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Abstract: This work provides an up-to-date overview of recent developments in neutron spec-
troscopic techniques and associated computational tools to interrogate the structural properties
and dynamical behavior of complex and disordered materials, with a focus on those of a soft
and polymeric nature. These have and continue to pave the way for new scientific opportunities
simply thought unthinkable not so long ago, and have particularly benefited from advances in high-
resolution, broadband techniques spanning energy transfers from the meV to the eV. Topical areas
include the identification and robust assignment of low-energy modes underpinning functionality
in soft solids and supramolecular frameworks, or the quantification in the laboratory of hitherto
unexplored nuclear quantum effects dictating thermodynamic properties. In addition to novel classes
of materials, we also discuss recent discoveries around water and its phase diagram, which continue
to surprise us. All throughout, emphasis is placed on linking these ongoing and exciting experimental
and computational developments to specific scientific questions in the context of the discovery of
new materials for sustainable technologies.

Keywords: neutron spectroscopy; computational materials modeling; soft matter; plastic crystals;
polymers; supramolecular frameworks; nuclear quantum effects; water; ice; sustainable materials

1. Overview

The use of the neutron as an exquisite probe of the structure and dynamics of con-
densed matter is not only well-established but also continues to evolve in exciting directions.
Currently under construction in Lund (Sweden), the European Spallation Source (ESS)
seeks to offer order-of-magnitude gains in capability relative to the state-of-the-art, as pre-
sented in the recent overview of its forthcoming instrument suite by Andersen et al. [1].
Equally, recent advances towards the design and construction of increasingly more compact
neutron sources across the globe are pushing the boundaries of the discipline into entirely
uncharted territory [2–9], as well as it is providing fertile new ground and a plethora of
fresh opportunities for further developments, much in the same way as it happened when
X-ray sources entered the laboratory some decades ago [10].

Progress in neutron science over the past few decades and up until a few years ago
has been extensively reviewed in a series of three recent monographs [11–13]. Among the
wide range of techniques available at present, Neutron Spin-Echo (NSE) and QuasiElastic
Neutron Scattering (QENS) have been the most-commonly used to explore the dynam-
ics of soft matter [14–21]. Recent highlights in QENS include the implementation of
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neutron polarization analysis on a wide-angle time-of-flight spectrometer at a pulsed
neutron source, allowing a clean separation of coherent and incoherent contributions
with sub-meV resolution and over a wide momentum-transfer (Q) range [22]. In con-
trast, the widespread use of Inelastic Neutron Scattering (INS) can still be regarded in
its infancy compared to the above [23–25], although its potential to explore a number of
important and relevant phenomena has been recognized for some time now, including:
crystallinity [26–28]; methyl [29,30] and short-chain dynamics [31]; the vibrational dynam-
ics of polymer glasses [18,32–36]; or even (although more rarely) polymer thin-films [37–39].
For the purposes of this review, INS would refer to the study of well-defined modes at
energy transfers (E) ranging from a few meV all the way up to ca. 500 meV, the highest
energy characterizing the vibration of the lightest molecule, H2.

Beyond the aforementioned upper bound for INS, the use of epithermal (electron-volt)
neutrons leads to Neutron Compton Scattering (NCS), also referred to as Deep Inelastic
Neutron Scattering (DINS). NCS gives access to mass-resolved nuclear mean kinetic ener-
gies and the underlying momentum distributions, of relevance to the study of quantum
effects in condensed-matter systems [40]. Traditionally, NCS has been particularly useful
in the study of hydrogenous matter [41], yet at the same time the technique continues to
be extended to heavier elements under the wider umbrella of MAss-resolved Neutron
SpEctroscopic (MANSE) techniques [42–49]. Neutron spectrometers in a so-called inverted-
geometry configuration at a pulsed source represent the most natural way to implement
NCS and MANSE, as exemplifed by the current science programme on the VESUVIO
spectrometer (ISIS,UK) [50–59], although it is also to be noted that other approaches have
been attempted in the past [60–62].

The primary purpose of this contribution is to highlight recent advances and ap-
plications of INS and NCS in the context of soft matter. For the benefit of both novice
and expert, emphasis is placed on the new tools and methodologies that have become
available to interrogate the dynamical behavior of a growing range of complex materials of
relevance to sustainable applications, particularly those of a soft and polymeric nature. In
doing so, we also seek to bring to the fore the unrivalled ability of neutron spectroscopic
techniques to probe dynamical phenomena over a wide range (decades) in timescales, from
slow stochastic and relaxation phenomena in disordered media to the ultimate effects of
quantum mechanics on properties and function (see Figure 1). To this end, we have chosen
a limited number of areas of research that serve to illustrate the most salient points and
take-home messages that we would like to convey to the reader, particularly to those who
have shied away until now from the use of these superb tools of scientific inquiry.
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Figure 1. Regions of Q and E simultaneously accessible to neutrons, and qualitative comparison with
other experimental probes. For ease of comparison, associated length and time scales are given by the
bottom and right axes, respectively. Neutron spectroscopic techniques include the use of epithermal
(hot neutrons), thermal (time-of-flight and crystal spectroscopy), and cold/ultracold wavelengths
(backscattering and NSE). Blue text entries around the main figure illustrate areas of scientific and
technological application. Reprinted with permission from Ref. [63].

2. Soft Media for Photovoltaics & Photonics

A class of solids currently dubbed Organometal Halide Perovskites (hereafter OHPs)
were nothing more than a scientific curiosity not so long ago, practically unknown to most
but a handful of materials scientists interested in their rather unusual properties as soft
‘plastic’ crystals [64]. This situation has changed dramatically since 2009 [65], following the
use of the OHP methylammonium lead iodide (molecular formula CH3NH3PbI3, hereafter
denoted MAPbI3) as a sensitizer in solar cells [66,67]. A decade on, top-performing OHP-
based devices have attained record conversion efficiencies of solar light into electricity of
20–25%, a figure well above the (rather-shy) value of 3.8% of a decade ago, and comparable
to far-more-costly silicon-based technologies [68]. Notwithstanding this progress, critical
issues remain, primarily associated with their physico-chemical stability and their propen-
sity to degrade [69,70]. Circumventing these difficulties requires a robust and coherent
understanding of OHPs at the atomic and molecular levels, and this task has and continues
to be a challenge to both experiment and theory. This is where recent developments in
neutron spectroscopy come into the picture.

Chemically speaking, OHPs arise from the insertion of an organic cation into an inor-
ganic perovskite lattice, replacing the more traditional metal ion. Such a substitution gives
rise to an incredibly rich and complex structural diversity, as well as to new properties
associated with the additional degrees of freedom introduced by the organic cation. Among
the OHPs studied to date, the ones containing methylammonium (MA+) and formami-
dinium (FA+) moieties confined in iodo- and bromoplumbate frameworks are the most
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archetypal ones, and as such they will be used as a guide for further discussion below. This
hybrid organic-inorganic chemical composition also translates into an unusual softness
and flexibility, which gives rise to a rich polymorphism [71]. In terms of elastic properties,
Figure 2 serves to illustrate where OHPs sit relative to other classes of materials [72,73],
essentially at the cross-roads between the ‘soft’ and ‘hard’ worlds, and comparable to typical
polymer or macromolecular systems of an organic nature.

Figure 2. Color map of the elastic properties of several classes of materials around ambient conditions,
including those discussed in the present and subsequent sections of this work. Please note the
logarithmic scales of both vertical and horizontal axes. Adapted from Ref. [74] with permission from
The Royal Society of Chemistry.

The structural complexity of the iodoplumbates is further illustrated in the compo-
sitional phase diagram of MA1−xFAxPbI3 solid solutions (Figure 3) [75]. In this Figure,
the arrows next to ‘Pressure’ indicate additional phase transitions as a function of this pa-
rameter for the parent compound [76]. Other phenomena illustrated in the figure include:
strong isotope effects as a function of pressure (left) [77]; thermodynamic metastability lead-
ing to disproportionation into non-perovskite phases with poor photophysical response
(right) [78]; or the emergence of orientational-glassy phases as a result of the dynamical
arrest of the organic moiety (bottom) [79,80]. In addition, both MAPbI3 and FAPbI3 reveal
a very complex polymorphism, closely linked to the progressive ‘melting’ of the organic
cations within the solid. At ambient pressure, MAPbI3 shows three different crystal struc-
tures as a function of temperature: a low-temperature orthorhombic phase for T < 160 K; a
tetragonal phase for 160 K < T < 330 K; and a high-temperature cubic phase for T > 330 K.
For FAPbI3, the thermodynamically stable phase at ambient conditions is a non-perovskite
hexagonal phase (yellow δ-polymorph). However, a metastable cubic perovskite phase
(black α-phase) can be stabilized at RT for hours to weeks via heating above the hexagonal-
to-cubic phase transition at 410 K. Upon cooling from the cubic phase, a tetragonal phase
(β-phase) is formed below 285 K, and yet another structure is found below 140 K (γ-phase).
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Figure 3. Phase diagram of MA1−xFAxPbI3 solid solutions over the temperature range 10–365 K at ambient pressure. Pure
MAPbI3(FAPbI3) corrresponds to the left (right) edges of the diagram. For further details, see the main text. Adapted with
permission from Refs. [75,81]. Copyright (2021) American Chemical Society.

A substantial part of our current understanding of the structural properties of these
materials stems from Neutron Diffraction (ND) [82–94]. Most importantly, the use of
neutron Laue diffractometers, operating both at pulsed (e.g., SXD at ISIS, UK [95]; TOPAZ
at SNS [96], US ; SENJU at J-PARC, JP [97]) and continuous neutron sources (e.g., KOALA
at ANSTO, AU [98]; FALCON at BER-2, DE [99]—currently transferred to the spallation
source SINQ, CH) provide the means to precisely explore OHP single-crystal samples
from a crystallographic perspective. Notwithstanding these efforts, the structure of both
MAPbI3 and FAPbI3 remains elusive to a great extent, progress being hindered by the
presence of both static and dynamical disorder, as well as by the formation of domain
structures of multiple origins [75], or the propensity of these crystals to twin [100]. As a
result, the assignment of the space group of each perovskite phase of both MAPbI3 and
FAPbI3 discussed above has been debated from the outset [75]. The strong tendency
of MAPbX3 to twinning, for example, arises from the ferroelastic relations between the
high- and low-temperature phases, where the samples first nucleate and then crystallize,
respectively [100]. This phenomenon has been recently explored by Breternitz et al. using
single-crystal ND on the state-of-the-art instrument FALCON [94]. Similarly, the high-
resolution total-scattering ND experiments on powder samples of FAPbI3 have brought to
the fore the importance of partial disorder and the formation of an orientational glass to
account for the metastability of the perovskite phases in this material. Extensive studies of
the structural properties of FAPbI3 at ambient pressure can be found in Refs. [87,91].

