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Abstract

Neurological impairments affect millions of people worldwide, causing severe dis-
abilities and very high costs. Rehabilitation therapies are essential in the recovery
process of the functional mobility in patients with neurological impairments. How-
ever, in order to accomplish the optimal recovery, the therapy has to be adapted to
the needs and the functional status of each patient. Furthermore, in order to com-
pare different therapies and adjust the therapy individually, it is necessary to make
an accurate gait analysis and assessment of the level of impairment of each patient.
There are various clinical tests and scales that are commonly used to assess the walk-
ing performance, but they are subjective or they are based on a limited number of
objective measurements.

There are various technological systems, which are able to make an accurate, ob-
jective and quantitative gait monitoring and analysis, based on various kinematic and
kinetic measurements. Instrumented walkways and motion capture systems (MCS)
provide highly accurate and reliable measurements, but their capture area is restricted
to a few meters in a laboratory or clinical setting. In contrast, systems based on
wearable sensors are not limited to a small capture area, but they require complex
algorithms and they are affected by measurement noise, drift, misalignements, vibra-
tions and other perturbations. In addition, the attachment of the sensors to the body
might be uncomfortable for some users.

Various researchers have proposed integrating small sensors in passive rehabili-
tation devices, such as crutches and canes. This alternative is less invasive and it
can be used for gait monitoring and analysis. However, this requires estimating the
orientation of the crutch and the walking distance, but few researchers have pro-
posed robust sensor fusion algorithms to accurately estimate those variables with an
instrumented crutch or cane. Moreover, the proposed approaches present important
drawbacks, such as being affected by magnetic perturbations, measurement noise and
non-gravitational accelerations.

This work presents a new instrumented crutch tip prototype, which can be used
for an objective and quantitative gait monitoring of patients with neurological im-
pairments. The developed prototype can be easily adapted to different crutches and
canes, and it offers a lightweight, flexible, non-invasive and low-cost solution. The
crutch tip integrates various sensors, such as a load cell, an inclinometer, a gyroscope,
an accelerometer and a magnetometer. The system can measure the load applied on
the crutch, as well as various kinematic variables, such as accelerations and angular
velocities.

In addition, a new algorithm is proposed to estimate the pitch angle of a crutch
or cane with the developed prototype. This algorithm assumes zero roll and negli-
gible non-gravitational accelerations during the central interval of the stance phase.
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The fundamental idea is to integrate the gyroscope measurements on one axis, and
correct the error at the end of each stance phase, based on the measurements of the
inclinometer in the central interval of the stance phase.

The proposed algorithm has been validated with three healthy subjects, using
an MCS. Participants walked 5 meters, following a straight line at their normal and
comfortable pace, then turned around and returned to the start line. After calibrating
the sensors and the MCS, a procedure was carried out to compare the pitch angle
estimated by the algorithm and the pitch angle calculated based on the measurements
of the motion capture system. The results show that the mean RMS error when the
subjects walk following a straight line is 1.13◦.

Furthermore, a case of study was conducted with four patients with multiple
sclerosis, using the developed prototype and the proposed algorithm. The patients
performed the 10 metre walk test, and the measurements from the instrumented tip
were used to estimate various gait parameters. The preliminary results suggest that
the parameters related to the motion speed of the crutch and applied load might be
correlated with the EDSS scales. In contrast, parameters related to the pitch angle
might be useful to make a more granular evaluation and detect different movement
patterns.

Moreover, another algorithm is proposed to estimate the orientation and walking
distance with an improved version of the instrumented tip. The new approach is based
on the CAHRS filter, but it dynamically adapts the accelerometer tuning parameter
according to the phase of the crutch. This algorithm extends the fundamental idea of
the previous algorithm to the 3D space, using the accelerometer to correct the error of
the gyroscope signal in the central interval of the stance phase. In addition, a method
for estimating the walking distance is described, based on the double integration of
inertial accelerations and a velocity update based on an inverted pendulum model
during the stance phase of the crutch. For the phase detection, a new procedure is
proposed, based on a combination of threshold-based and event-based methods.

The new approach has been validated with four healthy participants and two dif-
ferent test: a long-distance test and a short distance test. The estimated distance in
the long-distance test was validated with the reference distance measured with a tape
measure. In contrast, the orientation and distance estimated in the short-distance
test were validated with the reference measurements from an MCS. In addition, a
commercial AHRS module was used to compare the orientation estimated by the
proposed method. The results demonstrate that the proposed algorithm estimates
the pitch and roll angles with an RMS error below 0.9◦ and 0.5◦, respectively, and
the walking distance with a relative error under 3.1%. The orientation errors are
comparable to the ones obtained with the AHRS module, but the proposed algorithm
has a lower computational cost and it is not affected by magnetic perturbations and
non-gravitational accelerations during the swing phase.
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Resumen

Introducción

Las enfermedades neurológicas afectan a millones de personas en el mundo, pro-
vocan graves discapacidades y generan grandes gastos en los sistemas sanitarios. Las
enfermedades neurológicas afectan a millones de personas en el mundo, provocan
graves discapacidades y generan grandes gastos en los sistemas sanitarios. Por ejem-
plo, hay unas 33 millones de personas en el mundo que viven con secuelas del ictus,
y esta enfermedad es la principal causa de discapacidad permanente en países desa-
rrollados. Además, cada año, unas 10 millones de personas sufren un traumatismo
craneoencefálico, y muchas de ellas se ven afectadas por discapacidades permanen-
tes, como alteraciones en las funciones motoras, en la memoria y en el razonamiento.
Adicionalmente, las lesiones medulares provocan un coste de más de 2.3 millones de
dólares por cada paciente, y en muchos casos causan tetraplegia o paraplegia, y pro-
blemas cardiovasculares, respiratorios, gastrointestinales y musculares. Asimismo, la
esclerosis múltiple afecta a más de 2 millones de personas que sufren problemas como
debilidad muscular, problemas de equilibrio, dificultades para caminar y alteraciones
sensoriales.

Existen diversos tratamientos farmacológicos e intervenciones quirúrgicas para re-
ducir los efectos adversos de las enfermedades o lesiones neurológicas. Sin embargo,
las terapias de rehabilitación también son fundamentales para que los pacientes logren
importantes mejoras funcionales. Gracias a la estimulación de la plasticidad neuro-
muscular, es posible modificar las conexiones neuronales y lograr mejoras funciona-
les mediante la rehabilitación. Se ha demostrado que las terapias de rehabilitación
mediante entrenamiento basado en ejercicios producen mejoras significativas en la
marcha, en la capacidad aeróbica y en la fuerza muscular.

Es especialmente interesante analizar el efecto que tienen las terapias sobre la
marcha, ya que muchos pacientes con enfermedades neurológicas tienen problemas
para caminar. Además, la incapacidad de caminar de manera autónoma afecta nega-
tivamente a la calidad de vida. Numerosos estudios han concluido que las terapias de
rehabilitación que incluyen ejercicios repetitivos y de alta intensidad son más eficientes
para lograr una recuperación de la marcha. Sin embargo, para lograr una recupera-
ción óptima, es necesario ajustar la terapia a cada paciente, y determinar la mejor
intensidad y la duración más adecuada.

Por tanto, es necesario realizar un diagnóstico preciso y objetivo de la movilidad
funcional de cada paciente, para ajustar la terapia de forma individual y lograr una
recuperación óptima. Además, una evaluación precisa de la marcha y del grado de re-
cuperación de cada paciente permitiría comparar los resultados de diferentes terapias
de rehabilitación.
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Existen varios tests y escalas que se emplean habitualmente en las clínicas para
realizar un diagnóstico de la movilidad funcional de pacientes con enfermedades neu-
rológicas. Por ejemplo, el test de los diez metros a pie (10 MWT) permite evaluar
la marcha mediante el cálculo de la velocidad media en una recta de diez metros.
A pesar de que varios estudios han demostrado que estos tests proporcionan una
alta fiabilidad, se basan en observaciones subjetivas o en un número muy limitado de
medidas objetivas, como por ejemplo, el tiempo total o la distancia recorrida. Ade-
más, estas escalas se aplican en un momento concreto en un espacio clínico, por lo
que el resultado muestra bastante variabilidad y puede cambiar según la hora del día.
Adicionalmente, muchas de las escalas clínicas tienen una granularidad limitada y no
son capaces de detectar pequeños cambios funcionales.

Estado del arte sobre la monitorización y el análisis de la marcha

Se han desarrollado varias soluciones tecnológicas para realizar una monitorización
de la marcha más precisa, objetiva, cuantitativa y granular. Estas soluciones se ba-
san en varias medidas cinemáticas y dinámicas obtenidas mediante diversos sensores
para estimar varios indicadores o parámetros para evaluar la marcha. Los diferen-
tes sistemas tecnológicos se pueden clasificar en tres grandes grupos: los pasillos
instrumentados, los sistemas de captura de movimiento, y los sensores vestibles o
wearables.

Los pasillos instrumentados son sistemas formados por alfombras con sensores de
presión integrados, o pasillos con un conjunto de sensores fotoeléctricos. Estos siste-
mas pueden estimar varios parámetros de la marcha, como por ejemplo, el tiempo y la
longitud de cada paso, la cadencia, la base de apoyo y la velocidad de la marcha. Ade-
más, permiten calcular la media y la variabilidad de estos parámetros. Varios estudios
han validado estos sistemas y han demostrado que proporcionan medidas con una
alta fiabilidad. Estos sistemas son fáciles de usar, portables y no invasivos. Además,
requieren muy poco tiempo de preparación y calibración, y calculan automáticamente
varios parámetros relacionadas con la funcionalidad de la marcha. Sin embargo, el
área de captura es limitada y no proporcionan información sobre la orientación.

Los sistemas de captura de movimiento son sistemas de análisis de movimiento
3D. Estos sistemas están formados por un conjunto de cámaras, sensores o aparatos
electrónicos que son capaces de medir las posiciones 3D de un grupo de marcadores
o pequeños dispositivos que se pueden unir a un objeto o persona. Esos sistemas se
suelen combinar y sincronizar con otros sensores, como por ejemplo, plataformas de
fuerza que miden las fuerzas de reacción y sensores de electromiografía que miden
la actividad muscular. Utilizando varios modelos biomecánicos y la información de
estos sistemas, es posible medir o estimar una gran cantidad de medidas cinemáticas
y dinámicas. De esta forma, se pueden calcular numerosos parámetros objetivos y
cuantitativos para realizar un análisis exhaustivo de la marcha. Además, algunos sis-
temas de captura de movimiento ofrecen medidas de gran precisión y alta fiabilidad.
Sin embargo, estos sistemas son caros, su área de captura suele estar limitada a unos
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pocos metros cuadrados, y requieren un tiempo prolongado para la calibración y el
procesamiento de datos.

Los sistemas vestibles o wearables están formados por pequeños sensores que
se pueden atar a diferentes partes del cuerpo, o se pueden integrar en pulseras,
relojes o diversas prendas. Los sistemas vestibles pueden medir diferentes variables
cinemáticas y dinámicas, gracias a las medidas de varios sensores como acelerómetros,
giroscopios, magnetómetros, sensores de fuerza, inclinómetros, barómetros y sensores
de electromiografía.

En particular, las unidades de medida inercial (IMUs) se componen normalmente
de un acelerómetro, un giroscopio y un magnetómetro. Las medidas de estos sensores
se pueden emplear para estimar varias variables cinemáticas, como orientaciones,
posiciones y velocidades. Asimismo, esta información se puede utilizar para estimar
diversos parámetros de la marcha, como el número de pasos, la longitud de paso, la
cadencia, el tiempo de ciclo medio, la amplitud angular de las uniones y segmentos,
la distancia recorrida y el gasto energético .

Las principales ventajas de los sistemas vestibles son que permiten monitorizar
la marcha de forma continuada en cualquier lugar y durante horas o días, que son
capaces de capturar movimientos rápidos, que tienen un peso y tamaño reducidos,
que permiten estimar parámetros relacionados con la orientación, que requieren poco
tiempo de preparación y calibración, y que tienen un bajo coste.

Sin embargo, los sensores vestibles requieren complejos algoritmos para estimar
diversas variables como orientaciones y posiciones, debido a errores por la deriva, ruido
en las mediciones, alineaciones incorrectas, movimientos relativos entre los sensores
y el cuerpo, vibraciones, y otras perturbaciones. Además, la unión de los sensores al
cuerpo puede ser incómoda y no está claro cuáles son los mejores métodos para la
estimación de los parámetros de la marcha.

Con el propósito de solucionar algunos de los problemas de los sensores vestibles,
varios autores han propuesto integrar pequeños sensores en dispositivos de rehabilita-
ción pasivos, como muletas y bastones. Esta solución es una alternativa no invasiva
y de fácil uso, que se puede emplear en diversas aplicaciones relacionadas con la mo-
nitorización y el análisis de la marcha. Por ejemplo, se puede utilizar para monitorizar
y controlar el peso aplicado en la muleta o en el bastón, para clasificar diferentes
actividades y detectar patrones de movimiento, para estimar el gasto energético, pa-
ra monitorizar el uso del dispositivo de asistencia y determinar si se está utilizando
correctamente, para monitorizar el riesgo de caídas y otros problemas de la marcha,
para ayudar a controlar exoesqueletos robóticos y para realizar una evaluación de la
movilidad funcional. Por tanto, en base a las medidas de una muleta instrumenta-
da, es posible estimar varias variables cinemáticas y dinámicas que permitan realizar
un diagnóstico objetivo y cuantitativo de la marcha de pacientes que requieren una
muleta.

Sin embargo, muchas de las aplicaciones mencionadas requieren estimar la incli-
nación de la muleta o el bastón, y en algunos casos también es necesario estimar
la distancia caminada. No obstante, muy pocos autores han propuesto un algoritmo
de fusión de sensores para estimar la orientación o la distancia caminada mediante
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sensores integrados en una muleta o en un bastón, y las soluciones propuestas tienen
varias limitaciones.

Una de las formas más sencillas de estimar la orientación de una muleta o un
bastón es utilizar un algoritmo basado exclusivamente en las medidas del aceleróme-
tro y el magnetómetro, como por ejemplo, el TRIAD o el QUEST. Sin embargo,
las estimaciones de estos algoritmos muestran grandes errores cuando los sensores
se ven afectados por perturbaciones magnéticas y aceleraciones no gravitatorias. Las
medidas del giroscopio no se ven afectadas por estas perturbaciones, y se pueden
emplear para estimar la orientación de una IMU, mediante la integración de las ve-
locidades angulares. Sin embargo, las medidas del giroscopio se ven afectadas por la
deriva del offset, el ruido, los impactos y las vibraciones de altas frecuencias, por lo
que tampoco sirven para lograr una estimación precisa por sí solos.

Una solución es combinar las medidas de los sensores de una IMU mediante un
algoritmo de fusión basado en el filtro de Kalman extendido (EKF). Se han propuesto
numerosos modelos para estimar la orientación de una IMU aplicando un EKF basado
en cuaterniones. Muchos incluyen en el vector de estados la orientación y las veloci-
dades angulares o el offset del giróscopo. Algunos autores han propuesto aplicar un
método de optimización para obtener una estimación de la orientación a partir de las
medidas del acelerómetro y el magnetómetero, y luego fusionar el resultado con la
estimación obtenida a partir de la integral de las medidas del giroscopio.

Sin embargo, el filtro de Kalman asume que el ruido de las medidas es blanco y
gaussiano, pero las perturbaciones magnéticas y las aceleraciones inerciales pueden
ser muy irregulares y estar muy alejadas de esa simplificación. Por esa razón, muchos
autores han propuesto diversas estrategias para limitar la influencia de las perturba-
ciones. Por ejemplo, es posible definir la matriz de covarianza del ruido de las medidas
de forma determinista, de manera que el EKF ignore las medidas del acelerómetro si
la diferencia entre el módulo del vector de aceleración medido y el valor de referencia
(9.81) es superior a un umbral.

Los principales problemas de las soluciones basadas en el EKF es que tienen un
coste computacional elevado, pueden ser muy complejos y en algunos casos son difí-
ciles de implementar. Una alternativa más eficiente es aplicar un algoritmo de fusión
basado en un filtro complementario (CF). Un CF para la estimación de la orientación
a partir de las medidas de una IMU suele aplicar un filtro paso alto a la orientación
estimada en base a las medidas del giroscopio, y un filtro paso bajo a las orientación
estimada usando el acelerómetro y el magnetómetro. Se han propuesto numero-
sos CFs basados en cuaterniones. Por ejemplo, algunos se basan en un controlador
proporcional-integral y en el producto entre los vectores medidos y estimados, mien-
tras que otros aplican un algoritmo de optimización como el de descenso de gradiente
o el de Marquardt. Algunos de estos algoritmos aplican diversas estrategias para in-
tentar compensar los efectos de las perturbaciones magnéticas, pero muy pocos son
capaces de estimar los ángulos pitch y roll sin ninguna influencia de las perturbaciones
magnéticas.

El algoritmo CAHRS es un CF que descompone la corrección de los ángulos pitch
y roll de la correción del ángulo yaw, corrigiendo la estimación del giroscopio en
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dos pasos. Por tanto, la estimación de los ángulos pitch y roll no se ve afectada
por las perturbaciones magnéticas. Además, es un algoritmo con un menor coste
computacional y no requiere valores de referencia de la aceleración de la gravedad y el
campo magnético locales. Sin embargo, el CAHRS requiere sintonizar dos parámetros
que determinan los pesos de las correcciones del acelerómetro y el magnetómetro.
Los autores que propusieron el CAHRS utilizaron parámetros constantes, calculados
en base a una optimización a partir de las medidas de unos ensayos. Sin embargo,
es posible adaptar los valores de estos parámetros a la marcha asistida con muletas,
porque las aceleraciones no gravitatorias no influyen de igual manera en todas las
fases de la marcha.

Por otro lado, se han propuesto abundantes métodos para estimar la distancia
en base a las medidas de una IMU. Normalmente, las medidas del acelerómetro se
transforman del sistema de coordenadas móvil al fijo mediante la orientación estima-
da utilizando alguno de los algoritmos descritos anteriormente. Después, se resta la
aceleración debida a la gravedad, obteniendo así las aceleraciones inerciales. A conti-
nuación, es posible aplicar un filtro paso alto o un filtro de media móvil para suavizar
la señal y eliminar ruido. Posteriormente, se puede detectar cada paso o ciclo y aplicar
alguna función para estimar la longitud de paso y la distancia recorrida.

Sin embargo, es más preciso integrar dos veces las medidas del acelerómetro y
aplicar una actualización de velocidad nula (ZUPT). Además, algunos autores han
aplicado un filtro de Kalman de estado de error para estimar las posiciones y veloci-
dades con mayor precisión. Uno de los estudios con bastones instrumentados propone
usar ese algoritmo para estimar la distancia caminada con el bastón, pero aplicando
un modelo de péndulo invertido para actualizar las velocidades cuando la punta del
bastón está apoyada en el suelo. Sin embargo, ese procedimiento emplea un método
basado en umbrales de aceleración y velocidad angular para la detección de las fases
del bastón, pero la precisión de la detección puede verse afectada por el ruido, las
perturbaciones y los pequeños impactos.

Objetivos

El objetivo principal de esta tesis es desarrollar nuevos algoritmos y procedimientos
para estimar de forma precisa y fiable diversas variables cinemáticas de la marcha
asistida con muletas o bastones instrumentados. El trabajo se centra especialmente
en la estimación de la inclinación del dispositivo de asistencia y la distancia recorrida.

Para ello, se presenta un nuevo prototipo de contera instrumentada para la moni-
torización de la marcha con muletas o bastones. El prototipo desarrollado es ligero,
flexible y de bajo coste. Además, se ajusta a las necesidades de los pacientes con
enfermedades neurológicas y se puede adaptar fácilmente a diferentes muletas y bas-
tones.

En primer lugar, se propone y se valida una nuevo algoritmo para la estimación del
ángulo pitch de una muleta o bastón, en base a las medidas de los sensores integrados
en el prototipo mencionado. Posteriormente, la idea fundamental de este algoritmo
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se generaliza al espacio tridimensional, adaptando el valor de uno de los parámetros
de sintonización del filtro CAHRS según la fase de la muleta. De esta forma, se
obtiene una estimación más precisa de los ángulos pitch y roll. Además, se propone
un procedimiento para estimar la distancia recorrida, aplicando ZUPT mediante un
modelo de péndulo invertido y empleando un nuevo método robusto y preciso para la
detección de fases.

Algoritmo para la estimación del ángulo pitch de la muleta

El prototipo desarrollado está compuesto por una contera con unos sensores inte-
grados y un cinturón de neopreno que incluye la batería y el sistema de adquisición, el
cual se conecta con la contera mediante cables. La contera está fabricada en aluminio
e incluye un sensor de fuerza, un inclinómetro y la electrónica necesaria para acon-
dicionar las medidas del sensor de fuerza. Además, la contera dispone de una IMU
de bajo coste fijada en una carcasa fabricada mediante prototipado rápido. Esta IMU
incluye un acelerómetro de tres ejes, un giroscopio de tres ejes, un magnetómetro de
tres ejes y un barómetro.

El programa de adquisición está desarrollado en LabView y puede registrar las
medidas de los sensores con una frecuencia programable de entre 10 y 100 Hz. Una
interfaz gráfica permite controlar fácilmente la grabación de datos y mostrar en la
pantalla diversas gráficas de las medidas de los sensores. Un lazo de control gestiona
el inicio y fin de la captura de datos mediante tres estados.

Además, se presenta un nuevo algoritmo para estimar el ángulo pitch de la muleta
a partir de las medidas del inclinómetro, el giroscopio y el sensor de fuerza. Este
algoritmo asume que el ángulo roll es cero durante toda la marcha y que las acelera-
ciones no gravitatorias son despreciables en el intervalo central de la fase de apoyo.
La aproximación de roll despreciable se desarrolla en el capítulo 3 y se realiza con
objeto de ilustrar de forma más sencilla la idea fundamental del algoritmo. Esta idea
se generaliza a la orientación 3D en el capítulo 4, sin asumir que el ángulo roll es
cero.

La idea fundamental del algoritmo propuesto en el capítulo 3 es integrar las me-
didas del giroscopio en uno de los ejes y corregir el error al final de cada fase de
apoyo a partir de las medidas del inclinómetro en el intervalo central de la fase de
apoyo. Para ello, el algoritmo emplea una ventana móvil lo suficientemente amplia
para almacenar las medidas del inclinómetro, giroscopio y sensor de fuerza registradas
durante toda la fase de apoyo. Esta ventana se inicializan al comienzo de la ejecución
y se actualizan con cada muestra. De forma similar, las estimaciones del ángulo pitch
también se almacenan en una ventana móvil de la misma amplitud, que se inicializa
con las medidas del inclinómetro.

En cada instante, el algoritmo compara las últimas medidas del sensor de fuerza
con un umbral de referencia. Si el último valor está por debajo de este umbral pero
los valores anteriores están por encima de ese umbral, el algoritmo considera que ha
terminado una fase de apoyo. Si el instante actual no se corresponde con el fin de una
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fase de apoyo, el algoritmo integra las medidas del giroscopio mediante el método
de Heun. En cambio, si en el instante actual se ha detectado el fin de una fase de
apoyo, el algoritmo corrige la estimación del giroscopio mediante las medidas del
inclinómetro. Para ello, primero emplea las medidas del sensor de fuerza para calcular
el intervalo central de la fase de apoyo. Después, calcula la muestra del centro de
dicho intervalo y la media de las medidas del inclinómetro en todo ese intervalo. A
continuación, integra las medidas del giroscopio desde el centro del intervalo, a partir
de la media del inclinómetro calculada en el paso anterior. En los siguientes instantes,
el algoritmo vuelve a integrar las medidas del giroscopio normalmente hasta detectar
el fin de la siguiente fase de apoyo.

El algoritmo propuesto se ha validado con tres personas sanas, utilizando un sis-
tema de captura de movimiento Vicon. A los participantes se les pidió que caminaran
5 metros siguiendo una línea recta, que giraran 180 grados, y que volvieran al punto
inicial. Los individuos anduvieron a su ritmo normal y cómodo, con la muleta en el
brazo derecho e intentando descargar todo el peso posible de la pierna izquierda.

Antes de realizar las pruebas de movimiento con personas sanas, se han realiza-
do varios ensayos para calibrar los sensores de la contera. El sensor de fuerza se ha
calibrado con una plataforma de fuerza, obteniendo un error RMS inferior a 9 N. El
inclinómetro se ha calibrado con el sistema de captura de movimiento, y los resultados
muestran que las medidas tienen una no-linealidad de 1.38◦. Por último, el aceleró-
metro, el giroscopio y el magnetómetro se han calibrado siguiendo un procedimiento
descrito por otros autores, en base a un ensayo estático con diferentes orientaciones,
un ensayo dinámico y un ensayo para compensar las perturbaciones magnéticas.

Antes de comparar el ángulo estimado por el nuevo algoritmo y el ángulo calculado
en base a las medidas del sistema de captura de movimiento, se han estimado dos
orientaciones constantes. Por un lado, se ha aplicado el método de Horn basado en
aceleraciones para estimar la orientación relativa entre el sistema de coordenadas de la
IMU y el sistema de coordenadas de los marcadores pegados a la carcasa de la contera.
Por otro lado, se han empleado las medidas del acelerómetro y el magnetómetro en
un ensayo estático para estimar la orientación relativa entre el sistema de coordenadas
global y el sistema de coordenadas del Vicon.

Los resultados de la validación del algoritmo muestran que la media del error RMS
es de 1.13◦ y el error máximo es de 2.75◦ cuando el participante camina siguiendo una
línea recta. El error es mucho mayor cuando el sujeto gira 180◦, porque el algoritmo
integra una parte de la velocidad angular debida al giro en yaw. Sin embargo, este
error se corrige tras la primera fase de apoyo después del giro. Por tanto, el algoritmo
es capaz de estimar el ángulo pitch de la muleta de manera precisa y con un coste
computacional muy reducido.

Además, se han realizado ensayos clínicos con pacientes de esclerosis múltiple a
modo de caso de estudio. Cuatro pacientes de esclerosis múltiple con diferentes niveles
de discapacidad realizaron el test de los diez metros con el prototipo desarrollado. A
partir de los datos grabados en los ensayos, se ha definido y calculado un conjunto de
parámetros para analizar la marcha, como por ejemplo, el número de ciclos, la media
de los picos de porcentaje de peso corporal aplicado en la contera, el tiempo de ciclo
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medio y la media de la amplitud del ángulo pitch. Para el cálculo de los parámetros
relacionados con el ángulo pitch, se ha empleado el nuevo algoritmo propuesto.

Los resultados de los ensayos con pacientes sugieren que los parámetros relacio-
nados con la velocidad de la contera y el peso aplicado en ella podrían estar correla-
cionados con la escala EDSS. En cambio, los parámetros relacionados con el ángulo
pitch de la muleta podrían proporcionar información adicional para realizar una eva-
luación de la marcha más granular y detectar diferentes patrones de movimiento en
pacientes con la misma puntuación en la escala EDSS.

Algoritmo para la estimación de la orientación y la distancia
caminada

La idea fundamental del algoritmo descrito anteriormente se generaliza al espa-
cio tridimensional, sin necesidad de asumir que el ángulo roll es cero. Para ello, se
utiliza el algoritmo CAHRS descrito anteriormente, pero ajustando el parámetro de
sintonización del acelerómetro (µa) según la fase de la muleta. Además, se estima
la distancia caminada aplicando un modelo de péndulo invertido para actualizar las
velocidades.

En primer lugar, se presenta una versión mejorada del prototipo descrito ante-
riormente. En la nueva versión, el sistema de adquisición va integrado dentro de la
contera, pero el peso de la contera se reduce de 240g a 180g. Además, se sustituye la
IMU de bajo coste por un módulo AHRS de Xsens, que proporciona una estimación
de la orientación, además de las medidas calibradas del acelerómetro, el giroscopio y
el magnetómetro.

El algoritmo propuesto para estimar la orientación ajusta el parámetro de sintoni-
zación del acelerómetro µa de forma dinámica. En la parte central de la fase de apoyo,
se le asigna un valor alto a µa, de forma que la estimación del acelerómetro tenga
más peso. En cambio, se le asigna un valor muy pequeño en el resto del ciclo, para
que tenga más importancia la estimación obtenida con las medidas del giroscopio.

Para la detección de las fases, se propone un nuevo procedimiento que combina
estrategias basadas en umbrales y en eventos. En primer lugar, se detectan los límites
aproximados mediante las medidas del sensor de fuerza, en base a un umbral de fuerza
mínima aplicado durante un intervalo de tiempo mínimo. En segundo lugar, se calcula
el valor absoluto de las medidas del giroscopio en el eje transversal de la muleta y
perpendicular al apoyo. A continuación, se detectan los instantes correspondientes a
los mínimos de esa señal antes y después de cada fase de apoyo. Posteriormente, se
calcula la norma de las medidas del acelerómetro y se resta el valor de la gravedad.
En la señal resultante, se buscan los instantes correspondientes a los valores máximos
antes y después de cada fase de apoyo, limitados por los instantes detectados con la
señal del giroscopio. Además, se busca el máximo relativo en la señal del sensor de
fuerza, correspondiente a cada fase de apoyo. Por último, se calculan los instantes
de inicio y fin de cada fase de apoyo en base a esa información.
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Después de identificar las fases de apoyo y balanceo, se define un área de trabajo
en cada fase. Este área de trabajo descarta los primeros y últimos 100 ms de la fase
de apoyo, para evitar el efecto de vibraciones y perturbaciones. A continuación, se
define un parámetro λ que determina el porcentaje del área de trabajo durante el cual
se le asignará un valor alto a µa. Este porcentaje del área de trabajo está centrado
en el medio de cada fase de apoyo.

El algoritmo para la estimación de la distancia caminada transforma las medi-
das del acelerómetro del sistema de referencia móvil al fijo mediante la orientación
estimada con el filtro CAHRS adaptado. A continuación, resta la aceleración de la
gravedad, para obtener las aceleraciones inerciales. En las fases de balanceo, integra
estas aceleraciones para lograr una estimación de la velocidad. En cambio, en las fases
de apoyo, estima la velocidad mediante un modelo de péndulo invertido, en base a las
medidas de velocidad angular tranformadas al sistema de referencia fijo y la distancia
desde la punta de la muleta hasta la altura de la IMU. Por último, se integran las
velocidades para estimar la posición, y se calcula la distancia a partir de la suma de
los módulos de los vectores de posiciones consecutivas en el plano XY.

Se han realizado ensayos con 4 personas sanas para validar el nuevo algoritmo de
estimación de la orientación y la distancia recorrida. A los participantes se les pidió
que realizaran dos tareas: un test largo para evaluar la precisión de la estimación de
la distancia, y un test corto para evaluar la precisión de la orientación y distancia en
cada instante de tiempo.

En el test largo, se les pidió a los participantes que caminaran 30 metros en línea
recta en un pasillo largo. Para la validación de la prueba larga, se han utilizado las
marcas de un pincel con pintura atado a la muleta. La distancia entre cada una de
las marcas se ha medido con una cinta métrica.

En el test corto, se les pidió que anduvieran 4.5 metros en línea recta. Cada
participante realizó tres veces esta prueba. Para la validación de la prueba corta, se
ha empleado el sistema de captura de movimiento Vicon mencionado anteriormente,
siguiendo un procedimiento similar al descrito anteriormente, pero sin necesidad de
calibrar las medidas de la IMU, porque el módulo de Xsens ya las calibra automática-
mente.

En ambas pruebas, se les indicó a los participantes que anduvieran a un ritmo
cómodo y normal, con la muleta en el brazo derecho. Además, se les pidió que inten-
taran cargar solo el 50% del peso sobre el pie izquierdo. Adicionalmente, en ambas
pruebas se han utilizado las medidas del módulo AHRS de Xsens para comparar la
estimación obtenida mediante el algoritmo propuesto.

Los resultados muestran que el algoritmo propuesto es capaz de estimar la dis-
tancia caminada con un error inferior a 3.1% cuando el usuario camina siguiendo
una línea recta. Además, se ha analizado el efecto de aplicar un filtro paso alto a las
aceleraciones inerciales antes de integrar, pero se ha concluido que un filtro paso alto
no mejora significativamente la estimación de la distancia. Adicionalmente, los resul-
tados demuestran que los errores RMS máximos en pitch y roll obtenidos mediante
el algoritmo propuesto están por debajo de 0.9◦ y 0.5◦, respectivamente. Además,
los errores máximos y medios son comparables a los obtenidos usando la orientación
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estimada por el módulo AHRS de Xsens. Sin embargo, el algoritmo propuesto tiene
un menor coste computacional y la corrección de los ángulos pitch y roll no se ve
afectada por las perturbaciones magnéticas.

Conclusiones y trabajo futuro

En conclusión, los resultados obtenidos demuestran que el nuevo algoritmo para
estimar el ángulo pitch de la muleta proporciona una medida precisa cuando el usuario
camina en línea recta, y es capaz de corregir el error después de cada fase de apoyo.
En concreto, excluyendo los ciclos con giros o curvas, el error RMS máximo es de
2.75◦ y el error RMS medio es de 1.13◦.

Además, los ensayos realizados con pacientes sugieren que los parámetros relacio-
nados con la velocidad de la muleta y el peso descargado, como por ejemplo el tiempo
de ciclo medio y la media del porcentaje del peso corporal en la fase de apoyo, podrían
estar correlacionados con escalas clínicas como la EDSS. En cambio, los parámetros
relacionados con la inclinación de la muleta podrían servir para la caracterización del
movimiento de cada paciente y para detectar pequeñas diferencias entre pacientes
que tienen la misma puntuación en una escala clínica.

Por otro lado, se ha demostrado que el algoritmo de estimación de orientación y
distancia detallado en el capítulo 4 proporciona una estimación de los ángulos pitch
y roll con un error comparable a un módulo AHRS comercial. En concreto, en base a
la validación realizada con el sistema de captura de movimiento, los máximos errores
RMS de la estimación de los ángulos pitch y roll obtenidos mediante el algoritmo
propuesto son 0.9◦ y 0.5◦, respectivamente. En cuanto a los errores RMS medios, se
ha obtenido un error en pitch de 0.6◦ y un error en roll de 0.37◦.

A pesar de que estos errores son muy similares a los obtenidos con el módulo
AHRS de Xsens, el algoritmo propuesto tiene un menor coste computacional. Además,
realiza una detección de fases precisa y robusta, y la corrección de los ángulos pitch
y roll no se ve afectada por las perturbaciones magnéticas, ni por las aceleraciones no
gravitatorias durante la fase de balanceo o alrededor de los instantes de los impactos.

El trabajo futuro incluye la mejora del proceso de ajuste de los parámetros del
CAHRS, de forma que se realice de manera automática y óptima. Además, sería
conveniente mejorar la estimación del yaw calculada mediante el filtro CAHRS en
entornos con perturbaciones magnéticas. Asimismo, son necesarios más ensayos para
validar el algoritmo con movimientos más complejos, diferentes tipos de superficies,
y un número representativo de pacientes con enfermedades neurológicas. Por último,
se requieren más estudios para investigar los distintos patrones de movimiento de
pacientes con enfermedades neurológicas, y determinar las correlaciones entre los
parámetros de la marcha y la movilidad funcional.
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1 INTRODUCTION

This chapter starts with the motivation of this thesis. It briefly presents the most
important neurological diseases and injuries, focusing on the their costs and impact on
society. Then, it explains how rehabilitation therapies based on exercise training can
lead to significant functional improvements and a higher quality of life. Subsequently,
it highlights the importance of making an objective and accurate evaluation of the
functional mobility of patients with a neurological impairment, and it introduces some
tests and scales, which are commonly used in clinical practice. Afterward, it presents
an overview of the technological approaches that have been used for gait monitoring
an analysis, remarking their limitations. Finally, it describes the main objectives of
this thesis and the basic structure of the rest of the chapters.

1.1. Motivation

1.1.1. Neuromuscular Impairments

In the last decades, neurological disorders have gained significant attention due
to their impact on society, at the physical, mental and economic levels. In 2005,
neurological disorders constituted 6.29% of the total disability adjusted lost years
(DALY) in the world, and 11.23% in Europe [212]. DALY is the sum of the years of
life lost due to premature mortality (YLL) and the years of healthy life lost as a result
of disability due to the disease (YLD), weighted by the severity of the disability [212].
In addition, 11.67% of the total deaths in the world were attributable to neurological
disorders [212].

These percentages include neurological disorders in the neuropsychiatric cate-
gory (multiple sclerosis, Parkinson’s disease, epilepsy, migraine, alzheimer and other
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Chapter 1. INTRODUCTION

dementias), stroke or cerebrovascular disease, and neuroinfections (poliomyielitis,
tetanus, meningitis and Japanese encephalitis). However, they do not include the
burden of neurological sequelae associated with other infections (e.g. syphilis, per-
tussis, dyphteria and malaria), neurological sequelae associated with injuries (e.g.
traumatic brain injuries, spinal cord injuries and poisonings), or neurological sequelae
associated with nutritional deficiencies and neuropathies (e.g. protein malnutrition,
iodine deficiency, leprosy and diabetes mellitus) [212].

Figure 1.1 shows the percentage of the total years of healthy life lost as a result
of disability (YLD) for various neurological disorders and other diseases or injuries
that affect the neurological system. It can be observed that neurological injuries and
cerebrovascular disease are among the impairments with the largest impact. This
is why the following subsections briefly present more data about the prevalence and
impact of cardiovascular disease or stroke, and common neurological injuries such as
traumatic brain injury (TBI) and spinal cord injury (SCI). Although multiple sclerosis
(MS) has a smaller percentage of YLDs, it is also a common condition requiring
rehabilitation and its total annual economic cost is larger than the cost of SCI [115].
Hence, it is also shortly described below.
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Figure 1.1: Percentage of YLDs for various neurological disorders and diseases or
injuries with neurological sequelae.
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1.1. Motivation

1.1.1.1. Stroke

Stroke or cerebrovascular accident (CVA) is a sudden neurological impairment due
to localized brain ischaemia or haemorrhage [212]. The ischaemic stroke is the most
common type of stroke and it happens when an artery that feeds the brain is blocked
by a blood clot or by accumulation of fatty deposits. In contrast, an haemorrhagic
stroke occurs when a blood vessel bursts in the brain [30]. The main risk factors for
stroke are hypertension, smoking, physical inactivity, diabetes and atrial fibrillation
[212].

