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Abstract Loop quantum gravity introduces two character-
istic modifications in the classical constraints of general rel-
ativity: the holonomy and inverse-triad corrections. In this
paper, a systematic construction of anomaly-free effective
constraints encoding such corrections is developed for spher-
ically symmetric spacetimes. The starting point of the analy-
sis is a generic Hamiltonian constraint where free functions
of the triad and curvature components as well as non-minimal
couplings between geometric and matter degrees of freedom
are considered. Then, the requirement of anomaly freedom
is imposed in order to obtain a modified Hamiltonian that
forms a first-class algebra. In this way, we construct a fam-
ily of consistent deformations of spherical general relativity,
which generalizes previous results in the literature. The dis-
cussed derivation is implemented for vacuum as well as for
two matter models: dust and scalar field. Nonetheless, only
the deformed vacuum model admits free functions of the con-
nection components. Therefore, under the present assump-
tions, we conclude that holonomy corrections are not allowed
in the presence of these matter fields.

1 Introduction

One of the main aspects a quantum theory of gravity must
face is that regarding the singularities of general relativity.
The discrete nature of spacetime predicted by loop quantum
gravity may provide an answer to this problem [1]. In fact,
symmetry-reduced homogeneous models have been widely
studied, particularly those related to cosmology, yielding
classical singularity resolution via a cosmological bounce
[2–4].

However, the extreme energy scales at which quantum-
gravity phenomena become relevant make experimental evi-
dence still unreachable and predictions of any quantum-
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gravity theory seem hard to test. Nevertheless, a general
expectation is that these effects leave observable trails at
lower energies, which could be studied via effective theo-
ries. In fact, in the context of loop quantum cosmology, effec-
tive schemes provide an accurate description of the evolution
when compared to the full quantum dynamics [2,3]. In addi-
tion, these effective theories have been widely used to study
the interior of spherical black holes, which are described by
homogeneous but anisotropic Kantowski–Sachs spaces. The
literature presents a wide variety of predictions [5–14]; for
instance, the possibility of a quantum transition from a black
hole into a white hole, resembling the cosmological bounce.

The usual approach to obtain effective equations is to
modify the Hamiltonian in such a way that expected quan-
tum effects from loop quantum gravity are included. Among
these modifications, we find two main branches: classical
divergences when the volume of a region tends to zero are
regularized and encoded in the so-called inverse-triad modifi-
cations, whereas holonomy corrections are directly related to
the spacetime discreteness predicted by the theory. In homo-
geneous models, as the diffeomorphism constraint vanishes
off-shell, one can include by hand a wide variety of modifi-
cations. However, the construction of a consistent effective
theory becomes rather challenging when non-homogeneous
scenarios are considered. In these cases, the diffeomorphism
constraint is no longer vanishing and one finds that the quan-
tized notion of spacetime collides with the continuous dif-
feomorphism symmetry of general relativity.

Several different attempts to study inhomogeneous mod-
els can be found in the literature. For instance, Gowdy models
have been analyzed by means of the procedure named hybrid
quantization [15]. This approach splits the problem in two:
a Bianchi I model describing the homogeneous background
spacetime, quantized following the loop quantum cosmology
program, and a Fock quantization of the remaining inhomo-
geneities. This scheme has also been applied to cosmologi-
cal perturbations [16–19]. In the same context, one must also
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mention the dressed-metric approach [20–22]. Both methods
make similar assumptions and provide a completely quan-
tized theory to analyze cosmological perturbations. However,
it is not clear whether these frameworks respect the general
covariance of the theory [23]. In fact, this is the main guide-
line of the consistent constraint deformation approach. This
alternative formalism constructs effective theories demand-
ing that the modified constraints form an anomaly-free alge-
bra. References [24–29] implement this approach for cosmo-
logical perturbations.

Spherically symmetric models are of particular relevance,
as they would be a first step to describe black holes and
gravitational collapse. In this context, it was found that the
Abelianization of the constraints could lead to a consistent
quantization [30], even under the presence of a scalar matter
field [31]. Nonetheless, this approach suffers equally from the
lack of covariance, as analyzed in [32]. On the other hand, the
consistent constraint deformation approach has already been
applied to several spherical models, both in vacuum and cou-
pled to different matter fields [32–38], leading to promising
results. In particular, the effective line element corresponding
to the holonomy-corrected constraints might present a signa-
ture change when approaching the classical singularity. From
this standpoint, some interior region of the black hole would
be Euclidean, and the usual notions of causality and time
evolution would not apply. In particular, in [39], it is argued
that this prediction rules out the possibility of bouncing black
holes. Unfortunately, most studies based on this methodol-
ogy acknowledge that holonomy modifications can only be
implemented in vacuum. The requirement of anomaly free-
dom in the presence of matter with local degrees of freedom
restricts even more feasible modifications, leaving no room
for holonomy corrections [37].

Therefore, the goal of this paper is to perform a systematic
analysis of possible modifications to classical constraints of
general relativity in spherical symmetry. We will consider the
vacuum case as well as gravity coupled to two different matter
models: dust and scalar field. A key difference between the
present and previous studies will be the possibility for non-
minimal couplings between matter and geometric degrees of
freedom as well as for polymerization of the matter variables.
Nonetheless, in agreement with previous works, we will find
that only the vacuum model admits holonomy corrections.

The rest of the paper is organized as follows. Section 2
includes a brief summary of the constraint structure of classi-
cal general relativity (2.1) and introduces the main features of
inverse-triad and holonomy corrections (2.2). In Sect. 3, we
compute the Poisson brackets between modified constraints,
assuming a completely general kinetic part in the Hamilto-
nian for the vacuum model. In Sects. 4.1 and 4.2, respectively,
we will extend our analysis to include a scalar field and dust
with possible non-minimal couplings between matter and

geometry. Finally, Sect. 5 summarizes the main results and
presents the conclusions of our study.

2 Constraint algebra

2.1 Classical theory

The canonical formalism of general relativity shows that this
theory is a completely constrained dynamical system. The
total Hamiltonian is a linear combination of the so-called
Hamiltonian constraint and diffeomorphism constraint, with
the coefficients given by the lapse function (N ) and the shift
vector, respectively. Since we will be assuming spherical
symmetry, the angular components of the diffeomorphism
constraint will vanish off-shell and the only relevant part of
the shift vector will be its radial component (Nr ).

Following the usual approach in loop quantum gravity,
the basic variables will be the U (1)-invariant components
of the spherically symmetric triad, Er and Eϕ . Their canoni-
cally conjugate momenta will be given by the elements of the
Ashtekar su(2) connection, which can be written in terms of
the extrinsic curvature components Kr and Kϕ . Setting the
Newton constant to one, G = 1, the symplectic structure of
the phase space is given by the Poisson brackets,

{Kr (x), E
r (y)} = {Kϕ(x), Eϕ(y)} = δ(x − y). (1)

In terms of these variables, the vacuum Hamiltonian and dif-
feomorphism constraints of classical general relativity read
respectively as follows,

Hg := √
Er

(
Γϕ

′ − 2Kr Kϕ

)
− Eϕ

2
√
Er

(
1 + Kϕ

2 − Γϕ
2
)
,

(2)

Dg := (Kϕ)′Eϕ − (Er )′Kr , (3)

where Γϕ := (Er )′/(2Eϕ) is the angular component of the
spin connection.

In the canonical formalism, the covariance of general rel-
ativity is not explicit, but it can be read from the hypersurface
deformation algebra,

{D[Nr
1 ], D[Nr

2 ]} = D[Nr
1 N

r
2

′ − Nr
1

′Nr
2 ], (4a)

{D[Nr ], H [N ]} = H [Nr N ′], (4b)

{H [N1], H [N2]} = D[qrr (N1N2
′ − N1

′N2)], (4c)

where the smeared form of the constraints has been intro-
duced as D[Nr ] := ∫

dr NrD and H [N ] := ∫
dr NH, and the

prime denotes the derivative with respect to the radial vari-
able r . Note that, in the last bracket, the component qrr of
the inverse three-metric appears, which can be obtained from
the spherically symmetric spatial line element,
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dσ 2 = (Eϕ)2

Er
dr2 + ErdΩ2. (5)

2.2 Corrections motivated by loop quantum gravity

In this section, the two different types of corrections moti-
vated by the theory of loop quantum gravity are reviewed:
the so-called inverse-triad and holonomy corrections.

2.2.1 Inverse-triad corrections

In loop quantum gravity, the operators built from triad com-
ponents contain zero in their discrete spectra. Therefore,
they cannot be inverted. Nonetheless, a regularization pro-
cedure is followed to obtain well-defined operators [40,41].
The expectation values of these regularized operators mimic
the classical behavior at large scales but present deviations
from classical divergences at small volumes. In the context
of effective theories, inverse-triad corrections are introduced
to account for the regularization carried out in the full theory.

In principle, only terms with explicit triad terms in the
denominator should be held to corrections. However, in the
symmetry reduction process that leads to expression (2),
some triad factors coming from the volume element have
been simplified. At this level, we will not discuss the impli-
cations of correcting just the volume element or individual
terms in the Hamiltonian. We will introduce two independent
multiplicative functions, α1 and α2,

H(t)
g := α1(E

r )
√
Er

(
Γϕ

′ − 2Kr Kϕ

)

− α2(E
r )

Eϕ

2
√
Er

(
1 + Kϕ

2 − Γϕ
2
)
, (6)

so that when both tend to one, we recover the classical Hamil-
tonian constraint (2). If the origin of the corrections was the
volume element, then both correction functions would be
equal α1 = α2.

