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LUZP1 is a centrosomal and actin cytoskeleton-localizing protein that regulates both
ciliogenesis and actin filament bundling. As the cytoskeleton and cilia are implicated
in metastasis and tumor suppression, we examined roles for LUZP1 in the context of
cancer. Here we show that LUZP1 exhibits frequent genomic aberrations in cancer, with
a predominance of gene deletions. Furthermore, we demonstrate that CRISPR/Cas9-
mediated loss of Luzp1 in mouse fibroblasts promotes cell migration and invasion
features, reduces cell viability, and increases cell apoptosis, centriole numbers, and
nuclear size while altering the actin cytoskeleton. Loss of Luzp1 also induced changes
to ACTR3 (Actin Related Protein 3, also known as ARP3) and phospho-cofilin ratios,
suggesting regulatory roles in actin polymerization, beyond its role in filament bundling.
Our results point to an unprecedented role for LUZP1 in the regulation of cancer features
through the control of actin cytoskeleton.

Keywords: LUZP1, actin cytoskeleton, proliferation, migration, invasion, cancer, centrosome

INTRODUCTION

The Leucine Zipper Protein 1, LUZP1, was originally identified as a nuclear protein mainly
expressed in the brain (Sun et al., 1996; Lee et al., 2001). Recent publications demonstrate
that LUZP1 is a centrosome, actin and midbody-localizing protein implicated in ciliogenesis
regulation and actin cytoskeleton stability (Wang and Nakamura, 2019a; Bozal-Basterra et al., 2020;
Goncalves et al., 2020). In addition to three leucine zipper motifs located at the N-terminus, LUZP1
contains a large number of putative serine/threonine phosphorylation sites (Sun et al., 1996).
Mutations in mouse Luzp1 resulted in cardiovascular defects and cranial Neural Tube Defects
(NTD) accompanied by elevated apoptosis of mesenchymal cells, demonstrating its crucial role
in embryonic heart and brain development (Hsu et al., 2008). In humans, specific mutations in
LUZP1 have not yet been reported. However, complete deletion of LUZP1, as well as other loci,
gives rise to 1p36 deletion syndrome that affects approximately 1 in 5,000 newborns (Zaveri et al.,
2014). The symptoms include developmental delay, intellectual disability, seizures, vision problems,
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hearing loss, short stature, distinctive facial features,
brain defects, orofacial clefting, congenital heart defects,
cardiomyopathy, and renal anomalies. Although the exact
contribution of LUZP1 in the pathogenesis of the 1p36
syndrome is unknown, it has been proposed to contribute to
the development of the cardiovascular malformations (Zaveri
et al., 2014; Jordan et al., 2015). In addition, a recent study
reported that increased LUZP1 expression in the uterus was
associated with higher fibroid risk in humans (Edwards et al.,
2019). Furthermore, Poel and colleagues claimed that LUZP1
downregulation might mediate chemotherapy sensitivity
mechanisms in colorectal cancer cells, potentially through cell
cycle arrest (Poel et al., 2019). In addition, loss of expression of
a LUZP1-interacting tumor suppressor protein named EPLIN
(also known as LIM Domain And Actin Binding 1, LIMA1) has
been associated with cancer by affecting cancer cell adhesion and
migration, and increasing metastatic potential (Jiang et al., 2008;
Sanders et al., 2010; Zhang et al., 2011; Liu et al., 2012; Collins
et al., 2018). Despite this evidence, focused research on LUZP1
is necessary to elucidate the role that it might have in cellular
features underlying cancer development.

LUZP1 has been identified as a new actin-associated protein,
through interactions with ACTR2 (Actin Related Protein 2, also
known as ARP2) (Hein et al., 2015) and filamin A (FLNA),
with a likely role in bundling of actin filaments (Wang and
Nakamura, 2019a,b; Bozal-Basterra et al., 2020; Goncalves et al.,
2020). LUZP1 shows homology to FILIP1 (Filamin A Interacting
Protein 1), a protein interactor of filamin and actin (Nagano et al.,
2004; Gad et al., 2012), and FILIP1L (FILIP1 Like), a suppressor
of tumor cell migration (Kwon et al., 2014). Actin cross-linking
factors play a role in coordination of migration and proliferation.

Actin is one of the most abundant proteins in cells and plays
crucial roles in cytokinesis during cell division, protrusion of
the leading edge of motile cells and maintaining the physical
integrity of the cell (Pollard and Cooper, 2009). The organization
of filamentous actin (F-actin) network and the formation of
cell–matrix adhesions in response to extracellular stimuli are
controlled by small GTPases of the Rho family (Etienne-
Manneville and Hall, 2002). In their activated GTP-bound
state, Rho GTPases can regulate multiple downstream effector
pathways. Both Rac1 (Rac Family Small GTPase 1) and RhoA
(Ras Homolog Family Member A) GTPases have been reported to
activate a pathway that results in the inhibition of cofilin through
serine 3 phosphorylation. Rac1 is mostly linked to lamellipodia
extension and the formation of nascent adhesions, whereas RhoA
stimulates stress fibers formation and maturation of cell–matrix
adhesions (Rottner et al., 1999). The activation of the WAVE
(WASP (Wiskott-Aldrich syndrome protein)-family verprolin
homology protein) and ARP2/3 (Actin Related Protein 2/3
Complex Subunit 2/3) complexes downstream of Rac1 initiates
actin polymerization (Eden et al., 2002).

