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A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet 

recent literature lacks a systematic comparison of the available options. Here we compare six different approaches 

derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real- 

time use cases: a single-echo time series (based on Echo 2), the real-time T 2 
∗ -mapped time series ( T 2 

∗ FIT ) and 

four combined time series ( T 2 
∗ -weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed 

T 2 
∗ FIT -weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using 

a healthy participant dataset ( N = 28) with four task-based fMRI runs and two resting state runs. We show that the 

T 2 
∗ FIT -weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting 

state runs. We demonstrate additionally for all tasks that the T 2 
∗ FIT time series consistently yields the largest 

offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to- 

noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time 

paradigms, while further work is advised to mitigate the decreased tSNR of the T 2 
∗ FIT time series. We recommend 

the use and continued exploration of T 2 
∗ FIT for offline task-based and real-time region-based fMRI analysis. 

Supporting information includes: a data repository ( https://dataverse.nl/dataverse/rt-me-fmri ), an interactive 

web-based application to explore the data ( https://rt-me-fmri.herokuapp.com/ ), and further materials and code 

for reproducibility ( https://github.com/jsheunis/rt- me- fMRI ). 
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. Introduction 

In functional magnetic resonance imaging (fMRI), T 2 
∗ -weighted MRI

equences use the blood oxygen level-dependant (BOLD) signal as a

roxy for neuronal activity. Our ability to infer accurate information

bout neuronal processes is influenced by the sensitivity with which we

an capture these BOLD changes and subsequently delineate its sources
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E-mail address: s.heunis@fz-juelich.de (S. Heunis). 

w  

L  

t  

s  

ttps://doi.org/10.1016/j.neuroimage.2021.118244 . 

eceived 8 December 2020; Received in revised form 11 April 2021; Accepted 4 Jun

vailable online 8 June 2021. 

053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access ar
f variance. Improved sensitivity is particularly important for real-time

se cases, such as adaptive experimental paradigms, real-time quality

ontrol, or fMRI neurofeedback, where BOLD changes are quantified

nd used as they are acquired without the benefit of a full dataset or

he requisite amount of post-processing time. It is well known that op-

imum sensitivity of single-echo fMRI is achieved at an echo time (TE)

lose to the apparent tissue T 2 
∗ -value at baseline ( Menon et al., 1993 ),

hich also underlies an inherent drawback of T 2 
∗ -weighted sequences.

ocation-specific BOLD sensitivity is suboptimal since T 2 
∗ varies across

issue types and brain regions ( Peters et al., 2007 ), which can result in

patial variability in the detection of task-related activation patterns.
e 2021 
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Fig. 1. A representation of mono-exponential signal decay showing dimin- 

ishing image intensity along three echoes . The second echo is sampled at 

the optimum echo time equal to average grey matter T 2 
∗ , standard for single 

echo fMRI. The equation for the red, mono-exponential decay curve is provided 

( Eq. (1) ). 
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urthermore, magnetic susceptibility gradients on a macroscopic level

esult in image defects such as signal dropout and distortion, which is

ronounced in the ventromedial prefrontal, orbitofrontal, the medial

emporal and the inferior temporal lobes ( Devlin et al., 2000 ). Addi-

ionally, the complex interplay of blood flow, blood volume and mag-

etic susceptibility effects can be influenced strongly by system- and

articipant-level noise sources, thus confounding the BOLD signal. 

An advancement that has shown promise in making inroads into

hese drawbacks is multi-echo fMRI. Several studies have shown ben-

fits of offline denoising based on multi-echo independent compo-

ent analysis (MEICA; Kundu et al., 2012 ) for both resting state (e.g.

lafsson et al., 2015 ; Dipasquale et al., 2017 ) and task-based fMRI data

e.g., Lombardo et al., 2016 ; Gonzalez-Castillo et al., 2016 ; Moia et al.,

020 ). Echo combination via weighted summation is a critical step in

ulti-echo post-processing that has been reported to increase temporal

ignal-to-noise ratio, decrease signal drop-out, and improve activation

xtent for task-analysis ( Poser et al., 2006 ). Posse et al. (1999) proposed

everal echo combination schemes, including simple echo summation

i.e. equal weights) and weighting echoes by their relative expected

OLD contrast contribution (i.e. T 2 
∗ ), which would require a numer-

cal or fitted estimation of T 2 
∗ . Other possible weighting schemes in-

lude optimised scalar weights, TE-weighted combination, and tSNR-

eighted combination (also termed the PAID method) proposed by

oser et al. (2006) . A theoretical framework for optimizing multi-echo

ombination has also been proposed by Gowland and Bowtell (2007) .

owever, the relative benefits of all available combination schemes re-

ain unclear. 

With access to multiple data samples along the decay curve, multi-

cho allows quantification of the effective transverse relaxation param-

ter T 2 
∗ (decay time) or R 2 

∗ (its inverse, decay rate), and S 0 (initial

et magnetization). This form of quantitative T 2 
∗ -mapping (such as de-

cribed by Weiskopf et al., 2013 ) acquires multiple closely spaced echoes

ollowed by a data fitting procedure that yields a static, baseline T 2 
∗ -

ap. In the context of functional imaging, however, temporal or per-

olume T 2 
∗ -mapping is also feasible, with the core benefit being the

eparation and quantification of T 2 
∗ and S 0 changes (from baseline)

uring stimulated neuronal activation. Such real-time use cases of multi-

cho data have been reported, starting with Posse et al.’s (1998) single-

hot, multi-echo spectroscopic imaging sequence that quantified region-

pecific T 2 
∗ changes during olfactory and visual tasks, and which re-

orted a larger functional contrast (up to 20% increase in the visual

ortex) compared to standard EPI data. Several developments followed,

ncluding measuring single ‐event related brain activity ( Posse et al.,

001 ), whole brain T 2 
∗ -mapping at 1.5T using a linear combination of

choes ( Hagberg et al., 2002 ), later with added gradient compensation

 Posse et al., 2003 ), and a multi-echo EPI sequence at 3T with real-

ime distortion correction ( Weiskopf et al., 2005 ). Rapid T 2 
∗ -mapping

as also been a useful tool in studying the interplay between cere-

ral blood flow, blood volume and blood oxygenation, particularly in

ombination with contrast agents (see, for example: Scheffler et al.,

999 ; Schulte et al., 2001 ; Pears et al., 2003 ). In real-time fMRI neu-

ofeedback, some examples of multi-echo use are reported specifically

or improving signal gains in regions such as the amygdala, includ-

ng Posse et al. (2003) which uses T 2 
∗ -weighted echo summation and

arxen et al. (2016) , which uses scalar TE-dependant weights pre-

elected to yield an average T 2 
∗ -value of 30 ms in the amygdala. 

Although methodological studies have reported the benefits of multi-

cho fMRI combination, a comprehensive evaluation of its practical ben-

fits is lacking. Specifically, a variety of combination methods exist that

an lead to both offline and real-time improvements in BOLD sensitiv-

ty, but there has been no systematic comparison between such methods.

dditionally, per-volume T 2 
∗ -mapping forms a necessary step in estab-

ished multi-echo-based methods, but recent literature has not explored

ts value for task fMRI analysis. Consequently, this study has two main

oals: (1) to explore the differences in BOLD sensitivity, both offline

nd per-volume, between time series of standard single echo EPI, per-
2 
olume estimated T 2 
∗ FIT , and multi-echo-combined time series (includ-

ng tSNR-weighted, T 2 
∗ , TE-weighted, and T 2 

∗ FIT -weighted); and (2) to

xplore the T 2 
∗ FIT time series as an alternative to single-echo or multi-

cho-combined time series for offline and real-time fMRI analysis. We

nvestigate these aims for whole brain data in separate task paradigms,

liciting responses to motor and emotion processing tasks and mental

ersions thereof, and during resting state. To quantify differences, we

mploy several metrics such as tSNR, task activity effect size, region-

f-interest based temporal percentage signal change (tPSC), functional

ontrast, and temporal contrast-to-noise ratio (tCNR). 

