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A B S T R A C T

An End-Of-Turn Detection Module (EOTD-M) is an essential component of automatic Spoken Dialogue Systems.
The capability of correctly detecting whether a user’s utterance has ended or not improves the accuracy in
interpreting the meaning of the message and decreases the latency in the answer. Usually, in dialogue systems,
an EOTD-M is coupled with an Automatic Speech Recognition Module (ASR-M) to transmit complete utterances
to the Natural Language Understanding unit. Mistakes in the ASR-M transcription can have a strong effect on
the performance of the EOTD-M. The actual extent of this effect depends on the particular combination of ASR-
M transcription errors and the sentence featurization techniques implemented as part of the EOTD-M. In this
paper we investigate this important relationship for an EOTD-M based on semantic information and particular
characteristics of the speakers (speech profiles). We introduce an Automatic Speech Recognition Simulator
(ASR-SIM) that models different types of semantic mistakes in the ASR-M transcription as well as different
speech profiles. We use the simulator to evaluate the sensitivity to ASR-M mistakes of a Long Short-Term
Memory network classifier trained in EOTD with different featurization techniques. Our experiments reveal
the different ways in which the performance of the model is influenced by the ASR-M errors. We corroborate
that not only is the ASR-SIM useful to estimate the performance of an EOTD-M in customized noisy scenarios,
but it can also be used to generate training datasets with the expected error rates of real working conditions,
which leads to better performance.
. Introduction

Implementing Spoken Dialogue Systems involves solving several dif-
icult machine learning problems. This includes, among others, speech
ecognition, Natural Language Understanding, semantic disambigua-
ion, and non-trivial response generation. An additional problem is
ascading failure, in which an early mistake in any of the system com-
onents, will harm the performance of the subsequent components. In
articular, mistakes in the Automatic Speech Recognition Module (ASR-
) of a dialogue system based on the architecture illustrated in Fig. 1(a)
ill have an effect on the performance of the End-Of-Turn Detection
odule (EOTD-M) and Natural Language Understanding Module (NLU-
). This consequently affects the overall performance of the system.
hile different approaches have addressed the question of solving

r mitigating the errors produced in the ASR-M (Fernández-Díaz and
allardo-Antolín, 2020; Graves et al., 2013; Squartini et al., 2012;
hou et al., 2014; Trentin and Matassoni, 2003; Hannun et al., 2014;
hahamiri and Salim, 2014; Salem et al., 2007; Amrouche et al., 2010),
nly a few papers analyze the impact of these errors in subsequent

∗ Corresponding author.
E-mail address: cesar.montenegro@ehu.eus (C. Montenegro).

components. Voleti et al. (2019) analyzed the effects of word sub-
stitution errors on sentence embeddings, and Simonnet et al. (2018)
measured the impact of word substitution errors produced by ASR-M
on NLU-M. Nevertheless, the question of the relationship between the
different types of ASR-M errors and their influence on the EOTD-M has
not been addressed. This question is relevant as the deterioration of
the performance of EOTD-M due to ASR-M errors can be different as a
function of the error: the EOTD-M can be insensitive to some errors but
very sensitive to other types of errors. Furthermore, different methods
of converting words into numerical information (featurization) exploit
different features of speech, consequently the combination of classifier
and featurization techniques could also be sensitive to some errors and
insensitive to other types of errors. However, investigating this relation-
ship is complicated by the fact that the particular errors that an ASR-M
produces depend on the features of human speech, ambient noise, and
the performance of the ASR-M itself. It is very difficult to accurately
induce specific errors in the ASR-M by manually manipulating these
input characteristics. Some studies, such as (Shao and Chang, 2011),
manipulate the intensity of different types of noise (Gaussian noise,
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pink noise, Volvo engine noise, and speech-like noise) introduced into
speech to evaluate the robustness evaluation of an ASR-M. Their ASR-
M produces different rates of errors depending on the intensity of the
introduced noise, nevertheless, they cannot control what types of errors
are generated by the ASR-M.

In this paper, we introduce an ASR Simulator (ASR-SIM) that repli-
cates the different transcription errors produced in an ASR-M due to
noise, or due to the particular speech profile, without manipulating
human speech or adding noise to an acoustic input. The ASR-SIM allows
us to investigate the relationship of these errors with several EOTD-M,
with different featurization techniques.

The main contributions of this paper are as follows: It analyzes
for the first time how different errors produced by ASR-M can affect
the non-trivial task of End-Of-Turn Detection. Secondly, it introduces
an ASR-SIM, which is capable of simulating different types of errors
produced by the ASR-M, and simulate speaker features that can be
used by other modules that form part of a Spoken Dialogue System.
There is not other work to our knowledge that has addressed the task
of creating such a simulator, the closest comparable works being the
above mentioned from Voleti et al. (2019) and Simonnet et al. (2018).

The paper is organized as follows: In Section 1, we present the
necessary background on Spoken Dialogue Systems, emphasizing the
role of the EOTD-M and ASR-M. In Section 2, we describe the different
classes of errors that can be produced by an ASR-M as well as the char-
acteristics of a speech profile. Section 3 introduces a flexible simulator
of the ASR-M. In Section 4, we describe the experimental framework
and the featurization techniques used. In Section 5 we present and
discuss the results of our experiments. Section 6 concludes the paper
and discusses future work.

