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Abstract: The depolymerization process of PET by glycolysis into BHET monomer is optimized
in terms of reaction temperature and time, by carrying out the process under pressure to be faster
for reducing the energy required. Almost pure BHET has been obtained by working in a pressure
reactor at 3 bar both at 220 and 180 ◦C after short reaction times, while for longer ones a mixture of
oligomers and dimers is obtained. Depending on the potential application required, the obtention
of different reaction products is controlled by adjusting reaction temperature and time. The use of
a pressure reactor allows work at lower temperatures and shorter reaction times, obtaining almost
pure BHET. To the best of our knowledge, except for microwave-assisted procedures, it is the first
time in which pure BHET is obtained after such short reaction times, at lower temperatures than
those usually employed.

Keywords: PET; glycolysis; BHET; pressure reactor

1. Introduction

Poly(ethylene terephthalate) (PET) is a semi-crystalline aromatic-aliphatic thermoplas-
tic polyester used in food packaging manufacture, mainly for bottles (51%) and other food
packaging (9.1%), as sheets and films (13.8%), as well as for non-food products (6.1%) [1].
Due to the great flexibility and low density, as well as low cost, the consumption of this
polyester has increased in recent years [1], reaching to a demand of around 4 million tons
in Europe during 2018 [2]. Among the most widely used polymers for food and beverage
packaging, PET is the most suitable thermoplastic because its high mechanical, physical
and chemical properties, including low gas transmission permeability [3,4]. The most
important sources of PET residues are the manufacturing waste and post-consumer urban
residues, which should be managed and recycled by specific companies.

The three main processes for the valorization of PET residues are the mechanical,
chemical, and energetic recycling ones. Several companies around the world recycle PET
by mechanical processing of post-consumer residues, mainly bottles, to produce laminates
for packaging or fibers [5]. Among fibers, those with diameters from 5 to 150 mm (staple
grades) are the most interesting, while larger ones are used to stuff anoraks, sleeping bags,
and soft toys. Recycled PET is also used to spin fibers with lower diameter, which are then
woven into “polar” fleece fabric used for sweatshirts, jackets and scarves [5]. PET urban
waste show rheological, physical, and chemical properties very close to those of the virgin
material, allowing their successful recycling by mechanical processes.
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The environment provokes structural changes in PET samples due to degradation
and changes in crystallinity or chain conformation [6–8]. These changes could be related
to hydrolytic degradation, since hydrolysis is the main process occurring at temperatures
below the glass transition temperature (Tg) [9]. In addition, the hydrolysis of PET is an
autocatalytic reaction that can occur during extrusion process [10] with the formation
of carboxylic acids. To increase the life cycle of this material, several researchers and
companies are working for the optimization of chemical recycling processes that allow the
use of the most degraded PET waste such as marine litter or manufacturing residues [11].

The different methods for the chemical recycling of PET could be categorized into five
main branches according to the reaction mechanism, including glycolysis, methanolysis,
hydrolysis, ammonolysis and aminolysis [12]. The most attractive method is the chemical
recycling by glycolysis, because it is considered to be a versatile chemical recycling method
in which, besides the bis(2-hydroxyethyl) terephthalate (BHET) monomer, specialized
oligomeric products such as polyols are also produced [13]. These sub-products can be
further used for the synthesis of polymers such as unsaturated polyesters, polyurethanes,
vinyl esters, or epoxy resins, among others [14,15].

To optimize the reaction rate and BHET monomer yield, four glycolysis methods
have been developed. The solvent-assisted glycolysis, in which organic solvents as xylene
constitute the reaction medium [16]; the supercritical glycolysis, performed at 450 ◦C and
7–15 MPa of pressure [17]; the microwave-assisted glycolysis, in which the maximum BHET
yield could be obtained in a significantly lower reaction time (30 min) when compared to
the 8–9 h reaction by conventional heating process [18]. Finally, in the catalyzed glycolysis,
with ionic liquids as reaction medium, the reaction takes 5–10 h at 165–190 ◦C [19].

