convex modular, equivalent metrics, abstract convex cone,
and metric semigroup. Padcharoen et al. [16] introduced the
concept of a-type F-contractions in modular metric spaces
and discussed some related results. Further results on these
spaces in different directions can be seen in [6, 13, 14].

In this paper, we establish some common fixed point
theorems for two families of set-valued mappings satistying
a generalized contraction on a sequence only in a more
generalized setting of modular-like metric spaces. New re-
sults can be established in dislocated metric spaces, ordered
spaces, partial metric spaces, and metric spaces as a

consequence of our findings. To support our results, some
applications and examples are discussed. We give the fol-
lowing preliminary concepts which will be used in our
results.

Definition 1. (see [16]). Let A+ ¢. A function w: (0, 00) X
A x A —> [0,00) is called a modular-like metric on A if for
all a,b,c € A, 1>0, and w;(a,b) = w(l,a,b), it satisfies

(1) w;(a,b) = w;(b,a) for all I >0
(ii) w;(a,b) =0 for all I>0 and thena=b
(iii) wy,,, (a,b) <w;(a,c) +w, (¢, b) for all L u>0
If we replace (ii) by w; (a,b) = 0 for all [ > 0 if and only if
a = b, then w becomes a modular metric on A. If we replace
(ii) by w;(a,b) = 0 for some >0 and then a =b, then w

becomes a regular modular metric on A. For g € Aand >0,
B, (g.¢) = {p € A: wy(g, p)<e} is a closed ball in (A, w).
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We will use m.L.m. space instead of modular-like metric
space.

Definition 2. (see [16]). Let (A, w) be an m.L.m. space.

(i) EC A is known as w-complete if for any sequence
(a,)nen in E and for some >0, w; (a,,, a,) — 0 as
m,n — oo implies w; (a,,a) — 0asn — oo for
some a € E

(ii) The sequence (a,,),y in A is known as w-Cauchy
for some I>0 if w;(a,,,a,) — 0 as m,n — 00

(iii) The sequence (a,,),cy in A is known as w-conver-
gent to a€ A for some [>0 if and only if
wy(a,,a) — 0 as n — ©o

Definition 3. Let (A,w) be an m.L.m. space and ECA. A
member p, which belongs to E is said to be a best ap-
proximation in E for g € A if

wi(g,E) = infw; (g, p) = wi (g, po). (1)

If each g € A has a best approximation in E, then E is
known as a proximinal set. P(A) is equal to the family of
proximinal sets in A Let A=R*'U{0} and
w; (g, p) = 1/I(g + p) for all [>0. Define a set E = [4,6];
then, for each y € A,

w; (¥, E) =w;(y, [4,6]) = ui&fﬂ w (y,u) =w(3,4). (2)

Hence, 4 is the best approximation in E for each y € A.
Also, [4,6] is a proximinal set.

Definition 4. The set-valued mapping H,: P(A) x P(A)
— [0, 00), defined by

H, (N,M) = max{supwl (n, M), sup w; (N,m)}, (3)
neN meM

is known as w;-Hausdorff metric. The pair (P(A),H,) is
called the w;-Hausdorff metric space. Let A = R* U {0} and
w;(g,p)= (1) (g+p) for all I>0. If P=[56] and
O = [9,10], then H,, (P,0O) = (13/).

Definition 5. Let (X,w) be a modular-like metric space.
Then, we will say that w satisfies the A,;-condition if it is the
case that lim,,, ,w,(x,,x,) =0, for p =m—n implies
lim w; (x,, x,,) = 0(m,n € N,m>n) for some [ >0.

n,mMm—00

Definition 6 (see [33]). Let A+¢, & A — P(A) be a set-
valued mapping, BC A, and a: A x A — [0, +00). Then, &
is called o, -admissible on K if
a, (éa,&c) = inf{a(u,v): u€éa,veiéc}>1 whenever
a(a,c)>1, for all a,c € B.