In this work, we demonstrate that heterozygous loss of
LUZP1 is frequent in different cancer types. Luzp1-depleted cells
exhibit defects in migration/invasion and cell viability, with larger
nuclei and multiple centrioles. These differences may contribute
to increased apoptosis observed in Luzp1-knockout cells. Our
findings uncover a functional relationship between Luzp1 and

characteristic features of tumors via regulation of the actin
cytoskeleton. These results are particularly relevant, as they may
shed light on the molecular mechanisms of cancer.

MATERIALS AND METHODS

Cell Culture
Mouse Shh-LIGHT2 cells (kind gift of A. McGee, Imperial
College) (Taipale et al., 2000), Luzp1−/− cells, + LUZP1 (Bozal-
Basterra et al., 2020) and human HEK 293FT (Invitrogen), were
cultured at 37◦C and 5% CO2 in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS, Gibco) and 1% penicillin/streptomycin (Gibco).

CRISPR-Cas9 Genome Editing
HEK 293FT cell LUZP1 locus was targeted by CRISPR-
Cas9 to generate 293LUZP1KO cells. Two high-scoring sgRNAs
were selected1 to target near the initiation codon (sg2:
5′-CTTAAATCGCAGGTGGCGGT_TGG-3′; sg3: 5′-CTTCAA
TCTTCAGTACCCGC_TGG-3′). These sequences were cloned
into px459 2.0 (Addgene #62988; kind gift of F. Zhang,
MIT), for expressing both sgRNAs and Cas9 with puromycin
selection. Transfections were performed in HEK 293FT cells
with Lipofectamine 3000 (Thermo). Twenty-four hours after
transfection, transient puromycin selection (0.5 µg/ml) was
applied for 48 h to enrich for transfected cells. Cells were
plated at clonal density, and well-isolated clones were picked
and propagated individually. Loss-of-function mutations were
confirmed by PCR-sequencing (Bozal-Basterra et al., 2020).

Western Blot Analysis
Cells were lysed in cold RIPA buffer (Cell Signaling Technology)
supplemented with 1x protease inhibitor cocktail (Roche), and
also in some cases with PhosphoStop 1x (Roche). Lysates were
kept on ice for 30 min vortexing every 5 min and then cleared
by centrifugation (25,000 × g, 20 min, 4◦C). Supernatants were
collected and protein content was quantified by BCA protein
quantification assay (Pierce). After SDS-PAGE and transfer
to nitrocellulose membranes, blocking in 5% milk, or in 5%
BSA (Bovine Serum Albumin, Fraction V, Sigma) in PBT
(1x PBS, 0.1% Tween-20) was performed. In general, primary
antibodies were incubated overnight at 4◦C and secondary
antibodies for 1 h at room temperature (RT). Antibodies used:
anti-vinculin (Sigma, 1:1,000), anti-cofilin and anti-phospho-
cofilin (Cell Signaling Technology, 1:1,000), anti-Rac1 and
anti-pRac1 (Cell Signaling Technology, 1:1,000), [anti-Actr3
(Machesky et al., 1997), 1:1,000], anti-GAPDH (Glyceraldehyde-
3-Phosphate Dehydrogenase; Proteintech, 1:1,000) and anti-actin
(Sigma, 1:1,000). Secondary antibodies were anti-mouse or anti-
rabbit HRP-conjugates (Jackson Immunoresearch). Proteins were
detected using Clarity ECL (BioRad) or Super Signal West Femto
(Pierce). Quantification of bands was performed using ImageJ
software and normalized against GAPDH or actin levels. At least
three independent blots were quantified per experiment.

1http://crispr.mit.edu/
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Immunostaining
Shh-LIGHT2 cells and HEK 293FT cells were seeded on 11 mm
coverslips (15,000–25,000 cells per well; 24-well plate). After
washing once with cold 1x PBS, cells were fixed with methanol
100% for 10 min at −20◦C or with 4% PFA supplemented with
0.1% Triton X-100 in PBS for 15 min at RT. Then, coverslips
were washed 3 times with 1x PBS. Blocking was performed
for 1 h at 37◦C in blocking buffer (2% fetal calf serum, 1%
BSA in 1x PBS). Primary antibodies were incubated overnight
at 4◦C and cells were washed with 1x PBS 3 times. We used
antibodies anti-gamma-tubulin (Proteintech, 1:160), rabbit anti-
Cleaved Caspase-3 (Cell Signaling Technology 9661S, 1:200) and
anti-vinculin (Sigma hVIN-1, 1:200).

