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Abstract: Background: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues.
They can be cultured, have great growth capacity, and can differentiate into several cell types.
The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs
present additional benefits in the fact that they can be easily obtained noninvasively. Regarding
gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and
have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in
need of improvement. Methods: We isolated hUSCs from urine, and the cell culture was tested and
characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and
they were physicochemically characterized. Then, they were screened into hUSCs for transfection
efficiency, and their internalization was evaluated. Results: GPxT-CQ at a lipid/DNA ratio of 5:1
(w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes
entered mainly via caveolae-mediated endocytosis. Conclusions: In conclusion, we established a
protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant
clinical applications such as in gene therapy. This methodology could also be used for creating cellular
models for studying and validating pathogenic genetic variants, and even for performing functional
studies. Our study increases knowledge about the internalization of tested cationic niosomes in these
previously unexplored cells.

Keywords: urine-derived mesenchymal stem cells; primary cell culture; nonviral vectors; cationic
niosomes; gene therapy

1. Introduction

Gene therapy is defined as the process of transferring external genetic material into
a cell, tissue, or whole organ with the aim of curing a disease or improving the clinical
status of a patient [1]. It is a field of emerging importance for the research and treatment of
various types of diseases [2].

Mesenchymal stem cells (MSCs) are a pool of multipotent adult stem cells present in a
variety of niches that can differentiate into mesoderm-derived cells, such as osteocytes or
adipocytes [3]. Several studies have shown that MSCs can also differentiate into cells of
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endodermal or ectodermal origin [4]. In addition to in vitro differentiation into osteocytes,
adipocytes, and chondrocytes, MSCs in culture can attach to plastic and grow under
standard culture conditions. Moreover, these cells must present CD73, CD90, and CD105
surface antigens and lack expression of CD14, CD34, and CD45 [5].

MSCs are beneficial to work with due to the ease of obtaining them and the few ethical
issues they present. They are self-renewable and multipotent, and they can be expanded
in culture with great genomic stability. Taking everything into account, mesenchymal
stem cells are important in cell therapy, regenerative medicine, and tissue repair [6,7]. In
addition, as cells are obtained from an autologous source, they do not promote an immune
response or induce rejection [8,9].

MSCs can be isolated from a wide variety of adult tissues, but those that are most
studied and used are derived from bone marrow [3], adipose tissue [10], and umbilical
cord [11]. The disadvantage of obtaining the mentioned cells is that the sources are limited
and the procedures to obtain them are invasive [8,12]. This is why a more convenient novel
source of mesenchymal stem cells is needed. Zhang et al. described the first culture of MSCs
isolated from human voided urine (hUSC) [13] and, since then, researchers have focused
their attention on these cells. As other MSCs, hUSCs show an appropriate proliferation
capacity and have multilineage differentiation potential [12]. Compared to other MSCs,
hUSCs can be isolated in a noninvasive, simple, reliable, and safe way using a low-cost
methodology. In addition, they have great potential to be used for clinical applications, and
they can also be used as biological models for pharmacology and toxicology tests [14]. These
human-derived cells can be used in a personalized way with high-throughput screening in
predictive toxicology. hUSCs have the potential to be used in applications for regenerative
(for example, in urological tissue engineering [15], bone regeneration [16], and induction of
iPSCs with different purposes such as neuroregeneration [17] or dental reconstruction [18])
and personalized medicine. In addition, they can be used in gene therapy approaches
for treating neurological and blood disorders or vascular and musculoskeletal diseases as
well as to impact tumor growth [19]. Some authors also described these cells as a novel
biological resource for the discovery of new drugs [14]. Using hUSCs as disease models
overcomes the drawback that animal models are not always a precise model and present
ethical issues [14]. Furthermore, they can be obtained easily and noninvasively [12,13,20,21].
For these reasons, we were interested in developing a protocol to isolate and characterize
hUSCs and to transfect them with nioplexes for the purpose of application in gene editing.

In the same way as MSCs, nonviral vectors (especially niosomes) are gaining attention
in gene therapy [7].