Pressure studies of the structure of OHPs have been primarily carried out using
synchrotron X-rays, with some ongoing debates on the space-group assignment of the
high-pressure phases [76,100–104]. Parallel studies using neutrons continue to be quire
sparse, largely limited by the large incoherent cross section from hydrogen and the need
for per-deuterated specimens. Structural changes upon compression in (MA-d6)PbBr3 have
been studied with powder ND up to ca. 2.8 GPa by Swainson and co-authors [105], yet
even a fundamental understanding of the structural properties of this material at ambient
conditions remains elusive [106]. Isotope effects have also been largely ignored in most
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high-pressure OHP research. In a recent paper, Kong and co-workers [107] used both
high-pressure synchrotron and neutron diffraction (PLANET beamline, J-PARC, JP) and
found that H/D substitution plays a critical role in suppressing lattice disorder in MAPbI3.
Furthermore, per-deuteration gives rise to a large enhancement of light emission and
structural robustness, acompanied by a slower degradation of photovoltaic performance.

Beyond structural studies, work to date on INS has been briefly reviewed by
Mozur et al. [108]. These activities can be conveniently subdivided into coherent and
incoherent INS experiments, the latter focused on the hydrogenous organic cations. The
coherent phonon response brings information on the collective dynamics of the OHP
framework, which can be effectively explored by neutron scattering. A number of neutron
scattering instruments have been used so far for the study of OHPs. These instruments can
be roughly classified as triple-axis spectrometers (TAS), operating at reactor sources (e.g.,
HB3, HFIR, ORNL, US [109]; BT4 and SPINS at NIST [110–112], US; IN12 and IN22 at ILL,
FR. [112,113]; 4F1, 4F2 and 1T at LLB, FR [113–116]); and the time-of-flight (TOF) instru-
ments available at spallation (e.g., MAPS and MARI at ISIS, UK [117–119]; 4SEASONS and
AMATERAS at J-PARC, JP [120,121]; or ARCS at SNS, ORNL, US [120]) and reactor sources
(IN4 and IN5 at ILL, FR [116,117,122]). However, as with ND, the incoherent scattering
from hydrogen masks and obscures the coherent response. As a result, there have also been
several reports on the successful application of Inelastic X-ray Scattering (IXS) to elucidate
the collective dynamics of hydrogenous samples [88,123,124]. Overall, these studies of
coherent lattice dynamics continue to provide essential information on the mechanical
properties of the soft inorganic frameworks (mediated by acoustic phonons). In addition,
they have facilitated a better understanding of charge-transport properties since the fron-
tier electronic states of OHPs couple primarily to low-energy optical phonons [108]. The
complementarity between inelastic neutron and X-ray scattering is illustrated in Figure 4a,
showing phonon-dispersion relations for both per-deuterated and hydrogenous single
crystals of MAPbI3 by means of INS-TAS and IXS, respectively. As clearly shown in these
data, H/D substitution can lead to substantial shifts of the low-energy modes and the
resulting elastic properties, thus serving as a timely cautionary note in future studies.

Figure 4. Phonon dispersion relations in the cubic phase of MAPbI3, measured on both perdeuterated
and hydrogenous single-crystals using IXS (cyan circles [123]) and INS-TAS (orange squares [109]
and green circles [113], respectively). Wave vectors on the abscissa are given in reduced lattice units.
Longitudinal and Transverse Acoustic (LA and TA, respectively) branches are presented along with
the lowest-energy Transverse Optical (TO) mode. Adapted with permission from Ref. [109].
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The first INS experiments on OHPs were reported by Swainson and co-workers, deal-
ing with the case of MAPbBr3 [117]. This work identified the mode softening associated
with rich polymorphic transitions in this system. Soon after, Létoublon et al. presented
an exhaustive analysis of the low-frequency dynamics in MAPbBr3 with INS-TAS experi-
ments combined with Raman and Brillouin scattering, and ultrasound measurements [115].
This line of research has been continued by the authors, providing the most comprehen-
sive analysis of the mechanical properties of both MAPbX3 and FAPbX3 published to
date [113]. INS has the advantage of providing microscopic information on the elastic
properties of OHPs, since the acoustic phonons possess wavelengths which are consider-
ably shorter than crystal dimensions. Moreover, it allows measurements in the THz range,
where relaxation effects are negligible [125]. These works have built a picture of OHPs
as materials with an exceptionally low shear elastic constant C44. For instance, the C44
constants reported for FAPbBr3 and FAPbI3 by Ferreira et al. amount to 3.1 ± 0.1 GPa and
2.7± 0.3 GPa, respectively [113]. These values are comparable to 2.1± 0.3 GPa in crystalline
polyethylene, measured with INS-TAS by Heyer et al. [125]. Furthermore, an analysis of
the elastic properties of the cubic perovskite phase of FAPbI3 provides important clues
on its metastability. The softening of the shear modulus with temperature also confirms
the aforementioned ferroelastic relations in MAPbX3 perovskites, a pivotal finding to
understand their strong tendency to exhibit twinning [100]. Twinning has been also evi-
denced by Li et al. in high-resolution experiments on a hydrogenous MAPbI3 single-crystal,
performed with the chopper TOF spectrometer AMATERAS [121]. These experiments com-
bined with extensive QENS and MD analysis of the underlying cation dynamics, allowed a
clean distinction between the individual contributions from acoustic and optical phonons
to the (exceedingly low) thermal conductivities of MAPbX3 perovskites. The authors pro-
posed that the nanoscale mean-free-paths of acoustic modes together with lower velocities
are responsible for such a small thermal conductivity and suggested a marginal influence
of optical phonons on heat-transport properties [121]. These conclusions have been cor-
roborated and explored further by Gold-Parker et al. [110] with INS-TAS experiments on
per-deuterated MAPbI3, providing high-precision momentum-resolved measurements of
acoustic phonon lifetimes, and demonstrating that acoustic phonons are unable to dissipate
heat efficiently. These results highlight the importance of the so-called ‘phonon bottleneck’
effect, a phenomenon that opens the possibility of using OHPs in hot-carrier solar cell
devices. In these circumstances, the loss of photogenerated charge carriers can be miti-
gated, thereby boosting device efficiency. Normally, carrier thermalization and cooling
mechanisms rely on the coupling to optical phonons which, however, must further decay
into acoustic ones and then dissipate. However, in some cases these phonons are produced
at very high density so that they cannot decay away fast enough, allowing to scatter back
and reheat the carrier ensemble. This phenomenon was examined in the aforementioned
paper by Gold-Parker et al. [110], showing a pronounced inefficiency of acoustic-phonon-
mediated heat-transport mechanisms in the MAPbI3 lattice. Yang et al. have explained the
‘phonon bottleneck’ effect in OHPs by acoustic-phonon up-conversion, which leads to a LO
phonon emission rate ten times slower in FAPbI3 compared to the all-inorganic counterpart
CsPbI3 [126]. The most-recent research on MAPbI3 further addresses the isotope effect re-
vealed earlier by Kong et al. [77]. Manley et al. [109] have extended their previous INS-TAS
experiments on a per-deuterated MAPbI3 [110,113] (see Figure 4a), revealing that isotope
substitution in MA+ causes a large (20–50%) softening of the longitudinal acoustic (LA)
phonons near zone boundaries, reduces thermal conductivity by nearly 50%, and slows
carrier relaxation kinetics. These significant effects serve to emphasize once more out the
importance of a coupling of LA phonons to the librational modes of the methylammonium
molecule, which are strongly mass-dependent [109].

INS-TAS in combination with INS-TOF experiments also bring to the fore the role of
optical phonons in the photophysics of these materials, as discussed in Refs. [109,127–130].
As noted by Mozur et al., optical phonons are responsible for over half of the polarizability
in the dielectric response of MAPbI3 [108]. As deduced from the characteristic line shape
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broadening of the photoluminescence (PL), the main mechanism limiting the mobility of
free carriers and excitons in OHPs is via the Fröhlich interaction between charge carriers
and Longitudinal Optical (LO) phonon modes, which is, hence, the most important form
of electron-phonon coupling in OHPs [108,116]. This phonon scattering mechanism is
believed to be the key fundamental factor in establishing the intrinsic limit of charge
carrier mobility [116]. State-of-the art INS experiments on optical phonons across the entire
frequency range and over a wide Q-range have been recently presented and discussed
by Ferreira et al. [116] (MAPX3 and FAPX3) and Zhang et al. [120] (MAPI3). Ferreira et al.
have established the dispersionless character of optical phonons, overlapping with the
upper part of the acoustic branches. The authors also highlight a significant anharmonic
behavior, manifested as phonon overdamping at temperatures well below ambient. These
results raise some question marks on commonly accepted ways of describing charge-carrier
mobilities based on a quasi-particle picture for low-energy optical lattice modes [116].
Phonon damping was also examined by Zhang et al., probing the spatial and temporal
coherence of the optical modes [120]. Moreover, the above phenomena do not appear to
be restricted to OHPs. The very recent and elegant work by Lanigan-Atkins et al. [131] on
CsPbBr3 show unambiguous signatures of liquid-like damping of Br-dominated phonons
of a two-dimensional nature directly impacting the electronic gap-edge states.

