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*e aim of this research work is to find out some results in fixed point theory for a pair of families of multivalued mappings
fulfilling a new type of U-contractions in modular-like metric spaces. Some new results in graph theory for multigraph-dominated
contractions in modular-like metric spaces are developed. An application has been presented to ensure the uniqueness and
existence of a solution of families of nonlinear integral equations.

1. Introduction and Preliminaries

If the image of a point x under two mappings is x itself, then
x is called a common fixed point of those mappings. *eory
of fixed point has a basic role in analysis (see [1–39]).
Chistyakov [7] established the concept of modular metric
spaces and showed briefly about modular convergence,
convex modular, equivalent metrics, abstract convex cone,
and metric semigroup. Padcharoen et al. [16] introduced the
concept of α-type F-contractions in modular metric spaces
and discussed some related results. Further results on these
spaces in different directions can be seen in [6, 13, 14].

In this paper, we establish some common fixed point
theorems for two families of set-valued mappings satisfying
a generalized contraction on a sequence only in a more
generalized setting of modular-like metric spaces. New re-
sults can be established in dislocated metric spaces, ordered
spaces, partial metric spaces, and metric spaces as a

consequence of our findings. To support our results, some
applications and examples are discussed. We give the fol-
lowing preliminary concepts which will be used in our
results.

Definition 1. (see [16]). Let A≠ ϕ. A function w: (0,∞) ×

A × A⟶ [0,∞) is called a modular-like metric on A if for
all a, b, c ∈ A, l> 0, and wl(a, b) � w(l, a, b), it satisfies

(i) wl(a, b) � wl(b, a) for all l> 0
(ii) wl(a, b) � 0 for all l> 0 and then a � b

(iii) wl+u(a, b)≤wl(a, c) + wu(c, b) for all l, u> 0

If we replace (ii) by wl(a, b) � 0 for all l> 0 if and only if
a � b, then w becomes a modular metric on A. If we replace
(ii) by wl(a, b) � 0 for some l> 0 and then a � b, then w

becomes a regular modular metric on A. For g ∈ A and ε> 0,
Bwl

(g, ε) � p ∈ A: wl(g, p)≤ ε􏼈 􏼉 is a closed ball in (A, w).
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We will use m.l.m. space instead of modular-like metric
space.

Definition 2. (see [16]). Let (A, w) be an m.l.m. space.

(i) E⊆A is known as w-complete if for any sequence
(an)n∈N in E and for some l> 0, wl(am, an)⟶ 0 as
m, n⟶∞ implies wl(an, a)⟶ 0 as n⟶∞ for
some a ∈ E

(ii) *e sequence (an)n∈N in A is known as w-Cauchy
for some l> 0 if wl(am, an)⟶ 0 as m, n⟶∞

(iii) *e sequence (an)n∈N in A is known as w-conver-
gent to a ∈ A for some l> 0 if and only if
wl(an, a)⟶ 0 as n⟶∞

Definition 3. Let (A, w) be an m.l.m. space and E⊆A. A
member p0 which belongs to E is said to be a best ap-
proximation in E for g ∈ A if

wl(g, E) � inf
p∈E

wl(g, p) � wl g, p0( 􏼁. (1)

If each g ∈ A has a best approximation in E, then E is
known as a proximinal set. P(A) is equal to the family of
proximinal sets in A. Let A � R+ ∪ 0{ } and
wl(g, p) � 1/l(g + p) for all l> 0. Define a set E � [4, 6];
then, for each y ∈ A,

wl(y, E) � wl(y, [4, 6]) � inf
u∈[4,6]

wl(y, u) � wl(y, 4). (2)

Hence, 4 is the best approximation in E for each y ∈ A.
Also, [4, 6] is a proximinal set.

Definition 4. *e set-valued mapping Hwl
: P(A) × P(A)

⟶ [0,∞), defined by

Hwl
(N, M) � max sup

n∈N
wl(n, M), sup

m∈M
wl(N, m)􏼨 􏼩, (3)

is known as wl-Hausdorff metric. *e pair (P(A), Hwl
) is

called the wl-Hausdorff metric space. Let A � R+ ∪ 0{ } and
wl(g, p) � (1/l)(g + p) for all l> 0. If P � [5, 6] and
O � [9, 10], then Hwl

(P, O) � (13/l).

Definition 5. Let (X, w) be a modular-like metric space.
*en, we will say that w satisfies the ΔM-condition if it is the
case that limn,m⟶∞wp(xn, xm) � 0, for p � m − n implies
limn,m⟶∞wl(xn, xm) � 0(m, n ∈ N, m> n) for some l> 0.

Definition 6 (see [33]). Let A≠ϕ, ξ: A⟶ P(A) be a set-
valued mapping, B⊆A, and α: A × A⟶ [0, +∞). *en, ξ
is called α∗-admissible on K if
α∗(ξa, ξc) � inf α(u, v): u ∈ ξa, v ∈ ξc{ }≥ 1 whenever
α(a, c)≥ 1, for all a, c ∈ B.