Stroke is the third most common cause of death in most developed countries, with
9.48% of deaths attributed to this disease in high-income countries [212]. In addition,
it is the leading cause of permanent disability for adults in developed countries [78]
and it accounts for 7.23% of all disability adjusted lost years (DALY) in Europe
[212]. Every year, about 15 million people have a stroke [30]. In addition, the stroke
incidence increases with age and people who are over 85 years old have the highest
probability of suffering a stroke [54], so its incidence will increase with the ageing
population. About 30% of stroke patients die within a year of a stroke, and nearly
half of the survivors are left dependent [212]. Furthermore, about 33 million people
worldwide live with the effects of stroke [30]. However, the stroke prevalence in the
USA is 2.8% of the population over 20 years old [68]. Moreover, about 2% of the
total health care expenditure in Europe is associated with stroke [190]. The total
annual direct formal care costs for stroke patients in the UK are estimated to be
£8,767 million [167]. Based on an incidence of 1.33 cases per 1,000, the annual
direct formal costs per stroke patient are £97,294. However, direct costs account
for approximately 50% of the total costs [167].

The disabilities caused by stroke can be classified into five groups: paralysis or
difficulties to control movement; sensory disturbances including pain; problems to
speak or understand a language; problems to think and memorize; and emotional
disturbances [134]. Consequently, physical disabilities are common among stroke
survivors, such as mobility difficulties and problems with activities of daily living [212].

1.1.1.2. Traumatic Brain Injury

Traumatic Brain Injury (TBI) is an alteration in the normal function of the brain,
which can be caused by a blow, a bump or a jolt to the head, or when the head is
hit or pierced [2]. In a TBI, the brain is displaced or injured, disrupting the nervous
tissues and blood vessels of the brain [212]. About 90% of TBIs are classified as
mild, which means that the patient is awake upon the examination at the hospital,
but may have lost consciousness for a short time or experienced brief amnesia [212].
Only 3–5% of TBI cases are severe, which means that the patient is unconscious
or in coma upon admission [212]. The three main causes of TBI are road traffic
accidents, falls and violence [212].

About 10 million people are affected by TBI every year [87]. However, the in-
cidence of TBIs varies by country depending on hospital admission policies for mild
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TBIs. For example, the incidence in Spain is 91 cases per 100.000, whereas it is
546 per 100.000 in Sweden [212]. The prevalence is also relatively high: only in the
US, about 5 million people live with a TBI disability, making it almost 1.5% of the
population [50]. Furthermore, TBI has a high fatality-rate: there are on average 11
deaths per 100 cases of TBI in Europe [212]. Direct costs such as hospitalization and
rehabilitation are estimated to range between $33,284 and $81,153 per TBI patient
[126]. However, direct costs are only a small part of the total costs, which include
costs due to lost productivity and other indirect costs for patients and their relatives
[212].

Common symptoms are loss of consciousness, coma, muscle weakness, loss of
vision, change in speech and alteration in mental state such as disorientation, slow
thinking or difficulty concentrating [2]. In addition, TBI may cause permanent dis-
ability, including memory disorders, personality change, poor reasoning ability, apathy,
disrupted motor function of the limbs, problems with speech, and epilepsy [212].

1.1.1.3. Spinal Cord Injury

Spinal Cord Injury (SCI) consists of any spinal cord lesion that can cause disrup-
tions in movement, sensation, or function below the level of the injury [183]. These
sensory-motor impairments may affect the functional independence of the patient.
An SCI can be complete or incomplete, depending on whether some motor function
is preserved below the damaged level. The origin of the SCI can be traumatic, non-
traumatic, or existing from birth. Most traumatic SCIs are caused by traffic accidents,
violence, sports or falls [4]. In the case of traumatic SCIs, the spinal cord swells min-
utes after the primary injury, and it can cause ischaemia and systemic hypotension,
producing a secondary injury cascade [124].

The incidence of traumatic SCI in the USA ranges between 28 and 55 per million
people [124]. Considering both traumatic and non-traumatic, the global incidence is
probably between 40 and 80 cases per million people [214]. Data on SCI prevalence
are inconsistent, but range between 280 per million people in Finland to 1298 per
million people in Canada [214]. The approximate lifetime cost of a SCI patient is
$2.35 million per patient [4]. In addition, SCI patients usually have a reduced life
expectancy, a poorer physical and psychological health, a higher rate of divorce and
a lower participation in tertiary education and in economic activities [4, 214]. The
average global employment rate for patients with SCI is only 37% [214].

In addition to paraplegia or tetraplegia, SCI can produce various other complica-
tions, such as problems in the cardiovascular, respiratory, gastrointestinal, genitouri-
nary and musculoskeletal systems [124].

1.1.1.4. Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central
nervous system (CNS) that is generally autoimmune [212]. In other words, the
immune system of a patient with MS attacks to the healthy nervous system of the
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patient, destroying the myelin, which is a fatty substance that surrounds and insulates
the nerve cell axons. In consequence, the axons are damaged, sclerotic plaques (MS
lesions) are formed, and the nervous signals are distorted or blocked.

MS can be classified according to four patterns of progression [212]:

Relapsing/remitting MS: patients with this pattern suffer unpredictable attacks
or relapses, during which new symptoms show up or previous symptoms become
more serious. After these relapses, patients can partially or totally recover the
affected functions. However, symptoms might become more severe over time,
with a smaller recovery after each attack. About 80% of MS patients initially
present this type of MS.

Secondary progressive MS: this pattern is characterized by progressive worsen-
ing that is not related to relapses. About 50% of patients with relapsing MS
will develop this pattern after ten years.

Primary progressive MS: this type is characterized by a slow onset and then
constantly worsening symptoms. This pattern affects about 10-15% of MS
patients.

Benign MS: patients with this pattern have a mild or non-existent accumulated
disability after a long period (about 15-20 years). However, most patients with
this type of MS will later have a secondary progressive MS.

There is no cure for MS and there is a high uncertainty over the cause and
course of this disease [212]. Although the underlying cause remains unknown, several
environmental factors and genetic alleles might affect the risk of developing MS [207].

About 2.22 million people worldwide are affected by MS and it is the most common
inflammatory neurological illness in young adults [207]. However, the prevalence in
North America and in western Europe is over 120 patients per 100.000 [207, 18]
and it accounts for 0.2% of the overall DALYs in Europe [212]. In addition, the
median incidence of MS in Europe is 3.8 per 100.000 [213]. Furthermore, MS is
one of the most common causes of disability in young adults [212]. The average
age of onset is 29.2 years [213] and up to 60% are not fully ambulatory 20 years
after onset [212]. Therefore, MS causes an important decrease in the quality of life
and substantial financial costs. Annual health care costs for patients with MS range
between $18,000 and $39,000 per person [115]. Moreover, the unemployment rate
among people with MS is as high as 70% and the professional careers of 57% of the
relatives of MS patients are negatively affected [212].

Patients with MS might suffer from a variety of symptoms, which often occur in
parallel [212]. These symptoms depend on the location and the extent of the affected
area. Common symptoms include optic neuritics, diplopia, sensory alterations, limb
weakness or muscle fatigue, gait ataxia, balance problems, loss of bladder control and
cognitive dysfunction [207]. These symptoms affect functional mobility and activities
of daily living.
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1.1.2. Gait Rehabilitation in Patients with a Neuromuscular
Impairment

Surgical interventions and pharmacological treatments can be applied to patients
with the neurological impairments described in Subsection 1.1.1. In the case of haem-
orrhagic strokes, open surgery and endovascular interventions are applied to remove
the blood clot [212]. In contrast, in the case of ischaemic strokes, thrombolytic ther-
apies are applied within 3 hours from the start of the symptoms [212]. Furthermore,
some patients who suffered a severe TBI might require intracranial surgery and neu-
rointensive care [93]. In the case of SCI patients, early surgical decompression is the
most effective intervention to limit secondary injury [4], but various drugs are also
administered to reduce the risk of ischaemia and hypotension [124]. Finally, MS pa-
tients are usually treated with disease-modifying drugs and medicines for symptomatic
improvement [212].

In addition to surgery and medicines, rehabilitation therapies are fundamental to
achieve significant functional improvements in all these neurological impairments, and
functional improvements can lead to increased quality of life [44, 40]. For example,
passive and active rehabilitation is given to stroke patients as soon as possible [212];
strong evidence shows that moderate and severe TBI patients achieve a better recov-
ery with an intensive multi-disciplinary rehabilitation programme [194]; SCI patients
benefit from rehabilitation programmes targeted at respiratory care, cardiovascular
stability, bowel and bladder continence, skin integrity and musculoskeletal care [124];
and it has been shown that physiotherapy and movement exercise are useful for MS
patients with a moderate disability [212].

Among different rehabilitation therapies, those based on exercise training have
beneficial effects on walking, aerobic capacity and muscle strength [107, 139]. More-
over, there is promising but insufficient evidence supporting that exercise training
therapies might lead to improvements in fatigue, balance, cognition, depression and
health-related quality of life [107, 139]. The improvements achieved with exercise
training are partially due to the stimulation of neuromuscular plasticity, which refers
to the short-distance sprouting around the injury, which enables changes in the con-
nectivity of the central nervous system [53].

It is particularly interesting to assess the effect of exercise training therapies on
walking mobility, because the loss of walking is one of the most problematic conse-
quences of MS patients [106], and the quality of life is lower in people with declining
mobility [77]. In addition, the inability to stand and walk has various detrimen-
tal effects, such as muscle atrophy, loss of bone mineral content, skin breakdown,
abnormal muscle tone, and reduced respiratory and cardiovascular capacities [52].
Moreover, abnormal gait patterns are associated with increased metabolic cost, pain
and joint degradation [110]. Therefore, the recovery of motor function and walking
performance is one of the main goals of rehabilitation therapies for patients with
neurological impairments.

There are various types of exercise training therapies. However, evidence shows
that rehabilitation therapies that include high-intensity and repetitive task-specific
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practice are more effective to improve motor recovery [105]. Furthermore, supervised
exercise training is more effective than non-supervised training to improve walking
mobility [178]. The different types of exercise training to improve gait can be classified
as aerobic (e.g. treadmill walking, cycling, home-based walking, elliptical, recumbent
stepping, etc.), resistance (e.g. weight machines, free weights, resistance bands,
etc.), combined aerobic and resistance, or other forms or exercise training, such as
body weight supported treadmill training (BWSTT) and robot-assisted gait training
(RAGT) [107].

Among the various indicators of walking performance, numerous trials showed
that some types of exercise training may increase walking endurance and speed [107,
62]. There is evidence showing that having regular and intensive aerobic exercise
training significantly improves walking speed in stroke [67, 71], TBI [138], SCI [42]
and MS [157, 39] patients. Those studies also found that the improvements in walking
endurance were significant for stroke, TBI and MS, but not for SCI. In addition,
some other experiments showed that regular resistance training significantly improves
walking endurance in stroke patients [88], maximal walking speed in SCI patients
[101], and both walking endurance and speed in MS patients [35]. Moreover, RAGT
and BWSTT have beneficial effects in the walking speed and endurance of stroke
[140], TBI [48], SCI [51, 85] and MS [11, 114] patients.

Therefore, exercise training has beneficial effects on walking performance in all
these neurological diseases. In fact, the mechanisms to control motor functions and
the neural adaptations that occur during the rehabilitation process do not depend
much on the disease [44]. However, in order to achieve the best gait improvement
results in the exercise based rehabilitation therapy, it has to be adapted to the capa-
bilities of each patient and the optimal intensity and duration has to be determined
[58, 107]. Furthermore, it is not clear which is the best type and the best pro-
gramme of exercise training to improve walking performance [44]. For example, it is
debatable which is the optimal strategy for resistance exercises (e.g. selective muscle
strengthening vs. resistance during functional movements) [44]. There is also discus-
sion about the use of robotic devices for rehabilitation of motor function. Although
rehabilitation robots have enabled more intense and accurate exercise therapies at
lower costs [38], various studies with RAGT have shown that these robots do not
produce significantly greater benefits in walking performance, compared with equal
intensity of over-ground training after stroke, SCI or MS [44]. In fact, determining
how to optimize use-dependent plasticity in order to achieve the best possible patient
improvement is still a grand challenge [38]. In addition, walking impairment is often
used to assess disease progression of some patients over time [69].

Hence, it is essential to make an accurate and objective evaluation of the func-
tional mobility of each patient, in order to compare the outcomes of the different
rehabilitation strategies, evaluate the walking performance and amount of recovery
of the patient, and adjust the optimal therapy for each patient. In fact, gait mon-
itoring and analysis are fundamental both for diagnostic and treatment purposes in
patients with neurological diseases [193].
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1.1.3. Monitoring and Analysis with Clinical Scales

The assessment of the functional mobility of patients with neurological impair-
ments has traditionally been made with clinical scales. Various standard tests or scales
are used in clinical practice to evaluate the walking performance of patients with neu-
rological impairments. Among others, the following tests and scales are some of the
most commonly used: the 10-meter walk test (10MWT) is a walking performance
measure used to assess walking speed in meters per second over a short distance
[152]; the timed 25-foot walk test (T25FW) is a short-distance test for quantita-
tive mobility and leg function performance, which measures walking speed [57]; the
6-minute walk test (6MWT) is a sub-maximal exercise test used to assess aerobic
capacity and walking endurance, by measuring the distance walked by the patient in
6 minutes [7]; the timed up and go test (TUG) is a simple test to determine fall
risk and measure the progress of balance, sit to stand, and functional mobility [173];
the functional ambulation category (FAC) is a discrete clinical scale, consisting of 5
broad categories of walking ability, which measures functional ambulation in patients
who receive physical therapy [83]; and the expanded disability status scale (EDSS) is
a clinical scale used to assess the disability and degree of neurologic impairment in
MS patients [100].

Although strong evidence shows that all those outcome measures are highly re-
liable [95, 108, 201, 199, 75, 83], they are based on subjective observation or on a
very limited number of objective performance measures, the total walking time or dis-
tance [135, 13]. Furthermore, the evaluation with the clinical tests is made at some
time on a single day in a clinical setting, without considering longer walking periods
or typical gait performance under normal daily conditions [184, 135]. Consequently,
the common clinical tests present high day-to-day variability and their outcome is
influenced by the time of day [3, 56].

In addition, the typical clinical tests have limited granularity and they are insensitive
to mild disease or small worsening [181, 135, 21]. For instance, a time increase of
more than 20% is needed in the T25FW to consider it as a clinically significant change
in gait performance [92]. Similarly, the EDSS is very slow to detect a significant
change, and it has inter- and intra-rater reliability problems for lower scores [181, 70].

In order to detect small functional changes and achieve a more granular monitoring
and analysis of gait based on objective and quantitative measures, experts recommend
using some kinematic (e.g. joint motion) and kinetic (e.g. joint moments or torques)
measures, including various temporal (e.g. step cadence) and spatial (e.g. stride
length) parameters [135, 32, 202].

1.1.4. Monitoring and Analysis with Technological Devices

Various technological approaches have been developed to measure gait kinematics
and kinetics. These devices can be classified into three different groups: instrumented
walkways, 3D motion capture systems, and accelerometry or wearable sensors [193,
21]:
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Instrumented walkways are systems that typically consist of pressure-sensitive
mats or photoelectric sensors, which detect the motion of the feet. As the
participant walks across the instrumented walkway, electronic recordings of
each footfall are made and stored, and the computer automatically calculates
the spatial and temporal gait parameters such as step time, step width and
length, step cadence, and walking speed [125]. Commercial products such as
GAITRite™ and OptoGait™ are examples of this kind of solutions.

Motion capture systems (MCS) are three-dimensional motion analysis systems,
which consist of a set of cameras or devices that are able to track the 3D po-
sitions of some markers or objects. As the participant walks within the capture
volume, the cameras measure and record the 3D position of each marker at
each time instant. In addition, these systems are often synchronized with the
measurements of force plates and electromyography (EMG) sensors. Conse-
quently, it is possible to calculate or estimate a wide range or kinematic and
kinetic variables, such as joint motions, moments and powers [21, 28]. Ex-
amples of commercial systems implementing this solution include Vicon™ and
Optitrak™.

Accelerometry and wearable systems for gait monitoring and analysis consist
of small sensors that can be attached to the body or integrated into watches,
bracelets, clothing or portable devices [21, 188]. These systems might include
accelerometers, gyroscopes, magnetometers, pressure sensors or other small
sensors. Based on the measurements of these sensors, these systems are able to
estimate various parameters such as number of steps, cadence, walking speed,
step time and gait cycle time [135, 41]. For instance, the MVN Analyze of
Xsens™ and the Mobility Lab of APDM™ are commercial systems for gait
analysis based on wearable sensors.

When it comes to gait monitoring and analysis of patients with neurological dis-
orders or injuries, these systems have some limitations. Instrumented walkways do
not provide information about the orientation of the body trunk or limbs, their mea-
surements are restricted to a few meters in a clinical setting, and their outcomes are
limited to temporal, spatial and foot pressure parameters [21]. An MCS needs a long
calibration and post-processing time, it is expensive, it requires specialized technical
expertise, and its capture volume is constrained to a few meters in a gait analysis
laboratory [21, 8].

Wearable sensors can be used for gait monitoring during a long time and in dif-
ferent environments, without spatial restrictions. Hence, they provide additional in-
formation that may be vital for the diagnosis and monitoring of neurological diseases
[21]. In addition, wearable sensors have a small size, a low cost, and a short process-
ing time. However, some people might be reluctant to use these systems, because
they might be uncomfortable due to the wires and straps, and it can take a long time
to properly adjust the sensors to each part of the body [135]. Furthermore, they
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often require complex estimation algorithms which have some estimation errors due
to drift, inaccurate alignment, vibrations and other perturbations [21, 188, 24].

In order to overcome these problems, some researchers have developed prototypes
of instrumented crutches or canes for gait monitoring in patients who need an assistive
device for walking. For example, different instrumented crutches or canes have been
proposed to control the weight applied on the contralateral leg [130, 23], to monitor
the correct usage of canes [182, 33], and to evaluate the risk of falls in older adults
[205]. These assistive devices are non-invasive and they are able to measure various
kinematic and kinetic parameters that are useful for gait monitoring and analysis,
such as the weight applied on the crutch and the orientation of the crutch.

Nevertheless, many algorithms, which were developed for gait monitoring an anal-
ysis of patients who do not require assistive devices, are useless for patients who
walk with a crutch or cane [160]. This occurs because patients who use crutches
or canes have significantly different gait patterns [63]. For example, these patients
usually have larger vertical accelerations [177] and longer stride lengths [63]. There-
fore, the development of new algorithms for estimating quantitative gait parameters
with patients who use crutches or canes is an open research area. New algorithms
and strategies are required to accurately estimate variables of the crutch motion
and extract relevant parameters, which will be useful to make an assessment of gait
performance in patients with neurological disorders.

1.2. Objectives

The main goal of this thesis is to develop new algorithms or procedures to ac-
curately and reliably estimate various kinematic variables such as orientation and
walking distance, based on the measurements of an instrumented crutch or cane.
This objective can be divided into the following sub-objectives:

Study the limitations of traditional clinical scales and discuss the poten-
tial of new technologies for gait monitoring and analysis. After identifying
the problems of traditional clinical tests and scales used for the assessment
of gait performance, the strengths and drawbacks of alternative technological
approaches will be analysed, including instrumented walkways, MCS and wear-
able sensors. Furthermore, the weaknesses and limitations of the estimation
algorithms used with wearable sensors will be determined.

Design and develop an instrumented tip prototype for a crutch or a cane,
which can estimate various gait performance parameters, based on the
measurements of several kinematic and kinetic variables. Before designing
the new prototype, it is essential to decide which kinematic and kinetic variables
will be measured to estimate the parameters that will be used to assess gait
performance of patients who use crutches or canes. Based on the needs of the
patients, the specifications for the whole prototype will be established, including
its weight, size, robustness, safety, sampling frequency, autonomy, adjustment
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and accuracy. The mechanical structure, the electronics and the software of
the new prototype will be designed, based on the aforementioned specifica-
tions. After manufacturing and calibrating the prototype, various functions will
be developed to estimate basic gait performance parameters such as cadence,
number of cycles, mean cycle time, and mean peak force.

Develop novel algorithms to estimate the orientation of the crutch or cane.
New algorithms will be created to accurately estimate the pitch and roll angles
of the instrumented tip, based on the measurements of the integrated sensors.
These algorithms will allow an improved characterization of the movement of
the crutch or cane, overcoming some limitations of previous works. For ex-
ample, the orientation is required to estimate parameters such as the angular
range of the movement of the crutch and the mean pitch and roll angles at the
force peaks.

Develop a new algorithm to estimate the walking distance. Based on the
algorithms that were proposed by other authors to estimate walking distance us-
ing wearable sensors, a new procedure will be developed to estimate the walking
distance, using the measurements of the instrumented tip. Estimating walking
distance is essential to estimate fundamental gait performance parameters such
as walking speed, walking endurance and energy expenditure.

Conduct experiments to validate the new estimation algorithms with healthy
subjects. The developed estimation algorithms and functions will be validated
with a group of healthy participants, who will complete different movement
tasks using the developed prototype. Before the trials, the experimental pro-
tocol will be detailed and approved by the ethics committee. An MCS with a
force plate will be used to validate the measurements of the instrumented tip
in various tasks.

Carry out experiments with MS patients to validate the suitability of the
new prototype for capturing data with neurological patients. Some pre-
liminary trials will be conducted with MS patients, in order to show that the
new instrumented tip is an adequate solution for gait monitoring in neurological
patients who use crutches or canes. Finally, it will be discussed how the new
algorithms might help improving the assessment of gait performance and level
of disability in patients with neurological disorders or injuries.

1.3. Structure

The rest of this work is organised as follows: in Chapter 2, an overview of the
different technological approaches for gait monitoring and analysis are presented; in
Chapter 3, a new algorithm is presented for the estimation of the pitch angle of the
first version of an instrumented crutch tip prototype, which includes a force sensor,
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a gyroscope and an inclinometer; in Chapter 4, a novel method is described for esti-
mating the orientation and walking distance with the second version of the proposed
instrumented crutch tip, which includes a 9 degrees of freedom (DOF) inertial mea-
surement unit (IMU); and finally, in Chapter 5, the most important conclusions and
the lines for future work are presented.
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2 STATE OF THE ART FOR GAIT
MONITORING AND ANALYSIS

This chapter reviews the different devices that are currently used for assessment
of gait performance, including instrumented crutches and canes. In addition, it also
presents an overview of the main algorithms or strategies that are used to estimate
orientation and walking distance, based on the measurements of wearable sensors.

2.1. Devices for Gait Analysis

As explained in Section 1.1.4, various devices can be used to measure gait kine-
matics and kinetics, and make an objective and quantitative assessment of gait per-
formance. This section provides a more detailed description and discussion about the
different systems, dedicating a separate subsection to focus on instrumented crutches
and canes, which are the main focus of this Thesis.

2.1.1. Instrumented Walkways

Instrumented walkways can be classified into two groups:

Pressure-sensitive walkways such as the GAITRite® (CIR Systems), the Zeno™
(ProtoKinetics), and the Strideway™ (Tekscan). Pressure-sensitive treadmills
such as the Zebris™ (Zebris Medical GmbH) are also included in this group.

Walkways equipped with photoelectric sensors, such as the OptoGait™ (Mi-
crogate).

The GAITRite system is a portable tool for gait analysis, which automatically
measures and calculates spatial and temporal gait parameters [14]. It has the form of
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a long carpet and it consists of various connected grids of pressure sensors, which are
embedded within its length (see Figure 2.1). These grids of sensors are integrated
between the top anti-slip vinyl layer and the bottom neoprene rubber cover. The
active sensing area of the mat is 61 cm wide and it has a variable length, depending
on the number of connected grids, but it is usually a few metres long. The pressure
sensors are separated by 1.27 cm from each other, and they are activated when the
applied mechanical pressure exceeds a threshold. In addition, the information from
the sensors can be sampled and stored at a configurable frequency between 60 and
240 Hz as the participant walks across the pressure-sensitive mat [29, 170].

Figure 2.1: GAITRite showing the activated pressure sensors on the screen during
assisted gait.

The pressure sensors are connected to a computer with a software, which au-
tomatically calculates and generates a report with various spatial and temporal gait
parameters such as walking speed, cadence, step and stride length, step time, gait
cycle time, stance and swing times, single and double limb support duration, step
width, base of support and foot placement angles [14, 128, 170]. Furthermore, it
can calculate the variability and asymmetry of these parameters [21, 170, 208]. Re-
cently, a new version of the GAITRite (CIRFACE) has been marketed, which allows
instrumenting an area of any size, by connecting rectangular modules. Thus, the new
version allows measuring spatial and temporal parameters during turns and curved
paths [72].

Various studies have shown that the GAITRite has high test-retest reliability and
strong concurrent validity, compared with other systems or methods such as motion
capture systems and wearable devices such as foot switches and inertial measurement
systems [128, 202, 76, 34, 208, 14, 170]. For example, Webster et al. [208] compared
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the gait parameters measured by GAITRite and the measurements of a Vicon MCS,
concluding that the errors of individual step lengths and step times were within 1.5
cm and 0.02 s, respectively. Test-retest reliability refers to the degree to which the
measurements remain similar when measuring a parameter or individual characteristic
that did not change in different repetitions of the test [203]. Concurrent validity is an
approach of criterion validity, which estimates the outcome measures on different tests
or instruments at approximately the same time [113]. Criterion validity is a method for
validating a test or instrument, by examining the correlation of the outcome measures
of a test or instrument with external criteria or with an already validated instrument
[154].

The Zeno and the Strideway are similar to the traditional GAITRite, but they
have some differences. For example, the Zeno offers a customizable top layer, which
can be made of different materials, and it has a three-layer framework, which reduces
sensor damage and curling of edges [217]. The main advantage of the Strideway is
that it has a higher pressure-sensing resolution: while pressure sensors are 1.27 cm
apart in the GAITRite (0.62 sensels/cm2), they are 0.51 cm apart in the Strideway
(3.88 sensels/cm2) [189]. Hence, the Strideway can measure the plantar pressure
distribution and loading patterns of the feet more accurately. In contrast, the Zebris
treadmill contains an integrated capacitance-based foot pressure platform with a
resolution of 0.625 sensels/cm2 (3432 sensors in an area of 112x49 cm), and it
automatically calculates various spatial and temporal gait parameters [109]. Different
studies have shown an acceptable concurrent validity for the Zeno [197], the Strideway
[6] and the Zebris [97] for measuring spatial and temporal gait parameters.

The other group of instrumented walkways consists of systems that include a
large number of photoelectric sensors. For example, the OptoGait consists of a set
of connected parallel bars, which are perpendicular to the direction of progression
[112]. The transmitter bars are on one side of the walkway and the receiver bars
are on the other side. Each bar is 100 cm long and 8 cm wide, and it contains
96 light-emitting or light-receiving diodes, placed at about 3 mm above the ground
[112]. Thus, the linear accuracy of the system is about 1 cm. Furthermore, the
system samples the signals from the LEDs at a frequency of 1000 Hz and it includes
a software, which automatically calculates the linear coordinates of the footfalls,
based on the interruptions of the light signals [112]. The software also calculates
various spatial and temporal parameters, such as walking speed, cadence, step and
stride length, step time, gait cycle time, stance and swing times, single and double
limb support duration, and stride angle [145]. Starting from version 1.7, the system
allows making a rectangle with the connected bars, as shown in Figure 2.2. In this
case, the software also calculates spatial parameters such as the step width, the
walking base of support, and the walking points. The OptoGait system can also be
easily installed on a treadmill to calculate linear spatial and temporal gait parameters
[145, 109].

Various studies have shown the concurrent validity and test-retest reliability of
the OptoGait system. Lienhard et al [112] showed that the OptoGait has high dis-
criminant and concurrent validity with the GAITRite for the estimation of spatial
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Figure 2.2: 2D configuration of the OptoGait system

and temporal parameters in orthopedic patients and healthy controls. Lee et al.
[109] reported high test-retest reliability and strong concurrent validity, comparing
with the Zebris. There is also evidence showing that it has high test-retest reliability
over a 2 week span, except for acceleration and progressive step time assessment
[12]. Another study confirmed the validity of the OptoGait system by comparing its
measurements with a 3D MCS [80].

The main benefits of the instrumented walkways are that they are non-invasive,
they are easy to use and set up in a variety of clinical and research settings, they
require a very short processing and preparation time, they automatically calculate
useful outcome measures that are easily understood for fast clinical evaluation, they
are portable, and they are affordable [21]. However, their main drawbacks are that
they are limited to temporal, spatial and pressure outcomes of the feet; they have
limited dimensions, and multiple trials are required to obtain reliable measures; their
measurements are limited to flat surfaces; they are not able to measure the joint
kinematics or orientations of different body limbs; and they require a large space in
the laboratory or clinic if they have a dedicated space [21].

2.1.2. Motion Capture Systems

Motion capture systems (MCSs) are motion analysis systems, which are capable
of measuring 3D movement. Examples of commercial MCS brands include Vicon™ ,
Optitrak™ , Kinect™ , Nikon™ , and Ubisense™.

An MCS provides comprehensive data on normal and pathological gait and pos-
tural control. These systems usually allow integrating and synchronizing force plates
and electromyography (EMG) sensors, in order to make a more exhaustive gait analy-
sis and record other useful data such as ground reaction forces and electric potentials
produced by muscles. Based on these additional data and various biomechanical
models, it provides objective information about spatial and temporal variables, joint
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motions (kinematics), and joint moments and powers (kinetics) [21, 28]. In addition,
it is possible to calculate various objective and quantitative parameters to evaluate
the severity of a pathology, to detect changes in gait patterns over time, and to
compare the effects of different therapies [28].

Motion capture systems for human gait can be classified into 5 different groups
[198]: optoelectronic measurement systems (OMSs), electromagnetic measurement
systems (EMSs), image processing systems (IMSs), ultrasonic measurement systems
(UMSs) and inertial measurement units (IMUs). As it will be explained in subsection
2.1.3, the last group can be included in the more general group of wearable sensors.

Optoelectronic systems (OMSs) consist of a set of markers and a set of infrared
cameras (see Figure 2.3). These systems are able to detect light from each marker
and calculate its 3D position via time-of-flight triangulation [198]. The markers can
be passive or active. Passive markers reflect the light from the cameras, whereas
active markers contain the source of light for the sensors in the cameras [198]. In
both cases, by attaching the markers to different parts of the body, optoelectronic
systems can capture the 3D positions and orientations of each body segment at high
frequencies and accurately.

Figure 2.3: Vicon MCS, showing the 3D kinematics of the two legs.

The accuracy and capture volume of an OMS will depend on the number and lo-
cation of connected cameras, the field of view and resolution of the cameras (which
depend on the sampling frequency), the distance between the cameras and the mark-
ers, the position and number of markers, and the movement condition [198, 118, 46].
For example, using 6 Vicon cameras with a sampling frequency of 200 Hz in a cap-
ture volume of 5.5x1.2x2 m3, Eichelberger et al. [46] achieved a mean dynamic error
below 0.9 mm, but using 12 Vicon cameras in the same capture volume, this error
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was less than 0.4 mm. Similarly, using 42 Optitrak cameras with a frequency of 180
Hz in a capture volume of 10.4x6.6x2 m3, Aurand et al. [8] achieved mean static
position errors of less than 0.2 mm and dynamic errors of less than 1 mm.

In some OMSs, the receiver is attached to the moving object or participant,
instead of having the receivers fixed in the cameras and attaching markers to the
body [143]. However, an important disadvantage of this type of OMS is the size and
weight of the receivers that need to be attached to the participant [198].

Optoelectronic motion capture systems are highly accurate, reliable and precise,
and they are currently the gold standard to compare new tools and rehabilitation ther-
apies [21, 8]. However, these systems are expensive, they require experienced tech-
nical expertise to use them, they demand long calibration and post-processing times,
and their capture range is usually limited to a few meters in a dedicated laboratory
[21, 8]. In addition,they require a line-of-sight, which means that the measurement
of the position of the markers will be interrupted if an object passes between the
marker and the cameras, they suffer from interferences with bright sunlight, and they
are very sensitive to vibrations and small alterations in the set-up [198].

Electromagnetic systems (EMSs) calculate the position of the transponders (which
are devices that receive and emit electromagnetic signals), based on the time-of-flight
of radio waves, travelling from the transponder to the base stations [185]. Although
these systems can measure 3D positions in large capture volumes and they do not
require a line-of-sight, their accuracy and capture frequency are smaller than in opto-
electronic systems [198]. For example, Gilgien et al. achieved an accuracy of 40 mm
with a dual-frequency and differential GNSS system using GPS and GLONASS for
3D positioning within a range of 15,000 m2, capturing the positions at a frequency
of 50 Hz [64, 198]. In a smaller scale, Mills et al. [133] used an EMS to measure
gait kinematics during treadmill locomotion. They used a system that has a position
accuracy of less than 1 mm in a range of less than 1.8 m, and captures data at 240
Hz. In addition, the accuracy of electromagnetic systems is substantially decreased
with the presence of metals or ferromagnetic materials, and the transponders are
much bulkier than the markers of an OMS.

Image processing systems (IMSs) are based on computer vision algorithms [198].
There are two types of IMS, depending on the tracking algorithm used by the system:
model-based and feature-based. Model-based tracking algorithms use a 3D model of
the tracked object or participant and their environment. Feature-based algorithms
use points of interest in the captured frames. Feature-based algorithms can be further
classified into marker-based and markerless. In marker-based systems, the points of
interest are visible markers attached to the moving object or participant. In contrast,
the points of interest in markerless systems are natural features such as corners,
edges or textures. Note that, although some image processing systems use markers
similar to optoelectronic systems, an IMS is fundamentally different from an OMS,
because an IMS is based on computer vision algorithms, whereas an OMS is based
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on time-of-flight triangulation. An IMS can work with visible light or with infrared
light. For example, the Kinect™ projects an infrared laser speckle pattern onto the
viewing area, and then, the infrared camera records this pattern and calculates a 3D
map, based on the deformations with respect to the reference speckle pattern [198].

However, an IMS has a low accuracy and a small capture range, compared with
an OMS and an EMS. For example, the accuracy of the Kinect™ is 190 mm in a
range of 7.5 m2 [45, 198]. Although IMS systems have been outperformed by OMS
and EMS systems when it comes to accuracy and capture range [198], some IMSs
are still used in neurological rehabilitation, because they are low-cost and they do not
need markers [99].

Ultrasonic localisation systems (UMSs) calculate the position of an object, based
on the time-of-flight of ultrasound waves [198]. These systems are used in short-
range measurements and they can be classified into two types: based on reflection
and based on direct line [156]. A UMS based on reflection has the transmitter and
receiver at the same fixed location and estimates distance based on the reflection
time. In contrast, a UMS with direct line has a transmitter and a receiver in a different
location, and one of them is attached to the moving object or participant. A UMS
based on direct light is more accurate than a reflection-based UMS [156]. Anyway,
these systems are less accurate than an OMS, and they have a smaller capture range
than an EMS. For example, Qi et al. [156] achieved a position accuracy of 4.3 mm
with an ultrasound system for measuring gait parameters on a treadmill (sampling
frequency was 50 Hz). Although these systems can be low-cost, some remarkable
drawbacks of ultrasounds systems are their limited range and the size and weight of
the transmitter.

Inertial measurement units (IMUs) for human motion capture are systems based
on accelerometers, gyroscopes and magnetometers. Their measurements are not
limited to a predefined capture volume, but they often require complex data processing
and estimation algorithms to provide accurate measurements. These systems are
included in the group of wearable sensors, and they will be explained in detail in the
following subsection.

In summary, OMSs are the most accurate and reliable systems for gait monitoring,
but they are expensive, they have a limited capture volume, and they require a line-
of-sight and a long time for calibration and post-processing. EMSs can monitor
movement in large capture volumes and they do not require a line-of-sight, but the
transponders are bulkier than the markers of an OMS, and their measurements are
affected by ferromagnetic elements. IMSs provide a more affordable solution and
some of them do not require the attachment of markers or transponders, but they
are less accurate and their capture range is limited. UMSs are also low-cost and
they are not affected by magnetic perturbations, but they are only suitable for small
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capture volumes, and direct-line UMSs are bulky, whereas reflection-based UMSs
provide limited accuracy.

2.1.3. Wearable Sensors

In gait analysis with wearable sensors, small sensors are usually attached to vari-
ous parts of the patient’s body, such as the leg and waist [135, 188]. However, they
can also be integrated into bracelets, watches or clothes (see Figure 2.4) [21, 188].
Wearable sensor systems can measure various variables of the human gait and they
usually include accelerometers, gyroscopes, magnetometers, force sensors, inclinome-
ters, goniometers, EMG sensors, barometers and sensing fabrics [188].

IMUs are a subgroup of wearable sensors, which typically consist of a 3-axis ac-
celerometer, a 3-axis gyroscope, and often a 3-axis magnetometer (in which case
they are also referred to as MIMUs). The 9 measurements captured by a IMU at
each time instant can be used to estimate the orientation of the IMU in the global
frame of reference. In addition, IMUs can also be used to estimate relative positions,
velocities and other kinematic variables in the global frame. There are many commer-
cial brands of wearable motion capture systems based on MIMUs, such as Xsens™ ,
APDM™ , Neuron™ , and Manus™.

Figure 2.4: Xsens MVN Analyze wearable sensor suit, showing the recorded kinematic
data

Wearable accelerometers are micro electromechanical systems (MEMS), which
can measure accelerations and which contain mechanical sensing structures and cir-
cuits of microscopic size. Most accelerometers consist of a small proof mass, which
is attached to a mechanical suspension system [188]. This suspension system is
compressed on different axes depending on the direction of the applied accelera-
tion, changing the position of the proof mass with respect to the reference frame.
By measuring the displacement of the proof mass on each axis with respect to the
frame of reference, the accelerometer calculates the acceleration vector. There are
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three common types of accelerometers: piezoelectric, piezoresistive and capacitive.
Piezoresistive and capacitive accelerometers have a higher stability and they are usu-
ally applied for human gait monitoring [15, 188]. The working principle of MEMS
inclinometers is the same as that of accelerometers [155].

Gyroscopes can measure angular velocities and their measuring principle is usually
based on the Coriolis force, which acts on objects that move within a frame of refer-
ence that rotates with respect to an inertial frame [188]. Most low-cost gyroscopes
have a vibrating transducer, which is deformed due to the Coriolis force. The trans-
ducer is usually made of cristal or ceramic, and it can have different forms. Normally,
a drive arm vibrates in one direction, and when the gyroscope is rotated, the Coriolis
force produces a vibration in a perpendicular direction, which bends the sensing arm
(see Figure 2.5). The motion of the sensing arms produces a potential difference,
which is converted to angular velocity.

Figure 2.5: Operation of a vibration gyroscope

Magnetometers are usually based on the magnetoresistive effect [188]. They
usually comprise an indium-antimonide (InSb) plate, through which a current flows
straight in the absence of a magnetic field. However, if a magnetic field is applied, a
Lorentz force proportional to the magnetic flux density will deflect the trajectory of
the current, causing the electrons to complete a longer path within the InSb plate.
Consequently, the resistance of the plate will increase, in proportion to the strength
of the magnetic field. Since the magnetometer is sensitive to any magnetic field,
the measurement of the magnetic field of the Earth can be significantly altered by
ferromagnetic elements placed near from the magnetometer.