Among the benefits of above presented glycolysis methods, several works have
defined that catalyzed with zinc acetate as the most effective [20–23], obtaining yields of
70% with a PET/EG molar ratio of 1:7.6, in 1 h at 196 ◦C in a three necks glass reactor under
atmospheric pressure [22]. Conversions of almost 100% can be obtained with reactions
times from 1 to 4 h [24]. The effect of temperature, PET/EG ratio and pressure on glycolysis
have been analyzed by Chen et al. [25,26]. They confirmed that the depolymerization of PET
materials depends on temperature and PET/EG ratio, occurring faster than at atmospheric
pressure. Campanelli et al. [27] examined the reaction in a pressure reactor at temperatures
above 245 ◦C, with a molar ratio PET/EG of 3:1, also concluding that depolymerization
was faster under pressure. Therefore, it can be concluded that the pressure improves the
depolymerization reaction of PET obtaining a higher amount of BHET. Therefore, several
parameters can be modulated to obtain high yields, but also analyzing the composition
of reaction products to define the most useful application or the most suitable polymer
into which they will be transformed, by using proper conditions and reactants. Table 1
presents a comparative of the different glycolysis procedures found in the literature with
that employed in the present work.

The aim of this work is the characterization of reaction products obtained from the
chemical glycolysis of PET catalyzed by zinc acetate at different reaction times, to optimize
the conditions for obtaining higher yields. Moreover, to develop an eco-friendlier process,
a closed pressure reactor has been used to avoid the loss of organic volatile compounds,
also reducing reaction times and temperatures in order to reduce the energy consumption
of the recycling process.
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Table 1. Comparative between depolymerization procedures found in the literature and other present work.

Reference Method Time
(h)

Temperature
(◦C)

Pressure
(at) Catalyst Ratio PET:EG Yield

(%)

[16] Glycolysis in
xylene 1–3 170–245 - - 1:0.5–1:3

Molar ratio 20

[18]
Glycolysis by
microwave
irradiation

0.5 180–190 - ZnAc 0.5 % 1:2,1:4, 1:6
Molar ratio 40

[19]
Ionic liquids
as reaction
medium

5–10 160–195 1 Ionic liquids
1–4 L

1:4
(w/w)

Max Yield 78
Conversion 70

[20] Glycolysis in a
pressure reactor 235–275 High pressure ZnAc 1:1.3

(w/w) -

[21] Autoclave
reactor 1 260 5 ZnMn2O4 1 % 5:86

Molar ratio 92.2

[22]
Glycolysis at
atmospheric

pressure
1–2 196 1

ZnAc 1 %
Or

Na2CO3 1%
1:7.6

Molar ratio 70

[23]
Glycolysis in

potassium
nitrate bath

8 190 - Metal acetate 1:4
Molar ratio -

[24]
Glycolysis at
atmospheric

pressure
1–4 180–190 1 ZnAc 2.35 % 1:4

(w/w) 91.6

[25] Glycolysis
under pressure 0.5–3 190–240 1–6.12 - 1:1–1:4

Molar ratio -

[26]
Glycolysis at
atmospheric

pressure
2–10 190 1 ZnAc 0.25–0.75 % 1:4

Molar ratio -

Our work Glycolysis
under pressure 10–180 220 3 bar ZnAc 1 % 1:3

(w/w) 55–71

2. Materials and Methods

Virgin PET pellets with a melt flow index of 61 ± 14 g/10 min and an intrinsic viscosity
(I.V.) of 0.58 dL/g was kindly supplied by PlastiVerd (Barcelona, Spain). Ethylene glycol
(EG) from Sigma-Aldrich (EEUU) was used as solvent for the glycolysis, with chemically
pure zinc acetate PROBUS, C. Busquets (Badalona, Spain) as catalyst. For characterization
purposes, standard BHET from Sigma-Aldrich (San Louis, MO, USA) and tetrahydrofuran
(THF) provided by Macron Fine Chemicals™ (Avantor, Gliwice, Poland) were also used.
Reagents were used as purchased without further purification.