. Multi-echo fMRI relaxation and combination 

Multi-echo fMRI sequences acquire a slice or multiple slices of a

unctional image at discrete echo times (TE) after a single transverse

xcitation pulse of the scanner. All slices of a whole brain image are ac-

uired within the standard repetition time (TR) which then yields mul-

iple echoes per volume. The relaxation of the fMRI signal in a given

oxel after transverse excitation, assuming a mono-exponential decay

odel, is given as: 

( 𝑡 ) = 𝑆 0 ⋅ 𝑒 
− 𝑡 
𝑇 ∗ 2 + 𝜀 = 𝑆 0 ⋅ 𝑒 

− 𝑡 ⋅𝑅 ∗ 2 + 𝜀 (1)

ith S(t) being the time-decaying fMRI signal, S 0 being the tissue mag-

etization directly after transverse excitation, and T 2 
∗ being the local

issue transverse relaxation (i.e. decay time) constant (the inverse of the

ecay rate, R 2 
∗ ). Per-voxel estimates of S 0 and T 2 

∗ (depicted below in

ig. 1 ) can be derived using a log-linear regression estimation and the

vailable echo times ( t 1 to t n , where pinv is the pseudo-inverse log the

atural logarithm): 

 

log 
(
𝑆 0 

)
𝑅 

∗ 
2 

] 
= 𝑝𝑟𝑖𝑛𝑣 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 − 𝑡 1 
1 − 𝑡 2 
⋮ 

1 − 𝑡 𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
∗ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

log 
(
𝑆 

(
𝑡 1 
))

log 
(
𝑆 

(
𝑡 2 
))

⋮ 
log 

(
𝑆 

(
𝑡 𝑛 
))
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2)

The mathematics of all widely used multi-echo combination schemes

re based on the underlying concepts of data weighting, summation and

veraging. In the supplementary online material, we provide a thor-

ugh background of these concepts along with explanatory equations

1 through S6. Importantly, the multi-echo combination schemes pre-

ented below use the convention of weighted summation with normal-

zed weights. This implies that (1) all weights are normalized such that

heir sum equals 1, then (2) each normalized weight is multiplied by

ts corresponding data point, then (3) these products are summed to

roduce the weighted summation. 
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Simple echo summation 

Simple echo summation assumes equal weights for all echoes (to-

alling N ), which is calculated for an individual echo n as: 

 

𝑆𝑈𝑀 

𝑛 
= 

1 
𝑁 

(3)

tSNR-weighted combination 

The PAID method put forward by Poser et al. (2006) uses the voxel-

ased tSNR measured at each echo ( tSNR n ) as the weights: 

 

𝑡𝑆𝑁𝑅 
𝑛 

= 

𝑡𝑆𝑁 𝑅 𝑛 ⋅ 𝑇 𝐸 𝑛 ∑𝑁 

𝑖 =1 𝑡𝑆𝑁 𝑅 𝑖 ⋅ 𝑇 𝐸 𝑖 

(4)

TE-weighted combination 

Purely using each echo’s echo time, TE n , as the weight for that echo

as also been suggested ( Posse et al., 1999 ). In this case, the same scalar

alue is used as the weighting factor for all voxels of a specific echo: iom

 

𝑇 𝐸 
𝑛 

= 

𝑇 𝐸 𝑛 ∑𝑁 

𝑖 =1 𝑇 𝐸 𝑖 

(5)

Similarly, a range of scalar values can be used as echo-dependant

eighting factors, usually optimised according to study-specific crite-

ia. For example, Marxen et al. (2016) selected scalar weights in order

o yield an average T 2 
∗ value of 30 ms in their region of interest (the

mygdala). In such a case, the predefined scalar weights {SW 1 , SW 2 , . .

, SW N } can be normalized as: 

 

𝑆𝑊 

𝑛 
= 

𝑆 𝑊 𝑛 ∑𝑁 

𝑖 =1 𝑆 𝑊 𝑖 

(6)

T 2 
∗ -weighted combination 

The T 2 
∗ -weighted combination scheme used by

osse et al. (1999) and termed "optimal combination" by

undu et al. (2012) , calculates the individual echo weights w n 

er voxel as: 

 

𝑇 ∗ 2 
𝑛 = 

𝑇 𝐸 𝑛 ⋅ exp 
(
− 𝑇 𝐸 𝑛 ∕ 𝑇 ∗ 2 

)
∑𝑁 

𝑖 =1 𝑇 𝐸 𝑖 ⋅ exp 
(
− 𝑇 𝐸 𝑖 ∕ 𝑇 ∗ 2 

) (7)

T 2 
∗ FIT-weighted combination 

Finally, as proposed in the introduction, real-time T 2 
∗ -mapping is

ade possible when using multi-echo fMRI. Here, the per-volume esti-

ation of T 2 
∗ at each voxel, termed T 2 

∗ FIT(t) (to our knowledge first

efined by Power et al., 2018 ), can also be used as the weighting factor

n a per-volume echo combination scheme: 

 

𝑇 ∗ 2 𝐹𝐼𝑇 

𝑛 ( 𝑡 ) = 

𝑇 𝐸 𝑛 ⋅ exp 
(
− 𝑇 𝐸 𝑛 ∕ 𝑇 ∗ 2 𝐹 𝐼𝑇 ( 𝑡 ) 

)
∑𝑁 

𝑖 =1 𝑇 𝐸 𝑖 ⋅ exp 
(
− 𝑇 𝐸 𝑖 ∕ 𝑇 ∗ 2 𝐹 𝐼𝑇 ( 𝑡 ) 

) (8)

The per-volume nature of this echo combination scheme makes it

deal for use in both offline and real-time applications, when an a priori

 2 
∗ -map (like the one used in Eq. (7) ) is not available or not preferred.

o the best of our knowledge, this T 2 
∗ FIT -weighted combination ap-

roach has not been described previously in the literature 

In the methods and results presented in this work, we compare

etrics derived from standard single echo fMRI analysis to metrics

erived from analysing T 2 
∗ -weighted, tSNR-weighted, TE-weighted,

 2 
∗ FIT -weighted, and the T 2 

∗ FIT parameter time series, in both offline

nd per-volume scenarios. 

. Methods 

In-depth descriptions of the participant details, ethics approval, ex-

erimental design, MRI protocol, preprocessing, and data quality can be

ccessed in the related data article ( Heunis et al., 2020a ). Summarising

tatements are provided below for the sake of completeness. 
3 
.1. Participants 

MRI and physiology data were collected from N = 28 participants

male = 20; female = 8; age = 24.9 ± 4.6 mean + standard deviation). The

tudy was approved by the local ethics review board and all participants

ave written consent for their data to be collected, processed and shared

n accordance with a GDPR-compliant procedure. 

.2. Experimental design 

A total of seven MRI acquisitions were collected during a single scan-

ing session per participant. These acquisitions include, in order of ac-

uisition: 

1 A T1-weighted anatomical scan 

2 rest_run-1 : the first resting state run, eyes fixated on a white cross 

3 fingerTapping : a right hand finger tapping functional task 

4 emotionProcessing: a matching-shapes-and-faces functional task 

5 rest_run-2 : the second resting state run, eyes fixated on a white cross

6 fingerTappingImagined: an imagined finger tapping functional task 

7 emotionProcessingImagined: a functional task to recall an emotional

memory 

All four task paradigms followed an ON/OFF boxcar design, starting

ith the OFF condition, with both conditions lasting 10 vol ( = 20 s at

R = 2 s). The control (i.e. OFF) condition for the fingerTapping task was

o focus on a small white cross on a black screen; for the emotionPro-

essing task the control condition was the shape-matching block; and for

he fingerTappingImagined and emotionProcessingImagined tasks the con-

rol conditions were counting backwards, respectively, in multitudes of

 and 9. 

.3. MRI protocol 

MRI data were acquired on a 3 Tesla Philips Achieva scanner (soft-

are version 5.1.7) and using a Philips 32-channel head coil. A sin-

le T1-weighted anatomical image was acquired using a 3D gradi-

nt echo sequence (T1 TFE) with scanning parameters: TR = 8.2 ms;

E = 3.75 ms; flip angle = 8 ̊; field of view = 240 × 240 × 180 mm;

esolution = 1 × 1 × 1 mm; total scan time = 6:02 min. 