Beyond the above, INS studies focusing on the organic moiety by exploiting the
incoherent scattering from protons address another set of fundamental questions on the
nature and coupling of cation and framework motions, of direct relevance to electron-
phonon coupling and the overall photophysics of these materials (see, e.g., the discussion
presented in Ref. [108]). The organic cation is known to accelerate the formation of large
polarons that interact with both excitons and charge carriers, thereby extending the lifetime
of the latter [108,132]. In addition, they participate in dynamical processes that reduce
phonon lifetimes in these systems through a ‘rattling’ effect [133], which further reduces
the macroscopic thermal conductivity. There is also mounting evidence on mode-specific
phonon-bandgap coupling in OHPs [134], well beyond the seminal works on organic-rotor
dynamics in the QENS domain [121,135]. The above-discussed papers have used both INS-
TAS and direct-geometry INS-TOF instruments, with a focus on the low-frequency regime.
A great advantage of TAS is their flexibility, allowing access to basically any Q-point, yet it
can suffer from limited resolution and count rate. On the other hand, direct-geometry chop-
per TOF instruments offer simultaneous access across a wide range of both energy-transfers
and scattering vectors, having large detector areas and so offering very-high sensitivity.
On the other hand, for a direct-geometry instrument there is a significant resolution broad-
ening, and the best resolution is only obtained when the energy of a given phonon is close
to the incident energy selected by a mechanical chopper. Therefore, it is not possible to
collect a high-resolution spectrum over the entire spectral range in one go, and merging
different spectral regions is difficult because of the varying resolution functions [136].
This can become a serious limitation in molecular systems, where vibrational modes are
typically spread out over a wide spectral range, including the celebrated ´fingerprint´
region. Indirect-geometry neutron spectrometers offer a means of circumventing these
issues. Optimized to use short neutron pulses, the prime example is TOSCA, operating at
ISIS, UK [137–141]. The key difference between TOSCA and direct-geometry instruments is
the fact that it operates at specific and narrow energy-momentum-transfer kinematic trajec-
tories optimized for the study of hydrogenous systems, thus providing a high and nearly
constant relative resolution over a broad energy-transfer range. TOSCA has been subjected
to significant upgrades over the last decade [137–141], which are still in progress and
will result in even a higher detected flux. Capitalizing from this success, two broadband
instruments of the same geometry have been developed at pulsed sources: VISION (SNS,
ORNL, US [142]; in operation) and VESPA (ESS, SE [1]; under construction). LAGRANGE
(ILL, FR) also shares the same layout to attain a high resolution, yet the steady-state nature
of the source requires that the incident energy needs to be scanned [143]. Contrary to TAS
or direct-geometry TOF spectrometers, this kind of instrumentation is characterized by a
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very high efficiency, allowing to study small samples within experimental time-scales com-
parable to standard optical vibrational spectroscopy techniques, i.e., infrared and Raman.
These merits open the path for, e.g., in-situ and operando experiments in catalysis, or the
use of high-pressure and gas-handling systems, opening new and exciting opportunities
for chemistry and materials science. A limitation that needs to be kept in mind is the lack
of access to small Qs at high Es, which results in a damping of the intensity of fundamental
phonon excitations with energy transfer, accompanied by a concomitant increase of the
intensity of overtones. Notwithstanding this limitation, this review amply demonstrates
the versatility and power of this novel instrumentation in the study of molecular systems,
where a high spectral resolution across a broad energy-transfer range becomes the key
figure of merit.

Figure 5 serves to illustrate the above, with an example of the orthorhombic phase of
MAPbI3 studied at cryogenic conditions using indirect-geometry (TOSCA and VISION),
TAS (1T) [116], and chopper-TOF (AMATERAS, Ei = 54 meV) [121] instruments. The
spectral range has been limited to 50 meV, as, in this case, this range is key to understand
the librational dynamics and the local structure in the vicinity of the organic cation. The
first high-resolution INS studies of MAPbI3 over a wide spectral range were reported
by Drużbicki et al. [144] using the previous incarnation of TOSCA (see the black curve
in Figure 5). More recently, Manley et al. have reported the INS spectrum recorded
on VISION [109] (blue curve in the figure), with a considerably better signal-to-noise
ratio. These latter data are of comparable quality to those of a more recent study by
Drużbicki et al. [75], obtained on an upgraded TOSCA, hereafter TOSCA+ [138–140] (red
curve). While both VISION and TOSCA+ cannot offer the resolution at low-frequencies
accessible with TAS or chopper-TOF instruments, recent developments on the state-of-the-
art instrument OSIRIS, operating also at ISIS, provide unprecedented opportunities for
THz-neutron spectroscopy [145].

Figure 5. INS spectra of hydrogenous MAPbI3 in the orthorhombic phase at low temperatures
(T = 5–20 K). These spectra were recorded on five different instruments: 1T (TAS; single-crystal [116]);
AMATERAS (TOF; Ei = 54 meV; single-crystal [121]; TOSCA [144], VISION [109], TOSCA+ [75]
(indirect-geometry; powders). Adapted with permission from Refs. [75,109,116,121,144]. Copyright
(2021) American Chemical Society.

The work of Drużbicki et al. [144] on the cation dynamics in MAPbI3 was heavily un-
derpinned by the use of computational materials modeling to interpret the INS data, which
is exquisitely sensitive to the local structure around the organic cation and the underlying
vibrational motions. Contrary to crystallographic techniques providing information on
time- and spatially averaged structure, spectroscopy enables access to atomic and molec-
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ular correlation functions in both space and time and, thus, furnish additional insights
into the local structure and ensuing dynamics [75]. Moreover, these capabilities also find a
natural ally in high-resolution solid-state NMR (ss-NMR) spectroscopy [146–148]. As il-
lustrated by Drużbicki et al. [149], INS spectroscopy offers high potential to supplement
ss-NMR in solving structural problems of a soft nature, particularly at cryogenic conditions
which are hardly accessible to high-resolution NMR experiments (see, e.g., Ref. [150]).
These synergies pave the way for the study of a wide variety of systems, including those
disordered or nano-confined [151]. Drużbicki et al. [144] also highlight the mismatch
between the averaged structures of OHPs defined with diffraction techniques and the
local structure unveiled with spectroscopy. In particular, this work shows unequivocally
that the commonly accepted Pnma model of the low-temperature phase of MAPbI3 is
insufficient to describe the experimental spectroscopic data, pointing at the importance
of octahedral deformations [144]. As extensively discussed in Ref. [75], the space-group
assignment of each phase in this material has been debatable from the very beginning, and
the origin of this discrepancy is linked to the dynamics and orientational disorder present
at length scales commensurate with unit-cell dimensions. In this case, INS spectroscopy is
particularly powerful.

The above work also illustrates the increasingly important role of first-principles
modeling in linking the INS data to local structure. In this context, a very significant
amount of progress has been made over the last decade with the development of advanced
tools for the ab initio modeling of materials. These enable accurate and efficient Har-
monic Lattice-Dynamics (HLD) calculations and makes more demanding, time-evolved
modeling from first-principles (ab initio Molecular Dynamics, AIMD) feasible. A dis-
cussion on the current trends and practical aspects of modeling the low-frequency vi-
brational spectra can be found in Ref. [152]. Usually, electronic-structure calculations
are performed using several implementations of density functional theory (DFT), relying
either on the use of plane waves (e.g., CASTEP [153,154], QUANTUM ESPRESSO [155],
ABINIT [156]), projector augmented-waves (e.g., VASP [157], GPAW [158]), and local-
ized numerical (FHI-aims [159,160], SIESTA [161]) or Gaussian (CRYSTAL [162], TURBO-
MOLE [163]) basis sets, a hybrid plane-wave / Gaussian approach (CP2K [164]), or impos-
ing all-electron full-potential Linearised Augmented Plane Waves (LAPW; WIEN2K [165]
and ELK [166] programs). These codes offer calculations of phonon properties by means of
finite-displacement methods (FD), typically using the Parlinski-Kawazoe Direct Method
(DM) [167], or via perturbative treatments of ionic displacements through Density Func-
tional Perturbation Theory (DFPT) [168–170]. Furthermore, the development of
PHONOPY [171,172], an open source package for phonon calculations at the harmonic
and quasi-harmonic levels with input from external codes (e.g., all the first-principles
calculation codes listed above), should be emphasized. While the DM is straightforward to
determine the total energy as a function of atomic displacements, phonon frequencies can
be accurately calculated only at the wave vectors that are commensurate with the supercell
geometry [173]. On the contrary, DFPT can calculate analytically the dynamical matrix at
any arbitrary wave vector, but extensive programming might be required depending on the
exchange-correlation (XC) functional and the basis-set definition used in the specific DFT
implementation at hand [173]. The most extensive implementations of DFPT for lattice
dynamics using a reciprocal-space formalism are offered by ABINIT [156], QUANTUM
ESPRESSO [155] and CASTEP [154]. Recently, Scheffler and co-workers have released an
efficient implementation using a real-space formalism, available in the FHI-aims code [160].
As an alternative, Lloyd-Williams and Monserrat [174] have proposed an extension of the
FD method. This Non-diagonal Supercell Method (NCM) takes advantage of the periodic-
ity of the system allowing a calculation of the dynamical matrix using supercells, which
are much smaller than those used in DM calculations and, hence, more efficient. To date, a
number of codes have also been developed to simulate neutron observables directly from
HLD outputs [162,171,175–180].
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Following the first high-resolution INS study of MAPbI3 by Drużbicki et al. [144],
subsequent works have used TOSCA and VISION to interrogate the cation dynamics in
OHPs. Using TOSCA, Kieslich et al. [181] investigated the relevance of the subtle balance
between vibrational entropy and hybrogen bonding in the phase behavior of MAPbBr3.
Mozur et al. have employed VISION to study the effects of Cs+ substitution in MAPbBr3
and FAPbBr3 perovskites [81]. These efforts are driven by the need to find new ways to
improve the long-term stability and reliability of OHPs, cation mixing being an important
route to this end. More recently, Drużbicki et al. [75] have used INS heavily supported by
computational materials modeling to interrogate the mechanism behind phase stabilization
in solid MA1−xFAxPbI3 mixed-cation compositions. This work provides a detailed and
quantitative view of the local environment and vibrational dynamics of FA+ cations in
this important OHP. In addition to confirming the formation of an orientational glass
in FAPbI3, these results link the dynamical behavior of the cations in [MA/FA]PbI3 to
the structural stabilization of the photophysically active perovskite phase via a novel
locking mechanism. Detailed simulations validated by the INS data show the emergence
of synergistic dynamics involving MA+ and FA+ cations, directly affecting the geometry
of the surrounding inorganic framework. This work also illustrates the advantages of the
joint use of INS and AIMD simulations to unravel the behavior of a massively disordered
soft-matter system of technological relevance.