2.1. Glycolysis Reaction

Glycolysis reactions were carried out under a pressure of 3 bar in a 0.3 L Parr 50 mini
reactor equipped with a thermometer, a manometer, and a refrigeration system. Mechanical
stirring was maintained constant at 1000–1200 rpm. A PET/EG weight ratio of 1:3 was
employed (40 g PET, 120 g EG), with 1% mass of zinc acetate as catalyst, the working
volume is approximately 160 mL. To analyze reaction kinetics at 220 ◦C, 8 different reaction
times between 10 and 180 min (10, 20, 30, 40, 50, 60, 90, and 180 min) were chosen. Moreover,
to evaluate the effect of temperature, depolymerizations were carried out at 180 and 200 ◦C
and different reaction times of 30, 60, 90, and 180 min. All reactants were first placed into
the reactor and then it was heated to the specific temperature and once the temperature
was reached, the reaction time was quantified. The previous warm-up time was variable
between 30–45 min.

The process is summarized in Scheme 1. At the end of each reaction, the obtained
liquid mixture was identified as the glycolysis reaction product (GRP). To determinate the
unreacted PET and high molecular oligomers, THF filtration was performed, separating
glycolysis products soluble in THF, such as BHET monomers, dimers or low molecular
weight oligomers, from insoluble fractions (IF). In the other hand, glycolyzed products (G)
were determined by filtration. With this purpose, a hot water excess was used to solve the
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GRP and to ensure a better separation between glycols, BHET and oligomers [22]. Then,
samples were cooled at room temperature during 24 h, for being then stored in a refrigerator
for 15 min at 4 ◦C to induce the precipitation of white crystals [28] of BHET monomer and
other oligomeric fractions. Both the insoluble (IF) and the glycolyzed fractions (G) were
filtrated by vacuum filtration using glass microfiber filters with pore diameters of 0.7 and
1.2 µm, respectively. Finally, the filters were dried under vacuum at 50 ◦C for 24 h.

Scheme 1. PET glycolysis reaction and products purification before characterization.

The yield (η) for BHET was calculated by weight difference as shown in the
following equation.

η(weight%) =
WBHET.f/MWBHET

WPET.0/MWPET
× 100 (1)

where WPET.0 refers to the initial PET weight and WBHET.f to the BHET weight obtained at
the end of the process. Moreover, MwBHET and MwPET are the molecular weights of BHET
(254 g/mol) and PET (192 g/mol) repeating unit, respectively [18,22].

2.2. Characterization Techniques

Weight and number average molecular weights, Mw and Mn, were determined by gel
permeation chromatography (GPC, Thermo Fisher Scientific, Waltham, MA, USA) using
a Thermo Scientific chromatograph, equipped with an isocratic Dionex UltiMate 3000
pump and a RefractoMax 521 refractive index detector. The separation was carried out
at 30 ◦C within four Phenogel GPC columns from Phenomenex with 5 µm particle size
and porosities of 105, 103, 100, and 50 Å, located in an UltiMate 3000 thermostated column
compartment. Tetrahydrofuran (THF) was used as mobile phase at a flow rate of 1 mL/min.
Samples were prepared solving obtained BHET into THF at 1 wt.% and filtering using
nylon filters with 2 µm pore size. Weight average and number average molecular mass,
Mw and Mn respectively, were reported as weight average based on calibration curve with
monodisperse polystyrene standards.

The characteristic functional groups and chemical interactions from PET, BHET and
glycolyzed products were analyzed by Fourier transform infrared spectroscopy (FTIR,
Thermo Fisher Scientific, Waltham, MA, USA). Spectra were recorded by a Nicolet Nexus
spectrometer provided with a MKII Golden Gate accessory (Specac) with a diamond crystal
at a nominal incidence angle of 45◦ and ZnSe lens. Spectra were recorded in attenuated total
reflection (ATR) mode between 4000 and 500 cm−1, performing 64 scans with a resolution
of 8 cm−1.
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Thermogravimetric analysis (TGA, Columbus, OH, USA) was performed on a
TGA/SDTA851 Mettler Toledo equipment to evaluate the thermal stability of glycolyzed
fractions. Samples were heated from room temperature to 800 ◦C at a heating rate of
10 ◦C min−1 under a nitrogen atmosphere.