All six functional MRI scans were acquired using a multi-echo, echo-

lanar imaging sequence with scanning parameters: TR = 2000 ms;

E = 14,28,42 ms (3 echoes); number of volumes = 210 (ex-

luding 5 dummy volumes discarded by the scanner); total scan

ime = 7:00 min (excluding 5 dummy volumes); flip angle = 90 ̊; field

f view = 224 × 224 × 119 mm; resolution = 3.5 × 3.5 × 3.5 mm;

n-plane matrix size = 64 × 64; number of slices = 34; slice thick-

ess = 3.5 mm; interslice gap = 0 mm; slice orientation = oblique;

lice order/direction = sequential/ascending; phase-encoding direc-

ion = A /P; SENSE acceleration factor = 2.5. Parts of the cerebellum and

rainstem were excluded for some participants to ensure full coverage

f the cortex and subcortical areas of interest. Echo times, spatial resolu-

ion, and the SENSE factor were tuned with the aim of improving spatial

esolution and coverage while limiting the TR to maximum 2000 ms,

ncluding a maximum number of echoes, and keeping the SENSE factor

ow to prevent SENSE artefacts. 

In addition, cardiac and respiratory fluctuations were recorded dur-

ng the functional scans, respectively using a pulse oximeter fixed to

he participant’s left index finger, and a pressure-based breathing belt

trapped around the participant’s upper abdomen. These were sampled

t 500 Hz. 

.4. Data analysis 

Data analysis consists of anatomical and functional preprocessing,

efinition and calculation of echo combination weights, multi-echo com-

ination, time-series processing and calculation of comparison metrics.
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ll analyses are done on an individual basis (i.e. participant-specific),

nless otherwise stated, to describe the effects and facilitate the use of

hese methods in real-time fMRI use cases. 

All processing steps below were done using the open source

ATLAB-based and Octave-compatible fMRwhy toolbox (v0.0.1; https:

/github.com/jsheunis/fMRwhy ), which has conditional dependencies:

• SPM12 (r7771; https://github.com/spm/spm12/releases/tag/

r7771 ; Friston et al., 2007 ) 

• bids-matlab (v.0.0.1, https://github.com/jsheunis/bids-matlab/

releases/tag/fv0.0.1 ) 

• Anatomy Toolbox (v3.0; Eickhoff et al., 2005 ) 

• dicm2nii (v0.2 from a forked repository; https://github.com/

jsheunis/dicm2nii/releases/tag/v0.2 ) 

• TAPAS PhysIO (v3.2.0; https://github.com/

translationalneuromodeling/tapas/releases/tag/v3.2.0 ; 

Kasper et al., 2017 ) 

• Raincloud plots (v1.1 https://github.com/RainCloudPlots/

RainCloudPlots/releases/tag/v1.1 ; Allen et al., 2019 ). 

All data analysis scripts can be accessed for reproducibility or reuse

ith attribution at https://github.com/jsheunis/rt- me- fMRI . 

.4.1. Preprocessing 

The basic anatomical and functional preprocessing pipeline applied

o all data is described in detail in the data article, and included: 

1 Defining a functional template from Echo 2 of the first volume of the

first resting state run. Echo 2 is selected in order to apply the same

pipeline and allow a fair comparison of multi-echo to single-echo

data, since for the latter only a single time series similar to Echo 2

would be available. 

a Mapping prior data to the subject functional space, including: 

b Coregistration of the anatomical image and atlas-based regions of

interest (available in MNI152 space; Eickhoff et al., 2005 ) to the

functional template space, and resampling these to the functional

resolution. 

2 Tissue-based segmentation of the coregistered anatomical image (af-

ter coregistration but before downsampling) and subsequent defini-

tion of binary maps for grey matter, white matter, cerebrospinal fluid

(CSF) and the whole brain. 

3 Basic functional preprocessing steps, including: estimating realign-

ment parameters from the Echo 2 time series, running slice timing

correction on all echo time series, applying realignment parame-

ters to all echo time series, and applying spatial smoothing (7 mm

isotropic, i.e. twice the voxel width) to all echo time series. 

4 Generating data quality control metrics and visualisations to allow

inspection of the quality of anatomical and functional data and their

derivatives. 

Two aspects of the preprocessing and analyses pipelines are worth

ighlighting in the context of this study. Firstly, while an important fo-

us for this work is its application and utility in real-time scenarios,

ll processing was done offline, either on the full dataset or on a per-

olume (i.e. simulated real-time) basis. This was viable since the study

id not include any neurofeedback or real-time adaptive paradigms that

ould have required real-time computation and interaction. Secondly,

n order to use a standardised pipeline (across multiple runs of multi-

cho and single-echo data) that can compute derivative measures that

re aligned across analyses and therefore comparable on a per-voxel ba-

is, we followed the concept of "minimally processed" data as described

y DuPre et al. (2020) . This means that minimal steps including slice

iming correction and 3D volume realignment are applied to multi-echo

ata before decay parameter estimation or multi-echo combination. 

.4.2. Data quality control 

The fMRwhy toolbox has a BIDS-compatible data quality pipeline

or functional and anatomical MRI, fmrwhy_bids_workflowQC , that can
4 
e run automatically for a full BIDS-compliant dataset. After running

inimal preprocessing steps it generates a subject-specific HTML-report

ith quality control metrics and visualisations to allow inspection of

he data and its derivatives. Individual reports can be accessed in the

erivatives directory of the shared BIDS-compliant dataset of this study

see Heunis et al., 2020a for details). Additionally, a web-application

amed rt-me-fMRI is provided along with this work and accessible at:

ttps://rt-me-fmri.herokuapp.com/ . It can be used interactively to ex-

lore various summaries of data quality metrics, including distributions

f framewise displacement (FD) and tSNR, and physiology recordings,

s well as the results of this study. 

None of the participant datasets were excluded after inspection of

he included quality metrics, even in cases of more than average or se-

ere motion (specifically sub-010, sub-020, and sub-021), since such

ata could still be useful for data quality related insights or for future

enoising methods validation. In addition, for all participant data the

lignments of the anatomical masque, the derived tissue segmentation

asks, and the EPI data were visualised, inspected and the overlap was

ound acceptable. 

.4.3. Multi-echo combination 

Existing weighting parameters or parameter maps are required to

llow both offline and per-volume combination of multi-echo data. Of

he previously reported options for weighting schemes given in Section

.2, the simplest option used in this study is the echo time ( Eq. (5) )

erived from the functional MRI protocol, which yields a TE-weighted

ombination. Other prior weighting parameters are calculated using the

rst resting state functional scan. For each minimally preprocessed echo

ime series of the resting state run, the time series mean and standard

eviation are calculated. The mean divided by the standard deviation

ields the temporal signal-to-noise ratio (tSNR), per echo, that is used

s another weighting parameter ( Eq. (4) ) described as the PAID method

y Poser et al. (2006) . Additionally, the mean images from the three

cho time series are used to derive the per-voxel estimates of S 0 and

 2 
∗ assuming a mono-exponential decay model and using a log-linear

egression estimation ( Eq. (2) ). This baseline T 2 
∗ map can be used for

 2 
∗ -weighted combination ( Eq. (7) ), described as optimal combination

y Kundu et al. (2012) . Lastly, the same log-linear regression that is

pplied to the time series mean images can also be applied to a single

olume of any multi-echo data. This implies that the three echo images

f any volume can be used as data points to estimate per-volume and

er-voxel parameter maps, S 0 FIT(t) and T 2 
∗ FIT(t) , which in turn can

e used for per-volume multi-echo combination ( Eq. (8) ), hereinafter

eferred to as T 2 
∗ FIT -combination. 

Multi-echo combination schemes are applied to all functional data

xcluding the first resting state run, from which prior baseline weight

aps are derived. In sum, six time series are computed per functional

un (as described in Fig. 2 ): Echo 2, tSNR-combined, TE-combined, T 2 
∗ -

ombined, T 2 
∗ FIT -combined, and the T 2 

∗ FIT time series. 

.4.4. Time series processing 

After computing the six time series per functional run (excluding

he first resting state run), each resulting time series is processed as

ummarised in the bottom row of Fig. 2 . 