The data captured by the IMUs can be used to measure gait kinematics and
estimate various gait performance parameters. Gyroscopes are usually applied to
measure the angular velocities and estimate the angles of various human joints on
the lower extremities [188]. Accelerometers are commonly used to estimate physical
activity (PA) and gait parameters such as the number of steps, gait cycle time, step
time and cadence [5, 21, 135, 141, 41]. Combining the measurements from the
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gyroscope and accelerometer, it is possible to estimate parameters such as the step
length and walking distance, detect gait phases and various gait events, and classify
the movements performed by the participants [188, 21]. Moreover, as previously
explained, using the data from a MIMU or magnetic, angular rate and gravity sensor
(MARG), which consist of an accelerometer, a gyroscope and a magnetometer, it
is possible to estimate the 3D orientation of the device [198]. If various MIMUs
are attached to different body segments and combined with a rigid-body model of a
human, it is possible to estimate the global position and orientation of each segment
[198]. Body sensor network (BSN) architectures with wireless communication provide
convenient frameworks for these applications[193].

The most important advantage of wearable sensors is that they allow wireless
monitoring for extended periods of time in an unlimited space [21]. Unlike other
technologies for gait monitoring, wearable sensors do not require a base station and
they are the most mobile alternative [198]. This mobility enables them to provide ad-
ditional information that may be vital for the diagnosis and monitoring of neurological
diseases [21]. Furthermore, they are able to measure very rapid motion, they have
a small size and weight, and they require a short preparation and processing time
[198, 21, 188]. Additionally, most wearable sensors are low-cost and non-invasive
[198, 21], and some IMUs (e.g. BioStampRC™) conform to the skin and do not
constrain or affect natural body motion [135].

However, wearable sensors also have some drawbacks: they often require com-
plex estimation algorithms which have some estimation errors due to drift, inaccurate
alignment, relative movement between the sensor and the body segment, measure-
ment noise and bias, vibrations, and other perturbations; special training may be
needed to use wearable sensor systems and interpret their measurements; and the
union of some sensors to the body might be uncomfortable due to the wires and the
straps [21, 188, 24, 135, 61, 198]. In addition, there is still discussion about the best
combination of methods and metrics using wearable sensors, free-living data might be
limited by the battery or data storage of the sensors, some algorithms to estimate gait
parameters with wearable sensors have not been validated with neurological patients,
and population-specific normative values have not been determined [21, 41].

2.1.4. Instrumented Crutches and Canes

In order to overcome some limitations of wearable sensors that are attached to
different body segments, various researchers have integrated these sensors into passive
rehabilitation devices such as crutches and canes. In this way, the motion of the
assistive device can be monitored and the measurements from the sensors can be
used to estimate various kinematic and kinetic parameters, which can be useful to
evaluate the gait performance of patients who require assistive devices for walking.
This provides an easy to use and non-invasive alternative.

Table 2.1 summarizes the most relevant works that have proposed instrumented
crutches or canes for gait monitoring. It lists the sensors integrated in each prototype,
the estimated variables or parameters, and the proposed applications.
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Table 2.1: Main aspects of studies about instrumented crutches or canes for gait
monitoring.

Study Sensors Parameters Proposed applications
Acosta
(2019) [1]

- 4 strain gauges
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Axial load ap-
plied on the cane
- Angular rates
- Accelerations

- Monitor the applied load
- Monitor cane orientation
- Monitor the use of the
cane
- Detect and classify activ-
ities
- Assistance for exoskele-
tons

Ballesteros
et al.
(2019) [9]

- Two pressure
sensors (FSR)

- Axial load ap-
plied on the cane

- Monitor the applied load
- Clinical assessment of
the functional mobility of
patients

Boyles
(2015)
[16]

- Load cell
- 8 pressure
sensors (FSR)
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer
- Ultrasonic
sensor

- Axial load ap-
plied on the cane
- Force applied on
the grip
- Distance from
the cane to ob-
jects in the path
- Orientation of
the cane
- Angular rates
- Accelerations

- Monitor the forces ap-
plied on the cane
- Assess the risk of falls
and prevent falls
- Detect and classify activ-
ities
- Monitor the proper use
of the cane / Training us-
ing canes
- Clinical assessment of
the functional mobility of
patients

Chamorro
et al.
(2016)
[23]

- Load cell - Axial load
applied on the
crutch

- Monitor and control
the axial load applied on
the crutch (visual biofeed-
back)
- Monitor the proper use
of the crutch and improve
prescriptions
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Chen et
al. (2018)
[25]

- 2 pairs of strain
gauges
- Load cell
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Axial load
applied on the
crutch
- Shear forces
applied on the
crutch
- Pitch, roll and
yaw angles
- Accelerations
- Angular rates

- Monitor and control the
axial load applied on the
crutch (vibratory biofeed-
back)
- Monitor and control
shear forces on the crutch
- Monitor the orientation
of the crutch
- Monitor the proper use
of the crutch / Training
using crutches
- Assist with robotic ex-
oskeleton design and con-
trol

Culmer et
al. (2014)
[33]

- Load cell
- 2-axis gyro-
scope
- 3-axis ac-
celerometer
- 3-axis magne-
tometer

- Axial load ap-
plied on the cane
- Stance time and
swing time
- Number of cane
cycles
- Pitch and roll
angles
- Accelerations
- Angular rates

- Monitor and control the
axial load applied on the
cane
- Monitor the pitch and
roll angles
- Monitor the proper use
of the canes / Training us-
ing crutches or canes

Dang et
al. (2018)
[36]

- 3 3-axis ac-
celerometers
- 3 3-axis gyro-
scopes
- 3 3-axis magne-
tometers

- Orientation of
the cane
- Walking dis-
tance
- Angular rates
- Accelerations

- Assess the risk of falls
- Monitor the use of the
cane
- Detect and classify activ-
ities
- Clinical assessment of
the functional mobility of
patients
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Gill et al.
(2018)
[65] &
Gill et al.
(2020)
[66]

- Four strain
gauges
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Forces applied
on the cane
- Angular rates
- Accelerations

- Monitor the forces ap-
plied on the cane
- Detect and classify usage
patterns and activities
- Monitor the proper use
of the cane / Training us-
ing canes
- Assess the risk of falls
- Clinical assessment of
changes in gait and func-
tional mobility

Gorordo et
al. (2019)
[74]

- Millimetre-wave
radar

- Relative posi-
tions and veloci-
ties of the feet
- Base of support

- Assess the risk of falls
- Monitor balance and
improve stability of cane
users

Gorordo et
al. (2020)
[73]

- 5 3-axis ac-
celerometers
- 5 3-axis gyro-
scopes
- 5 3-axis magne-
tometers

- Orientation of
the cane
- Phases of the
cane
- Angular rates
- Accelerations

- Assess the risk of falls
- Monitor the orientation
and use of the cane and
prevent falls

Hassan et
al. (2014)
[79]

- Three pressure
sensors (FSR)
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Axial load ap-
plied on the cane
- Cane orientation
- Accelerations
- Angular rates

- Monitor the applied load
- Monitor cane orientation
- Estimate motion inten-
tion and control an ex-
oskeleton robot
- Training using canes

Hester et
al. (2006)
[81]

- Load cell
- Two accelerom-
eters

- Axial load ap-
plied on the cane
- Accelerations

- Monitor the applied load
- Monitor the proper use
of the cane and improve
prescriptions
- Training using canes
- Detect and classify usage
patterns and tasks
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Huang et
al. (2008)
[86]

- Force sensor
- CCD camera
- Laser ranger
finder

- Forces applied
on the cane
- Distance be-
tween head and
average leg posi-
tion
- Distance be-
tween cane and
knees

- Assess the risk of falls
- Monitor the use of the
cane and prevent falls
- Monitor the forces ap-
plied on the cane

Klenerman
et al.
(1973)
[98]

- Load cell - Axial load
applied on the
crutch

Monitor and control the
axial load applied on the
crutch
Quantitative assessment
of the progress of patients
Monitor the proper use of
the crutch and improve
prescriptions

Lachtar et
al. (2016)
[102]

- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Orientation of
the cane
- Accelerations
- Magnetic field

- Assess the risk of falls
- Monitor cane orientation
- Monitor the use of the
cane
- Detect and classify activ-
ities
- Clinical assessment of
the functional mobility of
the elderly

Mekki et
al. (2017)
[127]

- Four strain
gauges
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Axial force
applied on the
cane
- Pitch and roll
angles
- Crutch cycle
time
- Accelerations
- Angular rates

- Monitor the applied
forces
- Monitor the tilt angles
- Monitor the proper use
of the cane / Training
using canes
- Clinical assessment of
the functional mobility of
patients
- Assess the risk of falls
- Detect special gait
events, such as Freezing
of Gait
- Assess energy expendi-
ture and stability
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Mercado
et al.
(2014)
[129]

- Load cell
- 3-axis ac-
celerometer

- Axial load ap-
plied on the cane
- Accelerations

- Monitor and control the
axial load applied on the
crutch (audible biofeed-
back)
- Monitor the proper use
of the cane / Training us-
ing canes
- Clinical assessment of
the functional mobility of
patients

Merret et
al. (2009)
[131] &
Merret et
al. (2010)
[130]

- Pressure sensor
(FSR)
- Rectilinear
membrane poten-
tiometer
- 3-axis ac-
celerometer

- Axial load
applied on the
crutch
- Pitch and roll
angles
- Hand position
on the grip
- Accelerations

- Monitor and control the
axial load applied on the
crutch (audible biofeed-
back).
- Monitor the tilt angles

Narvaez et
al. (2020)
[142]

- Strain gauges
- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer

- Axial forces
applied on the
crutch
- Pitch and roll
angles
- Accelerations
- Angular rates

- Monitor the applied
forces
- Monitor the tilt angles
- Monitor the proper use
of the crutch / Training
using crutches
- Detect and classify usage
patterns

Ochi
(2019)
[144]

- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- Infrared ranging
sensor

- Pitch and roll
angles
- Angular rates
- Accelerations
- Distance be-
tween the crutch
and the ground

- Monitor cane orientation
- Monitor the proper use
of the cane / Training us-
ing canes
- Detect and classify usage
patterns and activities

Perez et
al. (2009)
[151]

- Load cell - Axial load ap-
plied on the cane

- Monitor the applied load
- Training using canes by
integration in treadmill-
based virtual reality
- Improve balance and pre-
vent falls
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Routson et
al. (2016)
[164]

- Force sensor - Axial load ap-
plied on the cane

- Monitor and control
the axial load applied on
the crutch (vibrotactile
biofeedback)
- Monitor the proper use
of the cane / Training us-
ing canes

Sardini et
al. (2015)
[168] &
Lancini et
al. [104]

- 3 strain-gauge
bridges
- 3-axis ac-
celerometer

- Axial load
applied on the
crutch
- Shear forces
applied on the
crutch
- Pitch and roll
angles
- Crutch cycle
time
- Accelerations

- Monitor the applied
forces
- Monitor the tilt angles
- Monitor the proper use
of the crutch
- Training using a robotic
exoskeleton with crutches
- Estimate internal forces
in the upper-limbs
- Clinical assessment of
the quality of the patient’s
gait

Seylan et
al. (2018)
[171]

- 4 pressure
sensors
- 2-axis ac-
celerometer

- Axial load
applied on the
crutch
- Shear forces
applied on the
crutch
- Pitch and roll
angles
- Accelerations

- Monitor the applied load
- Monitor the tilt angles
- Monitor the proper use
of the crutch / Training
using crutches
- Clinical assessment of
the quality of the patient’s
gait
- Assist with robotic ex-
oskeleton design and con-
trol

Simic et
al. (2011)
[175]

- Load cell - Axial load ap-
plied on the cane
- Times of peak
loads

- Monitor the load applied
on the cane and on the
knee
- Monitor the proper use
of the cane and improve
prescriptions

29



Chapter 2. STATE OF THE ART FOR GAIT MONITORING AND ANALYSIS

Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Sprint et
al. (2016)
[182]

- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer
- Barometer

- Angular rates
- Accelerations
- Cane cycle dura-
tion
- Stance percent-
age
- Midswing angu-
lar velocity
- Cane stance ra-
tio
- Cane swing off-
set
- Double support
%
- Triple support %

- Monitor the proper use
of the cane / Training us-
ing canes
- Detect and classify usage
patterns and activities
- Clinical assessment of
the functional mobility of
patients

Suresh et
al. (2019)
[187]

- 3-axis ac-
celerometer
- 3-axis gyro-
scope
- 3-axis magne-
tometer
- Ultrasonic
sensor

- Pitch and roll
angles
- Distance to ob-
jects
- Angular rates
- Accelerations

- Monitor cane tilt angles
- Detect obstacles
- Monitor the proper use
of the cane

Tsuda et
al. (2012)
[192]

- Gyroscope - Pitch angle
- Angular rate

- Monitor the proper use
of the crutch / Training
using crutches

Wade et
al. (2015)
[204]

- Pressure sensor
(FSR)
- Two 9-DOF
MIMUs

- Axial load ap-
plied on the cane
- Pitch and roll
angles
- Cane cycle time
and cadence
- Accelerations
- Angular rates

- Monitor the applied load
- Monitor the tilt angles
- Monitor the proper use
of the cane / Training us-
ing canes
- Improve prescriptions
- Clinical assessment of
the functional mobility of
patients
- Monitor risk of falls
- Detect and classify usage
patterns and activities
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Continuation of Table 2.1
Study Sensors Parameters Proposed applications
Wade et
al. (2019)
[205]

- Load cell
- 8 FSR (in hand
grip)
- Two 3-axis ac-
celerometers
- 3-axis gyroscope
- 3-axis magne-
tometer
- Ultrasonic sen-
sor

- Axial load ap-
plied on the cane
- Pitch and roll
angles
- Cane cycle time
and cadence
- Accelerations
- Angular rates
- Distance from
the cane to the
foot and objects
in the path (pre-
vents tripping
over)

- Monitor the applied
forces and grip pressure
- Monitor the tilt angles
- Monitor the proper use
of the cane / Training us-
ing canes
- Clinical assessment of
the functional mobility of
patients
- Assess the risk of falls
and prevent falls
- Detect and classify usage
patterns and activities

Wu et al.
(2008)
[215]

- 2 pressure
sensors
- 3-axis ac-
celerometer
- 3 single-axis
gyroscopes

- Axial load ap-
plied on the cane
- Pitch and roll
angles
- Accelerations
- Angular rates

- Monitor the applied load
- Monitor the tilt angles
- Monitor risk of falls
- Monitor the proper use
of the cane / Training us-
ing canes
- Detect and classify usage
patterns
- Assist with the develop-
ment of smart prosthesis
and ortheses

A possible classification of crutches and canes, which have been instrumented
with sensors for gait monitoring, can be made according to their application. The
following subsection details the most relevant applications.

2.1.4.1. Monitoring the load applied on the crutch or cane

Various crutches and canes with integrated force sensors and strain gauges have
been used to monitor and control the loads applied on the lower limbs [98, 130, 9, 175,
168, 23]. This type of instrumented crutches and canes are useful for patients who
need to follow a partial weight bearing (PWB) programme. In a PWB programme,
the therapist or clinician establishes the fraction of the body weight, which the patient
should apply on the affected leg, in order to improve healing of the affected bone or
soft tissues. Evidence shows that the recovery rate of patients with injured legs can
be improved if the patient follows a prescribed PWB programme [130]. In addition,
applying an excessive or insufficient load can cause further damage, by putting the
healing bones at risk of mal-union and leading to chronic pathologies [168, 104].
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With a normal crutch or cane, the load that is actually applied on the affected limb
depends on the perception of the patient and usually differs from the prescribed level.
For example, Li et al. [111] found that patients applied on average 36% of their body
weight on their affected leg when they were prescribed a PWB of 10%, and the real
load was 62% of their body weight when they were requested to load 90%.

Compared with other alternatives, instrumented crutches and canes provide im-
portant benefits to help patients achieve the recommended load. Unlike traditional
scales, force platforms and in-shoe pressure sensors, a crutch or cane equipped with a
force sensor can monitor the loads applied on the crutch or cane anywhere and during
long periods of time. In addition, instrumented crutches and canes do not require a
clinician to be constantly monitoring the patient, they are low-cost, they can transfer
sensor data through wireless communication, and they provide a non-invasive solution
to monitor the load applied on the affected limb [130, 9, 168, 23]. In addition, many
of these instrumented assistive devices provide a dynamic biofeedback by producing
a sound or vibration if the applied load is too large or too small [130, 168].

2.1.4.2. Classifying activities and estimating energy expenditure

Instrumented crutches and canes can also be used to detect the different phases
of the movement of the assistive device [130, 168, 182, 36, 73]. These phases can be
detected based on threshold-based methods, on event-based methods or on machine
learning methods [73]. Artificial neural networks (ANN) can also be used to classify
different activities during assisted gait, such as walking, standing, turning and going
upstairs/downstairs [144, 1, 19, 66]. Furthermore, an instrumented crutch or cane
can be used to estimate the physical activity. This is useful for patients with mobility
difficulties, because evidence shows that there is a moderate correlation between the
self-reported health status and the energy expenditure [122].

2.1.4.3. Monitoring the proper use of the crutch or cane and assessment of
functional mobility

Incorrect use of crutches might cause further damage. Not only can an excessive
load cause further health problems, but also corporal misalignments can produce
muscular disorders, articular overloads and prepatellar bursitis [22]. Moreover, the
load-reducing effect of a cane is more efficient with longer lateral cane distances and
shorter anterior cane distances [175]. Hence, it is essential to monitor other gait
parameters during assisted gait, such as the forearm crutch inclination, the deviation
of the centre of gravity (COG), and the simultaneity of foot and crutch support [22].
In addition, it is fundamental to provide a proper training using crutches or canes
during the early stages of rehabilitation. For instance, Winstein et al. [210] showed
that the instructions given during gait training are more effective than the feedback
given after the patients have been using the crutches. Moreover, Sardini et al. [168]
proposed using an instrumented crutch for a quantitative clinical assessment of the
quality of the gait of the patients, and Klenerman et al. [98] suggested using an
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instrumented crutch to make a clinical assessment of the progress of patients who
use crutches.

2.1.4.4. Monitoring risk of falls or other gait events

Another important application of instrumented crutches and canes is the assess-
ment of the risk of falls and other gait events. For example, Wade et al. [205]
developed an instrumented cane, which was able to significantly differentiate patients
with high fall risk. Other researcher have also developed different prototypes of in-
strumented canes to assess the risk of falls in older adults [215, 74]. Moreover,
Mekki et al. [127] used an instrumented cane to monitor patients with Parkinson’s
disease during rehabilitation sessions and detect the Freezing of Gait. Similarly, Gill
et al. [66] developed a multi-sensor cane, which was able to detect gait abnormalities
and changes in gait patterns due to different walking terrains, impaired vision and
incorrect cane lengths.

2.1.4.5. Training and control with robotic exoskeletons

A few instrumented canes have been developed to help controlling robotic ex-
oskeletons. For example, Hassan et al. [79] developed a cane with an integrated
IMU, which, in combination with body worn sensors and in-shoe force sensors, was
able to estimate the motion intention of the patient and control an exoskeleton robot.
Similarly, Chen et al. [25] tested an instrumented cane, which was intended to assist
with robotic exoskeleton design and control, by providing further information about
the interaction forces and weight distribution between the canes and the exoskeleton.
Finally, Lancini et al. [104] used an instrumented crutch to estimate the internal
forces acting on upper limbs in SCI patients who used a robotic exoskeleton. This
was achieved by measuring the forces applied on the crutch and applying an inverse
dynamics analysis based on a biomechanical model.

In conclusion, there are many gait monitoring applications for an instrumented
crutch or cane, but most applications require estimating the inclination of the assistive
device, and some applications also need to estimate the walking distance. Most of
the crutches and canes developed by other authors integrate IMUs for estimating
the inclination, but very few apply a robust sensor fusion algorithm that provides an
accurate estimation. From the list of studies presented in Table 2.1, only Culmer
et al. [33], Hassan et al. [79], Dang et al. [36] and Gorordo et al. [73] proposed
using a sensor fusion algorithm to estimate the inclination of the crutch. However,
their approaches present important limitations, as detailed in subsections 2.2.3 and
2.2.4. In addition, only Dang et al. [36] proposed a method to estimate the walking
distance with a cane, but the phase detection procedure applied in that method is
sensitive to noise, and sudden peaks above the threshold (e.g. due to trembling or
small hits) can cause false estimations, as discussed in section 2.3.
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2.2. Attitude Estimation Algorithms

The applications of the instrumented crutches and canes described in Section
2.1.4 require estimating various kinematic variables or parameters that describe the
motion of the assitive device. It is straightforward to estimate the phase of the crutch
motion using an accelerometer and a gyroscope, based on simple threshold-based or
event-based methods [36, 182, 73]. However, these methods are sensitive to impacts
and noise, and they might not work properly with some patterns of impaired gait [73].
These problems can be fixed if a force sensor is integrated in the crutch or cane, using
a simple threshold-based method to detect the phases of the crutch [130, 9, 168].
After determining the time instants corresponding to the phase transitions, it is easy
to calculate various parameters of the crutch motion, such as cycle duration and
stance percentage [182].

In addition, it is possible to measure the pitch and roll angles of the crutch by
attaching a 2-axis MEMS inclinometer, which provides two voltage signals that are
proportional to the angle of rotation about each axis. However, the measurements
of an inclinometer are disturbed by non-gravitational accelerations during normal gait
[155, 168]. Accurately estimating the attitude of the crutch or cane is more com-
plicated [33, 73], and it is essential for most applications described in Section 2.1.4.
This section presents a review of different algorithms that have been proposed in the
literature for 3D attitude estimation using wearable sensors.

2.2.1. Based on Accelerometer and Magnetometer Measurements

2.2.1.1. Gravity field vector based approach for pitch and roll estimation.

One of the simplest ways to estimate the inclination of a crutch or cane is by using
an accelerometer. This approach was chosen by various researchers who developed
instrumented crutches or canes [130, 168, 102, 205]. If nongravitational acceleration
is neglected and the measurements of the accelerometer are [ax ay az ], then the pitch
(θ) and roll (φ) angles (in radians) can be estimated using equations 2.1 and 2.2,
respectively [150]:

θ = atan

 −ax√
a2
y + a2

z

 (2.1)

φ = atan
(
ay
az

)
(2.2)

The proof of equations 2.1 and 2.2 is detailed in [150], but a summary of the
proof is presented in appendix A. Equations 2.1 and 2.2 are based on the following
assumptions:

The accelerometer is not moving or nongravitational acceleration (i.e. all ac-
celeration except for the acceleration due to gravity) is negligible.
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The global frame of reference (GFR) is defined with the Z axis pointing up and
aligned with the gravity vector, the X axis pointing to the north, and the Y axis
pointing to the west.

The sensor frame of reference (SFR) of the accelerometer is aligned as shown
in Figure 2.6: the Z axis pointing up and aligned with the longitudinal axis of
the crutch or cane, the X axis aligned with the longitudinal axis of the hand grip,
and the Y axis accordingly, in order to create a right-hand reference system.

The Tait-Bryan angles (yaw, pitch and roll angles) are defined using the aerospace
rotation sequence: the global frame of reference is first rotated about the Z
axis (yaw angle), then about the local Y axis (pitch angle), and then about the
local X axis (roll angle).

The initial orientation of the crutch or cane is with the SFR aligned with the
GFR.

Accelerometer measurements are expressed in the native accelerometer units
of g, where 1g = 9.81m/s2

Figure 2.6: Axes
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During normal walking with a crutch or cane, the pitch and roll angles will lie
in the range −90◦ to 90◦, so equations A.9 and A.11 have a unique solution in this
range. However, if any orientation of the crutch is possible, the aerospace convention
can be taken, restricting the pitch angle to the range −90◦ to 90◦, but allowing the
roll angle in the range −180◦ to 180◦. In this case, the Matlab function atan2 can
be used, in order to calculate the angle of the correct quadrant, based on the signs
of the two arguments: φ = atan2(ay , az).

2.2.1.2. Geomagnetic field vector based approach for yaw estimation.

Note that the yaw angle (ψ) does not appear in the equation system A.8. Hence,
the yaw angle can not be calculated based on the measurements of the accelerometer.
Since the first rotation is in yaw about the Z axis of the crutch, which is aligned with
the global Z axis initially, the measurements of the accelerometer will not change
with this rotation. All accelerometers are completely insensitive to rotations about
the vector of gravity, so they are useless to measure the yaw angle [150].

However, a magnetometer can be used to estimate the yaw angle of a crutch
or cane, in combination with the accelerometer [73, 102, 147]. If the calibrated
measurements of the magnetometer are [mx my mz ], then the yaw (ψ) angle (in
radians) can be estimated using equation 2.3:

ψ = atan
(
mE
mN

)
= atan

(
mzsinφ−mycosφ

mxcosθ +my sinθsinφ+mzsinθcosφ

)
(2.3)

where mE and mN are the transformed magnetometer measurements, in the east and
north directions, respectively.

The proof of equation 2.3 is detailed in [147], but an overview of the proof is
presented in appendix B. In addition to the aforementioned assumptions, equation
2.3 is based on the following hypotheses:

The SFR of the magnetometer is the same as the SFR of the accelerometer.

The magnetometer is calibrated for Hard Iron and Soft Iron effects.

There are no magnetic perturbations and the magnetic field measured by the
magnetometer is exclusively due to the earth’s geomagnetic field.

During normal walking with a crutch or cane, the yaw angle will lie in the range
−90◦ to 90◦, so equation 2.3 will have a unique solution. However, if a wider range
is considered, the aerospace convention can be followed, restricting the yaw angle to
the range −180◦ to 180◦. In this case the Matlab function atan2 can be used.

An alternative to estimate the 3D orientation with the accelerometer and magne-
tometer measurements is to apply the TRIAD algorithm [174], which is a deterministic
method that analytically calculates the rotation matrix that represents the attitude of
the GFR with respect to the SFR. The main equations of this algorithm are detailed
in appendix C.1.
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2.2.1.3. The effect of noise and disturbances on the measured gravitational
acceleration and geomagnetic field

The TRIAD algorithm and the deterministic method based on equations 2.1, 2.2
and 2.3 assume that the measurements are free of noise and that nongravitational
accelerations and magnetic perturbations are negligible. Although these assumptions
might be valid if the user of the crutch or cane walks very slowly [130, 168], the
accelerations and the magnetic field measured by a MIMU located at the tip of a
crutch or cane during normal gait will be significantly affected by the impacts of
the crutch against the ground, by the inertial accelerations during movement, by
the electromagnetic interferences, and by the magnetic fields induced by magnets or
metallic elements under the floor or near from the crutch that distort the measurable
geomagnetic field [73, 163]. Since the working principle of MEMS inclinometers is
the same as that of accelerometers, they have the same limitations [155].

In order to reduce the effect of the perturbations of the accelerometer, Merrett et
al. [130] and Sardini et al. [168] applied a low-pass filter to accelerometer measure-
ments, with a cut-off frequency of 1 Hz, assuming a maximum walking speed of 0.7
steps/s. In contrast, Wade et al. [205] separated the acceleration due to gravity by
applying a two-stage filtering procedure called HFEN+, which was described by Hess
et al [200]. This method is based on the sum of two measures. In order to calculate
the first measure, it applies a high-pass filter to each component of accelerometer
measurements (4th order Butterworth filter with ω0 = 0.2Hz), and then it calculates
the Euclidean norm of the three signals. For the second measure, it first applies a
low-pass filter to each raw component of the accelerometer, then it calculates the
Euclidean norm, and finally it subtracts 1g. This is based on the idea that, in the ab-
sence of movement, the Euclidean norm of the three low-pass filtered signals should
be equal to 1g. However, the error of this method can be greater than 0.2g for
rotations with a short radius [200].

Other alternatives to limit the effect of inertial accelerations are physically damp-
ing the suspended mass of the accelerometer to reduce the effect of impacts and
high frequency perturbations, or applying a moving average filter or an exponential
filter, but these solutions can only help to a limited extent, and some software filters
delay the response of the sensor [155].

In addition, possible solutions to overcome the magnetic disturbances in a mo-
tion lab or room are mapping the magnetic field of the lab or room, or placing the
magnetometer at a height of more than 100 cm [37]. However, these solutions are
unpractical for an instrumented crutch, because the patients will walk anywhere and
the magnetometer might be affected by disturbances caused by objects in the pocket
or near from the waist. If the geomagnetic field strength B is known, it is also pos-
sible to compare the norm of the vector measured by the 3-axis magnetometer with
the norm of a reference vector, which is equal to B. If the difference is less than a
threshold, the measurements of the magnetometer are assumed to be free of distur-
bances [163]. However, this does not solve the problem of estimating the orientation
with magnetic disturbances.
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Furthermore, it is possible to optimally estimate the rotation matrix from a finite
number of noisy observations of the gravity vector and the magnetic field vector.
Shuster et al. [174] presented and compared the quaternion estimation (QUEST)
algorithm, which calculates the best attitude estimate based on a loss function using
n noisy measurements. The equations and details about the QUEST algorithm are
explained in appendix C.2.

In addition to QUEST, many other optimal attitude estimation algorithms have
been proposed, which can be used to estimate the orientation based on accelerometer
and magnetometer measurements [196]. For example, singular value decomposition
(SVD) [120], polar decomposition (PD) [10], Euler-n [137], fast optimal matrix algo-
rithm (FOMA) [121], and energy approach algorithm (EAA) [136]. However, using
only an accelerometer and a magnetometer, all these algorithms are severely affected
by the inertial and magnetic perturbations that a MIMU attached to the tip of a
crutch experiences during normal gait, because only two sets of vector observations
are provided for each time instant during movement [196, 73].

2.2.2. Based on Gyroscope Measurements

Gyroscopes are not affected by nongravitational accelerations or magnetic per-
turbations, and they can be used to estimate the orientation of a crutch or cane
[191, 192]. This can be achieved by integrating the measurements of a 3-axis gyro-
scope, assuming that the initial orientation is known. Since the gyroscope measures
the angular rate on each axis at each time instant, a discrete integration method can
be applied to estimate the angle rotated during two consecutive samples.

2.2.2.1. Pitch angle estimation.

The simplest approach is to integrate the angular rate measured by the gyroscope
on one axis. Tsuda et al. [191, 192] estimated the pitch angle of a crutch θ̃k using
the Euler method, as shown in equation 2.4.

θ̃k = θ0 +

k∑
i=1

(ωy )i · ∆t (2.4)

where θ0 is the initial pitch angle of the crutch, (ωy )i is the angular velocity measured
by the gyroscope on the Y axis of the SFR at time instant t = i , and ∆t is the sampling
period.

However, the pitch angle estimated with equation 2.4 does not correspond with
the real pitch angle of the crutch θk , unless the roll angle is zero all the time, which
does not occur during normal gait with crutches or canes. If the roll angle is known,
the gyroscope measurements can be de-rotated by the roll angle, and the pitch angle
can be estimated by integrating the second component of the resulting vector, as
shown in equations 2.5, 2.6 and 2.7.
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Ry(θ) Rz(ψ) Gω = [Rx(φ)]−1 Sω = Rx(−φ) Sω (2.5)

Rx(−φ) Sω =

1 0 0

0 cosφ −sinφ
0 sinφ cosφ

ωxωy
ωz

 =

 ωx
ωy cosφ− ωz sinφ
ωy sinφ+ ωz cosφ

 (2.6)

θk = θ0 +

k∑
i=1

[(ωy )i cosφi − (ωz)i sinφi ] ∆t (2.7)

where Gω and Sω are the angular velocity vectors expressed in the GFR and SFR,
respectively.

2.2.2.2. 3D orientation estimation.

If all the three Tait-Bryan angles need to be estimated by integrating gyroscope
measurements based on a known initial orientation, the Rodrigues rotation formula
can be used, which provides the exponential mapping of the Lie algebra so(3) to the
rotation group SO(3) [179]. The differential angular increment at time instant i can
be estimated by a first-order approximation, as shown in equation 2.8.

∆φi = |ωi |∆t (2.8)

This differential angle is rotated about a unit vector ui , which is aligned with ωi ,
the angular velocity vector measured by the gyroscope (in the SFR) at time instant
i . This unit vector can be calculated by applying equation 2.9.

ui =
ωi
|ωi |

=
(ωx i + ωy j + ωzk)i√

(ωx)2
i + (ωy )2

i + (ωz)2
i

(2.9)

where i, j and k are the unit vectors of the SFR and ωx , ωy and ωz are the angular
velocities measured by the gyroscope.

The rotation matrix corresponding to differential angle ∆φi between the orienta-
tion at time instant i and the orientation at time instant i + 1 is given by equation
2.10.

Si
Si+1

R(∆φi) = I + sin(∆φi) [ui ]X + (1− cos(∆φi)) [ui ]
2
X (2.10)

where I is the 3x3 identity matrix and [ui ]X is a skew-symmetric matrix as shown in
equation 2.11.
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[ui ]X =

 0 (−uz)i (uy )i
(uz)i 0 (−ux)i

(−uy )i (ux)i 0

 (2.11)

The rotation matrix that expresses the orientation of the SFR with respect to the
GFR at time instant k can be calculated with equation 2.12

G
Sk

R = G
S0

R

k−1∏
i=0

Si
Si+1

R(∆φi) (2.12)

Since equation 2.12 involves calculating the product between many rotation matri-
ces, most algorithms involving 3D integration of gyroscope measurements are imple-
mented using quaternions, which are computationally more efficient for concatenating
rotations. Concatenating two rotation matrices takes 27 multiplications, but only 16
for quaternions. In addition, normalizing a quaternion is computationally cheaper than
re-orthogonalizing a matrix, which is required to remove the small computational er-
rors that accumulate in large concatenations. Furthermore, the use of quaternions
overcomes the singularity problem associated with Euler angles, which is known as
“gimbal lock” [119, 196].

Some basic quaternion properties, which are required to understand the following
equations, are reviewed in appendix D. The quaternion derivative is expressed by
equation 2.13, and the exponential map from the space of pure quaternions to the
space of rotations of unit quaternions is given by equation 2.14 [179].

q̇ = q⊗ΩΩΩ (2.13)

q = eVVV (2.14)

where ΩΩΩ ∈ Hp is a pure quaternion, V = ΩΩΩ∆t ∈ Hp, and ⊗ denotes quaternion
multiplication. The space of pure quaternions Hp is the Lie algebra of the sphere of
unit quaternions S3. In addition, it is the space of half-velocities, where ω = 2ΩΩΩ.
Hence, equations 2.13 and 2.14 can be rewritten as follows [179]:

q̇ =
1

2
q⊗ ω (2.15)

q = eω∆t/2 (2.16)

Taking 2.8 as the angle of rotation and 2.9 as the axis of rotation, the unit
quaternion at time instant i , which represents the rotation corresponding to the
angular rate at that instant, can be written as equation 2.17.

(qω)i = eωi∆t/2 = e(ωi/|ωi |)|ωi |∆t/2 = e∆φiuuui/2 (2.17)
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Applying the Euler formula to equation 2.17, the unit quaternion can be expressed
as equation 2.18 [179].

(qω)i = e∆φiuuui/2 = cos
∆φi

2
+ ui sin

∆φi
2

=

[
cos (∆φi/2)

ui sin (∆φi/2)

]
(2.18)

Assuming a relatively high sampling rate, the sampling period ∆t will be small and
the following small angle approximations can be applied:

cos
∆φi

2
≈ 1 (2.19)

sin
∆φi

2
≈

∆φi
2

=
1

2
|ωi |∆t (2.20)

Using 2.20, the imaginary part of the unit quaternion of equation 2.18 can be
approximated as follows:

ui sin (∆φi/2) ≈
[(ωx)i (ωy )i (ωz)i ]

|ωi |
1

2
|ωi |∆t =

[
1

2
(ωx)i∆t

1

2
(ωy )i∆t

1

2
(ωz)i∆t

]
(2.21)

Hence, the unit quaternion of equation 2.18 can be approximated with equation
2.22.

(qω)i ≈
[

1
1

2
(ωx)i∆t

1

2
(ωy )i∆t

1

2
(ωx)i∆t

]
(2.22)

Assuming that the angular rate measured by the gyroscope remains constant over
the sampling interval, the orientation at time instant i + 1 can be estimated with
equation 2.23 [163].

qi+1 = qi ⊗ (qω)i (2.23)

If the initial orientation is known, the orientation at any time instant can be
estimated by concatenating the angular rate quaternions, as shown in equations 2.22
and 2.23.

2.2.2.3. The effect of gyroscope measurement errors

The orientation estimated by solely integrating the gyroscope measurements presents
large errors over time, because of the white noise of gyroscope measurements, the
offset and drift of the gyroscope, the signal aliasing during the impacts and high-
frequency vibrations, and discrete integration errors [163]. The angular random walk
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due to the white noise of the gyroscope measurements is the main source of error
for intervals of less than 10 s [47]. In contrast, for longer intervals, the dominant
source of error is the bias instability of the gyroscope, which refers to the non-zero
measurements when the real inertial rate is zero [47].

In order to correct the pitch angle estimated by integrating gyroscope measure-
ments, Tsuda et al. [191] attached a pair of pressure sensors to the base of the tip
of a crutch. The pitch angle estimated by the gyroscope integration was corrected
based on the assumption that the crutch is perpendicular to the ground when both
pressure sensors measure the same pressure value. However, this solution assumes
that the weight is distributed uniformly over the surface of the base of the crutch
when it is perpendicular to the surface of the ground. In another paper [192], Tsuda
et al. proposed another simple solution to overcome the limitations of their previous
crutch prototype: they suggested to apply a least-square regression to correct the
gyroscope drift. However, the resulting estimation still presented a relatively large
error and it was only applied for the pitch angle of the crutch.

2.2.3. Sensor Fusion Algorithms Based on the direct Kalman Filter

The accuracy of the estimated orientation can be improved using a sensor fusion
algorithm that combines the measurements of an accelerometer, a magnetometer
and a gyroscope. The group of sensor fusion algorithms based on the Kalman filter
is one of the most popular and they are widely used for gait monitoring and analysis
using wearable sensors [196]. These algorithms fuse the information from the afore-
mentioned sensors, based on the Kalman filter (KF) [91] or extended Kalman filter
(EKF) [180], which estimate the optimal values in the sense of least square error.