Definition 7. Let A#+¢, & A — P(A) be a set-valued
mapping, MCA, and a: Ax A — [0,+00). Then, & is
called «,-dominated on M if  for all
a€M,a,(a a)=infla(a,l): 1 € Ea} > 1.
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Definition 8. (see [39]). Consider a metric space (W,d). A
function H: W — W is said A-contraction if for all
¢,k € W, there exists 7> 0 such that d(Ha, Hc) >0 implies

7+ A(d(Ha,Hc)) < A(d(a,c)), (4)

where A: R, — R is a mapping which satisfies the
following:

(F1) There  exists
lim, _.0"A(0) =0
(F2) For all a,c € R, such thata<c, A(a) < A(c), that
is, A is strictly increasing

(F3) lim,_,, . 0,=0 if and only if
lim,_,,A(0,) = —co, for each sequence {o,} >, of

positive numbers

ke (0,1) such  that

The family of all mappings satistying conditions (F1) to
(F3) is denoted by F.

Lemma 1. Let (A, w) be an m.L.m. space. Let (P (A), le) be
a Hausdorff w;-metric-like space. Then, for each a € K and for

all K,M € P(A), there exists b,eM such that
le (K, M) >w(a,b,).
Proof. If H, (K, M) = sup,.xw;(a, M), then

H,, (K, M)>w,;(a, M) for each a € K. As M is the prox-
iminal set, for every a € A, there exists at least one best
approximation b, € M which satisfies w; (a, M) = w;(a,b,).
Now, we have H,, (K,M)>w(a,b,). Now,

H,, (K, M) = supw; (K, h) > sup w; (a, M) >w,(a,b,),
' heM aek

forsomeb, € M.

(5)
Hence proved. O
Example 1. (see [21]). Let A=R. Define
B: Ax A — [0,00) by
1 ifb>t,
B(b,t) = (6)
— if bpt.
Define G,M: A — P(A) by
Gb=[-4+b,-3+Db],
(7)

Mt =[-2+t,—-1+t].

Then, G and M are not «, -admissible, but they are
a,-dominated.

2. Main Results

Let (S, w) be anm.L.m. spaceand ¢, € J;let {S,: 0 € O} and
{Tﬁ: B e CD} be two families of multifunctions from J to

P(3). Let ¢, eS,c, be an element such that
w(cy,Syc) =wlcy,c;). Let ¢, €Tye;, be such that
w(c, Tyey) =wl(cp,cy).  Let  c¢3€S.c, such  that
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w(c,, S.6;) =w(cy,c5). In this way, we get a sequence

TS (c,)p in S, where ¢;,,,1 € S Copip € TjConis n €N,
i€, and je ®. Also, w(cy, S;cy,) = W(CyyCapyq) and
W(Con1> TiCone1) = W(Coni15 Conin)- {Tﬁsa (cn)} is said to be a
sequence in § generated by ¢,. If {S,: 0 € Q} = {Tﬁ: Be CD},
then we denote {S, (c,)} instead of {TﬁSU(cn)}.

T+ U(le(Sgt, Tl;g)) < U<max{ w, (£, g),wy (£,S,t),

whenever t,g € IN {TﬂSU(cn)}, a(t,g)=21, 0€Q, ped,
and H,, (S;t,Tgg) >0.

, Then, the sequence {TﬁSa (cn)} generated by c, converges
toc € S, and for eachn € N, a(c,, c,,,) = 1. Also, if ¢ satisfies
(8) and either a(c,,¢)>1 or a(c,c,)>1 for all n € NU{0},
then S, and Tg have a common fixed point cin S for all o €
and 3 € ®.

T+U (wl (C2'+1’ C2'+2)) ST+ U(le(SfCZ" TgC2'+1))

Theorem 1. Let (3, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the A,,-condition. Let ¢, € S,
a: IxF — [0,00), {Tﬁ: Be CD}, and {S,: o € Q} be the
families of a,-dominated set-valued functions on w. Suppose
there exist T>0 and U €  such that

wz(t> Tﬁg) w, (8, Sat).wl(g, Tﬁg) }) (8)

2 ’ 1+w,(t,9)