1. Background

1.1. End-Of-Turn detection in Spoken Dialogue Systems

The audio signal received by the ASR-M is a continuous stream of
audio. The system must filter the human voice from ambient noise,
and estimate the best group of words that corresponds to the audio
signal. As a result, the ASR-M outputs a stream of words with timing
information, which could be hundreds of words long in a whole con-
versation. A conversation between two humans consists of a turn-taking
transference of information, and replacing one of the humans with a bot
requires the detection of the user’s End-Of-Turn pauses. The goal of an
EOTD-M is to detect this change of turn in a conversation between a
human and the system. This triggers the evaluation of the sentence or
sentences received by the NLU-M.

The consequences of failing in EOTD-M are:

1. Anticipation: When the NLU-M receives an incomplete sen-
tence, the system may potentially answer while the user is still
talking, causing overlap between the speech of the human and
the system. Some systems close the users microphone (Chang
et al., 2017) when answering, missing all the information trans-
mitted by the user during the overlap.

2. Excessive delay: when an End-Of-Turn is not detected in time,
the time gap between a real End-Of-Turn and the reply from
the system is too high, and the user experience is harmed by
unnatural waiting times between turns.

Several aspects have to be considered when designing an EOTD-
. Particularly relevant are the architecture of the spoken dialogue

which defines the input to the EOTD-M) and the features used in the
lassification problem.

The architecture of a Spoken Dialogue System can limit the input
esources of an EOTD-M. Figs. 1(a) and 1(b) illustrate how two com-
on architectures differently condition the input of the EOTD-M. In

ig. 1(a), the EOTD-M receives information exclusively from the ASR-

, while in Fig. 1(b) not only can ASR-M information be received,

2

but also raw audio data. We can find studies in the literature that
are based on the architecture of Fig. 1(a), such as the work by Razavi
et al. (2019), who study the impact of the prediction power of features
extracted from pause, prosodic, timing, lexical, syntactic and semantic
information. Nevertheless, it is more common to find studies using
features extracted from raw audio data, following the architecture
in Fig. 1(b). There are different features that can be extracted from
raw audio data, Chang et al. (2017) extracted 40-dimensional log-Mel
filterbanks with an upper limit of 4 kHz and a frame step of 10 ms using
a 25 ms window, while (Maier et al., 2017) and Aldeneh et al. (2018)
used raw pitch (F0), smoothed F0 contour, Root Mean Square signal
energy, the logarithmized signal energy, intensity, loudness, MFCC and
smoothed pitch.

These two architectures exploit only the user’s speech information,
but different architectures can offer more sources of information, for
example the architecture presented by Masumura et al. (2018) uses the
user’s utterance in conjunction with the interlocutor’s utterance.

1.2. Automatic speech recognition in Spoken Dialogue Systems

Automatic speech recognition is the procedure through which a
speech signal is converted into a representation of words or other
linguistic entities by means of automated algorithms. It has been an
active research area for decades, as it has always been considered as an
essential tool in human–machine communication (Yu and Deng, 2016).

In Fig. 2 an example architecture of ASR-M, EOTD-M and NLU-
M is illustrated. Particularly, in the ASR-M architecture shown, the
feature extraction component takes as input the raw audio signal,
filters noises that do not correspond to human speech frequencies,
and extracts frequency-domain feature vectors that are used to feed
the following acoustic model. The acoustic model estimates one or
several sets of words that best match with the feature vectors given,
where each set of words is an hypothetical sentence based only on
acoustics. The acoustic model integrates knowledge about acoustics and
phonetics, and for each hypothetical sentence, estimates the similarity
score with the audio. The language model estimates another score for
each hypothesized sentence, this time, based on correlation between
words learned from a training corpora. The language model score can
often be estimated more accurately if the training corpora are related to
the task domain. These two scores from each hypothesis are combined
in the hypothesis search component to output the word sequence with
the highest score as the recognized sentence (Yu and Deng, 2016). More
recent architectures such as end-to-end ASR-M architectures simplify
the conventional ASR-M architecture into a single Deep Neural Network
(DNN) architecture. Besides, the end-to-end models require no lexicons
and predict graphemes or words directly, which makes the decoding
procedure simpler than other hybrid models. To date, the end-to-end
ASR-M architectures have gained significant improvement in speech
recognition accuracy (Watanabe et al., 2017; Chiu et al., 2018; Amodei
et al., 2016). More complex architectures not only use audio as input
for the ASR-M, but also use video input to extract characteristics related
to lip contour in order to increase robustness as done in Borgstrom and
Alwan (2008). These general ASR-M architectures can be implemented
for online and offline systems, although there are some differences since
online ASR-M can only use present and past contextual information to
perform the predictions, while offline ASR-M can use the whole audio
as context.

Regarding feature vectors, ever since the introduction of
Mel-frequency cepstral coefficients (MFCC), they have been the state-
of-the art features in ASR-M, due to their reduced dimensionality and
relatively easy procedure (Davis and Mermelstein, 1980). Lately, as a
consequence of the implementation of DNN’s, more primitive repre-
sentations can also be considered state-of-the-art features, for instance
Mel-frequency spectral coefficients (MFSC) which is the logarithmic
scaled Mel-spectrogram from which MFCC are extracted (Martinez and
Schädler, 2016).
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Fig. 1. Subfigure (a) shows an architecture where the EOTD-M uses the output of the ASR-M as input. Subfigure (b) shows an architecture where the EOTD-M uses the output
of the ASR-M as input, but also has access to other features extracted from raw audio.
Fig. 2. ASR-M, EOTD-M, and NLU-M architectures.
. Sources of errors in ASR-M

One of the most challenging aspects of ASR-M is the mismatch
etween the training and testing conditions, or real life acoustic con-
itions. During testing, a system may encounter new recording con-
itions, microphone types, speakers, accents and different sources of
ackground noise. Furthermore, even if the test scenarios are seen
uring training, there can be significant variability in their statis-
ics (Serdyuk et al., 2016). Without specific noise-robust processing,
ven state-of-the-art speech recognition degrades rapidly under de-
reasing Signal-to-Noise Ratios (Narayanan et al., 2006).