Viral vectors have been successfully used in numerous clinical trials, but their applica-
tion has been linked to carcinogenesis [22] and immunogenicity problems [23], in addition
to having limited DNA-packaging capacity [24] and being challenging to produce [25].
Nonviral vectors, on the other hand, present important advantages such as the size of the
nucleic acid to transfect, which is theoretically unlimited, and they are easier and cheaper
to produce [26,27]. However, the duration of gene expression is an issue that nonviral
vectors have to face, as well as their low transfection efficiency [28]. Among the nonviral
vectors, cationic liposomes are among those that are most employed and studied [29].

Niosomes are emerging nonviral drug delivery systems with a bilayer structure that
can be used as an alternative to liposomes. While liposomes are composed of phospholipids,
niosomes contain nonionic surfactants [30,31]. Some interesting properties of niosomes for
gene delivery applications include, for instance, their low toxicity and cost, good chemical
stability, and large DNA-packaging capacity [32]. In any case, such properties depend on
both the composition of the niosome formulation and the method for their production.

Niosomes can incorporate cationic lipids for gene delivery purposes; thus, via simple
electrostatic interactions, nucleic acids bind to the vesicle and form complexes known as
nioplexes [33].

Essentially, niosomes have three main components: (1) nonionic surfactants, which
increase the stability of niosomes [34,35], (2) helper lipids that enhance the physicochemical
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properties of the lipid emulsion, as they can modify the morphology, permeability, storage
time, nucleic acid release, and stability of the niosome [35,36], and (3) cationic lipids that
interact electrostatically with the nucleic acid to form nioplexes and whose properties
influence the transfection efficiency and toxicity [33,35].

In summary, the aim of this work was to isolate human urine-derived mesenchymal
stem cells and to develop an easy protocol for transfecting them using nonviral vectors.
Applications of this procedure could include its use in gene editing, functional studies of
novel variants identified at candidate genes.

2. Materials and Methods
2.1. Cell Culture Isolation

For isolation of the hUSCs, the protocol of Chen et al. [37] was followed. Once cells
were isolated, various conservation methods were tested for posterior cell recovery. The
influence of culture medium was also evaluated (see Supplementary Materials).

2.2. Cell Characterization

For cell characterization, cell surface markers were analyzed by flow cytometry. Briefly,
50,000 cells were grown in 24-well culture plates. For this assay, not only were cells isolated
from urine examined but commercial mesenchymal stem cells (PCS-500-011™, ATCC,
Manassas, VA, USA) were also used as a positive control while HEK293 cells (ATCC) were
used as a negative control.

When cell confluence was approximately 80%, cells were fixed with 200 µL paraformalde-
hyde (PFA; PanReac AppliChem, Barcelona, Spain) for 10 min. Once fixed, cells were
scraped and centrifuged at 3000 rpm for 5 min. The supernatant was discarded, and the
pellet was resuspended in 50 µL blocking solution, which was a solution of 5% inactive
FBS (Gibco-Thermo Fisher Scientific, Waltham, MA, USA) in PBS. Cells were kept in this
solution for 30 min at room temperature. Then, fluorescent antibodies were added at a
final dilution of 1/100, and cells were incubated for 45 min at room temperature in the
dark. The antibodies and their fluorophores are listed below, all of which were acquired
from Sigma- Aldrich (Saint Louis, MO, USA):

• Surface markers specific for mesenchymal stem cells: antiCD73-AlexaFluor488, antiCD90-
APC, and antiCD105-PE;

• Surface markers that are absent in mesenchymal stem cells: antiCD14-FITC, antiCD34-
APC, and antiCD45-PE.

For verifying the binding specificity of the antibodies, isotype controls for each flu-
orophore were also used. As the isotypes do not recognize any protein, every signal
obtained from them would be due to unspecific binding. This way, background staining
levels can be determined [38]. Once the incubation was completed, unbound antibody
was removed by centrifugation of cells at 3000 rpm for 5 min, and the supernatant was
discarded. The pellet was resuspended in 200 µL of PBS and the sample was introduced to
a CytoFLEX (Beckman Coulter, Brea, CA, USA) flow cytometer. The results were analyzed
using CytExpert software (Beckman Coulter, v. 2.3.0.84, Brea, CA, USA).

