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Resumen

Scanning tunneling microscope (STM) lleva revolucionando el campo de la materia con-

densada desde hace unos años. Esta técnica ofrece tanto una gran resolución espacial

como energética, permitiendo la manipulación atómica gracias a un control de la punta

a nivel subatómico. Sin embargo, desde 2015, una nueva técnica con mayor resolución

energética e igual espacial apareció: Electrón Spin Resonance (ESR). La gran diferencia

con STM viene de modular la diferencia de potencial entre la punta y el substrato a través

de un voltaje alterno AC. Cuando la frecuencia de este campo eléctrico coincide con la

separación enérgica (frecuencia de Larmor) entre dos estados de un momento magnético

localizado en una superficie aislante, la corriente sufre un cambio brusco. De esta forma,

el espín del momento magnético empieza a precesar.

Algunas de las aplicaciones más interesantes que ofrece esta técnica han sido la identi-

ficación de distintos isotopos de Ti y Fe, así como obtener información de átomos con

electrones tipo f como el Ho. También, recientemente, se está intentado hacer manipu-

lación coherente entre átomos magnéticos. De esta forma, se podrían realizar operaciones

cuánticas que tendrían un gran impacto en el campo de la información cuántica. Sin em-

bargo, un marco teórico de predicción todavía no ha sido descubierto. La gran dificultad

recae en como puede afectar un campo eléctrico alterno al espín atómico. Las propuestas

han sido varias: desde excitaciones de fonones en la superficie hasta desplazamientos del

átomo magnético, entre otras. El objetivo de esta tesis es arrojar un poco de luz a este

asunto y obtener un modelo teórico que pueda predecir y simular experimentos.

Inicialmente aplicaremos Density Functional Theory (DFT) para intentar sacar algunas

primeras conclusiones de como el sistema magnético (Fe sobre MgO/Ag(001)) reacciona
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ante un campo eléctrico. Para ello, primero, debemos seguir un procedimiento estándar

de relajación de los sistemas bulk del MgO y Ag. Extrayendo los parámetros de red

correspondientes y construyendo la superficie MgO/Ag en la que colocaremos el átomo

magnético sobre un O. La exposición a un campo eléctrico estático nos permite ver que

cambios hay en la PDOS y en el planar average potential (PAP). Las conclusiones resultan

inmediatas: el campo eléctrico afecta mucho más el PAP, lo que implica que se este

modulando la barrera de potencial. Es interesante apreciar que en otros sistemas como

Cu2N/Cu o ClCu/Cu no se tiene una respuesta tan notable con el campo eléctrico.

Con la conclusión anterior, empezamos a aplicar ciertos modelos teóricos que podrían

permitir simular los experimentos. El primero es el llamado cotunneling. Inicialmente se

parte de un Hamiltoniano total que contiene el Hamiltoniano del entorno, el del sistema

central o impureza magnética (modelo de Anderson generalizado) y la conexión entre

ambos, llamado tunneling. Dicho Hamiltioniano resulta demasiado complejo de tratar

por lo que se aplica teoría de perturbaciones a segundo orden en el término tunneling.

El objetivo detrás de esta aproximación es conseguir escribir el llamado Hamiltoniano de

cotunneling, cuya forma permite usar la teoría Bloch-Redfield. Dicha teoría aplica un

lenguaje de matrices de densidadmuy práctico para problemas de sistemas abiertos pero,

además, es fácilmente extensible al regimen con dependencia temporal que nos interesa.

Teniendo en cuenta ciertas consideraciones, el producto final de mezclar cotunneling con

dependencia temporal nos lleva a una ecuación de los elementos de la matriz de densidad

reducida que presenta un nuevo parámetro. Este parámetro resulta estar asociado a la

precesión del espín y se le llama frecuencia de Rabi.

Los resultados del modelo de cotunneling muestran que la frecuencia de Rabi es el pilar

fundamental de la teoría. Sin este parámetro, no es posible inducir resonancia ya que

la altura del pico en la corriente es directamente proporcional al cuadrado de la Rabi.

Aunque los cálculos con la teoría son bastante satisfactorios, los valores de la frecuencia de

Rabi resultan ser un factor 10-20 más grandes que los experimentales. Un rápido vistazo

al modelo y las ecuaciones empleadas nos dice que hemos tendido a sobresimplificar

demasiado los cálculos. Varias estrategias pueden ejecutarse para mejorar estos pero, sin

duda, lamás destacable es usarWannier para conocermejor la hibridación entre el sistema



y el entorno. Sin embargo, esto es algo que escapa del contenido de la tesis.

La siguiente teoría que empleamos, en un intento de mejorar los resultados de cotunnel-

ing, es la de Floquet combinada con funciones de Green fuera del equilibrio. La teoría de

Floquet estudia la estabilidad de sistema de ecuaciones diferenciales periódicos y permite

reescribirlos como uno algebraico mediante el uso del teorema de Floquet. En nuestro

caso, partimos de unHamiltoniano total parecido al no perturbado del cotunneling y apli-

camos funciones de Green junto con operadores Hubbard. Así, llegamos a una ecuación

diferencial en los elementos reducidos de la matrix de la densidad que cumple la forma

requerida para aplicar Floquet. De esta forma, podemos transformar dicho sistema de

ecuaciones en uno algebraico, resolverlo y calcular la corriente junto con cualquier otro

observable del sistema. La forma en la que definimos el Hamiltoniano del sistema nos

permite introducir interacciones entre espines y simular otros experimentos ESR más

recientes.

De las ecuacionesmasterdeFloquet quederivamospodemos calcular todos losparámetros

que afectan a la señal ESR tales como los tiempos de vida, de decoherencia o la frecuencia

de Rabi de forma natural. En cualquier caso, en el momento de escribir la tesis, este

último modelo aún no ha sido totalmente explorado. Por tanto, tenemos margen de

mejora de cara a los resultados. Sin embargo, cabe destacar que estos resultan ser bastante

satisfactorios.



Abstract

Scanning tunneling microscope (STM) has revolutionized the field of condensed matter

physics since years. The reason why comes from offering an amazing spatial and energy

resolutions, which allows to manipulate atoms thank to a precise control of the tip. How-

ever, since 2015, a new technique emerged with a better energy resolution and the same

amazing spatial one. The technique is called Electron Spin Resonance (ESR). The ESR-

STM technique consists inmodulating the tip-surface bias potential with a radiofrequency

(AC) component. When the frequency matches the Larmor frequency of a local magnetic

moment, the current changes rapidly and the spin precesses.

Some of the most interesting application have been the identification of isotopes of Ti and

Fe, and to gather information on the elusive f-electron of Ho atoms. Recently, STM-ESR

has been used to make coherence manipulation of local magnetic atoms. In this way,

quantum operations could be possible and it could revolutionize the field of quantum

information. However, the mechanism is still not perfectly understood. The challenge

is to fully comprehend how the electric field can alter a magnetic moment. Different

mechanisms have been proposed: phonons excitations, displacement of the magnetic

atom etc. The aim of this thesis is light up this questions and trying to come up with a

theoretical model that can simulate and predict experiments.

Initially, we will apply Density Functional Theory (DFT) in order to gather information on

the magnetic system (Fe on MgO/Ag(001)) when an electric field is applied. To this end,

we follow the standard procedure of relaxation of the bulk system MgO and Ag. After

extracting the lattice parameter, we build the surface MgO/Ag(001) and place the Fe on

the top O. If we now compute the PDOS and planar average potential (PAP) for different
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electric fields, we can easily see that PAP feel it significantly more. Therefore, we can

conclude that the electric field is modulating the tunneling barrier. It is worthy to notice

that the surface Cu2N/Cu o ClCu/Cu feels the electric field much less compare to the

MgO/Ag surface.

With this information,we can start applying certain theories that couldallowus to simulate

the experiments. We first try the cotunneling approach. We use a Hamiltonian that

contains the reservoirs, the impurity Hamiltonian (generalized Anderson model) and

the connection between both, called tunneling Hamiltonian. This last contribution is

approximated by perturbation theory up to second order. The objective is to derive a

cotunneling Hamiltonian from this approximation and apply Bloch Redfield theory. This

theory is extremely useful for open quantum system such that ESR because it uses a

density matrix language. The theory can be easily expanded to time dependent problems

too. Combining cotunneling and Bloch-Redfield leadmaster equation that contains a new

parameter: the Rabi frequency. Rabi frequency becomes essential to explain the ESR.

Without it, the spin do not precess since the resonance peak is proportional to the square

of the Rabi frequency.

Even though the cotunneling results are quite satisfactory, the Rabi frequency is still

a factor 10-20 larger than the one we find in the experiments. A quick look at the

expression we are using gives us the reason of this discrepancy: we are oversimplifying

the calculations. To improve the results one could apply Wannier but we are not going to

talk about it in this thesis.

The next theory we apply, in order to improve our results, is the Floquet theory together

with non equilibrium Green’s function. Floquet theory is the study of the stability of

linear periodic systems in continuous time. It allows us to transform a time differential

system of equation into an algebraic one, using the so called Floquet theorem. If we

use a total Hamiltonian similar to the one we talked early, while introducing Hubbard

operator and Green’s Function, we arrive to a master equation of the reduced density

matrix. This master equation satisfies the Floquet condition so that we transform the

system into a simpler algebraic one to compute the density matrix element, current or any
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other observable. The master equation contains all the ESR important parameter such as

lifetime, decoherence times or Rabi frequencies. Moreover, since we also introduce an

exchange interaction between spins, we can simulate other experimental situations.

In any case, at the moment of writing the thesis, Floquet Green’s function model is still

quite unexplored. Therefore, it can be greatly improved and extended even though the

results are already quite satisfactory.





Chapter 1

Introduction: ESR-STM Experiment

The scanning tunnelingmicroscope (STM) is a surface analysis technique that has revolution-

ized not only the study of surfaces but virtually all fields of condensedmatter physics. The

reasons are multiple, but they can be summarized into good energy resolution in resolv-

ing electronic states together with unprecedented spatial resolution. The STM consists in

a sharp metallic tip etched and atomically manipulated until the tip acquires an atomic

edge, that is electrically polarized with respect to a solid surface that can hold atoms,

molecules, nanoscopic structures besides complex surfaces. The tip-surface distance can

be controlled to sub-Å precision thanks to piezoelectric actuators, and the current estab-

lished between tip and sample. This current can be made to change rapidly as the tip

retracts or approaches the surface leading to enhanced spatial resolution. This is possible

because, for tip-surface voltages below the surface or tip work functions, the current takes

place via the tunneling effect. Thus, it decreases exponentially with the distance, such

that a small change in the separation tip-surface translates into a measurable current that

can be controlled with an external feed-back circuit. Figure 1.1 shows a scheme of the

STM.

The usual operational modes of the STM are scanning at constant current or scanning at

constant tip-surface distance. In the case of constant-current operation, the feedback loop

is closed and the tip is allowed to vertically move in order to keep the current constant.

The ensemble of x, y, z points of the tip position defines a constant-current STM image.
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12 CHAPTER 1. INTRODUCTION: ESR-STM EXPERIMENT

Figure 1.1: Scheme of a scanning tunneling microscope (STM) that polarizes a metallic

tip with respect to a conductive surface at low biases (below the work function of the

constituents) such that the current proceed via the tunneling effect. Electrons tunnel from

tip to substrate if the tip is grounded and the substrate is held at positive bias. At positive

bias the current probes empty states of the surface. The piezoelectric system and the

atomic termination of the tip grants atomic resolution, because the current changes in

atomic distances. (Figure taken from wikipedia)

The other operational mode is to keep the tip-surface distance constant and measure the

tunneling current. However, this mode is more difficult to control since the distance

changes much less than the current. The tip can be position over interesting spots on a

surface (for example a magnetic adatom), and the bias can be increased. In this way the

current gives information on the surface states contributing to the current. These states

also include excitations of the electronic system such that phonons, magnetic excitations,

etc. This is simple to see. When the bias matches some excitation threshold of the studied

system, a new conduction channel can open. Indeed, the electron can either transmit

elastically, i.e. without exciting the substrate, or inelastically by exciting it. These two

possibilities lead to an increase of possible final electronic states, permitting an increase

of the current. The increase takes place over the bias threshold, such that an abrupt

change in differential conductance, 3�/3+ , can be measured. The study of the differential

conductance as a function of the applied bias is then a powerful local spectroscopy [1, 2].

Figures of merit of the above spectroscopy are∼ 1 meV in energy resolution, together with



13

0.01 Å in lateral spatial resolution and 0.1 Å in vertical one. These numbers show the

precise measurements that can be performed with the STM. Unfortunately, many interac-

tions are smaller and escape to these commommeasurements of the STM. However, since

2015, a new technique with the STM has revolutionized the field. Electron spin resonance

(ESR) can enhance the energy resolution to detect nano-eV shifts while conserving the

atomic spatial resolution of the STM. The increase in energy resolution is a millionth of

the previous resolution in 3�/3+-mode. The ESR-STM technique consists in modulating

the tip-surface bias with a radiofrequency (AC) component. This sinuosoidal signal is

added to the constant bias and the tunneling current is detected as a function of the signal

frequency. When the frequency matches the Larmor frequency of a local magnetic mo-

ment, the current changes rapidly, yielding a way of detecting precession frequencies of

an atomic spin.

The first experiments of ESR-STM were conductacted by Manassen and co-workers [3, 4].

In these experiments a magnetic field was modulated, instead of the bias, and a detector

with a narrowbandwidthwas used to detect the time-dependent tunneling current. These

experiments showed the presence of ESR features, revealed as an increased noise in the

tunnel current at the spin precession frequency [3, 4, 5]. However, the technique proved

difficult to perform. Later on, Müllegger et al. [6] simplified the setup by using static

magnetic fields and using an AC component of the tip-surface bias. They showed that

a signal that could be due to ESR was induced in a bis(phthalocyaninato)terbium(III)

molecule adsorbed on Au (111). Short after, similar experiments were performed on a

single Fe adsorbate on a bilayer of MgO on Ag (001), showing an ESR signal [7].

The demonstration of reproducible single-atom [7] and single-molecule [6, 8] electron

spin resonance (ESR) has opened new venues in the analysis of surface science at the

atomic scale. Moreover, it can be combined with high-time-resolution pump-and-probe

techniques [9, 10]. This has allowed access to the dipolar interaction between close mag-

netic adatoms, GPS-like localization of magnetic impurities on a surface [11], single-atom

magnetic resonance imaging [12], and spectroscopy [13], probing an adatom quantum

coherence [14], tailoring the spin interactions between ( = 1/2 spins [15], measuring and

manipulating the hyperfine interaction of individual atoms [16] and molecules [6, 8] or
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Figure 1.2: ESR spectrum taken with an STM over a Ti atom on a bilayer of MgO on Ag

(001). The resonance frequency coincides with the energy difference between the two

spin states ±1/2 in the presence of a static external field of 0.9 T. The bias between tip

and sample contains a constant component and a snusoidal component at the frequency

marked in the G-axis. The H-axis shows the measured tunneling current. Figure adapted

from [15].

controlling the nuclear polarization of individual atoms [17].

Figure 1.2 gives an example [15] of a typical measurement over a Ti atom adsorbed on

two layers of MgO grown on Ag (001). The current is measured as a function of the

driving frequency, and a clear spike is seen above the resonance frequency. The frequency

corresponds to twice the Zeeman splitting of a spin 1/2 in a 0.9 T magnetic field. This

shows that the Ti atom is a spin-1/2 system on the MgO/Ag(001) surface, and the ESR

corresponds to inducing Rabi oscillations between the two states with spin proyections

±1/2.

The experimental data seems to show that magnetic adatoms can display magnetic reso-

nanceswhen they aredecoupled from the susbtrate’s electronsvia anMgO layer. However,

molecules may be a different story [6]. All these experiments seem to show that it is the

electric field that really couples to the magnetic moment of the studied object. This is

somewhat a startling observation because electric fields do not interact with magnetic

moment. Here, the time variation of the field induces a magnetic field, but estimates of
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Figure 1.3: The ESR-STM signal (DC current) on an adsorbed Fe on MgO/Ag (001) was

recorded showing the characteristic signal for the (I ≈ ±2 transition, in (a). The shift in

the Larmor frequency is due to the dipolar interaction with a neighboring Ho atom as

indicated in the sketch. (b) This shift is plotted as a function of distance in a log-log graph.

The slope is −3 showing that indeed the interaction is dipolar. These data permitted the

authors to fit the magnetic moment of the Ho atom, yielding a value of (10 ± 0.1)��, in
good agreement with the free-atommagnetic moment. Reprinted fromNatterer et al. [13].

the size of the mangetic field show that the interaction with this field should be negligible

[18].

Recent experiments [18, 19] have modified the ESR-STM setup by explicity including a

coaxial electrode next to the STM tip. In this way, themacroscopic extra electrode is driven

by microwaves and the ending electrode acts as an antenna that radiates the susbtrate.

The agreement with the previous experiments is excellent. This shows that indeed the

electric field is at the origin of the ESR signal.

In any case, all the experiments mentioned shows how excellent ESR-STM technique can

be. Let me get into two dramatic measurements showing at first hand the capabilities of

ESR-STM. First, Natterer et al. [13] use their well-studied Fe atom on MgO/Ag(001) to

gather information on the elusive f-electron Ho atom. Ho atom displays a large magnetic

moment due to the contribution of the impaired f-electrons. However, conductance

experiments directly performed on Ho atoms do not seem to obtain information on the

f-shell due to its very compact structure. Magnetic dipolar interactions that decay as 1/33



16 CHAPTER 1. INTRODUCTION: ESR-STM EXPERIMENT

Figure 1.4: The Rabi oscillations giving rise to the electron spin resonance involve flipping

spins in a coherent way. When the nuclear spin is interacting with the electronic spin,

the nuclear spin can also flip due to the exchange (hyperfine) interaction between the

nuclear magnetic moment and the electronic magnetic moment. The scheme shows the

two posibilities now involving the flipping of a spin up or down of different energy,

leading to two Larmor frequencies. Adapted fromWillke et al. [17].

where 3 is the distance between magnetic moments are very weak, which is the perfect

scenario for ESR.

Natterer et al. [13] study the Larmor frequency of the Fe atom exposed to a constant

external magnetic field as the distance to a Ho atom is varied. ESR is so sensitive that it

can measure the small shifts of the Larmor frequency as a function of the Ho-Fe distance.

Figure 1.3 shows an example of the ESR data as the distance between the two atoms is

changed. The ESR peak shifts. When the shifts of the ESR signals are plotted as a fucntion

of the interatomic distance, a perfect 1/33
law is retrieved and the magnetic moment for

Ho is found to be (10 ± 0.1)��.

Another example is the determination of the nuclear atomic number of individual atoms.

This was done by Willke et al. [17]. They measured Fe and Ti atoms on MgO/Ag(001).

For Fe, they found the previously shown peak, Fig. 1.3. But sometimes they found a split

peak. The value of the splitting perfectly agreed with the known hyperfine interaction of

57
Fe. The nuclear spin of

57
Fe is � = 1/2, explaining why two peaks are found, see Fig. 1.4.
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Figure 1.5: The ESR-STM spectra for three different Ti isotopes are shown (
48
Ti with � = 0,

47
Ti, with � = 5/2 and

49
Ti with � = 7/2). The righ pannel shows constant-current images

of the corresponding atoms. Reprinted fromWillke et al. [17].

The more usual case is
56
Fe, which is closed shell and has � = 0, leading to no hyperfine

interaction. The case of Ti is more interesting. There are three typical isotopes. The more

abundant one,
48
Ti, has a nuclear spin � = 0, and leads to a single ESR peak. See Fig. 1.5.

On the same figure, you can also see the spectra for
47
Ti, with � = 5/2 and consequently 6

peaks, and
49
Ti with � = 7/2 with 8 peaks as corresponds to the mutliplicity of the nuclear

spin.

Recently, pulsed ESR has become available [20]. This is a very interesting development

that ushers the STM in the realm of quantum operations. Now, the STM can be used

to coherently manipulate local magnetic moments and induce extraordinary operations.

New things should be soon discovered.

The above experiments show the interest of the newly developed ESR-STM technique.

However, as any other technique, analysis tools need to be developed that permit us to

unravel the full potential of this technique.
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1.1 Unsolved questions

Despite the success of this newexperimental technique, there are stillmanyopenquestions

about the mechanism leading to the all-electric ESR signal. The most prominent question

is, how can a magnetic moment respond resonantly to an AC electric field? There is some

puzzlement in the community studying ESR-STM, because the associated magnetic field

is very small and unable of driving the spin. Therefore, several theoretical proposals

have been formulated. Baumann et al. conjecture [7] that the AC electric field induces an

adiabatic mechanical oscillation of the adatom, leading to amodulation of the crystal field

that, togetherwith the atomic spin-orbit interaction, originates spin transitions under very

particular symmetry constrains.

A different mechanism could be the phonon excitations induced by the electric field,

which efficiently couple to the atomic magnetic moments as described by Chudnovsky

and collaborators [21, 22]. This model has been successfully applied to explaining the ESR

signal in molecular magnets [8]. Unfortunately, the excitation of unperturbed phonons in

MgO/Ag(100) by a driving AC electric field leads to zero spin-phonon coupling. Many

other mechanism have been proposed using some variation of the above ideas [23, 24, 25].

However, either these works failed in reproducing strong enough signals or they cannot

explain that the ESR resonance can be observed in different atomic species (Fe, Ti, Mn,

Cu, and Co) [7, 11, 12, 13, 14, 15, 16, 17]1 with similar Rabi frequencies. Importantly, other

surfaces, notably Cu2N/Cu (001), have failed to yield any ESR signal even though it seems

a valid substrate.

The process itself of the Rabi oscillation in ESR is very interesting. The ESR Rabi os-

cillations can be understood as coherent spin flips. This interpretation brings in more

need for modelling because if we take Fe, how a (I ≈ ±2 Rabi oscillation can take place?

The objective of this thesis is to bring some light to these questions and to try to per-

form quantitative simulations of ESR-STM signals. To his end, we first use computational

methods such as Density Functional Theory (DFT) to learn about the overall electronic

1Although in the first work on ESR [7], there was not any resonant signal on Co, the authors have

confirmed us that it can also be detected.
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and magnetic structure of the studied systems. Then, we apply a cotunneling picture to

the problem so that we can show that a frequency-dependent DC current can appear as

a consequence of the modulation of the tunnel barrier in the STM setup, in the spirit of

the Bardeen theory for tunneling current [26]. The resulting spin-electron coupling is

similar to the mechanism behind the excitation of molecular vibrations in the inelastic

electron tunneling spectroscopy conducted with STM [27, 28]. Finally, we make use of

a Floquet approach to develop a simulation tool that produces ESR-STM spectra taking

into account the full spin quantum dynamics, the driving electrical field and the electron

current reflecting the coherent electron spin oscillations.





Chapter 2

Methods
In this chapter we summarize all the theoretical methods used in the thesis. Because

the system is quite complex electronically, we first employed Density Functional Theory

(DFT) as a computational method. Although it has serious flaws due to bemainly amean-

field theory, it can provide a good understanding on the main properties of the magnetic

impurity with the advantage of not depending on adjustable parameters. An outline of

our calculation will be added at the end of this section.

The secondmethodwe introduce is the effective time-dependent cotunneling theory. Our

aim is to build a cotunneling Hamiltonian which gives an effective total Hamiltonian of

the open quantum system (impurity atom plus electrodes) so that we are able to apply

the Bloch-Redfield (BRF) formalism [29]. BRF allows us to derive a master equation for

the reduced density matrix elements, which results to be quite useful since it provides the

general understanding of relaxation and decoherence times, in addition to the Rabi fre-

quency. Amultiplet calculation of the atomic electron structuremust be applied to achieve

proper results. Otherwise, the theoretical calculations lead to inaccurate conclusions.

Finally, we talk about the Floquet-Green’s Function technique. This theory tries to provide

an easy-to-understand method powerful enough to predict and compute ESR spectra. As

in the BRF theory, a low coupling of the impurity atom with the reservoirs is assumed,

which is a good approximation for tunneling currents. The theory uses density matrix

language to arrive to a master equation that provides a way to compute any observable of

interest.

20
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2.1 Electronic Structure Methods

This section of the theory is inspired by two PhD theses [30, 31]. Any quantum system,

composed of nuclei and electrons, can be described by the time-dependent Schrödinger

equation [32], where the Hamiltonian plays a central role. Solving the Schrödinger equa-

tion provides the wavefunction that allows us to extract all important observables of the

system. Unfortunately, a full computation of the wavefunctions become impossible for

most cases. Hence, several approximations are needed, such as the Born-Oppenheimer

one, which separates the motion of the nuclei from the electrons [33]. However, although

the nuclear part can be solved using this approximation that reduces the dimension of

the problem, the electronic part remains unsolved. The cause of this is the problematic

electron-electron interaction of the total Hamiltonian. A possible method to overcome

this is the Density Functional Theory (DFT).

2.1.1 Basic DFT formalism, Kohn-Sham (KS) equations. The correla-

tion problem

The idea behind DFT is to not explicitly make use of the many-body electronic wavefunc-

tion but instead use the electronic density, =(r), to describe the system [34]. This approach

results to be quite versatile and simpler compare to othermethod such as theHartree-Fock

approximation and, more importantly, less computationally time consuming. In fact, DFT

provides a solution of the problem that grows as a power of the number of electrons # ,

whereas an exact solution of the#-electron Schrödinger equation requires time that grows

exponentially with # . The advantage of this method stems from two theorems due to

Hohenberg and Kohn [35] (H-K theorems) that we present next. Consider an #-electron

system described by the Hamiltonian

ℋ̂ = )̂ + +̂44 + +̂ .
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+̂44 and )̂ are the kinetic and electron-electron interaction terms,

+̂44 =
42

2

#∑
8≠9

1
|̂r8 − r̂9 |

)̂ =

#∑
8=1

p̂2
8

2< ,

and

+̂ =

∫
33A+4GC(r)=̂(r),

is the potential due to atomic nuclei and external charges, often called external potential.

The electron density operator is defined as

=̂(r) =
#∑
8=1

�(r − r̂8), (2.1)

being r̂8 the 8-th electron’s position operator. The H-K theorems then read as

Theorem 1 The external potential +̂4GC is uniquely determined by the electron density operator

=̂(r), apart from a trivial additive constant. Thus, knowing the external potential leads to a

fully-determined Hamiltonian.

Theorem 2 A universal density functional �[=] for the energy can be defined given the external

potential and it is minimized by the exact ground-state electron density.

Therefore, the ground-state energy is

��( = min
=(r)

�[=].

The solution lies in performing such minimization. However, this becomes impossible

since the exact dependence on the electron density is unknown. Using these theorems,

Kohn and Sham [36] proposed to construct the electron density =(r). This leads to a

sort of mean-field equations known as the Kohn-Sham (KS) equations whose solutions

result to be much simpler and powerful than the Hartree-Fock and more accurate for the

ground-state.
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In order to derive the KS equations, let us write the energy functional. It can be divided

into two parts as follows

�[=] = �0[=] +
∫

33r+4GC(r)=(r),

where �0[=] is called the universal functional since it depends on the specific electron-

nuclei system implicitly through the electron density. We will write this functional as

�0[=] = �:8=[=] +
42

2

∬
=(r)=(r′)
|r − r′| 3

3r33r′ + �-�[=].

The first term is the kinetic energy of a system of non-interacting particles with the

density =(r), which is easy to compute. The second one is the usual Hartree energy and

the rest is the exchange, �-[=], and correlation , ��[=], energies that take into account the

missing electron-electron interaction contributions in the Hartree term. In general, both

contributions are not separable and we will refer to them as the exchange-and-correlation

functional, �-�[=]. At this point, we can apply the second theorem to write∫
=(r′)33r′

(
+4GC(r) + 42

∫
=(r)
|r − r′| 3

3r + ��:8=[=]
�=(r) +

��-�[=]
�=(r)

)
= 0, (2.2)

These equations for the ground-state density are mean-field like as we mentioned. Thus,

we write =(r) = ∑
� |)�(r)|2, where the electron density is given by )�(r), which are called

Kohn-Sham orbitals. The equations for these orbitals can be already extracted from Eq.

(2.2):(
− 5

2

2< ++4GC(r) + 4
2
∫

=(r)
|r − r′| 3

3r ++-�(r)
)
)�(r) =

(
− 5

2

2< ++4 5 5 (r)
)
)�(r) = &�)�(r),

(2.3)

being &� the Lagrange multipliers. Equation (2.3) are the so called Kohn-Sham equations

and they have to be solved iteratively.

Notice that KS equations just introduced the concept of a non-interacting reference system

built from a set of one-electron orbitals )�(r) such that themajor part of the kinetic energy,

the non interacting one, can be calculatedwith enough accuracy. The effective field created

by the electron-nuclei system minimizes the functional energy where only the exchange
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correlation potential +-�(r) is unknown and it has to be approximated. The good news

is that the correlation term is usually much smaller than the Hartree and kinetic energies,

then we expect that this approximation works well enough. However, many times is

not the case and the field of searching for a universal electronic structure method is still

opened.

Among of the initial approaches to approximate the exchange and correlation functionals

�-�[=↑, =↓]1, the local density approximation (LDA) and the generalized gradient approx-

imation (GGA) have become standard. The first one makes use of a uniform-electron-gas

model defined by the exchange and correlation functional of a constant electron den-

sity. Hence, exchange and correlation energies are local functionals of the electron den-

sity and �-�[=↑, =↓] can be decomposed linearly into exchange and correlation terms.

The exchange part can be approximately computed but the correlation one needs to be

parametrized from quantum Monte Carlo simulations [37]. As one would expect from

its construction, the LDA is meant to be used for ”nearly-homogeneous” electronic sys-

tems but surprisingly, it performs very well even in systems where the electronic density

changes rapidly.

