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Abstract: The environmental weathering and the formation of efflorescences on the brick walls are
studied at the “Casa di Diana” Mithraeum at Ostia Antica archaeological site. Previous studies on
subsoil, bedrock, hydrological systems and environmental conditions, and new ion chromatography
analysis combined with ECOS-RUNSALT and Medusa-Hydra thermodynamic modelling software,
had allowed us to identify the subsoil contamination related to soluble salts. The atmospheric acidic
gases, CO2 and SO2, are determined as the main salt weathering species. A dry deposition after a
subsequent hydration action from the shallow freshwater aquifer that reaches up to 1 m on the walls
is identified as the mechanism of salt formation. An evaluation of potential sources such as the nearby
Fiumicino airport, CO2-rich gases inputs from fumaroles and CO2 inputs was also debated. The risk
level of contamination the surfaces of the materials should be considered mildly/very polluted with
a medium/high risk of hygroscopic moisture due to the high concentration of sulphates.

Keywords: efflorescence and sub-efflorescence quantitative characterization; Roman bricks; ion
chromatography (IC); salts decay origin; thermodynamic modelling; ECOS-RUNSALTS; Medusa-
Hydra

1. Introduction

Historic buildings have a complex relationship with the environment they are set in,
being constantly influenced by external factors [1]. In the context of archaeological sites, the
buildings kept inside, fully, or partially protected by roofs (original or not), undergo several
decay processes due to their exposure to aggressive environmental conditions [2–5]. Several
issues can influence the durability and preservation, speeding up natural and progressive
decline. Some of them are: (1) the inner geometry, (2) the materials of construction and
(3) the location of the building [6].

The response of the building materials to these external solicitations (environmental
stressors) results in degradation of the materials [7]. Amongst them, soluble salts represent
one of the main conservation problems, because their presence within the capillary network
causes the dissolution of building materials, material loss and cracks [8]. Specifically, the
growth of salt crystals within the pores of a stone could generate stress (internal tensions),
either by their crystallization or by changes in volume (expansion of crystals) according to
the number of hydration water molecules. The availability of water, carrying dissolved
ions or promoting their dissolution from the materials, is a key step in the crystallization
of salts [9–11]. Indeed, in addition to the resulting aesthetical problems, soluble salts
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also produce a considerable decay when salts precipitate beneath the material as sub-
efflorescence [12]. However, not all salts are equally harmful and for this reason, the
identification of their nature is crucial [13]. In fact, the possibility of dehydration–hydration
processes plays a critical role in the deterioration mechanisms, as in the case of sodium
sulphates, which are thoroughly studied [14–16]. Furthermore, the nature of the salts is
not the only important aspect, as their concentration is also a crucial factor to evaluate the
conservation state of a building [17].

Some studies have analyzed the action of sea salt aerosols on the construction materials
of historical monuments [18–21]. In coastal regions the atmosphere could be enriched with
particles that are naturally generated by the action of wind on the water surface [22].
These particles make up the sea spray, which introduces ionic species into the atmosphere,
principally chlorides and sulphates [23,24].

To identify the nature of the salts and to quantify them, the most useful technique is ion
chromatography (IC) after the extraction of soluble salts from the brick walls. In this sense,
this technique is widely used, even being regulated by a standard protocol [25]. Moreover,
this procedure is not only reliable for determining the level of soluble salts, but also to
assess the effectiveness of salt removal methods in cultural heritage materials [26–35].

Besides the salts’ typology (solubility, hygroscopy or hydration level) and the charac-
teristics of the material (mainly its porosity), other factors that regulate crystals’ formation
are the thermo-hygrometric conditions (frequency variation) [36]. Indeed, apart from the
walls directly exposed to outdoors (where the pollutants also are regulated by long-range
transport), the processes of salt formation are linked to the micro-environmental conditions.
Specific ranges of relative humidity (RH) and temperature (T) govern the evaporation
and condensation phenomena, producing efflorescences [37,38]. Phase transitions occur
at a specific RH for each salt, at a given temperature and pressure, called equilibrium
relative humidity [39]. In this sense, knowledge about the salt behavior, and if possible, the
changes in T and RH conditions, is crucial [40]. Moreover, single salts are rarely found in
nature. In practice, buildings are contaminated by salt mixtures, which present a totally
different behavior. Therefore, the assessment of the critical environmental conditions of
salt laden porous material and hence, potential risks of salt damage, requires knowledge
of the thermodynamics of the relevant chemical equilibria [40]. In this sense, thermo-
dynamic modelling represents an important tool to understand the salts’ formation and,
subsequently, the ways to avoid it, safeguarding historical buildings.

The literature on the simulation of salt damage on porous materials is well dissem-
inated [41–44], as is the use of particular thermodynamic software packages [45–47].
In this sense, there are two interesting thermodynamics modelling programs, ECOS-
RUNSALT [48–50] Medusa-Hydra [51,52], whose usefulness in cultural heritage research
is widely demonstrated. The first program utilizes a thermodynamic model to predict
which solid minerals (salts) exist in equilibrium taking into account only a certain thermo-
hygrometric range [53]. It does not allow maximum values of relative humidity (RHmax)
exceeding 98% (an important limit in the case of gypsum). Moreover, the program has
several restrictions correlated to the input of data, as anions like carbonates and cations
like ammonium and barium are not considered by it. Furthermore, on some occasions, the
prediction of gypsum crystallization might cause problems, since the program is unable to
calculate the crystallization of other salts in its presence, and gypsum must therefore be
removed from the system. Due to these restrictions, the model can only applied only to
some limited cases (listed successively), because of the abundant presence of calcium in
many materials under study. The second, a freeware chemical equilibrium software devel-
oped by the KTH School of Chemical Science and Engineering (Stockholm, Sweden) [53], is
widely used for theoretical analysis of thermodynamic feasibility and the existence of metal
speciation in aqueous solutions analyzed through speciation diagrams, proving powerful
and comprehensive visual summaries of the solubility relations in aqueous process systems.
Indeed, it can show all the possible complex species that could exist in the wide range of
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pH values. The theory is based on how in the typical pH range used the dominant species
form stable complexes.

On the other hand, the second program allows one to predict the chemical equilibria
in dissolution with less limitations than ECOS-RUNSALT, but considers a fixed T value of
25 ◦C. Despite the availability of these environmental tools, the processes and pathways of
salt damage are still incompletely understood [54,55].

Here, taking advantage of the knowledge of the site (subsoil, bedrock and environ-
mental conditions) obtained [4,45,56–65], a methodology that combines both the thermo-
dynamics modelling methods is performed. Moreover, for the first time these software
packages are tested together on a “hypogeum environment” case, characterized by extreme
environmental conditions. Understanding one of the main important problems in decay
and preservation of cultural heritage sites and buildings, is essential to assess an adequate
conservation plan for a cultural site.

In detail, a methodology based on a quantitative characterization (IC) combined with
two thermodynamic models (ECOS-RUNSALTS and Hydra-Medusa) were applied on the
building walls (red and yellow bricks) of a complex site at Ostia Antica (Italy), with the
aim to study on the origin and the mechanism of salt formation, pinpointing the source(s)
of the salts that at the first sight are multiple.