First, the tSNR of each time series is calculated prior to any further

rocessing. Then, each time series is spatially smoothed using a Gaus-

ian kernel with FWHM at 7 mm (i.e. double the voxel size). This is

ollowed by participant-level GLM-based analysis of the four task runs.

ask regressors included the main "ON" blocks for the fingerTapping, fin-

erTappingImagined and emotionProcessingImagined tasks, and both the

eparate "SHAPES" and "FACES" trials for the emotionProcessing task. Re-

ressors not-of-interest for all runs included six realignment parameter

ime series and their derivatives, the CSF compartment time series, and

ETROICOR regressors (both cardiac and respiratory to the 2nd order,

xcluding interaction regressors). 

https://github.com/jsheunis/fMRwhy
https://github.com/spm/spm12/releases/tag/r7771
https://github.com/jsheunis/bids-matlab/releases/tag/fv0.0.1
https://github.com/jsheunis/dicm2nii/releases/tag/v0.2
https://github.com/translationalneuromodeling/tapas/releases/tag/v3.2.0
https://github.com/RainCloudPlots/RainCloudPlots/releases/tag/v1.1
https://github.com/jsheunis/rt-me-fMRI
https://rt-me-fmri.herokuapp.com/
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Fig. 2. The analysis pipeline applied to the rt-me-fMRI dataset. Prior tSNR and T 2 
∗ maps are derived from the first resting state run. For all other functional runs 

(top row), six steps are executed per volume after minimal preprocessing in order to yield resulting multi-echo-derived time series for comparison: (1) the 2nd echo 

time series is extracted without processing, (2) the prior tSNR-weighted combination, (3) the TE-weighted combination, (4) the baseline T 2 
∗ -weighted combination, 

(5) the T 2 
∗ FIT-weighted combination, and (6) T 2 

∗ FIT time series. Following this, each of the six time series then undergoes offline and simulated real-time processing 

pipelines. The offline pipeline includes (in order): tSNR calculation, spatial smoothing, participant-level task analysis, calculation of percentage signal change effect 

sizes, and statistical thresholding of the participant-level contrast maps. The simulated real-time pipeline is run per volume for each time series and includes (in 

order): spatial smoothing, spatial averaging of the appropriate region-of-interest signals, and cumulative denoising (including detrending using linear and quadratic 

regressors). 

5 
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Additional steps executed by SPM12 before beta parameter estima-

ion include high-pass filtering using a cosine basis set and AR(1) au-

oregressive filtering of the data and GLM design matrix. Contrasts are

pplied to the task-related beta maps for the fingerTapping, fingerTap-

ingImagined and emotionProcessingImagined tasks, and to the FACES,

HAPES, and FACES > SHAPES beta maps for the emotionProcessing task.

n order to yield a standard measure of effect size, the parameter es-

imates or contrast maps are then used to calculate percentage signal

hange (PSC) using the method described by Pernet (2014) and given

y: 

 𝐶𝑆 = 

𝛽𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∗ 𝑆𝐹 ∗ 100 
𝛽𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(9)

here 𝛽condition and 𝛽constant are parameter estimates corresponding to

he relevant GLM regressors that are scaled with regards to the actual

OLD magnitude. To account for this, the scaling factor ( SF ) is deter-

ined as the maximum value of a reference trial taken at the resolution

f the super-sampled design matrix X ss (where supersampling is typically

one before convolution with the hemodynamic response function): 

𝐹 = 𝑚𝑎𝑥 
(
𝑇 𝑟𝑖𝑎𝑙 𝑋 𝑠𝑠 

)
(10)

Statistical thresholding was applied to identify task-related regions

f activity by controlling the voxel-wise familywise error rate (FWE),

ith pFWE < 0.05, and a voxel extent threshold of 0. 

.4.5. Real-time analysis 

Minimally processed time series are also analysed per-volume (using

ata acquired up to each volume in time) in order to explore multi-echo

elated BOLD sensitivity changes for real-time applications. Real-time

nalysis typically involves minimal processing (including 3D realign-

ent), spatially averaging the signal within given ROIs, and additional

er-volume denoising steps on the averaged signal. Here, we run a per-

olume denoising process adapted from OpenNFT ( Koush et al., 2017 )

n all task time series. This process is depicted in the bottom row of

ig. 2 and includes, in order: 1) Spatial smoothing using a Gaussian

ernel with FWHM at 7 mm, 2) Spatial averaging of voxel signals with

efined ROIs, and 3) Cumulative GLM-based detrending of the ROI sig-

als, including linear and quadratic trend regressors. This then yields

er-volume minimally denoised ROI-signals from which percentage sig-

al change or another calculation can be used as the basis for the neu-

ofeedback or real-time ROI signal. 

.4.6. Comparison metrics 

To explore the differences between various multi-echo combinations

nd standard single echo data, and to investigate the usefulness of the

ormer over the latter, we employ several comparison metrics: 

• Temporal signal-to-noise ratio (tSNR) calculated as the voxel-wise

time series mean divided by voxel-wise time series standard devia-

tion. tSNR is an indicator of the amount of signal available from

which to extract potentially useful BOLD fluctuations. Additionally,

tSNR maps can be a robust visual indicator of increases or decreases

in signal dropout. 

• Percentage signal change (PSC) of task-based contrast maps result-

ing from participant-level GLM analysis. PSC represents a standard-

ised measure of effect size (which beta or contrast values are not)

and is an indicator of the BOLD sensitivity of the data based on GLM

analysis. 

• T-statistic values related to the task-based contrast maps resulting

from participant-level GLM analysis. 

• Temporal percentage signal change (tPSC) of the single echo,

combined-echo and derived time series data of the task runs. This

is calculated per voxel on minimally processed task data as the per-

volume signal’s percentage signal change from the time series mean

(or, for real-time scenarios, from the mean of the preceding baseline

"OFF" block or the cumulative mean). These are then spatially aver-

aged within the regions listed below to yield ROI-based time series.
6 
These time courses are similar to what would be calculated in real-

time as the ROI-based neurofeedback signal, and their amplitudes

can be an indicator of BOLD sensitivity. 

• Functional contrast of the ROI-based tPSC signals. To calculate the

functional contrast in ROIs, the average tPSC in volumes classified as

being part of "OFF" condition blocks are subtracted from the average

signal in volumes classified as being part of each "ON" condition

block. Visually, this corresponds to the average amplitude difference

between conditions in the tPSC signal. The functional contrast is an

indicator of the BOLD sensitivity of a signal based on both minimally

processed and denoised data. 

• Temporal contrast-to-noise ratio (tCNR) of the single echo,

combined-echo and derived time series data of the task runs. To cal-

culate the tCNR, the functional contrast in an ROI is divided by the

time series standard deviation of the tPSC signal in the same ROI.

This is related to both the tSNR and BOLD sensitivity. Where tPSC

consists of time courses, tCNR provides a single summary value per

voxel or region. 

Extracting and spatially averaging voxel time series from specific re-

ions is a common approach to exploring patterns of task-based activity

n fMRI ( Poldrack, 2007 ). This can be done both offline on a full dataset,

nd in real-time on the data as they are acquired. In this work, we ex-

lore and compare the above-mentioned metrics on both whole-brain

nd region-specific levels. Regions include: 

• Grey matter ( GM ), white matter ( WM ) and cerebrospinal fluid ( CSF )

compartments. This allows quantifying, for example, whether com-

bined multi-echo data changes a given metric similarly or differently

across tissue types. 

• A binary map of the voxels surviving voxel-wise pFWE < 0.05 statisti-

cal thresholding ( FWE ). These maps vary spatially per time series of

a given task run and they represent the functionally most responsive

voxels based on the underlying data but assuming shared criteria

(i.e. statistical threshold). 

• A binary map resulting from a logical OR of the FWE-thresholded

maps of all six time series of a given task run ( FWE-OR ). This allows

the comparison of metrics in a region that includes the voxels that

are judged to be significantly active in any time series , thus removing

time series-specific spatial bias. 

• Atlas-based anatomical regions of interest ( Atlas-based ROI ), de-

rived from templates in MNI152 space ( Eickhoff et al., 2005 ) that

have been mapped to individual anatomical scans and coregistered

and resampled to the individual functional space. This allows quan-

tification of the above metrics within an a priori defined ROI, thus ex-

cluding spatial bias introduced by statistical thresholding. The Atlas-

based ROIs include the left motor cortex (for right-hand finger tap-

ping), and the bilateral amygdala (for emotion processing). 

The focus of this work is on exploring, quantifying and describing

ifferences and on generating data that allows deriving clear hypothe-

es for future confirmatory follow-up. While null hypothesis significance

esting is used where necessary in task-based analysis, overall differ-

nces in the above-mentioned comparison metrics are not significance

ested and are rather described in terms of means and percentage change

rom a reference. 