In order to allow for non-local density variations in the exchange-and-correlation func-

tional, a step beyond is needed. A proposed improvement is the Generalized Gradient

Approximation (GGA). To account for the non-homogeneity, the GGA scheme intents to

improve LDA by expanding the exchange-correlation energy functional into gradients of

the electronic density instead of only using the density at a particular point r. Different

parametrizations of GGA have been considered. Among the most spread ones is the

Perdew-Burke-Ernzernhof (PBE) [38, 39]. This type of parametrization corrects the LDA

exchange term by a multiplicative factor that depends on the density gradients while

the correlation part is corrected by a density-dependent additive term. Although GGA

tends to ”over-correct” LDA, GGA-PBE approximations are accurate enough for most of

the electronic structure properties of adsorbed atoms and small molecules on metal sur-

1Here we have included spin polarization as a new independent variable that is convenient for many

practical calculations, = = =↑ + =↓. DFT theory follows the same principle, now we just need to minimize

�[=↑, =↓] using the ground state spin-resolved electron densities =↑(r) and =↓(r).
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faces. However, non-local interactions, such as Van deerWaals forces, have to be explicitly

included outside the functional scheme [40].

In order to summarize this section, let us point out the advantages of the DFT method:

it offers universality, versatility, simplicity and consumes less computer resources. How-

ever, the following considerations have to be taken into account when using the DFT

methodology:

• A closed exact form of the density functional is so far unknown, hence it has to be

approximated.

• The many-body wavefunction is not accessible. We compute the KS orbitals that are

not, by any means, a good approximation to the true wavefunction of the system.

• The universal functional formulation hides the distinguishing characteristics of in-

dividual systems. Consideration of simplified models which reveal these character-

istics is still needed.

• The theory cannot describe excited electronic states.

• Time-dependent problems require the use of time-dependent density-functional

theory (TDDFT). However, the development of approximations for this theory is

behind DFT, although, it is progressing [41].

These last two points cause that we cannot apply DFT to the study of ESR, even if the elec-

tron density and correlation were available. However, we can extract useful conclusions

from DFT.

2.1.2 Outline of our calculation

We have chosen the Vienna Ab initio Simulation Package (VASP) for our impurity cal-

culations which is a DFT computer program for atomic scale materials modelling, e.g.

electronic structure calculations and quantum-mechanical molecular dynamics, from first

principles. To this end, VASP can compute the solution of the many-body Schrödinger

equation using the DFT approach already exposed. Additionally, central quantities, like

the one-electron orbitals, the electronic charge density, and the local potential are ex-
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pressed in plane wave basis sets. The interactions between the electrons and nucleis

are described using either norm-conserving, ultrasoft pseudopotentials, or the projector-

augmented-wave, PAW, method which has been demonstrated to be highly accurate [42].

Thus, PAW_PBE potentials will be use in all cases since, as we mentioned, PBE provides

a good enough faithfulness for most of the electronic structure properties.

The plane-wave basis set expands all KS orbitals in Fourier components of the reciprocal

lattice vector. This implies the use of real-space periodic boundary conditions in order

to represent the plane-wave basis set by a discrete set of Fourier components. As a

consequence, the systems are faithfully represented by a few atoms in a unit cell that is

periodically repeated in space. Attention must be paid to possible interactions between

periodic images when simulating very dilute systems or isolated impurities. The Fourier

expansion is truncated at large reciprocal vectors. The kinetic energy corresponding to

these components is so large that the details of the Hamiltonian are not important and the

maximum reciprocal vector can be mapped into a cutoff energy that is used to truncated

the Fourier expansion. Since the reciprocal vectors correspond to a small step in space,

� = 2�#
! where # is a large integer number and ! is a typical unit cell dimension, the

smallest step is !/2�. This defines the spatial resolution that the plane-wave expansion can

achieved. As a consequence, softly varying potentials are numerically better evaluated

and this leads to a different types of pseudopotentials to account for the electron-ion

interactions. The energy cutoff of the calculation is a crucial parameter that has to be

maximized in search of accuracy and reduced in terms of computational efficiency. A

second important parameter is the sampling of
®: in the first Brillouin zone in order to

abide by Bloch’s theorem. Indeed, the use of periodic boundary conditions forces the

use of Bloch’s theorem to solve Schrödinger’s equation. Again the minimum number of

k-points,
®:, is interesting for computational efficiency albeit detrimental for describing the

electron density.

In order to build the surface experimentally used, we first compute the bulk lattice pa-

rameters of the MgO crystal structure and Ag FCC following the typical steps of choosing

the appropriate cutoff energies and K-points in the range where we expect to find the

lattice parameter that minimizes the free energy. Once the bulk lattice parameter is found,
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we create a slab of atoms such that one termination is an accurate representation of the

experimental surface. It is important to compromise between a large number of atoms to

accurately represent the surface and a small number of atoms for faster execution. The

unit cell then contains a slab of atoms such that in, say, the I-spatial direction, there are

atoms and then vacuum. This is repeated periodically. In the other two directions, the unit

cell is chosen such that it patches the surface entirely, effectively representing an infinite

system. Van der Waals corrections have to be taken into account by making IVDW= 12 in

the INCAR in order to reproduce results closer to the experimental measurements [43].

With the information of the lattice parameter, the next steps to follow are:

• Building the slab of 1-4 monolayers (ML) of MgO over four monolayers of Ag

(001), being the Ag atoms under O, and performing three relaxation procedures.

Initially we made a first low accuracy calculation, then, we repited it adding a

dipole correction setting LDIPOL=.TRUE.2. Since the slab is built in the xy plane,

IDIPOL= 3. Finally, we performed another relaxation lowering the convergence

criterions to the desire value.

• Being the slab relaxed, we placed the Fe impurity in the top MgO layer above one

oxygen. In order to take into acount the magnetic behaviour, we have to write

in the INCAR file ISPIN= 2 and LDAU = .TRUE. while introducing an on–site

Coulomb repulsionUof 3.2 eV, value took from [45]. Then, relaxations are performed

lowering the convergence criterions until the system is relaxed enough. The reason

to introduce an LDA+U scheme is to correct for the lower magnetization of atoms in

the local and semi-local LDA and GGA.

• At this point, we can make calculations for different electric force fields trying to

emulate the effect of an electric field in the experiment. Although the field is static,

it provides useful information. We compute the Planar Average Potential (PAP) to

visually see the difference in the self-consistent electron potential. This potential is

the one used to find the KS orbitals and mimics the trapping potential for electrons

2The periodic boundary conditions, apart from slowing down the energy convergencewith respect to the

size of the supercell, affect the potential and the forces by finite size errors. This effect can be counterbalanced

by setting LDIPOL=.TRUE. in the INCAR file and it follows the spirit of [44].
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in the surface. In the presence of an external electrical field, this potential changes

giving us a measurement of the effect of the tip electric field in the potential felt by

the surface electrons.

These steps close the Fe on MgO/Ag procedure but, additionally, we built two more

surface systems: Cu2N/Cu and CuCl/Cu. We followed the same previous steps. Both

slabs have 4 layers of copper plus a top one where we introduce copper and nitrogen

or chlorine. The reason why we study these systems is to compare their electric-field

responses with the MgO one since they could provide a better ESR signal. DFT permits

us to compute the forces exerted on atoms by virtue of the Hellmann-Feynman theorem.

Hence, studying the forces induced in the surface atoms by an external electrical field

gives us interesting data on the piezoelectric response of the different system. This is

relevant to identify the importance of the surface piezoelectric as a possible mechanism

triggering ESR.
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2.2 Cotunneling theory approach

Here, we extend the cotunneling formulation of STM-ESR presented in Ref. [46] with

some additional details. In our first attempt to simulate the ESR experiments, we used

a cotunneling approach where the hybridization with the leads is treated up to second

order in perturbation theory. The formalism of time-independent cotunneling provides

an effective Hamiltonian of the coupled system that can be introduced into the Bloch-

Redfield theory [47]. This theory leads to a markovian master equation for the reduced

density matrix.

We recall that the density matrix or density matrix operator is an alternative way of repre-

senting a quantum state instead of using wavefunctions. This formalism, pioneered by J.

von Neumann in 1927 [48], presents significant practical advantages since the description

becomes especially useful to treat mixed states. A pure quantum state is the one that

can be described by a single ket vector while a mixed state is a statistical mixture of pure

states without phase relation between the elements of the mixture. Coherent superpo-

sition of states gives rise to the so called coherence. These states inevitably arise if we

have two or more interacting quantum systems. As a consequence, the density matrix is

particularly useful to study open quantum systems. ESR experiments can be thought not

only as an open quantum system (the local) interacting with two electronic baths (the two

metallic leads of the STM), but this interaction is also weak, so the situation is ideal for the

application of the perturbative Bloch-Redfield approach.

Therefore, the aim in this section would be to derive a time independent cotunneling

Hamiltonian and extend it to the time dependent regime. Then, we will apply the Bloch-

Redfield theory and compute transition and decoherence rates, as well as the Rabi fre-

quency.

2.2.1 Effective Cotunneling Hamiltonian

Following A.P. Jahuo et al. [49], the total Hamiltonian is described by

ℋ̂ = ℋ̂A4B + ℋ̂( + ℋ̂) . (2.4)
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ℋ̂A4B is the Hamiltonian of the  = !, ' (left or right) electrode described by

ℋ̂A4B =
∑
:�

(�:� − �)2†:�2:� =
∑
:�

�:�2
†
:�2:� , (2.5)

where the operators 2:� (2
†
:�) annihilate (create) electrons in the -reservoir with a spin

projection � = −1/2, 1/2 and momentum :. These two reservoirs have temperatures and

chemical potentials ) , �. Notice that for spin unpolarized electrodes, �:� ≡ �: . In

accordance to Ref. [49], we assume that the occupation of each single particle state :� is

time independent.3 ℋ̂( is the Hamiltonian of the central system which is assumed to be a

generalized Anderson model:

ℋ̂( =
∑
ℓ�

�ℓ ,� =̂ℓ� +*
∑
ℓ

=̂ℓ↑=̂ℓ↓ +
1
2

∑
ℓ≠ℓ ′

∑
�,�′
(+ℓℓ ′,ℓ ′ℓ −+ℓℓ ′,ℓℓ ′���′) =̂ℓ� =̂ℓ ′�′ , (2.6)

where =̂ℓ� = 3†
ℓ�3
†
ℓ� and ℓ indicates the orbital. * is the onsite Coulomb repulsion or

charge energy, and+ℓℓ ′,ℓ ′ℓ and+ℓℓ ′,ℓℓ ′ (ℓ ≠ ℓ
′
) are the intersite direct and exchange Coulomb

integrals. We assume that this system Hamiltonian is time independent. Hence, only the

single-particle energy, �ℓ ,�(C), could be time-dependent. If this is the case, an analysis in

terms of Floquet wavefunctions and quasienergies would be required [50]. In the regime

of interest, the average charge on the central system is conserved, i.e., 〈∑ℓ ,� =̂ℓ�〉 = #4 ,

the total number of electrons. Hamiltonian ℋ( ≡ ℋ((#4) can be then written in the

bases of configurations of #4 electrons distributed on the #orb (#orb = 6 when only the

d-shell of the transitionmetal atom is considered). This is done by the electronic multiplet

calculation developed by F. Delgado. AppendixA includes the bases of the usedMultiplet

code.

As a result of the coupling to the electrodes, the total charge can fluctuate during very

short time periods (virtual processes). Thus, if the coupling to the electrodes is weak

enough, only three charge configurations contribute significantly and we can reduce the

Hamiltonian in Eq. (2.6) to these 3 charge sectors, & = 0,±. The 0 sector is the one

corresponding to the ground state of the isolated central system. The sectors + and

3The situation of time dependent occupations of the electrodes do not conserve the number of electrons

and leads to spurious results.
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− correspond to the system with an extra electron and an extra hole respectively. If

we denote the instant eigenvectors of the central system as |&, =(C)〉, the central part

Hamiltonian can be approximately diagonalized as

ℋ̂((C) ≈
∑
&=0,±

∑
=

�&,=(C)|&, =(C)〉〈&, =(C)|.

The tunneling Hamiltonian, ℋ̂)(C), represents the coupling between the reservoirs and

the central system represented by ℋ̂(. It changes the number of electrons in the correlated

quantum system by one unit to create or annihilate one in the reservoirs:

ℋ̂) =
∑
:�,i

[
+:�,i(C)2†:�3i ++∗:�,i(C)3

†
i 2:�

]
= V̂(−)(C) + V̂(+)(C), (2.7)

where 3†i creates an electron with quantum numbers i = (ℓ , �) with ℓ the orbital number

and � the spin. The spin conservation imposes that the hopping+:�,8�′ are zero if � ≠ �′.

In Eq. (2.7) we have introduced the operators V̂(±), the tunneling part that increases (+)
or decreases (−) the number of electrons in the central region by one unit. Notice that we

have a time dependent hopping parameter.

We would like to call the attention on one detail of our system’s description. In principle,

we have twoways of introducing the effect of theACvoltage discussed in section 1.1: linear

energy shift or time-dependent tunneling +:,�. The first acts on the single-particle energy

�ℓ ,�(C) while the second one on the tunneling constant or hopping. Later on this thesis

we will conclude from DFT calculations that, for the STM-ESR experiments onMgO, only

the time-dependent tunneling can provide a strong enough ESR effect. So, the linear

energy shift is discarded. We will talk about this in the next section. We shall start by

computing a time-independent cotunneling which will allow us to introduce an effective

total Hamiltonian.

The essence of cotunneling theory is that the central system is weakly coupled to the

reservoirs. Therefore, the transport of the tunnelingHamiltonian can be treated by second

order pertubation theory. Furthermore, the average occupation of the charge states& = ±
remain constant. Sowe canuse degenerate perturbation theory to determine the dynamics

of the states acting only on the #0-charge space, which hereafter we shall refer as neutral
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charge state. We define the eigenvectos and eigenvalues of the decoupled electrode+central

system having #0 electrons on the central part as |#〉 and �# , respectively. We denote

by |"±〉 the corresponding eigenvectors with #0 ± 1 electron. Hence, we can write the

matrix elements between states |#〉 and |#′〉 as

�eff
#,#′ =

∑
"

〈# |ℋ̂) |"〉〈" |ℋ̂) |#′〉
�" − �0

.

�0 is the ground state energy of the (decoupled) system with #0 electrons in the central

region. Since the tunneling Hamiltonian changes the charge state of the central system by

one unit, the matrix elements 〈# |�tun |#〉 vanish, so we can write

�eff
#,#′ =

∑
"−

〈# |V̂+ |"−〉〈"− |V̂− |#′〉
�"− − �0

+
∑
"+

〈# |V̂− |"+〉〈"+ |V̂+ |#′〉
�"+ − �0

, (2.8)

which is defined in the neutral charge subspace & = 0. We now write the low energy

eigenstates of ℋ̂0 = ℋ̂( + ℋ̂res. First, let us consider the neutral charge sector states

|#〉 = |=〉 ⊗ |Ψ 5 (0)〉, (2.9)

where |Ψ 5 〉 is a multi electronic Slater describing independent Fermi seas of left and right

electrodes and |=〉 is the eigenvector of the isolated central quantum system. These states

can describe both the ground state and states with an electron-hole pair in the electrodes and

an excited state =′ in the central system. Notice that the electron-hole pair can be either

in one electrode or split in the left and right electrodes. In the second case this excitation

contributes to the net current flow. The energy difference �#′ and �# can be arbitrarily

small, and definitely much smaller than �" − �# . From Eq. 2.9, one can separate the

neutral charge energies into central system and electrode contributions:

�#′ − �# = &′ − & + �=′ − �= .

The excited states & = ± read as

|"±〉 = |<±〉 ⊗ |Ψ< 5 (∓)〉.
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Here |Ψ 5 (∓)〉 is a Slater state for the electrodes with one electron more (+) or less (−) than
the # manifold. |<±〉 has a similar meaning to |=〉, but now for the uncoupled charge

excited states. Roughly speaking, the cotunneling approach will remain valid as long as���� 〈# |V± |"∓〉�"∓ − �#

���� � 1.

Sowe are now inposition of rephrasing the original problemdescribed by theHamiltonian

ℋ̂ in Eq.(2.4) and write an effective Hamiltonian that can be introduced in the Bloch-

Redfield master equation. Within the cotunneling theory, it is equivalent to studying the

dynamics of the much simpler Hamiltonian

ℋ̂ eff ≡ ℋ̂res + ℋ̂( + ℋ̂ eff
) (2.10)

where

ℋ̂ eff
) =

∑
"

ℋ̂) |"〉〈" |ℋ̂)

�" − �0
=

∑
"−

V̂+ |"−〉〈"− |V̂−
�"− − �0

+
∑
"+

V̂− |"+〉〈"+ |V̂+
�"+ − �0

. (2.11)

Our final objective is to write the total Hamiltonian as a term corresponding to the reser-

voirs, which is already ℋ̂res, a term ℋ̂ ′
�
that corresponds to the central system defined

only on the neutral charge Hilbert space, and a coupling term ℋ̂ ′cotun. In addition, these

terms should satisfy the following conditions in order to applied the BRF equations:

i) The interaction shouldhave anull average value, i.e,Trres

[
�̂resℋ̂ ′cotun

]
= 0, withTrres[· · · ]

indicating the trace over the reservoir degrees of freedom.

ii) The interaction ℋ̂ ′cotun should have the form

∑
9 (

9' 9 , where ( 9 is some function of

system operators and ' 9 a function of the reservoir operators.

Let us now focus on evaluating the matrix elements in Eq. (2.11). It is convenient to write

down the explicit form of the electrodes wavefunctions. If we denote by |0〉 the ground

state of the electrodes in the Fermi sea with no excitations in the neutral charge state, we

canwrite |Ψ〉 ≡ 2†�2� |0〉, wherewe are creating an electron-hole pairwith quantumnumber

� = {, :, �}. For the states with one electron excess (defect) wewill have |Ψ−〉 = 2�2†�2� |0〉
and |Ψ+〉 = 2†�′2

†
�2� |0〉. The zero-temperature occupation of an electrode state � is then

given by =� = 〈Ψ|2†�2� |Ψ〉, which can only take the values 0 or 1 for electrons.
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The matrix element of the electrode operator in Eq. (2.11) selects only one term in the

electrode part of the sums

∑
"± =

∑
<±

∑
Ψ∓ . Then one can write∑

Ψ+

〈Ψ|2� |Ψ+〉 = (1 − =�)��� ,
∑
Ψ−

〈Ψ|2†� |Ψ−〉 = =���� .

Making the corresponding substitution into Eq. (2.11) we get∑
"−

〈# |V̂+ |"−〉〈"− |V̂− |#′〉
�"− − �0

=
∑
��′

(
1 − =�

)
〈= |)̂−(��′)|=′〉〈Ψ|2�2†�′ |Ψ〉, (2.12)

and ∑
"+

〈# |V̂− |"+〉〈"+ |V̂+ |#′〉
�"+ − �0

=
∑
��′

=�〈= |)̂+(��′)|=′〉〈Ψ|2†�2�′ |Ψ〉, (2.13)

where we have introduced the transition amplitude operators )̂±(��′) given by

)̂−(��′) =
∑
<− ,ℓℓ ′

+∗�,ℓ+�′,ℓ ′

�<− − �0 + &�
3†ℓ� |<−〉〈<− |3ℓ ′� (2.14)

)̂+(��′) =
∑
<+ ,ℓℓ ′

+�,ℓ+
∗
�′,ℓ ′

�<+ − �0 − &�
3ℓ� |<+〉〈<+ |3†ℓ ′� . (2.15)

)̂±(��′) correspond to virtual transition operators. The first one acts on the & = − charge

manifold while the second one on the & = +. Equations (2.12,2.13) can be simplified by

taking into account that

∑
�,�′ =�〈Ψ|2�2†�′ |Ψ〉 = 〈Ψ|

∑
��′ 2�2

†
�′ |Ψ〉. Hence, when we restrict

the reservoir states to single electron-hole pairs |Ψ〉, we can write

ℋ̂ eff
) (C) ≈

∑
��′

[
)̂+(��′; C)2†�2�′ + )̂−(��′; C)2�2†�′

]
(2.16)

It is convenient to rewrite the effective tunneling Hamiltonian (2.16) using 2†�2�′ + 2�2†�′ =
��,�′ so that we have

ℋ̂ eff
) ≈

∑
��′

[
)̂+(��′; C) − )̂−(��′; C)

]
2†�2�′ +

∑
�

)̂−(��; C)

The last term is proportional to the identity in the electrode degrees of freedom so it will

renormalize the energy spectra of ℋ̂(.
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Thus, we can define a tunneling Hamiltonian as follows

ℋ̂2>CD= ≈
∑
��′

[
)̂+(��′) − )̂−(��′)

]
2†�2�′ . (2.17)

ℋ̂2>CD= has the desired form of a product between central-system and bath operators

(condition ii) above. However, it does not satisfy condition i) since, in general, the trace

over the reservoir degrees of freedom of this tunneling Hamiltonian is nonzero. As a

consequence, we need to make an additional step in order to apply a Bloch-Redfield

(BRF) master equation. We then define the total system electrodes plus central system

Hamiltonian as

ℋ̂ eff = ℋ̂A4B + ℋ̂ ′( + ℋ̂
′
2>CD= .

where

ℋ̂ ′( = ℋ̂( +
∑
�

[
)̂+(��)=� + )̂−(��)(1 − =�)

]
(2.18)

and

ℋ̂ ′2>CD= = ℋ̂2>CD= −
∑
�

[
)̂+(��) − )̂−(��)

]
=� (2.19)

with =� = 0, 1 the occupation of the single particle state �. We only subtracted and added

the same quantity to the Hamiltonians so that, by construction, Trres(�̂resℋ̂ ′2>CD==) = 0.

This step is necessary since the master equation description for the reduced density

matrix requires that the only effect of the reservoir is to produce fluctuations around a

zero expectation value of the interaction. Another consideration regarding the validity

of Bloch-Redfield master equation that usually is based on the secular approximation with

respect to the system-environment coupling. The physical condition underlying this

approximation is that the systematic evolution of the reduced system is fast, which means

that the coherent dynamics goes through many cycles during the typical relaxation time

[47].

Within the BRF master equation, the markovian evolution of the reduced density matrix

can be written as:

%C�; 9(C) = −8$; 9�; 9(C) +
′∑
;;′

ℛ; 9 ,;′ 9′�;′ 9′(C), (2.20)
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where $; 9 = (�; − � 9)/ℏ and ℛ; 9 ,;′ 9′ is the Bloch-Redfield tensor, which depends both on

the matrix elements of the system operators related to the virtual transitions as well as

on the reservoir operator correlator [29]. From the hermiticity of the density matrix, one

gets ℛ∗
; 9 ,;′ 9′ = ℛ; 9 ,;′ 9′. The prime over the sum in Eq. (2.20) implies that only the terms

whose energies satisfy |$; 9 − $;′ 9′ | � 1/�C are included, where �C = ℏ/(:�)) is the coarse-
grain time scale under which the evolution of the reduced density matrix is described.

This is the so called secular aproximation [51]. We can distinguish the following processes

according to the four indexes of the BRF tensor

1. ;; , ;;: Negative total transition rate from the ;-state to any other possible state of ℋ̂ ′
(

2. ; 9 , ; 9: Negative decoherence rate of the coherence �; 9 coherence. It has two contri-

butions: a pure dephasing one and another associated with population scattering.

3. ;; , 9 9: Population transfer: rate of population transfer from state 9 to state ; state

(; ≠ 9).

4. ; 9 , ;′ 9′: Coherence transfer: rate at which amplitude in an oscillating superposition

between two states (;′ and 9′) couples to form oscillating amplitude between two

other states (; and 9).

The last contribution can be relevant in the case of degenerate energy levels. Otherwise, it

is cut out by the secular approximation. The first and the third contributions are computed

by the Fermi’s golden rule and related to )1-like processes while the second contribution

is related to coherence times [52].

2.2.2 Rabi flop rate from a time dependent cotunneling theory

A two level system approach

As we have seen, the dissipative dynamics of quantum systems weakly coupled to the

environment in the absence of a driving field is well described by the perturbative Bloch-

Redfield (BRF) master equation. A non-formal approximate evolution of the reduced

density matrix �̂(C) describing the quantum system in the presence of an AC driving field

can be given in the form of a Bloch equation presented in [29, 51]. In this case, �̂(C) satisfies
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the following Liouville’s equation,

3�̂(C)
3C

= − 8
ℏ

[
ℋ̂((C), �̂(C)

]
+ ℒ̂�̂(C), (2.21)

where ℒ̂ will take the form of a linear Lindblad super-operator [47]. ℒ̂�̂(C) is responsible
for dissipation and thus, decoherence and relaxation. The crucial approximation leading

to the Bloch equation is to assume that the Lindblad super-operator is not affected by the

driving field, so it is exactly the Bloch-Redfield tensor term of Eq. (2.20). In the case of a

TLS, the general form of a system Hamiltonian with driven-transition is

ℋ̂TLS
( (C) = ©«

�0 ℏΩ cos($C)
ℏΩ cos($C) �1

ª®¬ , (2.22)

where Ω is known as Rabi frequency or Rabi flop rate. This method will be adequate to

describe weak fast-oscillating driving fields [53, 54]. The diagonal terms are the energy

levels of the two states, |0〉 and |1〉, and the off-diagonal term is the coupling between

them. The coupling in a static two-level system is given by the Rabi flop-rate Ω, see for

example Ref. [51]. In the present case, the AC driving field leads to a modulation of the

coupling with linear frequency $/2�. Defining the lifetime time )1 = 1/(Γ01 + Γ10) and
the decoherence time )2 = 1/�01 , being the transition and decoherence (lost of coherence)

rates Γ01 and �01 respectively, the dynamical equation of motion for the reduced density

matrix of the effective TLS reads as:

¤�00 = − ¤�11 =
1

2)1
(�11 − �00 − %4@1 + %

4@
0 ) + 8Ω(�01 − �10) cos$C (2.23)

¤�01 = ¤�∗10 = −
1
)2
�01 + 8$10�01 − 8Ω(�11 − �00) cos$C. (2.24)

Hence, relaxation is associated to the decay of any departure of the diagonal elements

(populations) from the equilibrium on a time scale )1, while the decoherence corresponds

to the decay of the off-diagonal terms on a time scale )2. %
4@

1
and %

4@
0 are the equilibrium

populations when the Rabi term is zero.

In all STM-ESRexperiments [7, 11, 12, 13, 14, 15, 16, 17], thedetection frequencybandwidth

is around 1 kHz, so the driving AC voltage, modulated on the GHz frequency range, is
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averaged out. Thus, the resonant signal is detected only by the magnetoresistive static

current. The resulting DC current can be evaluated in terms of the transition rates Γ
′

01

( ≠ ′) between the  and ′ electrodes () tip and ( substrate) and the non-equilibrium

occupations %=(+, $):

�(+, $) = 4
∑
=<

%=(+, $)
(
Γ
),(
=,< − Γ(,)=,<

)
. (2.25)

Counting = and < for the states |0〉 and |1〉. Here, the non-equilibrium occupations

%=(+, $) will be the result of a long-time average stationary condition 3�̂(C)/3C = 0 that

defines the steady state, and it accounts for the coherence between the |0〉 and |1〉 states
connected by the ESR signal. In Eq. (2.25) we did not account for the explicit coherences

contribution to the DC current since, in general, these terms are much smaller. This will

be confirmed later by our Floquet analysis. Although there is not a general analytical

expression for %=(+, $), one can find an explicit expression for the TLS solving the steady

state version of Eqs. (2.23) and (2.24),

0 = 1
2)1
(%1(+, $) − %0(+, $) − %4@1 + %

4@
0 ) +

8

2$(2 − 2
∗)

8$2 = − 1
)2
2 + 8$102 −

8

2$(%1(+, $) − %0(+, $)),

where we have applied the rotating-wave approximation (RWA) to neglect the fast-

oscillating exponentials exp(±28$C). The constant 2 comes from making �01(C) = 24 8$C .

Thus

%1(+, $) − %0(+, $) = −�%4@
[
1 + Ω2)1)2

1 +Ω2)1)2 + ($ − $10)2)2
2

]
, (2.26)

where �%4@ = tanh(ℏ$10/2:�)). It is worth noticing that the solution (2.26) can be recasted

in the form of the macroscopic Bloch equations describing the evolution of a magnetic

moment in the presence of both a static and a driving magnetic field [55]. Equation (2.25)

makes explicit theworkingmechanism of the STM-ESR: the occupations %=(+, $) respond
to the driving frequency and the changes are reflected in the DC current �(+, $). Notice

that the Rabi frequency dictates the response of the system to the driving field and thus, if

the system is ESR active. Therefore, the next step would be to evaluate the Rabi frequency

predicted by our cotunneling description.
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Time dependent cotunneling

Our aim now is to derive the Rabi frequency from a time dependent cotunneling theory.

We first remind that the Bloch-Redfield master equation (2.21) assumes that the inter-

action ℋ̂ ′2>CD= with the reservoirs only induces fluctuations around a zero-average, i.e.,

tr'[�̂'ℋ̂ ′2>CD=] = 0. It is precisely this condition that leads to our definition of ℋ̂ ′2>CD= given
by Eq. (2.19) and to a dressed Hamiltonian (2.18). For notation clarity, we omit the primes

and, unless otherwise stated, we will refer to the renormalized Hamiltonians.

To explore the origin of the ESR signal in the experiments, we concentrate on the Rabi

frequency. In particular, we focus on the situation where the driving frequency $ is close

to the Bohr frequency of the transition between the first excited state, |1〉, and the ground

state, |0〉, $10 = (�1 − �0)/ℏ, while all other transitions are far away.