Donkey anti-mouse or anti-rabbit secondary antibodies
(Jackson Immunoresearch) conjugated to Alexa 488 or Alexa 568
(1:200) and Alexa 568-conjugated phalloidin (Invitrogen 1:500),
were incubated for 1 h at 37◦C, followed by nuclear staining
with DAPI (10 min, 300 ng/ml in PBS; Sigma). Fluorescence
imaging was performed using an upright fluorescent microscope
(Axioimager D1, Zeiss).

Cell Cycle Analysis by Quantitative
Image-Based Cytometry
Cells were seeded in 96-well plates to be approximately 80%
confluent the day of the EdU (5-ethynyl-2 deoxyuridine) labeling.
Cell cultures were incubated 30 min with 10 µM EdU (Sigma,
#900584) at 37◦C in their own culture medium. Cells were
washed and then fixed 15 min in 4% (w/v) formaldehyde solution
in phosphate buffered saline (PBS). Following 3x PBS washes,
fixed cells were permeabilized with 0.2% Triton X-100 in PBS
for 30 min at room temperature. After washing with PBS, cells
were directly incubated 30 min at room temperature (RT) in
click reaction buffer. For 1 ml of click reaction buffer, following
amounts of the different components are mixed in 680 µl milliQ
water: 100 µl 1M Tris-HCl pH = 8; 20 µl 100 mM CuSO4; 0.5 µl
Alexa FluorTM 647 Azide 1 µg/µl (AA648; Invitrogen) and 200 µl
0.5 M Ascorbic Acid. Finally, cells were washed 3x with PBS
and incubated in 0.5 µg/ml DAPI-containing PBS for at least
30 minutes or until imaging.

For quantitative image-based cytometry images (QIBC), EdU
labeled cells were obtained in an automated manner with the
ScanR acquisition software controlling a motorized Olympus
IX-83 wide-field microscope. Images from 3 technical replicates
in 8 independent experiments were then processed using the
ScanR image analysis software and analyzed with TIBCO
Spotfire software.

Fluorescence-Activated Cell Sorting
To evaluate apoptosis, Shh-LIGHT2 cells were washed with 1x
PBS and then stained with Annexin V (BD Biosciences) and
DRAQ7 (Biostatus Ltd.). Data from 4 biological replicates were
collected on a Fluorescence-activated Cell Sorting (FACS) Canto
(BD Biosciences).

Cell Viability Assay
5 × 103 cells were plated in triplicate in 12-well plates. Twenty-
four hours later, the cells were considered day 0 (t0) and were

fixed in formalin 10% for 15 min. The same procedure was
performed after 3 and 6 days. Cell viability was measured by
staining with crystal violet (0.1% in 20% methanol) for 45 min at
RT. After washing 3 times with water, all samples were air dried.
The precipitate was solubilized in 10% acetic acid for 20 min
at RT, and the absorbance was measured at 595 nm. For each
timepoint, 4 biological replicates were measured.

Wound-Healing Assay
Shh-LIGHT2 control, Luzp1−/− mutant cells and+ LUZP1 cells
were grown in 24-well plates and a scratch wound was performed
using a 20 µl pipette tip. Subsequently, medium was changed
to remove detached cells. Pictures were taken at three different
positions per sample in three technical replicates and at least eight
biological replicates were analyzed of each. The scratch width was
measured using ImageJ Fiji.

Filopodia Quantification
Filopodia were quantified by staining cells with Alexa 594-
conjugated wheat germ agglutinin (WGA) and using FiloQuant,
a plugin for the ImageJ software (Figure 2F and Supplementary
Figure S1A; Jacquemet et al., 2017). The average number of
filopodia of individual cells in 7 biological replicates was pooled
together to perform statistical analysis.

Three-Dimensional Spheroid Invasion
Assay
Both WT and Luzp1−/− Shh-LIGHT2 cells were suspended in
DMEM medium plus 5% Methyl cellulose (Sigma) at 14,0000
cells/ml. Cell spheroids were subsequently formed by serial
pipetting of 25 µl into the lid of a 10 cm dish (700 cells/spheroid)
and incubated in an inverted position. After 48 h, cell spheroids
were embedded into a volume of 300 µl of 2.3 mg/ml bovine
collagen type I matrix (Advanced) and transferred to individual
wells of a 24-well plate. Four hours later, each well was filled
with complete media. Collective cell invasion was monitored
using a Nikon Eclipse TS100 Live Imaging microscope. Images
were taken just after adding complete medium to the collagen-
embedded cells (t = 0 h) and 18 h later (t = 18 h). The area of
each individual spheroid was measured in 3 technical replicates
and in at least 3 biological replicates using ImageJ analysis
program. The fold change in invasive area was determined by
dividing the final area (at 18 h) by the initial area (at 0 h)
in each cell type.