2.3. Plasmid Propagation and Elaboration of Nioplexes

Four different cationic niosomes, which presented the best results in previous studies
carried out in the laboratory [39,40], were prepared using the reverse-phase evaporation.
For the niosome named GPxT-CQ 2.5 mg (0.05% w/v), chloroquine diphosphate (Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in milliQ water in order to obtain the aqueous
phase. In parallel, the organic phase was prepared as follows: 5 mg (0.1% w/v) lipid,
12.5 mg (0.25% w/v) Poloxamer® 407 (Sigma-Aldrich), and 12.5 mg polysorbate 80 (Sigma-
Aldrich) were dissolved in 1 mL dichloromethane (PanReac). The DLT60 niosome was
prepared as described by Mashal et al. [40]. The aqueous phase of the DST20 niosome was
composed of a 5 mL solution of 0.49% polysorbate 20 (Sigma-Aldrich) in water. In the
organic phase, 6.7 mg of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA;



Pharmaceutics 2021, 13, 696 4 of 13

Avanti, Alabama, USA) and 19 µL of squalene (Sigma-Aldrich) were dissolved in 1 mL of
dichloromethane. Lastly, a formulation named N4 was manufactured. For this niosome,
in the aqueous phase, 25 mg of polysorbate 80 was dissolved in 5 mL of distilled water.
In the organic phase, 5 mg of lipid and 20 µL of squalene were dissolved in 1 mL of
dichloromethane. Once the different phases were prepared, the aqueous phase was added
to the organic phase, and the emulsion was obtained via the sonication of the mixture for
30 s at 50 W (Branson Sonifier 250®, Danbury, CT, USA). The organic solvent was then
evaporated under magnetic stirring for 45 min at room temperature, leaving the cationic
niosomes in the aqueous medium. The resulting niosomes were at a concentration of 1 mg
cationic lipid/mL.

Previously described protocols (Mashal et al., 2017) were used for the propagation,
purification, and quantification of pCMS-EGFP plasmid (5541 bp, Plasmid Factory, Bielefeld,
Germany). The nioplexes were produced by mixing an appropriate volume of pCMS-
EGFP plasmid stock solution (0.5 mg/mL) with different amounts of the cationic niosome
suspension (1 mg/mL) to obtain different cationic niosome/DNA mass ratios (w/w). To
improve the electrostatic interaction between the cationic niosome and the negatively
charged DNA, the mixture was left for 30 min at room temperature.

2.4. Physicochemical Characterization of Cationic Niosomes/Nioplexes

First, 50 µL of the samples were dispersed in 950 µL of 0.1 mM NaCl solution, and all
measurements were carried out in triplicate using a Zetasizer Nano ZS (Malvern Instru-
ments, Malvern, UK). Dynamic light scattering (DLS) was used to determine the particle
size and polydispersity index (PdI). Particle size was determined by cumulative analysis
of the recorded hydrodynamic diameter. Laser Doppler Velocimetry (LDV) was used to
calculate the zeta potential of particles.

The morphology of the cationic niosomes was assessed by transmission electron
microscopy (TEM). Briefly, to perform negative staining, a 5 µL sample was adhered onto
glow-discharged carbon-coated grids for 90 s, after which the grid with sample was settled
onto a drop of 1% uranyl acetate for another 90 s. The samples were examined under TEM
using a JEOL JEM 1400-Plus (JEOL Ltd. Akishima, Tokyo, Japan), in bright-field image
mode using an accelerating voltage of 120 kV.

2.5. Cell Culture and In Vitro Transfection Assays

hUSCs were seeded in 24-well culture plates at a density of 50,000 cells/well with
300 µL complete medium without antibiotics. After 24 h (70–80% confluence), the medium
was removed, and cells were washed with serum-free Opti-MEM® solution (Gibco-Thermo
Fisher Scientific). Then, 250 µL nioplex solution (1.25 µg DNA) diluted in serum-free
Opti-MEM® was added to the cells at different cationic lipid:DNA mass ratios (w/w).
Cells were left for 4 h at 37 ◦C. After the incubation time, the transfection medium was
removed, and complete medium without antibiotics was added. At this moment, cells were
incubated for further 48 h. Following this incubation period, both transfection efficiency
and cell viability were determined. Qualitative analysis was performed using an inverted
microscope equipped with the EclipseTE2000-S attachment (Nikon, Tokyo, Japan) for
fluorescent observation. For quantitative determination, FACSCalibur flow cytometer
analysis (Becton Dickinson Biosciences, San Jose, CA, USA) was performed.