2. Materials and Methods
2.1. The Building under Study, the State of Conservation and the Environmental Scenario

The cultural site of Ostia Antica (Rome, Italy) is, together with Pompeii and Hercu-
laneum, one of the best-known archaeological examples of Roman houses found in Italy.
Ostia Antica was Rome’s first colonia and played an important role as a port to supply the
city of Rome. This cultural site is near to the Tyrrhenian sea (at least around 3 km south),
in the proximity of the Ciampino (around 30 km east) and Leonardo da Vinci (commonly
known as Fiumicino, around 7 km northwest) airports and very close to the urban city
center (around 5 km) (Figure 1).
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Figure 1. Ostia Antica map which allows one to observe the distances and orientation in relation to the two airports
(Leonardo da Vinci on the left and Ciampino on the right) and the Tyrrhenian Sea.

Amongst the Roman masonry examples present in Ostia Antica, we focused on a
building, called “Casa di Diana” or “Caseggiato di Diana”, dated 150 CE and particularly
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on the last two inter-communicating rooms, located on the northern side of the building,
the “Mithraeum” and “pre-Mithraeum” (Figure 2).
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This is a place that was dedicated to the cult of the Persian god Mithra during Roman
times. A roofless room named Triclinium, neighboring with the two rooms, was also
considered. The building was affected by efflorescences year-round (Figure 3) and rising
damp due to the presence of two aquifers (freshwater and salt water) at shallow and deep
depth (2.5 and 8–10 m) [42,57,58]. These water masses are precursors and responsible
of the high RH values (close to saturation), recorded in the lowest area of the building
(0–1.1 m) during indoor microclimatic study campaigns [42,56]. Although it is believed that
a possible impermeable stratum (natural membrane of sand alluvial deposits) separates
the two “water pockets”, the influence of the deepest salt aquifer [57], through the rising
damp mechanism, could be involved in the salt formation mechanism due to the fact the
foundation wall reaches the freshwater–saltwater interface.
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the pre-Mithraeum (indoors). (b) The opacifying and the efflorescences on south wall of the Triclinium (outdoors).

Furthermore, the environmental surveys, which define this place as a “hypogeum
environment” (an underground room simulating a cave) indicate that the building is also
affected by low air flows, facilitating evaporation and condensation phenomena near the
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walls [64]. Relative insolation from the outdoors, besides the presence of several openings
(especially of one window of considerable dimensions sited on the east side) and lower
recorded air velocity values [64] (inside and outside-Triclinium Figure 2) also suggest a non
long-range transport of eventual pollutants. In this sense, studies on air quality established
very high concentrations of CO2 (of biological and anthropogenic input) throughout the
whole day (night cyclic bio-emissions and day emissions in correspondence with the high
turnout) [61] because of the inadequate air inlet flow. Values about two-fold higher than
those monitored outside were recorded, so the CO2 indoor inputs must be considered [59].

Finally, regarding the salt origin, especially of Na+ and Cl−, studies conducted on the
water levels of the Tiber delta, by sampling 120 wells located in the surroundings, also
revealed the presence of saltwater intrusion and, therefore, widespread salt contamination
from the subsoil due to the relative closeness of the Tyrrhenian Sea (only 3 km away).
Moreover, the salt marshes were exploited until 1895 [8]. This last issue probably explains
the contribution of salts found in well water samples in previous geochemical analyses [57].

However, there is another possible source to be taken into consideration: the rain-
fall (mixed with atmospheric acid gases and/or marine aerosol) that could be also the
responsible of the salt formation by infiltration from the roof and the Triclinium room
(Figure 2) into the brick detachments or even through the openings (i.e., the window of the
pre-Mithraeum room).

Thus, the diversity of sources that could be affecting the building, from the bottom
upwards, is important and clarification of the proper source that promotes the formation
of the soluble salts is essential in the design of any conservation plan for the building.

2.2. Sampling Procedure

The sampling methodology was designed to evaluate the factors that could have an
influence on the salt formation. In this sense, two different typologies of bricks (red and
yellow, identified as R and Y, respectively—see Table 1) were sampled on different walls
(building orientation), because they are subjected to different environmental conditions [60].
To minimize the micro-sampling and considering that the rising damp reaches up to 1 m [4],
a value confirmed also by moisture measurements conducted directly on wall-building
materials along a vertical profile [42], it was possible to assure the significance of the
collected data, selecting specific areas. Although in general the whole building is affected
by rising damp, and typical vertical profiles were observed [61], in this case, no correlation
with the total content of soluble salts (up to 3 m) was found [4].

In this sense, it was possible to implement a reasoned non-probabilistic sampling de-
sign (Table 1), with the selection of only 18 solid samples, to identify and to characterize the
observed soluble salts. Specifically, 16 bricks were sampled at 1.03/0.65 m also considering
the orientation and the typology of bricks (red and yellow).

Two other samples of salt efflorescences were also taken from two walls with different
orientation and found in different rooms (24S1 and 25S2). Furthermore, one water sample
was also obtained (Ww) from the well, to characterize the type of water) and, indirectly,
also from the (communicated) freshwater aquifer. Finally, one rainwater sample (T1) was
collected during a geochemical study conducted in November 2015 [57]. Despite the fact
sampling of the deepest water mass was not possible, it was classified in previous studies
as marine water [57,58].

Thus, the diversity of sources that could be affecting the building, from the bottom
upwards, is important and the clarification of the source that promotes the formation of
the soluble salts is essential to the conservation plan of the building.
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Table 1. Samples collected (name “SID”, room, and wall orientation). R and Y stands for red and
yellow brick, respectively. Ww and T1 for well water (inside the house) and Tank (outside the house).
In the case of T1, the sample was collected in a previous study [57].

SID Room Orientation

15R pre-Mithraeum South15Y

16R
Mithraeum West16Y

17R pre-Mithraeum West17Y

18R pre-Mithraeum West
18R2 West

19R
Mithraeum East19Y

20R
Mithraeum North20Y

21R pre-Mithraeum East21Y

22R
Triclinium East22Y

24S1 Mithraeum West
24S2 pre-Mithraeum East

Ww Latrinium East

T1 Tank -

2.3. Analytical Procedure

Regarding the analytical method, all the samples were crushed in an agate mortar
and dried in a drying cabinet (60 ◦C) until a constant weight was obtained (24 h). The
soluble salts were extracted by an ultrasound-assisted procedure with water (100 mg of
sample in 100 mL of MilliQ water), following an optimized methodology based on the
European standards [66]. This pre-treatment was replicated four times for each analyzed
sample. After the extraction, the obtained solutions were characterized by an ICS 2500
ion chromatograph (Dionex, Sunnyvale, CA, USA) equipped with an ED50 suppressed
conductivity detector. An IonPac AS23 (4 × 250 mm) column and IonPac AG23 (4 × 50 mm)
pre-column from Dionex were used for the separation of anions. The quantification of
cations was conducted using an IonPac CS12A (4 × 250 mm) column and IonPac CG-12A
(4 × 50 mm) pre-column from Dionex. The chromatographic conditions used in the anion
quantification were 5 mM Na2CO3/0.8 mM NaHCO3, 25 mA and 1 mL/min as mobile
phase, suppression current and flow, respectively. In the case of cations, 20 mM CH4SO3 as
mobile phase, 59 mA of suppression current and 1 mL/min flow were used. Prior to the
analysis, the samples were passed through a 0.45 µm nylon syringe filters and brought to a
final volume.