2.2.3.1. Kalman filter based on Euler angles.

Culmer et al. [33] proposed a simple approach to estimate the roll and pitch
angles of a cane using a linear Kalman filter and the Rauch-Tung-Striebel smoother.
Assuming that the roll and pitch angles are independent, they proposed to apply
a separate Kalman filter for each angle, where the state equation and observation
equation are given by equations 2.24 and 2.25, respectively.

xk+1 = A xk + B uk =

[
1 −T
0 1

] [
θk
ρk

]
+

[
T

0

]
ωk (2.24)

yk = θ̂k = C xk = [1 0]

[
θk
ρk

]
(2.25)

where T is the sampling period, θ̂ is the estimated pitch or roll angle, and ρ is the
gyroscope bias. The measurement angle θ̂k is estimated by equation 2.1 or 2.2,
depending on whether it is the pitch or roll angle, respectively. The predicted a
priori state vector estimate x

(−)
k and the estimation error covariance matrix P

(−)
k are

calculated with equations 2.26 and 2.27.
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x
(−)
k = A x

(+)
k−1 + B uk−1 (2.26)

P
(−)
k = A P

(+)
k−1 AT + Q (2.27)

where (−) denotes the a priori (predictive) and (+) denotes the a posteriori (correc-
tive) estimates, and Q is the process noise covariance matrix. The update at each
time step is computed with equations 2.28 to 2.31.

Sk = C P
(−)
k CT + R (2.28)

Kk = P
(−)
k CT S−1

k (2.29)

x
(+)
k = x

(−)
k + Kk

(
yk − Cx

(−)
k

)
(2.30)

P
(+)
k = P

(−)
k −K

(−)
k C P

(−)
k (2.31)

where Sk is the innovation covariance, Kk is the optimal Kalman gain, x
(+)
k is the

updated (a posteriori) state estimate, P
(+)
k is the updated (a posteriori) estimation

error covariance matrix, and R is the measurement noise covariance matrix.
Q and R establish the behaviour of the Kalman filter, calculating each new es-

timate of the state vector based on the most reliable estimate (gyroscope or ac-
celerometer). A large R will make the filter to rely more on the gyroscope, whereas a
large Q will bias the filter to rely upon the accelerometer estimate. In order to deter-
mine the values of these matrices, Culmer et al. proposed using an MCS (Optotrak
Certus) to measure the true orientation of the cane, and optimize the values of Q

and R, based on the reference measurements from the MCS. The cost function of
the optimization process was defined as the sum of the root mean squared (RMS)
errors of pitch and roll, as shown in equation 2.32.

L(Q,R) =

√∑N
k=1(θFk (Q,R)− θMk )2

N
+

√∑N
k=1(φFk (Q,R)− φMk )2

N
(2.32)

where θFk (Q,R) and φFk (Q,R) are the pitch and roll angles estimated by the Kalman
filter at each time instant, and θMk and φMk are the pitch and roll angles measured
with the MCS. Culmer et al. used the Nelder-Mead non-linear optimization algorithm
to find the best values for Q and R [103].

In addition, Culmer et al. proposed applying the Rauch-Tung-Striebel smoother,
in order to improve the tilt angles estimated by the Kalman filter. This data post-
processing method is applied after the experiment has been completed and the entire
data set is available. The smoother updates the estimates of the Kalman filter by a
subsequent backward pass of the data, as shown in equations 2.33 and 2.34.

43



Chapter 2. STATE OF THE ART FOR GAIT MONITORING AND ANALYSIS

xsk = x
(+)
k+1 + Dk

(
xsk+1 − x

(−)
k+1

)
(2.33)

Dk = P
(+)
k AT P

(−)
k+1

−1
(2.34)

Culmer et al. estimated the initial state of the Kalman filter, based on the ac-
celerometer estimate at the beginning of the first loading cycle. The initial gyroscope
bias was set to 0 and the initial estimation error covariance matrix was set equal to
the process noise covariance matrix:

[
θ0

ρ0

]
=

[
θquasistatic

ρ0

]
(2.35)

P0 = Q (2.36)

Although the RMS errors for the estimated pitch and roll angles reported by
Culmer et al. are below one degree [33], this approach has many drawbacks:

The process noise covariance matrix and the measurement noise covariance
matrix are constant and they were calculated based on the the measurements
of the same MCS that was used for validation. As reported by the authors,
the roll and pitch angles estimated by the accelerometer are more reliable when
the user is loading weight on the crutch. Thus, the estimation could have
been improved if the covariance matrices were adjusted, so that the filter relied
more on the accelerometer when the user is loading weight, and relied more
the gyroscope then the tip of the cane is not in contact with the ground.

The state vector only includes the pitch or roll angle and the gyroscope bias,
without considering the accelerometer bias, misalignment errors or other sources
of errors.

It only estimates the pitch and roll angles, and not the 3D orientation. It does
not use a magnetometer to estimate the heading.

It uses Euler angles in the state vector of the filter, which are known for having
singularities.

The reported accuracy was achieved after applying a smoother, which requires
the entire data set and it is not valid for real-time monitoring.

The validation was done with only one participant walking straight and with
only two or three steps.
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2.2.3.2. Kalman filters based on quaternions.

Most sensor fusion algorithms based on the KF or EKF were developed to work
with quaternions, because of the advantages explained in subsection 2.2.2 [196]. For
example, Marins et al. [119] proposed two different methods to estimate the orienta-
tion using quaternions and the EKF. Both approaches have the same process model,
where the state equations are nonlinear and the state vector includes the four compo-
nents of the orientation quaternion and the three components of the angular velocity.
However, the measurement model is different in each approach. The first method
uses the 9 measurements from the three 3-axis sensors (gyroscope, accelerometer and
magnetometer), but the resulting equations of the observation model are nonlinear.
Consequently, the equations of the EKF are long and complicated.

In contrast, the second approach presented by Marins et al. [119] uses the mea-
surements of the accelerometer and magnetometer to estimate the orientation at
each time instant, and then it uses this estimated quaternion as the input (measure-
ments) for the EKF, together with the three components of the angular velocity.
Hence, the measurement model in this case is linear, the number of equations in
the observation model is reduced to 7, and the EKF has a smaller computational
cost. In order to estimate the components of the quaternion using the accelerom-
eter and magnetometer measurements, a Gauss-Newton optimization algorithm is
applied, minimizing the error of the quaternion that brings the measurements of the
accelerometer and magnetometer into coincidence with their references in the GFR.
This is achieved by minimizing the cost function defined by equation 2.37.

Q = (Ey −M By)T (Ey −M By) (2.37)

where Ey is a 6x1 vector with the values of gravity and magnetic field in the earth
frame, By is a 6x1 vector with the measurements of the accelerometer and magne-
tometer in the sensor body frame, and M is defined as follows:

M =

[
R 0

0 R

]
(2.38)

Yun and Bachmann [216] proposed a similar approach, but instead of applying the
Gauss-Newton method to estimate the orientation quaternion using the accelerometer
and magnetometer data, they used the QUEST algorithm described in section 2.2.1.
Unlike the Gauss-Newton iteration method, the QUEST algorithm provides an optimal
estimate for noisy measurement data and it is a noniterative algorithm. This means
that the QUEST is applied once at each time step, but the Gauss-Newton method
needs to be evaluated several times at each time step until it converges [216].

In the algorithms described by Marins et al and Yun and Bachman, the state
equations are non-linear, and they are linearized when the EKF is applied. However,
the linearization can produce undesirable consequences, such as a higher sensitivity
to initial conditions, biases in the estimation errors and a higher computational cost

45



Chapter 2. STATE OF THE ART FOR GAIT MONITORING AND ANALYSIS

[27]. In order to avoid these problems, Choukroun et al proposed a quaternion-based
linear model, to which a linear KF can be applied [27]. That model is based on a
linear pseudo-measurement model, with the measurement noise being quaternion-
dependent. However, this approach leads to more complicated equations and the
state-dependence of the model parameters induces modeling errors.

2.2.3.3. Strategies to reduce the effect of disturbances, bias and noise

The main problem with all the Kalman filtering approaches described above is that
nongravitational accelerations and magnetic disturbances will introduce a significant
error in the estimated quaternion when the sensor is moving. During normal gait,
the accelerometer will measure the sum of gravitational acceleration and inertial ac-
celerations, but the algorithms discussed above assume that inertial accelerations are
negligible. In addition, changes in the magnetic field strength and dips in magnetic in-
clination angle due to nearby ferromagnetic elements or electromagnetic interference
will produce large errors in the estimated north direction. Eric Foxlin [60] remarked
that the measurement noise is extremely nonwhite and he proposed to define the mea-
surement noise covariance matrix Rk in an heuristic way, so that it forces the Kalman
filter to rely on the accelerometer and magnetometer when their measurements are
meaningful, and to ignore them when they have large errors due to disturbances.

Angelo Sabatini [165] also incorporated safeguards to limit the effect of inertial
accelerations and magnetic disturbances. If the absolute value of the difference be-
tween the norm of accelerometer measurements and the norm of the gravity vector
is smaller than a threshold for a predefined time interval, it is considered that the
nongravitational accelerations are negligible and the variance is small. However, if
that difference is above the threshold, the variance for the accelerometer is set to
an extremely large value, in order to force the Kalman filter to rely on the other
sensors for the state update. Similarly, if the absolute value of the difference between
the estimated magnetic dip angle and the local reference value (which is constant in
a city or regional area) is above a threshold, or if the difference between the norm
of magnetometer measurements and the reference magnetic field strength is above
another threshold, the variance for the magnetometer is set to a very large value.
In a later paper [166], Sabatini presented a similar approach, but augmenting the
state vector to include the gyroscope bias vector and the magnetic variation vector
in addition to the unit quaternion, and modeling the magnetic disturbances as a first-
order Gauss-Markov stochastic process. He proposed the following models for the
gyroscope, accelerometer and magnetometer:

ωm = gKωbody + gb + gv (2.39)

am = aK B
ER(−g + abody) + ab + av (2.40)

hm = mK B
ER(h + hb) + mb + mv (2.41)
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where ωm, am and hm are the measurements of the gyroscope, accelerometer and
magnetometer in the SFR; gK, aK and mK are the matrices of the scale factors
(ideally equal to I3x3); BER is the rotation matrix representing the orientation of the
SFR (body frame) with respect to the GFR (earth frame); ωbody is the angular velocity
of the sensor in the GFR; g is the constant acceleration due to gravity in the GFR;
abody is the time-variant body acceleration in the earth frame; h is the constant
earth magnetic field; hb is a time-variant magnetic variation in the earth frame;
gb, ab and mb are the bias vectors (ideally null vectors); and gv, av and gv are the
measurement noise vectors, which are assumed to be independent and white Gaussian.
The magnetic disturbances are modeled by equation 2.42.

d

dt
hb = −α hb + wh (2.42)

where α is a positive constant and wh is white Gaussian noise. This approach gen-
eralizes the random walk model and improves the heading estimation results in envi-
ronments with magnetic disturbances.

Similarly, Roetenberg et al. [161] also modeled the magnetic disturbances with a
first-order Markov process, defining the discrete model for the magnetometer mea-
surements ym,t with equations 2.43 and 2.44.

ym,t = mt + dt + vM,t (2.43)

dt = cd · dt−1 + wd,t (2.44)

where mt is the earth magnetic field vector, dt is the magnetic disturbance vector,
cd is a constant between 0 and 1, vM,t is white noise, and wd,t is the driving Gaus-
sian noise of the magnetic disturbance, which has a standard deviation of σd . This
standard deviation changes with the norm of the magnetometer measurements ‖mt‖
and the estimated magnetic dip angle φ, as shown in equation 2.45.

σd = σm| ‖mt‖ − ‖mt−1‖ |+ σφ|φmag,t − φmag,t−1| (2.45)

where σm and σφ are vectors with three equal components that determine how the
variance will increase with magnetic disturbances.

Other authors have also included safeguards based on the acceleration and mag-
netic field gradients. The fundamental idea is that gyroscopic bias may be corrected
when the acceleration and magnetic field gradients are close to zero, or when the
variance of the norm of the fields is small over a finite window [162]. For example,
Renaudin and Combettes [159] proposed a new quaternion-based EKF similar to the
one proposed by Sabatini in [165], which includes the orientation quaternion, the
gyroscope bias and the accelerometer bias. However, instead of using the gyroscope
signal model proposed by Sabatini, Renaudin and Combettes defined the gyroscope
model in the quaternion set, as shown in equation 2.46.
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qyg = qω + bqω + nqω (2.46)

where qyg is the quaternion gyroscope, qω is the quaternion representing the rotation
between two successive time steps, bqω is the gyroscope quaternion bias, and nqω is
a zero-mean Gaussian white noise quaternion.

In contrast to Sabatini, Renaudin and Combettes assumed that the magnetometer
is previously calibrated and they simplified its model to only white noise (see equation
2.47). In addition, they modeled the accelerometer bias as a Gauss-Markov process
(see equations 2.48 and 2.49), justifying this decision with an Allan variance study.

Bym = Bm + nm (2.47)
Bya = Bf + ba + na (2.48)

ḃa = β ba + nba (2.49)

where Bym and Bya are measurements of the magnetometer and accelerometer; Bm

and Bf are the local magnetic and acceleration fields expressed in the body frame; ba
is the bias of the accelerometer; β is a constant; and nm, na and nba are zero-mean
Gaussian white noises.

A limitation of the model proposed by Sabatini is that the gyroscope bias will not be
corrected in perturbed magnetic fields. However, Renaudin and Combettes explained
how the gyroscope drift can be corrected in quasi-static magnetic or acceleration
fields in the global frame, even if they are perturbed. If the variance of the norm of
the magnetic field is sufficiently small over a finite window, it can be assumed that the
magnetic field is quasi-static in the earth frame. In this case, the difference between
the quasi-static magnetic field and the measured field will be due to the angular drift
of the gyroscope. This error can be calculated from the innovation (δzm)q, computed
by equation 2.50.

(δzm)q =
(
Emk

)
q
− E
Bq̂⊗

(
Bym

)
q
⊗ E
Bq̂∗ (2.50)

where Emk is the reference magnetic field in the earth frame during the k th quasi-
static interval, EBq̂ is the quaternion expressing the orientation of the body frame with
respect to the earth frame, Bym is the magnetic field measured by the magnetometer,
and E

Bq̂∗ is the conjugate of EBq̂.
However, using equation 2.50, the angular drift modeled in the gyroscope quater-

nion bias can only be determined if the quasi-static magnetic field in the earth frame
is known. The geomagnetic field of the earth is approximately constant at a given
place, but indoor environments present many fixed magnetic disturbances, so the
quasi-static magnetic field will be different from the geomagnetic field. In order to
overcome this difficulty, Renaudin and Combettes proposed to determine the error in
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the gyroscope quaternion bias from the innovation δzMARU , calculated by equations
2.51 and 2.52.

(
Bm̂(t + Ts)

)
q

= q̂∗ω(t)⊗
(
Bym(t)

)
q
⊗ q̂ω(t) (2.51)

δzMARU = Bym(t + Ts)− Bm̂(t + Ts) (2.52)

where Bm̂(t + Ts) is the magnetic field in the body frame, estimated for time step
t+Ts using the estimated rotation qω(t) (defined by equation 2.18); and Bym(t+Ts)

is the magnetic field measured by the magnetometer at time step t + Ts . If the
magnetic field is static between t and t + Ts (i.e. its vector does not change in the
earth frame), the difference δzMARU will be due to the error in the estimated rotation
q̂ω(t). This magnetic angular rate update (MARU) can be expressed as a first-order
development to correct the gyroscope drift [159].

Similarly, Renaudin and Combettes proposed an acceleration gradient update
(AGU) to correct both the accelerometer bias and the gyroscope quaternion bias.
If the reference quasi-static acceleration field is known in the earth frame, equation
2.53 can be used.

(δza)q =
(
Efk
)
q
− E
Bq̂⊗

(
Bya − b̂a

)
q
⊗ E
Bq̂∗ (2.53)

where Efk is the reference acceleration field in the earth frame at the k th quasi-static
interval, and b̂a is the estimated accelerometer bias. If the quasi-static acceleration
field is not known (e.g. because a constant lineal acceleration is applied to the sensor),
equations 2.54 and 2.55 can be used.

(
B

f̂(t + Ts)
)
q

= q̂∗ω(t)⊗
(
Bya(t)− b̂a(t)

)
q
⊗ q̂ω(t) (2.54)

δzAGU = Bya(t + Ts)−
(
B

f̂(t + Ts) + (I− βTs) b̂a(t)
)

(2.55)

where
B

f̂(t+Ts) is the acceleration field in the body frame at t+Ts , estimated using
the rotation quaternion qω(t); and Bya(t + Ts) is the acceleration measured by the
accelerometer at instant t +Ts . A first order development of equation 2.55 is shown
in [159].

One of the problems of direct Kalman filters based on quaternions is that they have
a higher computational complexity, which can negatively impact on the battery life of
wearable systems and on the dynamic response of the inertial system [60, 82, 132]. In
addition, gyroscope measurements or its biases are usually treated as measurements
of the Kalman filter, which increases the dimension of the matrices that need to
be inverted [60]. Moreover, a Kalman filter is considered to be more difficult to
implement than other computationally efficient filters, due to the number of tuning
parameters that need to be determined [163].
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2.2.4. Sensor fusion algorithms based on complementary filters

Various complementary filters (CFs) provide an alternative to combine the mea-
surements from the MIMU, with a reduced complexity and a smaller computational
cost [163]. A CF combines the measurements of different sensors, which are af-
fected by noises or disturbances with different frequencies. Gyroscopes are affected
by the bias and low-frequency noise, whereas accelerometers and magnetometers are
normally affected by high-frequency noise and perturbations [49]. Hence, a CF for at-
titude estimation usually applies a high-pass filter to the orientation estimated based
on gyroscope measurements, and a low-pass filter to the attitude estimated based
on accelerometer and magnetometer measurements. The result would ideally be an
all-pass and noise-free orientation estimation. The term “complementary” refers to
the cut-off frequency value, which is the same for the low-pass filter and the high-pass
filter [196].

Mahony et al. [117] proposed an explicit CF for attitude estimation for aerial
vehicles. Their approach consists of a non-linear quaternion-based CF with two fixed
gains, which determine the weight of the accelerometer and magnetometer in the cor-
rection of the estimated orientation. It is based on a proportional-integral controller,
which uses the errors between the measurements of the MIMU and the estimated
values, in order to correct the gyroscope error. The estimated vectors are calculated
by rotating the reference vectors from the GFR to the SFR, based on the last attitude
estimate. Given the reference measurements of the acceleration due to gravity Gaq,t
and geomagnetic field Gmq,t in the GFR, the acceleration S âq,t and magnetic field
Sm̂q,t measurements in the sensor frame can be estimated with equations 2.56 and
2.57:

S âq,t = G
S

q̂∗t−1 ⊗ Gaq,t ⊗ G
Sq̂t−1 (2.56)

Sm̂q,t = G
S

q̂∗t−1 ⊗ Gmq,t ⊗ G
Sq̂t−1 (2.57)

where GSq̂t−1 is the attitude quaternion estimated in the previous time step, expressing
the orientation of the SFR with respect to the GFR. The error is calculated by cross
multiplying the measured and estimated vectors for both acceleration and magnetic
field, as shown in equation 2.58:

Sωmes,t =
[
Saq,t × S âq,t

]
+
[
Smq,t × Sm̂q,t

]
(2.58)

The angular velocity measurements from the gyroscope are subsequently corrected
by equations 2.59 and 2.60:

S ˙̂ωb,t = −ki Sωmes,t (2.59)
Sω̂r,q,t = Sωq,t − [0 Sω̂b,t ] + [0 kp

Sωmes,t ] (2.60)
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where kp and ki are fixed proportional and integral adjustable gains, respectively, and
they determine how quickly the CF responds to the angular velocity measurements
with corrected bias. The new attitude estimate of the SFR with respect to the GFR
at time instant t is calculated with equation 2.61:

˙̂qt =
1

2
q̂t−1 ⊗ Sω̂r,q,t (2.61)

Euston et al. [49] proposed a similar method to estimate the attitude of a fixed-
wing unmanned aerial vehicle, but using a model that subtracts the centripetal accel-
eration from accelerometer measurements before using them to correct the gyroscope
error. The centripetal acceleration is estimated based on the angular velocity mea-
surements and a first-order model of the angle-of-attack dynamics of the vehicle,
driven by the pitch-rate measurement obtained from the gyroscope output.

Another popular CF approach, which has a low computational cost, was presented
by Madgwick et al. [116]. This approach is based on a gradient-descent optimiza-
tion algorithm and a constant gain to estimate the attitude of a MIMU. On the one
hand, an orientation quaternion is estimated by applying a gradient-descent algo-
rithm, based on accelerometer and magnetometer data. On the other hand, another
attitude quaternion estimate is obtained by integration of gyroscope measurements.
Then, a constant gain β is applied to fuse both attitude estimates. First of all, the
magnetometer measurements are expressed in the GFR, based on the last attitude
estimate, and the resulting vector is rotated into the positive xz half-plane, in order
to limit the effect of magnetic field disturbances on the pitch and roll estimations
(see equations 2.62 and 2.63).

G
ĥq,t = q̂t−1 ⊗ Smq,t ⊗ q̂∗t−1 (2.62)

Gm̂q,t =

[
0

√
G
ĥ2
x,t +

G
ĥ2
y,t 0

G
ĥz,t

]
(2.63)

Then, the magnetic field estimate obtained in the previous step and the reference
accelerometer measurements in the GFR are normalized and transformed into the
SFR, using the last attitude estimate. In the absence of errors, these estimations of
acceleration and magnetic field in the SFR would ideally match the accelerometer and
magnetometer measurement. Hence, the following objective function is minimized:

Ft =

[
q̂∗t−1 ⊗ Gaq,t ⊗ q̂t−1 − Saq,t

q̂∗t−1 ⊗ Gm̂q,t ⊗ q̂t−1 − Smq,t

]
(2.64)

where Gaq,t = [0 0 1].
Finally, the attitude at the new time step is estimated by applying equation 2.65,

which fuses the attitude estimated by the integral of gyroscope measurements with
the orientation estimated based on the gradient-descent algorithm, as detailed in
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[116]. The attitude estimated with the gyroscope is used to filter out high frequency
errors, whereas the attitude estimated with the accelerometer and magnetometer
measurements compensate the drift from the gyroscope estimate and provide con-
vergence from the initial orientation.

˙̂qt =
1

2
q̂t−1 ⊗ Sω̂q,t − β

∇Ft
‖∇Ft‖

(2.65)

where ∇Ft = Jt
TFt , and Jt is the Jacobian matrix of Ft .

Another CF algorithm was proposed by Fourati et al. [59], which applies a
Levenberg-Marquardt optimization algorithm (i.e. damped least squares) to estimate
the orientation based on the measurements of the accelerometer and magnetometer,
and determine the filter’s gain. Then, it applies a complementary observer based on
the multiplicative correction technique, in order to combine this orientation with the
attitude estimated by integrating angular rate measurements. However, in this ap-
proach there is no gyroscope drift compensation, and only one adjustable gain is used
[132]. In addition, Fourati’s approach does not compensate magnetic perturbations.

Although Mahony’s and Madgwick’s filters allow to use the measured magnetic
field vector as a reference in order to compensate for small magnetic field changes,
magnetic disturbances can significantly affect the estimation of roll and pitch angles
[132, 163]. This is a major drawback for estimating the inclination of a crutch or
cane with the measurements of a MIMU integrated in the tip of a crutch or cane,
because there are many metallic elements and devices that can cause electromagnetic
interferences in a clinical setting, where patients walk with crutches.

Del Rosario et al. [163] presented the CF-based attitude and heading reference
system (CAHRS) algorithm, which is a CF that decouples the correction rate for
the pitch and roll errors from the correction rate for the yaw angle, by performing
the estimation in two steps. Therefore, the estimation of the pitch and roll angles is
immune to magnetic perturbations. In addition, it is also computationally efficient and
it does not require reference measurements of the local magnetic field strength and
gravitational acceleration, because it is based on normalized vectors. However, the
CAHRS filter requires adjusting two tuning parameters to determine the correction
rates of the accelerometer and the magnetometer, but it is not clear how these
parameters should be adjusted to assisted gait. The kinematics and dynamics during
assisted gait are very different from those during normal walk [63], so the estimated
orientation might be improved if the CAHRS is adjusted to the patterns of assisted
gait.

Few authors who develop an instrumented cane or crutch proposed to estimate
the orientation using a CF. Hassan et al. [79] applied Madgwick’s algorithm, obtain-
ing a dynamic RMS error of 1.7◦. Dang et al. [36] applied an error-state Kalman
filter to estimate the orientation and walking distance with a cane, but did not provide
quantitative information about the accuracy of the estimated orientation. Gorordo et
al. [73] compared the accuracy of Madgwick’s filter [116] with the performance of a
complementary Kalman filter [161] for estimating the orientation of an instrumented
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cane. The results showed that the RMS errors obtained with Madgwick’s filter were
on average 1.76 times smaller. However, Del Rosario et al. [163] compared the
CAHRS filter with Madgwick’s filter, concluding that the orientation estimated by
the CAHRS filter has a significantly smaller RMS error in the presence of magnetic
distortions or non-gravitational accelerations. Hence, the CAHRS filter is the foun-
dation of the method proposed in Chapter 4, and it is detailed in subsection 4.2.2.

2.3. Distance Estimation Algorithms

Many approaches have been proposed to estimate the walking distance using the
measurements of IMUs, which were attached to different parts of the body. Usually,
the measurements of the accelerometer are transformed into the GFR, based on the
orientation estimated by an attitude estimation algorithm, as explained in section 2.2.
Then, the acceleration due to gravity is subtracted from the acceleration measure-
ments in the GFR, in order to get inertial accelerations [89]. Next, it is possible to
apply a high-pass filter to remove low-frequency noise, and then a moving average
filter to smooth the signal and reduce high-frequency noise [43]. Subsequently, an
option is to detect each step, based on a peak-detection [96] or on a zero-crossing
detection [172] method, and then estimate the step length and walking distance based
on a function of the acceleration. For example, Weinberg [209] proposed estimating
the step length with equation 2.66, assuming that it is proportional to the vertical
bounce, which is calculated based on peak-to-peak acceleration differences.

dstep = k · 4
√
amax − amin (2.66)

However, using equation 2.66, there is a relatively large variation in vertical bounce
between different people, and when the same person walks with different paces and
stride lengths. In order to overcome this problem, Scarlett [169] proposed equation
2.67.

dstep = k
1
N

∑N
k=1 |ak | − amin
amax − amin

(2.67)

Kim [96] proposed another approximation to estimate the step length, assuming
that it is related to the mean acceleration as expressed in equation 2.68.

dstep = k 3

√√√√ 1

N

N∑
k=1

|ak | (2.68)

Another simple method is to integrate two times the inertial accelerations in the
GFR. However, this approach will produce very large errors if velocities or positions
are not corrected, because integrating a small offset or noise during a long time will
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generate enormous accumulated errors [55]. Nevertheless, it is possible to detect
each step and apply a zero velocity update (ZUPT), in order to periodically remove
the accumulated velocity error [148]. During normal walking, each foot touches the
ground almost periodically and stays in contact with the ground for a short time,
while the person moves forward the other foot. The interval, in which the foot is
not moving, is called zero velocity interval, and it usually lasts between 0.1 and 0.3
seconds [148]. If this interval is detected, the velocity can be set to zero, resetting
the accumulated integration errors. Different zero velocity detection algorithms have
been proposed.

A more accurate approach is to estimate the velocity and position using an error-
state Kalman filter, which can be combined with ZUPT [89]. In this case, the position
and velocity are refined based on the Kalman error estimates. Using this approach, the
a priori velocity and position are estimated using equations 2.69 and 2.70, respectively.

v−k = v+
k−1 + ăk ∆t (2.69)

r−k = r+
k−1 + v−k ∆t (2.70)

Then, the a posteriori velocity and position are calculated a shown in equations
2.71 and 2.72, after the error state of the Kalman filter has been updated with the
measurements at time k .

v+
k = v−k − δvk (2.71)

r+
k = r−k − δrk (2.72)

Dang et al. [36] used this approach to estimate the walking distance with a
cane, but applying an inverted pendulum model to correct the velocity when the tip
of the cane is in contact with the ground, because it is not possible to place an
IMU exactly at the tip. However, the algorithm proposed to detect the zero velocity
intervals is based on a threshold method and it can be negatively affected by noise
and perturbations caused by small impacts.

2.4. Conclusions

As detailed in section 2.1, various instrumented devices can be used to measure
kinematic and kinetic parameters related to human gait. These devices provide an
objective and quantitative gait monitoring and analysis, which can be used to detect
small functional changes and make an accurate evaluation of the walking performance
in patients with neuromuscular diseases. Wearable sensors are of special interest for
human gait monitoring, because they allow monitoring users anywhere and during
long periods of time, they can measure 3D orientation and position, they are small
and lightweight, they are inexpensive, and they require a short preparation and post-
processing time.
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However, attaching IMUs or other wearable sensors to the body presents some
difficulties: they might not be aligned accurately, they might be uncomfortable for
the users, there might be small relative movements between the sensors and the
body segment, and their accuracy might be significantly affected by the bias drift,
measurement noise, vibrations and other perturbations. In order to avoid some of
these problems, some researchers have proposed integrating small motion sensors into
crutches or canes for gait monitoring, providing a non-invasive alternative. There is a
need to develop a small and lightweight instrumented tip, which can be easily adapted
to various crutches or canes, providing a personalized solution. In addition, the gait
patterns in assisted gait are different from those of normal gait. Consequently, the
algorithms for estimating the gait parameters need to be adjusted to crutches or
canes, in order to provide an accurate estimation. Many of these gait parameters
are based on the estimation of orientation and walking distance. However, very few
researchers have provided quantitative results of the estimation of the orientation and
walking distance using a cane or crutch with integrated sensors.

It is possible to estimate the orientation of a crutch or cane using a 3-axis ac-
celerometer and a 3-axis magnetometer. This can be achieved by applying simple
deterministic methods to estimate the roll, pitch and yaw angles, given the vec-
tor measured by the accelerometer and the vector observed by the magnetometer.
However, the measurements of the accelerometer and magnetometer are affected
by noise, which will have an impact on the accuracy of the estimated orientation.
Given a finite number of noisy accelerometer and magnetometer measurements, the
QUEST algorithm calculates the best orientation estimate. However, the QUEST
and other algorithms that estimate the attitude using only accelerometer and gyro-
scope measurements would present large errors during assisted gait, if the sensors are
attached to the tip of a cane or crutch. This is because all these algorithms assume
that non-gravitational accelerations and magnetic perturbations are negligible.

Gyroscopes are not affected by inertial accelerations or magnetic disturbances.
The angular velocities measured by a 3-axis gyroscope can be integrated to estimate
the orientation at each time instant, given an initial attitude. Given the 3D angular
velocity vector measured by the gyroscope, it is possible to calculate the rotation
matrix associated to the differential rotation by applying the Rodriges rotation for-
mula, and then postmultiply this rotation matrix with the previous rotation matrix,
in order to estimate the new orientation. Using quaternions to integrate gyroscope
measurements is more efficient, because concatenating quaternions requires fewer
multiplications, they overcome the problem of the singularities with Euler angles, and
it is easier to normalize quaternions. Nonetheless, estimating the orientation only by
integrating gyroscope measurements leads to extremely large errors over a long time,
because of the drift, the measurement noise, high-frequency vibrations and discrete
integration errors.

A possible solution is to apply a Kalman filter to estimate the orientation by fus-
ing the measurements from the gyroscope, the accelerometer and the magnetometer.
The Kalman filter models the measurement noise and estimates the optimal values
of the state vector in the sense of least squares. Various authors have proposed
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using a quaternion-based EKF to estimate the orientation and the gyroscope bias or
angular rates. The equations of the observation model are simplified if the inputs
to the Kalman filter are the angular velocities measured by the gyroscope and the
quaternion estimated using only accelerometer and magnetometer measurements.
However, the measurement noise is extremely non-white, so the inertial accelerations
and magnetic perturbations will introduce significant errors in the orientation esti-
mated by the Kalman filter. In order to solve this problem, some researchers have
introduced safeguards, by defining the measurement noise covariance matrix, so that
the Kalman filter ignores the measurements of the accelerometer or magnetometer
when they are not reliable. The estimation error is decreased if the measurement
model is improved by including the disturbances in addition to the white noise. Fur-
thermore, if the global magnetic or acceleration field is quasi-static, it is possible to
correct the gyroscope drift even in highly perturbed environments, using the MARU
and AGU methods. The main problems with direct Kalman filters are that they have
a high computational complexity and they are more difficult to implement.

A more computationally efficient alternative is to apply a complementary filter.
This kind of filters fuse the orientation estimates from two different sources: one
including high-frequency noise (the accelerometer and the magnetometer) and the
other presenting low-frequency noise (gyroscope). Various complementary filter algo-
rithms have been proposed for estimating the orientation using inertial and magnetic
sensors. Some included gradient descent strategies, while others defined an error
model and included an error-state Kalman filter to estimate the orientation. In or-
der to eliminate the effect of magnetic perturbations on the estimated pitch and roll
angles, it is possible to make the correction in two steps: the accelerometer is used
to correct the pitch and roll angles, and then the magnetometer is applied to correct
the heading. This is what the CAHRS algorithm does, so it is an efficient algorithm,
which provides an estimation of roll and pitch angles that are insensitive to magnetic
disturbances. However, the CAHRS requires tuning two parameters to adjust the
weight of the accelerometer and magnetometer corrections, but it is unclear how this
values should be tuned to estimate the orientation with an instrumented crutch or
cane.

The walking distance can be guessed based on the estimated orientation and
the measurements from the accelerometer and gyroscope. A simple method is to
project the accelerometer measurements into the global frame, and then subtract
the gravitational acceleration and integrate the result two times to estimate the
position. However, this approach produces very large errors, because integrating a
small acceleration offset or noise will generate large accumulated velocity and position
errors over time. The accumulated velocity error can be periodically removed by
applying the zero velocity update (ZUPT) method. The velocity at the tip of the
crutch will be zero when the tip is in contact with the ground. However, it is practically
impossible to place an IMU exactly at zero height. Instead, it is possible to install it
a few centimeters away from the tip. In this way, when the tip is in contact with the
ground, the velocity of the IMU can be estimated by applying an inverted pendulum
model. The walking distance can be estimated as the sum of the distance between
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consecutive position estimates. It is not necessary to accurately estimate the heading
or yaw angle to guess the walking distance, because the walking distance will be the
same in any direction. Hence, the CAHRS is specially useful to estimate the inclination
and walking distance of the crutch or cane, because magnetic perturbations do not
affect the estimations of the pitch and roll angles, and it is computationally efficient.

This thesis presents a novel instrumented crutch tip prototype for gait monitoring.
The prototype is easily adjustable to different crutches or canes, and it provides a
lightweight, low-cost and flexible solution. Based on the measurements from the
sensors integrated in the prototype, a new idea is presented to estimate the inclination
of the crutch or cane. This concept is explained for the one-dimensional case in
Chapter 3. Then, it is generalized for the 3D case, adjusting the CAHRS algorithm
in Chapter 4.
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3 ESTIMATION OF THE PITCH
ANGLE OF THE CRUTCH

Gait monitoring is useful to evaluate the walking performance and assess the evo-
lution of the functional mobility of patients with neurological diseases. In addition, it
can be beneficial to compare different rehabilitation strategies and adjust the therapy
to each patient. Various technological devices can provide an objective and quantita-
tive gait monitoring, which can be used to detect small functional changes and make
a more accurate diagnosis.

Small motion sensors can be integrated into crutches or canes for gait monitoring
of people who use assistive devices. This approach is less invasive than attaching the
sensors to the body, and the data captured from the sensors can be used to estimate
various kinematic and kinetic parameters. However, few works have attempted to
evaluate the functional state of the patient using the data captured from an instru-
mented crutch or cane. Since the walking pattern of patients who use crutches or
canes is different from the pattern without assistive devices and the data sources are
also different, new algorithms are needed to estimate the movement of the crutch,
based on the measurements of the integrated sensors.

This chapter presents a sensor fusion algorithm to estimate the pitch angle of a
crutch or cane, based on a first prototype of an instrumented tip developed for gait
monitoring purposes. First of all, the mechanical, electronic and software design of
the prototype are described. Then, the sensor fusion algorithm used to estimate the
pitch angle of the crutch is explained. Subsequently, the details of the experimental
setup are described, and the methods that were applied to validate the algorithm are
listed. Afterwards, the results obtained with healthy participants are presented and
discussed. Next, some preliminary results obtained in a case of study with multiple
sclerosis patients are shown and discussed. Finally, the conclusions about the proposed
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algorithm, experiments and prototype are highlighted.

3.1. Instrumented crutch tip prototype

This chapter focuses on the development of a particular instrumented crutch tip
prototype, which is used to monitor the gait of patients with neurological diseases.
In this section, an introduction to the first version of the prototype is presented.
This prototype is composed of two main elements, as shown in Figure 3.1: the
instrumented tip, which includes the sensors; and a neoprene belt, which contains the
battery and the acquisition system.

On the one hand, the custom-designed instrumented tip is made of aluminium,
and it includes a cylindrical case, which contains the required sensors and signal
conditioning PCB. The tip prototype has a diameter of 51 mm and a length of 124
mm. The tip fits into crutches and canes with different diameters, so that it can be
easily mounted on a regular crutch or cane, and it can be fixed using screws.

On the other hand, the belt is fastened to the waist of the user and it includes the
data acquisition unit and the battery to power the instrumentation. The decision to
wear a belt was made because many patients with neurological diseases have a reduced
muscle strength and they have difficulties to generate the joint torques required to
move the arm [31]. Hence, they can only lift small loads and the crutch should be
lightweight. In fact, the crutch tip only weighs 240 g, including all the sensors, but
the data acquisition unit and the battery weigh 193 g and 360 g, respectively.

The sensors included in the instrumented tip are detailed next. The compressive
axial forces of the crutch are measured with an HBM C9C force sensor (1-kN nominal
force), whose signal is then amplified using an INA118 IC (Texas Instruments). Crutch
tilt angles are measured using the SCA100T-D02 dual axis inclinometer (Murata) and
the AltIMU-10 v5 (Pololu), which consists of an IMU (ST LSM6DS33) with a 3-axis
accelerometer and a 3-axis gyroscope, a 3-axis magnetometer (ST LIS3MDL), and
a barometer (ST LPS25H).

The aforementioned sensors are integrated into a custom-made PCB, which is
shown in Figure 3.2. The PCB connects the inclinometer, the force sensor and the
amplifier of the force sensor signal. It is a circular PCB, with a diameter of 33 mm,
which is fixed to the aluminium disk with three nylon screws, in order to electrically
isolate it from the case. The gain of the amplifier is set to 1000 by placing two
external parallel resistors of 100 ohms. In addition, the inclinometer is mounted with
3 capacitors and 2 resistors, as indicated in the recommended circuit diagram of the
data sheet. The AltIMU-10 v5 is screwed to the crutch tip with a small case made
with a 3D printer, as shown in Figure 3.3. The cables from all the sensors are grouped
into a cable hose. This hose goes up to the data acquisition unit, which is attached
to the neoprene belt that the user carries around the waist.