Figure 6 further illustrates the power of such a joint experimental-computational
approach by presenting more recent time-evolved simulations, relying on an extensive
model of [MA/FA]PbI3 solid solutions. MA+ cations are trapped inside the tetragonal
perovskite framework of the parent FAPbI3 and are modeled and compared to the INS
spectrum of the [MA/FA]PbI3 solid solution measured on TOSCA+. The analysis of the
difference spectrum obtained by substracting the INS signal of the parent FAPbI3 from the
[MA/FA]PbI3 mixture evinces strong changes in the vibrational dynamics of both MA+

and FA+ cations (the latter analyzed in detail in Ref. [75]). An excellent match between the
experimental and simulated spectra gives us sufficient confidence to explore further the
local structure around the MA+ cations. Such structure is characterized by a weakening
of the hydrogen-bonding (H-bonding) motifs confining methylammonium cations in the
surrounding iodoplumbate cages. As a result, MA+ undergoes a pronounced rattling
behavior, locking the formamidinium cations in the neighboring voids, and preventing
the transformation of the metastable perovskite framework to the thermodynamically
stable hexagonal phase. Establishing the mechanism of stabilization of the perovskite
phase (which from the outset stems from the softness of the iodoplumbate framework) can
therefore facilitate the design of efficient routes for the further optimization of these solid
solutions. In closing this discussion, we also note that to date a number of tools has been
developed to support neutron scattering experiments with AIMD simulations, including
calculations of the Vibrational Densities of States or VDOS (TRAVIS [182], MDANSE [183],
OCLIMAX [184], DYNASOR [185]), as well as anharmonic phonon-dispersion relations at
finite temperatures (DYNASOR [185], DynaPhoPy [186], phq [187]). Further discussion
on the application of AIMD as a route to explore the vibrational dynamics of condensed
matter is presented in Section 4.
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Figure 6. (a) The lower two panels show experimental INS spectra of the MA0.4FA0.6PbI3 solid-
solution recorded on TOSCA+ at T = 10 K, along with the difference spectrum obtained by substract-
ing the signal from FAPbI3, highlighting contributions from the MA+ cations [75]. These data are
compared with the results of AIMD simulations in the upper two panels of (a). The theoretical INS
spectrum of the MA0.4FA0.6 mixed-cation composition was constructed by stoichiometric weighting
of the partial hydrogen-projected VDOS. MA+ cations were selected based on the analysis of the indi-
vidual VDOSs for each of the twelve distinct types used in the structural model (see the bold curves
in the top panel). The molecular model in (a) illustrates the lowest-energy internal mode of MA+.
(b) Structural model used to describe the mixture, with FA+ omitted to ease visualization. Distinct
MA+ cations are labeled with Roman numerals. (c) Distribution of closest nitrogen-iodine distances
for each of the twelve MA+ cations. Two extreme cases are highlighted as bold curves (labeled as II
and XII). Their time-evolved structures over a 30-ps interval are presented as cumulative models, as
shown in the insets in (c). The same color coding has been used in all panels. [Unpublished data].

3. From Confined Polymers to Soft Supramolecular Frameworks

The use of INS in the study of polymers has experienced a steady rise over the past
decade, certainly facilitated by recent developments in the requisite instrumentation. Partic-
ular emphasis has been placed on exploring the consequences of spatial confinement at the
nanoscale. The use of graphitic materials as confining media represents a nice illustration
of the merits and strengths of INS to isolate the spectral response of the (hydrogenous)
polymeric phase relative to that of the carbon-based substrate. Owing to the increased sen-
sitivity of the new TOSCA+ spectrometer, for example, it has been recently shown that INS
can be exquisitely sensitive to chemical composition and the underlying (and disordered)
structure of graphene-related materials [188]. Considerable attention has also been given
to the study of other carbon-based substrates with INS [189–193], including hydrogen
spillover mechanisms [194,195] or the uptake and intercalation of atomic and molecular
species, particularly water [196–200]. In this context, Romanelli et al. has used NCS to show
that the confinement of water molecules within Graphite Oxide (GO) membranes has a
‘soft’ character, with the predominance of non-specific and weak interactions between water
and the underlying nanostructured substrate [199]. In contrast, studies of organic polymers
confined within carbon-based substrates reveals an intrinsically different picture [201].
Poly(Ethylene Oxide) (PEO) under extreme confinement was first studied using GO as
a substrate [202]. The insights brought forward by the use of INS are evident from the
data shown in Figure 7. This study served to establish the preferred conformation of the
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confined PEO phase, as well as to relate these structural changes to the strong suppression
of collective phenomena, including crystallization and dynamical relaxation processes.
Subsequent studies have exploited similar methodologies to investigate in detail a broad
range of aspects linked to the above: molecular-size effects [203], intercalation versus
adsorption [204], or the morphology and composition of the underlying substrate [205].

Figure 7. INS spectra of bulk (red) and confined (green) PEO. The black trace corresponds to the INS
response of the graphite oxide substrate. Adapted from Ref. [202] with permission from The Royal
Society of Chemistry.

The study of hydrogen dynamics and associated confinement phenomena in Proton
Exchange Membranes (PEMs) represents another timely example of the use of INS in the
field of sustainable materials and associated technologies [206–208]. In a similar vein, there
is also incipient activity in the development of hydrogen and other gas-storage materials.
Carbon-based materials including fullerenes, nanohorns, or intercalation compounds
constitute good examplars of soft media of increasing relevance for applications as gas
stores, particularly hydrogen. In this regard, there are emerging opportunities for INS to
provide unique insights into the mechanisms behind their hydrogen uptake at the atomic
level [209,210], as well as for NCS as a unique analytical means to assess hydrogen levels
quantitatively, as recently illustrated by Krzystyniak et al. [211].

Among the carbon-based materials that have been considered for hydrogen-storage,
fullerene adducts continue to offer untapped opportunities. The full hydrogenation of the
celebrated Buckminsterfullene molecule C60, for example, would lead to record-breaking
hydrogen-storage capacities around 8 wt.% [212]. Several strategies have been attempted
to ensure the reversibility of this process, either by intercalation [213–232], or through
the use of intermediate hydrogen carriers, like ammonia [233–235]. The already excellent
sorption properties of alkali-doped fullerides can be further improved via decoration
with transition-metal nanoparticles [227,236]. An interesting feature of fullerides is also
the possibility of their polymerization at extreme conditions [237–240], which opens new
synthetic strategies for obtaining carbon allotropes with entirely new physico-chemical
properties. Polymerization can also be promoted by the intercalation of a wide range of
electron donors (e.g., metals including Li, Na, K, Rb, or Mg), by entering the voids of the
host fullerene lattice to form fully fledged solids [237,241–246].
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As an illustration of this line of work, the structure and dynamics of the fullerene
polymer Li4C60 was studied with INS spectroscopy by Rols et al. [246,247]. Representative
results are illustrated in Figure 8. The use of ND and INS, combined with extensive ab initio
modeling allowed the authors to solve its solid-state structure. Figure 8a–b show the rather
exotic structure of this polymeric material, leading to the rich temperature dependence of
INS features displayed in Figure 8c. Further, it has found that the intercalated ions exhibit
partial disorder, as further corroborated by the analysis of the INS data. The strength and
the nature of the peculiar polymeric bonding between the sub-units rely on a three-electron
charge transfer from the Li atoms to every C60 molecule. In addition to its good hydrogen-
storage capabilities, the system shows superionic conductivity at low temperature, which
is an exceptional property for a solid material, therefore hinting at new applications [248].
The calculations presented in this work also predict an unstable Li sub-lattice, a finding
that is consistent with the aforementioned ionic conductivity. The temperature dependence
of INS features depicted in Figure 8 c is also sensitive to the depolymerization transition,
characterized by a (rather counterintuitive) transfer of spectral weight to lower frequencies
in the monomeric phase [246].

Figure 8. (a) Structure of Li4C60 obtained from DFT (VASP) geometry optimization within space
group I2/m. Gray sticks are carbon bonds; magenta and brown spheres are carbon atoms involved in
covalent intermolecular bonds, including [2 + 2] bridges and single bonds. Red and yellow spheres
represent two different types of intercalated ions, LiT and LiO, respectively. (b) View along the
c-axis of one polymeric plane (the Li ions have been omitted for clarity). (c) (Top) Generalized
Density of States (GDOS) derived from INS data collected between 300 K (polymer phase) and 700 K
(monomer phase): red, 300 K; yellow, 610 K; brown, 630 K; gray, 640 K; and black, 700 K). (Bottom)
GDOS extracted from the MD simulations at 800 K (see text) in the monomer phase (black solid
lines, total GDOS; gray solid line, carbon GDOS; red area, lithium GDOS). The INS spectra were
collected on Mibemol (LLB, Saclay, FR). Reproduced from Ref. [246] with permission from APS
(https://doi.org/10.1103/PhysRevLett.113.215502) (accessed on 28 April 2021).