Transwell Assay
For transwell assay (24-well format), 2 × 104 WT, Luzp1−/−

and + LUZP1 Shh-LIGHT2 cells were seeded in the upper
chamber in serum-free medium (0.5 ml; inserts 6.5 mm, 8
µm pore size; Corning Costar). The lower chamber was loaded
with 1 ml medium supplemented with 10% FBS. After 6 h
of incubation at 37◦C with 5% CO2, the migrated cells in
the membrane were stained by DAPI. Images were obtained
in an automated manner with the ScanR acquisition software
controlling a motorized Olympus IX-83 wide-field microscope.
Images from 6 independent experiments were then processed
using the ScanR image analysis software.
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Bioinformatics Analysis
Patient copy number and mRNA expression information was
obtained from cBioPortal (Cerami et al., 2012; Gao et al.,
2013), Cancertool (Cortazar et al., 2018), and TCGA Copy
Number Portal2.

Statistical Analysis
Statistical analysis was performed using GraphPad 6.0 software.
Data were analyzed by Shapiro-Wilk normality test and Levene’s
test of variance. We used two tailed unpaired Student’s t-test
or Mann Whitney-U tests for comparing two groups, One-way
ANOVA or Kruskall-Wallis and the corresponding post hoc tests
for more than two groups and two-way ANOVA to compare
more than one variable in more than two groups. P-values were
represented by asterisks as follows: ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. Differences were considered
significant when P < 0.05.

RESULTS

Copy Number Alterations and Aberrant
LUZP1 Gene Expression Are Common
Events in Cancer
The process of cellular transformation from normal to malignant
cellular behavior derives from the acquisition of genomic
aberrations and the development of cancer hallmarks, such as
activation of invasive and migratory phenotypes and resistance
to apoptosis (Hanahan and Weinberg, 2011). We first aimed
to characterize the genomic alterations of LUZP1 reported
in various cancer types using a publicly available webtool
(cBioPortal) (Cerami et al., 2012; Gao et al., 2013). Interestingly,
we found genomic aberrations in LUZP1 at high frequency in
cancer specimens, reaching an alteration frequency of almost 80%
in cholangiocarcinoma and greater than 40% in 13 out of the 54
cancer types that we analyzed (Figure 1A). Importantly, shallow
deletions (most possibly heterozygous deletions according to
cBioPortal) were the most prevalent copy number alterations
event in a large fraction of cancers (Figure 1A, aquamarine).
We next evaluated whether copy number aberrations would
influence LUZP1 gene expression across several cancer types
based on the TGCA Pancancer Atlas database (cBioPortal).
As predicted, shallow and deep deletions (most probably
homozygous deletions, according to cBioPortal) were associated
to lower LUZP1 mRNA expression compared to diploid, gain
or amplification events in cholangiocarcinoma (Figure 1B),
breast cancer (Figure 1C) and prostate cancer (Figure 1D),
indicating that genomic events are, at least in part, responsible
for reduced LUZP1 expression associated to cancer. In line with
the genomic analysis and the gene dosage-mRNA expression
association, using Cancertool (Cortazar et al., 2018) we found the
mRNA levels of LUZP1 to be significantly reduced in prostate
cancer (Figures 1F,G), and non-significantly in breast cancer
(Figure 1E). From our analysis, LUZP1 emerges as a potential

2http://portals.broadinstitute.org/tcga/home

cancer-relevant gene, exhibiting genomic and transcriptional
perturbation pattern suggestive of a tumor suppressive function.

Luzp1 Deletion Increases Cell Migration
and Invasion
Based on the genetic alterations of LUZP1 in cancer specimens
as mentioned above, we analyzed intrinsic cellular features
altered in cancer, such as cell migration and invasion in vitro,
to see how they might be affected with loss of Luzp1. Using
CRISPR/Cas9 gene editing directed to exon 1 of murine
Luzp1, we previously generated Shh-LIGHT2 mouse embryonic
fibroblasts (Taipale et al., 2000) null for Luzp1 (Luzp1−/− cells),
and additionally rescued the same cells by expression of human
LUZP1-YFP fusion (+ LUZP1 cells) (Bozal-Basterra et al., 2020).
Interestingly, Luzp1−/− cells elicited a remarkable increase in
migratory capacity compared to WT cells, as shown by wound
healing assays (Figures 2A,B). This phenotype was suppressed
in + LUZP1 rescue cells. We further confirmed the heightened
migratory capacity of Luzp1−/− cells by Boyden chamber or
transwell assay (Figures 2C,D).

To migrate, a cell must coordinate a number of different inputs
into appropriate cellular responses. Vinculin and phalloidin
staining was performed in migrating cells to examine focal
adhesions and visualize cell shape, respectively. We observed that
Luzp1−/− cells form more lamellipodia than WT at the leading
edge of migrating cells (Figure 2E). Filopodia and filopodia-like
protrusions are prominent features of migrating cells in vitro
(Petrie and Yamada, 2012; Jacquemet et al., 2013; Paul et al.,
2015). In concordance with increased migration, Luzp1−/−

cells displayed more filopodia than WT cells (Figure 2F
and Supplementary Figure S1A). To further characterize the
regulation of invasive properties by LUZP1, we generated
spheroids to measure the invasive growth into 3D collagen
matrix. The results show that the Luzp1−/− cells showed higher
invasive capacity than WT cells (Figures 2G,H). Taken together,
these data revealed that Luzp1 loss leads to an increase in cell
migration and invasion.