. Results 

A web-application named rt-me-fMRI is provided alongside this

ork and accessible at: https://rt-me-fmri.herokuapp.com/ . This

rowser-based application can be used interactively to explore the sum-

ary and participant-specific results presented below, and is intended

o serve as supplementary material to this work. 

https://rt-me-fmri.herokuapp.com/
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Fig. 3. Signal decay along the three echoes (top to bottom) of a single volume. Signal decay is displayed across a selection of slices (horizontal axis). Signal 

dropout is clearly evident in the orbitofrontal and ventromedial prefrontal cortices and inferior and anterior temporal lobes (magenta arrows; slices 8, 10, 12) and 

the cerebellum (light blue arrows; slices 2, 4, 6). 
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.1. Multi-echo decay 

To illustrate signal decay and dropout as a function of echo time, a

imple plot of the inferior slices of a single subject is given in Fig. 3 . 

Signal decay can be seen clearly as the signal intensity diminishes

rom Echo 1 to Echo 3 (top to bottom) in all displayed slices. Signal

ropout from Echo 1 through Echo 3 is particularly evident in the areas

f the orbitofrontal and ventromedial prefrontal cortices, and the infe-

ior and anterior temporal lobe (magenta arrows; slices 8, 10, 12) and

he cerebellum (light blue arrows; slices 2, 4, 6). 

.2. Signal intensity, dropout, and temporal signal-to-noise ratio 

We can visually inspect the effect on signal intensity and dropout

hen combining multi-echo data or deriving time series from it. Fig. 4 A

hows the mean of each of the six time series: Echo 2, T 2 
∗ -weighted

ombination, tSNR-weighted combination, TE-weighted combination,

 2 
∗ FIT -weighted combination, and T 2 

∗ FIT . 

It is evident that most echo combination schemes, with the exception

f TE-weighted combination, recover some signal lost due to dropout in

he orbitofrontal and ventromedial prefrontal regions (magenta arrows;

lices 8, 10) and inferior and anterior temporal regions (light blue ar-

ows; slices 6, 8). This signal recovery is further demonstrated in the

SNR maps provided in Fig. 4 B, particularly by the magenta arrows

howing areas of signal dropout in Echo 2 and subsequent recovery in

ombined and derived time series tSNR maps. Even the T 2 
∗ FIT , for which

he tSNR is evidently much lower than all other time series including

cho 2, recovers some of the signal that is lost due to low BOLD sen-

itivity in the affected areas, although signal loss is also more evident

slice 10). Additionally, tSNR in areas close to the bilateral temporal-

ccipital junction and towards the occipital lobe ( Fig. 4 B, green arrows)

ppears to increase substantially for all combined time series vs. Echo

. This is more pronounced in the T 2 
∗ FIT -weighted compared to the

 2 
∗ -weighted and tSNR-weighted combinations, and less so in the TE-

eighted combination. 

To provide a more quantified view than these visualisations of signal

ntensity ( Fig. 4 A) and tSNR ( Fig. 4 B), distribution plots were created for

rey matter tSNR values, both for the whole group and for subjects in-

ividually. These are accessible in the supplementary web-application,

hich shows (for example) for sub-001_task-rest_run-2 a mean tSNR in-

rease for all combined time series compared to Echo 2, with the T ∗ FIT -
2 

7 
eighted combination showing the largest increase (36.14%) and the

 2 
∗ FIT time series showing a substantial decrease ( − 55.89%). This gen-

ralises to the whole group (see Fig. 5 A), i.e. a mean tSNR increase for

ll combined time series compared to Echo 2, with the T 2 
∗ FIT -weighted

ombination showing the largest increase (a comparable 36.95%). This

ncrease in the tSNR of T 2 
∗ FIT -weighted combination replicates results

hat we previously reported on a different dataset ( Heunis et al., 2019 ).

his relationship also repeats for different regions, as can be seen for

he left motor cortex ( Fig. 5 B) and the bilateral amygdala ( Fig. 5 C). 

Note, however, that the mean tSNR values increase differentially

ased on the region. For the T 2 
∗ FIT -weighted combination, for exam-

le, whole brain data show a mean tSNR increase of 36.95%; the left

otor cortex shows a mean tSNR increase of 31.63%; and the bilateral

mygdala shows a mean tSNR increase of 53.35%. Other combined time

eries show percentage increases following the same pattern. This could

e explained by the baseline T 2 
∗ - values in the motor cortex and the

hole brain being closer to the time Echo 2 (28 ms) than the T 2 
∗ - values

n the amygdala, i.e. that the T 2 
∗ - weighting of Echo 2 in those regions

s already closer to optimal than the weighting of Echo 2 in the amyg-

ala. This suggests that the amygdala and similarly affected areas with

 2 
∗ - values that are different from the average have more to gain from

he multi-echo combination process. 

Another noteworthy aspect is the low signal intensity and low tSNR

f the T 2 
∗ FIT time series. The low signal intensity is explained by the

act that T 2 
∗ FIT values correspond to quantified units (ms) that are ex-

ected to be in a certain range (~ 0 to 120 ms for the human brain at

T, Peters et al., 2007 ), while the intensity of the standard single and

ombined echo images are in analogue units determined by MRI hard-

are and software. The low tSNR of the T 2 
∗ FIT time series could be ex-

lained by an increase in time series standard deviation resulting from

he log-linear fitting procedure on noisy data and only using the three

choes to fit the mono-exponential decay model per volume. This in-

rease in time series noise becomes evident below when investigating T-

tatistic values related to task-analysis, and temporal percentage signal

hange. 

Distributions of grey matter tSNR values are useful for inspecting dif-

erences in signal increases and dropout recovery between single-echo,

ulti-echo combined, and derived timeseries, and enable identifying

ew voxels or regions with adequate signal for task (or other) analysis.

owever, tSNR does not provide a direct measure of task sensitivity,

.e. it does not directly tell us whether newly recovered signal/regions
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Fig. 4. Signal intensity ( Fig. 4 A) and Temporal signal-to-noise ratio ( Fig. 4 B) shown in mean images for the time series in rows from top to bottom : 

Echo 2, tSNR-weighted combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted combination, and T2 ∗ FIT. Scaling for Fig. 4 A is given 

both for the T2 ∗ FIT signal (0–130 ms) and for all the other signals (0–3000 a.u.). All echo combination schemes, with the exception of TE-weighted combination, 

recover some signal lost due to dropout in the orbitofrontal and ventromedial prefrontal regions (magenta arrows; slices 8, 10) and inferior and anterior temporal 

regions (light blue arrows; slices 6, 8). Slight signal recovery in T2 ∗ FIT is visible in the orbitofrontal and ventromedial prefrontal regions (slice 6) although signal 

loss is more evident in slice 10. In Fig. 4 B, all time series apart from T2 ∗ FIT show increases in tSNR (from Echo 2) in areas close to the bilateral temporal-occipital 

junction and towards the occipital lobe (green arrows; slice 18), which is more pronounced in the T2 ∗ FIT-weighted compared to the T2 ∗ -weighted and tSNR-weighted 

combinations, and less so in the TE-weighted combination. 
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ould be usefully related to the underlying task. For that reason, fur-

her measures derived from task analyses like the effect sizes, T-statistic

alues, and contrast to noise ratios are important to explore.4.4. Effect

izes and T-statistics 

Fig. 6 shows distribution plots (over all subjects) of the mean PSC

alues within the respective FWE-OR regions for all task runs: fin-

erTapping ( Fig. 6 A), fingerTappingImagined ( Fig. 6 B), emotionProcessing

 Fig. 6 C), and emotionProcessingImagined ( Fig. 6 D). It is evident from

ig. 6 A through 6D that the effect sizes show a substantial increase for

he T 2 
∗ FIT time series (from Echo 2) in all tasks (respectively 87.91%,

7.86%, 13.51%, and 43.28%), while displaying a similar or decreased

ean effect size for all combined times series. Data in the supplemen-

ary browser-based application also shows that this increase for T 2 
∗ FIT

s more pronounced when looking at the effect sizes within their respec-

ive FWE regions (i.e. different activated voxels for each multi-echo de-

ived time series, although mostly overlapping), which one should be

ary of overinterpreting given the inherent circularity of re-analysing

ata in voxels that previously passed a significance threshold using the

ame data. On the other hand, this result is less pronounced for the time
8 
eries effect sizes within their respective atlas-based regions of interest,

ainly resulting in a longer tailed distribution of mean PSC values for

he T 2 
∗ FIT time series. In some participants the mean PSC values of the

 2 
∗ FIT time series even show a slight decrease. These decreases in PSC

isappear when looking at peak effect sizes, as opposed to mean effect

izes, in all regions of interest. Further differences can be inspected in

epth using the supplementary browser-based application. 