To estimate the carbonate concentration, the pH values of the extracted soluble salts
were measured. Thus, the pH measurements were conducted with SOILSTIK pH meter
(Spectrum Technologies, Inc., Aurora, IL, USA) and were replicated three times. Data was
treated with OriginPro version 8.5.1 (OriginLab©, Northampton, MA, USA).

To deepen the saline intrusion and the possibility of the attack on the wall-building
materials by rising damp, a sound velocity study was conducted at the beginning of
September 2016 (per 1 day) using a probe (Monitor SVP v. 2c, Valeport, UK) placed in the
well. The aim was to validate the effect of the shallow freshwater aquifer according to the
sound velocity reference values. Sound velocity, P and T were recorded during the first
5 min of the measurement (sampling time of 1 min at 1 Hz, disregarding the decreasing
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and climbing measurements), giving the corresponding values. The accuracy of the sound
velocity, T and RH measurements are ±0.02 m/s, ±0.01 ◦C, ±0.1%, respectively.

Regarding the environmental monitoring, the thermo-hygrometric data, derived from
a wide microclimatic campaign conduced from 2012 to 2015 [42] were inserted in the
computer program Environmental Control of Salts (ECOS)-RUNSALT (version 1.9) [67–69],
according to the allowed range configured, to predict the soluble salt formation under the
micro-environmental conditions (annual average). The latter was used in combination
with another thermodynamic software program, Medusa-Hydra (v. 2010). Specifically,
the model was used to assess if sulphate salts (threatening for stone materials) can mainly
be formed because of the attack of SO2 on the calcite materials. In this sense, calcium
carbonate was introduced in the input and the accumulative effects of the SO2 impact were
modelled with the gradual addition of SO2 (g) (from 0 to 500 mg/L−1 or ppm). If SO2
impacted (an accumulated attack equivalent to a concentration of 50 mM was considered)
the system in question (calcite immersed in an oxidative environment, equivalent to 75 mM
of oxygen/ozone), the calcite would be gradually transformed. The thermodynamic
prediction by ECOS-RUNSALTS was also supported by parallel ongoing studies using the
Raman spectroscopy, micro-X-ray fluorescence, and X-ray diffraction techniques performed
on these Roman bricks [59] where a sulphate and carbonate attack on bricks was established
especially for the yellow ones [59].

3. Results and Discussion

Thanks to the quantitative analysis, F−, ClO2
−, Cl−, NO2

−, NO3
−, PO4

3− and SO4
2−

anions and Na+, K+, Mg2+ and Ca2+ cations, were quantified. The soluble salt results are
shown in Table 2.

Table 2. Chemical composition of sampled bricks (mmol/kg) and water (mmol/L). The bicarbonate value was theoretically
determined. The obtained RSD was below 5% in all cases.

SID Na+ K+ Mg2+ Ca2+ F− ClO2− Cl− NO2− NO3− PO43− SO42− HCO3−

15R 13.1 20.8 18.6 201.4 7.8 0.053 9.0 1.7 5.6 8.1 7.4 410.6
15Y 41.5 20.7 38.7 227.8 7.5 0.045 66.5 1.2 87.6 14.9 8.9 370.0
16R 24.9 27.5 20.3 230.6 10.5 0.053 2.0 1.8 10.4 5.1 37.5 439.3
16Y 31.8 30.3 24.6 273.9 29.1 0.050 3.9 2.7 3.7 6.5 62.2 475.5
17R 79.6 32.1 32.0 444.2 27.8 0.048 13.3 1.0 17.9 26.1 342.3 241.2
17Y 42.3 19.7 26.4 246.1 3.7 0.046 71.6 1.8 35.8 17.5 45.2 351.1
18R 33.0 28.7 19.7 238.0 27.1 0.042 4.9 3.8 6.5 9.7 43.0 419.8
18R2 84.6 27.4 42.6 384.1 35.3 0.053 29.5 1.7 38.1 23.8 249.7 200.0
19R 15.0 25.2 11.2 223.6 13.2 0.038 1.0 1.3 <LOD <LOD 39.6 414.8
19Y 35.0 23.2 34.8 431.0 41.1 0.042 68.0 1.2 21.0 30.3 244.7 278.3
20R 24.9 22.3 20.5 230.7 7.5 0.057 32.9 2.2 18.9 27.4 39.0 328.0
20Y 13.0 24.3 12.1 242.9 18.0 0.042 12.7 1.1 10.5 14.9 13.8 432.6
21R 34.2 26.3 14.6 229.9 10.7 0.050 14.9 1.3 4.2 6.6 19.5 459.6
21Y 19.8 26.5 14.2 194.2 7.6 0.064 3.9 1.7 <LOQ <LOQ 2.7 445.5
22R 88.9 66.8 38.2 253.5 12.0 0.042 16.4 0.74 9.3 12.6 131.6 399.6
22Y 31.3 18.2 15.1 284.3 5.1 0.042 3.0 1.3 4.9 5.8 125.3 365.7
24S1 19.4 14.9 15.1 2831.5 <LOQ 0.327 16.9 <LOD <LOD <LOQ 3254.7 -♦

24S2 55.4 19.4 26.8 1194.9 <LOQ 0.090 7.6b <LOD <LOD <LOQ 924.5 661.4
Ww 2.7 1.1 0.76 1.1 0.034 n.d. 2.8 n.d. 0.20 0.40 0.33 2.5
* T1 2.5 1.0 0.58 0.74 0.022 n.d. 2.1 n.d. n.d. n.d. 0.23 3.5

LOD Limit of Quantification (<0.0029 (mmol/L) for all the ions); LOQ Limit of Detection (<0.007 (mmol/L) for all the ions); * T1 [43,44];
♦ Indicates that cation concentrations are higher compared to anions; n.d. stands for no data.