Nanoporous coordination compounds and their polymeric counterparts constitute
yet another family of soft media with new properties and great potential for applications.
To date, Metal-Organic Frameworks (MOFs) and Covalent-Organic Frameworks (COFs)

https://doi.org/10.1103/PhysRevLett.113.215502
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have been studied in greater depth. Owing to its superb sensitivity to hydrogen, INS has
become a powerful probe of the structural and gas-sorption properties of these materials,
and its use has certainly proliferated in recent years. Table 1 provides a comprehensive sum-
mary of work to date. Following the seminal papers from Eckert and co-workers [249,250],
INS has evolved as a leading technique providing insights on the binding and dynamics of
molecular hydrogen (primarily in its para form, p–H2) absorbed by MOFs. As illustrated
by a growing number of works [209,210,251–257], the use of intense beams of low-energy
neutrons is ideally suited for the study of ro-vibrational excitations in H2. In particular,
the last decade has witnessed unprecedented progress in MOF research using INS, along
with a considerable broadening in scope beyond H2 uptake, which is still ongoing (see,
e.g., Ref. [258]). Alongside, instrument developments at neutron sources have continued
to support these research programmes, including: (i) a new Target-Station 2 (TS2) at ISIS,
which has considerably improved the flux on TOSCA at low-energies; (ii) developments
in sample environment equipment, including advanced gas-handling capabilities (see,
e.g., Ref. [259]); (iii) ongoing developments in indirect-geometry instruments, reducing
the requisite sample quantities considerably [137–141]; (iv) the commissioning of new
instruments, like VISION at the SNS and LAGRANGE at the ILL [143], or the design of
VESPA for the ESS [1]; and (v) progress in the field of ab initio modeling and its integration
with experiments—as shown in Table 1, we underline the substantial increase over time
in the number of publications using solid-state DFT. Altogether, these have enabled the
study of the vibrational dynamics over a wide energy-transfer range and, more importantly,
to place a fresh focus on the structural properties and flexibility of these soft materials,
key to understand their rich polymorphism and sorption behavior [74,260]. As shown by
Ortiz et al. [261], some flexible MOFs (e.g., MIL-53 or DMOF-1) show highly anisotropic
elastic properties, with deformation directions exhibiting very low Young’s and shear mod-
uli, approaching a 400:1 ratio between the most rigid and the softest direction. Negative
compressibilities as a function of temperature or pressure also seem to be the norm rather
than the exception in these materials.

The outcome of the above-discussed developments can be illustrated with the family
of Zeolitic Imidazolate Frameworks (ZIFs). ZIFs are nanoporous materials comprised
of tetrahedrally coordinated nodes and imidazole-derived organic linkers. The linkage
between the metal and imidazole resembles the Si–O–Si angles present in zeolites, which
explains their name. Their facile synthesis, high stability under ambient conditions, and
commercial availability of the building blocks make them one of the most studied classes
of MOFs regarding their mechanical properties [260]. For instance, ZIF-8 has a remark-
ably low shear modulus below 1 GPa [262], claimed to be the lowest value known for a
crystalline solid. It is also interesting to note that some of the OHPs discussed earlier [113]
have very similar values of C44 as those seen in ZIF-8. Further, ZIF-4 is also known
to exhibit a remarkably rich polymorphic behavior at ambient and high pressures, and
this phenomenology is certainly linked to the flexibility of its network structure at the
nanoscale [260,263]. Figure 9 presents the INS spectra of a ZIF series [264], obtained on
a previous incarnation of TOSCA, along with the results of accurate (optimized for the
THz range) HLD calculations performed with the CRYSTAL code. This figure illustrates
the synergy between the high-resolution INS experiments and theoretical predictions,
allowing the full and quantitative interpretation of a rather complex vibrational spectrum
over the entire range [264]. The low-energy part of the INS data is of particular relevance
to understand the unexpected sorption properties of these materials. The large cavities
interconnected by narrow and flexible channels characteristic of these ZIFs lead to novel
molecular-sieving phenomena driven by low-energy modes beyond those at play with
small molecules like H2 or CH4. These dynamical processes can explain their rather un-
expected ability to absorb larger molecules which would not ‘fit-in’ by considering the
rigid structure of the substrate [265]. At an atomic level, this so-called ‘gate-opening’ is
related to the swing of the imidazolate linkers, thereby increasing the intrinsic porosity.
Developments in gas-handling systems have also paved the way to probe gate-opening
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and related network-breathing phenomena arising from the unique elastic properties of
MOFs—see entries in Table 1 and Refs. [151,266–290].

Table 1. Summary of INS studies on MOFs and COFs. The first column indicates the acronym of the material, as commonly
used in the literature. The second column indicates whether the focus of the investigation was on the bare material or on the
uptake of the chemical species shown. The third and fourth columns show the energy-transfer range and INS spectrometer
used (QENS, IPNS; FANS, NIST; FOCUS, SINQ; TOSCA and MARI, ISIS; TOFTOF, MLZ; IN5, ILL; VISION and SEQUOIA,
SNS). Asterisks on the latter column indicate that solid-state DFT was used to interpret the INS data. Works are presented
in chronological order, with the year of publication given along with its bibliographic reference in the last column.

Acronym Investigation Range Instrument Reference

MOF-5 p–H2 0–20 meV QENS 2003 [249]
IRMOF-X (X = 1, 8, 11, 177) p–H2 0–20 meV QENS 2005 [250]

MOF-5 Bare material 20–170 meV FANS * 2006 [291]
NaNi3(OH)(SIP)2 p–H2 0–20 meV QENS 2006 [292]

HKUST-1 p–H2 5–45 meV FANS 2007 [293]
TMBB p–H2 0–30 meV QENS 2007 [294]
MIL-53 Bare material 50–180 meV FANS * 2008 [295]
MOF-74 p–H2 5–25 meV FANS 2008 [296]
PCN-12 p–H2 0–20 meV QENS 2008 [297]

PCN-6; PCN-6’ p–H2 0–20 meV QENS 2008 [298]
HKUST-1 p–H2 5–200 meV FANS * 2009 [299]
ZMOFs p–H2 0–25 meV QENS 2009 [300]

CPO-27-M (M = Ni, Co, Mg) p–H2 0–15 meV FOCUS 2010 [301]
Cr3(BTC)2 p–H2 5–45 meV FANS 2011 [302]

Mg2(dobdc) p–H2 5–45 meV FANS 2011 [303]
MOF-324 p–H2 0–25 meV QENS 2012 [304]

rht-MOF-1 and rht-MOF-4a p–H2 0–20 meV FOCUS 2012 [305]
Fe2(dobdc) and Fe2(O2)(dobdc) p–H2 0–125 meV FANS / TOSCA 2012 [306]

NU-301 and NU-302 p–H2 0–20 meV FOCUS 2013 [307]
HKUST-1 p–H2 0–50 meV TOSCA / MARI 2013 [308]

MIL-53(Fe) CH3OH 0–250 meV TOSCA * 2013 [309]
rht-MOF-7 p–H2 0–20 meV TOFTOF 2013 [310]

CPO-27–M (M = Mn, Cu) p–H2 0–20 meV TOFTOF / FOCUS 2014 [311]
SIFSIX-2-Cu and SIFSIX-2-Cu-i p–H2 0–20 meV TOFTOF / FOCUS 2014 [312]

Y-FTZB p–H2 0–20 meV TOFTOF 2014 [313]
NOTT-300 p–H2 0–250 meV TOSCA * 2014 [314]

ZIF-4, ZIF-7, and ZIF-8 Bare material 0–400 meV TOSCA * 2014 [264]
a-[Mg3(O2CH)6] p–H2 0–20 meV QENS 2015 [315]

Zn(trz)(tftph) p–H2 0–20 meV TOFTOF 2015 [316]
M-MOF-74 (M = Mg, Ni, Co, Zn) p–H2 0–20 meV FOCUS 2015 [317]

NOTT-300 C2H6, C2H4, and C2H2 0–250 meV TOSCA * 2015 [314]
M-soc-MOF-1-X (M = Fe, In; X = a, b) p–H2 0–20 meV IN5 2016 [318]

ZIF-8; ZIF-8@AC N2 0–150 meV VISION * 2016 [266]
Cu(I)-MFU-4l H2 and D2 0–40 meV VISION * 2016 [267]
MFM-300(In) H2 and CH4 0–250 meV TOSCA * 2016 [268]
MFM-300(In) N2, CO2, and SO2 0–250 meV TOSCA * 2016 [269]

ZIF-8 D2O and CH4 0–200 meV TOSCA 2016 [266]
COF-1; COF-2 p–H2 0–20 meV QENS 2017 [270]

ZIF-7 N2 0–200 meV VISION * 2017 [271]
ZIF-8 N2, O2, Ar, and CO 0–150 meV VISION 2017 [272]

MFM-300(Sc) I2 0–250 meV TOSCA * 2017 [273]
MFM-300(V) CO2 0–250 meV TOSCA * 2017 [274]

MIL-140A Bare material 0–250 meV TOSCA * 2017 [275]
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Table 1. Cont.

Acronym Investigation Range Instrument Reference

MFM-305 and MFM-305-CH3 CO2 0–250 meV VISION * 2018 [276]
MFM-102-NO2 C2H2 0–250 meV VISION * 2018 [277]

MFM-520 NO2 0–250 meV VISION * 2019 [276]
Zn(MeIm)2 Bare material 0–500 meV SEQUOIA 2019 [319]

MFM-102-NO2 and MFM-102-NH2 CO2 0–250 meV VISION * 2019 [278]
ZIF-4 Bare material 0–250 meV VISION * 2019 [279]

[Cu24(OH −mBDC)24]n CO2 0–250 meV TOSCA 2019 [280]
ZIF-4(Zn) Bare material 0–250 meV TOSCA * 2019 [281]

ZIF-7 CO2 0–150 meV TOSCA 2019 [282]
HKUST-1 Drug encapsulation 0–250 meV TOSCA * 2019 [151]
MFM-126 CO2 0–400 meV TOSCA* 2019 [283]
MFM-100 Benzyl alcohol 0–250 meV TOSCA* 2019 [284]
Pd@OX-1 Catalytic properties 0–400 meV TOSCA* 2019 [285]
MFM-170 H2O and SO2 0–150 meV TOSCA * 2019 [286]

Y-shp-MOF-5 and Cr-soc-MOF-1 D2O and CH4 0–300 meV VISION * 2020 [287]
MIL-100 (Fe) Drug Encapsulation 0–250 meV TOSCA 2020 [288]

MFM-520 D2O, CO2, and SO2 0–250 meV TOSCA * 2020 [289]
MFM-300(M) (M = Al, Fe, VIII, VIV) NH3 0–200 meV TOSCA / VISION * 2021 [290]

Figure 9. (a) Nanoporous hybrid framework structures of ZIF-4, ZIF-7, and ZIF-8. The inorganic
building blocks are represented by purple ZnN4 tetrahedra. (b) Experimental (TOSCA T = 10 K)
and theoretical (DFT; CRYSTAL14) INS spectra for these compounds. Adapted from Ref. [264] with
permission from APS (https://doi.org/10.1103/PhysRevLett.113.215502) (accessed on 28 April 2021).