To accompany these effect size values, Fig. 7 shows distribution plots

over all subjects) of the mean T-statistic values in the respective FWE-

R regions for all task runs: fingerTapping ( Fig. 7 A), fingerTappingImag-

ned ( Fig. 7 B), emotionProcessing ( Fig. 7 C), and emotionProcessingImag-

ned ( Fig. 7 D). For all tasks, it is evident that resulting T-values for the

ombined echo time series are very similar in size and distribution to

hat of the Echo 2 time series, while T-values for the T 2 
∗ FIT time series

re notably lower. The low mean T-values of T 2 
∗ FIT are due to the noise

aptured when estimating T 2 
∗ per-volume using only three data points,

here noisy data would increase standard deviation and decrease the

esulting T-values. This is substantiated by the large decrease in tSNR

e saw for the T ∗ FIT time series compared to that of the Echo 2 time
2 
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Fig. 5. Distribution / ridge plots of mean grey matter temporal signal-to-noise ratio (tSNR) over all participants and all runs . Plots are shown for (A) the 

whole brain, (B) the left motor cortex, and (C) the bilateral amygdala, each displaying a distribution for the six time series from left to right: Echo 2, tSNR-weighted 

combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted combination, and T2 ∗ FIT. In all regions, the mean T2 ∗ FIT tSNR decreases from 

Echo 2 while the tSNR of all other time series increase, with the T2 ∗ FIT-weighted combination showing the largest increase in all regions. Notably, tSNR increases 

for all the combined echo time series are more substantial in the amygdala (C) than the other regions (A, B). 

9 
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Fig. 6. Distribution plots of mean percentage signal change (PSC) values in the FWE-OR region for each of the four task runs. Plots from top to bottom 

are: (A) fingerTapping, (B) fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessingImagined. PSC values are shown for all six time series, from 

left to right: Echo 2, tSNR-weighted combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted combination, and T2 ∗ FIT. For all tasks, 

the T2 ∗ FIT time series effect sizes show mean increases above the effect sizes of the Echo 2 time series, while all multi-echo combined time series effect sizes show 

similar or decreased means. 
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eries in Figs. 4 and 5 . Additionally, the TE-combined time series show

lightly higher T-values for all tasks compared to other combined time

eries. However, this slight increase does not persist when analysing

ther regions (e.g. FWE or atlas-based ) as can be viewed with the sup-

lementary browser-based application. 

.5. Temporal percentage signal change and functional contrast 

Temporal percentage signal change is useful to inspect the per-

olume fluctuations of signal in task-related regions. This can be done

or both offline and real-time scenarios but is particularly important for

he latter in applications like region-based neurofeedback. tPSC in the

ffline scenario is calculated per volume from minimally processed data,

ielding a per-voxel tPSC time series that can be depicted in a carpet

lot for quality inspection or used for ROI analyses. tPSC for real-time

cenarios is calculated from real-time minimally denoised ROI-averaged

ignal (with regards to the mean of the preceding baseline "OFF" block

r with regards to the cumulative total or baseline mean) yielding the

eal-time ROI-signal typically used in region-based neurofeedback. 

Here we focus on exploring tPSC and functional contrast for the real-

ime scenario. While offline tPSC is useful for post-hoc inspection of

ignal quality and task activity, it reflects similar data already presented

bove in the PSC and T-statistic distributions. Additionally, offline tPSC

oes not accurately reflect the effects seen for real-time scenarios where

er-volume calculations can only use information available up to the

ost recently acquired volume. For that purpose, minimally processed

ata are cumulatively detrended and real-time tPSC is then calculated

ith regards to a cumulative baseline mean. 

Fig. 8 shows functional contrast for all subjects calculated from real-

ime tPSC signals for the fingerTapping and emotionProcessing tasks, in

he FWE-OR and atlas-based regions (the corresponding offline metrics
10 
an be inspected in detail in the supplementary web-application). The

 2 
∗ FIT signal clearly has a larger functional contrast (higher tPSC during

ask blocks and lower tPSC during resting blocks) than all other signals,

or which the functional contrasts are very similar. For example, the

inimum percentage increase of T 2 
∗ FIT functional contrast over Echo

 functional contrast is 260.61% (from 0.33 to 1.19) in the FWE-OR

egion of the emotionProcessing task. Taking supplementary data into

ccount, there is also an increased functional contrast for the real-time

 2 
∗ FIT time series compared to its offline counterpart. 

A caveat here is that the T 2 
∗ FIT time series has the lowest tSNR of

ll time series, as noted in Fig. 5 . In real-time scenarios, this could di-

inish the benefit of the high functional contrast in that the improved

ensitivity to detect brain activity in an ROI would not necessarily be

emporally stable. To take this into account, the functional contrasts are

ivided by the standard deviation of the tPSC time series to yield the

emporal contrast-to-noise ratio (tCNR). This is shown for the FWE-OR

egions in the fingerTapping and emotionProcessing tasks in Fig. 9 below,

long with examples of single-participant real-time tPSC signals for the

ame tasks and regions. These plots highlight both functional contrast

nd volume-to-volume fluctuations. 

Notably, the distributions in Fig. 9 A and 9 B show a substantial in-

rease in tCNR for the T 2 
∗ FIT time series versus Echo 2 (97.78% for fin-

erTapping and 172.31% for emotionProcessing ), while the distributions

f all other multi-echo combined time series are very similar in shape

nd size to Echo 2. These promising results suggest that the decreased

oxel-wise tSNR of the T 2 
∗ FIT time series is less detrimental on the level

f the ROI-averaged signal. Offline tCNR calculations (accessible in the

upplementary web-application) however show very similar tSNR dis-

ributions for all time series including T 2 
∗ FIT and Echo 2. On the level of

ndividual ROI-averaged signals, Fig. 9 C and 9 D show tPSC signals in the

WE-OR regions, with higher amplitude differences for the T 2 
∗ FIT time
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Fig. 7. Distribution plots of mean statistical T-values in the FWE-OR region for each of the four task runs. Plots from top to bottom are: (A) fingerTapping, 

(B) fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessingImagined. T-values are shown for all six time series, from left to right: Echo 2, tSNR- 

weighted combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted combination, and T2 ∗ FIT. For all tasks, T-values of the combined 

echo time series are very similar in size and distribution shape to that of the Echo 2 time series, while T-values for the T2 ∗ FIT time series are notably lower. 
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eries compared to all other time series, echoing the increased functional

ontrast seen for the group in Fig. 8 . While a slight increase in volume-

o-volume fluctuations relative to the signal amplitude is also visible,

his does not substantially affect tCNR measures. 

Another note regarding the tPSC signals shown in Figs. 9 C and 9 D

s that these visualisations reflect temporally smoothed data, using a

oving 3-point average. In real-time analysis it is common to apply a

indowed averaging filter to the ROI time series in order to increase the

SNR, which improves the contrast and stability of the neurofeedback

ignal. This also improves our ability to classify individual volumes as a

etected or undetected event of activity in cases where binary decision

aking is an important step for the specific real-time application. In the

ase of Fig. 9 it highlights the functional contrast improvement of the

 2 
∗ FIT time series. Note that the tCNR calculations that yielded the data

f Fig. 8 were executed on temporally unsmoothed data. The supplemen-

ary web-application can be used to change views of the tPSC time series

etween temporally smoothed and unsmoothed visualisations. 

. Discussion 

In this work we presented a comprehensive exploration and evalu-

tion of existing and novel multi-echo combination and T 2 
∗ -mapping

ethods for both real-time and offline BOLD sensitivity improvements.

 resting state and task-based healthy participant dataset was collected,

urated and made available to the community for future investigations.

n this dataset, we investigated five time series derived from multi-echo

ata and their differences from a single echo time series (Echo 2): tSNR-

eighted combination, TE-weighted combination, T 2 
∗ -weighted combi-

ation, T 2 
∗ FIT -weighted combination, and the T 2 

∗ FIT time series. These

ifferences were explored in terms of: temporal signal-to-noise ratio,

ercentage signal change as task-based effect size measure, offline and
11 
eal-time temporal percentage signal change in regions of interest, func-

ional contrast in ROIs, and temporal contrast-to-noise ratio in ROIs. 