Because of the nature of the mobile phase used, it was not possible to analyze the
concentration of any dissolved bicarbonate. This was then determined theoretically through
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the completion of the mass balance and assuming electroneutrality in the liquid extracts
after performing the soluble salt tests (1) [70]:

∑(valence cation conc.)− ∑(valence anion conc.) = bicarbonate concentraion (1)

To estimate the presence of carbonate or bicarbonate, pH measurements were required.
All the bricks samples presented a pH below 8, as can be seen in Figure 4, thus, bicarbonate
was estimated [70]. In the case of water and salts samples, bicarbonate was also assumed.
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To better understand the origin of these salts, a correlation diagram, normally used in
hydrogeochemical studies [70], was plotted using the results shown in Table 2 (Figure 5).
In fact, the diagram visualizes and classifies the hydrogeochemical facies (one or more) and
the dominant one(s) among them, providing a source classification [43,60]. Considering
that the water extraction decreases the ion concentration in the solution but not the ionic
ratio, the use of this diagram could help to identify the type of water that mobilizes the salts.
Thus, the diagram reveals carbonate species such as Ca2+ and Mg2+, that is, of carbonate
origin. Nevertheless, extracting more information about the origin of these carbonates
was difficult because the results could indicate freshwater but also, the dissolution of the
building materials by the action of the rainwater or dissolution of carbonate materials
(bedrock). However, the quantitative results and this diagram excluded the action the mass
of water of the known deep (salt water) aquifer as responsible for the rising damp because
of the absence of high concentrations of anions such as Cl−, Na+ or K+.
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Moreover, the result conducted on well water by the sound velocity probe, confirmed
again that the measured water was fresh water, not salt water [56]. In fact, the brackish
water was characterized with values around 1485 m/s until 1495, while the surface Tyrrhe-
nian Sea waters were 1509 and 1540 m/s in winter and summertime, respectively (values
generally influenced by only the temperature parameter thermocline). The obtained results
were compatible with the theory of Cutnell [53].

An ulterior evidence of the not-existent influence of the saline water aquifer on the
freshwater aquifer was derived by hydrological and chemical investigations conducted
in the surroundings of the site under study in 2007 [71]. The researchers then studied
the water levels of the Tiber delta (sedimentary bodies’ reconstruction) by sampling on
120 wells located on the surroundings. These observations revealed the presence of salt-
water intrusion and, therefore, a widespread salt contamination of the Tiber delta that
constitutes a very high risk to water management practices. In Figure 6 it is possible to
observe that the saline intrusion in the “Canale della Fiumara Grande” that overreaches
from the mouth and goes inwards with salinity high values (37 g/L). In the same vertical
section, two sub-layers of freshwater and salt water with a sub-horizontal trend (interface)
were identified, as in the case of “Casa di Diana” (in correspondence with salinity values of
about 38 g/L).

Furthermore, the presence of significant hollows along the longitudinal bed profile,
promotes the saline intrusion stagnation, which lasts for long times, despite the variability
of the river system and the marine weather conditions. For all these reasons, the study
of 2007 was in accordance with the electrical resistivity tomography (ERT) results ob-
tained [57], as can be seen in the Figure 6, with the identification in the “Casa di Diana”
(circle) at 5 m of depth of a section attributable to “river fresh water” and below it, a
salt-water intrusion plume. In the mentioned work, and the despite of the variability of the
river system according to the weather conditions, the saline intrusion is excluded (but not
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underestimated, assuming groundwater vulnerability). Thus, the interface line between
salt and freshwater shown in the Figure 6, indicates the coexistence of two distinct masses
of water (salt and fresh water) separated by a natural membrane [57].
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Taking all these results into account, one of the three possible salt sources (salts carried
by rising damp coming from the saline aquifer or saline intrusion from the sea) could be
discarded, even if circulating minerals and salts (derived from the exploitation of the salt
marshes) in the subsoil should be involved.

To find possible relationships among the concentrations collected in Table 3, a corre-
lation analysis was performed using only the data from bricks (16 samples). The results
are summarized in Table 3 showing that the correlation between Ca+2/SO4

2− was likely
(r = 0.96).

Table 3. Ion correlation analysis for brick samples.

Na+ K+ Mg2+ Ca2+ F− ClO2− Cl− NO2− NO3− PO43− SO42− HCO3−

Na+ 1
K+ 0.63 1

Mg2+ 0.78 0.35 1
Ca2+ 0.55 0.02 0.59 1
F− 0.36 0.11 0.44 0.75 1

ClO2
− −0.09 −0.13 −0.09 −0.22 −0.18 1

Cl− 0.16 −0.24 0.58 0.30 0.07 −0.17 1
NO2

− −0.27 −0.21 −0.18 −0.21 0.17 0.16 −0.17 1
NO3

− 0.27 −0.22 0.66 0.18 −0.03 −0.11 0.77 −0.15 1
PO4

3− 0.54 −0.06 0.69 0.71 0.54 0.03 0.51 −0.06 0.47 1
SO4

2− 0.70 0.20 0.61 0.96 0.66 −0.18 0.18 −0.27 0.10 0.67 1
HCO3

− −0.42 0.16 −0.41 −0.58 −0.02 0.10 −0.38 0.39 −0.36 −0.51 −0.66 1

Thus, gypsum formation had a high possibility of also occurring in the brick samples.
That is, a source of sulphates is affecting to the whole volume of Mithraeum because even
the bricks at the highest level in the walls are partially sulphated in their surfaces.
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Concerning the different salts that can be formed, the quantitative and correlation
analyses identified gypsum and calcite as the main salts. For this, we focused the attention
on these types of salts.

To confirm their main presence, a first thermodynamic modelling was carried out
using the ECOS-RUNSALT software, because it allows one to introduce the RH as an input
parameter, a very important factor in this specific indoor environment where although the
average RH value is 95.6%, in the lowest strata (0–1.1 m) the recorded RH values are very
close to saturation (96–99%) [42]. Moreover, a previous monitoring campaign had revealed
that the T is stable (Tmy 16 ◦C) throughout the entire year and the daily T variations are not
significant [42].

Due to the restrictions described in the experimental section the ECOS-RUNSALT
model could be applied only to some of the described cases (15R, 16R, 18R, 21R, 21Y), due
to the abundant presence of calcium in these samples.

Leaving these considerations aside, regarding the impossibility of introducing barium
and ammonium, it was not a problem due to the undetectable concentrations of both cations.
This fact does not break the system electroneutrality because they can be considerable as
negligible compared with the rest of ions. On the other hand, as it is possible to include
carbonate in the model, the electroneutrality of the samples breaks down. Observing that
the values of concentration of both ions were quite similar, calcium and carbonate total
concentration values were removed from the system to maintain the electroneutrality.

The ECOS-RUNSALT simulation was carried out considering a Tmy of 16 ◦C, a RHmax
of 98%, a RHmin of 77% and the ionic concentrations obtained in the quantitative analysis
(Table 2—final input data). Within these thermohygrometric ranges, the program predicted
the formation of specific minerals that indicated again a strong attack deriving from SO4

2−.
In particular, the 16R and 18R red bricks presented the same phases (Figure 7): aphthitalite
((K,Na)3Na(SO4)2), picromerite (K2Mg(SO4)2·6(H2O)), mirabilite (Na2SO4·10H2O), and
bloedite (Na2Mg(SO4)2·4H2O). In the 21R and 21Y samples aphthitalite and picromerite
were suggested to be present by the simulation. Finally, picromerite was the only phase
predicted in 15R. It is important to underline that at these RH values, the only phases
that prevail are mixtures derived from sulphates. Usually, the composition of marine
aerosols is dominated by halite (NaCl), even if the sea salt contains other species that
form a complex mixture [72]. If the marine aerosols were affecting the external building
walls and penetrating by capillarity or through openings inside the inner building walls,
according to the recorded micro-environmental, any halite should be solubilized. It is
interesting to note that the samples are collected also up the 1 m height (where de RH does
not exceed 98%). During the simulation, several tests, according to the samples collected,
where carried out, changing the relative RH, but halite was never predicted. The salt
mixtures that the model predicts are always the same and seem differ considerably from
the composition of sea salts.