Proof. Consider a sequence {TﬂSU (cn)}. Obviously, ¢, € S
for eachn € N.If jis odd, then j = 2° + 1 for some’ € N. By
the definition of «,-dominated mappings, we have
a, (€3,8,¢,) 21 and a, (cy,1, Tpcyyy) 21 for all 0 € O and
B ed. As a, (cy,S5¢5) 21, this implies
inf{a(c,,b): beS,c,}>1. Also, ¢y, € Sscy for some
feQ, so alcy,cppq)21. Also, ¢y, € Tycyy, for some
g € ®. Now, by using Lemma 1, we have

SU<max{w1 (cz.,cz-ﬂ),wl(cz.,Sfcz:), 5

< U(max{w1 (€35 341 )y (635 C341)s
<U (max{w, (¢35 €41)s Wy (€2415€242)})-

This implies

wz(C2'> TgC2‘+1) Wy (C2'> Sfcz‘)~w1 (Cz'+1) Tg52'+1)
, L+ w, (c56541)
(9)
w) (Cz" C2'+1) +w, (52’+1’ Cz'+2) W, (Cz" Cz’+1)-w1 (52'+1’ Cz'+2)})
2 L+ w, (c35C41)
for all i e NU{0}. By (14) and (15), we have
U (wy (€141 €2i2)) U (wy (€115 €)) — 21 (16)

T+U (wl (Cz'+1) ‘52'+2)) <U (max{wl (C2'> Cz'+1)’ wy (C2'+1r C2'+2)})-
(10)

Now, if

max{w, (€3 €y41)s Wy (€2415€242)} = Wy (€415 C240)s

(11)
then from (10), we have
U (w; (63101 €2i42)) SU (W1 (21415 €2i42)) = T (12)
a contradiction. Therefore,
max{w; (¢35 x40 ) w1 (€415 €2:00)} = wy (€5 ¢541),  (13)
for all i € NU{0}. Hence, from (10), we have
U (wy (62301 2i42)) U (w1 (€200 €3111)) = 7. (14)

Similarly, we have

U (w; (63 €5141)) SU (wy (€3-15€5)) = 7 (15)

Repeating these steps, we get
U (w; (€141 €2i42)) U (wy (c0¢1)) = (20 + D). (17)
Similarly, we have

U (w; (€200 €2111)) U (wy (¢, 1)) = 20 (18)
Inequalities (17) and (18) can jointly be written as

U (w; (¢ €pp1)) U (wy (cg€)) — 11 (19)

Taking the limit as # — o0 in (19), we have

an,nOO U(wl (Cn’ Cn+1)) =-. (20)
Since U € F,
nh—r>noowl (Cn’ Cn+1) =0. (21)

Applying the property (F1) of F, there exists k € (0, 1)
such that
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. k By (19), for all n e N, i
Tim (w, (60 600)) (U@, (G cu))) =0 (22) y (19), for allm €N, we obtain
k k
(wy (€ 1)) (U (W (€ €441))) = U (wy (0 €1)) < = (wy (€ €401)) 1T 0. (23)
L for all
Considering (21) and (22) and letting n — oo in (23), wy (6 i) < e oralln=n,. (25)
we have
f Take p>0 and m =n+ p> n>n;; then,
lim n(wl (Cn’ Cn+l)) =0. (24)
n—a~0
Since (24) holds, there exists n, € N such that
n(w, (¢ Cpyy)) <1 for all n>n, or
1 1 1
Wy (Cn’ Cm) Sw, (Cn’cn+1) T wy (Cn+1’ Cn+2) Tt wy (Cm’ Cm+1) < n(l/k) + (n+ 1)(1/k) Tt W (26)
Applying the limit as n,m — o0 on both sides, we have
li li ! li li !
i, Wp(Cnen) < lim g Mm@t A, @7)

As k € (0,1), then (1/k) > 1, and so,

lim L im . lim ;:0.
mn—o0 UK~ mn—oo (17 1 1) V0~ nm—sco 1, (1R
(28)
As w: (0,00) X I x I — [0, co), then
mlligz00 w, (€, ¢) = 0. (29)
Since w satisfies the A,,-condition, we have
lim w,(c,c,)=0. (30)

n,m—00

Hence, {TﬁSU (cn)} is a Cauchy sequence in w. Since
(S,w) is a regular complete modular-like metric space,

there exists ¢ € § such that {TﬁSU(CH)} — c as n — 00,
and so,

lim w1<cn,é> - 0. (31)

n—~aoo

Now, by Lemma 1, we have
T+ U(w1<c2n+1, T,;é)) <7+ U<le<Sec2n, Tﬁé>>, (32)

for some B e ® and some ec . Now, there exists
Copr1 € SeCay, such that w (¢, S,65,) = Wy (Copp» Coppyp)- From
the assumption, a(c,,c)>1. Assume that w, (c, Tgc) > 0;
then, there must be a positive real number p such that
wy (€341, Tpe) > 0 for n> p. Now, H,, (S.c,,, Tpc) > 0; then,
by using inequality (8), we have