To analyze cell viability by flow cytometry, cells were stained with propidium iodide
(Sigma-Aldrich). The FL1 (530/30) detector was used to detect EGFP-expressing transfected
cells, and the FL3 (670) detector was used to detect dead/dying cells. Experiments with
untransfected cells were used as negative controls, and Lipofectamine™ 2000 (Invitrogen,
CA, USA) was used as a positive control. As a minimum, 10,000 gated events were collected
and analyzed for each sample using the BD CellQuest™ Pro Software (Becton Dickinson
Biosciences). Each condition was analyzed in triplicate.
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2.6. Cell Uptake and Intracellular Distribution of Nioplexes

For the cellular uptake assay, cells were transfected as described above; however, in
this assay, FITC-labeled pCMS-EGFP (DareBio, Madrid, Spain) was used. After 4 h of
incubation with the vectors at 37 ◦C, the transfection medium was removed and cells were
washed with PBS, detached, and analyzed using a FACSCalibur flow cytometer (Becton
Dickinson Biosciences) with the FL1 channel. For each sample, 10,000 events were analyzed.
Data are shown as the percentage of FITC-positive cells. Nontransfected cells were used as
a negative control. Each condition was analyzed in triplicate.

2.7. Intracellular Trafficking Studies

The endocytosis mechanisms involved in the uptake of nioplexes were evaluated
by the colocalization of nioplexes (prepared with FITC-pCMSEGFP) with different flu-
orescently labeled endocytosis markers, all obtained from Invitrogen (Carlsbad, CA,
USA). hUSC cells were seeded on coverslips on 24-well culture plates at a density of
80,000 cells/coverslip and transfected with the nioplexes containing the FITC-labeled
pCMS-EGFP plasmid for 3 h. After this time, different endocytic vesicle markers were
added and incubated for an additional hour with either AlexaFluor® 594-Cholera Toxin
(10 µg/mL), AlexaFluor® 568-Transferrin (50 µg/mL), 8.33 µM AlexaFluor® 568-labeled
dextran, or Lysotracker (140 nM), which are markers for clathrin-mediated endocytosis
(CME), caveolae raft-mediated endocytosis (CvME), the macropinocytosis pathway, and
the late endosomal compartment, respectively [41,42]. Cells were fixed with 4% PFA and
mounted with Fluoroshield™ with DAPI (Sigma-Aldrich) for examination by confocal
laser scanning microscopy (CLSM) using a Zeiss Axio Observer with Apotome 2 (Zeiss,
Oberkochen, Germany). In confocal micrographs, the colocalization of the nioplexes (green)
and the endocytic pathway (red) was shown as a yellow signal. Fiji ImageJ software was
used to analyze the images. The analysis of colocalization was performed using the cross-
correlation function (CCF). The colocalization of the green and red signal was analyzed
using the Fiji ImageJ software (National Institute of Health, Bethesda, MD, USA, 1.52p
version) and quantified by cross-correlation analysis as described in previous reports [43].
Briefly, the green signal image was shifted in the x-direction pixel by pixel relative to the
red signal image, and the respective Pearson’s coefficient was calculated, which was then
plotted as a function of the pixel shift (δx), thereby obtaining the cross-correlation function
(CCF). Colocalizing structures peaked at δx = 0 and presented a bell-shaped curve.

3. Results and Discussion
3.1. Cell Culture Isolation

After 2 weeks of the initial seeding of the urine, groups of cells were present in
the wells. They could be passed into a flask and, soon, a homogeneous population was
obtained. As fibroblasts, hUSCs were spindle-shaped and had an approximate size of
100 µm (Figure 1).

3.2. Cell Characterization

Cell populations analyzed by flow cytometry showed the surface antigen expression
pattern described in Table 1. On the one hand, for the three markers that should be present
(CD73, CD90, and CD105), cells showed high fluorescence levels. On the other hand, for
those that should be absent (CD14, CD34, and CD105), there was no observable signal due
to the corresponding antibodies. It must be highlighted that the antiCD45-PE antibody
displayed more fluorescence than expected. Nevertheless, it did not reach the values of the
positive antigens. As suspected, HEK293 cells were not positive for MSC markers.
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Table 1. Percentage of positive cells for each cell surface marker studied by flow cytometry. CD73, CD90, and CD105
correspond to antigens that are present specifically in mesenchymal stem cells. However, CD14, CD34, and CD45 are absent
in MSCs. The different fluorophores used were FITC, APC, PE, and AlexaFluor488.