Definition 7. Let A≠ ϕ, ξ: A⟶ P(A) be a set-valued
mapping, M⊆A, and α: A × A⟶ [0, +∞). *en, ξ is
called α∗-dominated on M if for all
a ∈M, α∗(a, ξa) � inf α(a, l): l ∈ ξa{ }≥ 1.

Definition 8. (see [39]). Consider a metric space (W, d). A
function H: W⟶W is said A-contraction if for all
c, k ∈W, there exists τ > 0 such that d(Ha, Hc)> 0 implies

τ + A(d(Ha, Hc))≤A(d(a, c)), (4)

where A: R+⟶ R is a mapping which satisfies the
following:

(F1) *ere exists k ∈ (0, 1) such that
limσ⟶0+σkA(σ) � 0
(F2) For all a, c ∈ R+ such that a< c, A(a)<A(c), that
is, A is strictly increasing
(F3) limn⟶+∞σn � 0 if and only if
limn⟶+∞A(σn) � − ∞, for each sequence σn􏼈 􏼉

∞
n�1 of

positive numbers

*e family of all mappings satisfying conditions (F1) to
(F3) is denoted by 5.

Lemma 1. Let (A, w) be an m.l.m. space. Let (P(A), Hwl
) be

a Hausdorff wl-metric-like space.Een, for each a ∈ K and for
all K, M ∈ P(A), there exists ba ∈M such that
Hwl

(K, M) ≥wl(a, ba).

Proof. If Hwl
(K, M) � supa∈Kwl(a, M), then

Hwl
(K, M) ≥wl(a, M) for each a ∈ K. As M is the prox-

iminal set, for every a ∈ A, there exists at least one best
approximation ba ∈M which satisfies wl(a, M) � wl(a, ba).
Now, we have Hwl

(K, M)≥wl(a, ba). Now,

Hwl
(K, M) � sup

h∈M
wl(K, h)≥ sup

a∈K
wl(a, M)≥wl a, ba( 􏼁,

for some ba ∈M.

(5)

Hence proved. □

Example 1. (see [21]). Let A � R. Define
B: A × A⟶ [0,∞) by

B(b, t) �

1 if b> t,

1
4

if b≯t.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Define G, M: A⟶ P(A) by

Gb � [− 4 + b, − 3 + b],

Mt � [− 2 + t, − 1 + t].
(7)

*en, G and M are not α∗-admissible, but they are
α∗-dominated.

2. Main Results

Let (I, w) be an m.l.m. space and c0 ∈ I; let Sσ : σ ∈ Ω􏼈 􏼉 and
Tβ: β ∈ Φ􏽮 􏽯 be two families of multifunctions from I to

P(I). Let c1 ∈ Sac0 be an element such that
w(c0, Sac0) � w(c0, c1). Let c2 ∈ Tbc1 be such that
w(c1, Tbc1) � w(c1, c2). Let c3 ∈ Scc2 such that
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w(c2, Scc2) � w(c2, c3). In this way, we get a sequence
TβSσ(cn)􏽮 􏽯 in I, where c2n+1 ∈ Sic2n, c2n+2 ∈ Tjc2n+1, n ∈ N,

i ∈ Ω, and j ∈ Φ. Also, w(c2n, Sic2n) � w(c2n, c2n+1) and
w(c2n+1, Tjc2n+1) � w(c2n+1, c2n+2). TβSσ(cn)􏽮 􏽯 is said to be a
sequence inI generated by c0. If Sσ : σ ∈ Ω􏼈 􏼉 � Tβ: β ∈ Φ􏽮 􏽯,
then we denote Sσ(cn)􏼈 􏼉 instead of TβSσ(cn)􏽮 􏽯.

Theorem 1. Let (I, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the ΔM-condition. Let c0 ∈ I,
α: I × I⟶ [0,∞), Tβ: β ∈ Φ􏽮 􏽯, and Sσ : σ ∈ Ω􏼈 􏼉 be the
families of α∗-dominated set-valued functions on w. Suppose
there exist τ > 0 and U ∈ 5 such that

τ + U Hw1
Sσt, Tβg􏼐 􏼑􏼐 􏼑≤U max w1(t, g), w1 t, Sσt( 􏼁,

w2 t, Tβg􏼐 􏼑

2
,
w1 t, Sσt( 􏼁.w1 g, Tβg􏼐 􏼑

1 + w1(t, g)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (8)

whenever t, g ∈ I∩ TβSσ(cn)􏽮 􏽯, α(t, g)≥ 1, σ ∈ Ω, β ∈ Φ,
and Hw1

(Sσt, Tβg)> 0.
Een, the sequence TβSσ(cn)􏽮 􏽯 generated by c0 converges

to c
� ∈ I, and for each n ∈ N, α(cn, cn+1)≥ 1. Also, if c

�
satisfies

(8) and either α(cn,�c)≥ 1 or α(c
�
, cn)≥ 1 for all n ∈ N∪ 0{ },

then Sσ and Tβ have a common fixed point c
�
inI for all σ ∈ Ω

and β ∈ Φ.