Wy (Com Coner) + Wy <CZn+1’ TﬁC) Wy (Comr SeCan) - Wy <f) Tﬁc>

T+U(w1(c2n+1,Tﬁé>)sU max wl(cz,,,é),wl(czn,é),

Letting n — oo and using (31), we get

cr0(u(ne))su(w(ore)) o0

Since U is strictly increasing, (32) implies

2 1+w, <c2n, c)

(33)

w1<é, T,;) <w1<é, T,;(é). (35)

This js not true, So, our assumption is wrong. Hence,
w; (¢, Tpe) =0 or c € Tye for each B @. Similarly, by
proceeding with Lemma 1 and inequality (8), we can prove
that w, (¢,S,¢) =0 or ¢ € S;c for all 0 € Q. Hence, ¢ is a
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common fixed point of both the mappings S, and T in <3 for
allce Qand B e . O

Example 2. Let S = R, U{0}. Take w,(q,g) = (9 + g) and
w,(q.9)=12(q+g) for all q,ge€S. Suppose that
S5 Tp: I xJ — P(J) are two families of multivalued
mappings defined by

v 2y
507 =y m] HVES (36
where m =1,2,3,..., and
v
T,v= [E’_] ifves, (37)

ac€s,, x

where n=1,2,3,.... Suppose that v, =1 and w, (v,,
S1vp) = w, (1,5,1) =w, (1, (1/3)). So, v, = (1/3). Now,
wy (v, Tyvy) = w, ((1/3), T, (1/3)) = w, ((1/3), (1/12)).  So,
v, = (1/12). Now, w, (v,,S,v,) =w;((1/12),S,(1/12)) =
w, ((1/12), (1/72)). So, v5 = (1/72). Continuing in this way,

we have {T,S, (v,)} ={1, (1/3), (1/12), (1/72),...}. Con-
sider the mapping a: § x § — [0, 00) defined by
1, ifr>t,
a(r,t) = (38)
1 .
> otherwise.

Now, if v,y € IN {TﬁSU(vn)} with a (v, ) >1, we have

H, (S T,y) = max{ sup w, (a,T,y), sup w (S, b)}

< 2v [ y 3y )
"\3m’ l4n’ anl )
= max 1
2v] 3
(20
3m 3ml 4n (39)
2 1 2
=max<w1(_")l>’w < v 3y>} _max{ v,y +3y}
3m 4n 3m’ 4n 2 3m  4n'3m  4n
Vv
y) v 3m’
1
W (x, y) = max >
- Yy (v+ (v/3m)) - (y + (y/4n))
4n’ {1+v+y}
4vn + 9my < 10mnx + 10mny,
Case (). If max{(2v/3m) + (y/4n), (y/3m) + (3y/
4n)} = (2v/3m) + (y/4n) and 7 = In(1.2), then we have 24vn + 54my < 60mnx + 60mny,
8vn + 3my < 10mnx + 10mny, 6/v 3y (42)
5Gm i)Y
48vn + 18my < 60mnx + 60mny,
v 3y
6/2v y (40) In(1.2) + ln(a + 4_n> <In(x+ y).
S ) S5
moan This implies that
In(1.2) +1n<32—v+4l> <In(x+ y). T+ U(Hy, (S0 T,y)) U W (x, ). (43)
m  4n
L Hence, all the requirements of Theorem 1 are satisfied.
This implies that So, the families {S,,} and { {, } have a c}ommon fixed point.
If we take {S,: 0 € Q} = {Tj: B € @ in Theorem 1, then
T U(le (S, T"y)) UW (x, y)). (41) we obtain the above result.