We follow the same procedure leading to the Bloch equations, but now we consider

that the system Hamiltonian ℋ̂( has an arbitrary number of states. Hence, we define

static and driving parts, ℋ̂((C) = ℋ̂0
(
+ �ℋ̂( cos($C) generalizing the two-level case of Eq.

(2.22). Using a similar notation, we write the time-dependent interaction as ℋ̂2>CD=(C) ≡
ℋ̂0
2>CD= + �ℋ̂2>CD= cos($C). Since the Rabi flop-rate is defined by the off-diagonal matrix

elements of ℋ̂((C), following Eqs. (2.22) and (2.18), we can write it as

ℏΩ =
∑
�

[
�)̂+

01
(��)=� + �)̂−01(��)(1 − =�)

]
+ 〈0 |�ℋ̂( |1〉, (2.27)

where �)̂±
01
(��) = 〈0 |�)̂±(��)|1〉, with the driving part of the virtual transition operators

defined as �)̂±(��) cos($C) = �)̂±(��; C) − )̂(0)± (��). Notice that we have taken into account

that |0〉 and |1〉 are eigenvectors of the static part of ℋ̂ ′
(
, see Eq. (2.18).

The driving electric field produced by the AC voltage can be translated, in principle, into

two effects. First, a time dependence of the adatom’s energy levels, similar to a Stark energy shift

of the d-shell. These shifts will affect the charging energies appearing in the denominators

of the virtual transition operators

�<±(C) − �0(C) ≈ �<± − �0 ∓ � cos($C).
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where � is proportional to +�� . Since |�<± − �0 | � |4+02 |, we can use a Taylor expansion

of the denominators and write

)̂±(��; C) ≈ )̂±(��)
���
+02=0

+ �)̂S
− (��) cos$C , (2.28)

where )̂−(��′)
���
+��=0

are the virtual transition operators in the absence of theACfield. Here

( denotes the modulation of the virtual transition operators by Stark-like shift. Using Eqs.

(2.14) and (2.15), the harmonic driving field contributions reads as:

�)̂S
− (��) ≈ −�

∑
ii′,<−

+∗�,i+�,i′(
�<− − �0 + &�

)2 3
†
i |<−〉〈<− |3i′

�)̂S
+ (��) ≈ +�

∑
<+ ,ii′

+�,i+
∗
�,i′(

�<+ − �0 − &�
)2 3i |<+〉〈<+ |3†i′ . (2.29)

As we have mentioned before, our density functional theory calculations for the Fe on

MgO/Ag(001) system show that the adatom’s level shifts are negligible under the typical

external electric fields induced at the STM junction, see results section 3.1. Then, we

assume that the adatom Hamiltonian is not affected by the AC driving field, leading to

�ℋ̂( = 0 and a coefficient � = 0 in Eq. (2.29). This implies the prevalence of the second

mechanism, the modulation of the tunnel barrier through the matrix elements +�,i(C) [27,
28]. Thus, taking into account that the resulting modulation is also much smaller than the

amplitude of these hoppings, we can make a Taylor expansion similar to Eq. (2.28) where

the new corrections are given by

�)̂B
− (��) ≈ −�

∑
ii′,<−

(�+∗�,i+�,i′+)+∗�,i�+�,i′(
�<− − �0 + &�

) 3†i |<−〉〈<− |3i′

�)̂B
+ (��) ≈ +�

∑
<+ ,ii′

�+�,i+∗�,i′ ++�,i�+∗�,i′(
�<+ − �0 − &�

) 3i |<+〉〈<+ |3†i′ , (2.30)

with � proportional to +�� and depends on the elastic barrier transmission. � indicates

virtual transitions associated to the barrier modulation.

We model the effect of the AC driving field on the tunneling amplitudes based on the

Bardeen analysis. In doing so, we assume that the STM junction can be treated as a square

vacuum barrier of length ! and energy height �, and that the tip and sample have the
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same work functions. The AC applied voltage leads to a time-dependent change of the

transmission amplitude which, for small-enough bias, can be approximated as

+�,i(C) ≈ +0
�,i

(
1 + 4 +��|�01 |

cos($C)
)
. (2.31)

We follow a WKB description introducing the wavenumbers : =
√

2<∗&/ℏ and � =√
2<∗(� − &)/ℏ, being �! � 1. Notice that � − &� is basically the metal work function.

Considering this, one finds [56]

�−1
01 ≈

<∗
(
:�(1 − !��) − 8!�2

�

)
ℏ2�2

�
(:� + 8��)

. (2.32)

Here we have assumed that : and � can be approximated by their values at the Fermi

level. This is adequate to describe the tunneling current under the experimental low bias

conditions. Having already Eqs. (2.31) and (2.32), the next step would be to compute how

the virtual transition changes. From Eqs. (2.30) and (2.31) we can write

�)̂−(��; C) =
24+02
|�01 |

∑
<− ,ℓℓ ′�

+0∗
�,ℓ�+

0
�,ℓ ′�

Δ�<− − �− + &�
3†ℓ� |<−〉〈<− |3ℓ ′�

�)̂+(��; C) =
24+02
|�01 |

∑
<+ ,ℓℓ ′�

+0
�,ℓ�+

0∗
�,ℓ ′�

Δ�<+ + �+ − &�
3ℓ� |<+〉〈<+ |3†ℓ ′� .

where we kept only first order terms in the AC driving voltage. The Rabi flop-rate can be

evaluated using these equations and Eq. (2.27). Then we have that

Ω ≈ 4+��

ℏ|�01 |
∑
�

[ ∑
<− ,ℓℓ ′�

(1 − =�(&�))
2+0∗

�,ℓ�+
0
�,ℓ ′�

Δ�<− − �− + &�
�<

−

01
(ℓ�, ℓ ′�) +

∑
<+ ,ℓℓ ′�

=�(&�)
2+0

�,ℓ�+
0∗
�,ℓ ′�

Δ�<+ + �+ − &�
�<

+

01
(ℓ�, ℓ ′�)

]
, (2.33)

where we have introduced the excitation energies Δ�<± = �<± − �0± and the charging

energies of the adatom �+ = �0+ − �0 and �− = �0 − �0− . Moreover, we have defined the

Fermi-Dirac distribution

=�(&) =
1

4(&−� 5 )/:�) + 1
,
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being � 5 the chemical potential of the  electrode. In addition, we havewritten thematrix

elements �<
−

01
(ℓ�, ℓ ′�) = 〈0 |3†

ℓ� |<−〉〈<− |3ℓ ′� |1〉 and �<
+

01
(ℓ�, ℓ ′�) = 〈0 |3ℓ� |<+〉〈<+ |3†ℓ ′� |1〉.

Notice that, contrary to what happens in the calculation of transition and decoherence

rates [57, 29] where all energy integrals involve the product =�(1 − =�), here the energies
&� are not limited to a small energy window around the Fermi level. Thus, the evaluation

of the Rabi frequency requires a precise knowledge of the hybridization functions +�,ℓ�.

However, there are a few strategies to make the calculation a bit simpler. First, we

consider Born-von Karman periodic boundary conditions of length ! and we introduce

thedensity of states ��(&) =
∑
®: �(&−&:�). Thus,we canwrite the sumover the electrodes

wavenumbers as

∑
®: →

!3

(2�)3
∫
3:3 ≡

∫ +∞
−∞ 3&��(&), where 3 indicates the dimensions of

the electronic problem, which is one for the one impurity problem.

i) The density of states is constant within an energy window [−�2 , �2] and equal to its

value at the Fermi level.

ii) The hybridizations +�,ℓ = +,ℓ� are constant within the energy cut-off �2 and equal to

their value at the Fermi level.

iii) Only the tip is spin polarized, being the spin polarization %) constant throughout the

whole energy range. Thus, we can write (we omit the subindex “�” indicating values

taken at the Fermi level): Γ,ℓℓ ′� = 2�(1/2 + �%)�+,ℓ�+∗,ℓ ′� = (1/2 + �%)Γ
′
,ℓℓ ′�, where

� = ±1/2 and % = �,)%) .

Taking all these considerations into account, we can write:

Ω ≈ 4+��

ℎ |�01 |
∑


∫ +∞

−∞
3&

[∑
<−

(1 − =�(&))
Λ<− ,

Δ�<− − �− + &
+

∑
<+

=�(&)
Λ<+ ,

Δ�<+ + �+ − &

]
, (2.34)

where we have defined

Λ<± , =
∑
ℓℓ ′�

(1 + 2�%)Γ′,ℓℓ ′��
<±

01
(ℓ�, ℓ ′�), (2.35)

Equation (2.34) is the central result of the STM-ESR based on a cotunneling description.

It is worth mentioning that the oscillating electric field can induce a variation of the

tip-adatom and adatom-surface distances [24], leading to an additional modulation of
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the tunnel current. This variation will affect the Rabi frequency through �01 and, as

a consequence, the hybridizations +�,i. Since the effect is not distinguishable from the

one associated to the barrier height modulation, which already reproduces the order of

magnitude of the observed Rabi frequency, we do not include it.
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2.3 Floquet theory approach

Floquet theory is the study of the stability of linear periodic systems in continuous time.

It can be a really useful tool to study nonequilibrium dynamics and has been proved to

have potential uses in ecological and evolutionary models [58]. Futhermore, when it is

applied to physical systems with periodic potentials, such as crystals in condensedmatter

physics, the result is equivalent to the Bloch’s theorem [59].

Consider a set of linear, homogeneous, time-periodic differential equations as

¤G(C) = �(C)G(C),

being x a n-dimensional vector and �(C) a = × = matrix with some periodic structure,

�(C) = �()+ C). Despide it, solutions of G(C) are not typically periodic and its general form

is

G(C) =
∑
=

2=4
�= CH=(C),

where the 2= components are related to the initial conditions of the problem, H=(C) is a

vector of periodic functions with period ), and �= are complex numbers called charac-

teristic or Floquet exponents. Therefore, the solution of the system is a sum of periodic

function that can grow or decrease exponentially. Floquet exponents can be interpreted

as the growth/decay rate of different perturbations averaged over a cycle. The stability

of the solution requires that all Floquet exponents have a negative real part. The way of

computing these exponents can be really challenging. Fortunately, if we are interested

only in the steady state, we do not need to compute Floquet exponents since they only

control the transient evolution which vanishes in the steady state. Then, our only concern

is to find a periodic state-space change of basis, such that the matrix �(C) is constant. This
will clearly simplify the dynamic, and, in particular, the study of its stability properties.

This change of basis is always provided by the Floquet theorem, which gives us the im-

portant result of transforming a differential periodic system into a linear one of algebraic

equations which does not depend on time.



2.3. FLOQUET THEORY APPROACH 45

2.3.1 Model Hamiltonian of STM-ESR and Rate equation

In this section we introduce a model which would allow us to describe the STM-ESR

experiment using everything we learnt in the last sections. The model will be a quantum

dot with orbital structure and total spin (, coupled to two electron reservoirs which could

represent the substrate hosting the impurity and the STM tip. ADC andAC bias voltage is

applied between both reservoirs. Both systems, dot and electrodes, are connected through

a tunneling Hamiltonian. The time dependent part of the ESR will be introduced in the

tunneling strength as F(C) = F0
(1 + � cos$C) with � = +


��
/�01 just like we showed

previously and in [46], with �01 given by Eq. (2.32). +
��

is the amplitude of the AC

voltage applied at the reservoir . It modulates the tunneling coupling after a gauge

transformation [60])

By using the Green’s function technique, the Fourier-Floquet transformation and the

master-equation theory, we will be able to write a Floquet time-dependent differential

equation for the reduced density matrix of the QD. This will allows us to compute the

current and other parameters of interest in order to compare with the experiment.

The total Hamiltonian is the sum of three different contributions: electrodes, tunneling

and quantum dot,

ℋ̂(C) = ℋ̂A4B + ℋ̂)(C) + ℋ̂( .

The first one is

ℋ̂A4B =
∑
:�

(�: − �)2†:�2:� =
∑
:�

�:2
†
:�2:� , (2.36)

where  = sub, tip or L,R identifies the degrees of freedom for the substrate and tip,

respectively, while � = −1/2, 1/2. So 2:� (2†:�) annihilate (create) electrons in the corre-

sponding reservoir with a spin projection �. These two systems have temperatures and

chemical potentials ) , �.

The quantum impurity is modeled by a spin-interacting Hamiltonian, ℋ̂(, similar to the

one found in [61]. From here on ℋ̂( will be referred as magnetic-impurity Hamilto-

nian, central system Hamiltonian or quantum dot (QD) Hamiltonian. For simplicity, we

consider a single-orbital degree of freedom for the itinerant electrons, which couplesmag-
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netically with the other electrons in the impurity represented by the sum of their spins, S.

Then, the QD Hamiltonian becomes:

ℋ̂( =
∑
�

��(C)3†�3� + J ŝ · Ŝ +*=̂3↑=̂3,↓ + �((̂I + B̂I)2 + 6��B · (Ŝ + ŝ), (2.37)

where ŝ is the spin operator for the itinerant electrons when they are on the QD B̂ 9 =∑
��′ 3

†
��

9

��′3�′/2 where �̂ 9 , 9 = G, H, I are the Pauli matrices. �� is the energy of the

conduction electrons when they are on the QD. The presence of the electron on the QD is

given by the occupation operator =̂3� = 3
†
�3�. J is the magnetic coupling constant, which

denotes the strength of the exchange interaction between the effective local spin of the

remaining electrons in the QD, Ŝ, and the itinerant/conduction electron spin on the QD,

ŝ. This interaction mimics the Hund’s coupling inside a magnetic atom. The total spin on

the QD is then Ŝ) = Ŝ+ ŝ. * is the charging energy of the QD, � is the uniaxial anisotropy

parameter andB is the external uniformmagnetic field applied, acting on the total spin, Ŝ)
of the QD. Notice that the spin operator, Ŝ will commute with the single-particle creation

and annihilation operators, 3
(†)
� , because it acts on a different subspace.

Finally, the tunneling coupling connecting the QD to the two reservoirs is described by

the Hamiltonian

ℋ̂) =
∑
:�

(
F(C)2†:�3� + F

∗
(C)3†�2:�

)
,

where F(C) = F0
(1 + � cos$C) represents the hybridization between the reservoirs and

the conduction orbital of the QD.

Wewill focus on the limit* →∞, inwhich case theQDorbital can be only empty or singly

occupied. In such a case, it is convenient to introduce the product basis: | ↑, <〉, | ↓, <〉,
|0, <〉 4. The first quantum number ? = −1/2, 0, 1/2 refers to the state of the conduction

orbital while < = −(,−( + 1, · · · , ( correspond to the z-spin projection of the rest of the

QD spin, (. The Fock space has dimension 3×(2(+1) and the central-systemHamiltonian

4The double occupation state | ↑↓, <〉 is missing from the basis set because of the* →∞ approximation,

which implies that the electron-hole symmetry is lost.
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now takes the form:

ℋ̂( =
∑
<?

�?<(C)|?, <〉〈?, < | +
(−1∑
<

(J+ | ↓, < + 1〉〈↑, < | + J− | ↑, <〉〈↓, < + 1|) + �I44<0= ,

being now �?< = (�� + J<� + 6���I�)��? + 6���I< +�(< + ��?,�)2 while �+ and J− are

equal to J
√
((( + 1) − <(< + 1)/2. The corresponding tunneling Hamiltonian expressed

in this basis reads as

ℋ̂) =
∑
:�<

(
F(C)2†:� |0, <〉〈�, < | + F

∗
(C)|�, <〉〈0, < |2:�

)
.

We proceed similarly to Refs. [62, 63, 64, 65, 66, 67, 68] to derive the quantum master

equation by treating the coupling between the impurity and the reservoirs at the low-

est order in perturbation theory in the framework of non-equilibrium Green’s function

formalism. Notice that the chosen basis set includes different number of particles in

the QD. Hence, the QD Hamiltonian is block diagonal. To this end, it is convenient to

express the Hamiltonian of the impurity and the tunneling coupling in the basis of eigen-

states of the impurity Hamiltonian, | 9〉, with 9 = 1, ..., 3(2( + 1), which allows us to write

ℋ̂ ′
(
=

∑
9 � 9 | 9〉〈9 | =

∑
9 � 9 �̂ 9 9 = *ℋ̂(*

†
. We define the operators �̂; 9 = |;〉〈9 | that project

onto the basis of the eigenstates of the QD Hamiltonian.5 The next step is to change the

tunneling Hamiltonian using this basis set of eigenstates:

ℋ̂ ′)(C) =
∑
:�; 9

(
F(C)�; 9�2†:��̂; 9 + F

∗
(C)�; 9��̂; 92:�

)
, (2.38)

where we have defined

�; 9� = 〈; |Π� | 9〉 ; �; 9� = 〈; |Π†� | 9〉 = �†
9;� ; Π� =

∑
<

|0, <〉〈�, < |.

5The step of diagonalizing the central system Hamiltonian is only possible because it is independent of

time. If we introduced the time periodic function into the energy of the conduction electrons of the impurity

of the down and up states, we would need to build a time-independent Hamiltonian through the Floquet

theory first. This would imply to extend the basis by including the Floquet numbers, making everything

more challenging. A trick would be to introduce the matrix elements of the reduced density operator in the

time-periodic basis called Floquet state. This basis leads to time-independent density matrix elements in

steady state. All this is ensured by the Floquet theorem [50].
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Here,Π� is a Hubbard operator in the original QD basis set describing the charge change

of the QD [69].

Since the evolution of any operator can be written in terms of the matrix elements of

that operator and the density matrix, our purpose is to derive the equation of motion

for the reduced density matrix �̂(C) = Trres[�̂)(C)], where the trace is taken over the

degrees of freedom of the reservoirs and �̂) is the density matrix of the full system

coupled to the reservoirs by ℋ̂ . In particular, using the definitions above, we can write

the matrix elements of the reduced density matrix in the QD-eigenstate basis set, {| 9〉},
as �; 9(C) = Tr[�̂)(C)�̂ 9;], where the trace is now over all degrees of freedom and the QD

indices are inverted.

Before going further, it is convenient to change to theHeisenberg representationwhere the

densitymatrix remains constant, i.e., �̂�
)
= �̂0 = �̂res⊗ �̂, being �̂0 the initial densitymatrix

when the system is decoupled exactly into the reservoir and the systempart, and the opera-

tors evolve in timeaccording to $̂�(C) = *†(C)$̂((C)*̂(C). Here*(C , C0) = )̂
{
4
−8

∫ C

C0
3C′ℋ̂(C′)/ℏ

}
is the time evolution operator and )̂ the time-order operator. The superindex “�” de-

notes that we are expressing the operators in the Heisenberg picture. The components of

the reduced density matrix can be then written as �; 9(C) = 〈�̂�;9 (C)〉 = Tr
[
�̂0�̂�9; (C)

]
, with

�̂�
;9
(C) = *(C , C0)�̂; 9*†(C , C0). Moreover, for an arbitrary time-dependent operator $̂(C), we

have that the expectation value can be obtained as 〈$̂(C)〉 = Tr
[
�̂0$̂

�(C)
]
. In the limit

of weak coupling strength between the 3(2( + 1)-levels system and the electrodes, the

so-called Born approximation, we can assume that the total density matrix can be always

factorized as the initial �0 [70]. The emergence of correlations which prohibit the latter

are related to memory effects which are linked to non-Markovian behavior. In the weak

coupling situation, applying the Heisenberg equation of motion to �̂�
89
(C) and taking the

mean value with respect �̂0 leads to the equation ruling the dynamics of �8 9(C):

3�; 9
3C

=
3〈�̂�

;9
〉

3C
=
8

ℏ

〈[
ℋ̂ ′�
( , �̂�

;9

]〉
+ 8
ℏ

[ ∑
:�D

F�D;�〈2†�:��̂
�
D9〉

−
∑
:�E

F� 9E�〈2†�:��̂
�
;E
〉 +

∑
:�D

F∗�D;�〈�̂�D92
�
:�〉 −

∑
:�E

F∗�9E�〈�̂�;E2
�
:�〉

]
, (2.39)
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where we have use the fact6 that �̂DE �̂; 9 = �̂D9�E; . The reader might be suprised by the

use of the Heisenberg picture to derive an equation of motion for the density matrix.

We emphasize that �̂�
89
(C) are not density matrices but similar to creation or annihilation

operators, making necessary the use of the Heisenberg picture. From now on, every

operator would be in the Heisenberg picture so we will omit all the superindexes “�”.

The terms that combine the 2:� (2†:�) and �̂; 9 invite us to define Green’s function such

as:

�<
:�,; 9(C , C

′) = ±8〈�̂†
9;
(C′)2:�(C)〉 = ±8〈�̂; 9(C′)2:�(C)〉

�<
; 9 ,:�(C , C

′) = ±8〈2†:�(C
′)�̂; 9(C)〉

�<
; 9 ,DE(C , C

′) = ±8〈�̂DE(C′)�̂; 9(C)〉.

�<
:�(C , C

′) = 8〈2†:�(C
′)2:�(C)〉

Here, we are assuming time-ordering along the Schwinger-Keldysh contour [68]. The “+”
sign refers to have many-body ket state such that |;〉, | 9〉 and |D〉, |E〉 differ in one or any

odd number of particles and then �̂; 9 and �̂DE present a fermionic character. Otherwise,

if we take the “−” sign, these density matrices have a bosonic character. Following

this idea, let us divide the space into the two diferent combination of ket states: in

the first ones, we have | 9〉 = ∑
�< ��< |�, <〉 with � being only up and down, therefore

�̂1
; 9
= |;〉〈9 | = ∑

�<�′<′ ��<�
∗
�′<′ |�, <〉〈�′, <′|. To clarify this, if we just focus on the

� spin projection, < = <′ = 0, we have four possible combination: up-up, up-down,

down-up, down-down. These combinations imply a total integer spin, therefore we

have a bosonic operator. Contrary we have the situation of a empty state, �̂
5

; 9
= |;〉〈9 | =∑

<�′<′ �0<�
∗
�′<′ |0, <〉〈�′, <′|. Again, if we focus on the � parts, we see that the states

differ in one particle with half-integer spin, we have a fermionic operator then. These

6Notice that we are actually using Hubbard operators here. These operators satisfy a graded Lie algebra:

[�̂DE �̂; 9]± = �̂D9�E;±�̂;E� 9D , where the plus sign is only for fermions. The absence of a Wick’s theorem

[71] for these operators is normally overcome by factorizing the fermionic Hubbard operators as a product

of canonical creation and annihilation operators. This can be done by representing the empty state by a

“slave boson” and the spin by a fermion. By making this, we could apply Wick’s theorem to the fermionic

operators and use it to compute the mixed Green’s functions. The only down side about this is that the

Green’s function of the isolated impurity Hamiltonian is a bit different from what one could expect.
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arguments are also valided for any < and <′ values. In any case, from (2.39) one notice

that only a Fermion operator could survive because 2:� (2†:�) needs a empty ket to the

right (left). Therefore

�<
:�,; 9(C , C

′) = 8〈�̂ 5
; 9
(C′)2:�(C)〉

�<
; 9 ,:�(C , C

′) = 8〈2†:�(C
′)�̂ 5

; 9
(C)〉.

From here on, if nothing is said, �̂; 9 will be a Fermion operator so the “ 5 ” superindexes

are dropped out.

Our aim now is to compute these mixed Green’s functions. Let us calculate the evolution

of 2†:� and 2:� using the Heisenberg equation of motion

8ℏ
%2†′:′�′

%C′
= −[ℋ̂A4B + ℋ̂) , 2

†
′:′�′] = −(�′:′2

†
′:′�′ +

∑
DE

F∗′�DE�′�̂DE(C′)) (2.40)

8ℏ
%2′:′�′

%C
= −[ℋ̂A4B + ℋ̂) , 2′:′�′] = (�′:′2′:′�′ +

∑
DE

F′�DE�′�̂DE(C)), (2.41)

where we have used {2†:� , 2′:′�′} = �,′�:,:′��,�′. Computing the equation of motion of

the mixed Green’s function [72], we find that

�2
; 9,′:′�′(C , C

′) =
∑
DE

∫
3C1�

2
; 9,DE
(C , C1)�DE�C∗′:′(C1)6

2
′:′�′(C1 − C

′), (2.42)

where 2 ≡ A, 0, >, < indicates the Keldysh contour, see AppendixD. By using the Langreth

theorem in the Schwinger-Keldysh contour [73], at the 1st-order of perturbation theory in

F0
: , the lesser mix Green’s Function can be written as

�<
; 9 ,:�(C , C

′) ≈
∫

3C1
∑
DE

�DE�C
∗
:(C1)

[
6A
; 9,DE
(C , C1)6<:�(C1 − C

′) + 6<; 9 ,DE(C , C1)6
0
:�(C1 − C

′)
]
.

In addition we have

�2:�,; 9(C , C
′) =

∑
DE

∫
3C16

2
:�(C − C1)�DE�C:(C1)�

2
DE,; 9
(C1, C′), (2.43)

whose lesser mix Green’s Function up to 1st-order of perturbation theory is

�<
:�,; 9(C , C

′) ≈
∫

3C1
∑
DE

�DE�C:(C1)
[
6A:�(C − C1)6

<
DE,; 9(C1, C

′) + 6<:�(C − C1)6
0
DE,; 9
(C1, C′)

]
,
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These mix Green’s functions contain the isolated Green’s function of the QDHamiltonian,

62
; 9,DE
(C , C′), and the electrode one, 62:�(C , C

′). This last one is easily computed [74]. We

now introduce the lesser and greater Green’s functions for these isolated systems,

6<; 9 ,DE(C , C
′) = 8〈�̂DE(C′)�̂; 9(C)〉,

6<:�(C , C
′) = 8〈2†:�(C

′)2:�(C)〉,

6>; 9 ,DE(C , C
′) = −8〈�̂; 9(C)�̂DE(C′)〉,

6>:�(C , C
′) = −8〈2:�(C)2†:�(C

′)〉.

While the retarded and advanced ones are, respectively,

6A�,�′(C , C′) = �(C − C′)
[
6>�,�′(C , C′) − 6<�,�′(C , C′)

]
and

60�,�′(C , C′) = −�(C′ − C)
[
6>�,�′(C , C′) − 6<�,�′(C , C′)

]
.

If we now substitute the mixed Green’s function into the equation of motion and follow

the algebra in Appendix E, where we also defined the rates, we get the master equation

ℏ ¤�; 9(C) − 8Δ; 9�; 9(C) =
∑
ED

[
ΓE;, 9D(C)�ED(C) + Γ̄E;,DE(C)�D9(C) − Γ9E,ED(C)�;D(C) − Γ̄9E,D;(C)�DE(C)

]
,

(2.44)

being Δ; 9 = �; − � 9 . We calculate the explicit form of the rates in Appendix F, which are

ΓE;, 9D(C) =
1

2�

(∑
==′

4 8(=
′−=)$C

∑
�

�E;��9D�

∫ +∞

−∞
3�

1
� − Δ9D/ℏ + 80+

Σ<
�,==′(� − =$)+∑

==′
4−8(=−=

′)$C
∑
�

�E;�� 9D�

∫ +∞

−∞
3�

[
2�8�(� − ΔD9/ℏ)ΣA�,==′(� − =′$) +

Σ<
�,==′(� − =′$)
� − ΔD9/ℏ − 80+

])
.

Here we have introduced the Fourier-Floquet transform of the self-energy

Σ2�,==′(�) =
∑
:

|F0
 |2

[
�=,0 +

�

2 (�=,−1 + �=,1)
]
62:�(�)

[
�=′,0 +

�

2 (�=
′,−1 + �=′,1)

]
,

(2.45)

with 2 ≡ A, 0, >, < and F,= being the coefficient of the time-periodic tunneling term

expanded in Fourier series. Making =′′ = = − =′ while we take out =′ in the first term and
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= in the second and then changing =′ = = in the second term and =′′ = =′ in both terms

we have

ΓE;, 9D(C) =
1

2�

∑
=′
4−8=

′$C

(∑
=

∑
�

�E;��9D�

∫ +∞

−∞
3�

1
� − Δ9D/ℏ + 80+

Σ<
�,==−=′(� − =$)+∑

=

∑
�

�E;�� 9D�

∫ +∞

−∞
3�

[
2�8�(� − ΔD9/ℏ)ΣA�,=′+==(� − =$) +

Σ<
�,=′+==(� − =$)
� − ΔD9/ℏ − 80+

])
,

which has a natural form of a periodic function of period ) = 2�/$ for a fixed angular

frequency $:

ΓE;, 9D(C) =
∑
=′
4−8=

′$CΓE;, 9D;=′($), (2.46)

being the Fourier-Floquet components equal to

ΓE;, 9D;=′($) =
1

2�

(∑
=�

�E;��9D�

∫ +∞

−∞
3�

1
� − Δ9D/ℏ + 80+

Σ<
�,==−=′(� − =$)+∑

=�

�E;�� 9D�

∫ +∞

−∞
3�

[
2�8�(� − ΔD9/ℏ)ΣA�,=+=′=(� − =$) +

Σ<
�,=+=′=(� − =$)
� − ΔD9/ℏ − 80+

)]
.

(2.47)

Assuming that the imaginary part of the rates can be treated as a renormalization term

and using the results of Appendix F we have

ΓE;, 9D;=′($) =
1
2

∑
=�

(
�E;��9D�Γ�=�(Δ9D − =$)

[
�=,=′ +

�

2 (�=,=
′+1 + �=,=′−1)

]
−

�E;�� 9D�Γ�(=�(ΔD9 − =$) − 1)
[
�=,−=′ +

�

2 (�=,−=
′+1 + �=,−=′−1)

] ) [
�=,0 +

�

2 (�=,1 + �=,−1)
]
.