Proof. Consider a sequence TβSσ(cn)􏽮 􏽯. Obviously, cn ∈ I
for each n ∈ N. If j is odd, then j � 2‘ + 1 for some ‘ ∈ N. By
the definition of α∗-dominated mappings, we have
α∗(c2‘, Sσc2‘)≥ 1 and α∗(c2‘+1, Tβc2‘+1)≥ 1 for all σ ∈ Ω and
β ∈ Φ. As α∗(c2‘, Sσc2‘)≥ 1, this implies
inf α(c2‘, b): b ∈ Sσc2‘􏼈 􏼉≥ 1. Also, c2‘+1 ∈ Sfc2‘ for some
f ∈ Ω, so α(c2‘, c2‘+1)≥ 1. Also, c2‘+2 ∈ Tgc2‘+1 for some
g ∈ Φ. Now, by using Lemma 1, we have

τ + U w1 c2‘+1, c2‘+2( 􏼁( 􏼁≤ τ + U Hw1
Sfc2‘, Tgc2‘+1􏼐 􏼑􏼐 􏼑

≤U max w1 c2‘, c2‘+1( 􏼁, w1 c2‘, Sfc2‘􏼐 􏼑,
w2 c2‘, Tgc2‘+1􏼐 􏼑

2
,
w1 c2‘, Sfc2‘􏼐 􏼑.w1 c2‘+1, Tgc2‘+1􏼐 􏼑

1 + w1 c2‘, c2‘+1( 􏼁

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠

≤U max w1 c2‘, c2‘+1( 􏼁, w1 c2‘, c2‘+1( 􏼁,
w1 c2‘, c2‘+1( 􏼁 + w1 c2‘+1, c2‘+2( 􏼁

2
,
w1 c2‘, c2‘+1( 􏼁.w1 c2‘+1, c2‘+2( 􏼁

1 + w1 c2‘, c2‘+1( 􏼁
􏼨 􏼩􏼠 􏼡

≤U max w1 c2‘, c2‘+1( 􏼁, w1 c2‘+1, c2‘+2( 􏼁􏼈 􏼉( 􏼁.

(9)

*is implies

τ + U w1 c2‘+1, c2‘+2( 􏼁( 􏼁≤U max w1 c2‘, c2‘+1( 􏼁, w1 c2‘+1, c2‘+2( 􏼁􏼈 􏼉( 􏼁.

(10)

Now, if

max w1 c2‘, c2‘+1( 􏼁, w1 c2‘+1, c2‘+2( 􏼁􏼈 􏼉 � w1 c2‘+1, c2‘+2( 􏼁,

(11)

then from (10), we have

U w1 c2i+1, c2i+2( 􏼁( 􏼁≤U w1 c2i+1, c2i+2( 􏼁( 􏼁 − τ, (12)

a contradiction. *erefore,

max w1 c2‘, c2‘+1( 􏼁, w1 c2‘+1, c2‘+2( 􏼁􏼈 􏼉 � w1 c2‘, c2‘+1( 􏼁, (13)

for all i ∈ N∪ 0{ }. Hence, from (10), we have

U w1 c2i+1, c2i+2( 􏼁( 􏼁≤U w1 c2i, c2i+1( 􏼁( 􏼁 − τ. (14)

Similarly, we have

U w1 c2i, c2i+1( 􏼁( 􏼁≤U w1 c2i− 1, c2i( 􏼁( 􏼁 − τ, (15)

for all i ∈ N∪ 0{ }. By (14) and (15), we have

U w1 c2i+1, c2i+2( 􏼁( 􏼁≤U w1 c2i− 1, c2i( 􏼁( 􏼁 − 2τ. (16)

Repeating these steps, we get

U w1 c2i+1, c2i+2( 􏼁( 􏼁≤U w1 c0, c1( 􏼁( 􏼁 − (2i + 1)τ. (17)

Similarly, we have

U w1 c2i, c2i+1( 􏼁( 􏼁≤U w1 c0, c1( 􏼁( 􏼁 − 2iτ. (18)

Inequalities (17) and (18) can jointly be written as

U w1 cn, cn+1( 􏼁( 􏼁≤U w1 c0, c1( 􏼁( 􏼁 − nτ. (19)

Taking the limit as n⟶∞ in (19), we have

lim
n⟶∞

U w1 cn, cn+1( 􏼁( 􏼁 � − ∞. (20)

Since U ∈ 5,
lim

n⟶∞
w1 cn, cn+1( 􏼁 � 0. (21)

Applying the property (F1) of 5, there exists k ∈ (0, 1)

such that
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lim
n⟶∞

w1 cn, cn+1( 􏼁( 􏼁
k

U w1 cn, cn+1( 􏼁( 􏼁( 􏼁 � 0. (22) By (19), for all n ∈ N, we obtain

w1 cn, cn+1( 􏼁( 􏼁
k

U w1 cn, cn+1( 􏼁( 􏼁( 􏼁 − U w1 c0, c1( 􏼁( 􏼁≤ − w1 cn, cn+1( 􏼁( 􏼁
k
nτ ≤ 0. (23)