One can check that this deformed Hamiltonian and the
classical diffeomorphism constraint (3) do close algebra.
More precisely, the algebraic relations (4a) and (4b) remain
unmodified, but the third bracket (4c) acquires a deformation
given by the function α1:

{H (t)
g [N1], H (t)

g [N2]} = Dg
[
α2

1 q
rr (N1N2

′ − N1
′N2)

]
, (7)

where H (t)
g [N ] is the smeared form of H(t)

g . Note that if only
terms with explicit powers of inverse triads were modified in
(2), α1 would be one and the whole algebraic structure would
remain undeformed.

2.2.2 Holonomy modifications

The operator associated to the connection is not well
defined in loop quantum gravity. Alternatively, one consid-
ers holonomies, the exponential form of parallel-transported
connections, which do have a definite operator counterpart.
In order to construct effective theories, the general idea is
that connection components should be replaced with peri-
odic functions. This procedure is sometimes referred to as
polymerization.

In the present approach, holonomy corrections will involve
the replacement of the extrinsic curvature variables by
generic functions. The requisite of a closed algebra will
impose conditions over these modifications.

For instance, following the standard procedure found in
the literature [32,34,35], let us replace the terms Kϕ and Kϕ

2

in expression (2) by f1(Kϕ) and f2(Kϕ), respectively, and
define the holonomy-modified Hamiltonian constraint,

H(h)
g := √

Er
(
Γϕ

′ − 2Kr f1
)

− Eϕ

2
√
Er

(
1 + f2 − Γϕ

2
)
, (8)

along with its smeared version H (h)
g [N ] := ∫

dr NH(h)
g .

Considering this deformed Hamiltonian in combination
with the classical diffeomorphism constraint (3), one can
check that the first two brackets (4a) and (4b) of the hyper-
surface deformation algebra remain unmodified, while the
third one generates an anomalous term:

{H (h)
g [N1], H (h)

g [N2]} = Dg

[
∂ f1
∂Kϕ

qrr (N1N2
′ − N1

′N2)

]

+ (Er )′

4Eϕ
(N1N2

′ − N1
′N2)

(
2 f1 − ∂ f2

∂Kϕ

)
. (9)

In order to cancel the anomaly, one needs to enforce the
relation 2 f1 = ∂ f2/∂Kϕ . Thus, both functions are not inde-
pendent and, following the motivation mentioned above, they
are usually chosen to have a sinusoidal form. For example,
f1 = sin(μKϕ)/μ, where the parameter μ is assumed to be
related to the minimum area predicted by the theory. In the
limit μ → 0, the Hamiltonian (8) recovers its classical form
(2).

Finally, let us emphasize that the two types of corrections
introduced in this section are compatible. That is, one can
consider the deformed Hamiltonian constraint,

H(ht)
g := α1(E

r )
√
Er

(
Γϕ

′ − 2Kr
∂ f (Kϕ)

∂Kϕ

)

− α2(E
r )

Eϕ

2
√
Er

(
1 + 2 f (Kϕ) − Γϕ

2
)
, (10)

with generic functions α1, α2 and f . This Hamiltonian closes
algebra along with the classical diffeomorphism constraint
(3). The brackets (4a) and (4b) remain unchanged, whereas
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the one between modified Hamiltonian constraints presents
a deformation equal to the product of corrections in the right-
hand sides of (7) and (9):

{
H (ht)
g [N1], H (ht)

g [N2]
}

= Dg

[
α2

1
∂2 f

∂K 2
ϕ

qrr
(
N1N2

′ − N1
′N2

)]
, (11)

with the smeared form H (ht)
g := ∫

dr NH(ht)
g .

3 Vacuum

Before studying the possibility of constructing effective the-
ories with inverse-triad and holonomy corrections in the pres-
ence of matter fields, let us first try to generalize the known
results for vacuum summarized in the previous section. For
such a purpose, we will consider the following deformed
Hamiltonian constraint,

H̃g = fg(E
r , Eϕ, Kr , Kϕ) + η1(E

r , Eϕ)
√
ErΓϕ

′

− η2(E
r , Eϕ)

Eϕ

2
√
Er

+ η3(E
r , Eϕ)

EϕΓϕ
2

2
√
Er

. (12)

Note that the usual kinetic part (all terms with an explicit
factor of Kr or Kϕ) of the classical Hamiltonian constraint
(2) has been replaced with a generic function fg , which is
assumed to depend on all canonical variables. This function
will encode the possible holonomy corrections of the model
as well as inverse-triad modifications. In this way, the holon-
omy corrections might also depend on triad components, as
in the improved-dynamics scheme of loop quantum cosmol-
ogy [42]. Additionally, we have included three free functions
η1, η2, and η3, with dependence on both triad components Er

and Eϕ , in front of each remaining term, to account for addi-
tional inverse-triad corrections. In fact, we could expand the
derivative of the spin-connection Γϕ

′ in two terms depending
on the derivatives of the triad components and include a cor-
rection multiplying each of them. Instead of just one function
(η1), this would lead to two independent corrections but with
the same final results, since anomaly freedom would demand
these two functions to be equal. Therefore, with no loss of
generality, we will just consider the correction function η1.

Concerning the diffeomorphism constraint, in this section
we will keep it unmodified and its classical form, given in (3),
will be considered. The full theory of loop quantum gravity
does not modify the diffeomorphism constraint and thus one
does not expect it to be modified at an effective level. How-
ever, in Appendix A, we will consider generic deformations
of the diffeomorphism constraint, along with the form (12)
for the Hamiltonian. Following the same methodology as in

this section, we will explicitly show that (up to canonical
transformations) only a global rescaling of the diffeomor-
phism constraint is allowed, leading to the same modified
Hamiltonian that will be obtained in this section (expres-
sion (28) below). Results in Appendix A generalize previous
studies that point out that the requirement of anomaly free-
dom only admits trivial modifications of the diffeomorphism
constraint [38].

Regarding the constraint algebra, it is clear that, since here
we did not change the diffeomorphism constraint, relation
(4a) remains unmodified. On the other hand, the bracket
between the classical diffeomorphism (3) and the modi-
fied Hamiltonian constraints (12) gives rise, up to irrelevant
global factors, to the following anomalous term,

ADH
g := 8

√
Er

[
fg − Kr

∂ fg
∂Kr

− η1E
ϕ ∂( fg/η1)

∂Eϕ

]

− 4η1(E
ϕ)2 ∂(η2/η1)

∂Eϕ
+ η1

[
(Er )′

]2 ∂(η3/η1)

∂Eϕ
,

(13)

whereas the bracket of the modified Hamiltonian with itself
leads to the anomaly:

AHH
g := (Er )′

[
(η1 − η3)

Eϕ

2

∂ fg
∂Kr

− η1
2Er Eϕ ∂2( fg/η1)

∂Kr∂Er

+ η1E
r
(

∂ fg
∂Kϕ

− Kr
∂2 fg

∂Kr∂Kϕ

)]

+ (Eϕ)′Er Eϕη2
1
∂2( fg/η1)

∂Eϕ∂Kr
− (Kr )

′Er Eϕη1
∂2 fg
∂K 2

r
.

(14)

Therefore, the condition that the constraints H̃g and Dg form
a closed algebra is translated to the vanishing of all the above
terms:

0 = ADH
g , (15)

0 = AHH
g . (16)

Up to this point, there is some ambiguity in the generic func-
tions defined in the modified constraint. In particular, the
third term of (12), the one that goes with the η2 function,
could have been absorbed in the definition of fg as it does
not depend on the radial derivatives of the triad components.
This means that, with no loss of generality, η2 can be chosen
as desired. Therefore, in order to cancel the last term of the
anomaly (13), we will demand,

η2(E
r , Eϕ) = ξ2(E

r ) η1(E
r , Eϕ)/ξ1(E

r ), (17)

ξ1 and ξ2 being free functions of the radial component of the
triad. Notice that the generic functions, and η1 in particular,
are assumed to be non-vanishing.
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None of the free functions that are contained in the
anomaly equations depend on radial derivatives. Hence, each
coefficient of a primed variable must vanish independently
and the following five equations, alongside (17), are equiva-
lent to the system (15) and (16):

0 = ∂(η3/η1)

∂Eϕ
, (18)

0 = fg − Kr
∂ fg
∂Kr

− η1E
ϕ ∂( fg/η1)

∂Eϕ
, (19)

0 = ∂2( fg/η1)

∂Eϕ∂Kr
, (20)

0 = (η1 − η3)
Eϕ

2

∂ fg
∂Kr

− η1
2Er Eϕ ∂2( fg/η1)

∂Kr∂Er

+ η1E
r
(

∂ fg
∂Kϕ

− Kr
∂2 fg

∂Kr∂Kϕ

)
, (21)

0 = ∂2 fg
∂K 2

r
. (22)

The general solution of Eq. (18) provides the following rela-
tion between the functions η1 and η3,

η3(E
r , Eϕ) = ξ3(E

r ) η1(E
r , Eϕ)/ξ1(E

r ), (23)

with ξ3 a free function of the radial component of the triad.
In addition, direct integration of Eqs. (20) and (22) leads to
the following form for the kinetic term of the Hamiltonian:

fg = η1(Er , Eϕ)

ξ1(Er )

[
Kr f1(E

r , Kϕ) + f2(E
r , Eϕ, Kϕ)

]
,

(24)

where we have introduced two integration functions f1 and
f2 along with their corresponding dependencies. In partic-
ular, note that the dependence on the radial component of
the connection, Kr is already explicit and, therefore, holon-
omy corrections depending on Kr will not be allowed: the
Hamiltonian must be linear in Kr .