(2.48)

Similarly, we have that

Γ̄9E,D;(C) =
∑
=′
4−8=

′$C Γ̄9E,D;;=′($), (2.49)

where now

Γ̄9E,D;;=′($) =
1

2�

(∑
=�

�9E��D;�

∫ +∞

−∞
3�Σ<

�,=+=′=(� − =$)
1

� − Δ;D/ℏ − 80+
+

∑
=�

� 9E��D;�

∫ +∞

−∞
3�

[
Σ<
�,==−=′(� − =$)
� − ΔD;/ℏ + 80+

+ 2�8�(� − ΔD;/ℏ)Σ0�,==−=′(� − =$)
])
.

(2.50)
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From Appendix F one can write:

Γ̄9E,D;;=′($) = −
1
2

∑
=�

(
�9E��D;�Γ�=�(Δ;D − =$)

[
�=,−=′ +

�

2 (�=,−=
′+1 + �=,−=′−1)

]
−

� 9E��D;�Γ�(=�(ΔD; − =$) − 1)
[
�=,=′ +

�

2 (�=,=
′+1 + �=,=′−1)

] ) [
�=,0 +

�

2 (�=,1 + �=,−1)
]
. (2.51)

It is important to note that the rates equations (2.48) and (2.51) follow the relation

Γ8 9ED(C) = −Γ̄98DE(C). Since the rates are periodic functions, the master equation is a

Floquet differential equation of the form ¤�(C) = Γ(C)�(C), being �(C) a vector that contains

all density matrix elements and Γ(C) a matrix that contains the rates. The general solution

of such system is

�(C) =
∑
8

284
�8 C?8(C),

where 28 components are related to the initial conditions of the problem, ?8(C) is a function
vector with period ) = 2�/$ for a fixed frequency and �8 are called characteristic or

Floquet exponents. We are interested in the solution for large times, the steady state, so

we can omitt all solutions with<(�8) < 0, which decay to zero in this time limit and are

of no further interest. From the general properties of a density matrix, it follows that

solutions with <(�8) > 0 are impossible. So we are left with discussing solutions with

<(�8) = 0. For the trace of the density matrix to be 1, i.e. time-independent and nonzero,

there must be a solution with �8 = 0. Thus the stationary solution for the density matrix

elements equal to

�; 9(C) =
∑
=

4−8=$C�; 9;=

with

�; 9;= =
$
2�

∫ 2�/$

0
�; 9(C)4 8=$C .

This solution of the master equation corresponds to the "long-time" limit where the tran-

sient processes vanish after switching on the tunneling contact.

We can transform the differential Eq. (2.44) into a algebraic one by making use of the

Fourier-Floquet components of the rates and density matrix elements:
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∑
=

=$4−8=$C�; 9;= +
1
ℏ

∑
=

(�; − � 9)4−8=$C�; 9;= =

8

ℏ

∑
ED

∑
==′

4−8(=
′+=)$C [ΓE;, 9D;=′�ED;= + Γ̄E;,DE;=′�D9;= − Γ9E,ED;=′�;D;= − Γ̄9E,D;;=′�DE;=

]
.

If we make =′ + = = = in the second term, multiply the equation by 4 8=
′′C

and integrate

everything over t, we get kronecker deltas of type �=,=′′ which leads us to the equation

(�; − � 9)�; 9;= + =ℏ$�; 9;= =

8
∑
ED;=′

[
ΓE;, 9D;=′�ED;=−=′ + Γ̄E;,DE;=′�D9;=−=′ − Γ9E,ED;=′�;D;=−=′ − Γ̄9E,D;;=′�DE;=−=′

]
.

(2.52)

In order tomake the system of equation finite and solve it, we need to truncate it at a given

Floquet number =. Importantly, all the information on the temperature and chemical

potential of a given reservoir is only encoded in the Fermi distribution functions

=�(&) =
1

4(&−� 5 )/:�) + 1
,

where � 5 is the Fermi energy and ) the temperature. Moreover, the polarization is

introduced in Γ� by changing it to Γ� = (1/2 − �%)Γ′, similar to what we did in the

cotunneling section. % is the polarization of the electrode . As we will see in the Rabi

frequency section, the polarization is essential to induced and measure resonance peaks.

Finally, the only thing left is to add the normalization condition or detailed balance in

order to break the linear dependence that appears in the system of equations (2.52). Since∑
; �;; = 1 =⇒ ∑

;= 4
−8=$C�;;;= = 1, if we multiply by 4 8=

′′$C
and integrate over C, we obtain∑

; �;;;= = �=,0.
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2.3.2 Current through the central system Hamiltonian

One interesting observable is the current that goes through the central systemHamiltonian

when contacted by twometallic leads. We obtain the time-dependent current going out of

a lead by calculating the expectation value of the time derivative of the number operator

of the lead, # =
∑
:� 2
†
:�2:�,

� = −4
3〈#〉
3C

=
84

ℏ
〈[# , ℋ̂]〉 =

84

ℏ

∑
′:′�′
:�; 9

〈[
2†:�2:� ,

(
C′�; 9�′2

†
′:′�′�̂; 9 + C

∗
′�; 9�′�̂; 92′:′�′

)]〉
=

84

ℏ

∑
:�; 9

(
C�; 9�〈2†:��̂; 9〉 − C

∗
�; 9�〈�̂; 92:�〉

)
=
4

ℏ

∑
:�; 9

(
C�; 9��

<
; 9 ,:�(C , C) − C

∗
�; 9��

<
:�,; 9(C , C)

)
.

Taking into account Eqs. (E.2), (E.3), (E.14) and (E.17), we have:

�(C) =
4

ℏ

∑
�; 9

(
�; 9�Λ; 9 ,�(C) − �; 9�Λ̄�,; 9(C)

)
=⇒ �(C) =

4

ℏ

∑
�; 9

[
�; 9�

(∑
E

�;E(C)� 9E,�(C) +
∑
D

�D9(C)�′D;,�(C)
)
−

�; 9�

(∑
D

�D9(C)��,D;(C) +
∑
E

�;E(C)�′�, 9E(C)
)]
.

Changing the E index by D and using the definition Γ; 9 , 9D,(C) =
∑

�(�; 9�� 9D,�(C) −
�; 9��′�, 9D(C)) and Γ̄; 9 ,D;,(C) =

∑
�(�; 9���,D;(C) − �; 9��′D;,�(C))we can write

�(C) =
4

ℏ

∑
; 9D

[
�;D(C)Γ; 9 , 9D,(C) − �D9(C)Γ̄; 9 ,D;,(C)

]
.

Notice the change of one sign in the rate’s definitions with respect the one we apply in

Appendix E, which was used to write Eqs. (2.47) and (2.50). The minus sign in the middle

comes out naturally and it ensures that �! + �' = 0. The last equation for the current can

be rewritten using the Fourier-Floquet components of the reduced matrix density and the

new rates, which are still periodic for a fixed frequency,

�(C) =
4

ℏ

∑
; 9D

∑
==′

4−8=$C
[
�;D;=−=′Γ; 9 , 9D,;=′($) − �D9;=−=′Γ̄; 9 ,D;,;=′($)

]
=

∑
=

4−8=$C �;=($).

(2.53)
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So, computing the rates and the Floquet density matrix elements allows us to calculate

the current. From Eqs. (2.48) and 2.51) one notices that =′ can only take the values

−2,−1, 0, 1, 2. So, Eq. (2.53) can be simplified even further using the fact that Γ; 9 9D = −Γ̄9;D 9
and changing the sum indexes accordingly

�(C) =
24
ℏ

∑
; 9D

∑
==′

4−8=$C
[
<(�;D;=−=′)Γ; 9 , 9D,;=′($)

]
. (2.54)

While the DC current, = = 0 term, is

��� =
24
ℏ

∑
; 9D

∑
=′
<(�;D;−=′)Γ; 9 , 9D,;=′($). (2.55)

If we are in a high voltage situation, |4+�� | = |� 5! − � 5' | � ℏ$, or in a large energy

difference between electronic states, Δ; 9 � ℏ$ with one state being empty and the other

one filled, $ becomes irrelevant in Eqs. (2.48) and 2.51) and we can write down a couple

of relations between the Fourier-Floquet components of the rates for different Floquet

numbers:

Γ; 9 , 9D,;±1 = Γ; 9 , 9D,;0
�

1 + �2
/2

Γ; 9 , 9D,;±2 = Γ; 9 , 9D,;0
�2
/4

1 + �2
/2

.

Also, notice that Eq. (2.52) tell us �; 9;= = �∗
9;;−= , so

��� =
24
ℏ

∑
; 9D

[
<(�;D;0) + <(�;D;1)

2�

1 + �2
/2
+<(�;D;2)

�2
/2

1 + �2
/2

]
Γ; 9 , 9D,;0. (2.56)

This simplified version of the current, and the fact that the rates does not depend on the

frequency in this regime, allow us to reduced the computational time of the program by

a lot.
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2.3.3 Lifetime and decoherence time

Herewe aim to obtain the lifetime and decoherence time of our system by comparingwith

the Bloch theory for the two level system (TLS). Lifetime is the characteristic exponential

decay time toward the stationary situation. In order tomake everything simpler, let us use

spin zero case, so () = B = 1/2, and make the driving zero, � = 0. In this simplest case

we have three states: down |1〉, up |2〉 and empty |3〉 with< = 0. Notice that states up and

down will be mixed if a transverse magnetic field is applied. If there is no polarization,

see Appendix F, the rate equation for a down state is

ℏ ¤�11(C) = �31,13;0�33(C) − �13,31;0�11(C), (2.57)

while the up one is

ℏ ¤�22(C) = �32,23;0�33(C) − �23,32;0�22(C), (2.58)

where �39 , 93(C) = Γ39 , 93(C) − Γ̄93,39(C), being 9 = 1, 2. Equation (2.57) is a TLS with states |1〉
and |3〉. So, we can compare our rate equation with the one of a TLS in the Bloch-Redfield

theory in order to extract a lifetime, )1. In the steady state, Eq. (2.57) can be written as

�31,13;0�33;0 − �13,31;0�11;0 = 0 =⇒
�33;0

�11;0
=
�13,31;0

�31,13;0
,

This last equation invite us to define a lifetime of ℏ/)13
1 = �31,13;0 + �13,31;0 just by compar-

ison with the TLS previously presented in section 2.2.2. This leads to

¤�11(C) =
1

)13
1 (�11;0 + �33;0)

(
�11;0�33(C) − �33;0�11(C)

)
since �11;0 + �33;0 ≠ 1 we cannot fully recover the TLS equation but at least we could

extract a )1 definition. The usual TLS result between states |1〉 and |2〉 is recovered when

the population of the empty state is negligible, �33(C) → 0. The same procedure can be

done for Eq. (2.58) obtaining another lifetime of )23
1 = ℏ/(�32,23;0+ �23,32;0). Increasing the

localized spin, (, will provide more complex lifetimes, making everything less intuitive:

we have more empty states and each down and up states are connected because of the

magnetic field and the spin interaction J . Let us see the ( = 1/2 (() = 1), in the absence



58 CHAPTER 2. METHODS

of driving, � = 0. We have 6 states: 4 filled states, |1〉, |2〉, |4〉, |5〉, and two empty ones,

|3〉, |6〉. The rate equation for the state |1〉 is

ℏ ¤�11(C) = �31,13;0�33(C) − �13,31;0�11(C) + �61,16;0�66(C) − �16,61;0�11(C).

Wesee that the only differencewith respect to the ( = 0 case is a newempty state connected

to |1〉. The rate equations for different filled states are similar. So, in general, we write

1
)1
=

1
)13

1
+ 1
)16

1
=

1
ℏ

∑
9=3,6
(�91,19;0 + �19 , 91;0).

Thus, for any spin ( and filled state we have a lifetime:

1
)1
=

∑
9

1
)
; 9

1

=
1
ℏ

∑
9

(�9; ,; 9;0 + �; 9 , 9;;0). (2.59)

Being ; a filled state and 9 an empty one. This time depends on the state ; we choose.

Much simpler is to compute the decoherence time, )2. The loss of quantum coherence

is related to the relaxation of the off-diagonal elements of the reduced density matrix.

Again, it is instructive to limit ourselves to the spin zero case, () = 1/2, with � = 0 and

zero polarization such that,

ℏ ¤�12(C) − 8Δ12�12(C) = (Γ̄31,13;0 − Γ23,32;0)�12(C).

By direct comparison with the TLS, one obtains a decoherence time of

)12
2 =

ℏ

Γ23,32;0 − Γ̄31,13;0
. (2.60)

If we increase the dimension to the case ( = 1/2, we have

ℏ ¤�12(C) = 8Δ12�12(C) +
∑
E=3,6
(Γ̄E1,1E;0 − Γ2E,E2;0)�12(C).

Where we see that we just need to sum over the empty states to get the decoherence time

between states |1〉 and |2〉. Therefore, in general, for any pair of filled states

)
; 9

2 =
∑
E

ℏ

Γ9E,E 9;0 − Γ̄E;,;E;0
. (2.61)

where E shall be an empty state. Notice that we could have decoherence times of pair of

empty states through a filled one that is connected to both states.
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2.3.4 Rabi frequency

The Rabi frequency is the transfer rate of the population of one state towards the other

state when the system is driven periodically. It is a term proportional to the off-diagonal

matrix elements of the TLS effective Hamiltonian. Three conditions have to be fulfilled in

order to have a finite Rabi frequency:

• A magnetic field must be applied to lift the energy degeneracy and to mix the

different states. A transverse magnetic field is always necessary in this regard. If

J = 0 when ( ≠ 0, the spins B and ( are not connected, which leads to the () = 1/2
case always. Therefore, the magnetic coupling constant J is essential to simulate

cases with ( ≠ 0.

• Theremust be a net current passing through theQDand the spin-polarized electrode

must be below the Fermi level.7

• At least three Floquet numbers are needed, = = 0,−1, 1. Otherwise the rate equation

does not depend on the frequency.

The reason why these three conditions are needed is to allow the terms Γ8 9;8 (and similar)

being different from zero. For the rate wrote, state 8 could be an empty state while 9 and

; are any different pair of filled states. Basically we need to have rates that combine three

states, being one of them an empty one. In order to emphasize this idea, let us write the

evolution of any filled state for a driving, �, and polarization, %, different from zero

ℏ ¤�;;(C) =
∑
ED

[
ΓE;,;D(C)�ED(C) + Γ̄E;,DE(C)�D;(C) − Γ;E,ED(C)�;D(C) − Γ̄;E,D;(C)�DE(C)

]
,

which can be rewritten as populations terms plus coherence ones

ℏ ¤�;;(C) =
∑
E

[
ΓE;,;E(C)�EE(C) − Γ̄;E,E;(C)�EE(C) + Γ̄E;,;E(C)�;;(C) − Γ;E,E;(C)�;;(C)

]
+∑

ED;E≠D

[
ΓE;,;D(C)�ED(C) − Γ̄;E,D;(C)�DE(C)

]
−

∑
ED;;≠D

[
Γ;E,ED(C)�;D(C) − Γ̄E;,DE(C)�D;(C)

]
.

7If we polarize an electrode above the Fermi level, the Rabi terms disappear in the population rate

equation for a filled state. This left-right asymmetry is probably due to breaking the electron-hole symmetry

by making* →∞.
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The simplest case, ( = 0 =⇒ () = 1/2, has three states: down |1〉, up |2〉, empty |3〉 with

< = 0. So, the previous equation turns out to be:

ℏ ¤�11(C) =
[
Γ31,13(C)�33(C) − Γ̄13,31(C)�33(C) + Γ̄31,13(C)�11(C) − Γ13,31(C)�11(C)

]
−[

Γ13,32(C)�12(C) − Γ̄31,23(C)�21(C)
]
. (2.62)

Redefining the rate proportional to the coherences as a frequency, a transition rate ampli-

tude, and using the results of the rates found in Appendix F

Ω3
12(C) = 2Γ13,32(C)/ℏ = −2Γ̄31,23(C)/ℏ =∑

=′
4−8=

′$C

(
1
ℏ

∑
=�

(
�13��32�

Γ′
2 (1 + 2�%)=�(Δ32 − =$)

[
�=,=′ +

�

2 (�=,=
′+1 + �=,=′−1)

]
−

�13��32�
Γ′
2 (1 + 2�%)(=�(Δ23 − =$) − 1)

[
�=,−=′ +

�

2 (�=,1−=
′ + �=,−=′−1)

] )
·[

�=,0 +
�

2 (�=,1 + �=,−1)
] )
.

The notation ofΩ indicates we induced a rate between states |1〉 and |2〉 connected by the

empty state |3〉. As a side note, we could have also rates between empty states by an up or

down one that shares it both. Γ′ is the full-polarized coupling constant and % = �,'%'.

Since |3〉 is an empty state we have that

ℏΩ3
12(C) = ℏ

∑
=′
4−8=

′$CΩ3
12;=′ =

∑
=′
4−8=

′$C
∑
=�

�13��32�
Γ′
2 (1 + 2�%)(=�(Δ23 − =$) − 1)

·
[
�=,−=′ +

�

2 (�=,−=
′+1 + �=,−=′−1)

] [
�=,0 +

�

2 (�=,1 + �=,−1)
]
.

We can extract what we need in order to identify the Rabi frequency following the results

of Bloch-Redfield theory for two level system, Eq. 2.23. Hence, we are looking for the

term proportional to cos$C. Taking the =′ = 1,−1 terms in equation

ℏΩ3
12(C) = ℏ

∑
=′=0,−2,2

4−8=
′$CΩ3

12;=′ + ℏ4 8$CΩ3
12;−1 + ℏ4−8$CΩ3

12;1,

we have
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ℏΩ3
12;1 =

∑
�

�

2 �13��32�
Γ′
2 (1 + 2�%)(Δ23) [(=�(Δ23 + $) − 1) + (=�(Δ23) − 1)]

ℏΩ3
12;−1 =

∑
�

�

2 �13��32�
Γ′
2 (1 + 2�%)(Δ23) [(=�(Δ23 − $) − 1) + (=�(Δ23) − 1)] .

If the terms =′ = −1, 1 are equal, we can build a cos$C. The condition for them to be

equal can be satisfied by making the � 5' � ℏ$ or, alternatively, if Δ23 � ℏ$. In these two

situations, the frequency is irrelavant in the Fermi functions soΩ3
12;1 = Ω

3
12;−1. Taking this

into account, the Rabi frequency for a spin zero system is:

ℏΩ = ℏΩ3
12;1 =

∑
�

��13��32�
Γ′
2 (1 + 2�%)(=�(Δ23) − 1). (2.63)

In addition to this, we could actually write

Ω3
12(C) =

∑
=′
4−8=

′$CΩ3
12;=′ = Ω

3
12;0 + 2Ω3

12;1 cos$C + 2Ω3
12;2 cos 2$C.

Thus, we find the following evolution equation

ℏ ¤�11(C) =
[
Γ31,13(C)�33(C) − Γ̄13,31(C)�33(C) + Γ̄31,13(C)�11(C) − Γ13,31(C)�11(C)

]
−

ℏ

[
Ω3

12;0

2 +Ω3
12;1 cos$C +Ω3

12;2 cos 2$C

]
(�12(C) + �21(C)).

For any spin (, we note that

ℏ ¤�;;(C) =
∑
E

[
ΓE;,;E(C)�EE(C) − Γ̄;E,E;(C)�EE(C) + Γ̄E;,;E(C)�0

;;(C) − Γ;E,E;(C)�
0
;;(C)

]
+

∑
ED;E≠D

ℏΩ;
ED(C)
2 (�ED(C) + �DE(C)) −

∑
ED;;≠D

ℏΩE
;D
(C)

2 (�;D(C) + �D;(C)). (2.64)

So we have a Rabi frequency transition for each coherence terms in Eq. (2.64). Also, notice

that the second order terms in frequency Ω3
12;2 are proportional to �2

 and they could

create second order resonances if the driving is high enough. The zero order terms Ω3
12;0

exist at zero driving and they can be thought as energy renormalization terms.





Chapter 3

Results

This chapter encompasses all the results of the three methods explained in the theory.

Firstly we check out what DFT provides about the system. Later we have the Multiplet

results. Most of this work has been already published in [46, 75]. Finally we introduce the

ESR Floquet simulations.

3.1 Density Functional Theory calculations

Here we introduce the DFT results. The calculations were performed using the pseudo

potential method and plane-waves implemented in VASP. All pseudopotentials use the

PAW_PBE parametrization for the exchange and correlation potential. The cut-offs for

the expansion of the plane waves and charge density were chosen according to the pseu-

dopotential verification database. Firstly, we focus on the bulk systems, follow by results

on the MgO/Ag(001) slab. After that we present the calculations when we place the Fe

impurity, computing the planar average potential for different electric force fields. Finally

we compare the electric field response of MgO/Ag slab with Cu2N/Cu and CuCl/Cu

ones.

62
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Figure 3.1: Free energy vs lattice parameter for Halite FCC MgO (left) and FCC Ag

(right) using cut-off of the PAW_PBE pseudo potential, K-Points (Monkhorst Pack) grid

of 11x11x11 and no Van der Waals corrections for both cases. For MgO one find a lattice

parameter of 4.25Åwhile in theAg casewehave 4.145Åwhich results in a latticemismatch

of about 2.5% (experimental value: 2.9%).

3.1.1 Bulk systems

Sinceweareusingpseudopotentials, it ismoreprecise tomakeuse of the lattice parameters

that the simulation gives rather than taking the experimental values. Therefore, we

calculate the bulk lattice parameters before we build any slab.

We introduce a cut-off energy and K-Points (Monkhorst Pack) appropriate andwe look for

the free energy as we change the lattice parameter obtaining Fig. 3.1 and 3.2. The first two

plots are computed without the Van der Waals corrections while the second one add it.

Clearly the Van der Waals force become essential to reach lattice parameter values closer

to the experimental ones. In addition to this, the Van der Waals correction also helps

to reproduce more precise results on work function, adhesion energies and interatomic

distances for the slab systems.

3.1.2 Fe on MgO/Ag surface

Let us focus first on the surface system without the magnetic atom. With the information

of the bulk, we are able to generate the slab structure with different number MgO layers.
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Figure 3.2: Free energy vs lattice parameter for Halite FCC MgO (left) and FCC Ag

(right) using cut-off of the PAW_PBE pseudo potential, K-Points (Monkhorst Pack) grid

of 11x11x11 and Van der Waals corrections for both cases. For MgO one find a lattice

parameter of 4.205 Å while in the Ag case we have 4.075 Å which results in a lattice

mismatch of about 3% (experimental value: 2.9%). Furthermore, the individual values of

the lattice constants are closer to the experimental ones if the Van der Waals corrections

are applied since experimentally 0"6$ = 4.212Å and 0�6 = 4.079Å.

We chose the lattice constant of the silver because, in addition to correspond to the bulk

Ag underneath, it is the lowest and ensures a better stability of the system. The unit cell

is chosen to be 4 layers of Ag (001) plane with 8 atoms for each monolayer. In contrast,

the MgO monolayers will have 16 atoms: 8 of Mg plus 8 of O and (001) plane is taken to

match the Ag surface. Since the oxygen is more electronegative, we will place them over

the silver atoms. The system is padded by≈ 20Å of vacuum in the z-direction and a dipole

correction was applied to decouple the slab from its periodic images and counterbalance

its error. This is made by writing IDIPOL=3 and LDIPOL=.TRUE. in the INCAR file. The

grid of K-points is decreased to 5x5x1 with respect to the bulk cases.

Once we built the surface, we relax the structure but maintaining the two bottom Ag

monolayers frozen since they should not move a measurable quantity. After this, we

added themagnetic impuritymagnetic Fe atoms and performed a couplemore relaxations

while introducing an on–site Coulomb repulsion * = 3.2 eV and SPIN= 2 in the INCAR

file. Only the d shell contribute to the magnetization. Fig. 3.3 shows how the final relaxed
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Figure 3.3: Relaxed surfaces with twoMgOmonolayers with (right) and without (left) the

impurity atom. It can be noticed that the MgO/Ag(001) substrate without the magnetic

impurity has really flat monolayers, the atoms fall in a plane. However, once we place the

iron atom, the plane is a bit deformed and the oxygen underneath the iron is pulled up.

This makes the pair Fe −O hybridize.

structures look like for the two MgOmonolayer case. We performed DFT calculations for

one to four MgO monolayers in order to compute the adhesion energy for every case.

We define the adhesion energy as the energy required to break the Ag-MgO interface

into isolated Ag andMgO (001) slabs. Therefore, the larger adhesion energy indicates the

stronger binding of the interface:

�03ℎ
8=C4A 5 024

= �C>C
�6−(DA 5 . + �

C>C
"6$−(DA 5 . − �

C>C
"6$/�6 . (3.1)

Or, what is the same:

�03ℎ
8=C4A 5 024

= �C>C("6$−1)/�6 + �
C>C
">=>"6$−(DA 5 . − �

C>C
"6$/�6 , (3.2)

which basically tell us the adhesion energy is the energy of a MgO/Ag surface with one

less MgO monolayer plus the energy of that isolated monolayer minus the energy of the

total slab, respectively. Table 3.1 summarizes the adhesion energy results. The one ML

MgO/Ag (001) shows the weakest binding of the interface, probably due to the dominant

Pauli repulsive interaction between the Ag film and the MgO substrate [76]. Interestingly,

2 ML of MgO provides a close enough to saturation adhesion energy, which warranties a
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Without Fe With Fe

�C>C
B;01

(eV) �03ℎ
8=C4A 5 024

(eV) WF (eV) 3�4−$ (Å) Mag (��)

MgO monolayer -90.10 - 4.90 - -

Ag 4 layers -93.81 - 4.10 - -

MgO(1L)/Ag(001) -188.58 4.67 3.16 1.926 3.922

MgO(2L)/Ag(001) -287.64 8.96 2.82 1.930 3.936

MgO(3L)/Ag(001) -387.19 9.44 2.79 1.968 3.974

MgO(4L)/Ag(001) -486.77 9.48 2.81 1.973 3.984

Table 3.1: Summary of the results for the different slabs with and without the magnetic

atom. The adhesion energies seem to saturate as the MgO monolayers grow, being 2 ML

rather enough to reach the saturation. Clearly the work function data reach also a stable

behaviour as the number of MgO layers increase. Results on work functions and adhesion

energy in agreement with [78] and [43]. The distances Fe − O increase with the number

of MgO monolayers (biggest jump from 2 to 3 ML). Same for the magnetization which is

close to 4�� for every case.

stable substrate. The table mentioned also provides results on the work function which

are calculated by plotting the Planar Average-Potential vs Planar Distance and looking at

the difference between the energy in the vacuum and the Fermi one. Additionally, we

computed the Fe −O distances and magnetization for each MgO monolayer.

The distances of the dimer Fe −O increases with the number of MgO monolayers which

could imply that the magnetic atom become less attached to the surface as the ML grows.

The magnetization also increases and it is close to 4��, ( = 2, for every case. This was

expected since we must recover the isolated value of the magnetization for magnetic Fe

atom because MgO constitutes a very good insulator with an energy band gap of 7.2 eV

[77]. Therefore, increasing the ML will lead to a effective isolated Fe.

After this analysis, we implement the electric field into our calculations. The VASP code

gives us this option through the command EFIELD, which controls the magnitude of the

applied electric field (eV/Å). Experimentally, the AC voltage goes from 10 to 60 meV. If we

supposed that the STM tip is around 3-10 Å above the MgO substrate, we have an electric



3.1. DENSITY FUNCTIONAL THEORY CALCULATIONS 67

Figure 3.4: PDOS vs the energy for the 3I2 Fe orbital and the B? of the oxygen underneath

it. The zoom plot (right) shows clearly the hybridization between both orbitals. Other

3-orbital are much further from the Fermi level, �� = 0, such that they cannot contribute

to any excitation.

field of �� = 1 − 20 meV/Å. With this information, we applied four electric-field values:

{−0.002, −0.02, 0.02, 0.002} eV/Å, and we look at the planar average potential and PDOS

for the iron since they are likely to show an electric-field dependence. Particularly, we

focus on the orbital 3I2 of the Fe because it is closer to the Fermi level, which is chosen

to be zero. Other d-orbitals do not offer any relevant information. Fig. 3.4 shows the

projected density of states for the Fe andOunderneath. From the plot, since the 3I2 orbital

hybridizes with the oxygen underneath, it can undergo a Stark effect. This property is

characteristic of the B and ? orbitals and implies a linear dependence on the electric field.

Therefore, at first glance, an electric field could move the 3I2 density of states up or down

in energy changing the effective configuration of the magnetic impurity (36 → 37 or 35
).

This implies a change of the tunneling amplitudes which translates into an effective Rabi

term and the consequent resonance peak in the current spectrum. However, from Fig.

3.5, one sees that the adatom-level shifts are negligible under the applied external electric

fields.

The planar average potential (PAP) results on Fig. 3.6 provides a measurable change on

the electric field. There we plot the PAP with respect to the zero-field case and it can
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Figure 3.5: Energy peak position near the Fermi level for Fe vs the electric field. The

energy shifts are negligible for the experimental values of the electric field.

be noticed a maximum difference in the PAP of 0.7 eV in the vacuum region. As we get

closer to the substrate, each line converges to zero, which means that the electric field is

being screened. This is due to MgO being a polar insulator with a very large dielectric

constant. However, notice that at the Fe’s position there is still an electric force remaining

which could move the magnetic impurity. In any case, the large change in the potential

barrier implies the prevalence of the modulation of the tunnel barrier, similar to the case

of inelastic tunneling spectroscopy (IETS). This modulation could provide the existence

of Rabi terms and, therefore, ESR peaks in the current spectra. In section 3.2 we apply

this idea while using a cotunneling/multiplet approach to the problem.