These conditions will produce the following errors in the ASR-M
ranscription result:
3

1. Confused word (substitutions): Due to the pronunciation,
noise, or even the accent, some words can be mistranslated. This
often occurs when two words are phonetically similar.

2. Missing word (deletion): Sometimes due to noise, accent or
other speech particularities, word sounds can be confused with
ambient noise or unintelligible sounds.

3. Extra word (insertion): Although some ambient sounds can be
confused with words, the most common source of word insertion
occurs when the phoneme of a word can be represented by
a tuple of words, instead of the true corresponding word. For
example the tuple of words‘‘Join in’’ could replace the word
‘‘Joining’’ because they are phonetically similar.
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Fig. 3. Pronunciation speed profiles.

The Word Error Rate (WER) (Zechner and Waibel, 2000) defined
elow (Eq. (1)):

𝐸𝑅 = 𝑆 +𝐷 + 𝐼
𝑁

(1)

here 𝑆, 𝐷, 𝐼 and 𝑁 are the number of substitutions, deletions, inser-
ions and number of words in the reference respectively, is a common
etric used to measure the performance of an ASR-M or machine trans-

ation system. The general difficulty of measuring performance lies in
he fact that the recognized word sequence can have a different length
rom the reference word sequence (supposedly the correct one). WER
s derived from the Levenshtein distance, working at the word level
nstead of the phoneme level, and it is a valuable tool for comparing
ifferent systems as well as for evaluating improvements within one
ystem. This kind of measurement, however, provides no details on the
ature of translation errors (Morris et al., 2004).

.1. Speech profiles

The problems exposed above are related with the conversion of
ound waves to phonemes, but there are other characteristics that are
seful for communication and are related to the timing and duration
f other language resources. These characteristics are: pronunciation
peed, speaking rate, and pause duration.

Each person has their own way of speaking. And not even a combi-
ation of pronunciation speed, speaking rate, pause length or accent
s fixed for a single person, it also varies depending on their mood
r fatigue. Henceforth we will refer to the measurable set of these
haracteristics as speech profile. In subsequent sections, we introduce
speech profile representation and propose a way to obtain realistic

alues of the speech profile representation parameters from the analysis
f real ASR-M outputs. For example, in Fig. 3, the average letter dura-
ion of multiple speakers is compared, calculated as 𝑙𝑒𝑡𝑡𝑒𝑟_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑜𝑟𝑑_𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒∕𝑤𝑜𝑟𝑑_𝑙𝑒𝑛𝑔𝑡ℎ. The figure shows the average let-

er duration grouped by word length. The data is extracted from the
witchboard dataset (Godfrey et al., 1992), which has become the de
acto standard experimental testbed for speech recognition, and will be
xplained in more detail in Section 4. In Fig. 3 it is possible to observe
he profiles of the speakers that have the maximum and minimum
verage letter duration, as well as the profile of another 20 randomly
hosen speakers. Fig. 3 reveals that the fastest profile is double the
peed of the slowest, illustrating how wide the range of speeds can be
n a group of speakers.

. ASR simulator

As it is not possible to generate all possible types of noise that an
SR-M can receive, our goal is to introduce an ASR-SIM that can be
ontrolled in such a way that the transcribed data exhibits different

ypes and rates of artifacts. A characteristic feature of our simulator is

4

hat, instead of using an audio file as input, a dialogue transcription
r a plain text can be used. The ASR-SIM converts any conversation
ranscription into an ASR-M output with the desired probabilities of
SR-M errors, and desired speech profiles.

The ASR-SIM output format is composed of two differentiated parts:

1. Word information: Contains the possible words that the ASR-SIM
may estimate that correspond to the audio fragment, and their
confidence value.

2. Timing information: Indicates the timestamp of the start of the
pronunciation of the word, and its duration.

he transformation from plain text to word and timing information will
e determined by a number of internal parameters of the simulator.
hese parameters can be grouped into two classes: WER probabilities
nd speech profile parameters.

.1. WER probabilities

The ASR-SIM allows us to set the probability of each particular error
hat makes up the WER (probability of a confused word, probability
f a missing word, probability of an extra word). Given a sentence,
or each word the three error probabilities are evaluated to determine
f the word is affected by one of the defined errors. These errors
ere introduced in Section 2, and the description of the methods

mplemented to simulate each type of error follows:

1. Confused word: the word is substituted by a phonetically similar
word. The phonemes of the replacement and replaced words will
have a Levenshtein distance smaller than a given threshold. The
timing information is calculated using the information of the
substituted word.

2. Missing word: the word is substituted by a token that repre-
sents an unknown phoneme ⟨𝑈𝑛𝑘⟩. The timing information is
calculated using the information of the substituted word.

3. Extra word: the phoneme of the word is randomly split into
two sub-phonemes, and each one is replaced by a word with
a phoneme with a Levenshtein distance smaller than a given
threshold. The timing information is calculated using the origi-
nal word information, proportionally sharing the word duration
between the two replacement words, and with a pause 𝑝 = 0
between replacements.