Thermal properties of PET materials were determined by differential scanning calorime-
try (DSC, Columbus, OH, USA), performed using a Mettler Toledo DSC3+ equipment
provided with a robotic arm and an electric intracooler as refrigerator unit. 5–10 mg of
sample were encapsulated in aluminum pans and heated from 25 to 170 ◦C at a heating
rate of 10 ◦C min−1 in nitrogen atmosphere, determining the melting temperatures (Tm) of
G products.

3. Results and Discussion

The depolymerization of PET by glycolysis is the reverse of the polycondensation
reaction for PET synthesis (Scheme 2). As a result, the glycolysis product is a heterogenous
mixture of BHET, dimmers, and other oligomers. Reaction yield (η) and insoluble fraction
(IF) values obtained at different reaction times are summarized in Table 2.

Scheme 2. Mechanism for glycolysis reaction [29,30].
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Table 2. Insoluble fraction and yield values obtained at 220 ◦C at several reaction times.

Fraction Insoluble (%) η (%)

G10 5.78 55.00 ± 10
G20 8.03 59.67 ± 14
G30 7.39 67.75 ± 9
G40 5.13 58.34 ± 4
650 5.47 62.95 ± 6
G60 5.88 63.29 ± 3
690 3.97 70.60 ± 9

G180 6.41 57.71 ± 6

Reaction yield reaches the 55% at only 10 min of reaction, increasing up to almost
70% after 30 min. For longer reaction times, similar or lower yields are obtained (except
that for 90 min, very close to 70%). Therefore, it can be assumed that the optimal reaction
time for obtaining the highest yield of reaction will be between 30–90 min. This study was
completed by GPC, as will be shown below.

To determinate the composition of the final product, FTIR, DSC, and GPC analysis
were performed. Figure 1 shows FTIR spectra of glycolyzed products (G fraction) obtained
from reaction, as well as those of reference PET and BHET.

Figure 1. FTIR spectra of PET and reaction products: (a) FTIR spectra of reference PET and BHET together with that of the
product obtained after 10 min of reaction; (b) FTIR spectra of products obtained at different reaction times together with
that of the reference BHET; (c) Band corresponding to aliphatic groups –CH2–, for G products, BHET and PET; (d) Band
corresponding to ester groups C=O, for G products, BHET and PET.
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As can be seen in Figure 1a, the spectrum of the product obtained after 10 min
of reaction matches with that of BHET. PET depolymerization leads to the formation
of hydroxyl groups, reflected in the band at 3600–3200 cm−1, present at the spectra of
BHET and G10 [29]. The strong absorption band corresponding to the ester group at
1712 cm−1 is also detected. From Figure 1b, showing the spectra of samples obtained
at different glycolysis times, can be seen that there are no significant differences among
different materials.

FTIR spectra with higher magnification, showing the most representative bands related
to characteristic functional groups are also presented in Figure 1 for a deeper analysis.
From Figure 1c is observed that at 3100–2800 cm−1 interval, two peaks corresponding to
the aliphatic (–CH2–) appear for G samples while only a single peak is detected in the PET
spectra. The presence of the double peak is related to the BHET monomer while the single
peak is related to the presence of BHET oligomers [31], only present at PET samples. In the
same way, the band related to the ester group at 1712 cm−1 appears at PET spectrum as a
single peak, while a double one is detected for the rest of samples, probably related with
the amorphous and crystalline parts present in each sample [32].

DSC thermograms of the products obtained at different reaction times can be seen in
Figure 2, corresponding to a heating scan from 25 to 170 ◦C at a heating rate of 10 ◦C/min.

Figure 2. DSC thermograms corresponding to the products obtained at different reaction times.

All thermograms show the maximum peak corresponding to the melting temperature
at around 100–110 ◦C, matching with that found for BHET in the literature [31], thus
meaning that for all reaction times the product obtained is mainly BHET.