3.1.3 Cu2N and CuCl comparison

Since many works have been published using Cu2N substrate [79, 80] and the system

CuCl could provide better ESR signals, we wanted to see how these surfaces are affected

by an electric field. We computed the Cu lattice constant looking at the minimum free

energy in the bulk system and followed relaxation steps similar to the one we made in the

MgO/Ag(001) case. Fig. 3.7 shows the relaxed structures.

A rather simple calculation was made to compare the responses of each slabs. We applied

four electric-field values: {−0.002, −0.02, 0.02, 0.002} eV/Å and looked at the total force
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Figure 3.6: Planar average potential (PAP) with respect to the zero-electric-field case vs

planar distance. Δ�� = �� − ��0 where ��0 refers to the PAP with zero-field applied.

Clearly the electric field shifts the potential in the vacuum region, which translates into a

large modulation of the tunneling barrier (assuming that the tip position is ∼ 10 Å above

the insulator). At a larger distance, we have a plane of dipoles added in the vacuum region

needed to have an increasing potential due to a constant external electric field in the unit

cell of the calculation (from the dipole correction VASP implementation IDIPOL=3). The

×marks indicate the atom and plane position of the slab. The magnetic impurity, Fe, is at

15.2 Å while the O underneath is at 13.27 Å. This atom has been pulled out of the second

MgO layer, at 12.89 Å, due to the interaction with the Fe. We also place the first and last

Ag layers at 8.16 Å and 2.03 Å, respectively. The vertical line at 12.91 Å marks the position

of the second MgO plane before we place the magnetic impurity. Therefore, Mg atoms in

the surface do not feel as much change as the O underneath the magnetic atom.
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Figure 3.7: Relaxed structures for the Cu2N/Cu(001), left, and CuCl/Cu(001), right.

Figure 3.8: Total force vs the electric field for every substrate discussed. For each species

we took the atom in the most top layer. All the atoms of one species in the same layer feel

the same total force. One can notice that the MgO layer feels a force that is one order of

magnitude larger than the Cu2N and CuCl surfaces.
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that every atom felt without making a relaxation procedure. Fig. 3.8 provides the results.

Although these calculations are performed at a precision lower than the above results, it

provides enough inside of the surfaces. They show an order-of-magnitude less in the force

exerted by the external field on the surface atoms for the Cu2N and CuCl in comparison

with theMgO/Ag slab. This implies a smaller piezoelectric effect for the above to surfaces

as compared to the MgO-based system. Therefore, in order to have a strong ESR signal, a

MgO/Ag substrate is preferable.

3.1.4 Conclusions of the section

Wehave built our slab systemusing the lattice parameters thatminimize the free energy of

the bulk systems, together with other considerations such as the number of k-points or the

values of the cut-off energies. We have shown that as more MgO monolayers are added

to the Ag surface, the system becomes more stable. However, two MgO layers already

provide a large enough adhesion energy and stability to be grown easily, in agreement

with experiments [7, 11, 12, 13, 14, 15, 16, 17].

Then, we have placed the magnetic impurity Fe above one of the top O and computed

the PDOS for both atoms. The results clearly show a hybridization of the 3I2 orbital with

the B? one of the O. Since the B? orbitals feel the presence of an electric field by the linear

Stark effect, we performed calculations on the substrate for different electric fields. Even

though there are Fe levels close to the Fermi level, a static electric field cannot change the

electronic configuration of the magnetic atom. However, it greatly modifies the tunneling

barrier. Hence, we can conclude that the electric field is stronglymodulating the tunneling

barrier .

This modulation is also reflected in the total force that each atom feels. One can notice

that the MgO layer feels a force that is one order of magnitude larger than the Cu2N and

CuCl cases, which could be the reason why the latter systems do not display ESR signals,

at least for the time being.
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3.2 Time-dependent cotunneling results

Here, we present the results of the time-dependent cotunneling approach. We mainly

focus on the current and Rabi frequency. We shall show that our description leads to

a considerable agreement with the experimental results despite some assumptions. All

the results in this section are computed using a Multiplet calculation to solve a many-

body Hamiltonian, more details can be found in Appendix A. Although the code can

use Maximally Localized Wannier Functions [75], in this section we keep the simpler

description of the crystal field based on apoint-chargemodel [81]. Despite the quantitative

limitations of these models, they provide a good picture of the symmetry of the system,

so they are very often used to describe ESR spectra [55].

In our modelling, Sec. 2.2.2, the consequence of the AC driving voltage is summarized in

the non-equilibrium occupations %0(+, $) but, more explicitly, on the Rabi frequency or

flop rate Ω, given by Eq.(2.34). We underline that, in order to arrive to this expression,

we made the assumption of considering constant density of states and hybridization with

the leads. As a consequence, we need to introduce an energy cut-off �2 to have definite

integrals. These raw approximations will enable us to estimate the Rabi flop-rate and

the ESR current response easily. Moreover, the predicted behavior of the results are

in qualitative agreement with the experimental ones. On the down side, our approach

overestimate the Rabi frequency by one order of magnitude as we will see.

Wefirst introduce the current detectionmechanismemulating experimental conditions for

a TLS. Thenwe illustrate themain results for two cases: a single orbital AndersonHamiltonian

and the multiorbital case describing the Fe on MgO/Ag(001) surface. In the former, the

only ingredients are the charging energy of the adatom and the induced Zeeman splitting.

In the second case, we describe the magnetic adatom by a multiorbital Hubbard model

that includes the Coulomb repulsion between the impurity d-electrons, the crystal field

calculated by a point-charge model [81], the spin-orbit coupling and the Zeeman term [57,

82]. In doing so, we will assume hydrogenic-like wavefunctions for the Fe orbitals. The

Coulomb interaction is parametrized by a single parameter, the average on-site repulsion

* . The resulting crystal field depends on two parameters: the expectation values 〈A2〉 and
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〈A4〉 [81], while the spin-orbit coupling will be defined by its strength �($ . Specific details

about the used parameters can be found in the Appendix Sec. A.2 and Table A.1.

Current detection of the STM-ESR

In Sec. 2.2.2 we have sketched the cotunneling mechanism leading to the STM-ESR.

Equation (2.25)makes explicit theworkingmechanism of the experiment: the occupations

%0(+, $) respond to the driving frequency and the changes are reflected in the DC current

�(+, $). The consequences on the current and occupations can be seen in Fig. 3.9. This

figure illustrates the magnetoresistive detection mechanism. Here we have used a two-

level description where the steady-state density matrix population is given by Eq. (2.26).

We have used the parameters extracted from Baumann et al.: [7] )1 ≈ 88 �s, )2 ≈ 200

ns, Ω ≈ 2.6 rad/�s. In addition, we take a set-point current of � = 0.56 pA at +�� = 5

mV, while we assume a tip polarization %) = 0.33 that is close to the one experimentally

estimated [14]. The finite tip polarization leads to a magnetoresistive response: the

electrons tunneling rates depend on the relative orientation between the local spin and

the tip magnetization, together with the sign of the applied bias [83, 84].

Furthermore, close to the resonant frequency, the occupations of the two low-energy states

tend to balance, as observed in the right inset of Fig. 3.9. This change of %<(+, $) is then
reflected as a change in the DC current detected by the STM.

3.2.1 Single-orbital Anderson model

A single-orbital ( = 1/2 spin model

We start discussing the simplest model for a magnetic impurity: the single-orbital An-

derson model. This model, which was introduced to describe magnetic impurities on a

non-magnetic metal host [85], is equivalent to a single ( = 1/2 spin exchange coupled to

conduction electrons [86]. Then, it may be used as an idealization of the STM-ESR experi-

ments on hydrogenated Ti atoms on MgO/Ag(001) [15, 16]. The ( = 1/2 spin is isotropic,

and the matrix elements �<
±

01
(��) can be evaluated analytically, with �<

±

01
(↑↑) = −�<±

01
(↓↓).
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Figure 3.9: Current detection of STM-ESR. Variation of the DC current as a function of the

detuning $ − $10 in units of 1/)2, with $10 = (�1 − �0)/ℏ for %) = 0.33 (black) and %) = 0

(green dashed line). The current is given in terms �0, the DC current far from resonance.

In the left inset we have the scheme of the STM-ESR setup: a radio-frequency bias voltage

is applied in addition to the DC voltage between the spin-polarized tip and the surface.

On the right inset we find the variation of the occupation of the ground state, |0〉, (black)
and first excited state, |1〉, (blue) with detuning. The different parameters are chosen to

match the conditions of Fig. 3(C) in Baumann et al. [7] with +�� = 8 mV.
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Let us consider that the system is under the influence of a static magnetic field �G , so

that |0〉 and |1〉 are eigenvectors of the spin operator (̂G and 6���G = ℏ$0 is the Zeeman

splitting. Then, assuming that only the tip is spin polarized and using the same notation

as in Eq. (2.34), one gets that Λ<− , + Λ<+ , ∝ +2
)
%)�,) , where +) is the hopping

between the single level and the tip. In other words, only coupling with a spin-polarized

electrode gives a finite contribution to Ω. When the value of the hybridization function

Γ′
)
= 2��)+2

)
is much larger than the thermal energy :�), where ) is temperature and :�

is the Boltzmann constant, one can approximate the Rabi frequency by

Ω ≈
4Γ′

)
|+��%) |
ℎ |�01 |

��ℐ−(�−, �2 , 4+) − ℐ+(�+, �2 , 4+)�� , (3.3)

where the functions ℐ±(�±, �2 , 4+) are defined in Appendix B.

Crucially, the result above relies on the fact that the tip polarization is normal to the

magnetic field producing the Zeeman splitting, leading to a finite mixing between the

eigenvectors |0〉 and |1〉. This should not be surprising since in the standard ESR protocols

[55], the AC magnetic field is applied perpendicular to a large static field. In our case, the

AC electric field yields an effective oscillating magnetic field along the tip polarization

direction I, which is on resonance with the Zeeman splitting produced by the applied

static magnetic field �G .

The result (3.3) has a different reading: the proposed mechanism does not need any

particular anisotropy. The key ingredient is thus the effective magnetic field created

by the spin-polarized tip, �eff = 2ℏΩ/6��, which is oriented along the tip-polarization

direction. In order to have an active ESR signal, this effective field must have a component

perpendicular to the field inducing the Zeeman splitting.

A single-orbital multispin model

In general, transitionmetal adatoms entails ( ≥ 1/2 spins, and thus, they are also subjected

to magnetic anisotropy. The dominant interaction with their surroundings takes the form

of an exchange coupling [87, 88], which determines the IETS, and the spin relaxation and

decoherence [29]. Hence, the total spin, given by the sum of the local spin and scattering

electrons spin, is conserved. Thus, we can model this interaction in the cotunneling
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context by considering the scattering of the itinerant electrons with a localized magnetic

impurity described by a single-orbital state, with a spin ( > 1/2 (multiplicity (2( + 1)) in
its #0 electrons state, and isotropic spins (<+ = ( + (−1)2+/2 and (<− = ( − (−1)2−/2 in

the charge states "+ and "−, which implies that the sum over <− and <+ in Eq. (2.35)

vanishes. Constants 2+ and 2− can take the values 0 or 1 depending on the total spin total

of the charge states.

The model sketched above allows us us to describe the effective exchange interaction ���′

in terms of the transition amplitude operators )̂±(��′). In addition, it permits relating

the Rabi flop rate, Eq. (2.34), with the local spin (. While the energy dependency is the

same that appears in the single Anderson model, the crucial differences are associated to∑
<± ,� Λ<± ,, see Eq. (2.35). Using the result of Appendix C, one can arrive to [89]

Λ<− , +Λ<+ , ∝ Γ′)%)�,) 〈0 |(G |1〉
(

(−1)2−
2( + 1 + (−1)2− +

(−1)2+
2( + 1

)
.

Therefore, we have the following expression of the Rabi frequency

Ω ≈ 24Γ) |+��%) |
ℎ |�01 |

〈0 |(G |1〉
(

(−1)2−
2( + 1 + (−1)2− +

(−1)2+
2( + 1

) ��ℐ−(�−, �2 , 4+) − ℐ+(�+, �2 , 4+)�� .
(3.4)

Thus, our model predicts a weak dependence with the atomic spin, in good agreement

with the observation of STM-ESR weak dependence on the atomic species [7, 11, 12, 13,

14, 15, 16, 17].

An important detail of our results is that the Rabi flop rate is proportional to the tip

polarization and the hybridization, %)Γ) . Hence, it leads to Ω ∝ �, which is in apparent

contradiction with the experimental observation of a Rabi flop independent of the DC

current for the Fe on MgO/Ag(001) [14]. With this in mind, we examine below the

corresponding results based on a multiorbital Hubbard model within the cotunneling

description.
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Figure 3.10: Estimation of Ω/+�� for the Fe on MgO/Ag(001) substrate versus the DC

current for a constant applied bias voltage +�� = 60 mV. Each curve corresponds to a

different tip polarization %) . The inset shows the dependence with the tip polarization

for the high (thick solid line) and low (thin dashed-line) DC voltages.

3.2.2 The Fe on MgO/Ag(001) surface

Although STM-ESR has been demonstrated on a variety of magnetic adatoms [7, 11, 12,

13, 14, 15, 16, 17], the most studied system is Fe on MgO/Ag(001) [7, 11, 12, 14]. As we

mentioned, we are going to apply a simple point-charge model since it offers qualitative

agreement results with the experimetal ones [90]. For the Ag(001) surface we have [59]

that <∗ = 0.99<4 and :� ≈ �� ≈ 1.1 Å
−1
. Typical tunneling current measurements are

given in a range where �! ∼ 3 − 20, which translates into |�−1
01
| ∼ (0.3 − 2.1) × 10−3

meV
−1
.

For simplicity, we assume that all Fe-d orbitals are equally coupled to the substrate, with

an energy broadening Γ( ≡ 2��( |+( |2. In the case of coupling to the tip, we assume that

only the 3I2 is actually coupled, since it points towards the tip, with an induced energy

broadening Γ) ∝ �.

To check our model, we first take Γ( = 2.314 eV to fit the decoherence time, obtaining

)2 = 210 ns for the conditions of Fig. 3C of Ref. [7] at a driving voltage of 8 mV. Our

cotunneling description then predicts a relaxation time )1 of the Zeeman-excited state
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of )1 = 8.72 ms, to be compared with the experimentally determined )
�G?

1 = 88 �s.

The disagreement between both values can have two origins. On one side, we have the

limitations due to the oversimplified point-charge model, together with the critical and

different dependences of )1 and )2 on the magnetic anisotropy parameters. On the other

side, this transition may also be mediated by the spin-phonon coupling [10]. Fortunately,

our STM-ESR mechanism does not strongly depend on )1.

We now turn our attention to the Rabi flop-rate, evaluated according to Eq. (2.34). The

energy integration is done as in Eq. (3.3), and the only difference comes from the matrix

elements Λ<± ,. In this case, the sums over <± are extended over all states needed to

guarantee the convergence. Figure 3.10 shows the DC current dependence at +�� = 60

mV of the Rabi flop-rate for three different tip-polarizations: %) = 0, 0.33 and 1, the

ideal half-metal case. As observed, especially for intermediate polarizations, Ω is barely

affected by the current. This striking result is in agreement with the experimental findings

that shows a current-independent Rabi flop rate for currents between 10 pA and 30 pA,

[14] where authors found that Ω/+�� ≈ 0.375 rad.�s−1
.

The result above points out to a crucial ingredient that is not accounted for in the single-

orbital Anderson model: the complex orbital structure of the adatom. According to Eq.

(2.35), electrons tunneling into different orbitals ℓ of the adatom will lead to unequal

contributions to the Rabi flop-rate. The direct consequence is that, contrary to the single-

orbital case, the spin averages

∑
<± ,� Λ<± ,�� remains finite, which translates into a finite

Rabi flop rate at zero current polarization, see inset of Fig. 3.11. The weak current depen-

dence appears then as a direct consequence: Ω contains a fix contribution associated to

hybridizationwith the surface, proportional to Γ(, and another one of the tip, proportional

to Γ) (∝ �). Since Γ( & Γ) except for high conductances [10], the current independent con-

tribution generally dominates. Comparing the polarization dependence for low voltage,

with a current set-point of 0.56 pA at+�� = 5 mV, and high voltage, with a current of 30 pA

at+�� = 60 mV,we notice that the Rabi frequency is not strongly affected by the dynamics

of the excited spin states, see Fig. 3.10. A key issue is the apparent contradiction of our

finite Rabi flop-rate for zero-polarization with the observation of the STM-ESR signal only

when a spin-polarized tip is used. The solution to this apparent discrepancy is in the
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detection mechanism of the ESR: current magnetoresistance. This is illustrated in Fig. 3.9,

wherewe have added the frequency responsewhen a spin-averaging tip is used, assuming

exactly the same Rabi flop rate. The resulting steady state current is independent of the

frequency and thus, there is not STM-ESR signal.

Willke et al. analyzed in detail the role of the different parameters that controls the STM-

ESR [14]. In particular, they observed that the resonant peak current saturates with the

radio frequencyvoltage+�� , both for small and large set-point currents. In fact, they found

that the ratio �?40:/�B0C = #(+��), which they called drive function, was given by �2/(1+ �2)
with � = +��/+1/2, where+1/2 = ()1)2)−1/2+��/Ω is defined as the half-saturation voltage.

The relevance of this drive function is that, the larger the drive function, the larger the

ESR signal, making the detection more efficient. Thus, we show in Fig. 3.11a) the drive

function obtained from our model, which should be compared with Fig. S2C of Ref.[14].

Our theory correctly reproduce the general trend with the tunnel current. However, due

to the overestimation of )1 and Ω, our estimated driving function saturates at lower AC

bias voltages.

Finally, we would like to call the attention on one point. The experimental observation

of the STM-ESR signal requires a finite in-plane magnetic field �G . In Ref. [7], authors

argue that this field introduces a mixing between the states 0 and 1, the same argument

that we exploited in our ( = 1/2 spin model of Sec. 3.2.1. From our expression of the

Rabi flop-rate, Eq. (2.27), we see that its effect is the same as the one produced by a

transversal AC magnetic field �eff
⊥ = 2ℏΩ/6�� on a ( = 1/2 spin system under the action

of an static field �eff
‖ = ℏ$10/6��. Hence, the application of a static field that mixes the

zero-field states |00〉 and |10〉, as it is the case of the Fe/MgO [7], and the coupling term

Tr'[�ℋ̂2>CD=], leads to the same consequence: a mixing of the low energy states |0〉 and
|1〉, and thus, to a larger Rabi flop-rate. This is illustrated in Fig. 3.11b) where we show

how Ω changes with a transversal magnetic field. From the experimental point of view,

the static transversal field �G is also required in order to have a finite tip polarization.
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Figure 3.11: a) Predicted driving function �?40:/�B0C for the Fe/MgO/Ag(100) system for

different currents, to be compared with Ref. [14]. b) Variation of the Rabi flop-rate, Ω,

with the external in-plane field �G for different values of tip polarization. The field is

applied forming an angle � = 3.51 × 10−2
with the surface plane, with �I = 0.2 T, while

� = 30 pA and +�� = 60 mV.
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3.2.3 Conclusions of the section

Wehave analyzed the effect of an applied radiofrequency bias voltage on theDC tunneling

current through a magnetic adatom. Our basic assumption is that this driving voltage

leads to a modulation of the tunnel junction transmission with the time-dependent ex-

ternal electric field. In other words, the hopping tunneling amplitudes are modulated,

giving place to an off-diagonal time-dependent term in the adatom’s Hamiltonian which

takes the form of the Rabi flop rate. This contribution mixes the stationary states.

The amplitude of the modulation was estimated using Bardeen transfer Hamiltonian the-

ory to describe the tunneling current [26] which provide results in quantitative agreement

[91]. A clear improvement over this simple description would be in the form of the

Tersoff-Hamann description of tunnel between a surface and a probe tip [92].

The effect of the driving field is summarized in the single parameter called Rabi frequency

or flop-rate, Ω. Thus, all our efforts in this section have been oriented to estimate Ω. In

doing so, we keep a second-order description of the interaction of the quantum system

(the adatom)with the electronic baths (surface and tip electrons), using the Bloch-Redfield

approach to treat open quantum system [47]. In addition, we assume that the small and

fast-oscillating driving field does not modified the dissipative dynamics [51].

This theory have been applied on two different models to simulate the STM-ESR mech-

anism. In first place, to a single-orbital Anderson model, which reveals that isotropic

( = 1/2 systems can be ESR active with a Rabi flop rate proportional to the tip polar-

ization. Thus, the proposed mechanism does not rely on a particular symmetry of the

adsorbed adatom, neither on the adatommagnetic anisotropy or total spin. This ubiquity

is in agreement with the experimental observation of STM-ESR for a variety of adatoms

adsorbed on MgO, [7, 11, 12, 13, 14, 15, 16, 17] including the Ti-H complex behaving as

a ( = 1/2 spin [12, 15, 16]. The resulting Rabi flop-rate depends on off-diagonal matrix

elements mixing the two states connected by the ESR, and thus, it can be described as

an effective AC magnetic field �eff
⊥ = 2ℏΩ/6��, whose orientation is parallel to the tip-

polarization. This is similar to the usual ESR where the AC field is perpendicular to the

field creating the Zeeman splitting, and explains the need of an in-plane magnetic field in
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the experiments of Baumann et al [7].

Since Ω is directly proportional to the tip polarization, a null contribution of the spin-

unpolarized surface to the Rabi flop rate, which in turn leads to a linear dependence on

current. Although a current dependence for ( = 1/2 systems has not been reported to

the best of our knowledge, this result is in contrast with the observation of a current-

independent Rabi flop rate for Fe/MgO [14]. Hence, we employed a more sophisticated

description of the adatom in terms of a multiorbital Anderson Hamiltonian derived from

a multiplet calculation. This model already pointed to an important result: when the

orbital degrees of freedom of the adatom are accounted for, the modulation of the tunnel

barrier by the AC electric field generates a finite Rabi flop rate even in the absence of

current polarization. Due to the usually dominant contribution of scattering with surface

electrons, the contribution associated to the surface overshadow the (current-dependent)

tip part. This result is thus in agreement with the observed weak current dependence

[14].

Finally, despite the limitations of the approximations we performed, the Rabi flop-rates

are high enough to explain the observation of ESR signals, but the values are off the ex-

perimental ones by a factor 10-20 [14]. In order to improve these results in the cotunneling

scheme, we can use Wannier representation to compute the hybridization functions +:;ℓ ,

together with the PDOS �(&) on the whole energy interval [75]. It is worthy to mention

that an accurate description of the ESR-lineshape also involves the relaxation )1 and de-

coherence )2 times of the atomic spin. Therefore, a better knowledge of these parameters

can also improve the results. Our modelling of the ESR experiments using Floquet theory

provides this information naturally as we saw in Sec. 2.3.3.
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3.3 ESR Floquet simulations

In the theory section 2.3.1, we presented a simple model to reproduce the experimental

situation often found in ESR-STM. In ESR-STM, the tip and the substrate are biased with a

constant plus an alternating voltages. The tip is spin polarized, and an external magnetic

field is applied. Our model consists of a single active electronic level of an atom, molecule

or quantum dot (QD) that is coupled to two electrodes representing tip and substrate. In

order to capture the complexity of the system while keeping the electronic description

simple, we have the single electronic level interacting via an exchange interaction (with

coupling J ) between the level spin, s, and the rest of the electrons, represented by a local

spin S. Our QD is then a system of total spin S) = S + s. In order to approximate

the experimental situation, we further include a spin-Hamiltonian by means of magnetic

anisotropy on the total spin, as well as an external magnetic field, B. This simple model

can actually reproduce the main features of ESR of most atoms experimentally analyzed,

thus giving us a way to peer into the intricate spin dynamics of ESR-STM.

ESR Floquet theory can provide really complicated results as the size of the local spin, (,

increases. In order to make everything more transparent to the reader, we restrict ourself

to two cases: (8) ( = 0, which implies a total () = ( + B = 1/2, and (88) ( = 1/2, with a

spectrum given by two total spins, () = 0 and () = 1, by choosing the exchange coupling,

J , we can explore the ESR transitions of the () = 1 system or of themore complex situation

with both spins.

In (8), due to our approximation of large charging energy, the QD can only have three

many-body states, corresponding to two occupied levels (spin up and down) and an

empty level, see the scheme of Fig. 3.12. The QD Hamiltonian, Eq. (2.37), is given by

the energy of the conduction electrons of the impurity of the down and up states plus the

external magnetic field. The magnetic anisotropy, �, and the exchange coupling, J , can

be set to zero because ( = 0. Only the magnetic field is able to break the degeneracy of

the down and up spins. It will also provide the resonance energy or Larmor frequency

equal to the Zeeman energy difference between spins up and down. The total dimension

of the Floquet problem is then 3 times the Floquet numbers.
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The (88) case presents some interesting scenarios. On one hand, it can reproduce the

experimental situation of two coupled half-integer spins [93] and [15]. On the other

hand, it can provide the situation of a total spin 1. The J value compared to other energy

parameters will lead to the first or second case. It will be discussed later. The total

dimension of the Floquet problem in this case is the size of the QD basis set, given by

the three possible states of the electronic level times the multiplicity of the local spin, i.e.

3 × (2( + 1) = 6, times the Floquet numbers.

3.3.1 One-half total spin, () = 1
2 , or zero local spin, ( = 0, case

Scheme and outline of the simulations

Figure 3.12 shows an energy-level scheme of the local-spin zero system when the energy

of the occupied electronic levels of the impurity �� are negative. This scheme shows the

theoreticalmodel for the case of local spin( = 0, which reduces to the single electronic level

in the impurity. This is effectively a one-half total spin system if the average occupation

of the impurity is close to one. To render this occupation possible, �� are taken spin

independent, negative and larger than the level broadening due to the hybridization with

the electrodes, Γ!,'.

Figure 3.12 a) and b) show the one-electron energy diagram giving the parameters that

would control transport in a one-electron process. However, the large charging energy of

the QD (* → +∞) only permits occupation below or equal to one electron, creating the

scenario of many-body electron process. The corresponding cotunneling events can be

considered by studying the many-body configurations of the QD in comparison with the

applied bias. To simplify we assume large bias and a symmetrical drop such that the QD

empty state, resonant to the zero-temperature Fermi energies, is always at the midpoint

between Fermi energy levels as the bias increases. Figure 3.12 c) shows the three possible

energy states of the QD. State |1〉 corresponds to a spin down in the QD, assuming a

magnetic field such that the spin down is aligned with it, the level is the lowest one. State

|2〉 is the spin up separated in energy from state |1〉 by the Zeeman energy. The empty

state is state |3〉.
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Figure 3.12: Static energy scheme of the () = 1/2 QD Hamiltonian (right) and the cotun-

neling configurations (left). Plots a) and b) are one-electron energy schemes representing a

double-barrier QD system at zero and finite bias. Plots c) and d) show the many-body en-

ergies of the states involved in the cotunneling process at zero and finite bias respectively.

At zero-bias, a) and c) pictures, no net current is passing from one reservoir to another, the

Fermi energies of the electrodes are taken as the reference of electronic energy, � 5!,' = 0.

In the QD configurations, if the magnetic field is zero, the QD is in state |1〉 that we take

as a pure down state, � = −1/2, while state |2〉 is an up one, � = 1/2. State |3〉 is the empty

state that connects both filled states when the QD is coupled to the electrodes, because the

QD needs to empty in order to change its spin. We take degenerate �� < 0 such that the

up and down states are energetically below the empty one if the magnetic field, �, is not

strong enough. At zero temperature, the empty state is alignedwith the two Fermi energy

levels of the electrodes. In order to induce a current through the QD and arrive to pictures

b) and d), we apply a DC bias voltage such that 4+�� = � 5! − � 5' > 0, by decreasing � 5'

while, symmetrically, increasing� 5! until the absolute value of the right Fermi energy level

is larger than the difference Δ31 = −�↓ − 6�� |B|/2. Similarly, Δ32 = −�2 = −�↑ + 6�� |B|/2.
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The Floquet theory presented before depends on the difference in energy Δ8 9 = �8 − � 9
for states 8 and 9 with respect to the position of the Fermi levels. In c) we keep the Fermi

levels at zero in order to reproduce an equilibrium situation where the chemical potential

is well defined and there is no electronic current. In d) we apply the symmetrical bias

drop such that the left chemical potential is above Δ31 = −�↓ − 6�� |B|/2, so a down

electron can enter into the QD. At the same time, the right chemical potential is below

Δ31, so the electron can leave the QD, by returning the QD to state |3〉. The transfer

process couples states |1〉 and |3〉. State |2〉 can undergo the same process, coupling states

|2〉 and |3〉. As a consequence, states |1〉 and |2〉 can couple mediated by state |3〉. This

spin-flip process is thus of higher order than a single-electron one because it involves

twice the empty state, state |3〉. The coherent superposition of spin-flip processes leads

to the appearance of Kondo physics that unfortunately cannot be treated by our Floquet

theory due to the perturbative character of the electronic self-energies. Nevertheless,

this description of the cotunneling process is tantamount to the physics entailed in the

Schrieffer-Wolff transformation [86] that defines an effective exchange interaction between

a magnetic impurity and an itinerant electron that interacts with the impurity via the

hybridization or hopping terms, F.

The opposite limit would correspond to the low-charging energy limit. In this case, the

impurity would be able to become doubly charged, transmitting electrons without need

of involving the empty state, state |3〉. As a consequence, spin-flip processes become

inefficient and cannot take place. This is of great importance for ESR, because for a spin-

1/2 impurity, ESR processes cannot occur if spin-flip processes are absent. This is clearly

seen studying the ESR signal as a function of the mangetic field direction.