The simplified schematic of the electronics of the data acquisition system is de-
picted in Figure 3.4. As it can be seen, the data acquisition system is a myRIO
device, which is programmed in Labview RT. This device captures the data provided
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a) b) c)

X
Y

Z

Figure 3.1: (a) A person using the instrumented crutch. (b) Assembled prototype
tip. (c) Exploded view of the assembly.

a) b)

Figure 3.2: (a) Inclinometer mounted on the top side of the PCB and fixed on the
aluminium disk (b) Force sensor mounted on the disk and amplifier mounted on the
bottom side of the PCB
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Figure 3.3: AltIMU-10 v5 screwed in the case made with a 3D printer.

by the rest of the electronics. Note that the electronics of the inclinometer and force
sensor are grouped in the aforementioned PCB. The system is powered by an external
rechargeable NiMH battery, which has a nominal voltage of 7.2 V and a capacity of
3000 mAh, so it can supply energy for the myRIO and the sensors for more than
4 hours. The myRIO has an internal DC-DC voltage regulator, which provides the
fixed 5 V output to power the sensors. The analog signals from the force sensor and
inclinometer are converted to digital signals by a 12-bit analog-to-digital converted
included in the myRIO.

The data captured by the myRIO are stored in its internal flash memory and
they are also transmitted to a computer via WiFi. The designed data acquisition
program includes a user interface, as shown in Figure 3.5. The measurements from
the sensors are read with a timed DAQ loop and they are sent to the computer every
10 ms, although this sampling period can be configured to be between 10 and 100
ms, as many instrumented crutches also acquire data at a frequency in this range
[130, 168, 23]. The measured values are displayed in the measurements panel, both
numerically and graphically.

In addition, a control loop manages when and where the data are stored. The
control loop works like a state machine with three states, as shown in Figure 3.6. It
starts in the Initializing state, where the myRIO is reset and the variables CreateFile
and FileCreated are set to false. After 100 ms, the variable T1 is set to true and
the execution jumps to the Waiting state. If the user clicks on the Reset myRIO
button, the same process as in the Initializing state is repeated. Otherwise, after
100 ms, the variable CreateFile is set to true when the user presses the Capture
button, and the execution jumps to the Capturing state. If the Capture button is
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Figure 3.4: Simplified schematic of the connections between the myRIO and the
sensors. The auxiliary resistors and capacitors used in the PCB are not included in
this figure.

still pressed and FileCreated is false but CreateFile is true, the program creates
a new LVM (LabView Measurement) file, which includes in its name the patient and
trial numbers indicated in the control panel, and it sets CreateFile to false and
FileCreated to true. After 100 ms, it will start storing measurement data and the
time of each measurement in the newly created LVM file. When the Capture button
is released, the variable FileCreated is set to false and the execution returns to the
Waiting state, where the user can change the patient and trial numbers to generate
a new file after pressing Capture again.

The control panel has three other buttons. The Stop button stops the execution
of the program at any time, and the buttons Register time and Reset times counter
are used to register the desired time instants in the stored data file. Each time the
Register time button is pressed, the Counter indicator increases by one. This counter
can be reset at any time by pressing Reset times counter.

The data stored in the LVM files can be imported to Matlab using the same
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Figure 3.5: Part of the user interface of the data acquisition program
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Figure 3.6: State machine of the control loop
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commands that are used to import CSV files. Before saving the data in Matlab
data files, a function checks if any measurement package is missing. If one or more
packages are missing because the myRIO was not able to store the measurements
from the sensors within 10 ms for a given time instant (which happened in rare
occasions), the function interpolates the two consecutive measurements to estimate
the missing data.

3.2. Algorithm for estimating the pitch angle of the crutch

In order to determine the 3D motion of the crutch, the crutch frame of reference
(CFR) is defined according to the convention of the international society of biome-
chanics, with the z-axis along the principal longitudinal axis of the crutch, the x-axis
along the handle, and the y -axis accordingly, in order to create a right-hand reference
system (see Figure 3.1a).

The algorithm proposed in this section estimates the angle of rotation around the
y -axis of the crutch. If the roll angle is zero, the estimated angle corresponds to the
pitch angle of the Tait-Bryan yaw-pitch-roll intrinsic angles. As shown in Figure 3.7,
the CFR is obtained by rotating the GFR an angle ψ (yaw) about the global z-axis,
then an angle θ (pitch) about the y -axis of the rotated frame, and finally an angle
φ (roll) about the x-axis of the resulting frame. The pitch angle is measured with
respect to the gravity vector, which corresponds with the global z-axis. Hence, in the
case of slopes, the angle would be with respect to the gravity vector and not with
respect to the line that is perpendicular to the slope.

Note that although several works in the literature referred to the pitch angle (θ
in Figure 3.7) as the anteroposterior angle of the crutch (AP in Figure 3.7), this
is not accurate, because the x-axis of the crutch is not in general aligned with the
direction of movement (saggital axis), so the pitch angle of the crutch is different
from the angle of rotation about the frontal/coronal axis (i.e., anteroposterior angle).
However, in the experiments performed to validate the algorithm, it was observed that
the misalignment between the sagittal axis of the participants and the x-axis of the
crutch was small. Hence, if the yaw angle is small, the anteroposterior angle can be
approximated to the pitch angle of the crutch.

In the following subsections, the phases and events of the crutch cycle are defined
first; then, the problems related to the measurement of the angles of a crutch or
cane are described; and finally, the proposed sensor fusion algorithm is detailed.

3.2.1. Crutch phases

The algorithm described in this section is based on the detection of the phases
of the movement of the crutch. Figure 3.8 represents the two phases and the events
corresponding to the transition between both phases [168, 182]:

1. Swing phase. During the swing phase, the force applied on the crutch is zero,
and the crutch moves from one support point to the next one.
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Figure 3.7: Representation of the anteroposterior (AP) and mediolateral (ML) angles,
and the Tait-Bryan angles of the crutch: yaw (ψ), pitch (θ) and roll (φ).

2. Initial Contact (IC). It is the event at which the crutch strikes the ground, and
it corresponds to the start of the stance phase.

3. Stance phase. During the stance phase, the crutch is in contact with the ground
and the user loads some weight on it. During this phase, the crutch is pivoting
about the tip, but the velocity of the contact point between the tip and the
ground is zero.

4. Terminal Contact (TC). It is the event corresponding to the moment when the
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crutch leaves the contact with the ground. Hence, it corresponds to the start
of the next swing phase.

The cycle of the crutch or cane is usually defined as the time interval between
two successive initial contacts. Note that the stance and swing phases thorough this
chapter refer only to the crutch movement and not to the phases of the lower-limb
kinematics.

3.2.2. Motivation: the problem with inclinometers and gyroscopes

It is not trivial to estimate the pitch angle of the crutch, using the instrumented
tip described in section 3.1. This version of the instrumented crutch includes a
MEMS inclinometer, which provides the inclination of the crutch with respect to a
global frame defined by the gravity vector. However, as explained in section 2.1.3,
MEMS inclinometers work in the same way as accelerometers, which measure the
displacement of a proof mass due to applied accelerations. Hence, the measurements
of the inclinometer are largely disturbed by nongravitational accelerations and impacts
of the crutch against the ground, so it does not provide a reliable measurement of
inclination during most part of the crutch cycle.

The prototype also includes a gyroscope, which measures the angular velocity in
the three axes of the sensor. Given an initial attitude, these measurements can be
used to estimate the orientation of the crutch at any time instant by integrating
the gyrsocope measurements, as explained in section 2.2.2. However, using the
gyroscope alone introduces a large error over time, because of the white noise of
the measurements, the offset of the angular rate measurement, the drift of the
gyroscope bias, the impacts and high-frequency vibrations, and discrete integration
errors. Hence, it is not possible to obtain an accurate estimate of the tilt angle of
the crutch using the measurements of the inclinometer and gyroscope independently.

The effects of the perturbations and errors described in the previous paragraphs
can be observed in Figure 3.9, where the measurements of the force sensor (red),
the inclinometer (continuous blue), and the integral of the gyroscope output (dashed
blue) are illustrated for three crutch cycles. Note that the components of the incli-
nometer and gyroscope that are depicted in Figure 3.9 correspond to the axis of the
sensor, which is approximately aligned with the Y axis of the crutch. As it can be seen,
after some time, the integral of the gyroscope measurements presents a significant
drift in the form of an offset from the inclinometer signal, while the latter presents
peaks when the tip hits against the ground and higher accelerations are exerted. Note
that negative inclination values indicate that the tip of the crutch is in front of the
subject, while positive values mean that it is behind.

3.2.3. Proposed sensor fusion algorithm

In order to calculate an accurate estimation of the pitch angle and avoid the
errors due to the use of each sensor independently, a novel sensor fusion algorithm is
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Figure 3.8: Phases of the crutch movement. 1) Swing phase. 2) Initial Contact. 3)
Stance phase. 4) Terminal contact

proposed in this section. This new approach combines the data provided by the force
sensor, the inclinometer, and the gyroscope. The fundamental idea of this algorithm
is to integrate the data provided by the gyroscope to estimate the inclination angle,
but correcting its drift or deviation periodically by using the data provided by the
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Figure 3.9: Force and inclination measurements during three cycles.

inclinometer in the middle of the stance phase (see yellow averaging interval in Figure
3.9), where nongravitational accelerations and angular accelerations are assumed to
be negligible. In order to correctly detect the phases of the crutch and compensate
the drift, the algorithm uses the force sensor signal.

In addition, the algorithm assumes that the roll angle of the crutch is zero during
the whole movement of the crutch or cane. Therefore, it assumes that the angular
velocities around the global vertical axis do not affect the measurements on the axis
of the gyroscope, which is approximately aligned with the Y axis of the crutch. The
assumption of zero roll is not true during normal gait with a crutch or cane, but it is
usually below 15 degrees (as it will be shown in subsection 4.4.2), and it is useful to
make this simplification, in order to illustrate the main idea of the fusion algorithm.
The consequences of this assumption will be further discussed in section 3.4. In
chapter 4, the main idea of the algorithm will be generalized, without the assumption
of zero roll.

The proposed algorithm is summarized in Figure 3.10. In order to implement the
algorithm, the data associated with the previous stance phase are required. For that
purpose, a properly-sized moving window is defined for the three inputs: the force
provided by the force sensor, the angular velocity provided by the gyroscope, and
the inclination angle measured by the inclinometer. This moving window is initialized
before entering the loop and then updated at each time step.

As explained above, the integration of the gyroscope signal generates a drift. In
order to compensate this, the measurements provided by the inclinometer during the
stance phase are used to update the estimated pitch angle value when the stance
phase finishes. The detection of the end of the stance phase is conducted using a
simple minimum limit value Fmin in the force signal, as in the swing phase, the crutch
is not in contact with the ground and no reaction forces exist. This threshold value
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Figure 3.10: Block diagram of the algorithm used to estimate the pitch angle of the
crutch.

is established, so that it is slightly higher than the limit of the dead zone and noise
of the force sensor.

At each time instant, the algorithm compares the last force measurements with
the threshold value. If the last measurement is below Fmin and the second to last
measurement is above Fmin, it compares the previous force measurements stored
in the moving window, beginning from the second to last. If there are at least 45
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consecutive force measurements above the threshold, it is considered that a stance
phase has finished, so the algorithm applies the correction of the inclinometer.

The pitch angles estimated for the first nw samples are the y -axis measurements
of the inclinometer at those samples, where nw is the number of samples of the
moving window. For the subsequent samples, the algorithm checks whether the last
measurement corresponds to the end of a stance phase.

If the current time step does not correspond to the end of a stance phase (Path
A in Figure 3.10), the pitch angle is estimated by discrete integration of the angular
velocity signal provided by the gyroscope. As it can be seen in Figure 3.7, the pitch
angle of the crutch (θ) is the rotation around the y -axis of the crutch, after de-
rotating the CFR by the roll angle (φ) at each time instant. As shown in equation
2.6, the gyroscope measurements on the de-rotated y -axis of the crutch correspond to
(ωy cosφ−ωz sinφ). Assuming φ ≈ 0, the gyroscope measurements on the de-rotated
y -axis can be approximated by ωy . Thus, the proposed algorithm uses the component
that is aligned with the y -axis of the crutch to apply the discrete integration using
Heun’s integration method [186]. That is, for t = k ,

xk = xk−1 +
Ts
2

(uk + uk−1) (3.1)

where xk is the new value of the estimated pitch angle, xk−1 is the previous estimated
value, Ts is the sampling period, and uk and uk−1 are the last and second-to-last
measurements (i.e., corresponding to the current and previous time steps) of the
angular velocity provided by the gyroscope.

Once the stance phase is finished at t = k , the estimated pitch angle value
is updated applying a three-step correction (Path B in Figure 3.10). This proce-
dure is detailed in Figure 3.11, where the continuous blue signal corresponds to the
inclinometer’s measurements, the dashed blue signal to the integral of gyroscope
measurements, the continuous red signal to the force measurements, the dashed red
line to the selected force threshold, the light green signal to the outputs estimated by
the algorithm at each time instant, and the pink signal to the past values estimated
by the algorithm after applying the correction at the end of the stance phase. The
plotted interval corresponds to a part of the first cycle after a turn. The three steps
of the correction stage are the following:

1. From the data stored in the moving window, the central interval of the data
associated with the last stance phase is detected using the Fmin limit value. In
order to reduce the effect of possible phase change dynamics, the first and last
values of this interval are neglected, obtaining the averaging interval as seen in
Figure 3.11.

2. The algorithm calculates the mean x ′m of the inclinometer’s measurements
within the defined averaging interval. In addition, the time step m < k as-
sociated with the middle of this interval is calculated.
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Figure 3.11: Graphical interpretation of the correction at the end of the stance phase.

3. An updated pitch angle value x ′k is estimated by integrating the gyroscope signal
ut from t = m+ 1 to t = k and considering the inclinometer’s mean x ′m as the
real value corresponding to t = m. This is,

x ′t = x ′t−1 +
Ts
2

(ut + ut−1) t = m + 1, m + 2, . . . , k − 1, k (3.2)

which is solved recursively using the past data stored in the moving window.
In this way, when t = k , the updated estimated pitch angle value x ′k can be
calculated, and the output of the estimation algorithm is forced to this value
xk = x ′k . Note that from this time step on, the algorithm continues to integrate
the angular velocity signal (Eq. 3.1) (Path A in Figure 3.10) until the end of
the next stance phase.

Note that the proposed algorithm assumes that nongravitational accelerations
are negligible in the middle of the stance phase. However, unlike the procedure
followed by the authors in [168, 130], this algorithm does not neglect nongravitational
accelerations in the whole cycle, which allows providing better accuracy.
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3.3. Experimental setup for validating the proposed algorithm

This section describes the experimental setup and the procedures that were fol-
lowed, in order to validate the algorithm presented in section 3.2 in a dynamic setting.
The experiments were carried out with three healthy volunteers in a room equipped
with a Vicon motion capture system (MCS). The trials were approved by the Human
Research Ethics Committee of the University of the Basque Country (UPV/EHU)
with ethics Approval Code M10/2016/295MR1. All participants signed the informed
consent form.

This section starts with the description of the tasks and characteristics of partic-
ipants. Then, it details the general setup of the experiments, the definition of the
frames of reference, the calibration and synchronization of the MCS, and the selected
values for the tuning parameters of the algorithm. Finally, it explains the procedure
for the calibration of the sensors integrated in the crutch.

3.3.1. Description of participants and the task

The characteristics of the three participants are presented in Table 3.1. Each
individual was asked to walk with the instrumented crutch on their right hand, fol-
lowing a straight line at their normal and comfortable pace, trying to unload as much
weight as possible from their left foot. Due to the size of the room and the limits
of the capture volume of the MCS, the straight line was five meters long. Partici-
pants were asked to walk following the straight line, turn around, and come back to
the initial position, as shown in Figure 3.12. Each participant completed this task
twice. Before doing the task, participants were given instructions about how to use
a crutch following a 2-point contralateral gait pattern without delay [158], and they
were allowed some time to familiarize with the crutch.

Table 3.1: Characteristics of the subjects.

Gender Age Weight (kg) Height (cm) dGT
1(cm)

Subject 1 Male 26 77 182 90
Subject 2 Male 28 68 182 90
Subject 3 Male 23 66 170 87

3.3.2. Description of the validation procedure with the motion
capture system

The reference pitch angle of the crutch was calculated based on the measurements
of the aforementioned 3D Vicon MCS. 5 Bonita 10 cameras (one megapixel, 250 Hz)
and a Vero camera (2.2 megapixels, 250 Hz) were placed around the capture volume,

1dGT : distance from greater trochanter to floor.
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5 m

Figure 3.12: Graphical representation of the task and layout of the cameras.

as depicted in Figure 3.12. The MCS was calibrated with the active wand, following
the guidelines of the manufacturer. Four reflective markers were stuck in the corners
of a plate that was screwed on the lid of the IMU case, which is parallel to the YZ
plane of the crutch (see Figure 3.13). In addition, three other reflective markers
were attached to the crutch, in order to determine its orientation. The 3D positions
of the markers were captured by the MCS at a frequency of 100 frames per second.
Then, this information was used to calculate the orientation of the crutch. In order to
calculate the attitude of the crutch using Vicon measurements, the following frames
of reference were defined:

Crutch frame of reference (CFR). It is determined by the three reflective mark-
ers that were stuck to the crutch (one at the tip of the handle and two along
the longitudinal axis of the crutch), and it is defined as explained in section 3.2.

Sensor frame of reference (SFR). It is specified by the orientation of the axes of
the IMU, which was screwed in the case in a convenient orientation to be easily
accessible. The SFR is approximately aligned with the CFR, but rotated 90◦

about the y -axis of the CFR, and then 270◦ about the z-axis of the resulting
frame of reference. The measurements of the IMU are recorded in the SFR.
Therefore, the x-axis of the gyroscope is approximately aligned with the y -axis
of the crutch, but in the opposite direction.
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Plate frame of reference (PFR). It is defined by the markers on the plate that
was screwed on the lid of the IMU case. The PFR is approximately aligned with
the SFR, but rotated 180◦ about the x-axis of the SFR.

Motion capture frame of reference (MFR). It is given by the orientation of the
Vicon calibration wand and it is the volume origin of the MCS. This reference
frame was slightly different in each session, because the MCS was calibrated
again at the beginning of each experimental session.

Cube frame of reference (UFR). It is defined by the markers attached to the
box that was left static during all the sessions of the experiments. Therefore,
this orientation was the same in all experimental sessions.

Global frame of reference (GFR). It is defined by the gravity and geomagnetic
north vectors, where the z-axis is pointing up and aligned with the gravity
vector, the x-axis pointing to the north, and the y -axis pointing to the west.

The measurements of the MCS can be used to calculate the orientation of the
PFR with respect to the MFR (MPq). Similarly, the measurements of the IMU can be
used to estimate the orientation of the SFR with respect to the GFR (GSq). However,
in order to compare the pitch angle estimated by the IMU with the reference value
measured by the MCS, it is necessary to previously estimate the orientation of the
GFR with respect to the MFR (MGq), and the orientation of the SFR with respect to
the PFR (PSq). Note that the PFR is rotated approximately 180◦ about the x-axis
of the SFR, but the exact rotation is unknown. Before estimating the orientations
M
Gq and P

Sq, it is necessary to calibrate the sensors, as it is explained in section 3.3.3.
After estimating the aforementioned attitudes, equation 3.3 can be used to compare
the estimation of the algorithm with the measurements of the MCS:

G
Sqk =

(
M
Gq
)∗ ⊗ M

Pqk ⊗ P
Sq (3.3)

Figure 3.14 shows the general block diagram of the experimental validation proce-
dure to compare the pitch angle estimated with the proposed algorithm and the pitch
angle calculated based on Vicon measurements. FLC are the measurements of the
load cell integrated in the crutch tip, FFP are the measurements of the force plate,
aIMU are the measurements of the accelerometer, ω are the measurements of the
gyroscope, θinc are the measurements of the inclinometer, m are the measurements
of the magnetometer, n is the number of turns counted by the photocell, pTL are the
positions of the top-left marker, pBL are the positions of the bottom-left marker, and
pBR are the positions of the bottom-right marker. Each step of this block diagram is
detailed next.

Estimation of MPqk . In order to calculate the orientation of the PFR with respect to
the MFR, the first step was to process Vicon measurements in the Nexus software.
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Figure 3.13: Representation of the global (GFR), motion capture (MFR), cube
(UFR), sensor (SFR), plate (PFR) and crutch (CFR) frames of reference.

A Vicon labeling skeleton template (VST) was created to automatically label each
marker, although some manual adjustments were required in some experiments. After
labeling the markers in each experiment, the gaps in the trajectories of the markers
were filled by either rigid body fill, pattern fill or spline fill. The first method was
selected when at least three of the four markers attached to the plate were visible.
In the gaps where it was not possible to use rigid body fill, spline fill was used if the
gap was short, and pattern fill was used if there was a nearby marker with a similar
path. After filling the gaps, a low-pass second order Butterworth filter with a cutting
frequency of 10 Hz was applied to the raw marker trajectories using Nexus, in order
to remove noise from the trajectories. Various authors have recommended applying
that kind of filter to the raw measurements of an optical MCS [163, 211]. Finally, the
3D positions of the markers were exported into a csv file, which was then imported
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Figure 3.14: Block diagram of the validation procedure with the MCS.

to Matlab.
The next step to calculate the attitude of the PFR with respect to the MFR was

to define two vectors using the positions of three markers of the plate: the markers
in the top-left, bottom-left and bottom-right corners. The y -axis of the PFR was
defined as the vector that goes from the bottom-left to the top-left marker. The
x-axis of the PFR is defined as the vector that goes from the bottom-left to the
bottom-right marker minus the projection of this vector on the y -axis of the PFR, as
shown in Figure 3.13 and equation 3.5. Finally, the z-axis is defined as the product
between the x and y axes. That is, if the vectors obtained based on the positions of
the markers are u and v, the unit axes of the PFR and the rotation matrix expressing
the orientation of the PFR with respect to the MFR are calculated with the following
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equations:

y =
v

‖v‖ (3.4)

x =
u− (u • v)y

‖u− (u • v)y‖ (3.5)

z = x× y (3.6)
M
PR = [x y z] (3.7)

Estimation of PSq. In order to estimate the orientation of the SFR with respect
to the PFR, Horn’s method [84] was applied to the accelerations measured in the
dynamic part of one of the experiments in each session (it is assumed that the relative
orientation between the sensor and the plate is constant during each session). This
method is implemented in the function absor, which is available on Matlab’s file
exchange [123]. This method estimates the rotation matrix (PSR), which minimizes
the cost function given by equation 3.8

L(R) =

n∑
k=s

∥∥P
SR (SaIMU)k − (P aV icon)k

∥∥2
(3.8)

where (SaIMU)k is the calibrated acceleration vector measured by the IMU at time
instant k , and (P aV icon)k is the acceleration vector measured by Vicon at time instant
k , expressed in the PFR. The interval k = s, s + 1...n corresponds to an interval of
a experiment, in which the crutch is moving within the capture volume of the MCS.

The accelerations P aV icon were calculated by deriving two times the trajectory of
the marker that is closest to the IMU, and then rotating the result from the MFR to
the PFR, as shown in equation 3.9.

(
P aV icon

)
k

=
(
M
PR
)T (MaV icon

)
k

(3.9)

Estimation of MGq. The orientation of the GFR with respect to the MFR can be
estimated following the procedure explained in [116], where a pendulum and a com-
pass are used to estimate the gravity and geomagnetic north vectors, respectively.
However, small misalignments between the markers attached to the pendulum and
the resolution of the compass can lead to a small error. For this reason, an alterna-
tive method was applied, using the data recorded by the IMU and the MCS during an
experiment, in which the crutch was static all the time, supported by a non-metallic
chair, and the tip of the crutch was about a meter above the ground, away from any
ferromagnetic materials or magnetic perturbations. Therefore, in this experiment,
the orientations M

Pq and G
Sq were constant. M

Pq was calculated as explained above
and then averaged over the static interval, and S

Gq (i.e. the conjugate of GSq) was es-
timated based on the mean values of the calibrated accelerometer and magnetometer

77



Chapter 3. ESTIMATION OF THE PITCH ANGLE OF THE CRUTCH

measurements. Defining these two vectors as g and h, respectively, the rotation ma-
trix expressing the orientation of the GFR with respect to the SFR can be estimated
with the following equations:

z =
g

‖g‖ (3.10)

x =
h− (h • g)g

‖h− (h • g)g‖ (3.11)

y = z× x (3.12)
S
GR = [x y z] (3.13)

After estimating M
Pq and S

Gq for the static experiment, MGq was calculated with
equation 3.14

M
Gq = M

Pq⊗ P
Sq⊗ S

Gq (3.14)

Since the static experiment was only done in one session, the cube was used
to estimate the orientation of the GFR with respect each MFR of each session. If
the static experiment was carried out in session A, the orientation of the GFR with
respect to the MFR of session B was calculated with equation 3.15

MB

Gq = MB

Uq⊗
(
MA

Uq
)∗
⊗ MA

Gq (3.15)

where MA

Uq and MB

Uq are the orientations of the UFR (cube frame of reference) with
respect to the MFR of session A and B, respectively.

Therefore, in order to compare the pitch angle estimated by the proposed algorithm
and the pitch angle calculated based on Vicon measurements, equations 3.14 (or 3.15
if the MFR is different from the one of the static experiment), 3.7 and 3.8 were used
before applying equation 3.3.

Synchronization procedure. The Vicon MCS recorded the 3D position of the mark-
ers at a rate of 100 frames-per-second, while the acquisition device (myRIO) of the
instrumented crutch registered the measurements from all the sensors at a frequency
of 100 Hz. Synchronization between the MCS and the IMU was achieved by a fast
impact of the crutch tip against the ground at the start of each experiment. This
caused a peak in the y component of the accelerometer when the crutch tip hit
against the ground, while the MCS measured the minimum height of the markers
attached to the crutch when the impact occurred. The measurements of the MCS
and the IMU were compared in the GFR.
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Tuning parameters. The following tuning parameters were chosen for the pitch
angle estimation algorithm used in these experiments. A moving time window of four
seconds was defined to store the past data from the instrumented tip sensors. The
limit force to detect the stance phase Fmin was selected to be 0.05 V (equivalent
to 25.2 N). When calculating the central interval of the stance phase, the first and
last 200 ms were not considered, as several effects due to the phase switch dynamics
arose.

3.3.3. Calibration of the sensors integrated in the crutch

This subsection details the procedures that were followed, in order to calibrate the
sensors integrated in the instrumented tip prototype. Figure 3.14 shows the inputs
and outputs of each calibration step. As it can be observed in the block named Apply
pitch angle estimation algorithm, the proposed algorithm only uses the calibrated
measurements of the gyroscope, the inclinometer and the force sensor. Hence, the
measurements of the magnetometer and accelerometer are only used for validating
the algorithm with the MCS.

In addition, this subsection presents the calculated calibration parameters and the
results of some validation tests. Firstly, it explains the procedure for the calibration
and validation of the measurements of the force sensor; then, it describes the cali-
bration of the inclinometer; subsequently, it shows the procedures and results of the
calibration of the accelerometer and gyroscope; and finally, it explains the calibration
procedure for the magnetometer.

3.3.3.1. Calibration of force measurement

The load applied on the crutch or cane is measured using an HBM C9C force
sensor, which consists of a piece of steel, on which strain gauges are installed. The
applied force is transmitted from the ground to the force sensor by a sliding alu-
minium part (Figure 3.1c). The design of this sliding part prevents its rotation and
the application of torques and off-axis loads on the force sensor. However, the friction
between the sliding part and the housing, the deformation of the rubber tip, and the
dynamics of the amplifier used to condition the voltage output of the sensor create
nonlinearities in the force measurement. One of the main effects of these nonlinear-
ities is the existence of a dead zone for small force values. In order to minimize this
dead zone, a pre-load of 10 N was applied before the calibration procedure of the
force sensor, which is detailed in the next paragraphs.

A calibration procedure is required to ensure the accuracy of force sensor mea-
surements. The Bertec 4060-15 force plate, which is a validated measurement instru-
ment, was used to calibrate the axial forces measured by the prototype. The rated
load of the used force plate is 20 kN, and its maximum error due to nonlinearity and
hysteresis is 0.2% (40 N) of the rated load. The force plate recorded measurements
at a frequency of 1000 Hz, but the signal was resampled at 100 Hz to compare it
with the force-signal captured by the instrumented crutch. The calibration procedure
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consisted in positioning the crutch vertically on the force plate, with its rubber tip in
contact with it, and applying different load/unload cycles on it. Random forces were
applied to cover the whole range from 0–500 N and to consider the hysteresis effect.
This procedure was repeated twice for 30 seconds, so that the first data set was used
to perform the calibration and the second to validate it. The measurements of the
crutch DAQ system were synchronized with the data from the force plate by a fast
impact of the crutch against the force plate at the beginning of each experiment.

The data obtained in the first set are shown in Figure 3.15a. This figure repre-
sents the force plate measurement corresponding to each measurement of the force
sensor integrated in the crutch. Note that, in this point cloud, the first 100 samples
around the initial synchronization impact and the samples in the dead zone were not
considered.

It was observed that the force sensor was not able to measure voltages below
0.04 volts, and the force plate minimum force measurement was set to 25 N. The
measurement noise of the raw force sensor signal was below 0.005 volts. In addition,
the effect of the previously-detailed friction can be observed in low force ranges
(below 200 N), where the fitting between the crutch force sensor and the force plate
measurements is not linear. For this reason, three piecewise linear approximations
were calculated, as seen in Figure 3.15a: below 90 N (blue), between 90 and 190
N (red), and above 190 N (green). The best fitting straight line was calculated by
least squares regression for each cloud in the selected ranges, obtaining the following
results:

y = 149.102 x + 17.7974 R2 = 0.9752 (3.16)

y = 325.658 x − 69.3642 R2 = 0.9148 (3.17)

y = 257.714 x − 10.2081 R2 = 0.9956 (3.18)

The result of the aforementioned piecewise linear fitting for the first set (calibra-
tion set) is depicted in Figure 3.15b. Note that the two horizontal lines define the
bounds separating the three linear intervals. It can be seen that there is no steep
transition around the limits.

The second data set was used to verify the precision of the aforementioned cali-
bration. After synchronizing both sources of the second data set, the measurement
pairs corresponding to the dead zone, synchronization impact, and fast load/unload
intervals were discarded. Then, the piecewise linear transformation calculated with
the first data set was applied to the second data set. Figure 3.16.a shows the scatter
plot that represents the correlation between the calibrated force measurements of
the crutch and the reference force plate measurements. The coefficient of deter-
mination of the new cloud was R2 = 0.9957. It can be seen that, unlike in Figure
3.15a, the cloud in Figure 3.16a showed a linear relationship between the force plate
measurements and the calibrated crutch force sensor measurements in the whole
measurement range, due to the piecewise linear transformation.
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Figure 3.15: Results with force data of the first recording. (a) Best-fitting straight
lines for each cloud. (b) Evolution of force measurements after calibration.
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Figure 3.16: Results with data of the second recording after applying piecewise linear
transformation. (a) Correlation between force plate and crutch force sensor measure-
ments. (b) Evolution of force measurements.
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a)

b)

Figure 3.17: Results with data of the second recording after calibration. (a) Box
plot. (b) Bland–Altman plot.
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Figure 3.16b shows the time evolution of both the force plate measurement,
used as a reference, and the calibrated crutch force sensor measurement for the
second data set. The horizontal lines determine the bounds separating the three
linear intervals. The RMS error was 8.78 N, and the maximum absolute error was
26.84 N. The biggest errors occurred when measuring forces over 500 N. Note that
these numbers included errors due to resolution, nonlinearity, and hysteresis.

Figure 3.17a shows the box plots of the two signals represented in Figure 3.16b.
The difference between the mean of the force plate measurements and the mean
of the crutch force sensor readings is −0.64 N. Figure 3.17b presents the Bland–
Altman plot of the same signals. The limits of agreement are 16.53 N and −17.8
N. The trend indicates that for higher loads, the crutch force sensor measurements
are slightly larger than the force plate measurements, while they are smaller for lower
loads. This plot also shows that most non-tolerable measurements group around the
transition between the two lower lines of the linear fitting. Hence, the accuracy could
be improved by increasing the number of subclouds and best-fitting lines.

Therefore, these results show that the calibration of the force measurement is
acceptable. For example, following a similar procedure, the crutches validated in [23]
had a global coefficient of determination of 0.993, while the value obtained for our
instrumented crutch was 0.9957. In addition, the RMS error obtained for the crutch
in [168] was 9 N, while the RMS error calculated for the proposed instrumented tip
with the data of the second recording was 8.78 N. This accuracy could be improved
if the internal friction between the crutch tip parts was decreased.

3.3.3.2. Calibration of inclination measurement

In order to determine the crutch inclination measurement, a high-resolution and
low-noise inclinometer was used. This subsection details the calibration procedure for
the inclinometer.

Seven experiments were performed with the MCS system to calibrate the incli-
nometer. In each experiment, the crutch was maintained with a constant orientation
using a tripod with a graduated clamp, as shown in Figure 3.18. Between each two
consecutive experiments, the crutch was rotated about 15 degrees with respect to
its y axis (pitch angle), keeping the yaw and roll angles at zero.

The results of these experiments are illustrated in Figure 3.19. The plot shows
the correlation between the inclinometer measurements and the pitch angles that
were calculated based on the markers’ positions measured by the MCS. As it can be
seen, a linear fitting can be used to establish a relationship between the inclinometer
measurements and the pitch angles measured by the MCS. The best fitting straight
line was obtained with a coefficient of determination of R2 = 0.9997 and a nonlinearity
of 1.38◦. Note that, the measurement corresponding to −35◦ was not considered
to calculate these values and make the plot in Figure 3.19. This measurement was
discarded, because due to occlusion by the bars of the tripod, one of the cameras was
unable to detect a marker in that position. These results are similar to those presented
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X

Y

Z

Figure 3.18: Experimental setup for the calibration of the inclinometer. A tripod with
a clamp and an integrated protractor is used to keep the crutch static with a constant
tilt angle while the MCS records the positions of the markers.

in [168], where the calculated nonlinearity of the static inclination measurement was
0.8◦.

3.3.3.3. Calibration of acceleration and angular velocity measurement

The calibration procedure of the acceleration and angular velocity measurement is
detailed in this subsection. The full-scale range of the gyroscope was set to ±500◦/s

(degrees per second (dps)), which covers the whole range of angular velocities dur-
ing normal gait, with a resolution of 0.0175◦/s. Similarly, the full-scale range for
the accelerometer was set to ±8g, with a resolution of 0.244 mg. The gyroscope
and accelerometer were calibrated using a servomotor and following the procedure
explained in [90], which is detailed next.

The aforementioned calibration procedure can compensate four different sources
of errors: misalignments between the sensors and their cases, constant sensor biases,
non-orthogonalities between the sensors’ measuring axes, and sensor sensitivities or
gains. The measurement model for the accelerometer and gyroscope is defined by
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Figure 3.19: Best fitting straight line for the inclinometer measurements.

equation 3.19.

y = S T M u + b (3.19)

where y is the sensor output, S is the sensitivity matrix, T is the orthogonality matrix,
M the alignment matrix, u the real physical value, and b is the sensor bias. These
matrices and vectors are defined as follows:

y =

yxyy
yz

 , S =

Sx 0 0

0 Sy 0

0 0 Sz

 , T =

 1 0 0

cosα 1 0

cosβ cosγ 1

 , (3.20)

M = Rx(φ) Ry(θ) Rz(ψ), u =

uxuy
uz

 , b =

bxby
bz

 (3.21)

where Rx(φ), Ry(θ) and Rz(ψ) are defined by equations A.4, A.5 and A.6, respectively.
Note that this procedure does not account for temperature effects, the effect

of acceleration on gyroscope’s sensitivity and bias, non-linearities, and drift of the
gyroscope bias. However, the data sheet of the gyroscope integrated in the crutch
indicates that it has a typical angular rate offset change of ±0.05 dps/◦C, and a
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typical angular rate bias of ±10 dps, which can change with time, as a result of
bias instability. In order to compensate for the effect of temperature and gyroscope
drift, this procedure was applied in each experimental session, recalibrating the ac-
celerometer and gyroscope at the beginning of the experiments. Since the bias of
the gyroscope has a relatively large drift, this bias was recalibrated at the beginning
of each experiment, based on the gyroscope measurements during an initial static
interval, in which the crutch was standing motionless, supported by a chair.

Although the measurement model for the accelerometer and gyroscope was the
same, the parameters of the model were estimated differently for each sensor, as
explained next.

Accelerometer
The 12 parameters of the model of the accelerometer were estimated using New-

ton’s optimization method with the cost function 3.22.

O(p) =
1

N

N∑
n=1

(uref − un(p))2 (3.22)

where N is the number of measurements, uref is the reference value and un(p) is the
measured value, which is a function of the model parameters defined in vector p.

The parameters of the model of the accelerometer were estimated in two steps.
Firstly, a scalar field procedure was applied, in order to estimate the parameters of
the sensitivity matrix Sa, the orthogonalization matrix Ta, and the bias vector ba.
Secondly, an alignment procedure was applied, in order to estimate the parameters
of the alignment matrix Ma.

In the scalar field calibration procedure, the IMU was laid still in 15 different
random orientations. For each orientation, the IMU was left in a stable position for
at least 10 seconds. Then, the gravity vector for each orientation was estimated as
the mean of the measurements of the accelerometer in each component during the
corresponding interval. This resulted in a 3x15 measurement matrix y. Then, the
scalar un(p) was calculated with equation 3.23

un(p) =
∥∥Ta

−1 Sa
−1 (yn − ba)

∥∥ for n = 1...15 (3.23)

where yn is the n-th column of y, and p is a vector constructed with the unknown
parameters of Ta, Sa and ba:

p = [sx sy sz bx by bz α β γ]T (3.24)

Note that un(p) is a scalar, because it is the norm of a vector. Taking uref =

9.804m/s2 (the reference value of the norm of gravity in Bilbao), the function 3.22
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was minimized, in order to estimate p with a non-linear constrained optimization
algorithm using the Matlab function fmincon. The initial value of this vector was
chosen as follows:

p0 = [1 1 1 0 0 0 π/2 π/2 π/2]T (3.25)

The constrains for the optimization algorithm were defined as follows:

0.8 < sx , sy , sz < 1.3 − 0.3 < bx , by , bz < 0.3 57.3◦ < α, β, γ < 103◦ (3.26)

After estimating the parameters of Sa, Ta and ba, the alignment procedure was
applied. In this procedure, the IMU was firmly attached to a servomotor, with one
of its axes aligned with the longitudinal axis of the servomotor, as shown in Figure
3.20. As it can be seen, a new case was designed and produced with a 3D printer,
in order to firmly attach the myRIO, the battery and the IMU to the rotor of the
servomotor. The base of the servomotor (black board in the picture) was inclined
about 10 degrees with respect to the horizontal, and the IMU was rotated at a
constant speed of 100◦/s. Then, 10 revolutions were counted using a photocell,
which was connected to the myRIO (see Figure 3.20). The photocell enabled to
include the time instants of the start of each revolution in the data file stored by the
myRIO. In this way, it was possible to calculate the time required to complete 10
revolutions (20π rad). Then, another axis of the IMU was aligned with the axis of
the rotor of the servomotor, and the same procedure was repeated. Finally, the third
axis of the IMU was aligned with the axis of the rotor, and a third file was recorded
by the myRIO.