Molar mass values for obtained products have been measured by GPC. Figure 3
shows GPC traces obtained for the reaction products obtained at different reaction times,
together with that corresponding to BHET. Obtained oligomer contents, integrating the
area under the peak, and their Mw and Mn are summarized in Table 3, where O1, O2, and
O3 correspond to the fraction of BHET monomer, dimer, and oligomer, respectively, with
retention times of 39, 36 and 37 min [33].
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Figure 3. GPC traces for reaction products obtained at different times, together with that of BHET.

Table 3. Oligomer content (%) and Mw and Mn values as obtained by GPC.

Samples

O1
Mn = 155–167 g/mol
Mw = 160–171 g/mol

(%)

O2
Mn = 358–379 g/mol
Mw = 362–384 g/mol

(%)

O3
Mn = 556–595 g/mol
Mw = 559–600 g/mol

(%)

G10 83.83 14.61 1.46
G20 87.40 11.71 0.89
G30 83.97 14.58 1.45
G40 81.56 16.67 1.67
G50 82.97 15.51 1.47
G60 80.05 17.66 2.11
G90 80.25 17.65 1.93

G180 85.43 13.31 1.26

Among the three different signals shown, that corresponding to O1 is the most sig-
nificant one, with a molar mass of 162–171 g/mol (Mw), related to BHET monomer [31].
Peaks with lower intensity appear around 36–38 min, related to BHET oligomers with
2–3 repeating units: O2 fraction with a corresponding molar mass of 362–384 g/mol (Mw),
and O3 one with a molar mass of 559–600 g/mol (Mw).

As can be concluded from Table 3, the highest amount of BHET monomer is obtained
after 20 min of reaction. The presence of dimer seems to be quite constant, while oligomer
fraction is almost inexistent, as can be also seen in Figure 4, showing the fractions obtained
with reaction time.

Figure 4. Fractions of different compounds as obtained by GPC at different reaction times.
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Monomer and dimer BHET fractions do not show a regular trend, increasing and
decreasing for different reaction times, probably related to the fact that PET glycolysis is a
reversible reaction, as shown in Scheme 3 [33].

Scheme 3. Reversible PET glycolysis reaction.

It seems that PET depolymerization into dimer occurs in a relatively short time interval,
depolymerization rate of dimer into BHET constituting an important parameter [33].

Regarding TGA analysis of different glycolyzed fractions Figure 5 shows both TGA
and DTGA curves for all samples obtained, while main parameters are summarized
in Table 4.

Figure 5. TGA (a) and DTGA (b) curves for samples obtained at different reaction times.

Table 4. Main parameters obtained by thermogravimetric analysis.

Samples 1. Step 2. Step

Time
(Min)

T1
(◦C)

Mass Loss
(%)

T2
(◦C)

Mass Loss
(%)

30 183 22.62 432 70.27
60 271 27.31 434 64.4
90 267 26.77 433 64.68

180 198 24.41 433 67.29

Two main mass losses are observed for all samples (Figure 5a). The highest mass
loss occurs around 433 ◦C, constituting approximately the 65% of mass loss, related to
the thermal degradation of PET that has been produced in the same thermogravimetric
analysis process by the thermal polymerization of BHET [34]. The first loss of mass, a loss
of 21–27%, is related to the thermal degradation of the monomer and oligomer fraction [34].
From the derivative curves of Figure 5b it is observed that for G30 and G180, the mass
loss step occurs at lower temperatures than for G60 and G90. It could be attributed to the
evolution of dimers or oligomers with low molar mass, as was previously seen by GPC,
G60, and G90 presenting higher dimer fractions. Therefore, it can be deduced that the
thermal degradation above 200 ◦C is related to dimers or oligomers with low molar mass,
while if it occurs at lower temperatures is related with BHET monomer [29,31,35].
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Finally, the effect of temperature on the glycolysis process has been analyzed, by
performing glycolysis reactions at 180, 200 and 220 ◦C, for 30, 60, 90, and 180 min. Obtained
reaction yields and insoluble fractions are shown in Figure 6.