It is equally true that the “fractionated infiltration”, or “alternative salts’ contamina-
tion” pathways, generates a continuous deposition and removal of salt efflorescence that
differed considerably from the composition of sea salt [15].

Considering the limitations of ECOS-RUNSALT, a second simulation strategy was
performed using the Medusa-Hydra software on the water solution (outer tank—rainwater
and inside the well—freshwater). In a first attempt, the ionic concentrations of rainwaters
were studied (Figure 8a). In a second attempt, the ionic concentration of the freshwater of
the shallow aquifer (26W), was used as input data for the program (Figure 8b). Both types
of water presented lower concentrations of dissolved ions (max. 0.029%) at pH values
around 8. Figure 8 shows the distribution diagram of calcium (Figure 8a) and sulphate
(Figure 8b) considering that rainwater interacts with a calcite substrate. As seen, the calcite
starts to be dissolved at pH < 7, but the rainwater has a pH~8, not acid enough to attack
calcite (Figure 8a).
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Furthermore, considering the sulphate species, the rainwater cannot explain the
formation of any solid sulphates like gypsum, aphthitalite, picromerite, mirabilite or
bloedite (Figure 8b). On the other hand, for the simulation using the concentrations of
the well water sample (Ww), the results were the same: any solid sulphate species were
formed from the calcite substrate. We observe only the presence of sulphates related to the
salts circulating in the subsoil (CaSO4 and MgSO4). Thus, the freshwater of the aquifer at
shallow depth and rainwaters, both connected with the building (hydrologic setting of the
house) are not enough to degrade the calcite and promote the formation of the predicted
solid sulphate species.

Taking all these facts into account, the source of sulphate should be linked to atmo-
spheric SO2 attack. This attack could occur by two ways, namely dry deposition, and
wet deposition. When the latter occurs a high concentration of sulphates and low pH of
the rainwater is expected, but in this case, this fact was not observed, suggesting a dry
deposition mechanism. Moreover, another source of the sulphate salts could be because
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of the rising damp coming from the subsoil (the first 2.5 m) due to the exploitation of
the salt marshes, which although they have low concentration of salts, the cumulative
supply of these salts circulating in the subsoil by rising damp in the building walls should
be considered. Anyway, the low pH requirement indicates more probably the action of
atmospheric acid gases, at least to promote the dissolution of the original calcite (Figure 8),
otherwise the degradation of the calcite was not occurring only observing the accumulation
of salts in the materials. For that reason, the interaction with atmospheric acid gases is
very plausible.

Possible Mechanisms

Thanks to all these observations it was possible to propose a mechanism for the
formation of the salts: (1) a hydration process of the original oxides by H2O to form reactive
hydroxides. (2) Attack by indoor CO2 inputs on wet bricks to form carbonates and net
acidic water. (3) Dissolution of the carbonates and SO2 attack with dry deposition to form
sulphates. Considering the proposed mechanism, the porosity of the materials and the salts’
mobility, the formation of sub-efflorescences is possible, but the phenomena is expected to
be more intense on the interface with the atmosphere (efflorescences), as is the case studied.
Nonetheless, the key step is the hydration of the original compounds, because without this,
the attack of the acid gases by dry deposition is unlikely.

Once the mechanism is understood and the several pollution sources evaluated it
is necessary to narrow down their source to try to contain it. It is noticeable that Ostia
Antica is located about 5 km from the seacoast in the south direction, so marine aerosols
are expected to play a considerable role. It is also known that the wind speed is the key
factor to determine the production rate of many physical processes over the ocean surface
that can generate sea salt aerosols. Studies on the relationship between the salinity and
distance from the coast reveal an exponential decrease of the marine aerosols with the
increase of the distance from the coast. In fact, it was observed that five kilometers seem
to be enough to minimize the contribution of the marine aerosol [73,74]. Moreover, the
air turbulence in the interior of building is zero, also considering the size of the openings
(approximately 0.04 m/s). This means that, on the one hand, the condensation phenomena
are encouraged (corners of the building and up to 1 m from the ground), while on the other
hand, the low wind speed makes more difficult the pollution transport inside the building
(through the main openings). Furthermore, it is known that the wind direction changes,
but the prevailing winds come from the northwest, that is the direction of the Leonardo da
Vinci airport (around 7 km away from the site). Moreover, according to the results listed in
Table 2, no appreciable difference was found between the outer bricks and the inner ones.
Additionally, according to the salt presence study conducted in 2014, the total content of
soluble salts were more than double on the inner wall compared to the outer one, sulphate
and chloride being more abundant in the inner wall [45].

Another aspect to take into consideration is the CO2 input (another important gaseous
acid). Studies on the prevalent air quality show that the concentrations of CO2 are relatively
high in comparison to the suggested limits and guidelines defined by law [75–80]. The
inputs deriving from the biological environment and from inadequate air movement cause
poor air quality and possibly accelerate acidification, due to the combined high RH values
close to saturation [42] of the stone materials. Remaining on the topic of emissions, one
aspect to consider is the surface manifestation of CO2-rich gases in the area surrounding
the archaeological site (fumaroles). In the coastal area of Fiumicino, not far away, leaks
of natural gases (putting at risk the population) have manifested themselves for a long
while [81]. Surely the origin of this gas is natural (subsoil) but its high concentrations
recorded inside the building is also related to the particular microclimatic conditions
already abundantly explained. For that reason, the attribution of the input of CO2 only to
Fiumicino airport is unsure.

Leaving aside the origin of salts, the evaluation of their impact on the materials
was also important. To establish a critical level of damage, the obtained concentrations
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(expressed as a percentage, Table 4) were compared with the maximum levels set by the
European standards (Table 5) for each anion.

Table 4. Summary of the soluble salt results on bricks expressed in weight percentage (w/w%). The
ionic concentrations considered dangerous by European standards are highlighted, despite other
salts being present. The samples that exceed the risk levels are colored in light orange box (low risk),
medium orange box (middle risk) and dark orange box (high risk).

SID Cl− NO3− SO42− Total *
15R 0.03% 0.03% 0.07% 1.2%
15Y 0.2% 0.5% 0.09% 2.2%
16R 0.007% 0.06% 0.4% 1.7%
16Y 0.01% 0.02% 0.6% 2.1%
17R 0.05% 0.1% 3.3% 5.9%
17Y 0.3% 0.2% 0.4% 2.3%
18R 0.02% 0.04% 0.4% 1.8%
18R2 0.1% 0.2% 2.4% 5.3%
19R 0.004% <LOD 0.4% 1.5%
19Y 0.2% 0.1% 2.4% 5.1%
20R 0.1% 0.1% 0.4% 2%
20Y 0.05% 0.07% 0.1% 1.6%
21R 0.05% 0.03% 0.2% 1.5%
21Y 0.01% <LOQ 0.03% 1%
22R 0.06% 0.06% 1.3% 3.1%
22Y 0.01% 0.03% 1.2% 2.6%

* Indicates the total of ionic concentration (chlorides, nitrates and sulfates).