Case (ii). If max{2v/3m + y/4n, y/3m + 3y/4n} = v/3m +
3y/4n and 7 =1n(1.2), then we have

Corollary 1. Let (3, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the Ay, -condition. Let ¢, € <,
a: IxJF — [0,00), and {S,: 0€Q} be a family of



o, -dominated set-valued functions on 3. If there exist 7> 0
and U € F such that

T+ U(le(Sgt, Sﬁg)) < U<max{ w, (t, g), w, (£, S,t), wz(t, Sﬂg),

whenever t,g € IN{S,(c,)}, a(t,g)>1, o0,f€Q, and
H,, (S,t,Szg) >0, then the sequence {JS, (c,)} generated by
¢, converges to c € 5, and for each n e N, «a(c,,c,,)=1.
Also, if ¢ satisfies (44) and either a(c,,c) > 1 or a(c, c,) > 1 for
everyn € NU{0}, then {S,: 0 € Q} has a common fixed point
cin .

3. Applications in Graph Theory

Jachymski [11] developed a relation between fixed point
theory and graph theory by the induction of graphic con-
tractions. Hussain et al. [9] established some results for the
new type of contractions endowed with a graph and also
showed an application. Further useful results on the graph
can be seen in [34, 35, 40].

T+ U(le(Sat, T/;y)) < U(max<| w, (£, ), w, (£ S,1),

whenevert,y € N {Tﬁso(cn)}, (ty)eL(Y),oeQ, e,
and H,, (S;t,Tgy)>0.

Assume that 3 is regular and satisfies the Ay -condition.
Then, {TﬁSU(cn)} is a sequence in 3, (c,,c,,,) € L(Y), and
{TﬁSU(cn)} — g*. Also, if g* satisfies (45) and
(cppg™) € L(Y) or (g*%,c,) € L(Y) for each n e NU{0}, then
S and T g have common fixed point g* in 3 for all o € 0 and
ped.

T+ U(le(sat, Tﬁy)) < U<max{ w; (8, y), w, (¢, Syt),

whenever t,y €3N {TI;S(7 (cn)}, alt,y) =1, and
H,, (S,t,Tgy)>0. Also, (ii) holds. Then, by Theorem 1, we
{TﬁSJ (cn)} is a
{TﬁSo(cn)} — g*e€S3. Now, c,g" €S, and either
(c,pg") € L(Y) or (g*,c,) € L(Y) implies that either
a(c,,g*)=1 or a(g*,c,)>1. So, all the requirements of
Theorem 1 are satisfied. Hence, from Theorem 1, S, and T

have sequence in S, and
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w; (1,8,t) - wi(g:Sp9) } ) (44)

1+w,(t,9)

Definition 9. Let AbeanonemptysetandY = (V(Y), L(Y))
be a graph with V (Y) = A. A mapping F from A to P(A) is
known as multigraph-dominated on A if (a,b) € L(Y),
whenever a € A and b € Fa.

Theorem 2. Let (T, w) be a complete m.l.m. space endowed
with a graph Y, c, € S, and the following hold:
(i) {Tﬁ: Be CD} and {S,: o € Q} are sets of multigraph-
dominated functions on F N {TﬁSU(cn) .
(ii) There exist >0 and U € f such that

(45)

wz(t’ Tﬁy) Wy (t’ Sat) ) wl(y’ Tﬁy) } >

2 ’ 1+ w, (ty)

Proof. Define a: I x F —> [0,00) by a(t,y)=1if t €J
and (t, y) € L(Y). Otherwise, a(t, y) = 0. By the definition
of the graph dominated on S, we have (¢, y) € L(Y) for all
y €S, tand (t,y) € L(Y) for each y € Tﬁt. So, a(t,y) =1
forall y € St and a(t, y) = 1 for every y € Tgt. This means
that inf{a(t, y): y € Syt} = 1 and inf{a(t, y): y € Tﬁt} =1.
Hence, a, (¢,S,t) = 1 and «, (t, Tﬁt) =1foreveryt € S. So,
the families of mappings are «,-dominated on . Fur-
thermore, inequality (45) can be expressed as

wy(6,Tpy) wi(8Set) - wi (. Tpy) (46)