Replacing now (24) in (19), one obtains the relation,

f2 − Eϕ ∂ f2
∂Eϕ

= 0, (25)

which implies that f2 must be linear in Eϕ . In summary, the
expression

fg =−η1

ξ1

[
2
√
Er Krh1(E

r, Kϕ) + Eϕ

2
√
Er

h2(E
r, Kϕ)

]
, (26)

provides the most general function fg , that obeys all condi-
tions above. For convenience, we have included some explicit
numerical factors and

√
Er terms, so that this function resem-

bles the classical form of the kinetic part of the constraint

when functions h1 and h2 take the values Kϕ and Kϕ
2, respec-

tively.
In order to obtain an anomaly-free algebra, the only con-

dition left is given by equation (21). Inserting the forms (23)
and (26) in that relation, the following differential equation
is obtained:

1

2

∂h2

∂Kϕ

=
(

ξ3 − 2Er ∂ξ1

∂Er

)
h1

ξ1
+ 2Er ∂h1

∂Er
. (27)

Collecting all the conditions we found for the correction func-
tions, the deformed Hamiltonian constraint reads,

H̃g = η(Er , Eϕ)

[√
Er

(
ξ1(E

r )Γϕ
′ − 2Krh1(E

r , Kϕ)
)

− Eϕ

2
√
Er

(
ξ2(E

r ) + h2(E
r , Kϕ) − ξ3(E

r )Γϕ
2
)]

,

(28)

where we have defined the free global factor η := η1/ξ1.
Recall that all the modifications are not independent since the
additional relation (27) must be obeyed. The classical Hamil-
tonian constraint is recovered when η = ξ1 = ξ2 = ξ3 = 1,
h1 = Kϕ and h2 = K 2

ϕ , which automatically satisfies the
mentioned requisite.

Regarding the physical interpretation of the modifications,
functions ξ1, ξ2 and ξ3 can be interpreted as inverse-triad cor-
rections, whereas h1 and h2 would represent holonomy mod-
ifications. Since these last two have an arbitrary dependence
on the radial component of the triad, they could also encode
certain inverse-triad corrections. The factor η is a trivial mod-
ification in the sense that one can always rescale the constraint
by any global multiplicative function and the new rescaled
constraint will provide an anomaly-free algebra. In addition,
this global factor would not have any effect in local dynam-
ics and might only alter global properties of the spacetime.
Furthermore, since the Hamiltonian must be a scalar density,
the global factor η should be of weight zero. This would rule
out the dependence of η on the angular component of the
triad Eϕ , for it being a scalar density. Nonetheless, in order
to keep the discussion as general as possible, this dependence
will be kept so that by incorporating additional densities a
scalar object may be formed.

The modified Hamiltonian constraint (28) is the main
result of this section and provides a generalization of the
already present results in the literature. In particular, expres-
sion (10) may be recovered just taking η = 1, ξ1 = α1,
ξ2 = ξ3 = α2, h2 = 2α2 f and h1 = α1∂ f/∂Kϕ . Note that,
for these choices, relation (27) is automatically satisfied.

The anomaly-free first-class algebra formed by this modi-
fied Hamiltonian and the classical diffeomorphism constraint
is:
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{Dg[Nr ], H̃g[N ]}= H̃g

[
NrN ′−(Nr )′N Eϕ

η

∂η

∂Eϕ

]
, (29)

{H̃g[N1], H̃g[N2]}=Dg

[
η2ξ1

∂h1

∂Kϕ

qrr (N1N2
′ − N1

′N2)

]
,

(30)

where H̃g[N ] is the smeared version of H̃g . The first bracket
picks up corrections from the global factor η. Nonetheless,
the deformation of the bracket (30) might contain relevant
information about quantum-gravity effects as one approaches
the deep quantum regime, such as signature change [37,39].
Only for the case η2ξ1h1 = Kϕ +g(Er ), which would imply
that η is independent of Eϕ , one would recover the exact
algebra of general relativity.

The procedure we followed imposes the quite restrictive
form (28) even if we started from a completely generic kinetic
term in the Hamiltonian (12), yielding some interesting fea-
tures. First, we see that the only correction that depends on
the angular component of the triad Eϕ is contained in the
global factor η. Second, there are no free dependences on
the radial component of the connection Kr , which appear in
the same way as in the classical Hamiltonian. Therefore, no
holonomy modifications dependent on Kr are allowed.

The only possible holonomy corrections are encoded in
h1 and h2, which are allowed to be scale-dependent through
the radial component of the triad Er . This is an interesting
aspect of the model as it allows for some kind of improved-
dynamics scheme, similar to the one considered in the context
of loop quantum cosmology [42]. In fact, there are already
some examples in the literature with this kind of scale-
dependent holonomy corrections. For instance, the anomaly
equation (27) can be directly compared with results presented
in [32,35] (which do not include the additional inverse-triad
corrections ξ1, ξ2, ξ3). Finally, in Appendix B we analyze
possible solutions for h1 and h2 that satisfy equation (27),
assuming a linear expansion of the functions and focusing
on leading order terms.

Singular solutions

For the sake of completeness, we would like to point out
that, in order to write and solve the system of equations (15)
and (16), all correction functions have been assumed to be
non-vanishing. However, it is possible to find two families of
singular solutions (in the sense that they are not contained in
the previous general case) that involve the vanishing of η1:

(i) η1 = 0 and fg = fg(Er , Eϕ, Kϕ).
(ii) η1 = 0 and η3 = 0.

Each of these modifications in the Hamiltonian provides a
first-class algebra, without any further requirement on the

remaining functions. Note that one can not directly substitute
these values in the expressions above as η1 appears dividing
in the anomalous term (13). In order to check that these are
indeed consistent deformations, one needs to compute again
the Poisson bracket (29).

Once η1 = 0 is chosen, the only derivative term in
the deformed Hamiltonian is (Er )′. Next, one can consider
either (i), to eliminate its canonical conjugate variable Kr ,
or (ii), to remove all derivative terms in the Hamiltonian.
The latter case corresponds to the homogeneous limit of the
model which, following the Belinski–Khalatnikov–Lifshitz
(BKL) conjecture [43], is expected to be relevant near the
classical singularity.

In contrast to the general case analyzed above, these sin-
gular solutions present a less constrained dependence on
the connection variables. On the one hand, in (i), although
the dependence on Kr is fixed, we find a complete free-
dom regarding Kϕ . On the other hand, case (ii) brings com-
plete freedom when choosing the dependence of the Hamil-
tonian constraint on both connection components, Kr and
Kϕ , allowing for any kind of holonomy correction.

4 Matter fields

The complexity of studying holonomy modifications in the
presence of matter is widely recognized. In fact, there is
a quite general argument that shows the impossibility of
consistently including holonomy corrections in the effec-
tive Hamiltonian [32]. Let us consider a minimally-coupled
matter model with a possibly deformed Hamiltonian con-
straint H̃m [N ]. The full smeared Hamiltonian is H̃ [N ] =
H̃g[N ] + H̃m [N ], with the vacuum Hamiltonian H̃g[N ] given
by the smeared form of (28). In order to define a first-class
algebra, the bracket

{
H̃g[N1] + H̃m[N1], H̃g[N2] + H̃m[N2]

}
, (31)

should be expressed as a linear combination of the full con-
straints H̃ [N ] and D[Nr ] := Dg[Nr ] + Dm [Nr ], Dm [Nr ] being
the matter contribution to the diffeomorphism constraint.
It is easy to check that, when the modified matter Hamil-
tonian H̃m [N ] depends only on matter variables (including
their radial derivatives) and triad components, but it does not
depend on curvature components nor radial derivatives of the
triad, the sum of the cross brackets,

{H̃g[N1], H̃m[N2]} + {H̃m[N1], H̃g[N2]}, (32)

is vanishing due to antisymmetry. As there are no derivatives
of Kr or Kϕ in the gravitational Hamiltonian and we are
assuming no derivatives of the triad components in Hm , one
does not need to perform any integration by parts when com-

123



Eur. Phys. J. C           (2021) 81:283 Page 7 of 17   283 

puting these Poisson brackets and, thus, both are proportional
to the product N1N2.

Now, since the bracket between two vacuum Hamiltoni-
ans is proportional to the vacuum diffeomorphism constraint
(30), anomaly-freedom demands that the bracket between
matter Hamiltonians is proportional to the matter diffeomor-
phism constraint. In such a case, (31) would read as follows,
{
H̃g[N1] + H̃m[N1], H̃g[N2] + H̃m[N2]

}

=
∫

dr qrr (N1N
′
2 − N ′

1N2)

[
η2

1
∂h1

∂Kϕ

Dg + ΔmDm

]
,

(33)

where, because of our assumptions, Δm depends on triad
components and matter variables, but not on curvature com-
ponents Kr and Kϕ . In order to obtain a closed algebra, Δm

should be equal to η2
1 ∂h1/∂Kϕ , imposing that h1 does not

depend on Kϕ and thus ruling out the holonomy corrections
that were allowed in vacuum.

This general argument applies to simple matter models,
such as minimally coupled scalar fields or dust. Nonethe-
less, one can try to bypass it by considering more generic
relations. In fact, it might well happen that matter and geo-
metric degrees of freedom develop non-minimal couplings as
one approaches the quantum regime. In addition, one could
expect polymerization, usually carried out only for the geo-
metric degrees of freedom, to affect some of the matter vari-
ables, as proposed for instance in [44–46].