The aforementioned developments in instrumentation, sample environment, and ab
initio modeling can be further illustrated by considering the polymorphism exhibited by
ZIF-4 at ambient pressure. Figure 10 presents the INS spectra as a function of temper-
ature, measured on the TOSCA+ spectrometer [138–140]. Owing to a greatly improved
sensitivity, it is now possible to explore phase diagrams across physical space, alongside
theoretical modeling. While extremely rare a decade ago [291], phonon calculations are
now becoming an inseparable part of structural studies on MOFs using INS (see Table 1),
allowing to decode complex vibrational information delivered by these metal-organic
frameworks. However, as noted by Vanpoucke et al., the computations with periodic DFT

https://doi.org/10.1103/PhysRevLett.113.215502
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are still challenged by the flexibility of these materials, and the guidelines from experi-
ence with standard solid-state calculations cannot be simply transferred to flexible porous
frameworks [320]. As shown by Butler et al. [281] (see Figure 10), variable-temperature
high-resolution INS experiments give us a direct handle on changes to the lattice dynamics
across the closed-to-open-pore phase transition in ZIF-4. Moreover, these data allow for a
robust validation of the calculations performed within the Quasi-Harmonic Approximation
(QHA), one of the methods of choice in the study of thermal expansion from first-principles.
Using this methodology, the authors were able to identify the key structural and dynamical
features that govern the free-energy landscape of the material, including the central role
played by the vibrational entropy as a driving parameter for their exceptional flexibility.

Figure 10. (a) Experimental (TOSCA+) and simulated (DFT; VASP) INS spectra of closed- (cp) and
open-pore (op) ZIF-4(Zn) structures. (b) Schematic diagram of the low-temperature structure of
ZIF-4(Zn)-cp and the high-temperature structure ZIF-4(Zn)-op, looking down the b-axis in both
phases. A volume contraction of approximately 24% associated with the cp-to-op phase transition is
related to a rotation of the imidazolate linkers. Four of such rotations are highlighted by green stars.
Reprinted with permission from Ref. [281]. Copyright (2021) American Chemical Society.

4. Back to Basics: Water

Water continues to be the focus of attention of many, and some recent works have
capitalized from developments in neutron spectroscopy to move beyond the state-of-
the-art. Following the discovery of ice XV (α-XV) by Salzmann et al. [321], the recent
identification of ice XIX [322] confirms that the condensed phases of water are far from
being a solved challenge [323], and have also stimulated developments in both neutron
scattering [324] and computational modeling from time immemorial [325]. In this regard,
neutron scattering constitutes a priceless tool for the ultimate validation of the theoretical
approaches developed to describe both structure and dynamics, from this seemingly simple
triatomic system to the complex materials described earlier in this review. One of the most
celebrated examples is perhaps the total-scattering experiments by Soper et al., providing
the Radial Distribution Functions (RDFs) of water and ice [326,327] to validate a countless
number of theoretical approximations. In addition to diffraction data, calculations of the
VDOSs based on empirical or ab initio approaches can be considered as the most effective
and direct way of testing our description of interatomic and intermolecular interactions,
indispensable to build increasingly accurate models.

The study of water with INS has a long and distinguished history, providing insights
into the nuclear dynamics of a large fraction of the known ice phases [328–331], water at ex-
treme conditions [332], and under ultra-confinement [333,334]. Figure 11a shows the phase
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diagram of water, highlighting both crystalline and amorphous phases. An exhaustive dis-
cussion of this phase diagram (including metastable forms of ice not shown in this figure)
can be found in Ref. [323]. Ice XV can be considered as a hydrogen-ordered polymorph of
form VI, revealing an antiferroelectric ordering of protons. However, it has been recently
shown that for the unit cell of ice VI, a total of forty-five different ferroelectric or antiferro-
electric types of order are possible within the remit of the ice rules, clearly illustrating that
there are more new phases expected to be discovered in the future [335]. The discovery of
form XIX (β-XV) tends to confirm these notions, yet not without debate [336,337]. Rosu-
Finsen and Salzmann have suggested that ice β-XV is not a crystalline form of ice, but that
it rather contains an immobile disordered network of hydrogen atoms, called a deep-glassy
state [336–338]. Using per-deuterated ice XV, Gasser et al. has argued in favor of the exis-
tence of β-XV [322]. However, INS experiments performed on hydrogenous samples of ice
VI, ice XV, and deep-glassy ice VI (or ice β-XV above) by Rosu-Finsen et al. [328] question
this conclusion. Figure 11b displays the INS spectra recorded for each phase, unequivocally
illustrating striking similarities between the spectral envelopes of ice VI and deep-glassy
ice VI. This debate also raises further questions on the importance of isotopic effects and
their relation to the stability of the phase of interest. The most-recent INS experiments on
ice polymorphs by Rosu-Finsen et al. [328] also illustrate the state-of-the-art developments
on the TOSCA+ instrument (see Figure 11b–d), providing up to a two-order-of-magnitude
increase in count rates, and enabling parametric neutron-spectroscopic studies alongside
simultaneous ND measurements [137–141]. Figure 11 also confirms that the ND profiles
of both ice VI and deep-glassy ice VI are remarkably similar and both data sets could be
fitted well using the same model of the long-range order as ice VI, strikingly different from
the ND profile of the XV phase. Finally, an overwhelming increase of the sensitivity of
TOSCA+ allows to complement the calorimetric studies by real-time INS measurements
as a function of temperature (see Figure 11d.) upon heating deep-glassy ice VI from 80 to
138 K, followed by cooling to 80 K. These in-situ experiments provide further insights into
the thermodynamic relation between ice polymorphs and it is anticipated that a similar
approach will be deployed in the future to resolve remaining and emerging discrepancies
across the phase diagram of water.

The superb ability of INS to elucidate local structure is not limited solely to fully or
partially ordered solids, as illustrated by recent state-of-the art studies of supercritical
water (SCW). SCW is formed at 647 K and 0.0221 GPa, and its thermophysical properties
are quite different from water at normal conditions [147,339]. There is an increasing interest
in this exotic state, of promise for many sustainable and industrial applications, including
gasification of biomass [340], construction of new-generation Supercritical-Water-Cooled
Reactors (SCWRs) [341], or as a novel medium for soft matter research [342]. However, a
detailed picture of the structure of water at these extreme conditions, as well as its link
to unique physico-chemical properties remain unclear. Parrinello and co-authors have
studied water at supercritical conditions from first-principles [343], showing that contrary
to the ordinary liquid state, the H-bond network is destabilized to various extents. There is
a continuous breaking and forming of anomalous H-bonded structures and no continuous
network per se, significantly affecting the dielectric response. This fundamental study has
been recently extended by Andreani et al. [332], providing a detailed structural picture
of this fascinating system. This study capitalized from a combination of high-resolution
experiments as a function of temperature and state-of-the-art AIMD, as presented in
Figure 12. The work by Andreani et al. [332] has two important implications. First, it
features INS and NCS as powerful probes of the temporal and spatial characteristics of
H-bonding interactions. And second, it puts state-of-the-art AIMD to the test using the
latest experimental and computational methodologies.

In addition to challenging INS experiments, NCS has been used to provide additional
and much-needed information on the local potential around water molecules in the su-
percritical state [40,344–349]. Andreani et al. has identified short-lived water clusters in
SCW [332], thus demonstrating that the technique is sensitive to local dynamics in the fem-
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tosecond time scale. On the basis of combined experiments and simulations, the authors
have been able to show how H-bonds decrease in number as a function of temperature
under constant pressure, and have revealed a pronounced distortion of H-bonds in these
short-lived water clusters, which increases the coupling of intermolecular and intramolecu-
lar vibrations at supercritical conditions. This coupling modifies the H-bonding potential
exerted on hydrogen, making it less anisotropic in the molecular plane compared with
water at ambient conditions. This microscopic picture of the local environment of water
molecules in SCW is displayed in Figure 13.

Figure 11. (a) Phase diagram of H2O in the range T = 4–300 K and p = 0.01–10 GPa, highlighting the
thermodynamically stable forms of ice of relevance to our discussion (crystal phases VI and XV). Ice
XV is the hydrogen-ordered counterpart of ice VI and is thermodynamically stable below 130 K over
the pressure interval 0.8–1.5 GPa [321]. The phase diagram also includes the ranges of observation of
metastable amorphous ices (Low-, High-, and very-High-Density Amorphous forms are denoted
as LDA, HDA, and vHDA, respectively). The LDA phase is mostly found in the low-pressure
region of the phase diagram (0–0.2 GPa), whereas HDA and VHDA occur at intermediate pressures
(0.2–2 GPa). At high pressures (>2 GPa), only crystalline phases are stable [350]. (b) INS spectra
of ice VI, deep-glassy ice VI, and ice XV, collected at T = 15 K on TOSCA+. The gray-shaded areas
highlight the spectral range where major differences between ice VI and XV are observed. The spectra
are shifted vertically for clarity. Difference spectra are shown in the lower part of the panel [328].
(c) ND patterns of (1) ice VI, (2) deep-glassy ice VI, and (3) ice XV collected simultaneously on
TOSCA+ at T = 15 K. The experimental diffraction data are shown as light data points and the
associated Rietveld fits as darker solid lines. Tick-marks indicate the expected positions of Bragg
reflections. [328]. (d) Contour plot of the librational region upon heating deep-glassy ice VI from
80 to 138 K, followed by cooling back to 80 K [328]. Adapted with permission from Ref. [328,350].
Copyright (2021) American Chemical Society.
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Figure 12. (a) Hydrogen-projected VDOSs as a function of temperature at a pressure of 0.025 GPa.
These data have been normalized to unity and vertically offset to facilitate visual comparison.
(b) Simulated VDOSs of H2O at subcritical (bottom) and supercritical (top) conditions. In each case,
the full spectrum (solid line) is compared with the projected VDOS (dashed line), after removing
translational contributions. The shaded spectra correspond to intramolecular vibrational spectra,
with librational and rotational motions projected out. Adapted with permission from Ref. [332].
Copyright (2021) American Chemical Society.