In addition to these, we have several other control parameters such as the Floquet number

=, the electronic-level broadenings due to the hybridization of the QDwith the electrodes,

the spin polarization, %, of electrode  that allows us to define a new broadening function

that includes the spin polarization, Γ� = (1/2−�%)Γ′, and the driving strengh�, where

 is the electrode index ! or '.

The Floquet number controls the convergence of our results. For = = 5 the trace of the
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reduced-density matrix is converged to better that 0.0001%, which suffices our purposes.

The spin polarization, %, can take values between −1 and 1. A zero value indicates

no polarization. The electronic spin will then be polarized along an axis given by the

magnetization of the STM tip. Here, we will assume that this axis is always the I-axis and

the external magnetic field together with the surface anisotropy will be referred to this I

axis.

The driving force � is equal to +
��
/|�01 |, as we established in [46]. Based on DFT

calculations, we showed that the tip-substrate electric field induced by the applied bias

leads to a change in the electronic barrier that the electrons have to tunnel. This variation

of the barrier follows the AC field, leading to the driving mechanism assumed in the

present theory, namely the modulation of the hybridization or hopping terms, F!,'. In

[46], we followed a WKB description to estimate the change in the tunnel barrier [56]

�−1
01 ≈

<∗
(
:�(1 − !��) − 8!�2

�

)
ℏ2�2

�
(:� + 8��)

.

In this expression, |�−1
01
| ∼ (0.3 − 2.1) × 10−3

meV
−1

and, since +
��
∼ (10 − 60) mV, [14],

we have � ∼ (3 − 126) × 10−3
. We emphasize that due to the perturbative character

of our theory on the hybridization or hopping terms, the driving cannot be very large.

Furthermore, our simplified expression for the current, Eq. (2.56), shows that the driving

does not make sense if it is larger than 50% the static hybridization or hopping terms,

F0
. The broadening due to these hopping terms, Γ�, needs to be quite small in order to

apreciate the resonance peak on the driving frequency, since they are the only contribution

to decoherence in our theory. Moreover, we choose it to be symmetric so Γ!� = Γ'� when

% = 0, consistently with the symmetric bias drop. The current is always calculated on

the left electrode.

Starting set of parameters

The starting set of parameters that we will use are:

• The magnetic field is fixed to B = (5, 0, 0.2)), where the tip’s spin polarization fixes

the I axis.
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• The driving and coupling constant are symmetric and equal to 5% and 50�eV re-

spetively. We assume a driving term from each electrode and consider them acting

on phase.

• The tip is the right electrode and it is spin polarized with %' = 0.35.

• The electronic level is set to &↓ = &↑ = −1 meV, fixing the energy difference between

electronic states to Δ31 = 1.29 meV and Δ32 = 0.71 meV.

• The temperature is fixed at one Kelvin.

Current dependence on applied DC voltage

Using the above system, we are going to fix the ESR-STM simulation parameters for the

present case of spin 1/2, and explore them routinely to understand their effect on the

ESR-STM spectra. We start by studying the effect of the DC bias in the tunneling current

followed by the effect of modulating the hopping term with a cosine function at a fixed

frequency.

As we pointed out in Fig. 3.12, we start with both electrodes at zero energy � 5 = 0 eV.

Then, we lower the right electrode Fermi energy while, symmetrically, we increase the left

one. The resulting population of state |1〉, �11 is plotted as a function of the applied bias (no

AC component) in Fig. 3.13 (left). At low bias, the state is completely populated because

the above starting conditions makes it the ground-state of the QD.When the bias matches

2Δ31, state |1〉 becomes resonant with empty states of the R-electrode. As a consequence,

the three states of the QD become equally populated under our above starting conditions

and the population stabilizes to 1/3, together with the populations of states |2〉 and |3〉,
i.e. the QD can be equally found with its spin down, up or positively charged (empty). A

similar behavior is revealed in the coherence �12, Fig. 3.13 (right). Only when the empty

level corresponding to state |3〉 is available, states |1〉 and |2〉 become coupled. Under the

polarization of the R-electrode they build a non-zero coherence. We see that the imaginary

part of the coherence is larger than the real part revealing the dissipative character of the

electronic transport process with the inelastic effect associated to opening the channel

represented by state |2〉. Indeed, this is just the signature in the reduced-matrix density of
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Figure 3.13: Evolution of the population of state |1〉 corresponding to the lowest level

(right) and the coherence (left) between states |1〉 and |2〉withDCvoltageusing the starting

set of parameters in 3.3.1. Since these calculations are computed for zero frequency, the

onlyFloquet components of the steadydensitymatrix that survives are theoneswith = = 0,

so �8 9 = �8 9;0. Initially all the population is concentrated into |1〉 because it is energetically
favorable. As we increase the voltage, and because the coupling is symmetric, a steady

state of 1/3weight for each state is achieved. Moreover, the coherence starts to be different

from zero when a transition from state |1〉 to state |2〉 is made possible by the DC bias.

The transition occurs at 4+�� = 2Δ31. There is no transition at 4+�� = 2Δ32 because the

population is "trapped" in the lowest energy state.

the inelastic electron tunneling spectra (IETS) when there is a magnetic excitation in the

QD. There should be a second inelastic threshold at 4+�� = 2Δ32, that is absent because

of the spin polarization of the R-electrode, changing the sign of the bias drop makes it

appear.

Figure 3.14 (left) shows the electronic current in the system. At low bias, the system is

basically in equilibrium with a non-evolving population of state |1〉, Fig. 3.13 (left). The

electronic level is well below both Fermi energies and the broadenings due to the hopping

terms are very small. Only does the low-bias current become finite. The differential con-

ductance is plotted on the right pannel, showing a peak at the threshold bias 4+�� = 2Δ31.

Due to have a peak in the conductance, we can ensure that we are in sequential tunneling

regime. Although the experiments are normally set in the cotunneling regime, we chose
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Figure 3.14: Static current (left) and conductance (right) vs voltage. After the connection

between states |1〉 and |3〉 happens, a current different from zero raises reflecting the

opening of an inelastic channel. It saturates at higher bias when all channels are fully

open. The conductance peak matches the transition at which 4+�� = 2Δ31 showing that

we are in the sequential tunneling regime. The conductance peak width is related to the

temperature and to the coupling to the electrodes. At ) = 1 the ��," = 0.53 meV

showing that the intrinsic broadening due to the coupling to the electrodes is negligible

at our chosen starting set up.
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the sequential one since, later on, it makes simpler to understand the frequency spectra.

At these low values of electronic hopping, the width is controlled by the temperature, at

one Kelvin it becomes ��," = 0.53 meV, as expected from the temperature smearing of

the Fermi occupation factors.

Long-time averaged current dependence on driving frequency

We prove that the modulation of the tunnel barrier is driving the Rabi oscillations of the

spin-1/2 in the QD. Using the starting 3.3.1 values that we wrote above, we obtain that

this is indeed the case. Using a constant hopping term plus a small fraction (5%) of the

hopping term following the AC bias, we obtain clear ESR peaks in the long-time averaged

current together with a characteristic dynamical behavior of the reduced-density matrix

that allows us to unambiguously conclude that Rabi oscillations are being excited.

The long-time averaged current is the Floquet = = 0 component of the current. This is

easily proven by averaging the current over a period once the steady state is reached.

It corresponds to the measured DC current. The long-time averaged current, ��� , as a

function of driving frequency, 5 , shows characteristic peaks that coincide with the Bloch

description of the two-level system [29]. The current decreases at the Larmor frequency,

thewidth of the peak is largely controlled by the decoherence time,)2, and the peak height

is proportional to the Rabi frequency.

Following the published experimental literature, we will not show the total long-time

averaged current, ���( 5 ), but rather its deviation from the background current. We define

it by

Δ���( 5 ) = ���( 5 →∞) − ���( 5 ), (3.5)

where ���( 5 →∞) is the current far from resonance satisfying two conditions: 8 it is much

larger or smaller than the Larmor frequency but 88 it is much smaller than the applied DC

bias voltage in the corresponding units.

Figure 3.15 shows Δ���( 5 ) for the frequency 5 going from zero to 1500 GHz (corresponds

to 6.2 meV) when the applied bias is 7.7 mV. Below 500 GHz one peak clearly dominates

the spectra. Above 500 GHz several threshold mark steps in the current. These steps
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Figure 3.15: Change in the current vs frequency for a fixed DC bias voltage of 7.7 mV.

� 5! = −� 5' = 3.85 meV. Δ��� = ���($ → ∞) − ��� , ���($ → ∞) is the current far from

resonance but evaluated at an angular frequency $ that is still much smaller than the

applied bias, e.g. 10ℏ$ < 4+�� so the frequency does not alter the Fermi occupations,

see Eqs (2.48) and (2.51). The whole spectrum is on the left picture while a zoom of the

resonance peak is plotted on the right one. The resonance peak position coincideswith the

energy difference between states |1〉 and |2〉 which is 6�� |B| ≈ 5.79× 10−1
meV= 140 GHz.

The rest of the spectrum comes from partially closing some transitions by increasing

$. Therefore, the jumps in the current coincides with 51 = (Δ13 − � 5')/ℎ = 619 GHz,

52 = (Δ23−� 5')/ℎ = 759 GHz, 53 = (Δ32+� 5!)/ℎ = 1103 GHz and 54 = (Δ31+� 5!)/ℎ = 1243

GHz. After that the current saturates.

show a strong dependence on the temperature, while the low-frequency peak is largely

independent. The origin of the steps is clearly related to inelastic thresholds that are

satisfied by the driving frequency and the shape of the steps to the Fermi occupation

factors as the temperature dependence shows. Indeed, the steps coincide with 51 =

(Δ13 − � 5')/ℎ = 619 GHz, 52 = (Δ23 − � 5')/ℎ = 759 GHz, 53 = (Δ32 + � 5!)/ℎ = 1103 GHz

and 54 = (Δ31 + � 5!)/ℎ = 1243 GHz. At larger frequencies all transitions are possible and

the current saturates.

The right pannel of Fig. 3.15 shows the low-frequency peak. This is clearly an ESR peak

due to the Rabi oscillations between states |1〉 and |2〉. The oscillation is a spin-flip

transition that reflects the Zeeman lifting of the spin degeneracy in the applied magnetic
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field as we mentioned above in the starting conditions. The Larmor frequency due to the

Zeeman splitting is 6�� |B|/ℎ ≈ 5.79× 10−1/ℎ meV= 140 GHz in excellent agreement with

the frequency that maximizes Δ��� . The resonance peak has some asymmetric lineshape

which can be enhanced by making the left broadening larger. Then, a Lorentzian profiles

emerges which indicates the results of the Bloch theory are oversimplications [29].

The hallmark of ESR transitions is revealed in the reduced-density matrix dynamical

behavior. Figure 3.16 shows the population of the lower energy state, state |1〉, as the

driving frequency is rammed up. As expected the = = 0 Floquet contribution (left pannel)

presents apeak at theLarmor frequency showing that theRabi oscillation involves state |1〉.
At larger frequencies, the inelastic transitions made possible by the driving appear, giving

rise to the clear steps in the current, Fig. 3.15. These transitions are not Rabi oscillations

and are then absent from the = = 1 and = = 2 contributions. However, Fano profiles

show the dynamical behavior of the Rabi oscillations in these two contributions, clearly

proving that the reduction of DC current at 140 GHz is an ESR transition. Furthermore,

= = 2 involves a second-order harmonic, giving one more Fano profile at half the Larmor

frequency, 70 GHz.

Rabi oscillations involve quantum coherence between the states involved in the transi-

tion. This is better seen by studying the non-diagonal elements of the reduced-density

matrix, also known as coherences. Figure 3.17 shows the real and imaginary part of the

coherences between states |1〉 and |2〉, that are the ones involved in the Rabi oscillation.

Clearly the Larmor frequency centers Fano profiles for all these values. As in the case of

the population, the = = 2 Floquet component of the coherence presents two resonance

frequencies due to the possibility of having the second-harmonic oscillation.

The behavior of the reduced-density matrix inequivocally proves that the peak in the

long-time averaged current at 140 GHz signals a Rabi oscillation. As a consequence, we

have proven that the modulation of the tunel barrier by an oscillating electric field is able

to induce ESR.
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Figure 3.16: Population of the lowest state, state |1〉, for different Floquet numbers vs

frequency. The applied bias is+�� = 7.7 mV. The resonance peak is found for = = 0 at 140

GHz. At larger frequencies, the population changes because of the frequency dependence

of the Fermi function found in the state transition rates, eqs (F.2) and F.4. These equations

reflects the behavior found in the current beyond 500 GHz, Fig. 3.15. When all transitions

become possible, the population changes to the initial one. The Floquet components

= = 1, 2 of the population of state 1 slightly changes at high frequency. They, however,

present Fano profiles at the Larmor frequency. While = = 1 only presents one resonance,

= = 2 shows a secondorder transition at half theLarmor frequency, 70GHz. This harmonic

transition reflects the = = 2 dependence on the frequency, giving a sizeable contribution

to the current at half the Larmor frequency. Increasing the driving enhances this second

harmonic resonance, following eq (2.56).
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Figure 3.17: Real and imaginary parts of the coherence vs the frequency for three different

Floquet numbers, = = 0, 1 and 2. Resonance peaks are found at the Larmor frequency for

the Floquet numbers = = 0, 1 while, for = = 2, a second order transition also emerges at

half the Larmor frequency.
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Electrode spin polarization

After studying the general starting case, let us fix every parameter except the electrode

spin polarization. We applied 4 different polarization values: %' = −0.35, 0, 0.35, 0.7, 1.

Negative values of the polarization do not provide any difference respect to positive

ones except for a �-dephase change in the coherence which does not affect the current or

population. However, if we increase (, wewill see that we havemore resonance peaks and

the sign of the polarization can change the peak height of them. Negative polarizations

mean thatwearepointing it out contrary to the z component of themagnetivefield applied.

Or, equivalently, we are applying a negative magnetic field and a positive polarization.

Fig. 3.18 shows the results. As it was expected, zero polarization leads to zero coherence

since we have the Rabi frequency equal to zero, Γ1332;1 = 0, and, therefore, no resonance

peak emerges. The onlyway tomake the Rabi terms different from zero is by adding some

spin polarization, having a maximum Rabi frequency, or maximum peak height, at full

polarization of the electrode. In fact, one can notice that the resonance peak height goes

as Δ�
?40:

��
∝ %', at least in the regime we are. This actually matches what it was found in

[14] about the peak height. They infered that it is proportional to the square of the Rabi

frequency. In our case, from eq 2.63, the Rabi frequency is

ℏΩ = −
∑
�

�'�13��32�Γ
′
'(1/2 − �%') = �'�13↑�32↑Γ

′
'%' , (3.6)

where we used �13↓�32↓ = −�13↑�32↑. Hence, it is exactly proportional to the polarization

and, since the change in the current is proportional to the square of %' and only the Rabi

frequency depends stronly on it, we can conclude that Δ���( 5 ) ∝ Ω2
. The exact function

is a bit challenging to compute since it implies calculating the Floquet density matrix

elements.

Equation (3.6) makes clear how fundamental the electrode spin polarization is to the

feature of ESR. First, because without polarization the ESR signal is strictly zero since

we have no Rabi term. Second, because it gives an intrinsic axis of quantization of the

spin that is going to determine the role of the external magnetic field and the substrate

anisotropy. Indeed, the directions of these three axis have to be considered in order to

understand the degree of spinmixing and existance of ESR signals in any possible system.
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Figure 3.18: Change in current vs frequency. The whole spectra are on the left picture

while a zoom of the resonance peak is plotted on the right one. The spectra at high

frequency are independent on the spin polarization, but the resonance peak height grows

with the polarization. Therefore, the peak height increases with the Rabi frequency. The

negative value of the polarization provides the same spectra as the positive one.

Figure 3.19: Change in the population of the lowest states and coherence. As we increase

the polarization, the peak at the Larmor frequency grows, showing again its ESR character

clearly in the coherence. As it was mentioned, negative polarizations only cause a �-

dephase. Here, we notice that the polatization determines the value of the population

change at high frequencies. This happens because we are not permiting some transitions

so we cannot recover the initial change in population. Plus, the rates depends on the

polarization.
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Let us delve now in the implications of spin polarization to have an ESR signal. We will

study the direction of an applied magnetic field in the next section. In the absence of spin

polarization, the impurity’s spin will not precess. This comes out from our calculation

because the coherences are zero. Figure 3.19 clearly shows this. The left panel depicts

the total populations, we see that only the populations at the Larmor frequency increase

with spin polarization due to its Rabi character. The coherences are plotted on the right

pannel, showing a characteristic Fano profile centered at the Larmor frequency when the

spin polarization is different from zero. Again, the increase of the values of the coherences

with polarization proves that the peak at the Larmor frequency is indeed an ESR peak.

We can qualitativily understand the need of spin polarization to have any Rabi oscilla-

tion also in a more physical meaning, not just mathematically. In the absence of spin

polarization, the higher-order spin-flip transitions will become inefficient/null in front

of the lower-order transition that is the direct transfer of an electron from electrode !

into ' through either state |1〉 or state |2〉. This happens because the upcoming electron

can freely move through the states, it can choose any path from ! to ' electrode and the

average current by spin-flip vanishes. In the presence of spin polarization, say 100% spin-

down polarized ' electrode, the electrons cannot equally go to this ' electrode by being

previously in state |1〉 or |2〉 (and then returning to |3〉). Instead, there is ”preferable” path
to choose. In this case, only spin-down electrons can reach the ' electrode and therefore,

all spin-up electron need to spin-flip to contribute to the current which makes spin-flip

current dominant and the Rabi oscillation possible.

Magnetic field direction

The perpendicular magnetic field, �G , is essential to have any sort of coherence since

it allows having states |1〉 and |2〉 with mixed character which is necessary to have an

ESR-active system. As we did in the polarization section, we fix all the parameter but

�G to the starting case. Fig. 3.20 shows the results for the current. At zero transverse

field, no resonance peak appears. As �G increases from zero, a resonance peak appears

and increases. The height of the peak is related to the strength of the state mixing. We

have shown in the polarization section 3.3.1 that for the three-level case of ( = 0, the Rabi
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Figure 3.20: Current vs frequency for different magnetic fields. Left plot shows the whole

spectrumwhile the right one just zooms in the resonance peaks. Increasing the transverse

magnetic field leads to a bigger mixture of the states |1〉 and |2〉 which rapidly saturate

(same for the resonance peaks height). The high-frequency spectrum is just displaced.

Figure 3.21: Height of the current peak vs transverse magnetic field. Two Teslas are

enough to saturate the peak height. Since an analytical expression is cumbersome, we

fitted the curve, following the result of the eigenvectors projection, by a rational function,

given by (0�2
G)/(�2

G + 1) where 0 = 0.8269 ?�, 1 = 0.0655 )2
and R-square is equal to 1.

Notice that we added a transverse magnetic field of 1.5 ) to provide a better fitting.
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frequency is proportional to �13��32�. The eigenvectors of the QD Hamiltonian are:

E1 =
�G

2�
1

� + �I
(−� − �I , �G , 0) ; E2 =

�G

2�
1

� − �I
(� − �I , �G , 0) ; E3 = (0, 0, 1).

Here we are using a basis such that, when the Hamiltonian is diagonal, the empty state or

state |3〉 is (0, 0, 1)while the spin down and up states are respectively (1, 0, 0) and (0, 1, 0).
Hence, E3 is the eigenstate of state |3〉 that contains an empty electronic level, and E1 and

E2 are the eigenstates for states |1〉 and |2〉. Here, we have defined � =
√
�2
I + �2

G . These

results show that if �G ≠ 0, E1 and E2 contain both spin up and spin down components,

but if �G = 0, E1 and E2 only contain spin down and up components and Rabi oscillations

are not possible1.

Using these eigenstates, we can calculate the projections entering into the Rabi frequency

expression. Then, we get that

∑
� �13��32�Γ',� = −�2

G%'/4�2
, which reaches a constant

value as we increase �G . This is shown in Fig. 3.21, where we see how the peak height

rapidly saturates as the magnetic field �G increases. Notice that in this case, two teslas are

enough to achieve saturation.

Finally, Fig. 3.22 allows us to check that the population behaves accordingly aswedecrease

the energy difference between states |1〉 and |2〉. At �G = 0, a population close to 0.5 for

both filled states is achieved. Moreover, the population at 4+�� > 2Δ31 depends on the

energy difference.

Driving

Thedriving term is obviously essential to have any resonance signal. Using the parameters

of the starting case, see Section 3.3.1, but changing the driving, �, leads to Fig. 3.23, 3.24

and 3.25. Clearly, zero driving implies no resonancewhile increasing the driving provides

a higher peak. One can notice in Fig. 3.24 that the dependence on the driving is not linear

but quadratic, which is not a surprise looking at Eq. (2.56). The exact dependence on

the driving is hiden in the Floquet density matrix elements which are connected to four

Floquet numbers ±2 as we mentioned in the theory. Therefore, even if Eq. (2.56) is not a

quadratic function of the driving at first glance, the densitymatrix elements are. However,

1The limit �G → 0 has to be taken with care, but confirms the above explanation.
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Figure 3.22: Population of the lowest levels (left) and conductance (right) vs DC voltage

for different transverse magnetic field using the starting set of parameter in previously in

3.3.1. As we reduce �G , we get closer to the degenerate case where states |1〉 and |2〉 are
50% populated. It cannot be exactly 50% because �I ≠ 0. A larger �G increases the gap

between states |1〉 and |2〉 leading to a displacement of the conductance peaks.

Figure 3.23: Current vs frequency for different driving parameters. Left plot shows the

whole spectrum while the right one just a zoom of the resonance peak. Increasing the

driving leads to higher resonance peaks while so happen to the high frequency regime.
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Figure 3.24: Height of the current peak vs driving. Here we added the result for � = 0.5

to emphasize the quadratic dependence on the driving. The fitted curve is a quadratic

function 0�2
 + 1� + 2 with 0 = 287.8 ?�, 1 = 4.162 ?�, 2 = −0.04373 ?� and a R-square

of 1.

in order tomake the quadratic part relevant we need to go to unrealistically large drivings.

� = 0.5 means +�� ∼ 240 mV for our present starting case, which is a very large AC

coltage, above the achieved experimental values. And finally, but not less important, our

theory works in a low tunneling/coupling case. If we increase �, we are also making

the tunneling bigger, which implies leaving the regime of applicability of our theory.

Larger drivings also lead to high-harmonic signals in the ESR spectra. This is clearly

seen by the coherence �12, which is peaked in = = 2 Floquet components. Figure 3.25

shows the behavior of the coherences as a function of the driving frequency for various

Floquet numbers, =. For the Floquet number = = 2 a clear peak appears at half the Larmor

frequency, representative of the higher-harmonic contribution, = = 2. Despite the fact that

this peak is visible in the coherence for = = 2, its contribution to the electronic current is

still negligible for the present set of parameters.

We have assumed symmetric on-phase drivings for both electrodes. This means that the

hopping amplitudewith each electrodewasmodulated following the exact same equation

with time. Interestingly, asymmetric drivings provide a reduction of the current at low

frequencies, which increses the current change, being the �-dephased case (�! = −�'),
the one in which the current decreases more, Fig. 3.26.
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Figure 3.25: Real (left) and imaginary (right) parts of the coherence vs the frequency for

four driving parameters. As we increase the driving, the coherence features at the Larmor

frequency also becomes bigger. The resonance peak in the current is mainly controlled by

<(�12;1) but at larger drivings,<(�12;2) becomes dominant.



104 CHAPTER 3. RESULTS

Figure 3.26: Current vs frequency for three different combinations of driving parameters,

�. Only the low frequency regime is modified respect to Fig. 3.23. When �' = 0, the

resonance disappears because the R-electrode is the only one that is spin polarized.

Temperature

Themain temperature effect on theESR resonance at largeDCbias voltage is to enhance the

decoherence rate. However, changing the temperature from 0.1 to 10 leads to minor

changes in the Δ��� line resonance profile, Fig. 3.28. Only when 100  are applied we

notice a huge reduction in the ESR peak. Since the displayed three first cases correspond

to |4+�� | � :�), Δ21, both the non-adiabatic decoherence (also known as population

scattering) and the adiabatic one (or pure dephasing) are controlled by the bias voltage,

and not by the thermal broadening [29]. In addition, the chosen parameters leads to

)1)2Ω
2 � 1, in which case the Full Width at Half Maximum (FWHM) of the resonant

peak is ∝ 1/)2 [7].

Another source of differences with temperature that we have not considered here is

the variation of the tip-polarization with the temperature [15, 93]. This could be easily

implemented to compare with the experimental results at various temperatures, but we

do not include this effect that clearly goes beyond the scope of the present work.

What the temperature clearly modifies is the applied DC voltage profiles. Increasing the

temperature lead to larger FWHM since the broadening of the Γ′ gets bigger, Fig. 3.27.

The temperature also smoothens the high frequency curves for the same reason, Fig. 3.28.
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Figure 3.27: Current and conductance vs DC voltage for different temperatures. One

notice that increasing the temperature leads to bigger FWHM. From ) = 0.1  to ) = 1  

the FWHM changes from 0.07 meV to 0.53 meV. At 100  , the temperature domians so the

current do not vary a lot with the voltage compare to other cases.

Figure 3.28: Current vs frequency for three temperatures. Left plot shows the whole spec-

trum while the right one just a zoom of the resonance peaks. Increasing the temperature

smoothens the curves but it does not affect the peak at the Larmor frequency unless we

go to really high temperatures. At 100  , the coherence is no longer control only by the

voltage. Hence, the temperature affects the coherence, reducing the width and height of

the resonance peak. So, it changes the Rabi term and the coherence time.
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Figure 3.29: Scheme for the ( = 1/2 case coupling with the incoming electron from the

electrodes. a) shows both systems coupling through J . Three triplet states would be

form plus a singlet following the formal theory of Angular-Momentum addition, [89]. b)

shows a simplification of the energy level scheme similar to Fig. 3.12. The scheme is made

again for negative ��, zero frequency and anisotropic and coupling parameters, � and J ,

similar and negative. The magnetic field is parallel to the z direction. Due to J , both (I
subspaces are able to interact and a perpendicular magnetic field can mix the filled states

and both empty ones.

3.3.2 Two coupled spin-1/2

Scheme and outline of the simulations

Following the interesting experimental data of Refs. [15, 93], we use our method to study

the ESR-STM signals. To do this, we considered an external ( = 1/2 that is coupled via

an exchange interaction with the electronic level that transfers electrons between the two

biased electrodes. The electronic level thus acts as a spin-1/2 system (see previous section)

coupled to another spin-1/2. It is simple to devise a minimum basis set that describes this

new QD of two spins. The basis set is given by the tensorial product of the three states of

the electronic level (down, up, empty) times the two states of the coupled spin-1/2 (down

and up).

Figure 3.12 shows a scheme of two spin-1/2 system with exchange coupling J . As we

just explained, this coupling duplicates the Hibert space of the QD Hamiltonian, having

now 6 states. The exchange coupling, J , determines whether the spins are in a coupled

case or not. In the coupled case, assuming a ferromagnetic coupling (J <0) and |J | larger



3.3. ESR FLOQUET SIMULATIONS 107

that any other energy parameter, except for the value of the electronic level, ��, the full

system becomes a () = 1 spin system. The triplet states are energetically below the singlet

state, explaining why we are in an effective spin one situation. Contrary, if the coupling

is anti-ferromagnetic (J >0), the singlet state is the one with the lowest energy. When J

is close to zero, we have a decoupled () = 1/2 spin and the corresponding results can be

found in the previous section.

When J and the transversemagnetic field are non zero, wemix the filled and empty states,

making possible the appearance of ESR resonances between states with Δ(I = (I8 − (I 9 ≈
±1 (spin flip), where 8 and 9 can be any state from 1 to 6 in Fig. 3.29.

The anisotropy term of the Hamiltonian given by �(2
),I

, takes into account both spins

of the system: the incoming from the electrode and (. Which implies having a spin-1

anisotropy. Interestingly, when replacing (2
),I

by ((I+BI)2, we find that the term�((2
I+B2

I)
does nothing, but 2�(IBI is like an Ising term that adds to the z component of exchange

interaction. Therefore, the anisotropy creates an effective Jz which breaks the degeneracy

of the triplet states (I = ±1.

The current is computed on the left electrode in a situation of large bias DC voltage

where all the states are properly connected, as we did for the ( = 0 case (see previous

section). Therefore, the right Fermi energy level is below zero while the left one above it

so � 5! = −� 5' in our presently symmetric bias drop. The other control parameters are:

8) number of Floquet functions = = 5.

88) driving strength � = 5%.

888) polarization %' = 0.35.

8E) temperature of one kelvin.

The coupling constantΓ′ is specifiedon each case. Thebehavior of this systemwith respect

to these parameters is very similar as the one analyzed in the previous section. Thus, we

will focus on how the frequency spectra change with the spin interaction, anisotropy and

applied magnetic field.
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Two spin-1/2: effective spin 1

When two spin-1/2 atoms are magnetically coupled, the eigenstates are given by the

singlet and triplet states. If the spin interaction J is ferromagnetic and satisfies that

�� |B| � |J |, |� | � |J |, we are making the triplet states the lowest energy states, sending

the singlet state high up in energy. This provides an effective spin one in the QD Hamil-

tonian with the exception of the empty states that are (I = ±1/2. Similarly, if J is large

and positive, the singlet becomes the ground state but the difference in energy between

the triplet states do not change. This makes the frequency spectra identical for positive

and negative J .