The object of this section is to study two different mat-
ter models, scalar field and dust, with a quite generic form
of the deformed Hamiltonian. In particular, we will allow
for non-minimal couplings as well as possible polymeriza-
tion of both, geometric and matter degrees of freedom. More
precisely, we will be assuming a general kinetic term for
the modified Hamiltonian constraint, just as in the previous
section. This generic term will be allowed to depend on any
variable of the model and, thus, any coupling between the dif-
ferent matter and geometric variables will be possible. Fur-
thermore, this general function might also take into account
possible polymerization processes for all the degrees of free-
dom: not only for the curvature terms Kr and Kϕ , but also
for matter variables. In addition, multiplicative corrections
depending on triad components and the corresponding mat-
ter field will be included on each of the remaining terms of
the Hamiltonian, describing in that way possible inverse-triad
corrections. At the same time, these functions will enable a
more general coupling between matter and geometry.

4.1 Scalar field

Assuming spherical symmetry, the contribution to the Hamil-
tonian and diffeomorphism constraints of a minimally cou-
pled scalar field, φ, are respectively given by,

Hφ = Pφ
2

2
√
Er Eϕ

+ (Er )3/2

2Eϕ
(φ′)2 + √

Er EϕV (φ), (34)

Dφ = φ′Pφ. (35)

The momentum Pφ is canonically conjugate to φ, with the
Poisson bracket,

{φ(x), Pφ(y)} = δ(x − y), (36)

that completes the phase-space structure given in (1).
As in Sect. 3, we will leave the diffeomorphism constraint

unmodified, D = Dg +Dφ and will introduce the following
initial proposal for the deformed Hamiltonian constraint:

H̃ = f (Er , Eϕ, φ, Kr , Kϕ, Pφ) + η1(E
r , Eϕ, φ)

√
ErΓϕ

′

− η2(E
r , Eϕ, φ)

Eϕ

2
√
Er

+ η3(E
r , Eϕ, φ)

EϕΓϕ
2

2
√
Er

+ η4(E
r , Eϕ, φ)

(Er )3/2

2Eϕ
(φ′)2. (37)

The generic function f of the deformed Hamiltonian is
allowed to depend on all the canonical variables but not
on their radial derivatives. It accounts for generic couplings
between different variables, as well as inverse-triad and
holonomy corrections (in particular, it encodes a possible
polymerization of the matter variables). In addition, the free
multiplicative functions that appear in the remaining terms
stand for possible inverse-triad corrections and allow the
scalar field to couple to radial derivatives of the triad.

If one computes the Poisson brackets of the hypersurface
deformation algebra with the above modified Hamiltonian,
two anomalies are found, similar to those of the vacuum case
(13) and (14), but with a few additional matter terms. In order
to get rid of these anomalous terms, one must demand them
to be vanishing:

0 = −4(Eϕ)2η1
∂(η2/η1)

∂Eϕ
+ 8

√
Er Eϕη1

∂( f/η1)

∂Eϕ

− 8
√
Er

(
f − Kr

∂ f

∂Kr
− Pφ

∂ f

∂Pφ

)

+[
(Er )′

]2
η1

∂(η3/η1)

∂Eϕ
+ 4(Er )2 (φ′)2η1

∂(η4/η1)

∂Eϕ
,

(38)

0 = −Er Eϕη1
2(Eϕ)′ ∂

2( f/η1)

∂Eϕ∂Kr

− Er Eϕη1

[
(Kr )

′ ∂2 f

∂K 2
r

+ (Pφ)′ ∂2 f

∂Kr∂Pφ

]

+ (Er )′
[

(η1 − η3)
Eϕ

2

∂ f

∂Kr
− Er Eϕη1

2 ∂2( f/η1)

∂Er∂Kr

+ η1E
r
(

∂ f

∂Kϕ

− Kr
∂2 f

∂Kr∂Kϕ

)]
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+ φ′Er Eϕ

[
η1

(
Pφ

Eϕ

∂2 f

∂Kr∂Kϕ

− ∂2 f

∂Kr∂φ

)

+ 2η4E
r ∂ f

∂Pφ

+ ∂η1

∂φ

∂ f

∂Kr

]
. (39)

Since none of the free functions depends on derivatives of the
different variables, the coefficient of each radial derivative in
the above anomalies must be vanishing. Therefore, the last
two conditions can be rewritten as a set of eight differential
equations. In particular, the vanishing of the coefficients of
[(Er )′]2 and (φ′)2 in (38) is solved by the requirements,

η3(E
r , Eϕ, φ) = ξ3(E

r ) η1(E
r , Eϕ, φ)/ξ1(E

r ), (40)

η4(E
r , Eϕ, φ) = ξ4(E

r ) η1(E
r , Eϕ, φ)/ξ1(E

r ), (41)

where ξ1, ξ3 and ξ4 are free functions of Er . In addition, as
in the vacuum case, we have the freedom to choose η2, as it
could have been absorbed inside the generic function f in
definition (37). For convenience, we take,

η2(E
r , Eϕ, φ) = ξ2(E

r ) η1(E
r , Eϕ, φ)/ξ1(E

r ), (42)

which makes the first term in Eq. (38) to vanish.
Considering now the restrictions for f , it is easy to see

that the function

f = η1(Er , Eϕ, φ)

ξ1(Er )

×
[
f0(E

r , Eϕ, φ, Kϕ, Pφ) + Kr f1(E
r , φ, Kϕ)

]
, (43)

with the integration functions f0 and f1 provides a generic
solution to the vanishing of the coefficients of (Kr )

′, (Pφ)′
and (Eϕ)′ in (39). Thus, the dependence of the modified
Hamiltonian on the radial curvature component Kr is bound
to be linear and, therefore, holonomy corrections for this
variable will not be allowed. Replacing now the results (40)–
(43) in Eq. (38), we obtain the following condition for f0:

f0 − Pφ

∂ f0
∂Pφ

− Eϕ ∂ f0
∂Eϕ

= 0, (44)

which is the generalization of the vacuum relation (25). This
equation restricts the form of the function f0 in terms of
the variables Eϕ and Pφ . More precisely, f0 must be of the
form f0 = Eϕ f2(Er , φ, Kϕ, Pφ/Eϕ), with f2 an integration
function. Therefore, we can rewrite f above, as

f = η1(Er , Eϕ, φ)

ξ1(Er )

×
[
Eϕ f2(E

r , φ, Kϕ, Pφ/Eϕ) + Kr f1(E
r , φ, Kϕ)

]
.

(45)

Expressions (40)–(42) and (45) completely solve equation
(38). Replacing all the results in the other anomaly (39),

every term vanishes except for the coefficients of (Er )′ and
φ′, which provide the following two additional restrictions:

∂ f2
∂Kϕ

= ξ3 − ξ1

2Erξ1
f1 + ξ1

∂( f1/ξ1)

∂Er
, (46)

∂ f2
∂(Pφ/Eϕ)

= ξ1

2Erξ4

(
∂ f1
∂φ

− Pφ

Eϕ

∂ f1
∂Kϕ

)
. (47)

Note that Eq. (46) is the equivalent to (27) for this model (in
order to see this, it is enough to compare the decomposition
(45) with (26)). But in this case, besides (46), the functions
f1 and f2 also need to satisfy the relation (47). This will com-
pletely fix the dependence of these functions on the angular
component of the curvature Kϕ , preventing in this way the
presence of free functions of this variable. Therefore, the
fundamental reason for this model not to admit holonomy
corrections can be pinpointed to the existence of this last
equation.

In order to solve the last two equations, let us first focus
on the dependence of the functions f1 and f2 on the variables
Kϕ and Pφ/Eϕ . Since the right-hand side of Eq. (46) does not
contain any Pφ/Eϕ terms, these variables cannot be coupled
to Kϕ . That is, f2 must be a sum of two functions: f2 =
g1(Er , φ, Pφ/Eϕ) + g2(Er , φ, Kϕ). Plugging this form in
(47) and taking the derivative of that equation with respect
to Kϕ , one obtains:

∂2 f1
∂Kϕ∂φ

− Pφ

Eϕ

∂2 f1
∂K 2

ϕ

= 0. (48)

It is clear that, since f1 does not depend on Pφ/Eϕ , each
term of this equation must vanish independently. Then, one
concludes that f1 is, at most, linear in Kϕ , with the coefficient
of Kϕ being independent of the scalar field variable φ:

f1 = ξ1(E
r )

[
fφ(Er , φ) + Kϕ fk(E

r )
]
. (49)

As already commented above, this result provides the
explicit dependence of the function f1 on the variables Kϕ

and Pφ/Eϕ . Therefore, one can replace (49) in the system
(46) and (47) and integrate the equations with respect to the
mentioned variables. The explicit dependence of f2 on Kϕ

and Pφ/Eϕ reads as follows,

f2 = ξ1(E
r )

[
f00(E

r , φ) + Kϕ f10(E
r , φ) + K 2

ϕ f20(E
r , φ)

+ Pφ

Eϕ
f01(E

r , φ) +
(
Pφ

Eϕ

)2

f02(E
r , φ)

]
. (50)

Replacing the above expressions for f1 (49) and f2 (50) in
Eqs. (46) and (47), we obtain a set of four differential rela-
tions, one for each coefficient of different powers in Kϕ and
Pφ/Eϕ :
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f02 = − ξ1