Considering (21) and (22) and letting n⟶∞ in (23),
we have

lim
n⟶∞

n w1 cn, cn+1( 􏼁( 􏼁
k

� 0. (24)

Since (24) holds, there exists n1 ∈ N such that
n(w1(cn, cn+1))

k ≤ 1 for all n≥ n1 or

w1 cn, cn+1( 􏼁≤
1

n
(1/k)

for all n≥ n1. (25)

Take p> 0 and m � n + p> n> n1; then,

wp cn, cm( 􏼁≤w1 cn, cn+1( 􏼁 + w1 cn+1, cn+2( 􏼁 + · · · + w1 cm, cm+1( 􏼁≤
1

n
(1/k)

+
1

(n + 1)
(1/k)

+ · · · +
1

m
(1/k)

. (26)

Applying the limit as n, m⟶∞ on both sides, we have

lim
n,m⟶∞

wp cn, cm( 􏼁≤ lim
n,m⟶∞

1
n

(1/k)
+ lim

n,m⟶∞

1
(n + 1)

(1/k)
+ · · · + lim

n,m⟶∞

1
m

(1/k)
. (27)

As k ∈ (0, 1), then (1/k)> 1, and so,

lim
n,m⟶∞

1
n

(1/k)
� lim

n,m⟶∞

1
(n + 1)

(1/k)
� lim

n,m⟶∞

1
m

(1/k)
� 0.

(28)

As w: (0,∞) × I × I⟶ [0,∞), then

lim
n,m⟶∞

wp cn, cm( 􏼁 � 0. (29)

Since w satisfies the ΔM-condition, we have

lim
n,m⟶∞

w1 cn, cm( 􏼁 � 0. (30)

Hence, TβSσ(cn)􏽮 􏽯 is a Cauchy sequence in w. Since
(I, w) is a regular complete modular-like metric space,

there exists c
� ∈ I such that TβSσ(cn)􏽮 􏽯⟶ c

�
as n⟶∞,

and so,

lim
n⟶∞

w1 cn, c
�

􏼒 􏼓 � 0. (31)

Now, by Lemma 1, we have

τ + U w1 c2n+1, Tβc
�

􏼒 􏼓􏼒 􏼓≤ τ + U Hw1
Sec2n, Tβc

�
􏼒 􏼓􏼒 􏼓, (32)

for some β ∈ Φ and some e ∈ Ω. Now, there exists
c2n+1 ∈ Sec2n such that w1(c2n, Sec2n) � w1(c2n, c2n+1). From
the assumption, α(cn, c

�
)≥ 1. Assume that w1(c

�
, Tβc

�
)> 0;

then, there must be a positive real number p such that
w1(c2n+1, Tβc

�
)> 0 for n≥p. Now, Hw1

(Sec2n, Tβc
�
)> 0; then,

by using inequality (8), we have

τ + U w1 c2n+1, Tβc
�

􏼒 􏼓􏼒 􏼓≤U max w1 c2n, c
�

􏼒 􏼓, w1 c2n, c
�

􏼒 􏼓,
w1 c2n, c2n+1( 􏼁 + w1 c2n+1, Tβc

�
􏼒 􏼓

2
,
w1 c2n, Sec2n( 􏼁 · w1 f, Tβc

�
􏼒 􏼓

1 + w1 c2n, c
�

􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(33)

Letting n⟶∞ and using (31), we get

τ + U w1 c
�
, Tβc

�
􏼒 􏼓􏼒 􏼓≤U w1 c

�
, Tβc

�
􏼒 􏼓􏼒 􏼓. (34)

Since U is strictly increasing, (32) implies

w1 c
�
, Tβc

�
􏼒 􏼓<w1 c

�
, Tβc

�
􏼒 􏼓. (35)

*is is not true. So, our assumption is wrong. Hence,
w1(c

�
, Tβc

�
) � 0 or c

� ∈ Tβc
�
for each β ∈ Φ. Similarly, by

proceeding with Lemma 1 and inequality (8), we can prove
that w1(c

�
, Sσc

�
) � 0 or c

� ∈ Sσc
�
for all σ ∈ Ω. Hence, c

�
is a
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common fixed point of both themappings Sσ and Tβ inI for
all σ ∈ Ω and β ∈ Φ. □

Example 2. Let I � R+ ∪ 0{ }. Take w2(q, g) � (q + g) and
w1(q, g) � 1/2(q + g) for all q, g ∈ I. Suppose that
Sσ , Tβ: I × I⟶ P(I) are two families of multivalued
mappings defined by