Cell Type CD73-AlexaFluor488 CD90-APC CD105-PE CD14-FITC CD34-APC CD45-PE

Commercial mesenchymal stem cells 63.4% 81.7% 70.1% 0.8% 1.3% 20.5%
hUSCs 78.6% 86.4% 66.1% 6.8% 13.4% 52.4%

HEK293 36.5% 0.9% 3.5% 2.8% 0.8% 11.3%

Compared to the reference values proposed by the International Society for Cellular
Therapy (ISCT) [5], this culture did not fulfill the hallmarks. However, this is not surprising
as, in the literature, it has been demonstrated that conclusive characterization of this cell
type requires more in-depth analysis. Moreover, results obtained from different groups
are not concordant, and the expression levels established by the ISCT are not always
obtained [14]. Moreover, commercial cells, which are supposed to meet quality criteria,
did not reach the minimum required either, and their percentages were similar to those
of hUSCs.

3.3. Physicochemical Characterization of Cationic Niosomes/Nioplexes

The results for analysis of the GPxT-CQ cationic niosome and the nioplex at a cationic
lipid:DNA ratio of 5:1 are summarized in Table 2. When DNA was incorporated into the
cationic niosome, the size of the particles increased from 110 to 162 nm. This was expected
as the size must increase upon plasmid complexing in the formulation. The values in terms
of nanoparticle size remained on the nanometric scale, making them adequate for gene
delivery [44].

Table 2. Physicochemical characterization of GPxT-CQ cationic niosome and its corresponding
nioplex at a cationic lipid:DNA (w/w) ratio of 5:1. Each value represents the mean ± SD (n = 3).

Formulation Size (nm) Zeta Potential (mV) PdI

GPxT-CQ 109.8 ± 1.01 33.4 ± 5.7 0.13 ± 0.01
GPxT-CQ/DNA (5:1) 162.3 ± 2.6 21.2 ± 2.4 0.31 ± 0.04

Regarding the zeta potential, when DNA was complexed to the cationic niosome, it
decreased from 33.4 ± 5.7 to 21.2 ± 2.4 mV (Table 2). The high positive charge of GPxT-CQ
(>+25 mV) makes it appropriate for complexing with a negatively charged nucleic acid
prior to cellular internalization [45]. Furthermore, the positive charges of the cationic
niosome, which has cationic lipids, are partially neutralized by the negative charge of the
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nucleic acid. In addition, this positive zeta potential helps in the interaction between the
formulation and the negatively charged cell membrane [46]. Taking all this into account, it
remains clear that an interaction occurred between pCMS-EGPF and GPxT-CQ.

Measurements of both the naked cationic niosome and the nioplexes presented low
values of polydispersity index (PdI) (0.13 ± 0.01 and 0.31 ± 0.04, respectively). A higher
value of PdI was observed in the nioplex than in the naked cationic niosome. As in the
nioplexes the zeta potential was less positive due to the presence of DNA (<+25 mV),
whereby the repulsion forces were not big enough, and some of the particles tended
to aggregate due to interactions between particles, such as van der Waals or hydrogen
bonding [47].Moreover, small polydispersity values usually enhance gene delivery by
vehicles [48].

As illustrated in Figure 2, the GPxT-CQ formulation showed a spherical morphology
and multilamellar structure when studied by TEM, and no aggregates were present. Usu-
ally, lipidic nanoparticles are spherical [49]. However, many formulations with cationic
lipids used for gene therapy form lamellar structures when complexed with DNA [50], as
was the case with the nanoparticle used in this work (Figure 2).
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The use of nonlamellar vesicles is not essential for delivering genetic material into the
cell [51]. Moreover, in some studies, it has been demonstrated that lipidic nanoparticles
with a multilamellar structure show enhanced gene transfection efficiency. In determining
and analyzing the nucleic acid–nanoparticle structure, a rational approach to design could
be employed to achieve better gene delivery [52]. Taking this into account, the formulation
used in this work presents a promising physical structure for efficient gene delivery into
mesenchymal stem cells.