The implementation of the different error methods should mimic the
rrors of the ASR-M we want to simulate with the ASR-SIM. Even if an
SR-M uses a common set of features, the combination of the Acoustic
odel, the Language model and the Hypothesis Search make each ASR-
unique, and therefore the characteristics of the errors generated are

nique as well. For example, for an ASR-M that gives more importance
o the Acoustic model than to the Language model, when making a
onfused word error the true word might be replaced by a phonetically
imilar word, even if it causes an unlikely semantic error. In this
xample implementation the phonemes are obtained using the Refined
oundex algorithm, originated with the implementation of phonetic
lgorithms included with the Apache Commons library (Fossati and
i Eugenio, 2008). We use the Levenshtein distance (Levenshtein,
966) to compare word phonemes, as it is commonly used to com-
ute error rates of ASR-M. We have used the implementation in the
yphonetics library1 for these tools, and the English dictionary from
he Nltk library2 has been used as a source of replacement words for
he Confused and Extra word errors.

1 https://pypi.org/project/pyphonetics/.
2 https://www.nltk.org/.

https://pypi.org/project/pyphonetics/
https://www.nltk.org/
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Fig. 4. Letter duration (ms).

3.2. Speech profile parametrization

The parametrized characteristics of the speech profile used by the
simulator are:

1. Word duration
2. Pause duration

While in theory these parameters could be arbitrarily set, a realistic
output of the ASR-SIM will require a more sensible setting of the pa-
rameters. We address this issue using a statistical analysis of real ASR-M
outputs. As described in Section 2.1, a speech profile can be defined by
a set of characteristics. All these characteristics are measurable, and
we can therefore generate a set of variables to simulate a particular
speech profile, or simulate multiple speech profiles by modifying these
variables. In order to perform the experiments that will be defined in
Section 4, we will parametrize word duration performing the study
described in Section 3.2.1, and pause duration (Section 3.2.2) based
on (Campione and Véronis, 2002). These parameters will directly affect
the codification of the sentences, since some codification methods use
pauses between words as input information, and pause duration will
affect the amount of evaluation points used in the experiments, as
detailed in Section 4.1.

3.2.1. Word duration
In order to simulate word duration, we will use the values obtained

by calculating the average and standard deviation of the letter duration
of the speakers from the Switchboard dataset (Fig. 3). The distribution
of the values obtained for the letter duration calculus is illustrated in
Fig. 4. The ASR-SIM will use this empirical distribution to estimate the
duration of each letter in a word, randomly sampling from the distri-
bution. Although more sophisticated methods could have been used
to estimate the pronunciation time of a particular word, this method
maintains simplicity, and it still makes words last a proportional, but
not fixed, amount of time for their length.

3.2.2. Duration of pauses
Campione and Véronis (2002) present a large-scale study of silent

pause duration, based on the analysis of read and spontaneous speech.
Although in their study, spontaneous speech analysis is only performed
in French, it does not represent an obstacle for our analysis since it
has been observed that the language differences with respect to gap
duration seem to be minor (Weilhammer and Rabold, 2003). Campione
and Véronis (2002) made the hypothesis that the observed pause dura-
tion distributions are the result of a combination of three categories of
pauses. By using Generalized Reduced Gradient (GRG2), they obtained
a parametrized probabilistic model of the duration of pauses, which is
described by Eq. (2):

𝐷(𝑥) = 𝑘 𝑁(𝜇 , 𝜎 , 𝑥) + 𝑘 𝑁(𝜇 , 𝜎 , 𝑥) + 𝑘 𝑁(𝜇 , 𝜎 , 𝑥) (2)
1 1 1 2 2 2 3 3 3

5

Table 1
Pause distributions parameters.

𝑖 μ𝑖 𝜎𝑖
Between words pause 1 78 1.3
Comma pause 2 426 1.6
Dot pause 3 1585 1.3

where 𝐷(𝑥) is the distribution of the duration of pauses, 𝑁(𝜇𝑖, 𝜎𝑖, 𝑥) is
he normal law of mean 𝜇𝑖, and their standard deviation is 𝜎𝑖 (duration
f pauses are log-transformed). The parameters 𝑘1, 𝑘2 and 𝑘3 represent
he weight of each component distribution (𝑘1 + 𝑘2 + 𝑘3 = 1).

Based on this work, we match each of these pause duration distribu-
ions in increasing order of 𝜇𝑖, with the pause between words, comma
ause and dot pause respectively. The 𝜇 and 𝜎 values used for each
istribution are shown in Table 1. Although 𝜇 values are available in
he original study, 𝜎 values were deduced from the figures in Campione
nd Véronis (2002).

The ASR-SIM will generate pauses according to these distributions
hen using plain text inputs. However, if the original pause informa-

ion is provided, this information will be used.