Smv �
v

3m
,
2v

3m
􏼔 􏼕 if v ∈ I, (36)

where m � 1, 2, 3, . . ., and

Tnv �
v

4n
,
3v

4n
􏼔 􏼕 if v ∈ I, (37)

where n � 1, 2, 3, . . .. Suppose that v0 � 1 and w1(v0,

S1v0) � w1(1, S11) � w1(1, (1/3)). So, v1 � (1/3). Now,
w1(v1, T1v1) � w1((1/3), T1(1/3)) � w1((1/3), (1/12)). So,
v2 � (1/12). Now, w1(v2, S2v2) � w1((1/12), S2(1/12)) �

w1((1/12), (1/72)). So, v3 � (1/72). Continuing in this way,
we have TnSm(vn)􏼈 􏼉 � 1, (1/3), (1/12), (1/72), . . .{ }. Con-
sider the mapping α: I × I⟶ [0,∞) defined by

α(r, t) �

1, if r> t,

1
2
, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

Now, if v, y ∈ I∩ TβSσ(vn)􏽮 􏽯 with α(v, y)≥ 1, we have

Hw1
Smv, Tny( 􏼁 � max sup

a∈Smx

w1 a, Tny( 􏼁, sup
b∈Tny

w1 Smv, b( 􏼁
⎧⎨

⎩

⎫⎬

⎭

� max

w1
2v

3m
,

y

4n
,
3y

4n
􏼔 􏼕􏼒 􏼓,

w1
v

3m
,
2v

3m
􏼔 􏼕,

3y

4n
􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� max w1
2v

3m
,

y

4n
􏼒 􏼓, w1

v

3m
,
3y

4n
􏼒 􏼓􏼚 􏼛 �

1
2
max

2v

3m
+

y

4n
,

v

3m
+
3y

4n
􏼚 􏼛,

W(x, y) � max
1
2

v + y, v +
v

3m
,

v +
y

4n
,
(v +(v/3m)) · (y +(y/4n))

1 + v + y􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(39)

Case (i). If max (2v/3m) + (y/4n), (y/3m) + (3y/􏼈

4n)} � (2v/3m) + (y/4n) and τ � ln(1.2), then we have

8vn + 3my≤ 10mnx + 10mny,

48vn + 18my≤ 60mnx + 60mny,

6
5

2v

3m
+

y

4n
􏼒 􏼓≤ x + y,

ln(1.2) + ln
2v

3m
+

y

4n
􏼒 􏼓≤ ln(x + y).

(40)

*is implies that

τ + U Hw1
Smv, Tny( 􏼁􏼐 􏼑≤U(W(x, y)). (41)

Case (ii). If max 2v/3m + y/4n, y/3m + 3y/4n􏼈 􏼉 � v/3m +

3y/4n and τ � ln(1.2), then we have

4vn + 9my≤ 10mnx + 10mny,

24vn + 54my≤ 60mnx + 60mny,

6
5

v

3m
+
3y

4n
􏼒 􏼓≤x + y,

ln(1.2) + ln
v

3m
+
3y

4n
􏼒 􏼓≤ ln(x + y).

(42)

*is implies that

τ + U Hw1
Smv, Tny( 􏼁􏼐 􏼑≤U(W(x, y)). (43)

Hence, all the requirements of *eorem 1 are satisfied.
So, the families Sm􏼈 􏼉 and Tn􏼈 􏼉 have a common fixed point.

If we take Sσ : σ ∈ Ω􏼈 􏼉 � Tβ: β ∈ Φ􏽮 􏽯 in *eorem 1, then
we obtain the above result.

Corollary 1. Let (I, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the ΔM -condition. Let c0 ∈ I,
α: I × I⟶ [0,∞), and Sσ : σ ∈ Ω􏼈 􏼉 be a family of
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α∗-dominated set-valued functions on I. If there exist τ > 0
and U ∈ 5 such that

τ + U Hwl
Sσt, Sβg􏼐 􏼑􏼐 􏼑≤U max w1(t, g), w1 t, Sσt( 􏼁, w2 t, Sβg􏼐 􏼑,

w1 t, Sσt( 􏼁 · w1 g, Sβg􏼐 􏼑

1 + w1(t, g)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (44)

whenever t, g ∈ I∩ Sσ(cn)􏼈 􏼉, α(t, g)≥ 1, σ, β ∈ Ω, and
Hw1

(Sσt, Sβg)> 0, then the sequence ISσ(cn)􏼈 􏼉 generated by
c0 converges to c

� ∈ I, and for each n ∈ N, α(cn, cn+1)≥ 1.
Also, if c

�
satisfies (44) and either α(cn, c

�
)≥ 1 or α(c

�
, cn)≥ 1 for

every n ∈ N∪ 0{ }, then Sσ : σ ∈ Ω􏼈 􏼉 has a common fixed point
c
�
in I.

3. Applications in Graph Theory

Jachymski [11] developed a relation between fixed point
theory and graph theory by the induction of graphic con-
tractions. Hussain et al. [9] established some results for the
new type of contractions endowed with a graph and also
showed an application. Further useful results on the graph
can be seen in [34, 35, 40].

Definition 9. LetA be a nonempty set andY � (V(Y), L(Y))

be a graph with V(Y) � A. A mapping F from A to P(A) is
known as multigraph-dominated on A if (a, b) ∈ L(Y),
whenever a ∈ A and b ∈ Fa.