If the measurement axes of the IMU were perfectly aligned with the axes of
the PCB of the AltIMU, a rotation about the x-axis of the PCB (keeping the x-
axis inclined about 10◦ as described above) would produce a constant acceleration
measurement on the x-axis of the IMU. This measurement would be equivalent to
the projection of the gravity vector on the x-axis of the IMU. However, due to the
misalignment, the measurement on the x-axis of the IMU was similar to a sinusoid,
as shown in Figure 3.21.

Before estimating the parameters of Ma, the accelerometer data captured during
the alignment procedure were partially calibrated with the parameters of Sa, Ta and
ba that were estimated in the scalar field calibration process. Then, the readings of
the accelerometer during the 10 revolutions about the x-axis were used to estimate
ψ and θ, based on equation 3.27.

Ta
−1 Sa

−1 (yn − ba) = Rx(φ) Ry(θ) Rz(ψ) un (3.27)

Since the misalignment angle φ will not change the x component of un on the
right-hand side of equation 3.27, the x component of un can be compared with the
x component of the left side of equation 3.28
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3.3. Experimental setup for validating the proposed algorithm

Figure 3.20: Alignment procedure for the calibration of the accelerometer and gyro-
scope
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Figure 3.21: Calibration of misalignment of the accelerometer

[
Rz
−1(ψ) Ry

−1(θ) Ta
−1 Sa

−1 (yn − ba)
]
x

= [un]x (3.28)

As explained above, the x component of u is constant for every sample n in a
rotation about the x-axis, and it corresponds to the mean of the sinusoid observed
in Figure 3.21. Hence, the parameters ψ and θ can be estimated with unconstrained
nonlinear optimization, by minimizing the function 3.22, where

uref =
1

N

N∑
n=1

[cn]x (3.29)

cn = Ta
−1 Sa

−1 (yn − ba) (3.30)

un(p) = [dn(θ, ψ)]x (3.31)

dn(θ, ψ) = Rz
T (ψ) Ry

T (θ) cn (3.32)

p = [θ ψ]T (3.33)

and yn are the measurements of the accelerometer at sample n when the IMU is
rotated about the x-axis.

After estimating the values of θ and ψ, the accelerometer measurements recorded
during the 10 revolutions about the z-axis can be partially aligned. In order to estimate
the value of φ, unconstrained nonlinear optimization is applied again, minimizing the
function 3.22, where
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uref =
1

N

N∑
n=1

[cn]z (3.34)

cn = Ta
−1 Sa

−1 (yn − ba) (3.35)

un(p) = [dn(φ)]z (3.36)

dn(φ) = Rz
T (ψ) Ry

T (θ) Ry
T (φ) cn (3.37)

p = φ (3.38)

and yn are the measurements of the accelerometer at sample n when the IMU is
rotated about the z-axis.

After finishing the calibration procedure for the accelerometer, the following cal-
ibration parameters were obtained for the session of the experiments presented in
section 3.4:

ba = [0.1840 0.1104 0.0828]T (3.39)

Sa =

1.0009 0 0

0 1.0027 0

0 0 1.0049

 (3.40)

Ta =

 1 0 0

0.0007 1 0

0.0113 −0.0028 1

 (3.41)

Ma =

 0.9999 −0.0022 0.0153

0.0026 0.9998 −0.0208

−0.0153 0.0208 0.9997

 (3.42)

Gyroscope
The parameters of the model of the gyroscope were also calibrated in two steps.

Firstly, the scalar field procedure was applied to estimate the gyroscope bias bg.
Secondly, the data of the alignment procedure were used to estimate the parameters
of Sg, Tg and Mg.

The gyroscope bias bg was estimated as the mean of gyroscope measurements
during the 15 static intervals of the scalar field procedure.

Before estimating the other parameters, the estimated offset bg was subtracted
from the gyroscope measurements recorded during the rotations about each of the
three axes. Then, the components of the angular velocity vector were integrated
during the interval of the 10 revolutions for each recording. The resulting angles
were arranged into the following matrix:

91



Chapter 3. ESTIMATION OF THE PITCH ANGLE OF THE CRUTCH

Y =

yxx yxy yxz
yyx yyy yyz
yzx yzy yzz

 (3.43)

where yi j represent the i-th component of the integrated gyroscope measurement
during the rotation about the j-th axis. If the gyroscope was perfectly calibrated,
the matrix Y would be a diagonal matrix, because the angular velocity measurements
on the axes that are perpendicular to the axis of the rotor would be zero. Since the
gyroscope measurements are integrated in the interval of 10 revolutions, the result
should be 20π rad. Therefore, the ideal result would be given by matrix Y:

A =

20π 0 0

0 20π 0

0 0 20π

 (3.44)

Considering the gyroscope calibration matrices Sg, Tg and Mg, the following
relationship can be established:

Y = Sg Tg Mg A (3.45)

Post-multiplying both sides by A−1 and then post-multiplying the result by the
transpose on both sides, equation 3.46 is obtained.

(
YA−1

) (
YA−1

)T
= (Sg Tg Mg)(Sg Tg Mg)T (3.46)

Since Mg is orthonormal, Mg (Mg)T = I. In addition, Sg is a diagonal matrix, Tg

is a lower triangular matrix, and
(
YA−1

) (
YA−1

)T
is a symmetric and positive definite

matrix. Hence, using Cholesky’s decomposition, the left-hand side of equation 3.46
can be decomposed into a lower triangular matrix and its transpose. Then, the
matrices Sg and Tg were determined applying LU decomposition.

Finally, Mg was estimated by solving for it from equation 3.45.

Mg = T−1
g S−1

g Y A−1 (3.47)

After finishing the calibration procedure for the gyroscope, the following calibration
parameters were obtained for the session of the experiments presented in section 3.4:
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bg = [−0.0025 − 0.0306 − 0.0610]T (3.48)

Sg =

1.0082 0 0

0 0.9888 0

0 0 1.0047

 (3.49)

Tg =

 1 0 0

−0.0159 1 0

0.0142 0.0081 1

 (3.50)

Mg =

 0.9999 −0.0092 0.0120

0.0087 0.9998 0.0198

−0.0121 −0.0199. 0.9997

 (3.51)

In order to validate the calibration of the measurements in the x component of the
gyroscope, which corresponds to the pitch angle of the crutch, another experiment
was carried out using the Vicon MCS. In this experiment, the crutch was moved by
hand back and forth without touching the ground, at different random angular ve-
locities within the measurement range. The reference angular velocity was calculated
based on the position of the markers attached to a case parallel to the YZ plane
of the crutch. The x components of angular velocities were compared in the IMU
sensors’ frame of reference (SFR).

The results of this validation experiment are shown in Figure 3.22. Figure 3.22a
shows the correlation between gyroscope measurements and the angular velocities
calculated using MCS measurements. The coefficient of determination of this cloud
was R2 = 0.9721. Figure 3.22b presents the time evolution of both the MCS signal,
used as reference, and the calibrated gyroscope measurements.

The relatively low coefficient of determination and the existence of scattered
points far from the thick linear cloud in Figure 3.22a were due to the impulses that
can be seen in the green signal (Vicon signal) of Figure 3.22b. These impulses were
perturbations in the MCS signal, which occurred after deriving an orientation signal
with discontinuities. Hence, they did not represent the real angular velocity and should
not be trusted. The orientation signal calculated based on Vicon markers’ positions
had some discontinuities due to gaps and occlusion of some markers during some
intervals. The effect of these discontinuities was observed in the angular velocity
measurement even though the gaps were filled and the Vicon signal was filtered with
a low-pass filter. Excluding these perturbations, the RMS error was 4.3◦/s. Hence,
the calibrated gyroscope measurements stuck well to the MCS signal.

3.3.3.4. Calibration of magnetic field measurement

Although the magnetometer is not required by the algorithm proposed in this
chapter, it is used in equation 3.11 of the validation procedure, in order to estimate
the orientation of the GFR with respect to the SFR. Hence, the magnetometer was
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Figure 3.22: Validation of the measurements of the x component of the gyroscope.
(a) Correlation between gyroscope and motion capture system (MCS) measurements.
(b) Evolution of angular velocity measurements. SFR, sensors’ frame of reference.
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calibrated for hard-iron and soft-iron effects, following the procedure detailed in [146],
which is detailed next.

On the one hand, the hard-iron effect refers to the magnetic perturbation due
to permanently magnetized ferromagnetic elements around the magnetometer. This
perturbation is typically modeled as an offset vector VHI , because it is assumed to be
constant and rotating together with the magnetometer. The zero-field offset b can
be added to the hard-iron offset and compensate both effects together, by defining
a hard-iron vector V:

V = VHI + b (3.52)

On the other hand, the soft-iron effect is defined as the interfering magnetic field
induced by the geomagnetic field onto normally unmagnetized ferromagnetic elements
near from the magnetometer. It is assumed that the soft-iron field is linearly related to
the geomagnetic field measured in the GFR by the 3x3 matrix Wsof t . The alignment,
orthogonality and sensitivity matrices can be compensated together with Wsof t , by
defining the following soft-iron matrix W:

W = S T M Wsof t (3.53)

If the measurements of the magnetometer are not calibrated, equation B.2 can
be rewritten as equation 3.54:

Bp =

mxmy
mz

 = W Rx(φ) Ry(θ) Rz(ψ)B

 cosδ
0

−sinδ

+ V (3.54)

Operating, equation 3.54 can be rewritten as 3.55:

W−1 (Bp − V) = Rx(φ) Ry(θ) Rz(ψ)B

 cosδ
0

−sinδ

 (3.55)

Premultiplying the left-hand side of equation 3.55 by its transpose, the following
expression is obtained:

[
W−1 (Bp − V)

]T
W−1 (Bp − V) = (Bp − V)T

[
W−1

]T
W−1 (Bp − V) (3.56)

The general expression of the locus of a vector R lying on the surface of an
ellipsoid with center at R0 is given by equation 3.57.

(R− R0)TA(R− R0) = k (3.57)
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where A is a symmetric matrix and k is a constant.

Thus, equation 3.56 describes an ellipsoid, where R0 = V and A =
[
W−1

]T
W−1

Since the solution for W−1 is not unique, the matrix W is constrained to be
symmetric, having only six degrees of freedom. This constraint is justified, because
an arbitrary rotation could be included in the estimated inverse soft-iron matrix W−1

and the result of equation 3.56 would be the same (a sphere will still be a sphere
under any arbitrary rotation). Therefore:

A = W−1 W−1 → W−1 = A0.5 (3.58)

The eigenvector Xi and eigenvalues λi of W−1 are defined by equation 3.59.

W−1 Xi = λi Xi (3.59)

Since W−1 is symmetric, the eigenvectors of A, which indicate the directions of
the principal axes of the ellipsoid, are the same as the eigenvectors Xi of matrix W−1,
and the eigenvalues of A are the square of the eigenvalues λi of matrix W−1:

A Xi =
[
W−1

]T
W−1 Xi = W−1 λi Xi = λ2

i Xi (3.60)

Thus, the symmetric matrix W−1 shrinks the ellipsoid into a sphere along its
principal axes, without applying any spurious rotation.

In order to estimate the parameters of the ellipsoid and calibrate the magnetome-
ter, a simple calibration procedure was carried out. The crutch was lifted with a hand,
so that the tip stayed at least a meter above the ground, far from any ferromagnetic
elements and magnetic perturbations. Then, the crutch was rotated 360◦ about each
of its 3 axes. Next, it was rotated 90◦ about its y -axis, and then it was rotated 360◦

about each of its 3 axes. Afterwards, it was rotated 90◦ about its x-axis, and then
it was rotated again 360◦ about each of its 3 axes. Finally, the crutch was rotated
randomly and slowly.

All the magnetometer measurements of this procedure were stored in a single file,
and they were plotted with a scatter plot. The parameters of the best-fitting ellipsoid
were calculated with the function ellipsoid-fit, which can be downloaded from
Matlab’s File Exchange [153]. Then, the inverse of the soft-iron matrix was calculated
based on equations 3.59 and 3.60. Finally, the radii of the ellipsoid (r1, r2, r3) and the
radius of the sphere (B) were calculated.

After finishing the calibration procedure for the magnetometer, the following pa-
rameters were obtained for the session of the experiments presented in section 3.4:
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V =

−0.0153

−0.0612

0.5129

 (3.61)

A =

 249.62 −224.19 177.53

−224.19 249.10 −172.76

177.53 −172.76 156.28

 (3.62)

Q = [X1 X2 X3] =

−0.6150 0.4839 0.6226

−0.0073 0.7861 −0.6181

0.7885 0.3847 0.4799

 (3.63)

D =

λ1 0 0

0 λ2 0

0 0 λ3

 =

19.39 0 0

0 26.55 0

0 0 609.05

 (3.64)

W−1 = Q

√λ1 0 0

0
√
λ2 0

0 0
√
λ3

 Q−1 =

12.44 −7.52 6.20

−7.52 12.61 −5.79

6.20 −5.79 9.18

 (3.65)

R =

r1r2
r3

 =


√

1/λ1√
1/λ2√
1/λ3

 =

0.2271

0.1941

0.0405

 (3.66)

B = 3
√
r1 · r2 · r3 = 0.1213 (3.67)

3.4. Results of the validation of the proposed algorithm

This section presents the results of the validation experiments described in section
3.3. Firstly, it explains the graphical results of one of the experiments and it presents
a visual comparison with respect to the reference angle calculated based on the
measurements of the MCS. Then, it shows a table with the RMS error for each cycle
of each experiment detailed in section 3.3, and it discusses the numerical results,
comparing them with the results presented by other authors. This section finishes with
a discussion of the limitations and possible improvements of the proposed approach.

Figure 3.23 depicts the time evolution of the calibrated force sensor measure-
ments, gyroscope integration signal, the estimated pitch angle provided by the pro-
posed sensor fusion algorithm, and the reference inclination measured by the 3D
Vicon motion capture system (MCS) for the data of the first task performed by the
first subject. The vertical purple lines indicate the beginning and end of each cycle of
the crutch movement. Since the algorithm corrects the estimated pitch angle at the
end of each stance phase, the cycle of the crutch in these experiments was defined
so that each cycle started at the beginning of the swing phase and finished at the
end of the next stance phase. The first subject turned around in the fourth cycle of
this experiment. As it can be seen, the proposed algorithm (blue signal) provided an
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Figure 3.23: Estimated pitch angle obtained applying the presented algorithm.
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accurate estimation of the inclination if compared with the MCS measurement (pink
signal).

Note that the proposed algorithm updated the estimated value of the pitch angle
at every cycle, when the stance phase ended. This is best seen at the end of the
stance phase of the fourth cycle, after the subject turned around. It can be seen that,
during this cycle, the estimated signal differed significantly from the reference, due to
the error generated during the rotation about the global vertical axis. Recall that the
angular rate of the pitch angle of the crutch can be calculated as (ωy cosφ−ωz sinφ).
When the user turned around, the angular velocity on the global vertical axis was
relatively large, and its projection on the y -axis of the crutch was not negligible, even
for a small roll angle. Thus, the component ωz sinφ was not negligible during the
turn.

This is illustrated in Figure 3.24, where the crutch is rotating only about the
global z-axis with angular velocity ω (i.e. only the yaw angle is changing). The blue
plane is the plane YZ of the CFR (i.e. the plane of the roll angle rotation of the
crutch), the yellow plane is the XZ plane of the CFR, and the purple plane is the
XY plane of the CFR. ωx , ωy and ωz are the projections of ω on each axis of the
CFR. The projections of ωz and ωy on the intersection between the YZ plane of
the CFR and the global horizontal plane are ωz sinφ and ωy cosφ, respectively. As
it can be observed, both vectors have the same module and direction, but opposite
sign. In fact, it can be easily shown by basic trigonometry that, in the case of a pure
rotation about the global z-axis, the projection of the angular velocity on the z-axis
of the CFR is ω cosθ cosφ, and the projection on the y -axis of the CFR is ω cosθ sinφ.
Hence, the angular rate of the pitch angle in the case of a pure rotation about the
global vertical axis (i.e. when only the yaw angle changes) is given by equation 3.68:

θ̇ = ωy cosφ− ωz sinφ = ω cosθ sinφ cosφ− ω cosθ cosφ sinφ = 0 (3.68)

Therefore, the derivative of the pitch angle is zero when the crutch rotates ex-
clusively about the global z-axis. Consequently, the measurement ωy in this case is
only due to a rotation in yaw and not due to a rotation in pitch.

Hence, when the subject turned around, the angular velocity measured on the
x-axis of the gyroscope (which is aligned with the y -axis of the crutch) was not only
due to a difference in the pitch angle, but also due to a difference in the yaw angle.
Therefore, integrating the measurements on the x-axis of the gyroscope caused a
deviation from the reference pitch angle. However, at the end of the stance phase,
based on the inclinometer’s measurements, the pitch angle estimation was updated
to a value very close to the reference.

Unlike during a turn, when the subject walks following a straight line, the angular
velocities measured on the x-axis of the gyroscope are mainly due to a difference in
the pitch angle. If the roll angle is below 15 degrees during the entire cycle of the
crutch, the angular velocity error due to the zero roll assumption is given by equation
3.69:
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Figure 3.24: Graphical representation of the angular velocities measured by the gy-
roscope during a rotation about the global Z axis.

ωe < ωy −
(
ωy cos

(π
6

)
− ωz sin

(π
6

))
= ωy

(
1− cos

(π
6

))
+ ωz sin

(π
6

)
(3.69)

ωe < 0.034ωy + 0.259ωz

Hence, if there is no rotation in yaw and the subject does not turn the crutch
about its longitudinal axis during normal walk (i.e. no pronosupination movement of
the wrist), ωz will be zero and the angular rate error due to the zero roll assumption
will be below 3.4%.

In addition, it can be seen in Figure 3.23 that, in general, the estimated signal was
slightly larger than the reference signal. This was not only due to the zero roll as-
sumption, but also due to noise in the inclinometer’s and gyroscope’s measurements,
and due to small nongravitational accelerations during the stance phase. However,
this deviation from the reference signal was small, as detailed in the next paragraphs.

Table 3.2 compares the root mean squared (RMS) errors obtained by integrating
directly the gyroscope signal and applying the algorithm proposed in Section 3.2 with
the three subjects. The cycles, during which participants turned, are highlighted in
bold. SXRY means subject number X, repetition number Y. For example, Subject 1
completed eight cycles and turned on the fourth cycle in his first trial, as depicted in
Figure 3.23, while in his second trial, he walked with longer strides and only completed
five cycles.
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As it could be expected, the integral of the gyroscope was relatively good at the
beginning, but it presented large errors in the long run due to turns and the drift
effect. However, the signal estimated by the proposed algorithm showed small errors
during the whole trial in all cases, except for the turning cycles. The average RMS
error for all the cycles, excluding the cycles in which the subject was turning, was
1.13 degrees, and the maximum RMS error for one of these cycles was 2.75 degrees.

The results in Table 3.2 show that the assumptions detailed in Section 3.2 lead to
a good approximation and that the described algorithm was able to correct the error of
the gyroscope signal. Unlike most signal processing algorithms proposed in the liter-
ature for instrumented crutches, this algorithm did not assume that nongravitational
accelerations due to quick movements during the swing phase and accelerometer
perturbations due to impacts with the ground were negligible.

Although the authors in [192] did not disclose the value of the mean RMS error in
the estimation of the crutch inclination during normal walking, they presented a plot
comparing the crutch tilt angles measured by an MCS and the approach proposed
in that article. It can be easily appreciated from this plot that the mean RMS error
must be over 5◦, which is far from 1.13◦ of the algorithm proposed in this work. In
addition, Culmer et al. [33] reported an RMS error of 0.73◦ for the pitch angle, but
that result was achieved for a single participant and after post-processing all the data
with a smoother, so it is not suitable for online estimation. Furthermore, Gorordo
et al. [73] estimated the orientation of a cane with different estimation algorithms,
obtaining a mean RMS error of 1.4◦ using an indirect Kalman filter, and 0.92◦ using
Madgwick’s filter. These results are comparable to the accuracy obtained by the
proposed algorithm, but the corrections of the aforementioned algorithms can be
affected by magnetic perturbations.

Although the algorithm showed a good accuracy with the simple tasks described in
subsection 3.3.1, it cannot be generalized to a wide range of movements of a whole
group of patients or potential users based on these data. Additional experiments
are needed in the future, in order to test the algorithm with non-uniform motion
conditions and more complicated tasks, both with healthy subjects and with patients.

In addition, the algorithm presented in this chapter assumes that the roll angle is
zero, but this is not true during normal movement. In chapter 4, the fundamental idea
of the algorithm presented in section 3.2 is generalized to estimate the 3D orientation
of the crutch, without assuming zero roll. In this way, it is possible to estimate the
anteroposterior and mediolateral inclinations, even if there is no IMU strapped to
the body trunk of the user, as explained in [20]. Furthermore, the method for the
detection of the stance phases described in subsection 3.2.3 does not precisely detect
the exact sample corresponding to the end of each stance phase, because it depends
on the threshold selected for the force sensor. A novel and more accurate method to
detect the stance phases is proposed in chapter 4, combining the force measurements
with the measurements of the gyroscope and accelerometer.
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Table 3.2: RMS errors for the six trials (expressed in degrees). S, subject; R, repeti-
tion.
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3.5. Case of study with patients with multiple sclerosis

As explained in section 3.1, the developed prototype and the proposed algorithm
are intended for gait monitoring and analysis of patients with neurological diseases.
This section presents the preliminary results of a case of study with patients with
multiple sclerosis (MS).

Although there have been studies to assess the gait performance of patients with
Parkinson and stroke using an instrumented cane, there is not any research study
that has attempted to evaluate the functional mobility of MS patients using an in-
strumented crutch or cane. In addition, different authors have proposed distinct
parameters to assess the gait performance of patients with neurological impairments,
or to evaluate the probability of various events, such as falls and freezing of gait.
This section presents a set of objective and quantitative parameters to assess gait
performance and level of impairment in patients with MS, as well as to determine
crutch usage patterns.

A well-known clinical test was conducted with four patients with MS, and the
measurements captured by the instrumented crutch were processed to estimate the
proposed parameters. The preliminary experimental results are presented and dis-
cussed, shedding light on how these parameters might be useful to characterize the
walking pattern of each patient, and assess gait performance and functional mobility
of MS patients.

3.5.1. Experimental setup and methods

This subsection explains the experimental protocol that was followed in the trials
with patients with MS. In addition, the data processing procedure and the parameters
selected for assessing movement quality are described.

3.5.1.1. Trial methodology

The trials with patients with MS were conducted in the facilities of ADEMBI
(Multiple Sclerosis Association of Biscay) and approved by the Ethics Committee of
Clinical Research of the Basque Country (CEIm) with Approval Code PS2018017.

In order to select the appropriate patients with MS, the Expanded Disability Status
Scale (EDSS) was used. The EDSS is a traditional clinical scale used to assess the
disability of patients with MS and it ranges from 0 (no disability) to 10 (dead) [100].
The determination of EDSS scores between 4 and 7 heavily depends on aspects of
walking ability. This way, patients with a score of 6 or 6.5 need the help of a crutch
or cane to walk, but they can walk 100 meters or more. However, patients with a
score of 7 or higher are unable to walk more than a few steps, even with assistive
devices.

A set of four patients with EDSS scores higher or equal to 6 were selected for
this preliminary analysis, whose characteristics are summarized in Table 3.3. The first
column shows the weight of the patients on the day of the experiments, the second
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Figure 3.25: 10-Meter Walk Test (10MWT) setup

presents the EDSS score and the third one indicates the number of crutches used in
the trial.

Table 3.3: Characteristics of the selected patients with MS

Weight (Kg) EDSS Number of crutches
Patient 1 77.8 6 1 crutch
Patient 2 83.7 6 1 crutch
Patient 3 62.8 6.5 1 crutch
Patient 4 63.3 7.5 2 crutches

The selected test was the 10-Meter Walk Test (10MWT). This is a standard
clinical test frequently used to measure the walking capability of patients. In addition,
various studies have shown that it has validity and an excellent reliability in many
conditions and with different populations with neuromuscular diseases [195].

In order to execute the test, a 10 meter walkway was marked on the floor and a
pair of photocells were placed at 1 m and at 9 m from the start line. The photocells
were placed at the height of the body trunk and the walking speed was calculated
based on the time elapsed between both photocell gates, allowing the first and last
meters in the 10 meter walkway for acceleration and deceleration. The experimental
setup is summarized in Fig.3.25.

Prior to the test, the sensorized tip was attached to the assistive device of each
patient. Then, patients were asked to stand behind the start line and, when the
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3.5. Case of study with patients with multiple sclerosis

therapist indicated, walk at their normal and comfortable pace and stop after the 10
meter line. During the test, the average speed was estimated from the times recorded
by the photocells, while the sensorized tip captured the force and inclination data.
Each patient performed this trial twice, except for patient 4, who was too tired to
repeat the experiment due to his condition (EDSS score 7.5). For this case, in which
the patient used two crutches, the sensorized tip was attached to the crutch used by
the dominant hand.

3.5.1.2. Selected indicators

The 10MWT only considers the mean speed in the central interval to evaluate the
gait performance. However, other parameters can be defined and calculated based on
the information provided by the sensors integrated in the instrumented crutch. The
hypothesis behind this work is that these additional parameters might provide further
objective and quantitative information about how the subject is using the crutch and
what is the level of impairment of the patient.

The following set of parameters was defined by the authors based on their clinical
experience and on the literature review:

Average speed [195]: for this calculation, the time instants at which the body
trunk crosses the lines are taken as a reference.

Number of cycles [182]: the number of crutch cycles (swing/stance phases)
observed in the force sensor signal as per Fig. 3.8.

Average of the Maxima of Percentage of Body Weight (avg max PBW) [164,
175]: for each crutch cycle, the maximum force applied on the crutch is mea-
sured and expressed as a percentage of the body weight of each patient. This
indicator is the mean of the values associated to all cycles.

Average Percentage of Body Weight (avg PBW) [175]: for each crutch stance
phase, the average force applied on the crutch is calculated and expressed as
a percentage of the body weight of each patient. The indicator is the mean of
the values associated to all cycles.

Average of peak to peak time (avg PPT): for each two consecutive cycles, the
time from a maximum force value to the next one is calculated, and the average
of all these values is computed.

Average cycle time [182]: it is the mean of the times between the starts of two
consecutive stance phases.

Average Stance Phase Time (avg SPT) [127]: for each cycle, the time of the
stance phase is measured, and the mean of all cycles is calculated.

Average Stance Phase Percentage (avg SPP) [182]: for each cycle, the time
of the stance phase is measured and compared with the measured cycle time,
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calculating the relative percentage of the stance phase with respect to the whole
cycle. The mean of all cycles gives the value of this indicator.

Mean pitch angle at force maximum (avg PAFM): it is the mean of the pitch
angles at the time instants corresponding to the maximum value of the force
sensor signal at each stance phase. This angle is estimated with the algorithm
described in subsection 3.2.

Mean pitch angle at initial contact (avg PAIC): it is the mean of the pitch
angles at the start of the stance phases.

Mean pitch angle at terminal contact (avg PATC): it is the mean of the pitch
angles at the end of the stance phases.

Mean stance pitch angle (avg SPA) [205]: it is the mean of the pitch angles at
all time instants of the crutch stance phase.

Mean of pitch angle amplitude (avg PAA) [33]: it is the mean of the differences
between the angles at the ends of the stance phases and the angles at the starts
of the stance phases.

3.5.2. Results and discussion

In this section, results from the test defined in the previous section will be detailed
and analyzed. Table 3.4 shows the results obtained from the data recorded with the
patients. Note that for the patients who did the experiment twice, the mean values
of the two repetitions are presented.

First, the correlation between the EDSS score and the set of parameters defined
in the previous section has been analyzed, which are summarized in Table 3.5. From
the data, it can be observed that the parameters related to the motion speed of the
patient are highly correlated with the EDSS score. These include the average speed,
the number of cycles, the average cycle time and the average peak to peak time
(PPT). These results suggest that the higher the EDSS score is, the lower will be
the functional mobility of the patients and they will walk slower, they will need more
steps, and they will need more time to complete each step. In addition, the mean
pitch angle amplitude (PAA) is moderately correlated with the EDSS score, which
suggests that the angular range of the crutch will be smaller and the steps will be
shorter for higher scores.

A second set of indicators related to the load or weight applied on the crutch is
highly correlated with the EDSS score: the average of the maxima of PBW and the
average PBW during stance phases. This means that the higher the EDSS score
is, the greater will be the force applied on the crutch. Note that patient 4 walks
with 2 crutches, but only the load applied on one crutch was measured. Hence,
even higher values will be expected on these parameters, if a symmetrical crutch load
configuration is considered. Moreover, the force will be applied for a longer time in
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each cycle for higher EDSS scores, since the average SPT and the average SPP are
also correlated with the EDSS score.

The rest of parameters detailed in subsection 3.5.1.2 (the ones related to the
values of the pitch angle at initial, maximum and terminal contact points, i.e., PAIC,
PAFM and PATC) were not significantly associated with the EDSS, but they provide
insightful information about the use of the crutch and they can reveal differences
between patients with the same EDSS score. This might be important to characterize
gait and provide further information about the status of the patient.

For instance, looking at the values of mean PAIC and mean PATC in table 3.4,
it can be seen that patient 2 supports on the crutch only when its pitch angle has
negative values, while patient 1 starts the stance phase with a negative pitch angle
(crutch tip in front of the body) and finishes it with a positive pitch angle (crutch tip

Table 3.4: Summary of indicators for patients with MS.

Patient 1 2 3 4
EDSS 6 6 6.5 7.5

Avg. speed (m/s) 0.695 0.646 0.523 0.147
Number of cycles 8 8 8 24

Avg. Max PBW (%) 14.0 13.7 27.6 45.1
Avg. PBW(%) 8.4 8.2 20.4 27.3
Avg. PPT (s) 1.47 1.51 1.82 2.25
Avg. cycle
time (s) 1.48 1.53 1.94 2.25

Avg. SPT (s) 0.81 0.87 1.29 1.60
Avg. SPP (%) 54.4 56.6 66.9 71.4
Avg. PAFM (◦) -7.73 -16.22 -3.11 -2.17
Avg. PAIC (◦) -16.37 -21.02 -16.02 -14.52
Avg. PATC (◦) 4.91 -3.33 3.17 -3.89
Avg. SPA (◦) -4.71 -14.28 -3.7 -7.82
Avg. PAA (◦) 21.27 17.68 19.2 10.63

Table 3.5: Indicators with best correlation with EDSS score

Indicator R2 Indicator R2

Avg. Speed 0.8414 Avg. Max. PBW 0.9734
Nr. of cycles 0.8854 Avg. PBW 0.8613

Avg. cycle time 0.91 Avg. SPP 0.7761
Avg. PPT 0.9616 Avg. SPT 0.8859
Avg. PAA 0.6251
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behind the body). Consequently, the mean SPA is greater (more negative) for patient
2 than for patient 1. In addition, patient 2 applies its maximum weight at a much
bigger pitch angle (when the crutch is more inclined) than patient 1 and the mean
PAA for patient 2 is significantly smaller than for patient 1, despite having the same
EDSS score. Hence, the estimation of this angle allows to give more information
about the particular use that each patient gives to the assistive device.

Note that this is a preliminary study to assess gait performance and level of impair-
ment of MS patients using the presented sensorized tip and the proposed parameters.
In order to determine the validity and reliability of these parameters, as well as their
general correlation with the clinical scales traditionally used to detect changes in the
gait performance of the patient, a more exhaustive analysis would be required, in-
cluding a higher number of patients with a variety of EDSS scores. For example,
the F-observed value for the data corresponding to the average of the maxima of
PBW is 159.13, but the table of Snedecor’s F-test shows that the critical value for 3
degrees of freedom and p = 0.05 is 215.71. This means that the probability that the
observed correlation was by chance is greater than 5% and the results are not sta-
tistically significant. Therefore, the results presented in this paper are not sufficient
to generalize and they might be biased due to the small size and limited scope of the
sample.

However, the results give interesting insights to continue research in the area of
objective gait monitoring and assessment of the level of impairment. In particular,
the parameters related to the motion speed, and to the force applied by the crutch
are potential candidates to be correlated with the EDSS, while the characterization
of the pitch angle allows to determine how the crutch is being used by the patient,
and hence, may provide a more detailed analysis of functional mobility.

3.6. Conclusions

An instrumented crutch or cane for gait monitoring in rehabilitation can be used to
monitor crutch movement variables, which might be related to the recovery status of
a patient that requires rehabilitation. Estimating physical activity, performing clinical
diagnosis, or improvement of gait training are some of the potential application areas
of instrumented crutches. However, measuring the inclination of a crutch using only
MEMS sensors involves tackling some challenges. For example, integrating the output
of a gyroscope introduces a drift, which is hard to remove, and using accelerometers
or inclinometers presents the drawback of nongravitational accelerations.

In this chapter, a novel algorithm for estimating the pitch angle of the crutch has
been proposed, based on the detection of crutch stance phases and the measurements
of the inclinometer and gyroscope. The main limitations of the proposed algorithm
are that it assumes that the roll angle is zero and that nongravitational accelerations
are negligible during the central interval of the stance phase. However, the roll angle
is usually small during normal gait with a crutch or cane, and the algorithm does not
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assume that inertial accelerations are negligible during the whole cycle of the crutch.
In addition, the proposed prototype is small, lightweight, low-cost, easy to use and
non-invasive.

In order to validate the algorithm, a set of experiments was carried out with three
healthy volunteers, comparing the values estimated by the proposed algorithm and
the data provided by a 3D motion capture system. The calculated average RMS
error, excluding turning cycles, was 1.13 degrees, which validates the approach.

The presented results show that the algorithm is able to estimate the pitch angle
of the crutch with good accuracy when the user is walking following a straight line. In
addition, the algorithm corrects the deviation caused when the user turns or changes
direction. This is a significant advancement, because it allows monitoring accurately
and with a low computational cost an important crutch movement variable, which
might provide additional objective and quantitative clinical information.

Finally, some clinical trials with MS patients were conducted, as a case of study
with the developed instrumented crutch to show how it might be useful to assess gait
performance and level of impairment. The proposed algorithm was used to estimate
various parameters related to the pitch angle, and the force sensor signal was used
to calculate some other parameters related to the motion of the crutch and the
applied weight. The results suggest that the average speed, the number of cycles,
the average cycle time, the average peak to peak time, the average of the maxima
of PBW, and the average PBW during stance phases might be highly correlated with
the EDSS score. In addition, the parameters related to the pitch angle of the crutch
could help with the characterization of the gait patterns, providing a more detailed
and granular analysis to detect differences between patients with the same score.
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4
ESTIMATION OF THE CRUTCH
ORIENTATION AND WALKING

DISTANCE

Two variables of special interest to monitor the movement of an instrumented
crutch or cane are the orientation and walking distance. Accelerometers and incli-
nometers can be used to estimate the roll and pitch angles of the crutch or cane, while
the magnetometer can provide heading information. However, the measurements of
these sensors suffer large perturbations during assisted gait, so the estimated orienta-
tion presents substantial errors. The measurements of the gyroscope are insensitive to
inertial accelerations and magnetic perturbations, but the drift of the gyroscope bias,
the measurement noise and the high-frequency vibrations produce large accumulated
errors after integration.

In chapter 3, a new sensor fusion algorithm was presented to estimate the pitch
angle of a crutch, based on the measurements of a force sensor, an inclinometer
and a gyroscope. However, that algorithm assumes that the roll angle is zero and
the estimated pitch angle presents a large error during turns. Hence, a more robust
solution is required, which also estimates the roll angle. In addition, estimating the
pitch and roll angles is required to develop accurate distance estimation algorithms.

This chapter extends into the 3D space the fundamental idea of the algorithm
presented in chapter 3, by applying a complementary filter, which can correct the roll
and pitch angles estimated by the gyroscope, using only the accelerometer measure-
ments. Unlike many attitude estimation algorithms reviewed in the literature, this
complementary filter decouples the correction of the pitch and roll angles from the
correction of the yaw angle. Therefore, the estimated inclination of the crutch is
not affected by magnetic perturbations. Moreover, the proposed method is highly
accurate, it does not require a reference acceleration due to gravity, and it is com-
putationally more efficient than an EKF. The new approach is based on the CAHRS
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filter presented by Del Rosario et al. [163], but the value of the accelerometer tuning
parameter is automatically adapted according to the phase of the crutch and non-
gravitational accelerations, which provides an increased accuracy by correcting the
gyroscope integral only when the accelerometer measurements are reliable.

In addition, this chapter also presents an approach to estimate the walking distance
with the developed instrumented crutch, based on an algorithm that improves the
method presented by Dang et al. [36] with a new procedure that accurately detects
the beginning and end of each stance phase. This is achieved by combining the
measurements of the accelerometer, the gyroscope and the force sensor. The new
approach is validated by comparing its estimation with the measurements of an XSens
AHRS module and a Vicon MCS.

The rest of the chapter is organized as follows: in section 4.1, a new version of
the prototype presented in section 3.1 is described; in section 4.2, the new algorithm
developed to estimate the orientation of the crutch and the method proposed to
estimate the walking distance are explained; in section 4.3, the experimental setup
and the procedures followed to validate the proposed approach are described; in
section 4.4, the results of the experiments are presented and discussed; and finally,
in section 4.5, the main conclusions are emphasized.

4.1. Instrumented crutch tip prototype

This section presents the second version of the instrumented crutch tip prototype,
which was developed for gait monitoring of patients with neurological impairments.
Compared with the first version described in section 3.1, the second version introduces
significant improvements, such as a smaller weight, a lower energy consumption, and
the replacement of the AltIMU-10 by the more accurate Xsens MTi-3. Figure 4.1
shows the second version of the developed prototype.

The Xsens-MTi3 is a high-precision 9-DOF IMU that also integrates a proprietary
AHRS algorithm. Note that although the internal AHRS algorithm of Xsens, which
is based on an EKF, already provides an estimation of the global orientation of the
device, the algorithm proposed in this chapter also estimates the global attitude
of the AHRS module based on the calibrated IMU measurements provided by this
device. However, the orientation estimated by the internal AHRS algorithm will only
be used to compare the attitude estimated by the proposed method in certain cases,
as explained in section 4.4.