Algorithm 1: Pseudocode of the ASR-SIM main function
1: 𝑎𝑠𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 = [];
2: for token in source_text do
3: if is_word(token) then
4: is_confused = random() > confused_word_threshold
5: is_missing = random() > missing_word_threshold
6: is_extra = random() > extra_word_threshold
7: possible_errors = [ ]
8: if is_confused then possible_errors.append(‘‘confused’’)
9: if is_missing then possible_errors.append(‘‘missing’’)

10: if is_extra then possible_errors.append(‘‘extra’’)
1: error = random_selection(possible_errors)
2: if error == ‘‘confused’’ then

13: confused_word = get_close_match(token)
14: asr_output.append(confused_word)
15: else if error == ‘‘missing’’ then
16: asr_output.append(<unk>)
17: else if error == ‘‘extra’’ then
18: word1, word2 = generate_extra_word(token)
19: asr_output.append(word1)
20: asr_output.append(pause_between_words)
21: asr_output.append(word2)
22: else
23: asr_output.append(token)
24: else
25: if token == ‘‘,’’ then
26: asr_output.append(comma_pause)
27: else if token == ‘‘.’’ then
28: asr_output.append(point_pause)
29: else if token == ‘‘ ’’ then
30: asr_output.append(pause_between_words)
31: return 𝑎𝑠𝑟_𝑜𝑢𝑡𝑝𝑢𝑡;

Algorithm 2: Pseudocode of the generate_extra_word( word ) function
1: w1_Length = random(1, length(word))
2: w2_Length = length(word) - w1_Length
3: w1_segment = word[:w1_Length]
4: w2_segment = word[w1_Length:]
5: firstWord = get_close_match(w1_segment)
6: secondWord = get_close_match(w2_segment)
7: return firstWord, secondWord
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3.3. ASR simulator pseudocode

The general procedure to transform a text to the desired ASR-SIM
output is the one described by Algorithm 1. The output of the ASR-SIM
contains the recognized words, and the associated timing information.
Any character that is not a letter is removed from the input text, except
for commas and periods which represent pauses in the speech.

In Algorithm 1, the source text is analyzed token by token (line
2). Whenever the token corresponds to a word (line 3), for each error
type a random number is generated and compared to the associated
threshold value (lines 8–10), the error to apply will be randomly
selected between those that exceed the corresponding threshold (line
11), and the error mechanism is executed (lines 12–21). On the other
hand, if the token is not a word, it will generate a pause based on the
type of token (lines 25–30).

In lines 17–21, the extra word error is generated using an auxiliary
function called generate_extra_word, which is in charge of generat-
ing two words from one, as explained in Section 2 and described
in Algorithm 2. The generate_extra_word function randomly splits the
word (lines 1–4) and finds a similar word for each segment with the
function get_close_match (lines 5–6). This function is also used in line
10 to generate the confused word error by calculating the Levenshtein
distance between the phonemes as explained in Section 3.

The source code is available under GNU General Public License
v3.0.3 in it is source code repository4

4. Experiments

In this section we present the experimental framework we have
designed to evaluate the influence of the different types of errors in
the behavior of the EOTD-M. We conduct this evaluation using the ASR-
SIM presented. The parameters of the simulator are changed to produce
different combinations of errors. The performance of the EOTD-M
prediction task is then tested on this simulated data. The section is
organized as follows: Firstly, we describe the EOTD-M prediction task
and the features used as input for the classifier. Then we describe the
characteristics of the classifier, and the metrics used to evaluate the
results. The two sections that follow describe the corpora used and how
errors are generated by the ASR-SIM. Finally, we present and discuss
the results of the experiments.

4.1. EOTD-M Classification and sets of features

To evaluate the sensitivity of the classifier, we rely on the Predic-
tion at Pauses task described by Skantze (2017). This is a standard
turn-taking decision task that takes place at brief pauses during an
interaction. The goal is to predict whether the user holding the turn
is going to continue speaking (HOLD), or swap turns (SHIFT).

As mentioned in Section 1.1, there are multiple features that can be
extracted from raw audio data, but since we use the ASR-SIM, our fea-
tures will be those that can be extracted from transcriptions. Therefore,
in this experiment, we compare the sensitivity of the classifier to the
use of the following sets of feature vectors:

– Word Embeddings: multi-dimensional meaning representations of
a word. For these experiments, we use the GloVe (Global Vectors
for Word Representation (Pennington et al., 2014)) pretrained
embeddings5. This is a popular vector representation for Natural
Language Processing tasks.

– POS Tags: part-of-speech tag for each word is considered to be
a good predictor of turn-switches in the literature (Gravano and
Hirschberg, 2011). To obtain the tags, we use the tagger from the
Nltk library, and generate a one-hot representation.

3 https://choosealicense.com/licenses/gpl-3.0/.
4 https://github.com/CesarMontenegro/AsrSimulator.
5 Available online at https://nlp.stanford.edu/projects/glove/.
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Table 2
Architecture of the models used, Layer(type) is the
name of the units used in each particular layer and
Units is the number of units in the layer.
Layer (type) Units

LSTM 128
Dense(relu) 128
Dense(sigmoid) 1

Table 3
Parameter of the training procedure for the LSTM based model, n_batch
samples per gradient update, epochs is the number of epochs to train the
model, learning rate controls how much to modify the model’s parameters
in response to the estimated error after each epoch, pad_sequence is the
maximum length in number of words of a sentence (if the sentence
is larger than this value, the first words in the sentence are discarded
until it reaches the specified length), earlyStopping monitor is the variable
monitored that will trigger the early stopping of the training procedure,
earlyStopping patience is the number of epochs with no improvement
after which training will be stopped, loss function is the optimization
score function and optimizer is the name of the algorithm used to fit the
parameters.
Parameter Value #

n_batch 1000
epochs 200
learning rate 0.01
pad_sequence length 30
earlyStopping monitor val_loss
earlyStopping patience 5
loss function binary_crossentropy
optimizer adam

– Pauses: duration of time gaps between every pair of consecutive
words in the sentence.

– Combined: a combination of Word Embeddings, POS Tags and
Pauses.