Theorem 2. Let (I, w) be a complete m.l.m. space endowed
with a graph Y, c0 ∈ I, and the following hold:

(i) Tβ: β ∈ Φ􏽮 􏽯 and Sσ : σ ∈ Ω􏼈 􏼉 are sets of multigraph-
dominated functions on I∩ TβSσ(cn)􏽮 􏽯.

(ii) Eere exist τ > 0 and U ∈ 5 such that

τ + U Hw1
Sσt, Tβy􏼐 􏼑􏼐 􏼑≤U max w1(t, y), w1 t, Sσt( 􏼁,

w2 t, Tβy􏼐 􏼑

2
,
w1 t, Sσt( 􏼁 · w1 y, Tβy􏼐 􏼑

1 + w1(t, y)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (45)

whenever t, y ∈ I∩ TβSσ(cn)􏽮 􏽯, (t,y) ∈ L(Y), σ ∈ Ω, β ∈ Φ,
and Hw1

(Sσt, Tβy)> 0.
Assume that I is regular and satisfies the ΔM-condition.

Een, TβSσ(cn)􏽮 􏽯 is a sequence in I, (cn, cn+1) ∈ L(Y), and
TβSσ(cn)􏽮 􏽯⟶ g∗. Also, if g∗ satisfies (45) and

(cn, g∗) ∈ L(Y) or (g∗, cn) ∈ L(Y) for each n ∈ N∪ 0{ }, then
Sσ and Tβ have common fixed point g∗ inI for all σ ∈ Ω and
β ∈ Φ.

Proof. Define α: I × I⟶ [0,∞) by α(t, y) � 1 if t ∈ I
and (t, y) ∈ L(Y). Otherwise, α(t, y) � 0. By the definition
of the graph dominated on I, we have (t, y) ∈ L(Y) for all
y ∈ Sσt and (t, y) ∈ L(Y) for each y ∈ Tβt. So, α(t, y) � 1
for all y ∈ Sσt and α(t, y) � 1 for every y ∈ Tβt. *is means
that inf α(t, y): y ∈ Sσt􏼈 􏼉 � 1 and inf α(t, y): y ∈ Tβt􏽮 􏽯 � 1.
Hence, α∗(t, Sσt) � 1 and α∗(t, Tβt) � 1 for every t ∈ I. So,
the families of mappings are α∗-dominated on I. Fur-
thermore, inequality (45) can be expressed as

τ + U Hw1
Sσt, Tβy􏼐 􏼑􏼐 􏼑≤U max w1(t, y), w1 t, Sσt( 􏼁,

w2 t, Tβy􏼐 􏼑

2
,
w1 t, Sσt( 􏼁 · w1 y, Tβy􏼐 􏼑

1 + w1(t, y)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (46)

whenever t, y ∈ I∩ TβSσ(cn)􏽮 􏽯, α(t, y)≥ 1, and
Hw1

(Sσt, Tβy)> 0. Also, (ii) holds. *en, by *eorem 1, we
have TβSσ(cn)􏽮 􏽯 is a sequence in I, and
TβSσ(cn)􏽮 􏽯⟶ g∗ ∈ I. Now, cn, g∗ ∈ I, and either

(cn, g∗) ∈ L(Y) or (g∗, cn) ∈ L(Y) implies that either
α(cn, g∗)≥ 1 or α(g∗, cn)≥ 1. So, all the requirements of
*eorem 1 are satisfied. Hence, from *eorem 1, Sσ and Tβ

have a common fixed point g∗ in I, and
w1(g∗, g∗) � 0. □

4. Results on Single-Valued Mappings

In this section, some consequences of our results related to
single-valued mappings in m.l.m. spaces have been dis-
cussed. Let (I, w) be an m.l.m. space, c0 ∈ I, and
Sσ , Tβ: I⟶ I be two families of mappings. Let c1 � Sσc0,

6 Complexity



c2 � Tβc1, and c3 � Sσc2. Adopting this way, we make a
sequence cn in I so that c2n+1 � Sσc2n and c2n+2 � Tβc2n+1,
where n � 0, 1, 2, . . .. We represent this kind of iterative
sequence by TβSσ(cn)􏽮 􏽯. We say that TβSσ(cn)􏽮 􏽯 is a se-
quence in I generated by c0. If Sσ : σ ∈ Ω􏼈 􏼉 � Tβ: β ∈ Φ􏽮 􏽯,
then we denote ISσ(cn)􏼈 􏼉 instead of TβSσ(cn)􏽮 􏽯.

Theorem 3. Let (I, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the △M-condition. Let r> 0,
c0 ∈ Bw1

(c0, r)⊆ I, α: I × I⟶ [0,∞), and Sσ : σ ∈ Ω􏼈 􏼉,
Tβ: β ∈ Φ􏽮 􏽯 be two families of α-dominated mappings from
I to I. Een, there exist τ > 0 and U ∈ 5 such that

τ + U Hw1
Sσt, Tβg􏼐 􏼑􏼐 􏼑≤U max w1(t, g), w1 t, Sσt( 􏼁,

w2 t, Tβg􏼐 􏼑

2
,
w1 t, Sσt( 􏼁 · w1 g, Tβg􏼐 􏼑

1 + w1(t, g)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (47)

whenever t, g ∈ I∩ TβSσ(cn)􏽮 􏽯, α(t, g)≥ 1, σ ∈ Ω, β ∈ Φ,
and w1(Sσt, Tβg)> 0.