4Er ξ4
fk, (51)

f20 = ξ3 − ξ1

4Er ξ1
fk + 1

2

∂ fk
∂Er

, (52)

f10 = ξ3 − ξ1

2Er ξ1
fφ + ∂ fφ

∂Er
, (53)

f01 = ξ1

2Erξ4

∂ fφ
∂φ

. (54)

In particular, since fk depends only on the radial compo-
nent of the triad Er , Eqs. (51) and (52) show that neither
f02 nor f20 depends on φ. Out of the seven free functions in
(49) and (50), only three will remain free after these last four
equations are satisfied. The function f00 is one of those free
functions, as it does not appear in the last relations. In addi-
tion, the functions fk and fφ will be chosen as free, whereas
the remaining functions can be written in terms of these two.
Finally, we rename two of the free functions with the defi-
nitions V(Er , φ) := ξ1 f00/

√
Er and ξ0 := − fk/(2

√
Er ) to

resemble the classical form of the Hamiltonian. Taking into
account all the above results, the modified Hamiltonian con-
straint is given by,

H̃ = η(Er , Eϕ, φ)

[√
Er ξ1

(
Γϕ

′ − 2ξ0Kr Kϕ

)

− Eϕ

2
√
Er

(
ξ2 +

[
ξ0ξ3 + 2Er ξ1

∂ξ0

∂Er

]
Kϕ

2 − ξ3Γϕ
2
)

+ ξ0ξ1
2

ξ4

Pφ
2

2
√
Er Eϕ

+ ξ4
(Er )3/2

2Eϕ
(φ′)2 + √

Er EϕV(φ, Er )

+ ξ1Kr fφ + ξ1
2Pφ

2Er ξ4

∂ fφ
∂φ

+
(

ξ3 − ξ1

2Er fφ + ξ1
∂ fφ
∂Er

)
EϕKϕ

]
,

(55)

where the free functions ξi = ξi (Er ), for i = 0, 1, 2, 3, 4,
would be interpreted as inverse-triad corrections and depend
only on the radial component of the triad, whereas the global
factor η := η1/ξ1 depends on all the configuration variables.
In addition, the function V = V(Er , φ) stands for a gener-
alized potential term for the scalar field, with an arbitrary
dependence on the radial triad Er . Finally, the last free func-
tion fφ = fφ(Er , φ) appears in linear terms of the momenta
Kr , Kϕ , and Pφ and couples the scalar field to curvature com-
ponents. However, this function does not encode any physical
information and can be removed by the following canonical
transformation,

K̄ϕ = Kϕ − fφ

2
√
Erξ0

, (56)

K̄r = Kr − ∂

∂Er

(
Eϕ fφ

2
√
Erξ0

)
, (57)

P̄φ = Pφ + Eϕ

2
√
Erξ0

∂ fφ
∂φ

. (58)

Remarkably, this transformation leaves the diffeomorphism
constraint invariant. In terms of these new variables, the final
form of the modified Hamiltonian constraint reads as follows,

H̃ = η(Er , Eϕ, φ)

[√
Erξ1

(
Γϕ

′ − 2ξ0 K̄r K̄ϕ

)

− Eϕ

2
√
Er

(
ξ2 +

[
ξ0ξ3 + 2Erξ1

∂ξ0

∂Er

]
K̄ϕ

2 − ξ3Γϕ
2
)

+ ξ0ξ1
2

ξ4

P̄φ
2

2
√
Er Eϕ

+ ξ4
(Er )3/2

2Eϕ
(φ′)2 + √

Er EϕV̄
]
,

(59)

where the potential term V(φ, Er ) has been redefined as
a new generic function V̄(φ, Er ) in order to absorb the
extra terms from the canonical transformation. The classical
Hamiltonian is recovered when all the correction functions,
η and ξi , are equal to one and V̄ stands for the scalar field
potential V (φ).

Notice that the dependence of this Hamiltonian on the
momenta is the same as in the classical case. In particular,
there are no free functions of the curvature components and
thus, in contrast to the vacuum case, no holonomy corrections
are allowed in this model.

Remarkably, even if we started from a generic and cou-
pled form (37), the final modified Hamiltonian constraint,
obtained through the requirement of anomaly freedom, can
be expressed as a direct sum of a corrected vacuum and scalar-
field Hamiltonian constraints, H̃ = H̃(m)

g + H̃s , which read,
respectively, as follows:

H̃(m)
g := η

[√
Erξ1

(
Γϕ

′ − 2ξ0 K̄r K̄ϕ

)

− Eϕ

2
√
Er

(
ξ2+

[
ξ0ξ3+2Er ξ1

∂ξ0

∂Er

]
K̄ϕ

2 − ξ3Γϕ
2
)]

,

(60)

H̃s := η

[
ξ0ξ1

2

ξ4

P̄φ
2

2
√
Er Eϕ

+ ξ4
(Er )3/2

2Eϕ
(φ′)2

+ √
Er EϕV̄(φ, Er )

]
. (61)

Therefore, the only non-minimal coupling between matter
and geometric degrees of freedom is given by the global
factor η. Note, however, that the modified Hamiltonian con-
straint corresponding to the geometric degrees of freedom
(60) is not the same as the one obtained in the vacuum model
(28). As already commented above, in this case we have less
freedom than in the pure vacuum model: instead of two func-
tions h1 and h2 of two variables (Er , Kϕ) related by equation
(27), in this case we have just one free function ξ0 of the radial
component of the triad Er .
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If we now compute the Poisson brackets using the modi-
fied Hamiltonian constraint (59), the hypersurface deforma-
tion algebra takes the following form:

{D[Nr ], H̃ [N ]} = H̃

[
Nr N ′ − (Nr )′N ∂η

∂Eϕ

Eϕ

η

]
, (62)

{H̃ [N1], H̃ [N2]} = D
[
η2ξ0ξ1

2 qrr (N1N2
′ − N1

′N2)
]
. (63)

The free functions η, ξ0 and ξ1 in the last bracket are now the
ones that might produce physical effects such as signature
change.

Singular solutions

Concerning the solutions not included in the previous deriva-
tion, one can obtain a modified Hamiltonian that forms an
anomaly-free algebra, along with the classical diffeomor-
phism constraint, demanding one of the following conditions:

(i) η1 = 0, η3 = 0, and f = f (Er , Eϕ, φ, Kr , Kϕ).
(ii) η1 = 0, η4 = 0, and f = f (Er , Eϕ, φ, Kϕ, Pφ).

(iii) η1 = 0, and f = f (Er , Eϕ, φ, Kϕ).
(iv) η1 = 0, η3 = 0, and η4 = 0.

Taking η1 = 0, one removes the radial derivative of the spin-
connection and, thus, terms containing (Er )′′ and (Eϕ)′ are
pulled out from the Hamiltonian. In addition, two further
conditions are required. For example, one can demand η3 =
0, removing all radial derivatives of the triad components
and that the Hamiltonian does not depend on the scalar field
momentum, that is, case (i). Alternatively, one can take η4 =
0, which would remove the radial derivatives of the scalar
field, and request that the Hamiltonian does not depend on
Kr (case (ii)). Another possibility, (iii), implies the removal
of the momenta Kr and Pφ from the Hamiltonian, leaving η3

and η4 free. The last option would be to eliminate all radial
derivatives (case (iv)). As in the pure vacuum model, this last
case resembles the corresponding homogeneous spacetime.

In summary, holonomy corrections for a given momen-
tum (Kr , Kϕ , Pφ) are incompatible with the presence of
the radial derivative of its corresponding conjugate variable
((Er )′, (Eϕ)′, φ′) in the modified Hamiltonian. Nevertheless,
taking into account the BKL conjecture, one could consider
a model where, as small values of the triad components were
approached, certain correction functions would be vanish-
ing from a given value on, annihilating in this way radial
derivatives in the Hamiltonian and entering the homogeneous
BKL limit. In this homogeneous region, holonomy correc-
tions would be allowed with no further restriction arising
from anomaly freedom. Such a model would be described,
for instance, by a modified Hamiltonian of the form,

H̃ = f̃1(Pφ)

2
√
Er Eϕ

− 2
√
Er f̃2(Kr , Kϕ) − Eϕ

2
√
Er

f̃3(Kϕ)

+ η1
√
ErΓϕ

′ + η3
EϕΓϕ

2

2
√
Er

+ η4
(Er )3/2

2Eϕ
(φ′)2. (64)

This Hamiltonian would form a first-class algebra with the
classical diffeomorphism constraint if f̃1, f̃2, and f̃3 took
their corresponding classical value as long as η1, η3, and η4

were non-vanishing. In the region of the configuration space
where η1 = η3 = η4 = 0, the new functions f̃1, f̃1, and
f̃3 would be completely free and could encode, for instance,
holonomy modifications.

4.2 Dust

In spherical symmetry, a dust field can be described in terms
of a scalar variable Φ and its conjugate momentum PΦ , with
Poisson brackets {Φ(x), PΦ(y)} = δ(x − y). The classical
contributions of the dust to the Hamiltonian and diffeomor-
phism constraints are respectively given by,

HΦ = PΦ

√
1 + Er (Φ ′)2

(Eϕ)2 , (65)

DΦ = Φ ′PΦ. (66)

Even if, due to the presence of the square root in the dust
Hamiltonian constraint, the computations will be a bit more
complicated than in the previous case, the procedure will be
similar. As the starting point of our analysis, we will consider
the following general form for the modified Hamiltonian that
describes the dynamics of the dust model coupled to gravity,

H̃ = f (Er , Eϕ, Φ, Kr , Kϕ, PΦ) + η1(Er , Eϕ,Φ)
√
ErΓϕ

′

− η2(Er , Eϕ, Φ)
Eϕ

2
√
Er

+ η3(Er , Eϕ,Φ)
EϕΓϕ

2

2
√
Er

+ g(Er , Eϕ,Φ, Kr , Kϕ, PΦ)

√
1 + η4(Er , Eϕ, Φ)

Er (Φ ′)2

(Eϕ)2 .