.1. Results 

Our results, across 28 participants, are summarised as follows.

ropout recovery is more pronounced (in orbitofrontal, ventromedial

refrontal regions as well as inferior and anterior temporal regions)

or the T 2 
∗ -weighted, tSNR-weighted, and T 2 

∗ FIT -weighted combina-

ions than for the TE-weighted combination. All multi-echo combined

ime series yield increases in tSNR compared to Echo 2, with the newly-

roposed T 2 
∗ FIT -weighted combination resulting in the largest increase

n mean tSNR. For the T 2 
∗ FIT -weighted combination, increases in mean

SNR are larger for the amygdala than for the left motor cortex or the

hole brain. In contrast, the T 2 
∗ FIT time series results in a substan-

ial mean decrease in tSNR from Echo 2. Alternatively, the T 2 
∗ FIT time

eries yields the largest effect size measures across all investigated func-

ional tasks and regions, whereas the effect size measures derived from

ombined echo time series tend to decrease slightly from those of Echo

, for all functional tasks. Based on temporal percentage signal change

alculated offline from minimally processed data, the T 2 
∗ FIT time se-

ies yields the highest functional contrast for all tasks. Similarly, based

n temporal percentage signal change calculated in simulated real-time

rom cumulatively denoised data, the T 2 
∗ FIT time series also yields the

ighest functional contrast for all tasks, although this increase is sub-

tantially more than the increase seen for its offline counterpart. For

eal-time scenarios, the temporal contrast-to-noise ratio of the T 2 
∗ FIT

ime series is notably higher than all other time series, which are very

imilar in size and distribution. 

The fact that multi-echo combined time series yields increased tSNR

ompared to single echo data has been widely demonstrated in previ-
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Fig. 8. Distributions of functional contrasts calculated from real-time temporal percentage signal change of the fingerTapping and emotionProcessing 

tasks . Contrast distributions are shown for both tasks within the FWE-OR region (A and C) and within the atlas-based region (B and D). Signals are colour coded for 

Echo 2, tSNR-weighted combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted combination, and T2 ∗ FIT. Similar to the offline tPSC 

case, the functional contrast (in both tasks) for the T2 ∗ FIT time series is greater than the contrasts for all other time series, in both regions, although this is less 

pronounced for the emotionProcessing task than for the fingerTapping task. Notably, functional contrast for the real-time T2 ∗ FIT time series is substantially increased 

compared to its offline counterpart (see supplementary web-application). Functional contrast is presented as differences in percentage signal change (y-axes). 
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us research, and has been repeated here for all combined time series

ith respect to Echo 2. Additionally, we show that the novel T 2 
∗ FIT -

eighted combination yields the largest increase, replicating our previ-

us results from a different dataset ( Heunis et al., 2019 ). In the amyg-

ala, a mean increase in tSNR of 53.35% was calculated across partici-

ants, while the mean increases for the left motor cortex and the whole

rain were respectively 31.63% and 36.95%. These differences suggest

hat multi-echo combination, and in particular T 2 
∗ FIT -weighted combi-

ation, could prove more useful in terms of tSNR for areas traditionally

uffering from suboptimal BOLD sensitivity due to their lower local base-

ine T 2 
∗ -values. On the other hand, improving tSNR in individual regions

ould also benefit whole-brain methods where spatially distributed ROIs

r networks are used as the neurofeedback substrate (e.g. connectivity-

ased neurofeedback employed by Megumi et al., 2015 , or default mode

etwork-based neurofeedback employed by MacDonald, et al., 2017 ),

ince this would decrease spatial variability in BOLD effects and could

ead to more accurate brain-wide estimates of interest. Note that we did

ot explore the approach of averaging the echoes (i.e. simple summa-

ion) as for instance originally proposed in Posse et al. (2001) , but this

pproach has proven reduced BOLD sensitivity than the rest of combi-

ation approaches investigated here. 

While not novel, an important aspect demonstrated here was the

ecrease in tSNR for the T 2 
∗ FIT time series, reported before by others

ncluding Kundu et al. (2017) . Importantly, the fitting procedure used to

stimate per-volume T 2 
∗ - and S 0 -values (assuming a mono-exponential

ecay curve) yields noisy results that influence the amplitude of the

ignal fluctuations with respect to the mean, thus increasing the stan-

ard deviation and decreasing tSNR. The pitfalls of assuming mono-
12 
xponential (as opposed to multi-compartment) decay and using a fit-

ing procedure with few data points (3 in this case) have been described

efore ( Whittall et al., 1999 ) and remain applicable here. Future work

hould aim to exploit technical advances such as simultaneous multi-

lice imaging to increase the number of echoes acquired per volume,

hile investigating more robust models of T 2 
∗ -decay. 

While tSNR is a useful quantifier of relative spatial signal increases

nd dropout recovery, it does not directly measure or represent BOLD

ensitivity. To investigate how multi-echo derived data could improve

ur ability to link BOLD changes to neuronal effects, we employed

tatistical task-analysis to yield effect size measures to show the ben-

fits of rapid T 2 
∗ -mapping over single echo fMRI. For all tasks, the

 2 
∗ FIT time series consistently yielded the largest standardised effect

ize measures in terms of percentage signal change calculated offline

rom contrast maps after participant-level GLM analysis, while the ef-

ect sizes for multi-echo combined data decreased slightly. This phe-

omenon of decreased effect sizes has been reported before for both

ptimally combined as well as MEICA-denoised data by Gonzalez-

astillo et al. (2016) . This was reported for 5 subjects performing an

uditory task in a 20 s ON/OFF block paradigm similar to the one in

his work. Gonzalez-Castillo et al. calculated per-volume T 2 
∗ -maps (i.e.

 2 
∗ FIT time series) using the same log-linear fitting approach but with

nly two echoes (TE = 31.7 ms and 49.5 ms), also in accordance with

eissner et al. (2010) , and found that the activation extent, effect sizes

nd T-statistic values all decreased for the T 2 
∗ time series compared

o the original single echo time series. In contrast, we observe that the

ffect sizes calculated from the T 2 
∗ FIT time series increase , while the re-

ated T-statistic values decrease (indirectly preempted by the decrease
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Fig. 9. Distributions of mean functional contrast-to-noise ratio (calculated from real-time temporal percentage signal change) of the (A) fingerTapping 

and (B) emotionProcessing tasks within the FWE-OR region . Subplots (C) and (D) show individual subject tPSC time series for the same tasks as mentioned, 

respectively, for (A) and (B). Signals are colour coded for Echo 2, tSNR-weighted combination, TE-weighted combination, T2 ∗ -weighted combination, T2 ∗ FIT-weighted 

combination, and T2 ∗ FIT. Since tCNR is computed from tPSC time series, the tCNR values computed from (C) and (D) represent a single data point per time series 

in subplots (A) and (B). The time series visualisations in (C) and (D) reflect temporally smoothed data, using a moving 3-point average. Transient fluctuations for 

the first two volumes in (C) and (D), ascribed to differences in calculating real-time tPSC (using the cumulative baseline mean) versus offline tPSC (using a full time 

series mean) were zeroed across all six time series in order to remove their biasing effects on tCNR calculations. 

13 
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n tSNR). This difference in the change of the effect size with respect

o Echo 2 might be explained by the use of three echoes in our calcula-

ion of the T 2 
∗ FIT time series, instead of two echoes, that could result in

educed accuracy of the T 2 
∗ estimates. This hypothesis can, in fact, be

ested using the current rt-me-fMRI dataset, although that is considered

eyond the scope of this work. 

The T 2 
∗ FIT time series also consistently yielded the largest functional

ontrasts in terms of differences in task vs. baseline amplitudes in tPSC

ignals calculated from offline and real-time data. As an example, we ob-

erve an 87.91% increase in mean PSC ( T 2 
∗ FIT compared to Echo 02) for

he FWE-OR region of the fingerTapping task, and increases in functional

ontrast for the same task and region of 100% and 293%, respectively for

ffline and real-time scenarios. Interestingly, functional contrast for the

eal-time calculated tPSC signal showed an increase above the functional

ontrast calculated from offline data. The main mathematical difference

n real-time vs offline approaches that this could be ascribed to is the

umulative calculation vs offline calculation, especially as regards the

ean (cumulative baseline mean vs full time series mean). Beyond the

unctional contrast, the temporal contrast-to-noise ratio of the real-time

PSC signals were calculated to control for relative signal fluctuations,

specially considering the low tSNR of T 2 
∗ FIT . Even so, the T 2 

∗ FIT time

eries consistently yielded the largest tCNR increase above Echo 2 for

ll tasks (e.g. 97.78% for the fingerTapping task), suggesting its benefits

or improving BOLD sensitivity in real-time use cases. 