Een, TβSσ(cn)􏽮 􏽯 is a sequence in I, α(cn, cn+1)≥ 1 for
each n ∈ N∪ 0{ } and TβSσ(cn)􏽮 􏽯⟶ h ∈ I. Also, if u sat-
isfies (47) and either α(cn, h)≥ 1 or α(h, cn)≥ 1 for all
n ∈ N∪ 0{ }, then Sσ and Tβ have a common fixed point h inI
for every σ ∈ Ω and β ∈ Φ.

Proof. *e proof is similar to the proof of *eorem 1.

If we take Sσ : σ ∈ Ω􏼈 􏼉 � Tβ: β ∈ Φ􏽮 􏽯 in *eorem 3, then
we can get the following result. □

Corollary 2. Let (I, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the ΔM-condition. Let c0 ∈ I,
α: I × I⟶ [0,∞), and Sσ : σ ∈ Ω􏼈 􏼉 be a family of
α-dominated mapping from I to I. Een, there exist τ > 0
and U ∈ 5 such that

τ + U Hw1
Sσt, Sβg􏼐 􏼑􏼐 􏼑≤U max w1(t, g), w1 t, Sσt( 􏼁,

w2 t, Tβg􏼐 􏼑

2
,
w1 t, Sσt( 􏼁 · w1 g, Sβg􏼐 􏼑

1 + w1(t, g)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (48)

whenever t, g ∈ I∩ ISσ(cn)􏼈 􏼉, α(t, g)≥ 1, σ, β ∈ Ω, and
w1(Sσt, Sσg)> 0. Een, ISσ(cn)􏼈 􏼉 is a sequence in I,
α(cn, cn+1)≥ 1 for each n ∈ N∪ 0{ }, and
ISσ(cn)􏼈 􏼉⟶ h ∈ I. Also, if h satisfies (48) and either
α(cn, h)≥ 1 or α(h, cn)≥ 1 for each n ∈ N∪ 0{ }, then h is the
fixed point of Sσ in I for every σ ∈ Ω.

5. Application in Integral Equations

In this section, we discuss the application of our work in
integral equations. First of all, we present our main result

without a closed ball for self-mappings and without
α∗-dominated functions and then apply it to attain an ap-
plication in integral equations. We also discuss the
uniqueness.

Theorem 4. Let (I, w) be a complete m.l.m. space. Assume
that w is regular and satisfies the ΔM-condition. Let c0 ∈ I
and Sσ : σ ∈ Ω􏼈 􏼉 and Tβ: β ∈ Φ􏽮 􏽯 be the families of self-
mappings. Een, there exist τ > 0 and a strictly increasing
function U: R+⟶ R such that

τ + U Hw1
Sσt, Tβg􏼐 􏼑􏼐 􏼑≤U max w1(t, g), w1 t, Sσt( 􏼁,

w2 t, Tβg􏼐 􏼑

2
,
w1 t, Sσt( 􏼁 · w1 g, Tβg􏼐 􏼑

1 + w1(t, g)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠, (49)

whenever t, g ∈ TβSσ(cn)􏽮 􏽯, σ ∈ Ω, β ∈ Φ, and
w1(Sσt, Tβg)> 0. Een, TβSσ(cn)􏽮 􏽯⟶ h ∈ I. Also, if in-
equality (49) holds for t, g ∈ h{ }, then Sσ and Tβ have a
unique common fixed point h in I for all σ ∈ Ω and β ∈ Φ.

Proof. *e proof is similar to the proof of *eorem 1. We
prove only uniqueness. Let Sσ and Tβ have another common
fixed point v. Suppose w1(Sσu, Tβv)> 0. *en,

τ + U w1 Sσu, Tβv􏼐 􏼑􏼐 􏼑≤U max w1(u, v), w1 u, Sσu( 􏼁,
w2 u, Tβv􏼐 􏼑

2
,
w1 u, Sσu( 􏼁 · w1 v, Tβv􏼐 􏼑

1 + w1(u, v)

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠. (50)
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*is implies that

w1(u, v)< μ1w1(u, v)<w1(u, v), (51)

which is not true. So, w1(Sσu, Tβv) � 0. Hence, u � v.
Let W � C([0, 1],R+) be the set of all continuous

functions on [0, 1]. Consider the families of integral
equations

u(k) � 􏽚
k

0
Hσ(k, h, u(h))dh + ∈, (52)

c(k) � 􏽚
k

0
Gβ(k, h, c(h))dh + ∈, (53)

for all k ∈ [0, 1], σ ∈ Ω, β ∈ Φ, and Hσ , Gβ are the functions
from [0, 1] × [0, 1] × W to R. For c ∈ C([0, 1],R+), define
the supremum norm as ‖c‖τ � supk∈[0,1] |c(k)|e− ηk􏼈 􏼉, where
η> 0 is arbitrarily taken. Define

w1(c, p) �
1
2

sup
k∈[0,1]

|c(k) + p(k)|e
− τk

􏽮 􏽯 �
1
2
‖c + p‖τ , (54)

for all c, p ∈ C([0, 1],R+); with these settings,
(C([0, 1],R+), dτ) becomes a complete m.l.m. space.