(67)

Let us define the shorthand notation

S :=
√

1 + η4(Er , Eϕ,Φ)
Er (Φ ′)2

(Eϕ)2 , (68)

to encode the square root.
Notice that we have introduced two generic functions, f

and g, that might depend on all the variables of the model,
but not on their radial derivatives. These functions replace the
classical terms that go with the momenta Kr , Kϕ , and PΦ .
More precisely, the function f replaces the quadratic com-
bination of curvature components in the geometric Hamil-
tonian, whereas g takes the place of the dust field momen-
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tum PΦ . In this way, these two functions might describe the
polymerization of the momenta but also, as they depend on
the configuration variables, might stand for inverse-triad cor-
rections. In addition, their generic form is suitable for any
kind of coupling between geometric and matter degrees of
freedom. Finally, the functions ηi , with i = 1, 2, 3, 4, are
allowed to depend on the triad components Er and Eϕ in
order to stand for possible inverse-triad corrections. Addi-
tionally, they might also depend on the dust field, enabling a
generic coupling.

As in the previous models, two anomalies are obtained
when the Poisson algebra is computed. In order to obtain
a first class algebra, we demand that both anomalous terms
vanish:

0 = 2η1(E
ϕ)2S ∂(η2/η1)

∂Eϕ
− 4η1

√
Er EϕS ∂

∂Eϕ

[
f + gS

η1

]

+ gη1η4(Φ
′)2 (Er )3/2

(Eϕ)2

+ 4
√
ErS

(
1 − PΦ

∂

∂PΦ

− Kr
∂

Kr

)(
f + Sg)

− η1
[
(Er )′

]2S ∂(η3/η1)

∂Eϕ
, (69)

0 = η1η4E
r (Eϕ)−1Φ ′Φ ′′ ∂g

∂Kr

+ η1E
ϕS

(
(Kr )

′ ∂

∂Kr
+ (PΦ)′ ∂

∂PΦ

)(
∂ f

∂Kr
+ S ∂g

∂Kr

)

− η1(E
r )′S

[(
1−Kr

∂

∂Kr

)(
∂ f

∂Kϕ

+ S ∂g

∂Kϕ

)

+Eϕ

(
η1 − η3

2Er
− ∂

∂Er

)(
∂( f/η1)

∂Kr
+S ∂(g/η1)

∂Kr

)]

− Φ ′S
[
η1

(
PΦ

∂

∂Kϕ

− Eϕ ∂

∂Φ

)(
∂ f

∂Kr
+ S ∂g

∂Kr

)

+ Eϕ ∂η1

∂Φ

(
∂ f

∂Kr
+ S ∂g

∂Kr

)

+ 2
√
Erη4g

(
S−1 ∂ f

∂PΦ

+ ∂g

∂PΦ

)]

+ η1
2Eϕ(Eϕ)′S

[
∂

∂Eϕ

(
∂( f/η1)

∂Kr
+ S ∂(g/η1)

∂Kr

)]
.

(70)

Due to the presence of the square root in S and the coupling
between PΦ and Φ ′, these anomalies are a bit more involved
than those in Sect. 4.1. Nevertheless, some conditions for
the free functions can immediately be read out. In particular,
from the vanishing of the coefficient of [(Er )′]2 in equation
(69), one obtains:

η3(E
r , Eϕ,Φ) = ξ3(E

r ) η1(E
r , Eϕ,Φ)/ξ1(E

r ). (71)

In addition, as in previous cases, we use the freedom in the
definition of the function η2 to choose,

η2(E
r , Eϕ,Φ) = ξ2(E

r ) η1(E
r , Eϕ,Φ)/ξ1(E

r ), (72)

which annihilates the first term of the anomaly (69). The
first term in (70) is the only one with second-order radial
derivatives of the dust field and must vanish on its own. This
demand is satisfied when the function g does not depend on
Kr . Therefore, we will write this function as,

g = η1(E
r , Eϕ, φ) g0(E

r , Eϕ, Kϕ,Φ, PΦ)/ξ1(E
r ), (73)

where the function η1/ξ1 has been introduced as a global fac-
tor for convenience. As there is no more dependence on radial
derivatives of the variables, the coefficients of (Kr )

′, (PΦ)′,
and (Eϕ)′ in the anomaly (70) must also vanish by them-
selves. Taking into account (73), three independent equations
for the function f are obtained:

0 = ∂2 f

∂K 2
r
, (74)

0 = ∂2 f

∂Kr∂PΦ

, (75)

0 = ∂2( f/η1)

∂Eϕ∂Kr
. (76)

It is straightforward to see that the general solution for this
system can be written in terms of two free functions, f0 and
f1, as follows,

f = η1

ξ1

[
f0(E

r , Eϕ,Φ, Kϕ, PΦ) + Kr f1(E
r , Φ, Kϕ)

]
.

(77)

At this point, we already see that the modified Hamiltonian
will be linear in Kr and that this variable will be decoupled
from the momentum of the dust field PΦ .

The replacement of (71)–(73) and (77) in the anomaly
equations (69) and (70) leads to a much simpler version of
these two equations:

0 = S
(
f0 − Eϕ ∂ f0

∂Eϕ
− PΦ

∂ f0
∂PΦ

)

+
(
g0 − Eϕ ∂g0

∂Eϕ
− PΦ

∂g0

∂PΦ

)

+ η4Er

(Eϕ)2 (Φ ′)2
(

− Eϕ

2

g0

η4

∂η4

∂Eϕ

+ g0 − Eϕ ∂g0

∂Eϕ
− PΦ

∂g0

∂PΦ

)
, (78)

0 = Φ ′
[
PΦ

∂ f1
∂Kϕ

− Eϕ ∂ f1
∂Φ

+ 2
√
Erη4

g0

ξ1

(
S−1 ∂ f0

∂PΦ

+ ∂g0

∂PΦ

)]

123



  283 Page 12 of 17 Eur. Phys. J. C           (2021) 81:283 

+ (Er )′
[
Eϕ

(
ξ1 − ξ3

2Er ξ1
f1 − ξ1

∂( f1/ξ1)

∂Er

)

+ ∂ f0
∂Kϕ

+ S ∂g0

∂Kϕ

]
. (79)

In fact, looking at the dependence on the radial derivatives
of the variables, these two equations can be rewritten as a
set of seven independent equations. From (78), one gets the
following three differential equations,

0 = g0 − Eϕ ∂g0

∂Eϕ
− PΦ

∂g0

∂PΦ

, (80)

0 = f0 − Eϕ ∂ f0
∂Eϕ

− PΦ

∂ f0
∂PΦ

, (81)

0 = Eϕ

2

g0

η4

∂η4

∂Eϕ

−
(
g0 − Eϕ ∂g0

∂Eϕ
− PΦ

∂g0

∂PΦ

)
, (82)

whereas (79) provides four additional conditions:

0 = ∂ f0
∂PΦ

, (83)

0 = ∂g0

∂Kϕ

, (84)

0 = PΦ

∂ f1
∂Kϕ

− Eϕ ∂ f1
∂Φ

+ 2
√
Erη4

g0

ξ1

∂g0

∂PΦ

, (85)

0 = Eϕ

(
ξ1 − ξ3

2Erξ1
f1 − ξ1

∂( f1/ξ1)

∂Er

)
+ ∂ f0

∂Kϕ

. (86)

Equation (83) demands f0 to be independent of PΦ and one
deduces that g0 cannot depend on Kϕ from Eq. (84). Hence,
there will not be holonomy modifications multiplying the
Φ ′ term of the Hamiltonian. Using these results, the general
solutions to (80) and (81) are respectively given by:

g0 = Eϕ g̃0

(
Er , Φ,

PΦ

Eϕ

)
, (87)

f0 = Eϕ f̃0
(
Er , Kϕ,Φ

)
. (88)

Note that the term between brackets in Eq. (82) is equal to
the right-hand side of Eq. (80), so it must vanish. Therefore,
it is straightforward to integrate (82) to obtain that η4 =
1/ξ4(Er , Φ), with the free integration function ξ4.

From the system (80)–(86), only two differential equations
are left to be solved, namely (85) and (86). Enforcing the
solutions for the other equations, relations (85) and (86) are
reduced to the following form:

∂ f̃0
∂Kϕ

= ξ3 − ξ1

2Erξ1
f1 + ξ1

∂( f1/ξ1)

∂Er
, (89)

∂
(
g̃0

2
)

∂(PΦ/Eϕ)
= ξ1ξ4√

Er

(
∂ f1
∂Φ

− PΦ

Eϕ

∂ f1
∂Kϕ

)
. (90)

If we differentiate the first one with respect to Kϕ , two
independent conditions arise:

0 = ∂2 f1
∂K 2

ϕ

, (91)

0 = ∂2 f1
∂Kϕ∂Φ

, (92)

which are solved by the expression,

f1 = ξ1(E
r )

[
fΦ(Er , Φ) − 2

√
Erξ0(E

r )Kϕ

]
. (93)

The integration functions ξ0 and fΦ have been chosen to
resemble the notation of previous sections. Plugging this
form for f1 in (89) and (90), it is straightforward to inte-
grate those two equations and obtain the general form of the
functions g̃0 and f̃0:

g̃0 = ξ1
√

ξ4

√
ξ0

(
PΦ

Eϕ

)2

+ PΦ√
Er Eϕ

∂ fΦ
∂Φ

+ V1, (94)

f̃0 = −
(

ξ0ξ3

2
√
Er

+ √
Er ξ1

∂ξ0

∂Er

)
K 2

ϕ

+
(

ξ3 − ξ1

2Er
fΦ + ξ1

∂ fΦ
∂Er

)
Kϕ + V2. (95)

The terms V1(Er , Φ) and V2(Er , Φ) are completely free
integration functions.