4.2. Characteristics of the classifier

In the literature, the most frequently used models for EOTD-M
are models based on LSTM Recurrent Networks (Maier et al., 2017;
Aldeneh et al., 2018; Roddy et al., 2018; Liu et al., 2017; Shannon
et al., 2017; Masumura et al., 2017; Hara et al., 2019). Despite being
combined with other layers or algorithms (e.g., Shannon et al. (2017)
add Convolutional Layers to the architecture), the main differences be-
tween them are the features they use to train the algorithm. Therefore,
for our experiments, we will use the LSTM architectures illustrated in
Fig. 5, with the parameters described in Table 2.

For model validation, each scenario generated in these experiments
will divide the dataset into three subsets. These three divisions will
be called Train, Validation and Test. The algorithm will learn from the
Train subset, while Validation is used to avoid overfitting by stopping
the training process when the validation loss stops improving. The
parametrization of this anti-overfitting mechanism is described by the
earlyStopping variables in Table 3. The patience parameter allows the
anti-overfitting mechanism to prevent the training procedure from stop-
ping when it is temporally stuck in a local minima. Nevertheless, for
these experiments we have observed that even low values of patience
are enough to avoid local minima and overfitting.

4.3. Metrics

The LSTM network will output the probability of a sentence being
a SHIFT pause. Using a threshold value, this output can be binarized,
thus allowing to calculate the accuracy and other metrics. However, the
determination of this threshold can severely affect the result. To avoid
this drawback, in these experiments the Area Under the ROC Curve

(AUC) will be used to evaluate the performance of the LSTM models.

https://choosealicense.com/licenses/gpl-3.0/
https://github.com/CesarMontenegro/AsrSimulator
https://nlp.stanford.edu/projects/glove/
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Fig. 5. Subfigure (a) shows the architecture of the models that use one of the three features vectors as input. Subfigure (b) shows the architecture of the models that use the
three types of feature vectors as input.
4.4. Dialogue data corpora

The experiments will be performed with two datasets. The first
dataset will be based on the Switchboard dataset, for which we will not
generate timing information (word duration and pause duration) since
it already has that information available, and we will only induce the
correspondent artifacts. This dataset is a telephone-speech corpus that
consists of approximately 260 h of speech and was originally collected
by Texas Instruments in 1990–1991, under DARPA sponsorship.6 It is
a collection of about 2,400 two-sided telephone conversations among
543 speakers (241 female, 302 male) from all areas of the United States.
In these types of conversations, where there is a lack of non-verbal
communication, backchannel communication is very present. For End-
Of-Turn detection, we are not interested in backchannel turns, we focus
on the speech of the speaker who leads the turn, and is making a
statement. The backchannel communication made by the listener on
a turn is ignored, resulting in a dataset of 35,323 sentences.

The second dataset will be based on the OpenSubtitles en-es corpus,7
for which the ASR-SIM will have to estimate all the timing information
based on the parameters we have defined. The OpenSubtitles en-es
corpus contains 61.4 million speech turns from movie scripts. These
speech turns do not belong to real speech, the dialogues are scripted,
and therefore the structure and vocabulary vary from natural human-
to-human speech. Nevertheless, this dataset provides a complementary
validation benchmark for our study, since each communication sce-
nario presents a particular problem, such as telephone conversations,
face-to-face conversations or videoconferences. We will train and test
the EOTD-M on these types of dialogues without trying to export the
models from the scripted-dialogue environment to human-to-human
speech. For the experiments, we will use 50.000 randomly selected
sentences from this dataset.

According to the EOTD-M problem described in Section 4.1, each
speech turn generates a SHIFT-labeled instance, while HOLD instances
are generated from turns containing pauses longer than the specified
threshold (𝛿 = 1045 ms). This is proposed in Campione and Véronis
(2002) as a cut between the distributions that we have associated
with comma and dot pauses. A HOLD instance is the sub-sequence of
tokens that precedes each pause greater than the threshold in a turn.
Illustrative examples of the generation of SHIFT and HOLD instances
can be found in Tables 4 and 5, where, from a hypothetical transcribed
sentence, we analyze the pause duration to generate HOLD and SHIFT
instances. The example in Table 4 uses a threshold value of 𝛿 =
1045 ms, and the one in Table 5 uses 𝛿 = 1500 ms.

6 https://catalog.ldc.upenn.edu/LDC97S62.
7 [dataset] http://opus.nlpl.eu/OpenSubtitles.php.
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Table 4
Example of the generation of SHIFT and HOLD instances with 𝛿 = 1045 ms.

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200 ms>I would like to buy a necklace<1600 ms>a gold necklace

Instances and labels generated from the sentence (𝛿 = 1045 ms):

Hello I would like to buy a necklace a gold necklace SHIFT
Hello I would like to buy a necklace HOLD
Hello HOLD

Table 5
Example of the generation of SHIFT and HOLD instances with 𝛿 = 1500 ms.

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200 ms>I would like to buy a necklace<1600 ms>a gold necklace

Instances and labels generated from the sentence (𝛿 = 1500 ms):

Hello I would like to buy a necklace a gold necklace SHIFT
Hello I would like to buy a necklace HOLD

Finally, the datasets are balanced to contain the same amount of
SHIFT and HOLD instances. This is done by randomly sampling from
each class.