Now, we prove the following theorem to ensure the
uniqueness and existence of a solution of families of non-
linear integral equations (52) and (53). □

Theorem 5. Assume the following constraints are satisfied:

(i) Hσ , σ ∈ Ω􏼈 􏼉 and Gβ, β ∈ Φ􏽮 􏽯 are two families of
mappings from [0, 1] × [0, 1] × C([0, 1],R+) to R.

(ii) Define

Sσu( 􏼁(k) � 􏽚
k

0
Hσ(k, h, u(h))dh + ∈,

Tβc􏼐 􏼑(k) � 􏽚
k

0
Gβ(k, h, c(h))dh + ∈ .

(55)

Suppose there exists τ > 0 such that

Hσ(k, h, u) + Gβ(k, h, c)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
τE(σ,β)(u, c)

τE(σ,β)(u, c) + 1
, (56)

for all k, h ∈ [0, 1] and u, c ∈ C([0, 1],R+), where

E(σ,β)(u, c) � max
1
2

‖u + c‖τ , u + Sσu
����

����τ,

u + Sσu
����

����τ + c + Tβc
�����

�����τ
2

,

u + Sσu
����

����τ. c + Tβc
�����

�����τ
1 +‖u + c‖τ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(57)

Een, integral equations (52) and (53) have a unique
solution.

Proof. By assumption (ii),

Sσu + Tβc
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽚
k

0
Hσ(k, h, u) + Gβ(k, h, c)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dh≤ 􏽚
k

0

τE(σ,β)(u, c)

τE(σ,β)(u, c) + 1
e
τhdh

≤
τE(σ,β)(u, c)

τE(σ,β)(u, c) + 1
􏽚

k

0
e
τhdh≤

E(σ,β)(u, c)

τE(σ,β)(u, c) + 1
e
τk

.

(58)

*is implies

Sσu + Tβc
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
− τk ≤

E(σ,β)(u, c)

τE(σ,β)(u, c) + 1
Sσu + Tβc

�����

�����τ
≤

E(σ,β)(u, c)

τE(σ,β)(u, c) + 1

τE(σ,β)(u, c) + 1
E(σ,β)(u, c)

≤
1

Sσu + Tβc
�����

�����τ

τ +
1

E(σ,β)(u, c)
≤

1
Sσu + Tβc

�����

�����τ

,

(59)

which further implies

τ −
1

Sσu(k) + Tβc(k)
�����

�����τ

≤
− 1

E(σ,β)(u, c)
. (60)

So, all the requirements of *eorem 5 are satisfied for
U(f) � − 1/

��
f

􏽰
; f > 0 and w1(f, c) � 1/2‖f + c‖τ . Hence,

two families of integral equations given in (52) and (53) have
a unique common solution. □

6. Conclusion

In this article, we have achieved some new results for set-
valued mappings belonging to two families which satisfy
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generalized rational-type Wardowski’s contraction. Domi-
nated mappings are applied to find out the fixed point re-
sults. Applications in the subject of integral equations and
graph theory are presented. Moreover, we investigate our
results in new generalized modular-like metric spaces. Many
consequences of our results in dislocated metric spaces,
metric spaces, and partial metric spaces (even with a partial
order) can be established easily.
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Mathematicae, vol. 3, pp. 133–181, 1922.

[6] P. Chaipunya, Y. Je Cho, and P. Kumam, “Geraghty-type
theorems in modular metric spaces with an application to
partial differential equation,” Advances in Difference Equa-
tions, vol. 2012, no. 1, p. 83, 2012.

[7] V. V. Chistyakov, “Modular metric spaces, I: basic concepts,”
Nonlinear Analysis: Eeory, Methods & Applications, vol. 72,
no. 1, pp. 1–14, 2010.

[8] N. Hussain, J. Ahmad, and A. Azam, “On Suzuki-Wardowski
type fixed point theorems,” Journal of Nonlinear Sciences and
Applications, vol. 8, no. 6, pp. 1095–1111, 2015.

[9] N. Hussain, S. Al-Mezel, and P. Salimi, “Fixed points for
ψ-graphic contractions with application to integral equa-
tions,” Abstract and Applied Analysis, vol. 2013, Article ID
575869, 11 pages, 2013.

[10] N. Hussain and P. Salimi Salimi, “Suzuki-Wardowski type
fixed point theorems for α-gf-contractions,” Taiwanese
Journal of Mathematics, vol. 18, no. 6, pp. 1879–1895, 2014.

[11] J. Jachymski, “*e contraction principle for mappinġs on a
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