Like in the first version, the battery of the second version is not included in the
crutch tip, because numerous patients with neurological impairments have limited
muscle strength and they can not produce large torques in the arm joints [31]. How-
ever, instead of using the myRIO 1900 to capture the data from the sensors, the
second version uses an Arduino board (BLE nano v2) with the nRF52 microcon-
troller. This board is very small and lightweight, so it is integrated in the crutch tip.
Therefore, the battery can be carried in a pocket and connected to the crutch tip
with a USB cable, eliminating the need of wearing a special belt for the data acqui-
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Figure 4.1: Elements of the presented prototype, with the crutch frame of reference
and the rotation angles (ψ: yaw, θ: pitch, φ: roll)

sition device. The battery of the first version was replaced by a smaller and lower
capacity battery, which only weighs 75g, because the aforementioned Arduino board
has a lower energy consumption than the myRIO 1900.

The mechanical design of the second version of the instrumented crutch tip is very
similar to the design of the first version. However, the weight of the aluminium parts
was significantly reduced by making the walls of the case thinner and by increasing
the size of the holes, while keeping the ability to bear large loads and impacts. As
a result, the weight of the crutch tip prototype was decreased from 240g to 180g,
including all the sensors and the data processing board. The union of the tip to the
pole of a crutch or cane was also modified, replacing the screwed clamp-style part by
a cylinder with two screws to quickly adjust the tip to a wide range of crutches and
canes without the need of any tools. The diameter was decreased to 50 mm, but the
length of the housing was increased from 49 mm to 60 mm, in order to include the
AHRS module and the Arduino board.

The second version also includes an HBM C9C force sensor with a nominal load
of 1 kN, but it has no inclinometer. In addition, it integrates a barometer (BMP280)
and the Xsens MTi-3 AHRS module, which includes a 3-axis accelerometer (range
±156.96 m/s2), a 3-axis gyroscope (range ±2000◦/s) and a 3-axis magnetometer
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(range ±0.8 g). Like the AltIMU 10, the Xsens module also has a resolution of
16 bits for each component of the accelerometer, gyroscope and magnetometer. In
order to minimize the dead zone described in section 3.3.3.1, a pre-load is applied to
the force sensor.

The aforementioned sensors are integrated into another PCB, which includes the
same amplifier for the force sensor signal (TI-INA118) and the connections for the
Arduino board. The data captured by the nRF52 microcontroller are transmitted to
a computer or smartphone via Bluetooth 4.0 low-energy (BLE) at a frequency of 50
Hz. Since it is a low-energy Bluetooth, the battery, which has a capacity of 2400
mAh, can power the system during a whole day. The data acquisition system not only
captures the measurements of the force sensor, the barometer, the accelerometer,
the gyroscope and the magnetometer, but also the attitude estimated by the EKF
algorithm developed by Xsens. This orientation is referenced with respect to the ENU
local tangent plane, defined by the x-axis pointing to the East, the y -axis pointing to
the North, and the z-axis pointing up. This is represented by XFR in Figure 4.6. In
addition, the nRF52 microcontroller applies a moving average filter (window width is
0.1 s) to the force sensor signal before sending the measurements via Bluetooth, in
order to reduce their noise.

An important benefit of using the Xsens MTi-3 instead of the AltIMU 10 is that the
measurements of the accelerometer, the gyroscope and the magnetometer are already
calibrated by the AHRS module, which also includes an internal EKF. As it can be
observed in the block diagram in Figure 4.2, the Cortex M4 microcontroller integrated
in the AHRS module reads the measurements of the IMU and the magnetometer at a
frequency of 1000 Hz, and it applies the calibration parameters and settings stored in
the non-volatile memory. Then, it applies a low-pass filter and performs a strap-down
integration (SDI) with the calibrated and filtered measurements of the gyroscope
and accelerometer before sending the result to the nRF52 microcontroller via the I2C
communication protocol.

The measurement model used for the calibration of the accelerometer, the gyro-
scope and the magnetometer of the XSens MTi-3 is the same as the model defined by
equation 3.19, but the parameters of the sensitivity matrix or gain, the orthogonality
matrix, the alignment matrix and the sensor bias are stored in the non-volatile memory
of the AHRS module as a function of temperature. These temperature-dependent
parameters were calculated and tested during the factory calibration. Using the tem-
perature measurement of the thermometer integrated in the AHRS module, the values
of the calibration parameters are automatically adjusted according to the temperature
of the module. In addition, the gyroscope bias instability is lower than 10 degrees per
hour, and the angular rate bias is continuously estimated by the internal code of the
AHRS module. Consequently, the typical angular rate bias of the gyroscope is smaller
than ±0.1◦/s. Note that, unlike the procedure described in subsection 3.3.3.3, the
calibration performed by the AHRS module compensates for temperature effects and
the drift of gyroscope bias automatically and dynamically. Therefore, there is no need
to repeat the procedure described in subsection 3.3.3.3. However, the AHRS module
requires some initialization time to update the calibration parameters and stabilize
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Figure 4.2: Block diagram of the MTi-1 series module

the output. This time depends on a number of factors, such as the correction of the
bias of the gyroscope.

More details about the SDI procedure and the calibration of the sensors integrated
in the AHRS module can be found in appendix E.

4.2. Sensor fusion algorithm for monitoring crutch inclination
and walking distance

A novel sensor fusion method for estimating the inclination of the crutch and
the walking distance is described in this section. The proposed method is based on
the CAHRS filter, which was presented by Del Rosario et al. [163]. The CAHRS
is a sensor fusion algorithm, which allows to estimate the orientation of a MIMU by
combining the calibrated accelerometer, gyroscope and magnetometer data [163].
The original algorithm was intended for gait monitoring by wearing a smartphone in a
pocket, and the weights for accelerometer and magnetometer corrections were fixed.
In contrast, this work proposes to adjust the CAHRS filter to the motion of a crutch
or cane, including an adaptive accelerometer weight for each phase of the movement
of the walking aid.
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Figure 4.3 shows the block diagram of the proposed algorithm, which is divided
in three main stages. Firstly, the algorithm determines the phase of the crutch at
each time instant, based on the measurements of the accelerometer, the gyroscope
and the force sensor. The phases and phase transition events of the movement of
the crutch are defined in section 3.2.1. Based on the detected phase, the value of
the accelerometer tuning parameter µa is calculated. This parameter determines the
influence of the accelerometer on the estimation of the pitch and roll angles of the
SFR with respect to the GFR. More details of the procedure to detect the phases
and determine the values of µa are provided in subsection 4.2.1.
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Figure 4.3: Block diagram of the proposed sensor fusion algorithm for estimating
crutch inclination and walking distance.

In a second stage, the adjusted accelerometer tuning parameter µa, along with
the fixed magnetometer tuning parameter µm, are fed into the CAHRS filter. The
parameter µm determines the weight of the magnetometer in the final estimation of
the yaw angle in the GFR. The CAHRS filter uses this information and the measure-
ments of the gyroscope, the accelerometer and the magnetometer to estimate the
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Figure 4.4: Phases of the crutch for two crutch cycles.

orientation of the SFR with respect to the GFR at each time instant (
G

Sq
′′′

k ).

Finally, the algorithm uses the estimated orientation to rotate the accelerometer
measurements to the GFR (resulting in a’ in Figure 4.3) and subtract the acceleration
due to gravity. After the integration of the resulting acceleration (a”), it applies the
zero-velocity update (ZUPT) when the crutch tip is in contact with the ground, based
on an inverted pendulum model. The walking distance (d) is estimated by integrating
these velocities (v’) and calculating the module of the position (p) projected on the
global XY plane.

In the following subsections, each of the aforementioned stages is detailed. Sec-
tion 4.2.1 explains the procedure to detect the phases of the crutch cycle and adjust
the accelerometer tuning parameter µa, section 4.2.2 reviews the main equations and
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stages of the CAHRS filter, and section 4.2.3 describes the procedure proposed to
estimate the walking distance.

4.2.1. Adaptive weight calculation

This subsection details the method proposed to detect the phases of the crutch
cycle and the procedure to adjust the values of the accelerometer tuning parameter
(µa) according to the phase of the crutch. The parameter µa establishes the rate at
which the accelerometer corrects the pitch and roll angles estimated by integrating
gyroscope measurements [163].

Applying a fixed value to the accelerometer tuning parameter µa presents some
drawbacks. If the fixed value of µa is very small, the influence of the accelerometer
will be very weak and the estimated pitch and roll angles will have a significant error
over time, due to the bias and white noise of gyroscope measurements. In contrast,
if the value of µa is too large, the inertial accelerations during swing phases and the
vibrations caused by the impacts of the crutch against the ground will introduce a
large error. In fact, as it can be seen in Figure 4.4, the norm of inertial accelerations
(red signal) is close to zero only during the central interval of stance phases, but it
can not be assumed to be zero during the swing phases or at the beginning and end
of stance phases.

Applying the same fundamental hypothesis as in the algorithm described in section
3.2.3, the accuracy of the estimated orientation can be improved. That is, assuming
that non-gravitational accelerations are small during the central interval of stance
phases, the value of µa can be adapted according to the phase of the crutch, in
order to get a more accurate estimate. This way, a large value µast is defined for
µa in the central interval of the stance phase, when inertial accelerations are small
and there are no perturbations due to impacts, in order to give more weight to the
accelerometer correction rate of the pitch and roll angles (see Figure 4.5). For the
rest of the cycle, a smaller value µasw is defined for µa, in order to give more weight
to the gyroscope and limit the effect of inertial accelerations and impacts. The values
µast and µasw were selected based on experimental data, as explained in subsections
4.3.3 and 4.4.3.

The adaptive weight calculation procedure is explained next. In order to facilitate
the understanding, this explanation assumes that all the measurement data of an
experiment are available and that the data are post-processed to detect the phases.
However, this procedure can also be applied online, because the phases of the crutch
cycle can be detected with less than one cycle of delay, using a moving window as
described in the algorithm presented in section 3.2.3. Therefore, this does not imply
that the orientation and distance can not be estimated in real time with the algorithm
proposed in this section. In fact, the orientation and distance can be estimated in real
time by integration of gyroscope and inertial accelerations, and the updates of one
cycle can be applied to the next cycle by integrating angular rates and accelerations
from the updated sample, as shown in equation 3.2.
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First of all, the limits between the crutch phases are detected. For that purpose,
the data from both the force sensor and the IMU are used. The first step is to
use the filtered force sensor measurements (blue signal in Figure 4.4) to detect the
approximate limits of the stance and swing phases, based on a force threshold (fmin)
and a time interval threshold (tmin). This way, a sample belongs to a stance phase
if it belongs to an interval where the value of the force signal is over fmin for at least
tmin seconds.

In the second step, the absolute values of the gyroscope measurements on the
axis that is aligned with the y -axis of the CFR are calculated (green signal in Figure
4.4). Then, the algorithm searches for the relative minimum before and after each
stance phase detected in the first step. These values must be less than tmax seconds
away from the start and end of each stance phase, respectively.

In the third step, the algorithm calculates the norm of the accelerometer mea-
surements and it subtracts the value of the acceleration due to gravity (getting the
red signal in Figure 4.4). In order to detect the initial contact (IC) sample of each
stance phase (see green dots or letter A in Figure 4.4), it searches for a relative max-
imum in the norm of inertial accelerations. This relative maximum must be between
the sample corresponding to the minimum absolute angular velocity detected in the
second step and the sample corresponding to the start of the stance phase detected
in the first step. In addition, it also searches for the relative maximum that appears
in the force signal due to the impact against the ground (see cyan dots or letter
B in Figure 4.4). This is detected by deriving the force sensor signal and search-
ing for a relative maximum that is followed by a relative minimum. If the relative
maximum of the norm of inertial accelerations is below amin and the height of the
relative maximum of the force signal with respect to the following relative minimum is
greater than hmin, the sample corresponding to the relative maximum of the force is
taken as a reference. Otherwise, the sample corresponding to the relative maximum
of acceleration is considered as a reference value. The initial contact sample will
be the sample that comes before this reference value. The algorithm also finds the
sample corresponding to the maximum value of the force signal in the stance phase
(see red dots or letter C in Figure 4.4). The terminal contact (TC) sample of each
stance phase (see magenta dots or letter D in Figure 4.4) corresponds to the relative
maximum in the norm of the inertial accelerations. This relative maximum must be
between the end of the stance phase detected in the first step and the sample of the
relative minimum detected in the second step.

Once the stance and swing phases have been identified, a working area ti is
considered for each stance phase. This working area is highlighted in yellow in Figure
4.5. The working area discards the first and last 100ms of the stance phase, in order
to avoid the effect of vibrations and perturbations due to phase transitions.

Finally, a tuning parameter λ is defined, which determines the percentage of the
working area ti , during which the value of µa will be µast , giving more weight to the
orientation estimated using the accelerometer measurements. This percentage of the
working area will be centered in the middle of the stance phase, as shown in Figure
4.5. During the rest of the cycle, the value of µa will be µasw , so that the estimated
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Figure 4.5: Plot representing the procedure for the adaptive weight calculation.

pitch and roll angles rely more on the gyroscope signal.

4.2.2. CAHRS Algorithm

Once the crutch phases have been detected and a suitable value has been given
to the accelerometer tuning parameter µa according to the corresponding phase, the
3D orientation of the crutch is calculated using the CAHRS algorithm.

As detailed in previous sections, the CAHRS algorithm allows to estimate the
attitude of the sensor frame with respect to the global frame, based on the data
measured by a MIMU and the tuning parameters µa and µm. The full development of
the CAHRS algorithm is detailed by Del Rosario et al. in [163], but a brief summary
is presented in this subsection. However, note that the original CAHRS algorithm
presented in [163] uses a fixed value for µa, but the approach presented here uses an
adaptive value for µa, according to the phase of the crutch, as explained in subsection
4.2.1.

The block diagram in Figure 4.3 represents the main steps of the CAHRS filter.
The first step of the algorithm is to estimate the relative orientation between the
attitude of the MIMU at sample k and the attitude at sample k − 1 by integrating
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gyroscope measurements. As explained in subsection 2.2.2, the relative orientation
resulting from a rotation with a constant angular rate over the sampling period can
be expressed by the angular rate quaternion qω, which is defined by equation 2.22.
This equation is rewritten here, for the convenience of the reader:

(qω)k =

[
1

1

2
(ωx)kT

1

2
(ωy )kT

1

2
(ωz)kT

]
(4.1)

where T is the sampling period and ωx , ωy and ωz are the components of the angular
velocity measured by the gyroscope. The attitude of the MIMU with respect to the
GFR at time instant k is consequently estimated as:

G

Sq
′

k = qk−1 ⊗ (qω)k (4.2)

where qk−1 is the attitude estimated at the previous time instant and ⊗ denotes
quaternion multiplication. A tilde means that it is the attitude estimated after the
gyroscope update, two tildes indicate that it is the estimation after the accelerometer
update, and three tildes represent the estimation after the magnetometer update. In
addition, all quaternions and rotation matrices are normalized, unless explicitly stated.

The second step of CAHRS is to transform the measurements of the accelerome-
ter into the GFR and rotate the attitude estimated in the first step. The accelerom-
eter measurements can be expressed in the GFR, using the last attitude estimate, as
shown in equation 4.3

[0 a
′

x a
′

y a
′

z ] =
G

Sq
′

k ⊗ [0 Sak ]⊗
(
G

Sq
′

k

)∗
(4.3)

In the absence of translational accelerations, the acceleration vector in the GFR
should be aligned with the gravity vector. The angle between the gravity vector
in the GFR (eup = [0 0 1]) and the estimated acceleration vector in the GFR
(a
′

= [a
′

x a
′

y a
′

z ]) is γa. In the absence of nongraviational accelerations, the
acceleration vector estimated in the GFR could be corrected by rotating it the angle
γa about a unit vector nup, which is perpendicular to both a

′
and eup. Since inertial

accelerations are not negligible in general,
G

Sq
′

k is only rotated by a fraction of γa.
This fraction is determined by the value of µa, calculated as described in subsection
4.2.1, so the correction angle is given by µa γa:
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nup =
a
′ × eup∥∥a′ × eup

∥∥ (4.4)

γa = acos

(
a
′ · eup∥∥a′∥∥

)
(4.5)

(qup)k =
[

1 nup ·
(µaγa

2

)]
(4.6)

G

Sq
′′

k = (qup)k ⊗
G

Sq
′

k (4.7)

Note that this correction step does not require the local reference value of the
Earth’s gravity. It only uses the direction of the Earth’s gravity vector (eup =

[0 0 1]), which points upwards.
The third step is to correct the estimated yaw angle, using the measurements

from the magnetometer. After expressing the magnetometer measurements bk in
the GFR using the last attitude estimate, the magnetic field vector is projected onto
the estimated horizontal plane, obtaining bxy. This is expressed by the following
equations:

[0 b
′′

x b
′′

y b
′′

z ] =
G

Sq
′′

k ⊗ [0 Sbk ]⊗
(
G

Sq
′′

k

)∗
(4.8)

b
′′

xy = [b
′′

x b
′′

y 0] (4.9)

In the absence of magnetic perturbations, this projection should be aligned with
the x-axis of the GFR, which points northwards. The angle between the magne-
tometer’s measurements projection in the global XY plane (b

′′

xy ) and the x-axis of
the GFR (enorth = [1 0 0]) is γm. In the absence of magnetic distortions, b

′′

xy

could be corrected by rotating it the angle γm about a unit vector nnorth, which is
perpendicular to both b

′′

xy and enorth. Similar to the previous step, the last attitude
estimate is only rotated a fraction γm, because of magnetic distortions:

nnorth =
b
′′

xy × enorth∥∥b′′xy × enorth
∥∥ (4.10)

γm = acos

(
b
′′

xy · enorth∥∥b′′xy∥∥
)

(4.11)

(qnorth)k =
[

1 nnorth ·
(µmγm

2

)]
(4.12)

G

Sq
′′′

k = (qnorth)k ⊗
G

Sq
′′

k (4.13)

Note that the third correction step does not require the local reference value of
the Earth’s magnetic field. It only uses the direction of the projection of the magnetic
field in the horizontal plane (enorth = [1 0 0]), which points northwards.
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4.2.3. Distance estimation

After estimating the orientation of the crutch at each time instant, the accelerom-
eter measurements are rotated from the sensor frame of reference (SFR) to the global
frame of reference (GFR) as follows,

[0 Gak] =
G

Sq
′′′

k ⊗ [0 Sak]⊗
( G
Sq

′′′

k

)∗
(4.14)

where Sak and Gak denote the acceleration vector measured by the accelerometer at
time instant k , expressed in the SFR and GFR, respectively;

G

Sq
′′′

k is the normalized
quaternion expressing the estimated orientation of the SFR with respect to the GFR;
and

( G
Sq

′′′

k

)∗
is the conjugate quaternion.

Subsequently, the acceleration due to gravity is subtracted from the accelerom-
eter measurements in the GFR. The acceleration due to gravity is the norm of the
accelerometer measurements when the IMU is motionless (i.e. static interval). Since
the accelerometer measurements have some noise, this module is calculated as the
average over 1 second (the crutch must be completely motionless during this time).

G ăk = Gak − [0 0 ‖âstatic‖] (4.15)

where G ăk is the inertial acceleration vector at time instant k , expressed in the GFR;
and ‖âstatic‖ is the norm of the average acceleration vector over a static interval.

Next, it is possible to apply a high-pass filter to the accelerometer measurements.
Small errors in the estimation of the orientation can result in inaccurate acceleration
values in each of the GFR axes. These inaccuracies might cause a small and varying
acceleration offset or low-frequency oscillations in some GFR axes, which would mean
that the user had been accelerating in one direction over a few seconds. However, if
the user is walking at an approximately constant speed following a straight line, the
mean acceleration of the crutch should be zero in a sufficiently long time interval.
Applying a high-pass filter with a low cutting frequency can help overcoming this
problem, by removing the accelerometer offset and low-frequency oscillations. How-
ever, if the cutting frequency is too high, the filter will attenuate some short-term
acceleration components, which are vital for estimating dynamic changes in velocity.
It was experimentally observed that applying an FIR high-pass filter with stop fre-
quency of 0.02 Hz and pass frequency of 0.2 Hz provided an acceptable estimation
when the users walked following a straight line.

Afterwards, the velocities are estimated, according to the crutch phase. If the
crutch is in a swing phase at the current time instant, the velocities are estimated
by integrating the accelerations. The discrete integral is calculated applying Heun’s
method:

Gvk = Gvk−1 +
Ts
2

(G ăk−1 + G ăk) k ∈ swing phase
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where Ts is the sampling period, Gvk−1 and G ăk−1 are the velocity and acceleration at
the previous time instant, and Gvk and G ăk are the velocity and inertial acceleration
vectors at the current time instant. All these values are expressed in the GFR.

In contrast, if the crutch is in a stance phase (i.e. the crutch tip is in contact
with the ground), a zero velocity update (ZUPT) is applied, in order to correct
the accumulated velocity errors. As explained in section 2.3, ZUPT removes the
accumulated velocity errors, based on the knowledge that some points must have
zero velocity during some time intervals. For example, in the case of a crutch or
cane, the velocity at the tip of the crutch or cane must be zero when the user is
loading some weight on the assistive device. Thus, instead of applying a zero-velocity
detector like in [89] or [176], the stance phase of the crutch is detected as explained
in Section 4.2.1. ZUPT is also applied during the initial static interval, when the user
is standing still.

However, since the IMU is placed at a few centimeters away from the bottom
of the crutch tip, its velocity is not exactly zero, so assuming zero velocity would
introduce an error. During the stance phase of the crutch and the initial static
interval, the algorithm calculates the velocity of the IMU by applying the following
ZUPT formula:

Gvk = Gωk × r zk k ∈ stance phase (4.16)

where Gvk is the estimated velocity vector in the GFR at time instant k , r is the
distance between the bottom of the crutch tip and the IMU (in meters), zk is the
unit vector with the GFR components of the Z axis of the crutch at time instant k
so that the normalized rotation matrix is GSRk = [xk yk zk], and the angular velocities
in the GFR at time instant k are estimated as follows:

[0 Gωk ] =
G

Sq
′′′

k ⊗ [0 Sωk ]⊗
( G
Sq

′′′

k

)∗
(4.17)

After estimating the velocities, the positions are estimated by integration:

Gpk = Gpk−1 +
Ts
2

(Gvk−1 + Gvk) (4.18)

where Gpk−1 and Gpk are the position vectors at the previous and current time in-
stants, respectively.

Finally, the walking distance is calculated as the sum of the modules of the vectors
connecting two consecutive positions in the global XY plane:

d =

n−1∑
k=s

∣∣([px py 0]k+1 − [px py 0]k
)∣∣ (4.19)

where d is the walking distance, s and n are the samples corresponding to the start and
end of the walking activity respectively, and px and py are the X and Y components
of the estimated position vector in the GFR.
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4.3. Experimental setup for validating the proposed algorithm

This section describes the experimental methodology developed to validate the
approach presented in section 4.2. Subsection 4.3.1 describes the characteristics of
the subjects and the tasks that participants were asked to do. Then, subsection
4.3.2 explains the experimental setup, the definition of the frames of reference, and
the calibration and synchronization of the MCS. Finally, subsection 4.3.3, details the
selected values for the tuning parameters.

Note that, unlike in chapter 3, this section does not have a subsection about the
calibration of the sensors integrated in the crutch. This is because the Xsens MTi-3
AHRS module automatically calibrates itself during the initialization time, as explained
in section 4.1, and the force sensor was calibrated and validated in [20], following the
procedure explained in subsection 3.3.3.1. In addition, the algorithm presented in
section 4.2 does not require the exact value in Newtons, and it is sufficient to have
the force sensor signal in volts.

4.3.1. Description of participants and the tasks

Four healthy subjects participated in the experiments. The volunteers signed the
informed consent form and the experiments were approved by the Human Research
Ethics Committee of the University of the Basque Country (UPV/EHU) with ethics
Approval Code M10/2016/ 295MR1. The characteristics of the participants are
shown in Table 4.1.

Table 4.1: Characteristics of the subjects.

Gender Age Weight (kg) Height (cm)

Subject 1 Male 24 62 187
Subject 2 Male 23 66 170
Subject 3 Male 28 68 182
Subject 4 Male 26 77 182

Participants were asked to complete two tests: 1) a long-distance test in a cor-
ridor, aimed at determining the accuracy of the total distance estimation; and 2)
a short-distance test, which was carried out within the capture volume of a Vicon
MCS, aimed at accurately analyzing orientation and distance estimations at each time
instant.

The first test consisted in walking 30 meters following a straight line in a long
corridor. As the corridor had no specific distance measurement systems installed,
a brush with paint was attached to the tip of the crutch, so that it would leave a
mark on the floor at each point where the crutch was in contact with the ground.
After each subject completed the test, the distances between consecutive marks were
measured using tape measure, and they were registered in a notebook.
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The second test consisted in walking 4.5 meters within the capture area of an
MCS (Vicon motion systems ltd), following a straight line. Further details about the
setup, calibration and synchronization of the MCS are provided in subsection 4.3.2.

The four participants completed the first test once, but only three subjects did
the second test. However, each participant who did the second test repeated it three
times. Both tasks were completed following a 2-point contralateral gait pattern
without delay [158], using only one crutch with the right hand. Participants were
instructed how to walk with a crutch following the aforementioned pattern and they
were allowed some time to familiarize with the crutch. The subjects walked at their
normal and comfortable pace, trying to apply a 50% partial weight bearing (PWB).
In both tasks, the subjects waited for 10 seconds prior to the start of each test (or
repetition) without moving the crutch. This initial static interval is required, in order
to allow sufficient time for the automatic calibration of the sensors in the AHRS
module, calculate the average acceleration due to gravity (âstatic), and apply ZUPT
before the first swing phase.

4.3.2. Description of the validation procedure with the motion
capture system

The Vicon MCS system used in the second test is composed of seven Bonita
10 cameras (one megapixel, 250 Hz) and a Vero camera (2.2 megapixels, 250 Hz).
The orientation, focal distance, aperture and zoom of each camera were adjusted,
and then the system was calibrated using the Vicon active wand, as indicated by the
user’s manual. The volume origin was also established with the active wand.

Three reflective markers were attached to the crutch to capture its motion: one
at the tip and two at both ends of the hand grip (see red circles in Figure 4.6). The
3D positions of the markers were recorded by the MCS at a frequency of 100 frames
per second. These measurements were used to calculate the reference orientation
and position of the crutch. In order to compare the estimated orientation with the
reference values obtained with the Vicon MCS and the estimation given by the Xsens
AHRS module, the following reference systems were defined (see Figure 4.6):

Crutch frame of reference (CFR). It is defined by the three reflective markers
attached to the crutch. The CFR is defined as detailed in section 3.2.

Sensor frame of reference (SFR). It is defined by the orientation of the axes
of the AHRS module. The measurements of acceleration, angular rate and
magnetic field provided by the Xsens AHRS module are based on the SFR,
which is approximately aligned with the CFR, but rotated about 180 degrees
about the x-axis of the CFR. Note that the SFR defined here is different from
the SFR defined in subsection 3.3.2, because the MTi-3 and the AltIMU 10
were screwed with different orientations.

Motion capture frame of reference (MFR). It is the fixed origin of the capture
volume and it is defined using the active Vicon wand. This reference frame was
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slightly different in each session, because the MCS was calibrated again at the
beginning of each experimental session.

Cube frame of reference (UFR). It is defined by the markers stuck to the box
that was left still during all the sessions of the experiments. Therefore, this
orientation did not change between different experimental sessions.

Global frame of reference (GFR). It is defined by the z-axis pointing up and
aligned with the gravity vector, the x-axis pointing to the magnetic north, and
the y -axis pointing to the west.

Xsens ENU frame of reference (XFR). It is the default east-north-up (ENU)
reference coordinate system of the orientation estimated by the Xsens AHRS
module. As explained in section sec:prototypeCH4, it is defined by the z-axis
pointing up and aligned with gravity vector, the x-axis pointing to the east and
perpendicular to z , and y -axis to the magnetic north.

As explained in section 4.2.2, the CAHRS filter estimates the orientation of the
SFR with respect to the GFR (GSq). In addition, Vicon measurements can be used to
calculate the orientation of the CFR with respect to the MFR (MCq), and the Xsens
AHRS module estimates the orientation of the SFR with respect to the XFR (XSq). In
order to compare these three attitudes in the GFR, it is required to previously estimate
the orientation of the GFR with respect to the MFR (MGq), the orientation of the SFR
with respect to the CFR (CSq), and the orientation of the XFR with respect to the
GFR (GXq). Then, equation 4.20 can be used to compare the orientations estimated
with the proposed algorithm, the orientations estimated by the MTi-3 AHRS module,
and the reference values provided by Vicon.

G
Sqk = G

Xq⊗ X
Sqk =

(
M
Gq
)∗ ⊗ M

Cqk ⊗ C
Sq (4.20)

The orientation M
Cqk was calculated in a similar way to M

Pqk in subsection 3.3.2.
The only difference is that the z-axis of the CFR was defined as the vector that goes
from the marker at the tip to the marker at the rear end of the hand grip; and the
x-axis of the CFR was defined as the vector that goes from the marker at the rear
end of the hand grip to the marker at the front end, minus the projection of this
vector on the z-axis of the CFR. Then, equations 3.4, 3.5 and 3.6 are rewritten as
follows:

z =
v

‖v‖ (4.21)

x =
u− (u • v)z

‖u− (u • v)z‖ (4.22)

y = z× x (4.23)

(4.24)
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Figure 4.6: Frames of reference used in the MCS laboratory.

The orientation of the SFR with respect to the CFR (CSq) is assumed to be con-
stant in each experiment session and it was estimated by applying Horn’s method to
the accelerations measured in the dynamic part of one of the experiments, analogously
to (PSq) in subsection 3.3.2.

The quaternion M
Gq was estimated following the procedure described in subsection

3.3.2, but replacing the PFR by the CFR. This is also assumed to be constant in the
experiments of each session. The markers stuck to the cube can be used to estimate
this orientation for another session, applying equation 3.15.

Finally, the attitude G
Xq was estimated using the measurements recorded during

the experiment, in which the crutch was static all the time. For this purpose, the
orientation estimated by the AHRS module was averaged over the static interval,
obtaining the attitude X

Sq. In addition, the value of SGq over the static interval was
estimated as explained in subsection 3.3.2. Then, the orientation of the XFR with
respect to the GFR was estimated with equation 4.25.
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G
Xq =

(
S
Gq
)∗ ⊗ (XSq

)∗
(4.25)

In order to synchronize the signals recorded by the MCS with the measurements
captured by the instrumented crutch, the crutch tip was hit against the ground at
the beginning of each repetition, before the static interval. This impact resulted in a
peak in the z component of the accelerometer and a sudden decrease in the height of
the markers. The signals were synchronized by matching the acceleration peak with
the minimum height of the markers around that peak.

Since the AHRS module was placed at 10 cm from the base of the tip, the distance
between the bottom of the crutch tip and the IMU was r = 0.1 m.

4.3.3. Parameter tuning

The parameters fmin, tmin, tmax , amin, hmin, µast , µasw and λ were experimentally
tuned by trial and error to ensure accurate estimations. The results presented in
Section 4.4 were obtained setting the values fmin = 0.45V , tmin = 0.2s, tmax = 0.5s,
amin = 10m/s2, hmin = 0.03V , µast = 0.06, µasw = 0.0001 and λ = 0.6. In addition,
the parameter µm was set to 0.001, as it was experimentally found in [163] that this
is an optimal value for a range of walking exercises.

Note that the values of µast and µm were adjusted for a sampling frequency of 50
Hz. If a different sampling rate is chosen, these values can be adjusted using equation
4.26:

µnew = 1− (1− µold)fold/fnew (4.26)

where fold is the old sampling frequency and fnew is the new sampling frequency.
Note that if the selected tuning parameters are too small or too large, the accuracy

of the proposed algorithm will significantly decrease. A detailed discussion about the
selection of the tuning parameters is presented in subsection 4.4.3.

4.4. Results and discussion

This section presents and discusses the results obtained in the experiments de-
scribed in Section 4.3. The results of the long-distance test are analysed first, and
the results of the second test are discussed next.

4.4.1. Long-distance test

As detailed in subsection 4.3.1, the main goal of the first test was to evaluate the
accuracy of the distance estimation algorithm when the subjects walked 30 meters
following a straight line. This distance was estimated in three different ways for each
participant. The first two methods are based on the direct integration of the inertial
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Table 4.2: Relative distance estimation errors in the first test

Relative errors in % P1 P2 P3 P4 Mean
Gyroscope without filter 2.73 20.02 24.91 0.36 12.01
CAHRS without filter 0.18 1.51 2.36 0.37 1.11
CAHRS with filter 1.72 0.96 2.23 0.98 1.47

accelerations. In the first method, these accelerations were obtained based on the
crutch orientation estimated using the initial orientation estimate and the gyroscope
measurements only. The calibrated gyroscope measurements were integrated to esti-
mate the orientation at each time instant, and this orientation was used to rotate the
accelerometer measurements to the GFR and apply the proposed distance estimation
procedure without the high-pass filter. In contrast, the second and third methods
apply CAHRS to estimate the orientation of the crutch at each time instant, using
the adaptive calculation of the accelerometer tuning parameter µa, as explained in
subsection 4.2.1. The second procedure directly integrates accelerometer measure-
ments after rotating them to the GFR, whereas the third method applies a high-pass
filter before the integration, as explained in subsection 4.2.3.

Table 4.2 shows the results obtained for the first test. PX refers to participant
number X. The origin taken as a reference for distance measurement was the contact
point of the first stance phase (after the first swing phase).

As shown in the first row of Table 4.2, the relative error of the estimated distance
is very large applying the first method. This is because the estimated orientation has a
large error and this orientation is used to transform the accelerometer measurements
from the SFR to the GFR. As it was explained in subsection 2.2.2 and it will be shown
in subsection 4.4.2, the orientation estimated by directly integrating the calibrated
gyroscope measurements without applying any correction generates a large error.

In contrast, if CAHRS is applied, the maximum relative estimation error is 2.36%
and the mean relative error is 1.47% (see the second and third rows in Table 4.2).
However, it can be observed that applying a high-pass filter to inertial accelerations
does not significantly improve the estimation results. In addition, the results of the
last two rows are comparable with the results presented in [36], where the maximum
mean relative error was 1.27% in a similar test.

As it can be observed in Table 4.2, the largest errors using CAHRS were obtained
with the third participant. Figure 4.7 compares the reference distance at each contact
point with the distance estimated applying CAHRS with and without the high-pass
(hp) filter, for the data recorded with this participant. It can be seen that, although
the total distance estimation is slightly more accurate using the high-pass filter, the
estimation obtained using the high-pass filter has a larger error during the first 39
seconds. Therefore, filtering the accelerations in the GFR with a high-pass filter with
pass frequency of 0.2 Hz does not generally improve the distance estimation results.
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Figure 4.7: Estimated and reference distance at each contact point in the first task
(participant 3). The green circles indicate the reference distances measured with the
tape measure.

4.4.2. Short-distance test

The aim of the second test was to compare at each time instant the orienta-
tion and distance calculated based on Vicon measurements with the orientation and
distance estimated by the method proposed in section 4.2. An additional objective
of this test was to show that the pitch and roll estimation errors obtained with the
proposed algorithm are comparable to the errors of the XKF algorithm of Xsens.

Table 4.3 shows the estimation errors obtained for the second test. It compares
the errors of the XKF algorithm of Xsens with the errors of the algorithm presented
in this work, without applying a high-pass filter to accelerations. The reference orien-
tation of the SFR with respect to the GFR at each time instant was calculated based
on Vicon measurements, as explained in subsection 4.3.2. The reference distance
was the total distance between the 3D positions of the first and last contact points,
as measured by Vicon.

It can be observed that the largest RMS errors in pitch and roll for the proposed
algorithm were 0.84◦ and 0.46◦, respectively. In contrast, the largest RMS errors for
these angles were 0.88◦ and 0.42◦ for the XKF. These values are in line with the
accuracy indicated in the data sheet of the AHRS module, which reports that the
dynamic RMS errors in pitch and roll are below 1 degree. In addition, the biggest
relative distance estimation error was 3.08% for the proposed algorithm, and 2.78%
for the XKF. Therefore, it can be concluded that the errors obtained with both
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Table 4.3: Orientation and distance errors in the second test

First repetition
CAHRS without hp filter P1 P2 P3
RMS error in pitch (degrees) 0.68 0.45 0.48
RMS error in roll (degrees) 0.44 0.41 0.22
Relative distance error (%) 1.7 0.03 2.76
XKF (Xsens) P1 P2 P3
RMS error in pitch (degrees) 0.71 0.72 0.36
RMS error in roll (degrees) 0.42 0.35 0.19
Relative distance error (%) 1.09 2.61 1.39

Second repetition
CAHRS without hp filter P1 P2 P3
RMS error in pitch (degrees) 0.41 0.51 0.74
RMS error in roll (degrees) 0.32 0.38 0.44
Relative distance error (%) 0.84 2.5 3.08
XKF (Xsens) P1 P2 P3
RMS error in pitch (degrees) 0.41 0.57 0.85
RMS error in roll (degrees) 0.31 0.26 0.3
Relative distance error (%) 0.19 2.57 2.78

Third repetition
CAHRS without hp filter P1 P2 P3
RMS error in pitch (degrees) 0.84 0.77 0.54
RMS error in roll (degrees) 0.46 0.42 0.25
Relative distance error (%) 3.01 1.92 0.47
XKF (Xsens) P1 P2 P3
RMS error in pitch (degrees) 0.88 0.65 0.40
RMS error in roll (degrees) 0.37 0.35 0.29
Relative distance error (%) 1.98 1.82 0.16

orientation estimation algorithms are similar for this test, and there is no significant
difference.

Table 4.4 presents the mean errors calculated for the second test. It compares the
errors obtained by estimating the orientation with the proposed algorithm (without
applying the high-pass filter) and with the XKF algorithm of Xsens. In addition to
the means of the RMS errors in pitch and roll, it also presents the averages of the
mean errors and standard deviations in pitch and roll. For all cases, the reference
orientation was calculated based on Vicon measurements.