Finally, collecting all the results, one arrives to the follow-
ing modified Hamiltonian constraint:

H̃ = η(Er , Eϕ,Φ)

[√
Er ξ1

(
Γϕ

′ − 2ξ0Kr Kϕ

)

− Eϕ

2
√
Er

(
ξ2 +

[
ξ0ξ3 + 2Erξ1

∂ξ0

∂Er

]
Kϕ

2 − ξ3Γϕ
2
)

+ ξ1

√
ξ0P2

Φ + EϕPΦ√
Er

∂ fΦ
∂Φ

+ (Eϕ)2V1

√
ξ4 + Er (Φ ′)2

(Eϕ)2

+ √
Er EϕV2

+ ξ1Kr fΦ +
(

ξ3 − ξ1

2Er
fΦ + ξ1

∂ fΦ
∂Er

)
EϕKϕ

]
, (96)

with the global factor defined as η := η1/ξ1. Note that fΦ
plays a similar role as the function fφ introduced in the pre-
vious section, and appears multiplying linear terms of the
momenta. Indeed, as happened with fφ , one can perform
a canonical transformation that removes it from the Hamil-
tonian and preserves the form of the diffeomorphism con-
straint:
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K̄ϕ = Kϕ − fΦ

2ξ0
√
Er

, (97)

K̄r = Kr − ∂

∂Er

(
Eϕ fΦ

2
√
Erξ0

)
, (98)

P̄Φ = PΦ + Eϕ

2ξ0
√
Er

∂ fΦ
∂Φ

. (99)

Considering these new canonical variables, the modified
Hamiltonian constraint reads:

H̃ = η(Er , Eϕ,Φ)

[√
Erξ1

(
Γϕ

′ − 2ξ0 K̄r K̄ϕ

)

− Eϕ

2
√
Er

(
ξ2 +

[
ξ0ξ3 + 2Erξ1

∂ξ0

∂Er

]
K̄ 2

ϕ − ξ3Γϕ
2
)

+ ξ1

√
ξ0 P̄2

Φ + (Eϕ)2V1

√
ξ4 + Er (Φ ′)2

(Eϕ)2 + √
Er EϕV2

]
.

(100)

The deformation obtained for the dust matter content is quite
similar to the one presented for the scalar field. The five free
functions of the radial component of the triad ξi (Er ), with
i = 0, 1, 2, 3, as well as ξ4 = ξ4(Er , Φ), encode possible
inverse-triad corrections. The formalism also admits two free
functions V1(Er , Φ) and V2(Er , Φ) that depend on the dust
field and on the radial component of the triad. The former
one modifies the kinetic energy of the dust field, whereas the
latter can be interpreted as a potential term. In fact, in the par-
ticular case this potential acquired a constant value, it would
reproduce the cosmological constant. The classical form of
the Hamiltonian (with a vanishing cosmological constant)
is obtained for the case ξi = 1, with i = 0, 1, 2, 3, 4, and
V1 = V2 = 0.

Note that the algebra obtained for this modified Hamilto-
nian and the one derived for the scalar-field case are equal
and it is given by relations (4a), (62), and (63). Furthermore,
the modified Hamiltonian constraint (100) can also be sepa-
rated into geometric and matter parts, H̃ = H̃(m)

g + H̃d , with
H̃(m)

g being equal to the modified geometric Hamiltonian (60)
obtained for the scalar field model. The dust contribution is
given by,

H̃d := η

[
ξ1

√
ξ0 P̄2

Φ + (Eϕ)2V1

√
ξ4 + Er (Φ ′)2

(Eϕ)2 + √
Er EϕV2

]
.

(101)

Finally, a brief comment about solutions not contained in the
previous derivation, which are also quite similar to the ones
presented for the scalar-field model. More specifically, we
find the following four different families of singular solu-
tions:

(i) η1 = 0, η3 = 0 and f, g do not depend on PΦ .

(ii) η1 = 0, η4 = 0 and f, g do not depend on Kr .
(iii) η1 = 0 and f, g do not depend on Kr nor PΦ .
(iv) η1 = 0, η3 = 0 and η4 = 0.

Each of these conditions provides a consistent modifica-
tion of the classical Hamiltonian constraint when replaced
in expression (67). Once again, the last option corresponds
to the homogeneous limit.

5 Conclusions

In this paper, we have considered possible inverse-triad and
holonomy modifications for spherically symmetric models in
vacuum as well as coupled to simple matter models. For such
a purpose, the generic forms (12), (37) and (67) of the modi-
fied Hamiltonian constraint have been proposed, for vacuum,
scalar-field and dust model, respectively. In these expres-
sions we have left complete freedom for the dependence
on the triad and curvature components; whereas the radial
derivatives of the variables have been left as in the classical
Hamiltonian. In particular, we have allowed for non-minimal
couplings between geometric and matter degrees of freedom.
Even if the classical model is minimally coupled to matter,
it might happen that, as we approach the quantum regime,
non-minimal couplings are developed. In addition, possible
polymerization of matter fields are also considered in the
mentioned modified Hamiltonians.

The modification of the diffeomorphism constraint has
only been considered for the vacuum model. Firstly, the full
theory of loop quantum gravity does not regularize this con-
straint and, therefore, such corrections are not expected. Sec-
ondly, in Appendix A we consider a quite generic deforma-
tion of the diffeomorphism constraint for the vacuum model
and show that, under the requirement of forming a closed
algebra, the only allowed modification is a global multiplica-
tive function, in agreement with results presented in [38].
This points out that the deformation of the diffeomorphism
constraint is trivial and does not provide additional freedom
for further corrections in the Hamiltonian.

The requirement that these modified constraints form a
first-class algebra turns out to be quite restrictive. For each
model (vacuum, scalar field and dust), the final expression
for the modified Hamiltonian ((28), (59) and (100), respec-
tively) has been obtained. These modified Hamiltonians are
the main result of our study and represent a family of consis-
tent deformations of spherically symmetric general relativity.

Note that, apart from the (trivial) global multiplicative
function, none of these Hamiltonians contain free functions
of the angular component of the triad Eϕ , which rules out the
possibility of including inverse-triad corrections associated
to this component. In addition, only the vacuum Hamiltonian
(28) presents free functions (h1 and h2) of the angular cur-
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vature component Kϕ . Both are related through (27) and can
be interpreted as holonomy corrections. On the other hand,
no holonomy modifications involving the radial component
of the curvature Kr are allowed, not even in vacuum. Fur-
thermore, the dependence of the modified Hamiltonian on
the momenta of the matter sector is also bound to its classi-
cal form. Hence, no polymerization of the matter variables
is allowed under the present assumptions.

In our analysis we have shown that the absence of cor-
rections involving Eϕ and Kr can be understood from the
requirement of mathematical consistency of the effective the-
ory. Nonetheless, inverse-triad corrections for Eϕ and holon-
omy modifications including Kr are not usually considered
in the literature with some justification on physical grounds.
First, in spherical symmetry, the area of the underlying ele-
mentary plaquettes naturally depends on Er but not on Eϕ

and, thus, inverse-triad corrections are expected to depend
only on the radial component of the triad. Second, for the
non-compact radial direction, one would need to consider
non-local holonomy corrections for Kr . Although a proposal
in this direction (based on a truncated expansion on deriva-
tives of Kr ) can be found in reference [51], the implemen-
tation of such non-local modifications remains as an open
question.

Contrary to the vacuum case, no holonomy corrections
are allowed when matter fields are included. This is a direct
consequence of the presence of the φ′ and Φ ′ terms in the
anomaly equations (39) and (70), respectively. Whereas in
the vacuum case the two remaining free functions (h1 and
h2) are required to fulfill a unique relation, (27), in each
matter model an additional restriction arises, (47) and (90).
This further condition completely fixes the dependence of the
Hamiltonian on the angular curvature component Kϕ to its
classical form and leaves no room for holonomy corrections.

In addition, we have also found some singular solutions
(in the sense that they are not contained in the general solu-
tions leading to the forms (28), (59) and (100) of the Hamilto-
nian) to the anomaly equations that provide an anomaly-free
algebra. These solutions provide a consistent deformation
of the classical Hamiltonian assuming the vanishing of one
(or several) correction functions. In these particular scenar-
ios, different radial derivatives of the configuration variables
are removed and a higher degree of freedom is acquired for
the remaining terms. In particular, holonomy corrections are
allowed in each case (see, for instance, the example (64) for
a scalar-field matter content). We conclude that the presence
of radial derivatives of a given variable in the Hamiltonian
is the main restriction regarding the polymerization of its
canonical counterpart.