Table 5. Degree of contamination by dangerous soluble salts expressed in weight percentage (w/w%)
according to WTA (International Association for Science and Technology of Building Maintenance
and the Preservation of Monuments).

Risk [Cl−] [NO3−] [SO42−] Total

Low <0.3% <0.1 <0.8% <1.2%

Middle 0.3–0.8% 0.1–0.5% 0.8–1.6% 1.2–2.9%

High >0.8% >0.5% >1.6% >2.9%

The results show that all brick samples present a low risk of chlorine contamination,
and only some of the samples present a medium risk derived from nitrates, however, this
indicates some nitrate input that could likely come also from the acidic gases. Finally, there
were some samples with medium and high risk of sulphate contamination, as expected
taking in consideration the previous observations.

To solve the restriction of the individual comparisons, the total soluble salt content of
the different bricks (taking into consideration both cations and anions) was also compared.
The value, around 1.0–5.9% (w/w), indicates that the materials were medium/very polluted,
which indicates a medium/high risk of hygroscopic moisture and damage to the materials.
This fact pointed out the real need to find a solution to the problem of soluble salts to
preserve the archaeological site under study.

4. Conclusions

The proposed methodology combined with ion chromatography and thermodynamic
modelling software (ECOS-RUNSALT and Medusa-Hydra) has allowed us to assess and
debate the various salt sources that affected the building, characterized by hygrometric
values that exceed 98%. Indeed, it is a very complex scenario due to, not only because the
“open museum” is a sensitive place, but also to the multiple environmental stressors that
occur in a contemporaneous way.

Notwithstanding the open debate on some questions, it was possible to outline impor-
tant issues, discretizing some real damage sources. Thanks also to multidisciplinary studies
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(geophysics, geochemistry, environmental monitoring, and spectroscopic techniques) it was
possible to determine and individuate the salt weathering processes and their mechanism
of attack, as well as to assess their origin.

One of them regards the soil-salt contamination that involves the first 2.5 m of depth,
as below 2.5 m there is a freshwater aquifer linked to the well of the building.

Regarding the possibility of sea spray contamination, it remains an open possibility,
even if the salts found and predicted do not mention halite, but only a mixture derived
from sulphates. If marine aerosols were attacking the outer walls, according to the ther-
mohygrometric parameters that characterize this building complex, they would remain as
uncrystallized salt. It is equally true that the “fractionated infiltration”, or alternative con-
tamination pathways, generates a continuous deposition and removal of salt efflorescence
that differs considerably from the composition of sea salt.

The low wind speed (both recorded and simulated) inside the building and near
the main openings represents an essential element that allows us to discount long-range
pollutant transport. Furthermore, the main wind direction and the km/salinity rate,
suggests Fiumicino or the nearby urban city, as the main sources of salt production. Surely,
a in depth long-range transport study should be carried out for an ulterior validation, as
well a study on the subsoil.

The rising damp (from the freshwater aquifer) also represents a mechanism that should
not be underestimated. The hydration represents a fundamental step for the successive
salt formation processes. This hydration phenomenon represents the first step of a damage
process, making the materials more favorable to salt attack. In any case, the conservation
plan to stop the formation of soluble salts should be focused on controlling the RH of the
building, that can be reduced by applying small balls of expanded clay or a similar material
(changing them at necessary) on the floor.

Despite the uncertainly of the SO2 origin, i.e., if it is related to the action of rising
damp from the salts circulating present in the soil, or by sea spray (less probable) or both
(a synergic action), regarding the CO2 input, its origin is clearer. As natural gases are
abundantly present in the area surrounding the archaeological site, this had led to the
start of a new project to identify and reconstruct the natural gas (CO2 and CH4) pocket
geometry, creating a map of the affected area.

Regarding the CO2 levels recorded inside the building they are related to the inad-
equate air quality (an adequate air movement results in a good air quality) that enables
the removal during the day of the CO2 emissions caused by biological action (which are
added to those produced by high turnover during the day), involving relatively high
concentrations of CO2 in comparison to the suggested limits and guidelines defined by law.

Finally, the mechanism of the acid attack involves the dry deposition of the atmo-
spheric acid gases.

Regarding the risk level of contamination, most brick samples were medium/very
polluted which represents a medium/high risk of hygroscopic moisture and damage to the
materials, due to the high presence of sulphate, that attacks indistinctly the red as well as
the yellow bricks, without any difference caused by the orientation of the walls. This fact
points out a real need to solve the problem of formation of the soluble salts to preserve the
studied archaeological site.
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29. Klisińska-Kopacz, A. Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and
XRF portable systems. J. Raman Spectrosc. 2015, 46, 317–321. [CrossRef]

30. Prieto-Taboada, N.; Ibarrondo, I.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.; Madariaga, J. Buildings as repositories
of hazardous pollutants of anthropogenic origin. J. Hazard. Mater. 2013, 248–249, 451–460. [CrossRef] [PubMed]

31. Franklin, B.J.; Young, J.F.; Powell, R. Testing of Sydney dimension sandstone for use in the conservation of heritage buildings.
Aust. J. Earth Sci. 2013, 61, 351–362. [CrossRef]

32. Skoog, D.A.; Holler, J.F.; Crouch, S.R.; Sabbatini, L. Chimica Analitica Strumentale; EdiSES: Napoli, Italy, 2009.
33. De Buergo, M.A.; Lopez-Arce, P.; Fort, R. Ion Chromatography to Detect Salts in Stone Structures and to Assess Salt Removal Methods;

EGU General Assembly: Brusselles, Belgium, 2012; Volume 14, p. 1757.
34. Jungbauer, A. Preparative chromatography of biomolecules. J. Chromatogr. A 1993, 639, 3–16. [CrossRef]
35. Haddad, P.R.; Jackson, P.E. Ion Chromatography: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 1990.
36. Fabio, S.; Lisci, C.; Mirão, J. Accelerate ageing on building stone materials by simulating daily, seasonal thermo-hygrometric

conditions and solar radiation of CSA Mediterranean climate. Constr. Build. Mater. 2021, 266, 121009.
37. Brai, M.; Casaletto, M.P.; Gennaro, G.; Marrale, M.; Schillaci, T.; Tranchina, L. Degradation of stone materials in the archaeological

context of the Greek–Roman Theatre in Taormina (Sicily, Italy). Appl. Phys. A 2010, 100, 945–951. [CrossRef]
38. Gómez-Laserna, O.; Olazabal, M.Á.; Morillas, H.; Prieto-Taboada, N.; Martinez-Arkarazo, I.; Arana, G.; Madariaga, J.M. In-situ

spectroscopic assessment of the conservation state of building materials from a Palace house affected by infiltration water. J.
Raman Spectrosc. 2013, 44, 1277–1284. [CrossRef]

39. Pei, C.; Ou, Q.; Pui, D.Y. Effects of temperature and relative humidity on laboratory air filter loading test by hygroscopic salts.
Sep. Purif. Technol. 2021, 255, 117679. [CrossRef]

40. Steiger, M. Crystal growth in porous materials—I: The crystallization pressure of large crystals. J. Cryst. Growth 2005, 282, 455–469.
[CrossRef]

41. Heinrichs, K.; Azzam, R. Quantitative Analysis of Salt Crystallization–Dissolution Processes on Rock-Cut Monuments in
Petra/Jordan. In Anonymous Engineering Geology for Society and Territory-Volume 8; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 507–510.