2 ’ 1+w, (£, ) ’
have a common fixed point g* in S, and
w,(g*,g") =0. O

4. Results on Single-Valued Mappings

In this section, some consequences of our results related to
single-valued mappings in m.l.m. spaces have been dis-
cussed. Let (J,w) be an m.lm. space, ¢, €S, and
S5 Tp: I — S be two families of mappings. Let ¢; = S,cq,
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¢; =Tgey, and ¢3 = S,c,. Adopting this way, we make a
sequence ¢, in J so that ¢y, = S,¢,, and ¢y, = TpCopi>
where n=0,1,2,.... We represent this kind of iterative
sequence by {TﬂSU(cn)}. We say that {TﬁSU (cn)} is a se-
quence in § generated by ¢,. If {S,: 0 € Q} = {Tﬁ: Be d)},
then we denote {JS, (c,)} instead of {T/;Sg(cn)}.

T+ U(le(Sot, Tﬁg)) < U<max{ w, (t,9), w, (

whenever t,g € SN {TﬁSJ (cn)}, a(t,g)=21, 0€Q, e,
and w; (S,t, Tpg) > 0.

Then, {TﬁSU (cn)} is a sequence in J, a(c,,c,,;)=1 for
each n e NU {0} and {TBSU(cn)} — h € S. Also, if u sat-
isfies (47) and either «(c,,h)>1 or a(h,c,)=1 for all
n € NU{0}, then S, and T g have a common fixed point hin 3
for every 0 € Q) and 5 € O.

Proof. The proof is similar to the proof of Theorem 1.

T+U(le(Sot, Sﬁg)) SU(max{wl (t,9), w, (t,S,t), S

whenever t,g € IN{SJS,(c,)}, a(t,g)>1, 0,f€Q, and
w, (8,t,S,9)>0. Then, {S3S,(c,)} is a sequence in S,
a(C,yCpyp) 21 for each n e NU{0}, and
{3, (c,)} — h € 3. Also, if h satisfies (48) and either
a(c,, h) =1 or a(h,c,)>1 for each n € NU{0}, then h is the
fixed point of S, in F for every o € Q.

5. Application in Integral Equations

In this section, we discuss the application of our work in
integral equations. First of all, we present our main result

T+ U(le(Sat, T/;g)) SU<max{u)1 (t,g), w, (£, S,t), 5 ,

whenever  t,g € T/gSg(cn)}, ceQ, Ped and
w; (S,t,Tpg) > 0. Then, {T/;SJ (cn)} — h e S. Also, if in-
equality (49) holds for t,g € {h}, then S, and Ty have a
unique common fixed point h in J for all 0 € Q and € ©.

w
T+ U(wl(Sgu, Tﬁv)) <U <max{ wy (u,v), wy (u, S,u),

Theorem 3. Let (3, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the A\ y-condition. Let v >0,
¢o € By, (c,1)E B, a: Ix T — [0,00), and {S,: 0 € Q},
{Tﬁ: Be GD} be two families of a-dominated mappings from
S to 3. Then, there exist T>0 and U € F such that

>

2 1+w,(t,g)

. Sgt),wz(t’ Tﬁg) w (8, S,t) - wl(g, Tﬁg) } >, 47)

If we take {SJ: o€ Q} = {Tﬁ: pe (D} in Theorem 3, then
we can get the following result. O

Corollary 2. Let (3, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the Ay-condition. Let ¢, € G,
a: IxF — [0,00), and {S,:0€Q} be a family of
a-dominated mapping from F to . Then, there exist 7>0
and U € f such that

wz(t, T/gg) wy (t> Sat) s W (g’ Sﬁg) (48)
1+w(t,9) ’

without a closed ball for self-mappings and without
«,-dominated functions and then apply it to attain an ap-
plication in integral equations. We also discuss the
uniqueness.