Luzp1 Loss Reduces Cell Viability, Alters
Cell Cycle and Increases Apoptosis
An increase in cell migration and invasion could be influenced by
a differential rate of cell proliferation in Luzp1−/− cells. To check
this, we analyzed cell viability in WT, Luzp1−/− and + LUZP1
cells using crystal violet assay. Surprisingly, Luzp1−/− cells
exhibited a significant reduction in cell numbers at day 3 and
6 after seeding compared to WT cells (Figure 3A). + LUZP1
cells partially rescued the cell viability impairment (Figure 3A,
green line). In addition, EdU labeling and QIBC analysis revealed
significant changes in cell cycle (Figure 3B), showing fewer
Luzp1−/− cells in G0/G1 phases and more Luzp1−/− cells in
S phase compared to WT. To determine the level of apoptosis
occurring within each population, we performed FACS analysis
of cells co-stained for Annexin V and DRAQ7. We detected
more apoptotic cells among the Luzp1−/− cell population
(Figure 3C and Supplementary Figure S1B). In agreement
with these results, we performed immunofluorescence staining
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FIGURE 1 | Copy number alterations and aberrant LUZP1 gene expression in cancer. (A) Copy number alterations (CNA) (mutations-green; amplifications-red;
gain-light pink; deep deletions-blue; shallow deletions-aquamarine; multiple alterations-gray) in different TCGA tumor types (n = 10,967). (B–D) LUZP1 mRNA
expression (RNAseq) sorted by CNA in (B) Cholangiocarcinoma (n = 195), (C) Breast (n = 1,918), and (D) Prostate Cancer samples (n = 324). When n > 3, data
were analyzed by One-way ANOVA or Kruskall-Wallis and the corresponding post hoc test. (E) Violin plots depicting the expression of LUZP1 between non-tumoral
(N) and breast cancer specimens (BCa) in the Lu dataset (Lu et al., 2008). (F,G) Violin plots depicting the expression of LUZP1 between non-tumoral (N) and prostate
cancer specimens (PCa) in Lapointe et al. (2004) (F) and Taylor et al. (2010) (G) datasets. The Y-axis represents the Log2-normalized gene expression (fluorescence
intensity values for microarray data or sequencing read values obtained after gene quantification with RSEM and normalization using Upper Quartile in case of
RNAseq). Student T-test was performed in order to compare the mean gene expression between two groups. ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
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FIGURE 2 | Luzp1−/− cells exhibit cell migration and invasion defects. (A) Representative bright-field micrographs of the wound healing assays performed on
Shh-LIGHT2 WT, Luzp1−/− and Luzp1−/− cells rescued with Luzp1-YFP (+ LUZP1). The horizontal yellow lines represent the wound boundary; “a” and “b” are the
distances between wound boundaries just after wound was made (0 h) and 6 h later (6 h), respectively. Scale bar, 200 µm. (B) Quantification of wound healing in (A)
calculated by subtracting distance “b” to distance “a” and dividing the result by 6 h (n > 8). Data were analyzed by One-way ANOVA and Bonferroni post hoc test.
(C) Representative images of migrating cells of a transwell assay are shown. Cells were detected by DAPI (white). Scale bar, 100 µm. (D) Graph representing the
number of migrating cells. (E) Micrographs of WT and Luzp1−/− cells during wound healing assay. Focal adhesions were detected by anti-vinculin antibody (green),
F-actin by phalloidin (magenta) and nuclei by DAPI (blue). Yellow arrowheads point at lamellipodia. Black and white images show the single green and magenta
channels. Scale bar, 10 µm. (F) Upper panel: example of filopodia detection by Filoquant plugin for ImageJ (in magenta) from an original picture of a Luzp1−/− cell
(in black and white). Scale bar, 5 µm. Lower panel: graphical representation of filopodia number of WT (n = 7; blue dots) and Luzp1−/− cells (n = 7; orange dots).
Imaging was performed using widefield fluorescence microscopy (Zeiss Axioimager D1, 63x objective). P-value was calculated using Mann Whitney test. (G) Invasive
growth of WT or Luzp1−/− cells was analyzed in 3D collagen matrix. Images were taken at t = 0 h and t = 18 h. Representative images are shown. Scale bar,
25 µm. (H) Representation of the fold change in invasion resulting of dividing the area covered by the cells at t = 18 h by the area covered by the cells at t = 0 h.
Data were analyzed by ANOVA and Bonferroni post hoc test or Student’s t-test. The graphs in (B,D,F) represent the Mean and SEM. Data were analyzed by ANOVA
and Bonferroni post hoc test or Student’s t-test. ∗P < 0.05; ∗∗P < 0.01.
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FIGURE 3 | Luzp1−/− cells exhibit lower viability and higher apoptosis than WT. (A) Graphical representation of fold change in cell numbers of WT (n = 5; blue line),
Luzp1−/− (n = 5; orange line) and + LUZP1 cells (n = 5; green line). P-values were calculated using Two-way ANOVA and Sidak’s multiple comparisons test.
(B) Graphical representation of the percentage of WT (blue dots) and Luzp1−/− cells (orange dots) in G0/G1, S or G2/M phases analyzed by EdU labeling and
QIBC. P-values were calculated using Two-way ANOVA. (C) Graphical representation of the results of FACS analysis in Supplementary Figure S1B using Annexin
V and DRAQ7 staining to determine the percentage of apoptotic cells in WT and Luzp1−/− cells in (n = 4). P-value was calculated using Mann Whitney-U test.
(D) Representative micrographs showing WT and Luzp1−/− cells stained with the marker of mid-stage apoptosis cleaved caspase-3 (CC3) (green), phalloidin
(magenta), and DAPI (blue). Black and white images show the single green and blue channels. Images were detected using Zeiss fluorescence microscope (Axio
Imager D1), × 40 objective. Scale bar: 25 µm. (E) Graphical representation of quantification of CC3-positive cells in (D) showing the percentage of apoptotic cells in
WT and Luzp1−/− cells (n = 20 micrographs, objective 20x). P-value was calculated using Mann Whitney-U test. The graphs in (A–C,E) represent the Mean and
SEM. ∗P < 0.05; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