42. Nicolai, A. Modeling and Numerical Simulation of Salt Transport and Phase Transitions in Unsaturated Porous Building Materials;
ProQuest: Ann Arbor, MI, USA, 2008.

43. Espinosa-Marzal, R.M.; Scherer, G.W. Advances in Understanding Damage by Salt Crystallization. Accounts Chem. Res. 2010, 43,
897–905. [CrossRef]

44. Espinosa, R.; Franke, L.; Deckelmann, G. Model for the mechanical stress due to the salt crystallization in porous materials. Constr.
Build. Mater. 2008, 22, 1350–1367. [CrossRef]

http://doi.org/10.1016/j.culher.2021.01.011
https://standards.iteh.ai/catalog/standards/cen/183d6740-886c-42fb-a619-87e47b0173e6/en-16455-2014
http://doi.org/10.1016/j.jas.2014.06.017
http://doi.org/10.1016/j.conbuildmat.2012.08.022
http://doi.org/10.1007/s00339-013-7890-1
http://doi.org/10.1002/jrs.4634
http://doi.org/10.1016/j.jhazmat.2013.01.008
http://www.ncbi.nlm.nih.gov/pubmed/23416873
http://doi.org/10.1080/08120099.2013.834843
http://doi.org/10.1016/0021-9673(93)83082-4
http://doi.org/10.1007/s00339-010-5678-0
http://doi.org/10.1002/jrs.4359
http://doi.org/10.1016/j.seppur.2020.117679
http://doi.org/10.1016/j.jcrysgro.2005.05.007
http://doi.org/10.1021/ar9002224
http://doi.org/10.1016/j.conbuildmat.2007.04.013


Molecules 2021, 26, 2866 18 of 19

45. Godts, S.; de Clercq, H.; Hayen, R.; de Roy, J. Risk assessment and conservation strategy of a salt laden limestone mausoleum and
the surrounding funeral chapel in Boussu, Belgium. In Proceedings of the 12th International Congress on the Deterioration and
Conservation of Stone Columbia University, New York, NY, USA, 21–25 October 2012.

46. Aramendia, J.; Gómez-Nubla, L.; Castro, K.; Madariaga, J.M. Spectroscopic speciation and thermodynamic modeling to explain
the degradation of weathering steel surfaces in SO2 rich urban atmospheres. Microchem. J. 2014, 115, 138–145. [CrossRef]

47. Maguregui, M.; Sarmiento, A.; Martínez-Arkarazo, I.; Angulo, M.; Castro, K.; Arana, G.; Etxebarria, N.; Madariaga, J. Analytical
diagnosis methodology to evaluate nitrate impact on historical building materials. Anal. Bioanal. Chem. 2008, 391, 1361–1370.
[CrossRef] [PubMed]

48. Rorig-Dalgaard, I. Direct Measurements of the RHeq in Salt Mixtures including the Contribution from Metastable Phases; Department of
Civil Engineering, Technical University of Denmark: Lyngby, Denmark, 2021.

49. Pintér, F. The Combined Use of Ion Chromatography and Scanning Electron Microscopy to Assess Salt-affected Mineral Materials
in Cultural Heritage. J. Am. Inst. Conserv. 2021, 1–15. [CrossRef]

50. Godts, S.; Orr, S.A.; Desarnaud, J.; Steiger, M.; Wilhelm, K.; de Clercq, H.; Cnudde, V.; de Kock, T. NaCl-Related Weathering of
Stone: The Importance of Kinetics and Salt Mixtures in Environmental Risk Assessment. Herit. Sci. 2020, 9, 44. [CrossRef]

51. Stelzner, J.; Eggert, G. Calcium Carbonate on Bronze Finds. Stud. Conserv. 2008, 53, 264–272. [CrossRef]
52. Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T. An attempt to electrically enhance phytoremediation of arsenic contami-

nated water. Chemosphere 2012, 87, 259–264. [CrossRef] [PubMed]
53. Cutnell, J.D.; Johnson, K.W. Physics, 4th ed.; John Wiley & Sons: New York, NY, USA, 1998.
54. Larsen, P.K. The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ. Geol. 2007, 52, 375–383. [CrossRef]
55. Godts, S.; Hayen, R.; de Clercq, H. Common salt mixtures database: A tool to identify research needs. In Proceedings of the

3rd International Conference on Salt Weathering of Buildings and Stone Sculptures, Brussels, Belgium, 14–16 October 2014;
pp. 185–198.

56. Scatigno, C.; Gaudenzi, S.; Sammartino, M.; Visco, G. A microclimate study on hypogea environments of ancient roman building.
Sci. Total Environ. 2016, 566–567, 298–305. [CrossRef] [PubMed]

57. Cardarelli, E.; De Donno, G.; Uliveti, I.; Scatigno, C. Three-dimensional reconstruction of a masonry building through electrical
and seismic tomography validated by biological analyses. Near Surf. Geophys. 2017, 16, 53–65. [CrossRef]

58. Cardarelli, E.; De Donno, G.; Scatigno, C.; Oliveti, I.; Martinez, M.P.; Prieto-Taboada, N. Geophysical and geochemical techniques
to assess the origin of rising damp of a Roman building (Ostia Antica archaeological site). Microchem. J. 2016, 129, 49–57.
[CrossRef]

59. Scatigno, C.; Moricca, C.; Tortolini, C.; Favero, G. The influence of environmental parameters in the biocolonization of the
Mithraeum in the roman masonry of casa di Diana (Ostia Antica, Italy). Environ. Sci. Pollut. Res. 2016, 23, 13403–13412. [CrossRef]
[PubMed]

60. Scatigno, C.; Prieto-Taboada, N.; García-Florentino, C.; De Vallejuelo, S.F.-O.; Maguregui, M.; Madariaga, J.M. Combination of in
situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate
environment. Environ. Sci. Pollut. Res. 2017, 25, 6285–6299. [CrossRef]

61. Merello, P.; García-Diego, F.-J.; Beltrán, P.; Scatigno, C. High Frequency Data Acquisition System for Modelling the Impact of
Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa di Diana (Ostia Antica, Italy) Case Study. Sensors
2018, 18, 348. [CrossRef]

62. Cardarelli, E.; de Donno, G.; Oliveti, I.; Scatigno, C. Assessing the state of conservation of a masonry building through the
combined use of electrical and seismic tomography. In Proceedings of the Near Surface Geoscience 2016—22nd European Meeting
of Environmental and Engineering Geophysics, Barcelona, Spain, 4–8 September 2016; European Association of Geoscientists &
Engineers: Houten, The Netherlands, 2016; Volume 2016, p. cp-495.