Theorem 4. Let (J,w) be a complete m.I.m. space. Assume
that w is regular and satisfies the Ay;-condition. Let ¢, € I
and {S,: 0 € Q} and {Tﬁ: Be G)} be the families of self-
mappings. Then, there exist T>0 and a strictly increasing
function U: R, — R such that

wz(t, Tﬁg) wy (t> Sat) cWy (g’ Tﬁg) (49)
1+w,(t,9) ’

Proof. The proof is similar to the proof of Theorem 1. We
prove only uniqueness. Let S, and T3 have another common
fixed point v. Suppose w; (S,u, Tv) > 0. Then,

2(u, Tﬁv) w (u, S,u) - wl(v, Tﬁv) } ) (50)

2 ’ 1+w, (u,v)



This implies that

w (u,v) <pyw; (1, v) <w; (1, v), (51)

which is not true. So, w; (S,u, Tgv) = 0. Hence, u = v.

Let W =C([0,1],R,) be the set of all continuous
functions on [0,1]. Consider the families of integral
equations

u(k) = Jz H, (kb (h))dh + €, (52)

k
() = [ Gytkhcmydn+ e, (53)
0
forallk € [0,1],0 € Q, f € ®,and H, Gg are the functions
from [0,1] x [0,1] x W to R. For ¢ € C([0,1],R,), define
the supremum norm as [lc|l, = supyc(o1{lc (k)le” k1, where
n>0 is arbitrarily taken. Define

1 w1
w, (6, p) == sup {lc(k) + p(k)le ™} =l + pll,,  (54)
2 kef01] 2
for all ¢, peC([0,1],R,); with these settings,

(C([0,1],R,),d,) becomes a complete m.L.m. space.
Now, we prove the following theorem to ensure the

uniqueness and existence of a solution of families of non-

linear integral equations (52) and (53). O

Theorem 5. Assume the following constraints are satisfied:

(i) {H,,0 € Q} and {Gﬁ,/)’ € GD} are two families of
mappings from [0,1] x [0,1] x C([0,1],R,) to R.

TE (4 p) (15 €)
- TE(U,/;) (u, C) +1

This implies

Spu + Tﬁc|e77 <

S+ Tge| = Jk'Ho (k. ) + Gy (K, 0| dh < Jk
0

k h
JeT dh<
0

Kk E(U,ﬂ) (T/l, C)
TE((T,[;) (u, C) +1

Complexity

(ii) Define

(S,u) (k) = JSHU(k, h,u(h))dh + €,

' (55)
(Tge) 0 = | Gy ncmndn+e.
Suppose there exists T>0 such that
TE(U)[;) (u, C)
|H, (b, ) + Gy (ke hy )| Epgworr 9
for all k,h € [0,1] and u,c € C([0,1],R"), where
lu+cl,» ”u + Sau"T, ]
] “u + Sgu"T +||c + TﬁC"r
E(O‘,ﬁ) (u, C) = max E < 2 >+
Hu + Suu"T. “c + TﬂC"T
1 +]u+cl, J
(57)

Then, integral equations (52) and (53) have a unique
solution.

Proof. By assumption (ii),

TE(U,,B) (M, C)

PP g
0 TE(a,ﬁ) (M, C) +1
(58)
E(”’/;) (u,0) tk
TE (4 ) (u,c) +1
E, »(u,c)
S Ty <o)
T TE((T,ﬁ) (u, C) +1
(59)

two families of integral equations given in (52) and (53) have

TE (o) (1, €) + 1 1 1 1
< T+ < ,
E(J,ﬁ) (u,¢) S,u+ Tﬁc“T E(o,ﬁ) (u,¢) ”Sgu + Tﬁc“T
which further implies
1 -1

S,u (k) + Tye ()] By (10 (60)

So, all the requirements of Theorem 5 are satisfied for

U(f) = —1/\/7; f >0 and w, (f,c) = 1/2|| f +cll,. Hence,

a unique common solution. O

6. Conclusion

In this article, we have achieved some new results for set-
valued mappings belonging to two families which satisfy
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generalized rational-type Wardowski’s contraction. Domi-
nated mappings are applied to find out the fixed point re-
sults. Applications in the subject of integral equations and
graph theory are presented. Moreover, we investigate our
results in new generalized modular-like metric spaces. Many
consequences of our results in dislocated metric spaces,
metric spaces, and partial metric spaces (even with a partial
order) can be established easily.
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