for cleaved caspase-3 (CC3), a marker of mid-stage apoptosis.
More apoptotic cells were detected among the Luzp1−/− cell
population compared to WT cells (Figures 3D,E). Our results
showed a global reduction in cell viability rate. The overall
increase in proliferation in Luzp1−/− cells by EdU labeling might
be counterbalanced by an increase in apoptosis in Luzp1−/−

cells compared to WT. Whether or not these phenotypes are
independently linked to LUZP1 function, or one is a consequence
of the other, remains to be determined.

Luzp1 Depletion Affects Nuclear Size
and Centriole Number
The regulation of cell division, migration and invasion is
influenced by the size and number of intracellular structures
(Ogden et al., 2013; Bell and Lammerding, 2016). We noted
a striking alteration in nuclear size, which was significantly
increased in Luzp1−/− cells and suppressed in + LUZP1 rescue
cells (Figures 4A,B). As LUZP1 localizes to centrosomes and
plays a role in ciliogenesis, (Bozal-Basterra et al., 2020; Goncalves
et al., 2020), we examined centrosomes from Luzp1−/− cells

throughout the cell cycle and noticed an additional phenotype:
Luzp1 depletion resulted in the heightened incidence of cells
with more than four centrioles (Figure 4C). This phenotype was
suppressed in + LUZP1 rescue cells. The presence of multiple
centrioles was further verified in 293LUZP1−KO cells (Figure 4D).
Taken together, these results point to a regulatory role for LUZP1
in centrosome duplication, cytokinesis, or both, resulting in
larger nuclei and multiple centrioles.

Potential Role for LUZP1 in Regulation of
Actin Polymerization
Based on the association of LUZP1 to F-actin and the reduction of
actin filaments that we had previously observed in Luzp1−/− cells
(Bozal-Basterra et al., 2020), as well as the reported interaction
of LUZP1 with Arp2 (Hein et al., 2015; Goncalves et al., 2020),
we wondered whether other regulators of actin polymerization
might be altered. Using western blot, we observed a decrease
in total ACTR3 levels (Figure 5A,B), that was accompanied
by an increase in phosphorylated cofilin in Luzp1−/− cells
(Figures 5C,D). Activation of Rac1 GTPase activity leads

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 April 2021 | Volume 9 | Article 624089

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-624089 March 26, 2021 Time: 17:39 # 8

Bozal-Basterra et al. LUZP1 Role in Cancer

FIGURE 4 | Luzp1−/− cells exhibit bigger nuclei and multiple centrioles. (A) Micrographs showing centrioles in wild-type Shh-LIGHT2 cells (WT), Shh-LIGHT2 cells
lacking Luzp1 (Luzp1−/−) and Luzp1−/− cells rescued with Luzp1-YFP (+ LUZP1) analyzed during cycling conditions. Centrioles were visualized using
gamma-tubulin antibody (gTub, magenta) and nuclei were counterstained using DAPI (blue). Scale bar, 5 µm. Cells containing 2 centrioles are marked with yellow
arrowheads and those containing multiple centrioles with white asterisks. (B) Graphical representation of nuclear area of Shh-LIGHT2 WT (n = 178 micrographs; blue
dots), Luzp1−/− (n = 185 micrographs; orange dots) and + LUZP1 cells (n = 90 micrographs; green dots). P-values were calculated using Kruskall-Wallis and Dunn’s
multiple comparisons tests. (C) Graphical representation of the percentage of cells that exhibit more than 4 centrioles in (A). WT, n = 37 micrographs, blue dots;
Luzp1−/−, n = 38 micrographs, orange dots; + LUZP1, n = 35 micrographs, green dots. P-values were calculated using Kruskall-Wallis and Dunn’s multiple
comparisons tests. (D) Graphical representation of the percentage of cells that exhibit more than 4 centrioles in wild-type HEK 293FT (293WT) and HEK 293FT cells
lacking Luzp1 (293LUZP1KO). 293WT, n = 9 micrographs, blue dots; 293LUZP1KO, n = 12 micrographs, orange dots. P-values were calculated using Mann Whitney-U
test. The graphs in (B–D) represent the Mean and SEM. ∗P < 0.05; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

to changes in actin polymerization mediated by cofilin and
the ARP2/3 complex, but in terms of Rac1 activation by
phosphorylation (pRAC1:RAC1 ratio), we did not find significant
differences between Luzp1−/− and WT cells (Figures 5E,F).
Taken together, these data point to multiple roles for Luzp1 in
actin cytoskeleton dynamics.