This apparent contradiction of low tSNR versus high offline PSC and

igh real-time tCNR is worth exploring. Theoretically, we should expect

n increase in BOLD sensitivity when analysing quantified T 2 
∗ fluctua-

ions versus fluctuations in single echo image intensity, since the sepa-

ation of T 2 
∗ - and S 0 should remove (to a considerable extent) system-

evel, inflow, and subject-motion effects from the T 2 
∗ -signal. What is

eft in the form of voxel-based T 2 
∗ FIT -values would then theoretically

e more indicative of local neuronal activity than information derived

rom single echo data, assuming noise from the fitting procedure and

ther confounding factors do not attenuate this contrast substantially.

undu et al. (2017) suggested that, even given a noisy fitting proce-

ure, direct T 2 
∗ and S 0 fitting can be valid for separating low-frequency

OLD changes, while not ideal for higher frequency modulations that

ould alias with fitting error variations. In the task and ROI signal anal-

ses presented here, as well as in the intended offline and real-time

se cases of the presented methods, ON/OFF block paradigms generate

low BOLD changes where volume-to-volume fluctuations are averaged

ut to generate summary measures. This could explain, in part, the ab-

ence of detrimental effects resulting from the low tSNR. We also note

hat several levels of spatial smoothing applied to the real-time use case

whole volume spatial smoothing, followed by in-ROI voxel averaging)

re bound to increase the tSNR of the ROI signal from which the tCNR

s calculated. This likely counteracts the low tSNR of the T 2 
∗ FIT time

eries that conversely attenuates T-values in the offline use case. Addi-

ionally, acquisition parameters can have important influences on signal

oise and parameter fitting error. Large voxel sizes (in this case 3.5 mm

sotropic) are known to increase SNR and can be a contributing factor

o the promising result reported in this work. 

In terms of practical applicability to real-time fMRI research, we

ave shown the usefulness of multi-echo for real-time use cases in a 28-

erson dataset with several functional task designs. We demonstrate that

eal-time T 2 
∗ FIT -weighted combination yields brain wide mean tSNR

ncreases and improves signal recovery in regions affected by dropout,

ompared to single echo and other combined multi-echo time series.

e show additionally that the real-time T 2 
∗ FIT time series yields large

unctional contrast and tCNR increases compared to single echo or com-

ined multi-echo time series. These improvements could benefit both

eal-time brain wide connectivity measures and real-time region-based

ignals, respectively, showing the possible utility for studies on adaptive

aradigms and neurofeedback. 

Lastly, we have shown that real-time multi-echo processing, specif-

cally rapid T 2 
∗ -mapping and subsequent multi-echo combination is
14 
echnically viable and practically supported. The software tools gen-

rated through this work (and shared with the community) support

everal per-volume or real-time multi-echo processing operations, in-

luding real-time 3D realignment of multi-echo data, real-time esti-

ation of multi-echo decay parameters, real-time multi-echo combina-

ion using several weighting schemes, and multiple standard real-time

reprocessing steps. It provides a practical toolkit for exploring real-

ime multi-echo fMRI data and for comparing the effects of acquisition

nd processing settings on BOLD sensitivity in individuals. Addition-

lly, the interactive browser application allows easy access to the results

 https://rt-me-fmri.herokuapp.com/ ), while the provision of supporting

aterial and code ( https://github.com/jsheunis/rt- me- fMRI ) allows the

resented results to be reproduced and allows replication attempts to be

onducted on future datasets. 

.2. Limitations and future work 

It remains important to consider caveats before further implementa-

ions and in order to direct future work. To start, we note that the rt-

e-fMRI dataset does not include field maps and consequently no field

ap-based distortion correction steps were applied. To counter this ab-

ence, the alignments of the anatomical masque, as well as the derived

issue segmentation masks, and the EPI data were visualised, inspected

nd the overlap was found acceptable. 

As regards the acquisition of a resting-state run from which to esti-

ate T 2 
∗ before the start of a real-time session, future work could look

nto other acquisition types to improve the quality of prior T 2 
∗ -maps. For

xample, sequences like multi-echo GRE or ME-MP2RAGE ( Metere et al.,

017 ; Sun et al., 2020 ), or multi-echo EPI sequences with a longer TR

nd more echoes, can all yield a more accurate T 2 
∗ estimation. Further

hanges to the acquisition strategy of the real-time runs may also benefit

uture applications . We mentioned voxel sizes above, but other aspects

ike increases in the number of receive coils, improvements in the im-

lementation of acceleration techniques such as GRAPPA or SENSE, and

eld strength increases can all lead to lower levels of volume-to-volume

oise and subsequent parameter estimations. 

Regarding the exploration of tSNR improvements in multi-echo-

erived data versus single-echo data, we note that these improvements

an stem from different sources. For example, tSNR increases due to

ulti-echo weighting can originate from signal recovery (i.e. the mean

ignal owing to the first echo) or decrease of noise fluctuations due to the

veraging. Additionally, tSNR changes could be different across brain

egions and tissue types (for instance from grey versus white matter or

SF). Further work to delineate the exact origin of spatial variations of

uch tSNR improvements will allow future applications to gain use-case-

pecific benefits. Such investigations should also look closely at changes

ccompanying different acquisition strategies highlighted above. 

In the described preprocessing pipeline, probabilistic cytoarchitec-

onic maps in MNI152 space (from Eickhoff et al., 2005 ) were co-

egistered to the subject functional space to create subject-specific re-

ions of interest. It should be mentioned that these are less subject-

pecific than alternatives derived from individual anatomical features

such as those generated by the freesurfer software package), which

oints to an option for future improvement. Furthermore we note, as

id Clare et al. (2001) , that the selection of the region of interest within

hich to investigate activation effects, functional contrast, tSNR and

ore, can increase the variability of results and subsequent inferences.

his issue was evaluated here considering three different ways of delin-

ating the region of interest: FWE, FWE-OR , and atlas-based , and we

bserved attenuation of effect sizes, T-values and functional contrast as

egions become less spatially matched to participants’ functional acti-

ation localisation. This is particularly important for the real-time neu-

ofeedback context, where a predefined subject-specific region of inter-

st is often required to enable real-time region-based signal extraction.

his concern about variability in the performance due to ROI definition

xtends to the implementation of real-time denoising steps as well, as

https://rt-me-fmri.herokuapp.com/
https://github.com/jsheunis/rt-me-fMRI
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oted in our previous work on denoising steps in neurofeedback stud-

es ( Heunis et al., 2020b ). In the current study, we intentionally imple-

ented a minimal real-time processing pipeline to avoid confounding

he results. 

As summarised in the results discussion above, standardised effect

izes resulting from task analysis of all multi-echo combined time series

ere very similar in size and distribution, and on average much lower

han that of the T 2 
∗ FIT time series. This phenomenon could benefit from

ollow-up confirmatory analyses in a future study. Another claim that

ould be usefully extended into a follow-up investigation is the deci-

ion to include all participants in the study irrespective of the amount

f motion in their data. As an example, some multi-echo combination

chemes may be more or less robust to head motion, and the inclusion of

ll subjects would allow investigating such variations in higher versus

ower motion subjects. Lastly, a key next step for extending the investi-

ation of multi-echo use in offline task analysis is to examine activation

lusters in more detail. This work looked at PSC and T-values in specific

egions, but an important question to test would be whether multi-echo

ombined or derived times series yield activation clusters in new or un-

xpected brain regions, or how they affect existing activation clusters in

erms of effect size and extent. 

The supplementary web-application can also be seen as an evolving

esource where other useful metrics, results and visualisations can be

dded in future. Examples of such additions include pairwise percent-

ge differences in comparison metrics between the different multi-echo

ombined and derived time series and Echo 2; investigations into new

r varying activation clusters resulting from multi-echo time series; or

ny other aspects covered here as future work. 

While the presented benefits of multi-echo fMRI for real-time exper-

ments are promising, further work is necessary to quantify the effects

f a full multi-echo and real-time denoising pipeline on BOLD sensitiv-

ty and data quality. Taking into consideration the caveats discussed

ere, we advise researchers planning real-time fMRI studies to design

nd conduct effective pilot studies and to evaluate the effects robustly

efore deciding on the optimal multi-echo implementation settings 
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