4.5. Word error probabilities

The probabilities of the ASR-SIM errors used to analyze the impact
on the quality of the LSTM estimator are: {0.0, 0.1, 0.3, 0.5, 0.7} for the
three types of errors. In order to identify which factors influence each
feature representation technique, each error probability is analyzed
independently. The threshold for the Levenshtein distance of Confused
and Extra word errors is set to 𝜏 = 3. To evaluate the impact of the dif-
ferent error types and probabilities, the experiments will be conducted
following two strategies: same_distribution and different_distribution. The
same_distribution strategy will apply the same error probability in train,
validation and test sets, given a particular error type and probability.
The different_distribution strategy will apply the error to the test set only,
while the algorithm will train with free-from-error data. This second
strategy simulates the scenario in which the training data is generated
in a controlled environment, with a low probability of errors. However,
the evaluation data is generated in a real environment, exposed to the
errors defined in Section 2. Therefore, the different_distribution strategy

https://catalog.ldc.upenn.edu/LDC97S62
http://opus.nlpl.eu/OpenSubtitles.php
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will allow us to investigate how important training with the expected
test error rates is.

5. Results

Before analyzing how the ASR-SIM transcription errors affect the
performance of the LSTM based EOTD-M, we have measured how each
error type affects each featurization technique. Inspired on the analysis
performed by Voleti et al. (2019), where they investigate the effects of
word substitution errors (Confused word error) on sentence embeddings,
we have measured how much featurized sentences change under the
effect of the different errors generated in the ASR-SIM.

5.1. Effects of the ASR-SIM errors on the featurization techniques

The errors considered in this paper can cause variations in the
length of a sentence, unlike in Voleti et al. (2019), where only the
confusion error is analyzed, which does not change the number of
words in a sentence. Extra word error adds words to the sentences, and
this makes the approach of Voleti et al. (2019) unsuitable for this paper,
since it compares the original and modified sentences word to word.

Therefore, to overcome this difference, we treat the sentences as
time series of feature vectors, and use the Dynamic Time Warping
(DTW) measure (Liu et al., 2007) to compare sentences without errors
and sentences with the induced errors. DTW is a measure that finds the
optimal alignment between two time series by stretching or shrinking
one of the time series along its time axis (Salvador and Chan, 2007).
This warping between two time series can then be used to determine the
similarity between the two time series by means of a defined distance
measure. DTW is often used in speech recognition to determine if two
waveforms represent the same spoken phrase (Abdulla et al., 2003).

DTW has been previously used to compare similarity between sen-
tences (Liu et al., 2007), and although it does not guarantee the triangle
inequality, it provides an estimation of how the errors affect the vector-
ized representation of the sentences. For this evaluation we have used
the Python FastDTW library8 based on the work of Salvador and Chan
(2007), which is an approximate DTW algorithm that provides optimal
or near-optimal alignments with an O(N) time and memory complexity.

We have randomly selected 1000 sentences to calculate the average
distance to their modified version for each dataset, the distance is cal-
culated by the FastDTW algorithm with the Euclidean distance between
each pair of matched words. The distances have been calculated under
the effect of the different error probabilities described in Section 4.5.
This comparison exercise has been performed 10 times to take into
consideration the variability generated in the ASR-SIM, and averaged
to illustrate the results in Figs. 6 and 7. These figures are composed
of three plots each, one for each featurization technique. Each plot
contains information on how a particular featurization technique is
affected by the three error types with different error probabilities. The
Y axis represents the average distance between sentences, and the X
axis represents the error probability of the modified version of the
sentences.

The first plot from left to right in Figs. 6 and 7 shows that all the
errors affect similarly to the Embedding featurization. Nevertheless, the
error that affects the most is the confused word error followed by extra
word error and missing word error. The second plot in Figs. 6 and 7 shows
how POS featurization is similarly affected by extra word error and
missing word error, and slightly less affected by confused word error. This
result responds to the expectations since the distance between every
pair of one-hotted POS tags is the same, and occasionally the confused
word can have the same POS tag as the original word.

Finally, Pause featurization seems to be unaffected by confused word
error and extra word error, but it is affected by missing word error. This
is also expected since missing word error and confused word error do not
alter the pause between the duration of words, while extra word error
creates a pause between the two words added.

8 https://pypi.org/project/fastdtw/.
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5.2. Effects of the ASR-SIM errors on EOTD-M

We compute the predictions made by the LSTM based classifier
given different errors in the ASR-SIM transcription, different sentence
featurization techniques and different scenarios. The results are shown
in Figs. 8, 9, 10 and 11.

For each dataset, there are two figures displaying the results for
the same_distribution and different_distribution strategies. Each of the
igs. 8–11 is composed of three plots, one for each ASR-SIM error type
efined in Section 2. Each plot shows the average AUC score obtained
rom a 10-fold experiment for each featurization technique and the
ombination of the three techniques, taking into account the variability
btained from randomly generating dataset splits and error generation.

A first analysis of Figs. 8–11 reveals that the Pause feature represen-
ation obtains the worst AUC results not only for every error probability
n the same_distribution experiments, but also for low error probabilities
n the different_distribution experiments. This poor performance can be
xplained by the fact that pause duration information is very limited
nd does not capture semantic aspects of EOTD-M. This seems to be
onfirmed by the observation that the Combined features produce the
ighest AUC values, being the most complex representation used in this
ork.

Therefore, we focus our analysis on the Combined, Embeddings
nd POS features since, as previously discussed, Pauses features do
ot produce accurate classifications. Analyzing the effect of the shift
f error distributions between train and test sets (same_distribution vs
different_distribution), Figs. 8–11 show that the effect of the change of
distributions is remarkable under the effect of the confused word error
and missing word error, and, to a lesser extent, for the extra word error.
This effect is similar in both datasets, and more remarkable in the
Combined and Embeddings experiments, which show fast degradation
as the error probabilities grow. The payoff of having the most complex
features is that it is the most sensitive to errors, deteriorating to the
point of performing worse than other simpler features. This can be
appreciated in Confused and Missing word error of Switchboard results
in Fig. 9, and on the Subtitles results shown in Fig. 11.