DISCUSSION

Our results support that Luzp1 depletion promotes cell migration
and invasion, potentially through regulation of the actin
cytoskeleton. Importantly, these features are not ascribed to
elevated cell viability, since the lack of Luzp1 leads to a reduction
in cell numbers and additionally, an increase in cell apoptosis.
Our results coincide with the reported anti-proliferative effect
of Luzp1 downregulation in colorectal cancer cells (Poel
et al., 2019) and the reported increase in proliferation due to
Luzp1 upregulation in uterine fibroids (Edwards et al., 2019).
Considering the interaction between LUZP1 and LIMA1/EPLIN,
our results mirror those showing increased metastatic potential
upon loss or downregulation of the tumor suppressor EPLIN
(Jiang et al., 2008; Sanders et al., 2010; Zhang et al., 2011;
Liu et al., 2012; Collins et al., 2018; Goncalves et al., 2020). In

fact, we cannot rule out the possibility that LUZP1 and EPLIN
(and/or other LUZP1 interactors) might have a cooperative role
in the context of cancer. These findings, combined with the
fact that LUZP1 is frequently deleted in many human cancer
types, support the hypothesis that LUZP1 has tumor suppressor
potential in certain cancers.

LUZP1 Affects Cell Migration and
Invasion
Although actin stress fibers contribute to cell shape and adhesion,
their exact role in cell migration/invasion has been debated.
Stress fibers are absent from several highly motile cells, such as
leukocytes (Valerius et al., 1981) and amoeba of Dictyostelium
discoideum (Rubino et al., 1984). These observations, together
with the relative lack of stress fibers in cells grown in three-
dimensional matrices have led to the suggestion that they are
not essential for cell migration (Burridge et al., 1988). Indeed,
it is possible that, under certain conditions, stress fibers might
inhibit motility (Badley et al., 1980; Herman et al., 1981;
Cramer et al., 1997; Kemp and Brieher, 2018). These studies
match our observations that Luzp1−/− cells, which contain less
stress fibers than WT cells (Bozal-Basterra et al., 2020), are
more motile than WT.
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FIGURE 5 | Changes in levels of proteins related to actin polymerization in Luzp1−/− cells. (A,C,E) Representative western blot of total lysates of Shh-LIGHT2 WT
and Luzp1−/− cells. Note a reduction in ACTR3 (A) and an increase in phosphorylated Cofilin (p-Cofilin):Cofilin ratio (C) in Luzp1−/− cells. No significant changes
were observed in phosphorylated Rac1 (pRac1) (E). Specific antibodies against ACTR3, Cofilin, phospho-Cofilin, pRac1, Rac1 actin and GAPDH were used.
Molecular weight markers (kDa) are shown to the right. (B,D,F) Graphical representation of the fold change of ACTR3/GAPDH ratios obtained in (A), the
p-Cofilin/Cofilin ratios obtained in (C) and the pRac1/Rac1 ratios obtained in (E). Data from at least three independent experiments pooled together are shown.
P-values were calculated using two-tailed unpaired Student’s t-test. ns: no significant. The graphs in (B,D,F) represent the Mean and SEM. ∗P < 0.05.
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Many cellular proteins are involved in the tight regulation
of actin assembly, which directly influences cell migration and
invasion. Actin-related proteins act synergistically to maintain
a pool of unpolymerized actin monomers, nucleate, elongate
and cap actin filaments, promote dissociation of Pi from ADP-
Pi-subunits, sever actin filaments, and crosslink filaments into
higher order structures. The Rho GTPases have been studied
in association with their roles in the regulation of cell division,
migration and invasion, mainly via actin filament organization
(Aspenstrom et al., 2004). For instance, RhoD (Ras Homolog
Family Member D) binds FILIP1, which binds FLNA and has
a crucial function in cell migration in the brain (Nagano et al.,
2004; Gad et al., 2012). Interestingly, the domain of FILIP1 that
binds RhoD (nucleotides 431–778) has more than 40% homology
with the equivalent region of LUZP1. Furthermore, a third related
protein, FILIP1L, also inhibits tumor cell migration and invasion
in colorectal cancer models (Park et al., 2016). Whether the roles
of LUZP1, FILIP1, and FILIP1L are distinct or redundant remains
undefined. Future mechanistic studies on how LUZP1 and related
proteins regulate actin dynamics will be necessary to understand
their roles in these diverse actin-driven cellular processes.