Finally, let us comment that the main limitation of our
analysis is that no free dependence on variables with radial
derivatives has been allowed in the generic form of the mod-
ified Hamiltonians. Nonetheless, our results point out quite

generically to the impossibility of including holonomy cor-
rections in the presence of matter fields making use of the
real-valued Ashtekar–Barbero variables. As an alternative,
in the last few years, some proposals have been made by
considering self-dual variables [47–50].
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Appendix A:Modified diffeomorphism constraint in vac-
uum

In this appendix, we will consider a deformed form for the dif-
feomorphism constraint in vacuum and demand that it closes
algebra along with the deformed Hamiltonian constraint (12).
The result will be that the only allowed correction for the
diffeomorphism constraint is a global function, which gen-
eralizes the previous result presented in [38].

We will allow for a multiplicative correction function on
each term of the diffeomorphism constraint or, equivalently,
a global function Ω and a correction function ω on one of
the terms. In this way, we start our analysis from the general
form,

D̃g = Ω(Er , Eϕ, Kr , Kϕ)

×
[
(Kϕ)′Eϕ − ω(Er , Eϕ, Kr , Kϕ) Kr (E

r )′
]
. (A.1)

with both corrections depending on all the four variables.
This diffeomorphism constraint along with the modified

Hamiltonian (12) produces five different anomalous terms:

{
D̃g[Nr

1 ], D̃g[Nr
2 ]} → ADD

D , (A.2){
D̃g[Nr ], H̃g[N ]} → ADH0

D , ADH1
D , ADH2

D , (A.3){
H̃g[N1], H̃g[N2]

} → AHH
D . (A.4)
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The anomalous termsADH0
D ,ADH1

D , andADH2
D from the sec-

ond bracket are multiplied by Nr , (Nr )′ and (Nr )′′, respec-
tively, and thus they must vanish independently. From now
on, we will exclude irrelevant global factors.

Let us first focus on AHH
D :

AHH
D := (Er )′

[
Eϕ

2Er

(
η1 − η3 + 2Er ∂η1

∂Er

)
∂ fg
∂Kr

+ η1

(
∂ fg
∂Kϕ

− ωKr
∂2 fg

∂Kϕ∂Kr
− Eϕ ∂2 fg

∂Er∂Kr

)]

+ Eϕ(Eϕ)′
[
η1

∂2 fg
∂Eϕ∂Kr

− ∂η1

∂Eϕ

∂ fg
∂Kr

]

− η1E
ϕ(Kr )

′ ∂2 fg
∂K 2

r
. (A.5)

We see that it is very similar to the one found in Sect. 3. As
in that case, we obtain that the form

fg = η1(E
r , Eϕ)

[
f0(E

r , Eϕ, Kϕ) + Kr f1(E
r , Kϕ)

]
,

(A.6)

cancels the coefficients of (Kr )
′ and (Eϕ)′. In addition, the

vanishing of the anomaly demands:

0 =
(

1 − η3

η1

)
f1Eϕ

2Er

+ ∂ f0
∂Kϕ

+ (1 − ω)Kr
∂ f1
∂Kϕ

− Eϕ ∂ f1
∂Er

, (A.7)

which will be further analyzed below. On the other hand, for
the anomaly ADD

D we find

ADD
D ∝ ADH2

D − Eϕ ∂ω

∂Eϕ
, (A.8)

which means that ω cannot depend on Eϕ as ADH2
D must

vanish on its own. In fact, the condition ADH2
D = 0 reads

explicitly,

0 = 1 − ω − Kr
∂ω

∂Kr
, (A.9)

which is solved by

ω = 1 + ω1(Er , Kϕ)

Kr
. (A.10)

We implement now conditions (A.6) and (A.10) in the
anomaly ADH1

D :

ADH1
D =

[
(Er )′

]2

8

(
∂η1

∂Eϕ
η3 − η1

∂η3

∂Eϕ

+ 4η2
1

Er

(Eϕ)2

∂ω1

∂Kϕ

)

+ η2
1√
Er

(
f0 − ω1 f1 − Eϕ ∂ f0

∂Eϕ

)

+ (Eϕ)2

2

(
η1

∂η2

∂Eϕ
− ∂η1

∂Eϕ
η2

)
. (A.11)

Without loss of generality, we set η2 = ξ2(Er )η1 as in previ-
ous derivations, which annihilates the last term. Since there
is no dependence of the free functions on radial derivatives,
the vanishing of the above anomaly is then equivalent to the
following two equations:

0 = ∂η1

∂Eϕ
η3 − η1

∂η3

∂Eϕ
+ 4η2

1
Er

(Eϕ)2

∂ω1

∂Kϕ

, (A.12)

0 = f0 − ω1 f1 − Eϕ ∂ f0
∂Eϕ

. (A.13)

In the first equation, the only potential dependence on the
angular component of the curvature Kϕ is contained in the
function ω1. Therefore it must be at most linear in that vari-
able, ω1 := ξd(Er ) + Kϕ ξω(Er ); otherwise this equation
would not be satisfied. Taking this into account, the respec-
tive solutions of the last equations are.:

η3 = η1

[
ξ3(Er )

ξ1(Er )
− 4

Er

Eϕ
ξω(Er )

]
, (A.14)

f0 = ω1 f1 + Eϕ f2(E
r , Kϕ). (A.15)

Plugging these expressions into (A.7) leads to:

0 = ∂ f2
∂Kϕ

+ f1
2Er

(
1 − ξ3

ξ1
+ 6

Er

Eϕ
ξω

)
− ∂ f1

∂Er
. (A.16)

Note that the only dependence of this equation on Eϕ is
explicit, as none of the free functions depends on it. This
means that either f1 = 0 or ξω = 0 should be obeyed. The
first option is not of interest since it would further imply
that f2 is independent of Kϕ and one would then obtain that
the function fg (and thus the modified Hamiltonian) would
be completely independent of the curvature components Kr

and Kϕ . As we are not considering singular solutions, we
impose ξω = 0. Finally, defining h1 := − ξ1 f1/(2

√
Er ) and

h2 := − 2
√
Er ξ1 f2, with ξ1 = ξ1(Er ), the last relation takes

the same form as the anomaly equation (27).
After imposing all these conditions, the last anomaly

ADH0
D also vanishes and the modified diffeomorphism con-

straint reads,

D̃g = Ω(Er , Eϕ, Kr , Kϕ)

×
[
(Kϕ)′Eϕ −

(
Kr + ξd(E

r )
)
(Er )′

]
. (A.17)

The function ξd(Er ), also present in the Hamiltonian con-
straint, can be absorbed performing the canonical transfor-
mation K̄r = Kr + ξd . In this way, the only modification to
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the diffeomorphism constraint is a global multiplicative func-
tion Ω . As commented in the main body of the article, this
kind of global multiplicative functions are trivially allowed
in the constraints by the requirement of anomaly freedom.

Finally, the modified Hamiltonian takes the same form
(28) as above (with the variable K̄r instead of the initial Kr )
and, therefore, we conclude that allowing for modifications
to the vacuum diffeomorphism constraint does not involve
additional freedom to include more corrections in the Hamil-
tonian constraint.

Appendix B: Leading-order holonomic corrections in the
anomaly-free semiclassical sector

In this appendix, an approximate solution to the equation (27)
will be found, which will provide the leading-order terms of
the holonomy corrections in the pure vacuum model. Follow-
ing the notation of the improved-dynamics scheme of loop
quantum cosmology, we include a parameter μ̄ = μ̄(Er ) that
accounts for the discreteness scale. Note that if the holonomy
corrections h1 and h2 are scale-independent, both functions
are allowed to be periodic in Kϕ , as the last term in (27)
drops out. In contrast, when one considers a length-dependent
holonomy h1, the additional requisite that ∂h1/∂Er is peri-
odic in Kϕ must also be satisfied. For example, a sinusoidal
function as h1 = sin (μ̄Kϕ)/μ̄, with μ̄ = μ̄(Er ), produces
a term proportional to Kϕ on the right-hand side of (27), and
thus h2 can not be periodic in Kϕ . However, as we are work-
ing in a semiclassical approach, we can focus on leading-
order holonomy corrections and try a power-series solution
for h1 and h2. Let us assume that both holonomy corrections
can be written as follows:

h1 =
∞∑
n=0

an μ̄n Kϕ
n+1, (B.18)

h2 =
∞∑
n=0

bn μ̄n Kϕ
n+2, (B.19)

where the coefficients an and bn are allowed to depend on
Er . Assuming now the form μ̄(Er ) = (Λ2/Er )N/2, with a
constant Λ, the anomaly (27) provides the relation:

n + 2

2
bn =

(
ξ3

ξ1
− 2Er ∂ log ξ1

∂Er
− nN

)
an + 2Er ∂an

∂Er
.

(B.20)

If we demand now constant values for the coefficients an and
bn (as one would expect if μ̄ retained all the scale depen-
dence), and no inverse-triad corrections (ξ1 = ξ3 = 1), the
last term in (B.20) drops out. In a sinusoidal approximations

for h1, only even coefficients would survive and therefore,

b2n = −2n − 1

n + 1
a2n, (B.21)

where we have chosen N = 1. For instance, if the usual
ansatz h1 = sin (μ̄Kϕ)/μ̄ is chosen, the leading terms for
the holonomy correction functions are explicitly given by,

h1 ≈ Kϕ − 1

6

Λ2

Er
K 3

ϕ, (B.22)

h2 ≈ K 2
ϕ + 1

12

Λ2

Er
K 4

ϕ. (B.23)
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