3.4. Cell Viability and Transfection Efficiency of Nioplexes

The screening of different formulations at different cationic lipid:DNA ratios showed
that the one with the best transfection efficiency without compromising viability was
GPxT-CQ at a cationic lipid:DNA ratio of 5:1 (Figure 3). The transfection efficiency was
6.81% ± 0.8% and the cell viability was 77.5% ± 4.7%. Compared to the commercially
available LipofectamineTM 2000 reagent, the GPxT-CQ cationic niosome formulation at
a cationic lipid:DNA ratio of 5:1 showed a higher percentage of transfected cells (6.81%
vs. 0.33%), with similar cell viability values (77.5% vs. 83.8%); thus, it was used for
further experiments.

Cell transfection efficiency was not very high for GPxT-CQ or the positive control
Lipofectamine (6.81% ± 0.8% vs. 0.33% ± 0.06%, respectively). This could be explained
by the fact that primary mesenchymal stem cells are difficult to transfect and there is not
yet an efficient method for delivering genetic material into them [53–55]. Even though
transfection efficiency can be improved, a high value is not needed for every purpose, as
there are studies in which transfection efficiencies were similar to those obtained in this
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work [56]. Besides, the transfection efficiency for GPxT-CQ was better than that obtained
with Lipofectamine; accordingly, the synthetized formulation is advantageous compared
to Lipofectamine. Upgraded gene delivery was obtained in some cases by complexing
the genetic material to low-molecular-weight chitosans [57]. The polar head groups of
the cationic lipids have also been described as a key factor affecting the transfection
efficiency [58].
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It has been described that chloroquine shows toxicity that could limit cell viability
and, consequently, endanger clinical applications [59]. However, in our case, cell viability
was not highly compromised as in cells transfected with GPxT-CQ, the percentage was
around 77%, suggesting that the low transfection could be associated with cellular uptake
of the nioplexes.

3.5. Cellular Uptake Studies

The GPxT-CQ cationic niosome conjugated with DNA at ratio 5:1 was used to assess
uptake in hUSC cells. As shown in Figure 4, GPxT-CQ had an uptake percentage of
15.16% ± 1.07%, lower than that of Lipofectamine, which was 31.26% ± 1.76%. As can be
seen in the microscopy images in Figure 4, cells treated with GPxT-CQ maintained their
morphology and looked healthier.

3.6. Trafficking of the Nioplex

The transfection efficiency can be directly affected by the internalization pathway.
Thus, trafficking studies were performed with the aim of clarifying the transfection pro-
cess in hUSCs and to understand why the transfection efficiency was low despite cellular
uptake. Cells generally use endocytic pathways to internalize nonviral vectors, primar-
ily clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and
micropinocytosis [60,61]. Additionally, each pathway affects the effectiveness of DNA
release and its performance inside cells [62]. The intracellular internalization of the se-
lected nioplexes in hUSCs is represented in Figure 5. The main colocalization between the
endocytosis pathway and the GPxt-CQ-based nioplexes occurred via caveolae-mediated
endocytosis (CvME), where the mean CCF peak value was 0.36% ± 0.004%. Macropinocy-
tosis was also an important pathway, as the CCF peak value was 0.24% ± 0.005%. The
CCF value was almost zero with Lysotracker. These results are in accordance with the
theory postulating that the CvME route avoids lysosomes and, thus, they do not integrate
into late endosomes. Macropinocytosis is also believed to follow the nonacidic and nondi-
gestive route [63,64]. Regarding the effect of chloroquine, it was previously reported that