LUZP1 Has a Role in Cell Division
During mitosis the actin cytoskeleton must rearrange and localize
to the contractile ring during cytokinesis (Heng and Koh, 2010).
This recruitment of F-actin and actin regulatory proteins to
the cell cortex during mitosis is essential for the interaction
between astral microtubules and cortical actin, which is believed
to be important in regulating mitotic spindle orientation (Rankin
and Wordeman, 2010). The role of actin and its regulatory
proteins in these processes ranges from regulating centrosome
separation to proper spindle assembly and orientation and to
elongate kinetochore microtubules (Firat-Karalar and Welch,
2011). We observed that Luzp1−/− cells exhibited multiple
centrioles, bigger nuclei, decreased cell viability and increased
apoptosis. The increased apoptosis seen in our study matches the
elevated apoptosis reported in the neuroepithelium of the NTD
Luzp1 KO mouse hindbrain, which displays NTD (Hsu et al.,
2008). Whether some or all of these phenotypes are due to the
reduced actin cytoskeleton seen in Luzp1−/− cells, or due to
actin-independent roles for LUZP1, remains to be determined.

Moreover, it was previously found that LUZP1 localizes not
only to centrioles and actin cytoskeleton, but also to the midbody
in dividing cells (Bozal-Basterra et al., 2020; Goncalves et al.,
2020). The midbody is formed at the intercellular bridge in
the last phase of cytokinesis and contains crucial proteins for
the abscission between the dividing cells (D’Avino and Capalbo,
2016). While one explanation for the multiple centrioles in
Luzp1−/− cells could be failed cytokinesis, we did not observe
an increase in cells with multiple nuclei, and QIBC analysis
did not reveal increased polyploidy in cells, even though nuclei
were increased in size. The timing of abscission can influence
karyoplasmic ratios, which are thought to be linked to metastatic
properties (Rizzotto and Schirmer, 2017). Understanding the role
of LUZP1 in the midbody, namely in timing and dynamics of
contractile ring formation and contraction, as well as abscission,
would be of major interest.

LUZP1 May Affect Both Polymerization
and Bundling of Actin Filaments
Actin exists as monomers (G-actin) and filamentous polymers
(F-actin) and the maintenance of the balance between G-actin
vs. F-actin is important for physiological functions including
cell locomotion, cytokinesis, maintenance of cell shape and
muscle contraction (Stricker et al., 2010). Two important actors
control the polymerization and depolymerization of the actin
filaments in cells: the ARP2/3 complex and cofilin. They work
synergistically in such a way that the newly polymerized filaments
from cofilin-generated barbed ends are ATP-rich filaments that
promote the nucleation and branching activity of the ARP2/3
complex (DesMarais et al., 2004). Biochemical studies have
shown that LUZP1 is an actin cross-linking protein (Wang and
Nakamura, 2019a). As it has been proposed for EPLIN (a LUZP1
interactor) (Song et al., 2002; Maul et al., 2003), one hypothesis
is that LUZP1 and EPLIN could regulate actin polymerization
by influencing both assembly (nucleation, especially of ARP2/3
branched structures) and disassembly (stability) of F-actin, but
this awaits detailed biochemical studies. We observed a reduction
in ACTR3 in Luzp1−/− cells compared to WT cells, suggesting
that nucleation of branched actin might be diminished. In
contrast, we observed an increase in phosphorylated (or inactive)
cofilin levels, suggesting that Rho GTPase signaling might be
activated upon loss of Luzp1. While normally this leads to
increased stress fibers (Ridley and Hall, 1992), if the actin
filaments are unable to become bundled due to absence of
Luzp1, then phalloidin-positive stress fibers will be reduced,
as we observed in Luzp1−/− cells. As suggested by others
(Liu et al., 2007), the elevated cofilin phosphorylation levels
in Luzp1−/− cells may reflect a compensatory response to
weakened stress fibers.

LUZP1 Exhibits Frequent Genomic
Aberrations in Cancer
In this work, we demonstrate that heterozygous loss of LUZP1
is frequent in different cancer types. As observed in Luzp1−/−

cells, a switch from proliferation to migration/invasion is a
common event in the context of cancer (Mehlen and Puisieux,
2006). However, the increase in apoptosis was puzzling. One
possibility is that the cytoskeletal alterations and the multiple
centrioles could lead to genomic instability. This phenomenon
would be deleterious in benign cells, but tolerated in cancer
cells. The heterozygous loss of LUZP1 observed in tumor
samples could be the consequence of the balance between
the advantage of decreasing LUZP1 levels enough to promote
invasion and the counterselection of complete loss to avoid
genomic instability or cell division defects leading to apoptosis.
Another perspective would be that complete LUZP1 loss
might be counterselected in cancer due to the antiproliferative
and proapoptotic effects, and this explains the frequency of
heterozygous losses.

In summary, our study demonstrates that LUZP1 controls
proliferative and invasive features in cancer, thus providing a
feasible explanation for its frequent copy number aberrations in
various cancer types.
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