63. Goiran, J.; Salomon, F.; Mazzini, I.; Bravard, J.; Pleuger, E.; Vittori, C.; Boetto, G.; Christiansen, J.; Arnaud, P.; Pellegrino, A.; et al.
Geoarchaeology confirms location of the ancient harbour basin of Ostia (Italy). J. Archaeol. Sci. 2014, 41, 389–398. [CrossRef]

64. Diego, G.; Juan, F.; Scatigno, C.; Merello, P.; Bustamante, E. Preliminary data of CFD modeling to assess the ventilation in
an Archaeological building. In Proceedings of the 8th International Congress on Archaeology, Computer Graphics, Cultural
Heritage and Innovation, Valencia, Spain, 5–7 September 2016; Editorial Universitat Politècnica de València: Valencia, Spain,
2016; pp. 504–507.

65. Scatigno, C.; Sammartino, M.P.; Gaudenzi, S. Non-Invasive Analysis of Soluble Salts. Preliminary Results on the Case Study
of Casa di Diana Mithraeum (Archaeological Site of Ostia Antica-Italy). In Proceedings of the CMA4CH 2014, Mediterraneum
Meeting Employ the Multivariate Analysis and Chemometrics in Cultural Heritage and Environment Fields, Rome, Italy, 14–17
December 2014.

66. Prieto-Taboada, N.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.A.; Madariaga, J.M. Optimization of two methods
based on ultrasound energy as alternative to European standards for soluble salts extraction from building materials. Ultrason.
Sonochem. 2012, 19, 1260–1265. [CrossRef]

67. Bionda, D.; Storemyr, P. Modelling the behavior of salt mixtures in walls: A case study from Tenaille von Fersen. In The Study of
Salt Deterioration Mechanisms. Decay of Brick Walls Influenced by Interior Climate Changes; Suomenlinnan Hoitokunta: Helsinki,
Finland, 2002; pp. 95–101.

http://doi.org/10.1016/j.microc.2014.03.007
http://doi.org/10.1007/s00216-008-1844-z
http://www.ncbi.nlm.nih.gov/pubmed/18265964
http://doi.org/10.1080/01971360.2020.1823749
http://doi.org/10.1186/s40494-021-00514-3
http://doi.org/10.1179/sic.2008.53.4.264
http://doi.org/10.1016/j.chemosphere.2011.12.048
http://www.ncbi.nlm.nih.gov/pubmed/22300556
http://doi.org/10.1007/s00254-006-0586-5
http://doi.org/10.1016/j.scitotenv.2016.05.050
http://www.ncbi.nlm.nih.gov/pubmed/27232960
http://doi.org/10.3997/1873-0604.2017040
http://doi.org/10.1016/j.microc.2016.06.006
http://doi.org/10.1007/s11356-016-6548-x
http://www.ncbi.nlm.nih.gov/pubmed/27026542
http://doi.org/10.1007/s11356-017-0938-6
http://doi.org/10.3390/s18020348
http://doi.org/10.1016/j.jas.2013.08.019
http://doi.org/10.1016/j.ultsonch.2012.03.002


Molecules 2021, 26, 2866 19 of 19

68. Price, C.A. An Expert Chemical Model for Determining the Environmental Conditions Needed to Prevent Salt Damage in Porous Materials;
European Commission Research Report 11; Protection and Conserv: Brussels, Belgium, 2000.

69. Price, C.A. Predicting environmental conditions to minimise salt damage at the Tower of London: A comparison of two
approaches. Environ. Geol. 2007, 52, 369–374. [CrossRef]

70. Veneranda, M.; Irazola, M.; Diez, M.; Iturregui, A.; Aramendia, J.; Castro, K.; Madariaga, J.M. Raman spectroscopic study of the
degradation of a middle age mural painting: The role of agricultural activities. J. Raman Spectrosc. 2014, 45, 1110–1118. [CrossRef]

71. Capelli, G.; Mazza, R.; Papiccio, C. Intrusione salina nel Delta del Fiume Tevere. Geologia, idrologia e idrogeologia del settore
romano della piana costiera. G. Geol. Appl. 2007, 5, 13–28.

72. Chebotarev, I. Metamorphism of natural waters in the crust of weathering—1. Geochim. Cosmochim. Acta 1955, 8, 22–48. [CrossRef]
73. Chico, B.; Otero, E.; Mariaca, L.; Morcillo, M. La corrosión en atmósferas marinas. Efecto de la distancia a la costa. Rev. Metal.

1998, 34, 71–74. [CrossRef]
74. Petros, P.; Bala’awi, F. Salt weathering in the coastal environment: A thermodynamic approach. In Proceedings of the 11th

International Congress on Deterioration and Conservation of Stone, Torun, Poland, 15–20 September 2008; pp. 233–241.
75. E. UNI, 13779. Ventilazione Degli Edifici non Residenziali-Requisiti di Prestazione per i Sistemi di Ventilazione e di Climatizzazione; Ente

Nazionale Italiano di Unificazione: Milano, Italy, 2008.
76. Tans, P. NOAA Earth System Research Laboratory, Global Monitoring Division. In Recent Global Monthly Mean CO2; 2008; p. 74.

Available online: https://www.esrl.noaa.gov/ (accessed on 29 January 2017).
77. E. UNI, 15251. Criteri per la Progettazione Dell’ambiente Interno e per la Valutazione della Prestazione Energetica Degli Edifici. In

Relazione alla Qualità Dell’aria interna, All’ambiente Termico, All’illuminazione e All’acustica; Ente Nazionale Italiano di Unificazione:
Milano, Italy, 2008.

78. Heinzow, B.; Sagunski, H. Evaluation of Indoor Air Contamination by Means of Reference and Guide Values: The German
Approach. In Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation; Wiley Online Library: Hoboken, NJ, USA, 2009;
Volume 9, pp. 189–211.

79. Kalamees, T.; Kurnitski, J.; Jokisalo, J.; Eskola, L.; Jokiranta, K.; Vinha, J. Measured and simulated air pressure conditions in
Finnish residential buildings. Build. Serv. Eng. Res. Technol. 2010, 31, 177–190. [CrossRef]

80. Snow, F.J. American Society of Heating, Refrigeration, And Air Conditioning Engineers (ASH RAE) Thermographic Standard 101
P. In Thermal Infrared Sensing Applied to Energy Conservation in Building Envelopes; International Society for Optics and Photonics:
Bellingham, WA, USA, 1982; pp. 94–98.

81. Carapezza, M.L.; Barberi, F.; Ranaldi, M.; Tarchini, L.; Pagliuca, N.M. Faulting and Gas Discharge in the Rome Area (Central Italy)
and Associated Hazards. Tectonics 2019, 38, 941–959. [CrossRef]

http://doi.org/10.1007/s00254-006-0477-9
http://doi.org/10.1002/jrs.4485
http://doi.org/10.1016/0016-7037(55)90015-6
http://doi.org/10.3989/revmetalm.1998.v34.iExtra.711
https://www.esrl.noaa.gov/
http://doi.org/10.1177/0143624410363655
http://doi.org/10.1029/2018TC005247

	Introduction 
	Materials and Methods 
	The Building under Study, the State of Conservation and the Environmental Scenario 
	Sampling Procedure 
	Analytical Procedure 

	Results and Discussion 
	Conclusions 
	References