In addition to these experimental efforts, one also needs to note the accurate compu-
tational modeling using AIMD, building upon the seminal work of Car-Parinello [351].
Recent and exciting developments include those from Artificial Intelligence (AI) and the
use of Deep Neural Networks (DNNs) to represent the interatomic potential [352]. Such an
approach, as well as that by Behler and Parinello [353], allows for a description of highly
dimensional potential-energy hypersurfaces in systems of arbitrary size whilst retaining
the accuracy of high-end electronic-structure calculations. The end result is a speed-up
of an otherwise very costly AIMD simulation by several orders of magnitude relative to
the high-end reference method from which the artificial neural network is trained. These
calculations of interatomic potentials and forces are fully sufficient to deal with the dynamic
information encoded in neutron-scattering experiments. Hence, it also paves the way for
the use of these methodologies to describe the longer timescales probed with QENS or
NSE. INS, with its direct link to nuclear dynamics, becomes the method of choice for the
validation of such theoretical developments. In addition, we note that recent progress in
the development of Machine Learning (ML) ML-based simulations includes the calculation
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of charges, dipole moments and polarizability tensors, of direct relevance to the description
of experimental observables accessible with optical spectroscopies [354,355]. Another area
of increased interest relates to the use of ML algorithms in the calculation of molecular
wavefunctions [356].

Figure 13. Pictorial representation of the local H-bond geometry for H2O at supercritical (left) and
ambient conditions (right). The figure depicts the coordinate frames used in the interpretation of NCS
data, and the corresponding (partially isotropic and anisotropic) proton momentum distributions.
Reprinted with permission from Ref. [332]. Copyright (2021) American Chemical Society.

The spectacular speed-up of MD simulations with ML-trained Force-Fields (ML-FF)
also helps us formulate and tackle important questions concerning which parent electronic-
structure method is most appropriate to describe structural and dynamical properties.
And, in this context, water serves as an obvious benchmark. Recent advances employ the
gold-standard of quantum chemistry, i.e., Coupled-Cluster (CC) theory, yet still limited to
small-molecules, like water and molecular clusters [357,358]. To date, DFT calculations on
extended systems still remain as the work-horse. In the aforementioned work on SCW by
Parinello and co-authors [343], the authors used the Generalized-Gradient Approximation
(GGA) to the XC functional, which, to date, remains the most-commonly used approach
in simulations of condensed-matter systems. Although considerable progress has been
made with the construction of hybrid XC functionals or parallel developments in advanced
semi-empirical corrections accounting for van-der-Waals (vdW) contributions, progress in
constructing a better functional obeying a number of required constrains and norms for
semi-local DFT has been far more modest. The development of a Strongly-Constrained
and Appropriately Normed (SCAN) functional of a meta-GGA form [359] certainly of-
fers a way forward, significantly improving accuracy when calculating the properties of
different types of bonding [359–361]. SCAN provides an accuracy comparable to hybrid
functionals at a considerably reduced cost, while still remaining a pure DFT functional by
definition [362]. Both SCAN and hybrid functionals may be, therefore, be regarded as the
most-advanced and still computationally feasible approximations to describe extended
condensed matter systems. In the case of the structure of liquid water, its underlying
H-bond geometry, and associated Mean Square Displacements (MSDs), Chen et al. [363]
have shown that SCAN outperforms GGA. LaCount and Gygi have further confirmed the
superb performance of SCAN in the description of the VDOSs of liquid water at ambient
conditions [364]. This finding has been corroborated by AIMD simulations of liquid water
using high-quality meta-GGA functionals presented by Ruiz-Pestana et al. [365]. The work
by Andreani et al. [332] relied on SCAN-trained DNN potentials, fully confirming their
robustness and high reliability to study in a realistic manner the structure and dynam-
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ics of water at supercritical conditions where—to first order— nuclear quantum effects
(NQEs) may be ignored in these high-temperature simulations. The role of NQEs cannot
be, however, neglected when discussing water at ambient conditions and below. Due to the
small mass of the proton, NQEs, such as spatial nuclear delocalization, zero-point energy
(ZPE), and proton tunneling, modify the H-bond geometry and strength in a significant
manner [366]. In recent years, we are witnessing a pronounced interest in these effects,
which can the key for a better understanding of fundamental phenomena and macroscopic
properties. An exhaustive discussion can be found, e.g., in Refs. [367–371].

To illustrate the above in the particular case of water, calculations of vibrational prop-
erties using the GGA approximation seem to provide the ‘right’ answer, yet it has been
found that this agreement is caused by a fortuitous cancellation of fairly large intrinsic
errors in the description of the potential energy surface by these functionals [372,373]. In
addition, most simulations to date do not incorporate NQEs from the outset, including
ZPE contributions to the free energy which may be particularly pronounced for light
species. These effects have been illustrated by Ruiz-Pestana et al. [365], showing that
well-justified approximations, like high-quality meta-GGA or hybrid functionals, give a
worse description of vibrational properties than the simpler GGA scheme when NQEs are
not taken into account [365]. More simple scaling corrections have been proposed for prac-
tical reasons [374], yet these should always be assessed carefully to undertake physically
meaningful simulations, particularly in those systems where NQEs are expected to play a
significant role. This cautionary note is confirmed by the works of Ruiz-Pestana et al. [375]
and Marsalek et al. [376], showing that the inclusion of NQEs using advanced meta-GGA
DFT functionals can reproduce the properties of bulk water including RDFs, MSDs, and
vibrational spectra (IR and Raman) with an accuracy comparable to those of far-more-costly
hybrid functionals. Figure 14 serves to confirm the above considerations, with an example
of the infrared spectrum of water simulated with both classical and approximate quantum
MD simulations using the vdW-corrected hybrid functional (revPBE0-D3) [376]. While clas-
sical simulations are unable to describe satisfactorily the bending (ca. 1600 cm−1/200 meV)
and stretching regions (ca. 3500 cm−1/450 meV) of H-bonded water, the quantum simula-
tions provide the results with an excellent match to the experimental spectrum at ambient
conditions. The cartoons in this Figure illustrate the competing quantum effects at play
in the H-bonding between two water molecules. These affect the bending and stretching
modes, with two qualitatively different contributions to the vibrational ZPE [367]. The
left-upper panel in the Figure depict the in-plane bending vibrational mode. The right
cartoon shows the O–H stretch. These contributions weaken and strengthen the H-bond,
respectively, further refining the structural picture drawn from the RDFs accessible from
diffraction. In addition, the results from IR spectroscopy (middle panel) are confronted
with the INS spectrum of ambient water measured with the SEQUOIA spectrometer (see
bottom panel). A small difference in the peak position of the OH-stretch band probed with
IR and INS can be noticed. In this regard, INS spectroscopy should be considered as a better
suited approach for the validation of theoretical predictions, as it is directly related to the
underlying VDOS. On the contrary, accurate simulations of both the position and the shape
of a band observed in IR spectroscopy requires an accurate treatment of dielectric or other
charge-derived properties, including long-range dipole couplings [377] and electrical anhar-
monicities [378]. As illustrated in the Figure, NQEs can be successfully accounted for using
quantum simulations. In its simplest formulation, well-established classical methods can be
used to properly map the properties of a quantum particle, e.g., a proton, by means of the
Feynman Path-Integral formalism. In the simplest case, a classical system composed of a
closed-ring polymer with adjacent replicas connected with harmonic springs is isomorphic
to the quantum one. Some of the approximate approaches to deal with dynamical observ-
ables (e.g., Thermostatted Ring Polymer MD, TRPMD; or Partially Adiabatic Centroid MD,
PACMD, both used in the above-presented work by Marsalek et al. [376]) provide access
to the time-evolved properties by propagating the centroid motion in real time. These
approximate approaches may suffer from issues, like the curvature problem in centroid
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MD [379], which is particularly severe at low temperatures [380], or ZPE-leakage [381] and
spurious resonances occurring in TRPMD [381,382]. Recently, Althorpe and co-workers
have proposed an alternative approach called Quasi-Centroid MD (QCMD) which circum-
vents these limitations [380,383]. More rigorous Path-Integral MD (PIMD) approaches have
also been developed, yet at a clear computational cost [384–387].