On the other hand, POS features, despite achieving a worse per-
formance than the Embedding features, are less affected by low error
probabilities. Nevertheless, missing word errors have a stronger impact
than the other errors, as can be seen in Figs. 9 and 11. We may
hypothesize that a confused word can still keep the same POS tag, and
does not alter the vectorized representation of the sentence as much as
a missing word error. In the same way, extra word errors generate two
words, of which at least one could also have the same POS tag as the
original word, despite having an extra tag from the other word. This
hypothesis is reinforced by the results illustrated in Figs. 6 and 7, and
analyzed in Section 5.1, where confused word error is the least severe
error in terms of altering the POS featurization of a sentence.

The impact of these induced errors has been also measured in
terms of training time. In Figs. 12–13 the training time under each
error probability is illustrated. In each figure, given the featurization
technique, we can compare the training time for each error type. The
𝑋 axis in this type of plots (Swarm plots and violin plots) does not
correspond to a continuous variable, it acts as an auxiliary variable that
helps to plot multiple instances that have the same 𝑌 value (training
time in this case) without overlapping those instances. These figures
show how, for both datasets, neither the error type nor the probability
affect the training time significantly. Although the lack of influence of
the errors on the training time could be caused by the 200 epoch limit
by making all the training processes stop at the same epoch, this is not
the case since none of the training processes reached the epoch limit.

Summarizing all the information extracted, we can conclude that
missing word error is the most potentially harmful error an ASR-M
can deliver to the EOTD-M if the classifier is not trained with the
expected error probabilities. Not only it modifies the vectorization of a
sentence severely, but it is also the error that affects the performance

https://pypi.org/project/fastdtw/
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Fig. 6. DTW distances between 1000 Switchboard sentences and their modified versions generated by the ASR-SIM.
Fig. 7. DTW distances between 1000 subtitle sentences and their modified versions generated by the ASR-SIM.
Fig. 8. Results for the Switchboard dataset with equal train–test distribution.
Fig. 9. Results for the Switchboard dataset with different train–test distribution.
of an LSTM based EOTD-M the most. Another important finding is
that representations that are less efficient for the EOTD-M under low
error probabilities can become more efficient for particular types of
9

errors when the error rate is increased. This is the case of the POS
representation, which can outperform the embedding representation for
high confused word and extra word error probabilities in the different
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Fig. 10. Results for the Subtitles dataset with equal train–test distribution.
Fig. 11. Results for the Subtitles dataset with different train–test distribution.
Fig. 12. Training time for the Switchboard dataset.
train–test distribution scenario. Nevertheless, for this to happen in some
embedding and error type configurations, the error probability must
reach values of 0.5 or above, such is the case of Fig. 9 for confused
word error. In other studies such as (Voleti et al., 2019) and Simonnet
10
et al. (2018), where the effects of confused word error on embeddings
and NLU-M respectively are studied, the maximum error probability
simulated is 0.5, and real transcription errors, the percentage error was
23%. Nevertheless, in this study we have covered a wider range of
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Fig. 13. Training time for the Subtitles dataset.
rror probabilities, since the amount of errors depend not only on the
SR-M itself but also the audio conditions, and that is sometimes an
ncontrollable factor.

The results obtained from the experiments are similar using both
atasets, and the behavior of the classifiers under the influence of the
enerated errors is coherent. This indicates that the ASR-SIM is suitable
or the purpose of simulating ASR-M transcriptions and simulating
rrors.

. Conclusions and future work

In this paper we have proposed a method for investigating the
nfluence of the ASR-M output errors on the behavior of the EOTD-

of Spoken Dialogue Systems, which has not been addressed before.
he ASR-SIM introduced in this paper generates the transcription of a
imulated dialogue starting from plain text, with the amount and type
f noise specified by the user. This leads to a realistic simulation of
variety of problems exhibited by ASR-M components. The code of

his simulator will remain available in GitHub9 for future studies as a
ontribution of this work. The absence of comparable simulators in the
iterature, is one of the motivations of this work.

Some of the insights from our analysis are the following:

1. The ASR-SIM is suitable for the purpose of simulating ASR-M
transcriptions and simulating errors.

2. Word embeddings produce the best overall results for the EOTD-
M task. This is consistent with previous reported results.

3. The most influential error across representations is the missing
word error.

4. In terms of classifier performance, there is an interaction be-
tween types of errors and featurization techniques.

5. It is more effective to include ASR-M simulated errors in the train
and validation sets in order to make the classifiers more robust.

9 https://github.com/CesarMontenegro/AsrSimulator.
11
So far, we have only exploited the capability of the ASR-SIM to
vary the three types of noise exposed. However, further research can
be done by combining noise with the different speech profiles described
in Section 2.1. Moreover, in this early version of the ASR-SIM, errors
are generated randomly among the words of a sentence, nevertheless
there are probably certain characteristics in some words that make
them more prone to errors compare to others. A study on what word
characteristics are more influential on the probability of a word to
be miss transcribed would help to create more realistic scenarios by
the ASR-SIM. Also, in order to increase the amount of algorithms
that can benefit from this simulator, the pause and word duration
simulations can be extended with other simulations, such as tone and
other variables extracted from audio. Doing this, solutions based in the
architecture represented in Fig. 1(b) will be able to benefit from the
advantages that the ASR-SIM offers.
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