Figure 6. Reaction yield (a) and insoluble fraction (b) values vs. reaction time at 180, 200 and 220 ◦C.

Regarding insoluble fraction (Figure 6a), for 200 and 220 ◦C, after 30 min of reaction, is
lower than 10%, while for the reaction at 180 ◦C the insoluble faction is considerably higher.
As it can be seen in Figure 6b, above 30 min of reaction the BHET yield decreases for all the
samples. This could be because the depolymerization reaction is reversible, therefore at
60 min of reaction the polymerization can occur, generating dimers or oligomers, as can
be seen from GPC analysis shown in Figure 7. Temperature is a critical factor to take into
account, as seen by results presented at 180 ◦C, at which for short reaction times as 30 and
60 min, the percentage of unreacted PET is 67% and 55%, respectively, considerably higher
than those at higher temperatures.

Figure 7. BHET monomer and dimer fraction values of reaction compounds at different reaction
temperatures and times, as calculated by GPC.
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Figure 7 shows BHET monomer and dimer fractions from products obtained at differ-
ent temperatures and reaction times, as obtained by GPC.

Observing the values obtained for the reactions at different temperatures after 60 min,
an upward trend is observed for the amount of dimer in the sample, confirming that after
60 min of reaction, the BHET polymerized being the oligomer fraction higher and the BHET
fraction lower. Therefore, it can be stated that during glycolysis reaction, polymerization
reaction also occurs, since it is an easily reversible reaction. From GPC analysis, it can be
also concluded that for lower reaction times, samples with lower dispersity of molar mass
are obtained, indicating the higher purity of BHET monomer. In that conditions, a single
peak is observed in the GPC from Figure 8 at 39 min that is related with the monomer
of BHET.

Figure 8. GPC results for the depolymerization at 180 ◦C for different reaction times.

4. Conclusions

The depolymerization process of PET depends on temperature and reaction time and
those parameters must be adjusted for optimizing the process. It has been shown that
after 10 min of reaction at 220 ◦C under pressure, the final product obtained is mostly
BHET. However, as reaction time increases, dimers and low molecular weight oligomers
are also generated by the polymerization process occurring due to the reversibility of the
depolymerization reaction of PET into BHET.

On the other hand, pure BHET has also been obtained in this work by working under
pressure at 180 ◦C and 30 and 60 min of reaction, implying that depolymerization can
also occur at lower temperatures and reaction times. For longer reaction times, the yield
of BHET increases but the purity is lower, as the number of dimers and oligomers also
increases. It has been seen that there is a direct relationship between the yield of BHET, the
quantity of dimers and monomers analyzed by GPC, and the degradation temperatures: a
higher fraction of dimer in the final product results into a higher degradation temperature.

The conditions of the depolymerization reaction of PET residue becomes of crucial
importance, since depending on reaction conditions, products with different compositions
and potential applications can be obtained. The use of a pressure reactor allows work at
lower temperatures and reaction times, reducing the consumed energy during the process
and in consequence, the environmental impacts of chemical recycling.

Author Contributions: Conceptualization, A.E. and C.P.-R.; methodology, E.M.-V. and G.M.; soft-
ware, E.M.-V.; validation, C.P.-R. and A.E. formal analysis, E.M.-V.; investigation, E.M.-V.; resources,
N.G.; data curation, G.K.; writing—original draft preparation, E.M.-V.; writing—review and edit-