Figure 14. Bottom: experimental INS spectrum of liquid H2O measured on SEQUOIA at ambi-
ent conditions. Two different incident energies have been used, as indicated in the figure [388].
Middle: experimental IR spectrum of H2O at ambient conditions, along with the results of AIMD
predictions using vdW-corrected hybrid-DFT (revPBE0-D3 ML-FF) and different computational
schemes—classical MD and approximate path-integral simulations (TRPMD and PACMD) [376].
Top: cartoon illustrating competing quantum effects in the H-bonding between two water molecules.
There are two qualitatively different contributions to the vibrational ZPE: (i) the one arising from
the two bending vibrational modes, in the plane of the water molecule and perpendicular to it
(not shown); (ii) a second one associated with the O–H stretch. As the O–O distance R decreases,
the contribution of the stretch decreases, and that of the bend increases. Consequently, the two
contributions weaken and strengthen the intermolecular H-bond, respectively. [367]. Adapted with
permission from Refs. [367,376,388]. Copyright (2021) American Chemical Society.
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When NQEs are at the center of attention, experimental access to nuclear mean
kinetic energies <EK> and associated momentum distributions n(p) via NCS becomes
particularly relevant. As shown in Figure 14, local bending and stretching modes can
be considered as descriptors of the interplay between NQEs arising from ZPE and the
strength of H-bonds [389]. As discussed by Senesi et al. [390], the above-mentioned
observables probed with NCS allow for a direct characterization of H-bonded systems.
For example, it is now well-established that the strengthening the O–H covalent bonds
broadens the associated proton momentum width probed with NCS. The tail of the n(p)
distribution can be associated with the momentum along the O-H bond direction, and a
large momentum width reflects a tightness of the proton binding, providing information
about the strength and anharmonicity of the associated local vibrations. Upon increasing
the H-bond strength, the effective proton potential will soften and, consequently, the proton
<EK> and the O-H stretch frequency will decrease [390]. These considerations have been
used by Parmentier et al. [391] to follow the evolution of the H-bond in amorphous forms of
ice as a function of their density, clearly illustrating the complementarity between INS and
NCS to characterize these systems (see Figure 15). Within a simplified (one-dimensional)
model of the potential along the OH stretch, the cartoon in this Figure illustrates the
primary differences between INS and NCS. INS probes the 0→ 1 excitation of a given mode
from its vibrational ground state (an energy difference), whereas NCS measures directly the
total mean kinetic energy associated with ZPEs, by operating within the so-called Impulse
Approximation (IA). The bottom panel in Figure 15 displays the INS spectra measured on
MARI (ISIS, UK) for three types of amorphous ice (LDA, uHDA, and vHDA, listed in order
of increasing density). Three distinct bands in each INS spectrum can be associated to the
water libration, bending, and OH-stretch modes. Similarly, NCS can provide information
on directional mean kinetic energies, which can be further associated with these three types
of vibrations and the associated ZPE contributions, for further comparison with INS (see
Reference [391] for an extensive discussion). For a perfectly harmonic system, the value
of the ZPE measured by both techniques would be, in principle, indistinguishable. The
combination of both INS and NCS experiments allows, therefore, a further quantification of
the degree of anharmonicity. The authors have focused on the OH-stretch mode dominating
the total mean kinetic energy of the proton and, in so doing, have determined effective
anharmonic constants for each amorphous phase. The mean kinetic energies were found to
increase with increasing density, indicating the weakening of H-bonds, as well as a trend
toward a steeper and more harmonic vibrational manifold.

The work by Parmentier et al. [391] highlights the power of NCS to retrieve ground-
state kinetic energies without any underlying assumptions, which can be used as an
accurate reference for testing and developing advanced theoretical approaches to account
for NQEs. Since path-integral simulations converge slowly with the number of replicas
used describe quantum behavior, the cost associated with their use alongside AIMD con-
tinues to be prohibitively high in most situations. The above-discussed use of neural
networks to approximate the potentials with ab initio accuracy paves the way for obtaining
fully converged quantum simulations [392], as well as opens new opportunities for mak-
ing these approaches more widespread. This trend is also corroborated by considerable
improvements in stochastic thermostatting [393,394], new methods to accelerate these simu-
lations [395,396], as well as advanced tools now available to the wider community [397,398].
Such developments are providing synergies across experiment and theory, to understand
and quantify NQEs at an unprecedented level of detail [399–403].

All of these advances can be illustrated further by returning to the first question
posed in this Section, relating to how many structures of ice remain to be discovered. One
way to tackle this challenge is the the calculation of accurate water phase diagrams from
first-principles. Recent work demonstrates that progress to date looks promising, in spite
of the difficulties associated with deficiencies in commonly used DFT approximations, as
well as the need to incorporate NQEs from the outset—e.g., GGA predicts that ice sinks
in water [363,404]. The SCAN functional is providing promising results, as it gives the
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observed trend in density across liquid water and hexagonal ice [363]. Following the
achievements with neural-network simulations of SCW discussed earlier in this Section,
Zhang et al. have presented a model that reproduces accurately the potential energy surface
of the SCAN approximation of water, from low temperatures and pressures to about 2400 K
and 50 GPa [405]. Using this potential and classical MD simulations, agreement with
experimental data is generally satisfactory, correctly predicting the fluid, molecular and
ionic phases of water, and almost all stable ice polymorphs, both ordered and disordered.
Ice III and ice XV remain notable exceptions to the above, as they are stable but are found
metastable in the simulations [406]. This result is quite intriguing, considering what is
known on the polymorphs of ice XV. Nonetheless, the work from Zhang et al. [406] seems
to be the first attempt with proven success to describe water over such a wide range of
thermodynamic conditions without the inclusion of NQEs. Using ML-FF trained at the
hybrid-functional level, Cheng et al. [405] have demonstrated that taking into account
NQEs, anharmonic fluctuations, and proton disorder, it is possible to describe the structural
and thermodynamic properties of liquid water, as well as hexagonal (Ih) and cubic (Ic)
ice [405], in excellent agreement with experiments. This work also reports reliable estimates
of the melting points of light and heavy water from first-principles, and has established
that the increased stability of ice Ih over ice Ic stems from NQEs. Following this strategy,
Reinhardt and Cheng have recently reported the phase diagram of water over the range
T = 150–300 K and p = 0.01–1 GPa at the hybrid-DFT level, including NQEs [407]. These
exciting results are shown in Figure 16. Starting from liquid water and a comprehensive set
of fifty hypothetical ice structures waiting to be discovered, they show that none of them is
thermodynamically stable, at least on a computer. This result suggests the completeness
of the experimental phase diagram of water within these thermodynamic conditions.
Figure 16 clearly evinces the importance of accounting for NQEs in the description of
the phase diagram: forms III and V would not exist; and the proton-ordered ice-XV
phase would be more stable than its disordered analogue ice VI [407]. In addition, the
inclusion of NQEs improves the quantitative agreement with experimental data, including
the not-so-trivial calculation of chemical potentials, particularly for ice III. This powerful
computational framework is already being applied beyond water, with proven success in
simulations of other systems discussed in this review. Such is the case of the application
of the SCAN functional to the study of OHPs, including: its validation against accurate
many-body theories (Random Phase Approximation, RPA) [408]; its superb performance
when applied to the study of finite-temperature effects [409]; or in the description of their
phase diagrams [410]. As recently demonstrated by Kapil et al. [411], the introduction of
accelerated simulation techniques with the use of ML-FF are now becoming affordable to
tackle phenomena, such as the aforementioned loading of guest molecules into extremely
flexible MOF scaffolds. Furthermore, it opens new opportunities to address challenges
across soft matter and polymer science. These range from dynamical phenomena and glassy
behavior exhibiting significant NQEs [368,412–414], macromolecular thermophysics [415],
isotope effects on polymer crystallization [416,417] or the chemistry of polymerization,
including extreme conditions [418].
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Figure 15. (a) Pictorial representation of the anharmonic potential of the OH-stretch mode of H2O.
The vibrational ZPE measured with NCS (DINS), as well as the fundamental 0 → 1 transition
probed with INS, are highlighted. (b) Experimental INS spectra of different forms of amorphous ice
(LDA, red; unannealed HDA, green; and vHDA, blue) measured at T = 80 K on MARI. The spectra
were obtained after averaging over the indicated Q-range. (c) Mean kinetic energies (<EK>) from
NCS (orange) and corresponding values obtained from INS using the harmonic model discussed
in Ref. [399] (blue). (c) Energies of the OH-stretch, bend, and librational modes of H2O, obtained
from INS (blue), as well as the corresponding values derived from NCS (orange). Adapted with
permission from Ref. [391]. Copyright (2021) American Chemical Society.

Figure 16. Experimental (a) and computational (b–c) phase diagrams of H2O in the range
T = 50–300 K and p = 0.02–1 GPa. The computational phase diagrams have been obtained with classi-
cal (b) and PIMD simulations (c) using a vdW-corrected hybrid-DFT (revPBE0-D3). See Ref. [407] for
more details. Adapted with permission from Ref. [407]

5. Outlook

The past decade has witnessed very significant advances in neutron spectroscopy,
and this work has made an attempt to provide a timely overview of the use of this tool
in the study of complex materials, with a focus on those of a soft and polymeric nature.
Our choices in the selection of the areas of research and scientific drivers described herein
have been unavoidably colored by our personal preferences, appreciation, and knowledge
of an otherwise vast and rapidly growing area of activity. The field of OHPs constitutes
a good case-in-point, as it is by now abundantly clear that the degree of complexity at
the atomic scale associated with these soft solids requires the insights brought forward
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by the technique, as highlighted in Section 2 above. In this regard, INS stands out as the
method of choice to scrutinize their behavior, particularly if coupled to first-principles
computational materials modeling. Similar remarks would equally apply to the study
of confined soft matter and supramolecular frameworks, as covered in Section 3. In this
case, progress has also required parallel developments in the requisite sample-environment
equipment in order to carry out in-situ, operando, or high-pressure studies, now possible
owing to order-of-magnitude improvements in measurement speeds. The proliferation in
the number of experiments on MOFs and COFs in the past years summarized in Table 1
is testament to the above. At a fundamental level, these studies have taught us that both
structure and function in these nanoporous media are inextricably linked to dynamics
and motion. Once more, a robust interpretation of INS data is predicated upon the use of
computational modeling, and much progress has been achieved in parallel in the reliable
description of these rather large systems with the requisite level of accuracy. Last but not
least, going back to water in Section 4 has been intentional for several reasons. The level of
complexity exhibited by this seemingly simple molecular system across its phase diagram
continues to baffle us. State-of-the-art INS experiments as those illustrated in Figure 11
represent a novel means of resolving ongoing (and often heated) controversies on this
pivotal system, simply thought unthinkable not so long ago. Moreover, the role played by
NQEs can now be probed across the phase diagram with NCS, and these experiments are
also motivating further and exciting theoretical developments. The spectacular shifts in
phase boundaries shown in Figure 16 as NQEs are switched ‘on’ and ‘off’ are a tantalizing
reminder of how much remains to be explored, taking water as a starting point in an
otherwise long and fruitful journey into other classes of materials.

It is certainly tempting (perhaps foolhardy) to end with a few words on the road ahead.
As qualitative scientific advances generally follow developments in our tools and methods
of inquiry, the advent of next-generation neutron facilities, like the European Spallation
Source, will certainly take us to a whole new level over the next few years. As such, we
very much hope that this review provides a spring board for the community to capitalize
from these in new and original ways.
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