Figure 3.30 a) shows the results for large and negative exchange interaction in the system.

Here “large” means bigger than any other energy scale of the problem. We display three

different spectra depending on the values of the couplings to the left and right electrodes,

Γ′
!
and Γ′

'
. The values of the electronic current have been scaled and shifted to make them

visible in the same plot. Figure 3.30 c) and d) correspond to the symmetric case, Γ′
!
= Γ′

'
.

We notice three resonance peaks in the large range of frequencies, Fig. 3.30 c). Each

peak corresponds with a spin-flip transitions. The first one is the spin flip between the

states corresponding to the empty electronic level. This is then a Rabi oscillation between

(I = −1/2 and (I = 1/2. It coincides with the frequency of the Zeeman splitting due to

the applied magnetic field, 536 = 25.35 GHz (where 3 and 6 are the two empty states in

our tensorial-product basis set, see Fig. 3.29b) ). The next two peaks match the transition

between (I = 0 and (I = 1 at 52,5 = 216.66 GHz, and (I = 0 and (I = −1 at 51,2 = 267.04

GHz.

It can be noticed that the symmetric case gives stronger ESR signals. The change in the

current over the ESR transitions becomes drastically reduced if Γ′
!
< Γ′

'
, Fig. 3.30 b),

because the electron needs to populate the electronic level in order to induce transitions

and the coupling to filled electrode states has been reduced the right reservoir is always

below the Fermi energy in our simulation while the left one is above it). In these calcula-

tions, the line-widths are much thinner than the symmetric case because one coupling has

been largely reduced. The available transitions are the same as for the symmetric case. If
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instead we have Γ′
!
> Γ′

'
, we are decoupling the empty states. As a consequence, the ESR

transition involving empty states disappear from Fig. 3.30 e) and f).

The lineshape of the ESR signals in Fig. 3.30 also changes depending on the coupling of

the QD with the electrodes. The symmetrical case leads to an ESR signal that is closely

resembling a Lorentzian function, Fig. 3.30 d). However, the cases with asymmetric

coupling leads to Fano-like lineshapes , see Fig. 3.30 f). Surprisingly, we find that Fano-

like lineshapes are not common for the spin-1/2 case, while they are easily found for the

present asymmetric () = 1 system.

Two spin-1/2: small coupling J

When the exchange interaction is similar in strength to the other energy parameters of

the problem, the singlet state will give us a new transition in the frequency spectra. This

can be noticed in Fig. 3.31 for the a) and c) plots where we find four resonance peaks.

However, let us focus on the case without longitudinal magnetic anisotropy, � = 0, Fig.

3.31 b), that only presents three transitions.

The first transition at 5 = 24.5 GHz in Fig. 3.31 b) takes place between the singlet and

the triplet with (I = −1. The next peak coincides with 6�� |B| and involves the triplet

states with (I = 0 and (I = ±1. These are two ESR transitions at the same frequency,

yielding a strong peak in the ESR signal. The higher frequency peak corresponds to the

resonance between the singlet and the triplet (I = −1 state. Hence, the distance between

the middle and lower/higher peaks is exactly J/ℎ, because J equals the singlet-triplet

excitation energy. The first and third transitions are the ones we sent high up in energy

when the exchange interaction dominates.

In the presence of magnetic anisotropy, the degeneracy of the triplet states is lifted. This

leads to the four peaks of Fig. 3.31 a), for � < 0 and c), for � > 0. The resonance

peaks related to the triplet (I = −1 move up in frequency by �/ℎ while the ones where

the (I = 1 takes part go down by �/ℎ. In other words, for � < 0, the triplet energy is

reduced, leading to a smaller resonance energy pushing the different transitions closer,

Fig. 3.31 a), while for � < 0, the triplet energy increases which translate into a larger
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Figure 3.30: Frequency spectra for different couplings with the left electrode, for J = −0 .1

eV. The parameters used in this case are: �� = −1 meV, B = (0.1, 0, 0.9) T, � = −1 meV,

Γ′
'
= 10 �eV. a) contains the three cases. b) is a close up of the case Γ′

!
� Γ′

'
. The bias is

such that the QD is resonant with empty states and filled states. Reducing the coupling

of the left electrodes leads to a reduction of the occupation of the QD electronic level,

with a drastic reduction of the current and Δ��� . c) and d) correspond to the symmetric

case, Γ′
!
= Γ′

'
. Notice the almost-symmetric lineshape of the low-frequency transition. e)

and f) refer to the Γ′
!
� Γ′

'
, leading to an increase of the electronic population. For this

reason, the low-frequency transition, corresponding to a spin-1/2 (empty level) spin-flip

transition, disappears. Resonance frequencies are: 536 = 25.35 GHz, 525 = 216.66 GHz,

512 = 267.04 GHz.
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Figure 3.31: Frequency spectra for different anisotropic parameters. We used �� = −1

meV, B = (0.1, 0, 0.9) T, J = 3 .1 �eV= 0.75 GHz, Γ′
'
= Γ′

!
= 0.5 �eV. a) � = −1 �eV. b)

� = 0 eV and c) � = 1 �eV. |� | = 0.24 GHz.
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resonance energy and to more separated peaks in Fig. 3.31 c).

Two spin-1/2: applied magnetic fields

Inspired by the experiments on two Ti atoms on MgO/Ag (100), Ref. [93], we have

computed the ESR spectra and compared them with the experimental ones. To do this,

we needed two spin-1/2 that feel different magnetic fields. We just need to add a new

Zeeman term to the QD Hamiltonian that only affects one spin-1/2 atom. The origin of

this field is the magnetic interaction exerted by the tip on the atom where the current is

measured. This new field is called Btip following the notation of [93].

Figure 3.32 shows the results. The anisotropy parameter is now zero but, due to the

presence of two different magnetic fields, we find four resonance peaks. The order of the

resonance peaks is now, from lower to higher frequencies: transition singlet to the triplet

state (I = 1, transitions between the triplet states (I = 0 and (I = −1, next the triplet states

(I = 0 and (I = 1 and finally singlet-triplet state (I = −1 transition. The match with the

experiment is satisfactory although the simulation could be better if anisotropy for the

triplet states is introduced. In fact, we believe that one magnetic field is enough to fit the

experiment as long as the � and J are both non zero.

3.3.3 Conclusions of the section

In this section, we have analyzed the effect of a radiofrequency bias voltage following

the modulation of the tunneling barrier explained in the theory, but applying a Floquet-

Green’s function formalism instead of cotunneling one.

Firstly, we have focused on the simple case ( = 0, () = 1/2, since it is the easiest one to

understand and simple analytical calculations can be performed. Then we have chosen

a specific set of parameters to work with and explore the effect of the DC bias and the

frequency in the DC tunneling current and density matrix elements. Although all the

experimental works [7, 11, 12, 13, 14, 15, 16, 17] have been realized in the cotunneling

regime, in order to check out that the model is providing with appropriate results, we

have placed ourself in the sequential tunneling regime. Additionally, both electrodes have
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Figure 3.32: Frequency spectrum when the additional Btip is applied. We used �� = −1

meV, B = (0, 0, 0.89) T, Btip = (0.035, 0, 0.05) T , J = 3 .1 �eV= 0.75 GHz, Γ′
'
= 0.5 �eV,

Γ′
!
= 5 eV, � = 0 eV, � = 50%, %' = 0.45. In addition, we took into account the difference

in magnetic moment as in the experiment of Ref. [93].

symmetrical Fermi energies. In this situation, a saturation of the DC current happens as

we increase the DC bias voltage while and a peak in the conductance appears at 2Δ31/4.
This is what one would expect in the sequential regime.

Frequency spectra is computed for a fixed voltage when the DC current have been sat-

urated. For the set of parameters used, we have found a peak at low frequencies which

coincides with the Larmor frequency. By looking at the coherence between the two filled

states, we could ensure thatwe are dealingwith a ESR resonance peak. Therefore, we have

induced a Rabi frequency term to the system. At higher frequencies, $ is larger enough

to close Floquet channels and, therefore, it enhance the change in the current. However,

none of those transitions are related to Rabi terms since the coherence do not change at

high frequencies.

In order to fully comprehend these results, we started modifying one of the parameter

previously used but keeping everything else constant and equal to the initial set of pa-

rameters applied. We first saw what happens for different electron spin polarization. It

was shown that the change in the DC current at the Larmor frequency is proportional
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to the square of the polarization of the right electrode. Since the model provide a Rabi

flop rate proportional to the polarization, we concluded that Δ�
?40:

��
∝ %2

. Therefore,

polarization becomes essential to feature the ESR spectra: in the absence of polarization

the Rabi term is zero and the impurity spin will not precess. It also provides an intrinsic

axis of quantization.

Secondly, we have studied the transverse magnetic field �G . This parameter is key to mix

the character of the filled stated. Therefore, a zero perpendicular magnetic field leads to a

no resonance peak. Gradually increasing the magnetic field moves linearly the ESR peak

position. However, the peak height saturates rapidly. The reason behind this comes from

the eigenstates of the QD Hamiltonian and how they rapidly reaches a constant value as

the magnetic field is increased. We also showed that the lower the transverse magnetic is,

the closer we go to a 50/50 population at zero DC bias voltage, i.e., �11;0 ≈ �22;0 ≈ 0.5 and

�33;0 ≈ 0. This happens because we are approaching the degeneracy case between states

|1〉 and |2〉.

The next parameter we modified was the driving. To no one’s surprise, zero driving gave

us no peak at the Larmor frequency and, aswe increased the driving, a square dependence

of the peak height appears. In addition to this, we have shown that a large driving can

lead to a second harmonic transition at half the Larmor frequency which is related with

the Floquet number = = 2. Moreover, we have found that asymmetric drivings enhanced

the change in the current at low frequency.

Finally, we have changed the temperature. One would expect a large increase in the

coherence going to higher temperatures but, since we are in the sequential tunneling

regimewhere thevoltage is strong enough toopenall the channels in theQD, the coherence

is mostly control by electrons coming from its electrodes. Therefore, the ESR peak do not

change significantly with the temperatures in this regime. Likely, in a cotunneling regime

this will not be the case.

Having been studied the ( = 0 system, we have gone a step beyond by computing

the results of two spins 1/2 coupled. Again, we have placed ourself in a sequential

tunneling regime to analyze the spectras easily. Exchange coupling J and anisotropy
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parameter � become now relevant to the model Hamiltonian. We have found that a

large exchange coupling lead to () = 1, where only three spin-flip transitions are possible

if the broadening is symmetric. Two transitions are related to filled states, which are

triplet states, while a third one happens between the empty states. It was shown that this

last transition can disappear if the unpolarized electrode has a broadening larger than

the polarized one. As a consequence, the two remaining resonance peaks have a closer

fano shape than in the symmetric broadening. However, the change in the current have

decreased.

Anisotropy � for a two spin 1/2 coupled works as a Ising term in the Hamiltonian that

adds a z component to the exchange coupling. If J and � are similarly small, we find four

ESR transitions. Now, each of them is related to filled states since we have three triplet

states and one singlet. Additionally, the transition between empty states is gone. If � = 0,

a degeneracy between the two transitions related to the triplet state (I = 0 happen, and

one large resonance peak emerges in the middle at the frequency of the magnetic field

applied. Moreover, it was shown that the distance in frequency between the central ESR

peak and the other two remaining is exactly the exchange interaction J . Depending on

the sign of the anisotropy, the peaks can move up or down in the spectra.

Finally, in the last simulation plotted in the results section, we have implemented two

different magnetic field. One acting on the large spin ( and the other one on the itinerant

spin B. The aimbehind this simulationwas to comparewith the experimental result in [93].

We did not expect a exact match from the beginning since we are not in the cotunneling

regime. But at least we wanted to check if the essential information can be captured.

The anisotropy parameter was setted to be zero but, due to the presence of two different

magnetic fields, we found four resonance peaks. Although the peak position matches

with the experiment, the Rabi frequencies of each transition are off the experimental ones

by a factor ∼
√

30, which is translated into the current spectra has a factor of ∼30. We think

that this difference can be solved by, for example, going to the cotunneling regime. In any

case, our simple model have demonstrated to be quite powerful and versatile and we are

looking forward to exploring it even more in next works.





Chapter 4

Conclusions and outlook

Conclusions of the thesis

Since we already wrote conclusions at the end of each result section, here we will briefly

summarize the main findings.

We have analyzed the ESR-STM problem in deep, trying to come out with a theoretical

model that can simulate and predict experiments. We can outline the main task and

findings of this work as follows:

• We have modeled the electronic properties of the ESR-STM experimental setups

identifying the main ingredients. In doing so, we have simulated the electronic

properties using density functional (DFT) calculations. This allows us to identify

the coupling regime and the main effect of the applied electric field: a modulation

of the tunnel barrier.

• The ESR-STM setup was simulated as a driven open quantum system. We did this

on two counts:

– A perturbative approach. First, the time-independent case was studied within

a cotunneling description where the central region is modeled by amultiorbital

Anderson model, and the tunneling with the electrodes is treated perturba-

tively. Then, the Bloch-Redfield theory was applied to study the dynamics of
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the driven system under the assumption of weak driving, leading to Bloch-like

equations. The Rabi frequency found was in qualitative agreement with the

experiments, although it was a factor 10-20 larger than the the experimental

one.

– Using Floquet non-equilibrium Green’s function approach. This technique

provides a more complete description of the all electrical ESR, being able to

explore different regimes, from the cotunneling to the sequential transport

regimes. In addition, it is not limited to weak driving. The results are quite

remarkable even though the model is still largely unexplored and could be

extended to more complex situations.

Outlook

The Floquet approach to the ESR problem is quite unexplored. For example, we did not

explore the cotunneling regime where all the available ESR experiment were preformed.

Moreover, the tunneling barrier mechanism can be extended to pulses instead of only

using a harmonic driving. In addition, we could add a finite charging energy to the

QD Hamiltonian to describe the double occupancy of the dot. A spin chain could also be

described by ourmodel as long asweprovide the spinHamiltonian and the corresponding

basis. In conclusion, a lot of work waiting to be done.





Appendix A

Multiplet calculation: basic concepts

I used a home-made Fortran code made by Fernando Delgado to solve the many body

multiorbital HubbardHamiltonian and compute the current and transition rates, as it was

shown in the cotunneling section of this thesis. Here I just discuss the basic principles of

the model and assumptions made to solved it. Full details about the code requires much

more time than we have at our disposal and we encourage to ask directly to the code’s

creator for a better understanding of it. The goal of this appendix is then to give a general

idea of how the many body multiorbital Hubbard Hamiltonian is managed.

A.1 Multiorbital Hubbard Model

As we explicitly said in Sec. 3.2, we have used a multiorbital Hubbard model to describe

a magnetic atom (MA) embedded in a non-magnetic matrix or surface. This model only

includes 3 orbitals of the partially filled shells of the magnetic atom (MA). The system

is described as a close quantum system with #0 electrons, where one electron can hope

between the MA and the surface orbitals. The many body Hamiltonian includes four

terms, electron-electron, crystal-field and ligand field, spin-orbit andZeeman interactions:

ℋ̂ = �Coulℋ̂Coul + �CFℋ̂CF + �SOℋ̂SO + ℋ̂Zeem. (A.1)

The dimensionless parameters �X ∈ [0 − 1] permits us to switch off each of these contri-

butions independently for analysis reasons or to control its strength in order to achieve a
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satisfactory result. The first term of Eq. (A.1) is

�Coul =
1
2

∑
ℓ ,ℓ ′ 9 , 9′

+ℓ 9ℓ ′ 9′
∑
��′

3†ℓ�3
†
9�′3 9′�′3ℓ ′� (A.2)

where 3†
ℓ� (3ℓ�) denotes the creation (annihilation) operator of an electron with spin � in

the ℓ orbital of the magnetic atom, denoted by )ℓ (®A), assumed to be equal to the product

of a radial hydrogenic function (with effective charge / and a effective Bohr radius 0�) and

a spherical harmonic. Under these approximations, the Coulomb integrals +ℓ 9ℓ ′ 9′ can be

calculated analytically in terms of the Wigner 3-9 symbols and the Slater integrals �=(33)
and �=(4B) [94]. Since all the Coulomb integrals +8 9 ,:; scales with the effective charge,

we fix the strength of the electron-electron interaction by a single parameter, the average

on-site Coulomb repulsion* ≡ 〈*;; ,;;〉 [82]. We took the values �0 = 4.675(*− �)/5 eVÅ−1
,

�2 = 1.94878(* − �)/5 eV Å
−1

and �4 = 1.18173(* − �)/5 eVÅ
−1
.

The second term in Eq. (A.1) corresponds to the crystal field Hamiltonian, whichwewrite

as

ℋ̂CF =
∑
ℓ ,ℓ ′

〈ℓ |ℋ̂CF |ℓ ′〉
∑
�

3†ℓ�3ℓ ′� ,

where the braket corresponds to the single-particle elements of the potential created by

the neighbouring atoms, which are modeled as point charges. Later on in this appendix

we will explain the fundamentals of it.

The third term in Eq. (A.1) describes the spin-orbit coupling, which is assumed to be

non-zero only on the MA orbitals

ℋ̂SO = �
∑
ℓℓ ′,��′

〈ℓ� | ®! · ®( |ℓ ′�′〉3†ℓ�3ℓ ′�′ ,

where � is the single particle spin-orbit coupling of the 3-electrons. This term is also

frequently expressed as � ®! · ®(, with
®! the total angular momentum [55]. The last term in

Eq. (A.1) corresponds to the Zeeman Hamiltonian:

ℋ̂Zeem = ℋ̂Zeem−MA = �� ®� ·
∑
ℓℓ ′,��′

〈ℓ , � |
(
®! + 6 ®(

)
|ℓ ′�′〉3†ℓ�3ℓ ′�′ ,

being the g-factor equal to 2.
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For our particular case, Fe on MgO/Ag(001), the lambda factors used are �coul = 1,

�CF = 1, �SO = 0.6, and � = 0.05 eV. We took a value of * = 5.208 eV, in agreement with

typical values of* found in the literature [95, 96]. DFT calculation suggest an occupation

of the Fe orbitals of approximately 4s
0
3d

6
. As the Fe 3-levels lie in the gap opened by the

MgO layer, a significant partial occupation of the surface orbitals is not expected, which

makes the point charge model more adequate. This leads to a ground state multiplet

corresponding to ( = 2, in agreement with the experimental results [7, 10, 45].

A.2 Point Charge Model (PCM)

Essentially, the point charge model is a simplified model of a crystal lattice in which

ligands are presented as point charges, and hence, the screening effects of the outer

shell are excluded. This allows us not only to determine the potential at a given point,

but to integrate the potential created by each charge over the whole electronic cloud

corresponding to every 3-orbital of the MA, which carries most of the symmetry of the

system [97]. Then, the crystal field Hamiltonian is evaluated in the atomic bases set

as explained elsewhere [81]. The results are parametrized in terms of the expectation

values of the radial coordinate operators 〈A2〉 and 〈A4〉 [55]. The charges and positions are

estimated from the DFT calculations.

Here we have taken the free ion atomic values of 〈A2〉 = 0.39Å and 〈A4〉 = 0.35Å. The

atomic charges and positions are given in Table A.1. Instead of correcting the 〈A2〉 and
〈A4〉 parameters due to covalency and other limitations of the model, we have taken the

�SO as another fitting parameter, with an optimal value of �SO ≈ 0.6.
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Atom G (Å) H (Å) I (Å) @ (4)

O 0 0 −1.93 −0.70

Mg 0 −2.18 −2.31 0.82

Mg 2.18 0 −2.31 0.82

Mg −2.18 0 −2.31 0.82

Mg 0 2.18 −2.31 0.82

Table A.1: Positions with respect to the Fe magnetic atom and charges from Badder

analysis of the DFT results used for the point charge model calculation. Notice that only

the firsts four Mg atoms and the O underneath have been included.



Appendix B

Energy integrals ℐ±(G, �2 , H)

The following energy integrals can be done analytically by deformation in the complex

energy plane

ℐ±(&0, �2 , �) = P
∫ �2

−�2
3&
=±
�
(& − �)
&0 − &

.

where =+
�
= =� and =

−
�
= 1 − =�. The results are given by

ℐ+(&0, �2 , �) ≈ ln(2�) − ln(�2 − � + &0) + Re
[
#(0)

(
1
2 −

8(&0 − �)
2�

)]
, (B.1)

and

ℐ−(&0, �2 , �) ≈ ln
����&0 − �2
&0 + �2

���� − ℐ+(&0, �2 , �). (B.2)

where #(0)(G) is the digamma function and the arguments satisfy −&0 + � < �2 < &0 − �.
The above approximations correspond to asymptotic expansions for �2 � 1. Notice that

here we have used a description in terms of dimensionless variables, which is equivalent

to measure all energies in units of :�). In the case of interest, �2 � 1 and �2/&0 ∼ 1. In

this limit, to lowest order in 1/�2 , we have that

ℐ±(&0, �2 , �) ∼ ∓ ln
(

1
1 + &0/�2

)
.
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Appendix C

Terms
∑

� ��
<±

01
(�, �) in the Rabi flop rate

Following the assumptions in Sec. 3.2.1, we consider the scattering of the itinerant elec-

trons with a localized magnetic impurity described by a single-orbital state, with a spin

( > 1/2 (multiplicity (2(+1)) in its#0 electrons state, and isotropic spins (<+ = (+(−1)2+/2
and (<− = ( − (−1)2−/2 in the charge states "+ and "−. In this situation, the Rabi flop

rate is proportional to sum of the next two equations:∑
�

��<
−

01
(�, �) =

∑
�

�〈0 |3†� |<−〉〈<− |3� |1〉 (C.1)

∑
�

��<
+

01
(�, �) =

∑
�

�〈0 |3� |<+〉〈<+ |3†� |1〉. (C.2)

States |0〉 and |1〉 are eigenstates of a spin Hamiltonian where the quantization axis is the

G direction so

|0〉 =
∑
<

)0< |(, <〉 |1〉 =
∑
<′

)1<′ |(, <′〉, (C.3)

where )=< are just the coefficients to change the basis from the spin Hamltonian one to

the eigenstates of the neutral charge Hamiltonian, 〈(, < |& = 0, #0; =〉. < is the (G spin

proyection. Since the spin in the & = ± are isotropic we have

|<+〉 = |&−, #0 + 1;<+〉 = |(<+ , <+〉 (C.4)

|<−〉 = |& = +, #0 − 1;<−〉 = |(<− , <−〉. (C.5)
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∑

� ��
"±

��
(�, �) IN THE RABI FLOP RATE

Again, <± are the G spin proyection of charge states & = ±. Let us focus on & = −
case first. Following the idea of [98], the creation of one electron in |<−〉 can be written

as 3†� |<−〉 = |(<− , <−; 1/2, �〉, which is the coupling of the created electron with spin

proyection � and the spin state of the system with one less electron. Now, if we apply the

braket in Eq. C.1, we will get a Clebsch-Gordan coefficient (CG) following the notation:

��<1 ,<2
� ,"

= 〈91, <1; 92, <2 |� , "〉, " = <1 + <2, � = | 91 ± 92 | with 91 > 92) that is different

from zero only if <− + � = <. Also, ( = (<− ± 1/2. Therefore, by making use of Eqs.

(3.7.60-3.7.63) from Sakurai [89], page 214, we are able to write down that:

|(, <〉 =
∑
�

∑
<−

|(<− , <−; 1/2, �〉〈(<− , <−; 1/2, � |(, <〉 =

√
(<− ∓ < + 1/2

2(<− + 1 |(<− , < + 1/2; 1/2,−1/2〉 ±

√
(<− ± < + 1/2

2(<− + 1 |(<− , < − 1/2; 1/2, 1/2〉.

Since the state |<〉 in Eq. C.1 is common to the states |0〉 and |1〉, a �<<′ will appear and

we can not have terms )0<)
1
<′ with < ≠ <′. Therefore, by ortogonality, Eq. (C.1) become:

∑
�

��<
−

01
(�, �) = −1

2
©«
∑
<

)∗0<

√
(<− ∓ < + 1/2

2(<− + 1
ª®¬ ©«

∑
<′

)1<′

√
(<− ∓ <′ + 1/2

2(<− + 1
ª®¬ �<<′

1
2
©«±

∑
<

)∗0<

√
(<− ± < + 1/2

2(<− + 1
ª®¬ ©«±

∑
<′

)1<′

√
(<− ± <′ + 1/2

2(<− + 1
ª®¬ �<<′ =

−1
2

(∑
<

)∗0<)
1
<

(<− ∓ < + 1/2
2(<− + 1

)
+ 1

2

(∑
<

)∗0<)
1
<

(<− ± < + 1/2
2(<− + 1

)
=

±1
2(<− + 1

(∑
<

<)∗0<)
1
<

)

=⇒
∑
�

��<
−

01
(�, �) = ± 1

2( ± 1 + 1 〈0 |(G |1〉. (C.6)

The plus sign associated to ( = (<−+1/2 andminus sign to ( = (<−−1/2. Same procedure

can be done for the |<+〉 state but now we create the electron in the neutral charge state.

Taking into account that (<+ = ( ± 1/2 and <+ = < + � we have

|(<+ , <+〉 =
√
( ∓ < + 1/2

2( + 1 |(, <; 1/2,−1/2〉 ±
√
( ± < + 1/2

2( + 1 |(, <; 1/2, 1/2〉.
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Therefore∑
�

��<
+

01
(�, �) = −1

2

(∑
<

)∗0<)
1
<

( ∓ < + 1/2
2( + 1

)
+ 1

2

(∑
<

)∗0<)
1
<

( ± < + 1/2
2( + 1

)
=

±1
2

1
2( + 1

(∑
<

2<)∗0<)
1
<

)

=⇒
∑
�

��<
+

01
(�, �) = ± 1

2( + 1 〈0 |(G |1〉. (C.7)

Introducing (<+ = (+(−1)2+/2 and (<− = (−(−1)2−/2 where 2+ and 2− can take the values

0 or 1 we have

Ω ∝
∑
�

�
(
�<

−

01
(�, �) + �<+

01
(�, �)

)
= 〈0 |(G |1〉

(
(−1)2−

2( + 1 + (−1)2− +
(−1)2+
2( + 1

)
. (C.8)

And we can write Eq. 3.4.



Appendix D

Basic Keldysh formalism

More inside can be found in [73]. The name of the technique takes its origin from the

1964 paper of L. V. Keldysh [99]. Essentially, instead of using the time-ordering operator

of the equilibrium theory, Keldysh proposed the contour-ordering operator which orders

the time-labels according to their order on the Keldysh contour. Thus, a Green’s Function

is defined as

�2(C , C′) = −8〈)�[)(C))†(C′)]〉

where )� is the contour-ordered operator. )(C) ()†(C)) is creation (anniquilation) operator

that follows the Wick’s theorem [71]. The contour is shown is Fig. D.1 and it consists

of two parts. The upper �+ from −∞ to +∞ and the branch below �− going backwards.

Depending on where the two times variables C and C′ are, the result would lead to one of

the four linearly independent Green’s Function:

�(C , C′) =



�0(C , C′) = 8�(C′ − C)〈{)(C), )†(C′)}〉 C , C′ ∈ �+
�A(C , C′) = −8�(C − C′)〈{)(C), )†(C′)}〉 C , C′ ∈ �−
�>(C , C′) = −8〈)(C))†(C′)〉 C ∈ �−, C′ ∈ �+
�<(C , C′) = 8〈)†(C′))(C)〉 C ∈ �+, C′ ∈ �−

. (D.1)

Here we have introduced the advanced, retarded, greater and lesser Green’s Function

respectively. The curly brackets denote an anticommutator. It worths to mention Eq.
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Figure D.1: Keldysh contour C. There are two branches: �+ going from −∞ to +∞ and

the branch below �− going backwards. The relative position of the times C and C′ in the

branches provides one of the four possible functions. Each of them is marked in the

picture.

(D.1) denotes that only three functions are linearly independent since �A −�0 = �> −�<
.

This reflects the freedom of choice that the Green’s Functions have [73].

Another important result to consider is the Langreth Theorem. We restrict ourself to the

two product case for simplicity so we have

�(C , C′) =
∫
�

3��(C , �)�(�, C′). (D.2)

For what is concerned, we only write the lesser particular case which is

�<(C , C′) =
∫ +∞

−∞
3�

[
�A(C , �)�<(�, C′) + �<(C , �)�0(�, C′)

]
. (D.3)

Same can be applied for the greater function replacing ”<” for ”>”. The retarded and

advanced functions follow a simple product [73].



Appendix E

Derivation of the Floquet master

equation

This appendix provides an inside in the algebra used to get the master equation (2.44)

from Eq. (2.39). If we substitute the mixed Green’s function into the equation of motion

(2.39) we have

¤�; 9(C) =
8

ℏ
(�; − � 9)�; 9(C) +

1
ℏ

∑
:�

[∑
D

F(C)�D;��<
D9,:�(C , C)−

∑
E

F(C)� 9E��<
;E,:�(C , C) +

∑
D

F∗(C)�D;��<
:�,D 9(C , C) −

∑
E

F∗(C)�9E��<
:�,;E(C , C)

]
. (E.1)

Introducing the definitions

Λ; 9 ,�(C) =
∫

3C1
∑
DE

�DE�
[
6A
; 9,DE
(C , C1)Σ<

�(C1, C) + 6<; 9 ,DE(C , C1)Σ
0
�(C1, C)

]
(E.2)

Λ̄�,; 9(C) =
∫

3C1
∑
DE

�DE�
[
ΣA�(C , C1)6<DE,; 9(C1, C) + Σ

<
�(C , C1)60DE,; 9(C1, C)

]
, (E.3)

with the self-energy being

Σ2�(C , C′) =
∑
:

F∗(C)62:�(C − C
′)F(C′), (E.4)
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we can rewrite Eq. (E.1) as follows:

¤�; 9(C) =
8

ℏ
(�; − � 9)�; 9(C) +

1
ℏ

∑
�

[∑
D

�D;�ΛD9,�(C) −
∑
E

� 9E�Λ;E,�(C)

+
∑
D

�D;�Λ̄�,D 9(C) −
∑
E

�9E�Λ̄�,;E(C)
]
, (E.5)

Equations (E.2) and (E.3) would be Fourier-Floquet transformed later. Wewill see that this

procedure simplifies the calculation because we will end up with a simple multiplication

in the frequency domain of the self-energy and the isolatedGreen’s function of the system.