Pharmaceutics 2021, 13, 696 9 of 13

chloroquine prevents endosomal acidification as well as inhibits lysosomal enzymes that
could damage the genetic material [65,66], which could explain, at least in part, the results
obtained in the screening process.
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of 2:1 and GPxT-CQ 5:1 (w/w). Upper panel: percentage of FITC-positive cells and viability. Data
represent the mean ± SD (n = 3). Lower panels: fluorescence micrographs of hUSC cells at 4 h of
incubation with FITC-labeled nioplexes (Green). (A) Uptake of GPxT-CQ at a lipid/DNA ratio of
5:1 (w/w). 1.25 µg of DNA and 6.25 µg of GPxT-CQ cationic niosome were added to each well;
(B) uptake with Lipofectamine at a lipid/DNA ratio of 2:1 (w/w) used as a positive control. 1.25 µg
of the plasmid and 2.5 µg lipofectamine were used. Scale bar: 100 µm.
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Figure 5. Endocytic and intracellular trafficking pathway detection assay of GPxT-CQ nioplexes
in hUSCs. (A–D) Confocal microscopy merged images showing hUSCs co-incubated with GPxT-
CQ nioplexes containing the FITC-labeled pCMS-EGFP plasmid (green) and the endocytic vesicle
marker (red): (A) caveolae-mediated endocytosis (cholera toxin B), (B) macropinocytosis (dextran),
(C) lysosomes (Lysotracker), and (D) clathrin-mediated endocytosis (transferrin). Scale bar: 6 µm.
(E) Cross-correlation function (CCF) of colocalization between red and green signals. Data are repre-
sented as the mean ± SEM, n = 3. (F) Pearson correlation coefficient (PCC) of red and green signals
determined by cross-correlation analysis in each case. Data are represented as the mean ± SEM, n =
3. For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.
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In any case, such results obtained with specific endocytosis markers could be fur-
ther completed with the use of appropriate and specific inhibitors of main endocytosis
pathways, such as genistein to inhibit the caveolae-mediated pathway, chlorpromazine to
inhibit the clathrin-mediated pathway, methyl-β-cyclodextrin to inhibit both pathways, or
wortmannin to inhibit macropinocytosis-mediated pathways [67–69].

4. Conclusions

In this work, we highlighted that urine can be used as an easily accessible source of
mesenchymal stem cells. In addition, these cells can be used for nonviral gene delivery
experiments for future clinical gene therapy purposes in genetic disorders by modifying the
mutated genome with technologies such as CRISPR/Cas9. However, the process currently
has low transfection efficiency due to the difficulty in transfecting mesenchymal stem cells
and the lack of a standardized and efficient protocol.

Despite the transfection efficiency not being high, GPxT-CQ at a cationic lipid:DNA
ratio of 5:1 was an adequate nioplex for gene therapy in hUSCs and gave promising results.
Furthermore, depending on the use, high rates of transfection may not be necessary. There-
fore, the clinical application of these nioplexes combined with hUSCs cannot be discarded.
This formulation was integrated into the cell via CvME and it did not interact with lyso-
somes. In the future, further experiments should be carried out in order to obtain better
uptake percentages and more effective internalization of the DNA into the cell nucleus, for
example, following such strategies as the use of polymers such as oligochitosans. Despite
primary cells being difficult to transfect, the process could also be optimized to achieve
better transfection rates. Nevertheless, it must be reiterated that these results do not limit
the clinical applicability of this process.

In summary, this study describes the first protocol for obtaining and transfecting
urine-derived mesenchymal stem cells with nonviral vectors. Thus, it opens the door to
using this gene delivery process for clinical purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13050696/s1, Figure S1. Nucleic acid integrity and methylation status stability
of the cell culture. (A) Agarose gel electrophoresis of (A1) genomic DNA, where the bright band in
the upper part of the gel demonstrates that the genomic DNA is not degraded, and (A2) total RNA of
the cells, where the different bands correspond to the pattern expected for ribosomal RNA. (B) MS-
MLPA study of multilocus imprinting disorders. Cells were tested at different passages for different
imprinted loci, Figure S2. Alizarin Red-stained hUSCs. Reverse-phase microscope photographs
for differentiated cells (A: 4×, B: 10×) and negative controls (C: 4×, D: 10×) are shown. Stained
in red, calcium ac-cumulations are observable in (A) and (B) but not in (C) and (D). (E) Osteogenic
differentiation quantification. Absorbance data at 405 nm are presented. Mann–Whitney’s statistical
test was performed, and significant differences (** p < 0.05) were obtained between the control and
each group of differentiated cells. Taken altogether, this confirms that treated cells differentiated into
osteocytes, whereas negative controls did not.
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