Polymers 2021, 13, 1461 12 of 13

ing, G.K.; visualization, C.P.-R.; supervision, N.G., A.E. and C.P.-R.; project administration, C.P.-R.;
funding acquisition, A.E. and C.P-R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Financial support from the Basque Country Government in the frame of IT-776-
13 project and from the Provincial Council of Gipuzkoa (ItsasMikro project) are gratefully acknowl-
edged. Moreover, we are grateful to the Macrobehav-ior-Mesostructure-Nanotechnology SGIker unit
of UPV/EHU. Eider Mendiburu Valor thanks Basque Government for PhD grant (PRE_2018_1_0014).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wei, H.S.; Liu, K.T.; Chang, Y.C.; Chan, C.H.; Lee, C.C.; Kuo, C.C. Superior mechanical properties of hybrid organic-inorganic

superhydrophilic thin film on plastic substrate. Surf. Coat. Technol. 2017, 320, 377–382. [CrossRef]
2. PlasticsEurope. Plastics—the Facts 2019. Available online: https://www.plasticseurope.org/en (accessed on 18 September 2020).
3. Chapa-Martínez, C.A.; Hinojosa-Reyes, L.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.; Maya-Treviño, L.; Guzmán-Mar, J.L. An

evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water. Sci. Total
Environ. 2016, 565, 511–518. [CrossRef]

4. Hu, Y.S.; Prattipati, V.; Mehta, S.; Schiraldi, D.A.; Hiltner, A.; Baer, E. Improving gas barrier of PET by blending with aromatic
polyamides. Polymer 2005, 46, 2685–2698. [CrossRef]

5. Petcore Europe. Recycled Products. Available online: https://www.petcore-europe.org/recycled-products.html (accessed on 18
September 2020).

6. Dubelley, F.; Planes, E.; Bas, C.; Pons, E.; Yrieix, B.; Flandin, L. The hygrothermal degradation of PET in laminated multilayer. Eur.
Polym. J. 2017, 87, 1–13. [CrossRef]

7. Sammon, C.; Yarwood, J.; Everall, N. An FT–IR study of the effect of hydrolytic degradation on the structure of thin PET films.
Polym. Degrad. Stab. 2000, 67, 149–158. [CrossRef]

8. Holland, B.J.; Hay, J.N. The thermal degradation of PET and analogous polyesters measured by thermal analysis—Fourier
transform infrared spectroscopy. Polymer 2002, 43, 1835–1847. [CrossRef]

9. Pirzadeh, E.; Zadhoush, A.; Haghighat, M. Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of
crystallization, temperature, and humidity. J. Appl. Polym. Sci. 2007, 106, 1544–1549.

10. El’Darov, E.G.; Mamedov, F.V.; Gol’Dberg, V.M.; Zaikov, G.E. A kinetic model of polymer degradation during extrusion. Polym.
Degrad. Stab. 1996, 51, 271–279.

11. Petcore Europe. Processing. Available online: https://www.petcore-europe.org/processing.html (accessed on 22
September 2020).

12. Ghaderian, A.; Haghighi, A.H.; Taromi, F.A.; Abdeen, Z.; Boroomand, A.; Taheri, S.M.R. Characterization of rigid polyurethane
foam prepared from recycling of PET waste. Period. Polytech. Chem. Eng. 2015, 59, 296–305.

13. George, N.; Kurian, T. Recent developments in the chemical recycling of postconsumer poly (ethylene terephthalate) waste. Ind.
Eng. Chem. Res. 2014, 53, 14185–14198.

14. Abdelaal, M.Y.; Sobahi, T.R.; Makki, M.S.I. Chemical transformation of pet waste through glycolysis. Constr. Build. Mater. 2011,
25, 3267–3271. [CrossRef]

15. Nikles, D.E.; Farahat, M.S. New motivation for the depolymerization products derived from poly (ethylene terephthalate) (PET)
waste: A review. Macromol. Mater. Eng. 2005, 290, 13–30. [CrossRef]

16. Güçlü, G.; Kas göz, A.; Özbudak, S.; Özgümüs, S.; Orbay, M. Glycolysis of poly (ethylene terephthalate) wastes in xylene. J. Appl.
Polym. Sci. 1998, 69, 2311–2319. [CrossRef]

17. Al-Sabagh, A.M.; Yehia, F.Z.; Eshaq, G.; Rabie, A.M.; ElMetwally, A.E. Greener routes for recycling of polyethylene terephthalate.
Egypt. J. Pet. 2016, 25, 53–64. [CrossRef]