To this end, let us compute the Fourier-Floquet selfenergy first, Eq. (E.4). The Green’s

function of the reservoirs does not have a periodic structure, which means it follows a

simple Fourier transformation. Contrary, the tunneling can be written as a Fourier series

so we write:

Σ2�(C1, C2) =
∑
=

F∗=4
8=$C1

∑
:

1
2�

∫ +∞

−∞
3�62:�(�)4

−8�(C1−C2)
∑
=′
F=′4

−8=′$C2 =

1
2�

∑
==′:

∫ +∞

−∞
3�4−8(�−=$)C1+8(�−=

′$)C2F∗,=6
2
:�(�)F,=′ .

Making the change of variable −= = = and −=′ = =′ we have

Σ2�(C1, C2) =
1

2�

∑
==′

∫ +∞

−∞
3�4−8(�/ℏ+=$)C1+8(�/ℏ+=

′$)C2
∑
:

F∗,−=6
2
:�(�)F,−=′ , (E.6)

where the Fourier-Floquet components of the tunneling are

F,= =
F0


)

∫ )/2

−)/2
3C(1 + � cos($C))4−8=$C = F0



[
�=,0 +

�

2 (�=,1 + �=,−1)
]
. (E.7)

Giving that $ = 2�/), with ) the period, and = is an integer number, we can rewrite Eq.

(E.6) as:

Σ2�,==′(�) =
∑
:

|F0
 |2

[
�=,0 +

�

2 (�=,−1 + �=,1)
]
62:�(�)

[
�=′,0 +

�

2 (�=
′,−1 + �=′,1)

]
. (E.8)

= and =′ are called the Floquet numbers. With the Fourier-Floquet components of the

self-energy, the only thing left is to compute the isolated Green’s funcions of the system
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and its Fourier transform. We have

6<DE,; 9(C , C
′) = 8〈�̂; 9(C′)�̂DE(C)〉. (E.9)

Following the equation of motion for the uncoupled central system Hamiltonian, Eq.

(2.37),
¤̂�; 9(C) = 8

ℏ
(�; − � 9)�̂; 9(C), then �̂; 9(C) = �̂; 9(0)4

8
ℏ
(�;−�9)C

, which implies

6<DE,; 9(C1, C) = 8〈�̂; 9(0)�̂DE(0)〉4
8
ℏ
(�D−�E)C14

8
ℏ
(�;−�9)C = 8〈�̂;E(0)〉� 9D4

8
ℏ
((�D−�E)C1+(�;−�9)C).

Wewish to obtain a lesser Green’s function that only depends on a time difference, making

the future Fourier transformeasier to compute. Ifwedivide andmultiply this last equation

by 4−8(�;−�9+�D−�E)C/ℏ = 4−8�C/ℏ then

6<DE,; 9(C1, C) = 8〈�̂;E(0)〉� 9D
4
8
ℏ
(�D−�E)(C1−C)

4−8�C/ℏ
.

In other words, 6<
DE,; 9
(C1, C)4−8�C/ℏ only depends on a time difference which what we are

looking for. Similarly, the greater Green’s function is

6>DE,; 9(C1, C) = −8〈�̂DE(C1)�̂; 9(C)〉
4−8�C/ℏ

4−8�C/ℏ
= −8〈�̂D9(0)〉�E;4

8
ℏ
(�D−�E)(C1−C)/4−8�C/ℏ.

From the greater and the lesser Green’s functions we can compute the retarded and

advanced ones as

6A
DE,; 9
(C1, C) = �(C1 − C)

[
6>DE,; 9(C1, C) − 6

<
DE,; 9(C1, C)

]
4−8�C/ℏ/4−8�C/ℏ =

−8�(C1 − C)4
8
ℏ
(�D−�E)(C1−C)(〈�̂D9(0)〉�E; + 〈�̂;E(0)〉� 9D)4 8�C/ℏ

60
DE,; 9
(C1, C) = −�(C − C1)

[
6>DE,; 9(C1, C) − 6

<
DE,; 9(C1, C)

]
4−8�C/ℏ/4−8�C/ℏ =

8�(C − C1)4
8
ℏ
(�D−�E)(C1−C)(〈�̂D9(0)〉�E; + 〈�̂;E(0)〉� 9D)4 8�C/ℏ.

Notice that if we combine the terms 〈�̂D9(0)〉�E; (or equivalently 〈�̂;E(0)〉� 9D) with the

exponential 4 8�C = 4 8(���;−�9+�D−���E)C , where the energies �; and �E cancel out due to �E; , we

have �D9(C) as a result of applying the Heisenberg equation and making the mean value

over �̂0. This implies that all the exponentials with � can be absorbed into the �̂; 9(0). This
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will be later taken into account when we write the Fourier form of the Green’s function.

Apart from terms like 62
DE,; 9
(C1, C), wewill have 62

; 9,DE
(C , C1). We need to divide andmultiply

by 4−8(�;−�9+�D−�E)C/ℏ = 4−8�C/ℏ in this case, which will lead to terms proportional to �̂; 9(0)
that will depend on the first time C. This is actually crucial since we want to take them out

of the integrals in Eqs. (E.2) and (E.3). So

6<; 9 ,DE(C , C1) = 8〈�̂D9(0)〉�E;4
8
ℏ
((�;−�9)C+(�D−�E)C1) 4

−8�C/ℏ

4−8�C/ℏ
=

8�D9(C)�E;4−
8
ℏ
(�D−�E)(C−C1) = �D9(C)�E; 5 <DE(C − C1). (E.10)

And we can write

6A
; 9,DE
(C , C1) = −8�(C − C1)4−

8
ℏ
(�D−�E)(C−C1)4 8�C(〈�̂;E(0)〉� 9D + 〈�̂D9(0)〉�E;) =

5 ADE(C − C1)(�;E(C)� 9D + �D9(C)�E;).

Where we have introduced the functions 5 2DE(C − C1) that only depend on a time difference.

In summary, we have found that

Λ; 9 ,� =⇒ 62
; 9,DE
(C , C1) =⇒ 4−

8
ℏ
(�D−�E)(C−C1).

Similarly

Λ̄�,; 9 =⇒ 62
DE,; 9
(C1, C) =⇒ 4−

8
ℏ
(�E−�D)(C1−C). (E.11)

We emphasized that we have a ΔDE = �D − �E dependence in Λ; 9 ,� and a ΔED in Λ̄�,; 9 .

The functions 5 2DE(C − C1) can be easily Fourier transformed since they only depends on a

time difference:

1
2�

∫ +∞

−∞
3� 5 2

DE(ED)(�)4
−8�(C−C1).

being 5 2
DE(ED)(�) the Fourier transform of the object.

At this point, we just need to replace the self-energy and theGreen’s function of the central

system into a kind of first term of Λ; 9 ,�. Ordering the time of integrats leads to∑
DE

�DE�

∫ +∞

−∞

3�
2� 5

2
DE(�)4−8�C

∑
==′

∫ +∞

−∞

3�′

2� Σ
2
�,==′(�′)4 8(�

′+=′$)C
∫ +∞

−∞
3C14

−8(�′+=$)C14 8�C1︸                         ︷︷                         ︸
2��(�−�′−=$)

.
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No kronecker delta appears because the energies can have any value. The Dirac delta

allows us to write

1
2�

∑
DE�

�DE�
∑
==′

∫ +∞

−∞
3� 5 2DE(�)Σ2�,==′(� − =$)4 8(=

′−=)$C .

Therefore

Λ; 9 ,�(C) =
1

2�

∑
DE

�DE�(�;E(C)� 9D + �D9(C)�E;)
∑
==′

4 8(=
′−=)$C

∫ +∞

−∞
3� 5 ADE(�)Σ<

�,==′(� − =$)+

1
2�

∑
DE

�DE�D9(C)�E;
∑
==′

4 8(=
′−=)$C

∫ +∞

−∞
3� 5 <DE(�)Σ0�,==′(� − =$). (E.12)

If we now introduce the following � definitions

�′D;,�(C) =
1

2��D;�
∑
==′

4 8(=
′−=)$C

∫ +∞

−∞
3�

[
5 A
D;
(�)Σ<

�,==′(� − =$) + 6<D;(�)Σ
0
�,==′(� − =$)

]
� 9E,�(C) =

1
2��9E�

∑
==′

4 8(=
′−=)$C

∫ +∞

−∞
3� 5 A9E(�)Σ

<
�,==′(� − =$),

(E.13)

we can rewrite Λ; 9 ,� as simple as

Λ; 9 ,�(C) =
∑
E

�;E(C)� 9E,�(C) +
∑
D

�D9(C)�′D;,�(C). (E.14)

Moreover, we have to compute Λ̄�,; 9 which contains term like∑
DE

�DE�
∑
==′

∫ +∞

−∞

3�′

2� Σ
2
�,==′(�′)4−8(�

′+=$)C
∫ +∞

−∞

3�
2� 5

2
ED(�)4 8�C

∫ +∞

−∞
3C14

8(�′+=′$)C14−8�C1︸                         ︷︷                         ︸
2��(�′+=′$−�)

=⇒ 1
2�

∑
DE�

�DE�
∑
==′

∫ +∞

−∞
3�Σ2�,==′(� − =′$) 5 2ED(�)4−8(=−=

′)$C .

So

Λ̄�,; 9(C) =
1

2�

∑
DE

�DE�(�D9(C)�E; + �;E(C)� 9D)
∑
==′

4−8(=−=
′)$C

∫ +∞

−∞
3�Σ<

�,==′(� − =′$) 5 0ED(�)+

1
2�

∑
DE

�DE��;E(C)� 9D
∑
==′

4−8(=−=
′)$C

∫ +∞

−∞
3�ΣA�,==′(� − =′$) 5 <ED(�). (E.15)
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Introducing now the following � definitions

�′�, 9E(C) =
� 9E�
2�

∑
==′

4−8(=−=
′)$C

∫ +∞

−∞
3�

[
ΣA�,==′(� − =′$) 5 <E 9(�) + Σ

<
�,==′(� − =′$) 5 0E 9(�)

]
��,D;(C) =

�D;�
2�

∑
==′

4−8(=−=
′)$C

∫ +∞

−∞
3�Σ<

�,==′(� − =′$) 5 0;D(�),

(E.16)

we can write

Λ̄�,; 9(C) =
∑
D

�D9(C)��,D;(C) +
∑
E

�;E(C)�′�, 9E(C). (E.17)

With all this, let us go back to the master equation (E.5) changing a bit the notation in

order to avoid mistakes. Particulary, we change D by ;′ and E by 9′ in Eq. (E.5) and we

have

¤�; 9(C) =
8

ℏ
(�; − � 9)�; 9(C) +

1
ℏ

∑
�

[∑
;′

�;′;�

(∑
E

�;′E(C)� 9E,�(C) +
∑
D

�D9(C)�′D;′,�(C)
)

−
∑
9′

� 9 9′�

(∑
E

�;E(C)� 9′E,�(C) +
∑
D

�D9′(C)�′D;,�(C)
)

+
∑
;′

�;′;�

(∑
D

�D9(C)��,D;′(C) +
∑
E

�;′E(C)�′�, 9E(C)
)

−
∑
9′

�9 9′�

(∑
D

�D9′(C)��,D;(C) +
∑
E

�;E(C)�′�, 9′E(C)
) , (E.18)

where we have taken into account Eqs. (E.14) and (E.17). We can do ;′ = 9′ and D = E

allowing ;′ = E after that. Hence, if we now reorder the terms in a certain way while

renaming accordingly the indexes, we have

¤�; 9(C) =
8

ℏ
(�; − � 9)�; 9(C) +

1
ℏ

∑
�ED

[
(�E;�� 9D,�(C) + �E;��′�, 9D(C))�ED(C)

+(�E;���,DE(C) + �E;��′DE,�(C))�D9(C) − (� 9E��ED,�(C) + �9E��′�,ED(C))�;D(C)

−(�9E���,D;(C) + � 9E��′D;,�(C))�DE(C)
]
. (E.19)
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Hence, by introducing these rates into the equation of motion of the reduced density

matrix (E.19), we find

ℏ ¤�; 9(C) − 8Δ; 9�; 9(C) =
∑
ED

[
ΓE;, 9D(C)�ED(C) + Γ̄E;,DE(C)�D9(C) − Γ9E,ED(C)�;D(C) − Γ̄9E,D;(C)�DE(C)

]
.

(E.20)

Arriving finally to the master equation of the main text. The rates are computed in the

Appendix F, which is the next one.



Appendix F

Explicit form of the Rates

In this appendix we calculate the different self-energies and Green’s functions that we

need in order to compute the rates (2.47) and (2.50). According to our definition, Eq. (E.8),

the advanced and retarded self-energies are

Σ
A,0
�,==′(�) = |C

0
 |2

∑
:

6A,0:�(�)
[
�=,0 +

�

2 (�=,−1 + �=,1)
] [

�=′,0 +
�

2 (�=
′,−1 + �=′,1)

]
.

Since the electronic Green’s function is

6A,0:�(C − C
′) = ∓8�(±C ∓ C′)4−8�:�(C−C′)/ℏ,

where upper sign is associated to the retarded Green’s function and lower sign to the

advanced one, the Fourier transform leads to

6A,0:�(�) = ∓8
∫ +∞

−∞
3(C − C′)�(±C ∓ C′)4−8�:�(C−C′)/ℏ4 8�(C−C′) =

− lim
"→0+

8

∫ ±∞

0
3(C − C′)4 8(�−�:�/ℏ±8")(C−C′)

Therefore, we can write

6A,0:�(�) = [� ± 80
+ − �:�/ℏ]−1.

Notice that 60:�(�) = 6A∗:�(�), and the same goes for the self-energy. We need to perform

the sum over :. A trick to make it is to transform the sum into a integral over the energy:

135
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∑
: →

∫ +∞
−∞ 3�:���(�:�)/ℏ, being �(�:�) the density of states of the metal. We take

the wide band limit, where � is constant up to a cut-off energy and 0 otherwise. If we

now use the Lehmann representation we can write

lim
H→0+

∫ +∞

−∞

3G

G ± 8H��(� − G) = lim
H→0+

∫ +∞

−∞
3G

(
G

G2 + H2��(� − G) ∓ 8
H

G2 + H2��(� − G)
)

= %

(∫ +∞

−∞

3G

G
��(� − G)

)
∓ 8�

∫ +∞

−∞
3G��(� − G)�(G),

where % stands for the Cauchy principal part and G is equal to � − �:�/ℏ for us. The

principal part is zero if the density of states �(� − G) does not depend strongly on G, so

that it can be taken out of the integral, i.e., ��(�− G) = ��(�). In any case, since �� does

not depend on �:� in wide band limit, so we can write

Σ
A,0
�,==′(�) = ∓8

Γ�

2

[
�=,0 +

�

2 (�=,−1 + �=,1)
] [

�=′,0 +
�

2 (�=
′,−1 + �=′,1)

]
, (F.1)

where we have defined the coupling constant Γ� = 2��� |C0 |2. Since we are assuming

the wide band limit, Γ� is constant between −�2 and �2 , and zero otherwise. In addition

to this

6<:�(C − C
′) = 8=�(�:�)4−8�:�(C−C

′)/ℏ,

which leads to

6<:�(�) = 2�8=�(�:�)�(� − �:�/ℏ).

Again,we rewrite the sumover : as a integral over�:�. The result is quite straightforward:

2�8�=�(ℏ�). Thus

Σ<
�,==′(�) = 8Γ�=�(ℏ�)

[
�=,0 +

�

2 (�=,−1 + �=,1)
] [

�=′,0 +
�

2 (�=
′,−1 + �=′,1)

]
Now we just need to compute the Fourier transform of the functions 5 2DE(�), Eq. (E.11),

in the previous Appendix. The advanced and retarded functions are quite similar to the

electronic ones

5 A0DE (C − C1) = ∓8�(±C ∓ C1)4−8(�D−�E)(C−C1)/ℏ
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So

5 A0DE (�) = ∓8
∫ +∞

−∞
3(C − C1)�(±C ∓ C1)4−8(�D−�E)(C−C1)/ℏ4 8�(C−C1) = [� − ΔDE/ℏ ± 80+]−1

These functions can be separated into imaginary and real parts

< 5 0DE(�) =< 5 ADE(�) =
� − ΔDE/ℏ

(� − ΔDE/ℏ)2 + "2

= 5 0DE(�) = −= 5 ADE(�) =
"

(� − ΔDE/ℏ)2 + "2 = ��(� − ΔDE/ℏ).

For the lesser function we have that

5 <DE(�) = 2�8�(� − ΔDE/ℏ)).

We have identified the imaginary part as a delta function because " → 0+. Let us now

introduce everything into Eq. (2.47). We assumed a wide band limit that introduced a

cut-off energy �2 . Although �2 is a raw approximation, it ensures us that the real part of

the functions 5 A0DE (�) converge. In this situation, the imaginary parts of the rates always

cancel out because we find differences between a Γ8 9 98 and a Γ̄988 9 in the master equation

for any population equation. Therefore, only the real part of the rates survives. When

this difference do not appear (coherence equation or Rabi terms), the imaginary part of

the rates that survives can be thought as a energy renormalization term1. So we can write

ΓE;, 9D;=′ =
1
2

∑
=�

(
�E;��9D�Γ�=�(Δ9D − =ℏ$)

[
�=,=′ +

�

2 (�=,=
′+1 + �=,=′−1)

]
−

�E;�� 9D�Γ�(=�(ΔD9 − =ℏ$) − 1)
[
�=,−=′ +

�

2 (�=,−=
′+1 + �=,−=′−1)

] ) [
�=,0 +

�

2 (�=,1 + �=,−1)
]
.

(F.2)

Making the sum of n we have

ΓE;, 9D;=′ =
1
2

∑
�

(
�0;��9D�Γ�=�(Δ9D + ℏ$)

[
�=′,−1 +

�

2 (�=
′,−2 + �=′,0)

]
−

1This statement is in general true but the terms that we are discarting can provide interesting results

in the frequency spectra, mostly because of the Rabi terms. It is something that we need to investigate in

future works.
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�E;�� 9D�Γ�(=�(ΔD9 + ℏ$) − 1)
[
�=′,1 +

�

2 (�=
′,2 + �=′,0)

] )
�

2

+1
2

∑
�

(
�E;��9D�Γ�=�(Δ9D)

[
�=′,0 +

�

2 (�=
′,−1 + �=′,1)

]
−

�E;�� 9D�Γ�(=�(ΔD9) − 1)
[
�=′,0 +

�

2 (�=
′,1 + �=′,−1)

] )

+1
2

∑
�

(
�E;��9D�Γ�=�(Δ9D − ℏ$)

[
�=′,1 +

�

2 (�=
′,0 + �=′,2)

]
−

�E;�� 9D�Γ�(=�(ΔD9 − ℏ$) − 1)
[
�=′,−1 +

�

2 (�=
′,0 + �=′,−2)

] )
�

2 . (F.3)

Similarly we can write

Γ̄9E,D;;=′ = −
1
2

∑
=�

(
�90��D;�Γ�=�(Δ;D − =ℏ$)

[
�=,−=′ +

�

2 (�=,−=
′+1 + �=,−=′−1)

]
−

� 9E��D;�Γ�(=�(ΔD; − =ℏ$) − 1)
[
�=,=′ +

�

2 (�=,=
′+1 + �=,=′−1)

] ) [
�=,0 +

�

2 (�=,1 + �=,−1)
]
. (F.4)

Computing the sum of n we have

Γ̄9E,D;;=′ = −
1
2

∑
�

(
�90��D;�Γ�=�(Δ;D + ℏ$)

[
�=′,1 +

�

2 (�=
′,2 + �=′,0)

]
−

� 9E��D;�Γ�(=�(ΔD; + ℏ$) − 1)
[
�=′,−1 +

�

2 (�=
′,−2 + �=′,0)

] )
�

2

−1
2

∑
�

(
�9E��D;�Γ�=�(Δ;D)

[
�=′,0 +

�

2 (�=
′,1 + �=′,−1)

]
−

� 9E��D;�Γ�(=�(ΔD;) − 1)
[
�=′,0 +

�

2 (�=
′,−1 + �=′,1)

] )

−1
2

∑
�

(
�9E��D;�Γ�=�(Δ;D − ℏ$)

[
�=′,−1 +

�

2 (�=
′,0 + �=′,−2)

]
−

� 9E��D;�Γ�(=�(ΔD; − ℏ$) − 1)
[
�=′,1 +

�

2 (�=
′,0 + �=′,2)

] )
�

2 . (F.5)
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Equations (F.4) and (F.5) show us that the index =′ can take only the values −2,−1, 0, 1, 2,

therefore, in Eq. (2.52), a fixed = is connected to four different Floquet numbers: from

= − 2 to = + 2.



Appendix G

Indications for the Floquet program

Herewewill introduce the basic points to take into account for the ERS Floquet simulation

code. The ket basis applied is the following

({−1/2,−(; 1/2,−(; 0,−(}, {−1/2,−( + 1; 1/2,−( + 1; 0,−( + 1} . . . {−1/2, (; 1/2, (; 0, (}) .

With this basis we just simply compute the eigenvector and eigenvalues of the system

using the matrix representation of the central system Hamiltonian

�( =
∑
<?

�?<(C)|?, <〉〈?, < | +
(−1∑
<

(J+ | ↓, < + 1〉〈↑, < | + J− | ↑, <〉〈↓, < + 1|)

+ 6��2

(−1∑
<

�+J− (| ↑, <〉〈↑, < + 1| + | ↓, <〉〈↓, < + 1| + |0, <〉〈0, < + 1|)

+
6��

2

(−1∑
<

�−J+ (| ↑, < + 1〉〈↑, < | + | ↓, < + 1〉〈↓, < | + |0, < + 1〉〈0, < |)

+
6��

2 (�+ | ↓, <〉〈↑, < | + �− | ↑, <〉〈↓, < |),

where �?< = (�� + J<� + 6���I�)��? + 6���I< + �(< + ��?,�)2 while J+ and J− are

equals to �
√
((( + 1) − <(< + 1)/2 and �+ = �G + 8�H , �− = �G − 8�H . The second sum

over m cannot reach the value < = (. Notice that we have chosen the particular case of

a spin ( coupled to a B = 1/2 with a empty state. If the lector wish to introduce another
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spin Hamiltonian with a more complex structure, such as spin-chain, the basis should be

changed accordingly. The next step would be to compute the rates ΓE;, 9D;= in order to write

the matrix form of the Floquet master equation

(�; − � 9)�; 9;= + =ℏ$�; 9;= =

8
∑
ED;=′

[
ΓE;, 9D;=′�ED;=−=′ + Γ̄E;,DE;=′�D9;=−=′ − Γ9E,ED;=′�;D;=−=′ − Γ̄9E,D;;=′�DE;=−=′

]
,

in a matrix form �G = 0 being G a row vector that contains all the �; 9 ,= components i.e. all

indices ; , 9 and = that our problem has. In fact, due to the form of the rates

(�; − � 9)�; 9;= + =ℏ$�; 9;= = 8
∑
0D

[
Γ0;, 9D;0�0D;= + Γ̄0;,D0;0�D9;= − Γ90,0D;0�;D;= − Γ̄90,D;;0�D0;=

]
+

8
∑
0D

[
Γ0;, 9D;−1�0D;=+1 + Γ̄0;,D0;−1�D9;=+1 − Γ90,0D;−1�;D;=+1 − Γ̄90,D;;−1�D0;=+1

]
+

8
∑
0D

[
Γ0;, 9D;−2�0D;=+2 + Γ̄0;,D0;−2�D9;=+2 − Γ90,0D;−2�;D;=+2 − Γ̄90,D;;−2�D0;=+2

]
+

8
∑
0D

[
Γ0;, 9D;1�0D;=−1 + Γ̄0;,D0;1�D9;=−1 − Γ90,0D;1�;D;=−1 − Γ̄90,D;;1�D0;=−1

]
8
∑
0D

[
Γ0;, 9D;2�0D;=−2 + Γ̄0;,D0;2�D9;=−2 − Γ90,0D;2�;D;=−2 − Γ̄90,D;;2�D0;=−2

]
.

Which suggests a � vector of the form:

�( =
(
�11,=8 , �12,=8 , · · · �19<0G ,=8 , �21,=8 , · · · �;<0G1,=8 , · · · �;<0G 9<0G ,=8 , · · ·

�11,= 5 , �12,= 5 , · · · �19<0G ,= 5 , �21,= 5 , · · · �;<0G1,= 5 , · · · �;<0G 9<0G ,= 5
)
. (G.1)

Being ;<0G = 9<0G = 3(2( + 1) and =8 , = 5 the first and last floquet number respectively,

=8 < = 5 . The Floquet master equation needs to be cut by chosing a maximum and

minimum Floquet number to keep. Giving =, we will have that =8 = =0 − =2DC1 and

= 5 = =0+=2DC2 , with the =2DC 9 > 1being theFloquet number cut-off. Therefore, ifwe choose,

for example, =2DC1 = 2 and =2DC2 = 3 we will have 3(2( + 1)(=2DC1 + =2DC2 + 1) = 18(2( + 1)
equations. The value =0 can be freely chosen, however, since one always wants to include

the zero Floquet equation, which contains the detailed balance, it is convenient to fix it at

zero.
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The detailed balance becomes essential to break the linear dependence of the master

equation. It reads as

∑
; �;; = 1 which implies

∑
;= 4
−8=$C�;;;= = 1. Multiplying by 4 8=

′$C

and integrating over C, we obtain

∑
; �;;;= = �=,0. Therefore, the dimension of �( is reduced

by (=2DC1 + =2DC2 + 1).

The matrix that multiplies the vector �( is

©«

'0C41;>2:0 '0C41;>2:−1 '0C41;>2:−2 0 0 · · · 0

'0C41;>2:1 '0C41;>2:0 '0C41;>2:−1 '0C41;>2:−2 0 · · · 0

'0C41;>2:2 '0C41;>2:1 '0C41;>2:0 '0C41;>2:−1 '0C41;>2:−2 · · · 0
.
.
.

. . .
.
.
.

0 · · · 0 '0C41;>2:2 '0C41;>2:1 '0C41;>2:0 '0C41;>2:−1

0 · · · 0 0 '0C41;>2:2 '0C41;>2:1 '0C41;>2:0

ª®®®®®®®®®®®®®¬
. (G.2)

Every rate block is a matrix with dimension 9(2( + 1)(2( + 1) − 1. We substract one since

the detailed balance have been applied. Then, the matrix (G.2) has a total dimension of

[(3(2( + 1) − 1)(=2DC1 + =2DC2 + 1)]2. In general, a row of the rateblock is

'0C41;>2:=′(; , 9) =
(
Γ1; , 91;=′ − Γ̄91,1;;=′ Γ1; , 92;=′ − Γ̄92,1;;=′ · · · Γ1; , 9 9;=′ − Γ̄9 9 ,1;;=′ +

∑
D Γ̄D;,1D;=′

· · · Γ1; , 9D<0G ;=′ − Γ̄9D<0G ,1;;=′ Γ2; , 91;=′ − Γ̄91,2;;=′ Γ2; , 92;=′ − Γ̄92,2;;=′ − Γ1; , 91;=′

· · · Γ;; , 91;=′ − Γ̄91,;;;=′ −
∑
E Γ9E,E1;=′ · · · ΓE<0G ; , 9D<0G ;=′ − Γ̄9E<0G ,D<0G ;;=′ .

)
In order to make clear how the detailed balance is introduced, let us focus on the = = 0

case alone, so ; and 9 cannot be both equal to one. Thus, the master equation reads as

(�; − � 9)�; 9;0 = 8
∑
ED

[
ΓE;, 9D;0�ED;0 + Γ̄E;,DE;0�D9;0 − Γ9E,ED;0�;D;0 − Γ̄9E,D;;0�DE;0

]
.

The sum will contain terms with �11;0 = 1 −∑
:>1 �::;0 so we can write

−8(�; − � 9)�0
; 9;0 =

∑
ED

ΓE;, 9D;0�ED;0(1 − �E,1�D,1) −
∑
:>1

Γ1; , 91;0�::;0 + Γ1; , 91;0

+
∑
ED

Γ̄E;,DE;0�D9;0(1 − � 9 ,1�D,1) −
∑
E,:>1

�1, 9Γ̄E;,1E;0�::;0 +
∑
E

�1, 9Γ̄E;,1E;0

−
∑
ED

Γ9E,ED;0�;D;0(1 − �; ,1�D,1) +
∑
E,:>1

�1,;Γ9E,E1;0�::;0 −
∑
E

�1,;Γ9E,E1;0
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−
∑
ED

Γ̄9E,D;;0�DE;0(1 − �E,1�D,1) +
∑
:>0

Γ̄91,1;;0�::;0 − Γ̄91,1;;0.

Where we have use the kronecker deltas to indicate that the sums over v and u do not

contain the element E = 1, D = 1. If we extend this to the other Floquet numbers that

includes the zero Floquet number, we have a system of equation of the form �G = � with

� ≠ 0 due to the constrain that the detailed balance adds.
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