The results in Table 4.4 also show that the errors of the proposed algorithm
are comparable to the errors of the XKF algorithm. In addition, these errors are
smaller than the average RMS errors reported by Gorordo et al. [73], obtained
by applying an error-state EKF [161] and Madgwick’s filter [116] to estimate the
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Table 4.4: Mean orientation and distance errors in the second test

CAHRS XKF (Xsens)
RMS error in pitch (degrees) 0.60 0.62
RMS error in roll (degrees) 0.37 0.32
Norm of RMS errors in pitch and roll (degree) 0.70 0.70
Mean errors in pitch (degrees) 0.32 0.27
Mean errors in roll (degrees) 0.15 0.12
Standard deviation in pitch (degrees) 0.48 0.52
Standard deviation in roll (degrees) 0.33 0.29
Relative distance error (%) 1.81 1.62

orientation of a cane. However, an important benefit of CAHRS is its relatively low
computational cost. For example, the QEKF algorithm proposed by Sabatini [166]
requires 2536 multiplications and 2018 additions in each update, whereas the CAHRS
filter only needs 162 multiplications and 45 additions [163]. In addition, as explained
in subsection 4.2.2, CAHRS does not require reference measurements of the Earth’s
gravity and magnetic field. Finally, since the roll and pitch correction is decoupled
from the yaw correction, magnetic perturbations do not affect the estimation of the
pitch and roll angles of the crutch [163].

The aforementioned global results can also be deduced if the time evolution of
the orientation signals is analyzed. Figures 4.8 and 4.9 compare the pitch and roll
angles, respectively. These angles were calculated based on Vicon measurements
(yellow), estimated by the proposed algorithm (green), and estimated by the XKF
algorithm of Xsens (purple). It also shows the angle estimated using only gyroscope
measurements (dark blue) and using only accelerometer measurements (red). The
values of the accelerometer tuning parameter µa are also plotted (light blue).

Figure 4.8 shows that both CAHRS and XKF correct the gyroscope error in the
pitch angle already in the first cycle: at the second peak, the gyroscope signal (dark
blue) is well above the Vicon reference, but the estimations of CAHRS and XKF are
between those two. At the end of the swing phase, CAHRS slightly overestimates the
pitch angle, but it quickly corrects this error during the second stance phase, providing
an estimation that is very similar to the one calculated by XKF. Figure 4.9 represents
how both algorithms correct the gyroscope signal for the roll angle, providing an
accurate estimation, while the gyroscope signal accumulates an error. For example,
after 6 seconds, the roll angle estimated by direct gyroscope integration is over 0.7◦,
but the errors of both CAHRS and XKF are below 0.3◦. Figure 4.9 also shows that
the roll angle of the crutch is small (usually below 15 degrees) when a healthy person
walks following a straight line at a normal and comfortable pace. Therefore, these
results demonstrate a high accuracy and validate the proposed approach.
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Figure 4.8: Pitch angle of the sensor frame (SFR) with respect to the global frame
(GFR), estimated for the third repetition of the third participant.

4.4.3. The effect of tuning parameters

It is important to choose the tuning parameters µast and λ properly. If the value
of µast is too large or λ is too small, small perturbations during the central interval
of the stance phase can significantly alter the estimation of the proposed algorithm.
This effect is well represented in Figure 4.10. In the top plot, the effect of the random
acceleration peak in the middle of the stance phase is limited, because the window is
relatively wide and low. In contrast, this perturbation has a considerable effect in the
bottom plot, because the window is very narrow and high. Consequently, the RMS
error of the proposed algorithm is larger in the bottom plot.

Similarly, if µast is too low, the correction of the accelerometer will be very small
in each cycle, and a longer time will be needed to correct the drift of the gyroscope
signal. Finally, if λ is too large, the acceleration peaks due to the inertial accelerations
at the beginning and end of the stance phase might negatively affect the orientation
estimation. Therefore, the values of µast and λ should remain within some boundaries.

In order to adjust the values of µast and λ, the measurements corresponding to
the first repetition of each participant were considered. Different combinations of
µast and λ were tried, with 0.02 <= µast <= 0.2, and 0.4 <= λ <= 1. For each
combination and each participant, the module of the RMS errors in pitch and roll was
calculated. Then, the maximum error of the three participants was plotted for each
combination. Figure 4.11 shows the results of the calculated errors.

As it can be observed, the error generally increases for larger values of µast , and
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Figure 4.9: Roll angle of the sensor frame (SFR) with respect to the global frame
(GFR), estimated for the third repetition of the third participant.

this effect is dramatic if λ > 0.8, because of inertial accelerations at the beginning and
end of the stance phase. In addition, if µast is very small, the error will be slightly larger
than for intermediate values of µast , because the correction of the accelerometer will
be very limited. Based on these outcomes, the combination λ = 0.6, µast = 0.06

was selected, but other combinations in the region λ < 0.7 and µast > 0.04 could
also provide a good estimation, as shown in Figure 4.11.

As presented in table 4.3, the selected combination of tuning parameters also
provided a good estimation for the two other repetitions, but it might not be the
optimal combination. However, calculating the optimal combination is not a simple
task, because the errors are not only due to these parameters, and the trends might
be different for various repetitions. For example, it is difficult to determine if the error
obtained for an experiment is due to the selected combination of parameters, or due
to a wrong initialization, or an inaccurate synchronization for that experiment.

In addition, a small non-gravitational acceleration near from the middle of a stance
phase in one of the cycles of an experiment (e.g. due to a small impact in the stance
phase) could alter the surface of the RMS errors, but this might not happen in
other repetitions of the same task and with the same subject. Introducing safeguards
based on the norm of the accelerometer measurements over a time window might
help solving this problem, as explained in section 5.2.
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Figure 4.10: Roll angle of the sensor frame (SFR) with respect to the global frame
(GFR), estimated for the second repetition of the third participant with different
values of the tuning parameters. The top plot was obtained with µast = 0.06 and
λ = 0.6, while the bottom plot was calculated with µast = 0.3 and λ = 0.1.
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Figure 4.11: Largest module of the RMS errors of the pitch and roll angles for the
three participants in the first repetition

4.5. Conclusions

Gait monitoring of patients who use crutches or canes is important to evaluate
their mobility difficulties, to assess their recovery process, and to adjust the rehabili-
tation therapy accordingly. This can be achieved by integrating small motion sensors
in a crutch or cane. However, estimating the orientation of the crutch and the
walking distance is not trivial, because of the errors caused by inertial and magnetic
perturbations, and the drift and noise in gyroscope measurements.

This chapter presents a new approach, based on CAHRS algorithm to estimate
the orientation of the crutch, but it adjusts the accelerometer tuning parameter
according to the phase of the crutch cycle. After estimating the orientation, the
accelerometer measurements are expressed in the GFR and the acceleration due to
gravity is subtracted from these measurements. The velocities are estimated by
integrating inertial accelerations during the swing phase and by applying an inverse
pendulum model during the stance phase.

The results show that the proposed algorithm can estimate the walking distance
with an error below 3.1% when the user walks straight. Furthermore, the results
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demonstrate that applying a high-pass filter with pass frequency of 0.2 Hz to inertial
accelerations in the GFR does not improve the accuracy of the estimated walking
distance. In addition, the maximum RMS errors in pitch and roll are below 0.9◦ and
0.5◦, respectively. Moreover, the maximum and mean errors are comparable to those
obtained using the orientation estimated by the Xsens AHRS module without any
special adjustment to the motion of the crutch. However, the proposed approach
has a smaller computational cost, it does not require reference values of gravity and
magnetic field, and the correction of the roll and pitch angles is immune to magnetic
distortions.

Furthermore, the effect of the tuning parameters µast and λ has been discussed,
concluding that small non-gravitational accelerations in the middle of the stance phase
can significantly alter the estimated orientation if µast is very large and λ is very small.
In addition, non-gravitational accelerations at the beginning and end of the stance
phase can negatively affect the estimated attitude if λ is too large, and the gyroscope
drift and noise will reduce the accuracy of the proposed algorithm if µast is very small.
These values were tuned based on experimental data, but automatically tuning the
optimal values of these parameters is not a simple task.
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WORK

5.1. Conclusions

Neurological impairments such as stroke, TBI, SCI and MS affect millions of
people worldwide and they are associated with very large healthcare costs. Apart
from surgery and pharmacological treatment, rehabilitation therapies are essential
to improve the functional mobility of patients. Thanks to neural adaptations, many
patients are able to recover partial mobility and achieve significant functional im-
provements through rehabilitation therapies. In particular, exercise training therapies
can improve walking performance, aerobic capacity and muscle strength. The ther-
apies that include high-intensity and repetitive task-specific exercises achieve a more
efficient motor recovery.

Nevertheless, in order to achieve the best recovery, rehabilitation therapies have
to be adapted to the needs of each patient, by adjusting the optimal intensity and
duration. In order to determine which is the best therapy for each patient, it is nec-
essary to make an accurate and objective evaluation of the functional mobility of the
patient. This evaluation will also provide a measure of the walking performance and
amount of recovery. Hence, gait monitoring and analysis are essential for diagnostic
and treatment of patients with neurological impairments.

There are various reliable clinical scales, which are commonly used in practice to
assess the walking performance of neurological patients. However, these scales are
based on subjective observations or they use a limited number of objective measures.
Moreover, their assessment is restricted to a single test that is carried out in a clinical
setting on a particular day, so they are affected by high variability. Furthermore, they
have a limited granularity and they are unable to detect small but significant changes.
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Various technological devices have been developed to improve gait monitoring
and analysis, based on objective and quantitative measures, which are related to
the gait kinematics and kinetics. These devices can be classified into three groups:
instrumented walkways, motion capture systems and wearable sensors. The systems
in the first two groups provide high accuracy, but their measurements are limited to a
small capture area in a clinical setting. In contrast, systems based on wearable sensors
can be used for gait monitoring anywhere and continuously during long periods of time,
but they require complex sensor fusion algorithms to provide an accurate estimation.

In addition, attaching an IMU to the body introduces some drawbacks. For exam-
ple, they might be uncomfortable for some users, they might not be aligned accurately,
there might be small relative movements between the sensors and the body segments,
and they might suffer from vibrations and different perturbations. In order to solve
these problems, various researchers have developed instrumented crutches or canes
for gait monitoring and analysis. In particular, that kind of solution can be useful for a
wide range of applications, such as controlling the load applied on the assistive device,
classifying activities and events, estimating the energy expenditure, monitoring the
proper use of crutches or canes, assessing the functional mobility, evaluating the risk
of falls, and training with robotic exoskeletons. Many of these applications require
estimating the orientation of the assistive device and the walking distance. However,
very few authors proposed a robust sensor fusion algorithm to achieve an accurate es-
timation of the orientation and walking distance with an instrumented crutch or cane,
and their approaches present important limitations. For example, the estimated pitch
and roll angles are affected by magnetic perturbations, and the threshold-based phase
detection methods are sensitive to noise and perturbations due to small impacts.

The CAHRS filter is able to estimate the attitude and heading of a MIMU, de-
coupling the correction rate for the pitch and roll angles from the correction rate
for the yaw angle. Hence, the pitch and roll angles estimated by the CAHRS are
not affected by magnetic disturbances. Nevertheless, this filter requires tuning two
parameters, which determine the weights of the corrections of the accelerometer
and magnetometer. The original CAHRS filter uses fixed tuning parameters, which
can be determined based on an optimization with experimental data. However, this
approach can be improved for assisted gait, because non-gravitational accelerations
follow a pattern when a user walks with a crutch or cane.

This work introduces the hypothesis that non-gravitational accelerations are small
during the central interval of the stance phase of a crutch or cane, so the gyroscope
integral can be corrected using accelerometer measurements during that interval.
In chapter 3, a novel algorithm is proposed to estimate the pitch angle of a crutch,
based on this hypothesis. In order to validate the new approach, a novel instrumented
crutch tip prototype was developed. The prototype can be easily adjusted to different
crutches or canes, and it provides a lightweight, low-cost and flexible solution adapted
to the needs of neurological patients.

The proposed algorithm was validated with a set of experiments that were per-
formed by three healthy volunteers, comparing the angle estimated by the fusion
algorithm with the values obtained using a motion capture system. The results show
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that the algorithm is able to estimate the pitch angle of the crutch with a good
accuracy and a very low computational cost when the user walks following a straight
line. In addition, the algorithm corrects at the end of every stance phase the error
caused when the patient turns or changes direction. In fact, the results show that,
excluding turning cycles, the maximum RMS error in a single cycle is 2.75 degrees,
and the average RMS error for the three participants is 1.13 degrees.

The algorithm proposed in chapter 3 was also used to make a preliminary analysis
of the gait performance and level of impairment of MS patients. Four MS patients
with different EDSS scores completed the 10 MWT using the developed instrumented
crutch. Various objective and quantitative parameters were defined and calculated,
based on the measurements of the sensors integrated in the prototype. The results
suggest that the parameters related to the motion speed of the crutch and the weight
applied on the crutch might be highly correlated with the EDSS score. In contrast,
the parameters related to the pitch angle of the crutch could provide further details
for a more granular evaluation and detect different gait patterns in patients with the
same score.

However, the approach presented in chapter 3 assumes that the roll angle is zero
all the time. Although it has been observed that the roll angle is small when healthy
subjects walk following a straight line, this assumption introduces an error, which is
removed by the algorithm presented in chapter 4. The new approach described in
chapter 4 is based on the CAHRS filter, but it dynamically adjusts the accelerometer
tuning parameter according to the phase of the crutch. The adaptive weight calcu-
lation is based on the same hypothesis as in chapter 3, giving more weight to the
accelerometer during the central interval of the stance phase. This idea significantly
improves the estimation compared with using a fixed tuning parameter.

In addition, a novel and more robust and reliable method is presented to detect
the beginning and end of each stance phase, by combining event-based and threshold-
based methods, based on the measurements of the force sensor, the accelerometer
and the gyroscope. This is particularly relevant for estimating the walking distance,
because the errors produced by the impacts against the ground can be avoided by
applying a zero velocity update in the form of an inverted pendulum model. Fur-
thermore, this update removes the accumulated velocity errors generated due to the
integration of inertial accelerations.

An improved second version of the instrumented crutch tip prototype was de-
veloped, including an Xsens MTi-3 AHRS module, which provides calibrated sensor
measurements and the orientation estimated based on an EKF developed by Xsens.
Two different tests were performed with healthy participants, in order to validate the
new approach. The results show that the proposed method can estimate the walking
distance with an error below 3.1% when the user walks following a straight line. In
addition, the effect of high-pass filtering inertial accelerations was investigated, but
no significant improvements were observed.

Furthermore, the maximum RMS errors in pitch and roll obtained using the pro-
posed adaptation of the CAHRS filter are below 0.9◦ and 0.5◦, respectively. Moreover,
the maximum and mean roll and pitch estimation errors obtained for all repetitions in
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the short distance test are comparable to those obtained using the orientation esti-
mated by the AHRS module from Xsens, which does not apply any special adjustment
to the motion of the crutch. However, the CAHRS has a smaller computational cost,
it does not require reference values of the magnitude of the gravitational and geo-
magnetic fields, and the estimated pitch and roll angles are not affected by magnetic
perturbations.

5.2. Future work

Future work includes developing a procedure to tune the parameters µast and λ
automatically, which might be achieved by applying an adaptive gain method, includ-
ing safeguards against possible non-gravitational accelerations in the central interval
of the stance phase. For example, these safeguards could be based on the magni-
tude error of the norm of the accelerometer [196], on the detection of quasi-static
acceleration and magnetic fields based on the variance of the norm [159], or on an
error-state Kalman filter [162].

Although the results of the estimation of the crutch inclination and walking dis-
tance presented in section 4.4 are promising, more efforts are needed to bound and
reduce the effect of the different sources of errors that might decrease the accuracy
of the estimation algorithms and the validation procedure. The following are some
of the most remarkable sources of errors that should be considered:

Errors due to low sampling frequency. The data used by the prototype presented
in section 4.1 were sampled at 50 Hz, but the XKF used a higher sampling
frequency to estimate the orientation of the AHRS module.

Synchronization errors. The Vicon data were manually synchronized with the
data captured by the crutch. There might be a synchronization error of one or
two samples in some cases, because the Vicon data used for synchronization
were low-pass filtered, and the sample corresponding to the minimum height
was not very clear.

Errors in the estimated initial orientation. If the crutch is not completely still
at the beginning, small perturbations in the accelerometer might alter the es-
timated initial inclination. In addition, the measurement noise and inaccurate
calibration of the sensors can also affect the estimated initial inclination.

Errors in the estimation of the SFR with respect to the PFR or CFR. This
orientation was estimated by applying a minimization based on accelerometer
measurements, as explained in section 4.3.2, but accelerometer measurements
are subjected to perturbations.

Errors in Vicon measurements due to gaps or poor calibration. If a marker has
a gap, the gap has to be filled during the data processing, but the predicted
path might not be very accurate.
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Chapter 5. CONCLUSIONS AND FUTURE WORK

Furthermore, new methods should be developed to improve the heading estimation
in the presence of magnetic disturbances. The accuracy in the estimation of the yaw
angle is not very important to estimate the walking distance on a flat floor, because
the distance will be the same walking eastwards or northwards, for example. However,
some applications of instrumented crutches might require estimating the position, so
further work is needed to improve the estimation of the yaw angle. For example, the
magnetic angular rate update proposed by Renaudin et al. [159] might be useful to
improve the heading angle estimated by CAHRS.

Moreover, it would be interesting to make a quantitative comparison between the
proposed algorithm, Madgwick’s filter and the error-state EKF. In addition, further
experiments are needed to test the proposed algorithm with more complex move-
ments (e.g. walking following a circle or a zig-zag path) on different terrains (e.g.
uphill/downhill, upstairs/downstairs, carpets and soft grounds, etc.) and with a rep-
resentative group of patients, who have different gait patterns, including those with
crutch dragging patterns.

Moreover, more research is needed to accurately estimate the base of support and
centre of gravity when patients walk with a crutch or cane, based on the orientation
and position of the walking aid at each time instant.

Finally, additional studies are needed to investigate the different gait patterns of
neurological patients and characterize their movement. In addition, the correlation
between the estimated gait parameters and the traditional clinical scales should be
studied. This might facilitate to establish a procedure to accurately and objectively
assess walking performance and functional mobility, based on the kinematic parame-
ters estimated by the instrumented crutch tip.
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Appendices

This part presents the following appendices:
A: Proof of equations to estimate the roll and pitch angles with an accelerometer
B: Proof of equation to estimate the yaw angle with a magnetometer
C: Equations of the TRIAD and QUEST algorithms
D: Basic quaternion properties
E: Strap-down integration and calibration of magnetic disturbances in the Xsens
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A
Proof of equations to estimate the

roll and pitch angles with an
accelerometer

As explained in section 2.2.1.1, the measurements of a 3-axis accelerometer can
be used to estimate the pitch (θ) and roll (φ) angles in radians with the following
equations:

θ = atan

 −ax√
a2
y + a2

z

 (A.1)

φ = atan
(
ay
az

)
(A.2)

where ax , ay and az are the calibrated measurements of the accelerometer on each
axis.

Based on the assumptions detailed in section 2.2.1.1 and on Figure 2.6, the
acceleration vector measured by the accelerometer can be expressed by equation
A.3:

axay
az

 = Rx(φ) Ry(θ) Rz(ψ)

0

0

1

 (A.3)

where

Rx(φ) =

1 0 0

0 cosφ sinφ
0 −sinφ cosφ

 (A.4)

Ry(θ) =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 (A.5)

Rz(ψ) =

 cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (A.6)

Replacing matrices A.4, A.5 and A.6 in equation A.3, and multiplying the matrices,
the following equation is obtained:

axay
az

 =

 cosθcosψ cosθsinψ −sinθ
cosψsinθsinφ− cosφsinψ cosφcosψ + sinθsinφsinψ cosθsinφ
cosφcosψsinθ + sinφsinψ cosφsinθsinψ − cosψsinφ cosθcosφ

 0

0

1


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Multiplying the matrix by the vector on the right, the equation system A.7 is
obtained.

axay
az

 =

 −sinθ
cosθsinφ
cosθcosφ

 (A.7)

This equation system has three equations and two unknown variables (θ and φ).
However, in the absence of nongravitational acceleration, the norm of the three com-
ponents of the accelerometer must be 1g. Therefore, the system has only two inde-
pendent equations and it has a unique solution. Since the norm of the accelerometer
vector must be equal to 1g, equation A.7 can be rewritten in the form of equation
A.8:

a =
a

‖a‖ =
1√

a2
x + a2

y + a2
z

axay
az

 =
1√

a2
x + a2

y + a2
z

 −sinθ
cosθsinφ
cosθcosφ

 (A.8)

Dividing the second equation by the third equation in A.8, the roll angle can be
calculated:

cosθsinφ
cosθcosφ

= tanφ =

(
ay
az

)
(A.9)

Squaring and adding the second and the third equations of the system in A.8,
equation A.10 is obtained:

a2
y + a2

z

a2
x + a2

y + a2
z

= cos2θsin2φ+ cos2θcos2φ = cos2θ (A.10)

Dividing the first equation of the system in A.8 by the square root of equation
A.10, the solution for the pitch angle is obtained:

−sinθ
cosθ

= −tanθ =
ax√
a2
y + a2

z

→ tanθ =
−ax√
a2
y + a2

z

(A.11)

More details of this proof can be found in [150].
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B Proof of equation to estimate the
yaw angle with a magnetometer

As explained in section 2.2.1.2, the measurements of a 3-axis magnetometer can
be used to estimate the yaw angle (ψ) in radians, with the following equation:

ψ = atan
(
mE
mN

)
= atan

(
mzsinφ−mycosφ

mxcosθ +my sinθsinφ+mzsinθcosφ

)
(B.1)

where mx , my and mz are the calibrated magnetometer measurements on each axis,
and mE and mN are the transformed magnetometer measurements, in the east and
north directions, respectively.

The proof of this equation is based on the assumptions listed in subsection 2.2.1
and on Figures 2.6 and B.1. If the SFR of the magnetometer is aligned with the
GFR, the measurement on the Y axis of the magnetometer will be zero, and the
measurements on the other two axes will be B cosδ and B sinδ, as shown in Figure
B.1. B is the geomagnetic field strength and it depends on the location on the surface
of the earth. It ranges from a minimum of 22µT in South America to a maximum of
67µT in the south of Australia. δ is the inclination angle of the geomagnetic field,
measured as a positive angle downwards from the horizontal, and it also changes over
the world. It ranges from -90◦ (pointing up) in the south magnetic pole, through zero
near the equator to +90◦ near the north magnetic pole.

If the magnetometer is calibrated, the magnetic field vector measured by the
magnetometer after the three rotations Rz(ψ), Ry(θ) and Rx(φ) is given by equation
B.2.

mxmy
mz

 = Rx(φ) Ry(θ) Rz(ψ)B

 cosδ
0

−sinδ

 (B.2)

where Rx(φ), Ry(θ) and Rz(ψ) are defined by equations A.4, A.5 and A.6. Equation
B.2 can be rewritten as equation B.3:

Rz(ψ)

 B cosδ
0

−B sinδ

 = [Ry(θ)]−1 [Rx(φ)]−1

mxmy
mz

 (B.3)

Substituting the rotation matrices Rx(φ), Ry(θ) and Rz(ψ) by equations A.4, A.5
and A.6, respectively:

146



X
G 

= North

Z
G
 = Up

Y
Gδ

B

m
x
 = B cosδ

m
z
 = B sinδ

g

Figure B.1: Measurements of the magnetic field

 cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 B cosδ
0

−B sinδ

 =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

1 0 0

0 cosφ −sinφ
0 sinφ cosφ

mxmy
mz


(B.4)

Simplifying both parts of equation B.4:

 B cosψ cosδ
−B sinψ cosδ
−B sinδ

 =

 mx cosθ +my sinθ sinφ+mz sinθ cosφ
my cosφ−mz sinφ

−mx sinθ +my cosθ sinφ+mz cosθ cosφ

 (B.5)

The components of equation B.5 represent the components of the magnetometer
measurements, after calibrating and de-rotating to the flat plane where θ = φ = 0.
Therefore, the vector formed by the first two components points to the north and it
is aligned with the global X axis. Hence, the yaw angle can be calculated by dividing
the second component by the first component:

−B sinψ cosδ
B cosψ cosδ

= −tanψ → tanψ =
mz sinφ−my cosφ

mx cosθ +my sinθ sinφ+mz sinθ cosφ
(B.6)

More details of this proof can be found in [147].
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C Equations of the TRIAD and
QUEST algorithms

C.1. TRIAD algorithm

As explained in section 2.2.1, it is possible to use the calibrated measurements of
a 3-axis accelerometer and a 3-axis magnetometer to estimate the rotation matrix
that represents the 3D orientation of the SFR with respect to the GFR by applying
a deterministic procedure. One way to achieve this is by applying equations 2.1, 2.2
and 2.3. Another deterministic alternative is to apply the TRIAD algorithm, which
is detailed in [174]. The main equations of the TRIAD algorithm and the procedure
to calculate the rotation matrix that represents the aforementioned orientation are
explained next.

Normalizing the vectors in equations A.3 and B.2, the following equations are
obtained:

w1 = A v1 (C.1)

w2 = A v2 (C.2)

where

A = Rx(φ) Ry(θ) Rz(ψ) (C.3)

w1 =
a

|a| =
[ax ay az ]T√
a2
x + a2

y + a2
z

(C.4)

v1 =
[0 0 g]T√
02 + 02 + g2

= [0 0 1]T (C.5)

w2 =
m

|m| =
[mx my mz ]T√
m2
x +m2

y +m2
z

(C.6)

v2 =
[B cosδ 0 − B sinδ]T√

B2 (cos2δ + sin2δ)
= [cosδ 0 − sinδ]T (C.7)

A new orthonormal world frame of reference can be defined with the following
triad:

r1 = v1; r2 =
v1 × v2

|v1 × v2|
; r3 =

v1 × (v1 × v2)

|v1 × v2|
(C.8)
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C.2. QUEST algorithm

Similarly, a new orthonormal sensor frame can be defined as follows:

s1 = w1; s2 =
w1 ×w2

|w1 ×w2|
; s3 =

w1 × (w1 ×w2)

|w1 ×w2|
(C.9)

Then, the TRIAD algorithm calculates the rotation matrix A with equation C.10:

A = MobsM
T
ref (C.10)

where

Mobs = [s1 s2 s3] and Mref = [r1 r2 r3] (C.11)

The yaw (ψ), pitch(θ) and roll (φ) angles can then easily be calculated from the
components of the rotation matrix A as follows:

ψ = atan
(
A12

A11

)
, θ = asin(−A13), φ = atan

(
A23

A33

)
(C.12)

C.2. QUEST algorithm

As explained in subsection 2.2.1.3, the measurements of the accelerometer and
magnetometer are usually affected by noise. Unlike the TRIAD algorithm, the QUEST
algorithm can estimate the optimum rotation matrix, given a finite number of noisy
measurements. This is achieved by maximizing a gain function of overlapping weighted
noisy measurements.

The QUEST is based on the q-method proposed by P. Davenport [94], which is
based on a transformation of Wahba’s loss function [206]. This loss function is given
by equation C.13.

L(A) =
1

2

n∑
i=1

ai |wi − A vi |2 (C.13)

where the ai , i = 1, 2, .., n are a set of nonnegative weights and the function L(A)

needs to be minimized to find an optimal value of the orthogonal rotation matrix A.
The motivation for this loss function is that, since the measurement vectors wi are

subjected to perturbations, instead of equations C.1 and C.2, the following equation
is satisfied:

wi = Atrue vi + εi (C.14)
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Appendix C. Equations of the TRIAD and QUEST algorithms

where Atrue is the true rotation matrix and the εi are related to the measurement
errors.

Based on the loss function of equation C.13, the following gain function can be
defined [174, 120]:

g(A) = 1− L(A) =

n∑
i=1

ai wT
i A vi (C.15)

It can be shown that the loss function L(A) will be at a minimum when g(A)

is at a maximum [174]. Equation C.15 can be rewritten as equation C.16, due to
the invariance of the trace under cyclic permutations of the factors of a product of
matrices.

g(A) =

n∑
i=1

ai tr
(
wT
i A vi

)
= tr

(
ABT

)
(C.16)

where tr denotes the trace and B is the attitude profile matrix, which is given by
equation C.17.

B =

n∑
i=1

ai wi vTi (C.17)

Maximizing g(A) is complicated, because the nine elements of A are restricted
by six constraints. However, the QUEST algorithm applies a parametrization of the
orientation matrix by the following unit quaternion:

q̄ =

[
q

Q

]
=

[
cos(φ/2)

u sin(φ/2)

]
(C.18)

where u is the axis of rotation and φ is the angle of rotation about u. The quaternion
C.18 satisfies the following constraint:

q̄T q̄ = |Q|2 + q2 = 1 (C.19)

The gain function C.16 can be rewritten as the bilinear form in equation C.20
[174].

g(q̄) = q̄T K q̄ (C.20)

where K is a 4x4 matrix given by:
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C.2. QUEST algorithm

K =

(
S − σ I Z

ZT σ

)
(C.21)

where

σ = tr(B) =

n∑
i=1

ai wi • vi (C.22)

S = B + BT =

n∑
i=1

ai
(
wi vTi + vi wT

i

)
(C.23)

Z =

n∑
i=1

ai (wi × vi) (C.24)

As it can be showed [174], the gain function of equation C.20 is maximized if q̄
is chosen to be the eigenvector of K, belonging to the largest eigenvalue of K. That
is:

K q̄opt = λ q̄opt (C.25)
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D Basic quaternion properties

This appendix reviews the definition of a quaternion and some basic quaternion
properties. More details can be found in [179] and [26].

A quaternion q is defined as follows:

q = q0 + q1i + q2j + q3k = [q0 q1 q2 q3]T = [qw qv ]T (D.1)

where q0, q1, q2, q3 ∈ R, qw is called the scalar part, and qv is called the vector part.
If q0 = 0, it is called a pure quaternion.

The set of quaternions is represented by H, and the set of pure quaternions is
represented by Hp.

Sum. The sum of two quaternions p and q is commutative and associative, and it
is defined by equation D.2:

p± q =

[
pw
pv

]
±
[
qw
qv

]
(D.2)

Product. The quaternion product is denoted by ⊗ and it is defined in terms of the
scalar and vector parts by equation D.3:

p⊗ q =

[
pwqw − pTv qv

pwqv + qwpv + pv × qv

]
(D.3)

where × denotes the cross-product of two vectors. Therefore, the quaternion prod-
uct is not commutative, unless pv × qv = 0. However, the quaternion product is
associative and distributive over the sum. The product of two quaternions is bi-linear
and it can be expressed as two equivalent matrix products:

p⊗ q = [p]Lq and p⊗ q = [q]Rp (D.4)

The matrices [p]L and [q]R are called the left- and right-quaternion-product ma-
trices, respectively, and they are defined as follows:

[q]L =

[
qw −qTv
qv qw I + [qv ]×

]
and [q]R =

[
qw −qTv
qv qw I− [qv ]×

]
(D.5)
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where I is the 3×3 identity matrix and [•]× is the skew-operator, which produces the
following skew-symmetric matrix:

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 (D.6)

The left- and right-quaternion-product matrices satisfy equations D.7 and D.8:

[p]Lq = [q]Rp (D.7)

[p]L[q]R = [q]R[p]L (D.8)

Identity. The identity quaternion with respect to the product is defined by equation
D.9:

q1 =

[
1

0v

]
= 1 (D.9)

The identity quaternion satisfies q1 ⊗ q = q⊗ q1 = q.

Conjugate. The conjugate of a quaternion is defined by equation D.10:

q∗ = qw − qv =

[
qw
−qv

]
(D.10)

The conjugate of a quaternion has the following properties:

q⊗ q∗ = q∗ ⊗ q =

[
q2

0 + q2
1 + q2

2 + q2
3

0v

]
(D.11)

(p⊗ q)∗ = q∗ ⊗ p∗ (D.12)

Norm. The norm of a quaternion is defined by equation D.13

‖q‖ =
√

q⊗ q∗ =

√
q2

0 + q2
1 + q2

2 + q2
3 ∈ R (D.13)

The quaternion norm has the following property:

‖p⊗ q‖ = ‖q⊗ p‖ = ‖p‖ ‖q‖ (D.14)
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Appendix D. Basic quaternion properties

Inverse. The inverse of a quaternion is defined by equation D.15

q−1 =
q∗

‖q‖2 (D.15)

The inverse of a quaternion satisfies q⊗ q−1 = q−1 ⊗ q.

Unit quaternions. Unit or normalized quaternions satisfy ‖q‖ = 1 and therefore
q−1 = q∗. Unit quaternions can always be written in the following form:

q =

[
cosθ
u sinθ

]
(D.16)

where u = ux i + uy j + uzk is a unit vector and θ is a scalar.
An arbitrary 3D orientation of a coordinate system A with respect to a coordinate

system B can be expressed by the unit quaternion B
Aq. Unit quaternions can be

multiplied to obtain the orientation quaternion after a sequence of rotations. If CBq

represents the orientation of frame B with respect to C, the orientation of frame A
with respect to C can be calculated with equation D.17

C
Aq = C

Bq⊗ B
Aq (D.17)

Unit quaternions can also be used to transform 3D vectors. A vector Avq, ex-
pressed with respect to frame A, can be expressed with respect to frame B by equation
D.18:

Bvq = B
Aq⊗ Avq ⊗ B

Aq∗ (D.18)

where Avq and Bvq are pure quaternions corresponding to the observations of vector
v in the frames A and B, respectively:

vq = [0 v]T = [0 vx vy vz ]T (D.19)

The inverse transformation of the vector Bvq can be achieved by equation D.20:

Avq = B
Aq∗ ⊗ Bvq ⊗ B

Aq = A
Bq⊗ Bvq ⊗ A

Bq∗ (D.20)

The coordinate transformation described by equation D.18 can also be expressed
in terms of the rotation matrix (or direct cosine matrix) BAR as follows:

Bv = B
AR Av (D.21)
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The rotation matrix BAR can be calculated from the elements of the unit quaternion
using equation D.22:

B
AR =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 − q2

3

 (D.22)

Using the intrinsic Tait-Bryan angles of the aerospace convention, a vector in the
sensor or body frame is achieved by rotating a vector in the global frame about the
z (yaw), y (pitch) and x (roll) axes, as shown in equation D.23:

Sv = Rx(φ) Ry (θ) Rz(ψ) Gv (D.23)

If q(φ), q(θ) and q(ψ) are the quaternions corresponding to Rx(φ), Ry (θ) and
Rz(ψ) , the vector in the global frame can be calculated with equation D.24

Gv = q(ψ)∗ ⊗ q(θ)∗ ⊗ q(φ)∗ ⊗ Sv ⊗ q(φ)⊗ q(θ)⊗ q(ψ) = S
Gq∗ ⊗ Sv ⊗ S

Gq (D.24)

If Sw is the vector Sv rotated by an angle α in the sensor frame, so that Sw =

R(α) Sv, then the relationship between Sw and Gv is given by equation D.25:

Gv = S
Gq∗ ⊗ q(α)∗ ⊗ Sw ⊗ q(α)⊗ S

Gq (D.25)

In contrast, if Gw is the vector Gv rotated by an angle α in the global frame, so
that Gw = R(α) Gv, then the relationship between Gw and Sv is given by equation
D.26:

Gw = q(α)⊗ S
Gq∗ ⊗ Sv ⊗ S

Gq⊗ q(α)∗ (D.26)

Finally, if Mv is the vector Sv expressed in the frame M, so that Sv = S
MR Mv,

then the relationship between Mv and Gv is given by equation D.27:

Gv = S
Gq∗ ⊗ S

Mq⊗ Mv ⊗ S
Mq∗ ⊗ S

Gq (D.27)
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E
Strap-down integration and

calibration of magnetic
disturbances in the Xsens MTi-3

Xsens offers various ways to recalibrate the magnetometer and overcome the
problems caused by magnetic distortions. If the AHRS module is not attached to a
ferromagnetic element and the magnetic perturbations are homogeneous, the module
is ready to use and it does not need further calibration. If the AHRS module is
attached to a ferromagnetic element, like a metallic crutch or cane that moves and
rotates together with the module, a hard-iron and soft-iron calibration is required. The
module integrates a magnetic field mapping procedure, which is performed by moving
the AHRS module together with the ferromagnetic element that causes the hard-
iron and soft-iron distortions, similar to the procedure explained in section 3.3.3.4.
The measurements are processed in an external computer with the software from
Xsens, and the updated magnetic field calibration values are written in the non-volatile
memory of the module. The module also includes an in-run compass calibration
procedure for the applications, in which it is not possible to communicate with an
external computer to recalibrate the magnetometer measurements.

However, the AHRS module integrated in the tip of the crutch not only experiences
hard-iron and soft-iron magnetic perturbations, but also non-homogeneous and rapidly
changing magnetic distortions caused by ferromagnetic elements on the floor (e.g.
construction beams, steel drains, heating pipes, etc.) and near from the crutch. For
this case, the AHRS module includes an algorithm called active heading stabilization
(AHS). Thanks to the AHS algorithm, the AHRS module is able to correct the roll
and pitch angles with a dynamic RMS error of one degree, while being fully immune
to magnetic distortions. Using the AHS configuration, the yaw angle provided by the
AHRS module is referenced with respect to the initial heading orientation and not
with respect to the North (i.e. the yaw angle will be zero at initialization). However,
the AHS algorithm is able to correct the drift caused by the gyroscope bias on the
estimated yaw angle, providing a drift in yaw as low as one degree per hour. The
AHS algorithm works best in applications where the AHRS module is occasionally
motionless. In addition to the AHS configuration, the MTi-3 AHRS module also
offers three other configurations to provide a North-referenced and drift-free yaw
estimate (with an RMS error of less than 2 degrees), by relying more or less on the
magnetometer measurements to correct the estimated orientation.

In addition, after calibrating the gyroscope and accelerometer measurements, the
AHRS module applies a low-pass filter of 184 Hz to both signals, in order to avoid
errors due to aliasing, coning and sculling [149]. Aliasing is the effect that makes
different signals to become indistinguishable when they are sampled, and it can be
avoided by applying a low-pass filter before converting a signal from a higher to a
lower sampling rate. Coning is the condition where the angular velocity vector of
the sensor frame is itself rotating. Sculling is the effect of combined rotation of the
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attitude and velocity vectors on the integration of non-gravitational acceleration [17].
After applying the low-pass filter, the orientation and velocity increments are cal-

culated by the SDI, with coning and sculling compensation, and they are synchronized
with the calibrated magnetometer measurements. Then, the results are fed to the
XKF3 sensor fusion algorithm (see Figure 4.2), which is the name of the EKF algo-
rithm developed by Xsens. Furthermore, these signals are resampled at the frequency
configured by the user (50 Hz in the case of the described crutch tip prototype), and
the output is transmitted by the I2C protocol. This procedure for reading the cali-
brated measurements is much more accurate than just sampling the measurements at
a low rate. For example, in a highly dynamic situation, the dead-reckoning orientation
error is about 8◦, if the signals are sampled at 125 Hz, whereas it is just 0.1◦, if the
signals are sampled at 1000 Hz and the described procedure is applied [149].
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