18. Chaudhary, S.; Surekha, P.; Kumar, D.; Rajagopal, C.; Roy, P.K. Microwave assisted glycolysis of poly (ethylene terepthalate) for
preparation of polyester polyols. J. Appl. Polym. Sci. 2013, 129, 2779–2788. [CrossRef]

19. Wang, H.; Liu, Y.; Li, Z.; Zhang, X.; Zhang, S.; Zhang, Y. Glycolysis of poly (ethylene terephthalate) catalyzed by ionic liquids. Eur.
Polym. J. 2009, 45, 1535–1544. [CrossRef]

20. Chen, J.W.; Chen, L.W.; Cheng, W.H. Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst. Polym. Int. 1999, 48,
885–888. [CrossRef]

http://doi.org/10.1016/j.surfcoat.2016.12.025
https://www.plasticseurope.org/en
http://doi.org/10.1016/j.scitotenv.2016.04.184
http://doi.org/10.1016/j.polymer.2005.01.056
https://www.petcore-europe.org/recycled-products.html
http://doi.org/10.1016/j.eurpolymj.2016.12.004
http://doi.org/10.1016/S0141-3910(99)00104-4
http://doi.org/10.1016/S0032-3861(01)00775-3
https://www.petcore-europe.org/processing.html
http://doi.org/10.1016/j.conbuildmat.2011.03.013
http://doi.org/10.1002/mame.200400186
http://doi.org/10.1002/(SICI)1097-4628(19980919)69:12&lt;2311::AID-APP2&gt;3.0.CO;2-B
http://doi.org/10.1016/j.ejpe.2015.03.001
http://doi.org/10.1002/app.38970
http://doi.org/10.1016/j.eurpolymj.2009.01.025
http://doi.org/10.1002/(SICI)1097-0126(199909)48:9&lt;885::AID-PI216&gt;3.0.CO;2-T


Polymers 2021, 13, 1461 13 of 13

21. Imran, M.; Al-Masry, W.A.; Mahmood, A.; Hassan, A.; Haider, S.; Ramay, S.M. Manganese-, cobalt-, and zinc-based mixed-oxide
spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis. Polym. Degrad. Stab. 2013, 98,
904–915. [CrossRef]

22. López-Fonseca, R.; Duque-Ingunza, I.; De Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J.I. Chemical recycling of post-consumer PET
wastes by glycolysis in the presence of metal salts. Polym. Degrad. Stab. 2010, 95, 1022–1028. [CrossRef]

23. Baliga, S.; Wong, W.T. Depolymerization of poly (ethylene terephthalate) recycled from post-consumer soft-drink bottles. J. Polym.
Sci. Part A Polym. Chem. 1989, 27, 2071–2082. [CrossRef]

24. Viana, M.E.; Riul, A.; Carvalho, G.M.; Rubira, A.F.; Muniz, E.C. Chemical recycling of PET by catalyzed glycolysis: Kinetics of the
heterogeneous reaction. Chem. Eng. J. 2011, 173, 210–219. [CrossRef]

25. Chen, J.Y.; Ou, C.F.; Hu, Y.C.; Lin, C.C. Depolymerization of poly (ethylene terephthalate) resin under pressure. J. Appl. Polym.
Sci. 1991, 42, 1501–1507. [CrossRef]

26. Chen, J.W.; Chen, L.W. The glycolysis of poly (ethylene terephthalate). J. Appl. Polym. Sci. 1999, 73, 35–40. [CrossRef]
27. Campanelli, J.R.; Kamal, M.R.; Cooper, D.G. Kinetics of glycolysis of poly (ethylene terephthalate) melts. J. Appl. Polym. Sci. 1994,

54, 1731–1740. [CrossRef]
28. Aguado, A.; Martínez, L.; Becerra, L.; Arieta-Araunabeña, M.; Arnaiz, S.; Asueta, A.; Robertson, I. Chemical depolymerisation of

PET complex waste: Hydrolysis vs. glycolysis. J. Mater. Cycles Waste Manag. 2014, 16, 201–210. [CrossRef]
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