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We report on a new class of flux vacua generically present in Calabi-Yau compactifications of type-IIB
string theory. At these vacua, the mass spectrum of the complete axiodilaton/complex structure sector is
given, to leading order in α0 and gs, by a simple analytic formula independent of the choice of Calabi-Yau.
We provide a method to find these vacua and construct an ensemble of 17,054 solutions for the Calabi-Yau
hypersurface WP4

½1;1;1;6;9�, where the masses of the axiodilaton and the 272 complex structure fields can be

explicitly computed.
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I. INTRODUCTION

The study of the phenomenological implications of string
theory demands the construction of low-energy effective
field theories (EFTs) describing its compactification to four
dimensions. However, deriving these EFTs is remarkably
challenging and involves, in particular, integrating out a large
number of scalar fields (typically hundreds) describing the
geometry of the compactified dimensions, i.e., the moduli.
Actually, finding a mechanism to generate the moduli
masses is a crucial step in the best studied proposals to
construct de Sitter vacua in type-IIB string theory, i.e., the
Kachru-Kallosh-Linde-Trivedi (KKLT) [1] and large volume
scenarios (LVS) [2,3]. Both constructions rely on the
identification of flux vacua: minima of the effective potential
induced by higher-dimensional form fields. Although the
general features of the flux potential are well characterized, a
detailed computation of the moduli mass spectra in generic
scenarios is still extremely difficult due to the complexity of
the theory and the large number of fields involved. More
specifically, the so-called no-scale structure of the flux
potential ensures that a subset of the moduli, namely the
axiodilaton and complex structure fields, can be fixed at a
perturbatively stable configuration provided they preserve
supersymmetry.

However, the stabilization of the remaining moduli
fields, i.e., the Kähler moduli, requires including α0
perturbative corrections and nonperturbative contributions,
which spoil the no-scale structure [4,5] (see also [6–8]).
Therefore, the uncorrected flux vacua may become
tachyonic, or even cease being critical points of the
potential. Indeed, while the stability of the axiodilaton/
complex structure sector in the fully stabilized vacuum has
been argued in KKLT and LVS using scaling arguments
[3,9–12] and by the direct examination of explicit examples
(see, e.g., [13,14]), it has rarely been studied in detail.
Actually, as discussed in [15–17], in both KKLT and LVS
scenarios the presence of light (or massless) fields in the
spectrum to leading order in α0 and quantum corrections
may still lead to the appearance of instabilities in the final
vacuum. Interestingly, the presence of such dangerously
light modes has been reported to arise in explicit con-
structions of de Sitter vacua, where the moduli are
stabilized near special points of the moduli space [18–
20]. Furthermore, recent analyses indicate an existing
tension between the D3-tadpole cancellation condition
and the need to stabilize all the complex structure moduli
[21–24], what could have important implications for the
consistency of KKLTand LVS proposals. While significant
progress has been made in crucial aspects of moduli
stabilization in the last couple of years [14,20,22,25], a
precise characterization of the mass spectrum in the
axiodilaton/complex structure sector has remained elusive,
which calls for further studies in this direction.
Advances on this matter were recently made in [26]

(following [17,27,28]) for compactifications on the orienti-
fold of Calabi-Yau manifolds, which allow the consistent
truncation of all the complex structure fields except one.
The analysis of [26] assumed a Calabi-Yau geometry
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admitting a large discrete isometry group which, provided
the flux configuration is also invariant under these sym-
metries, allows the effective reduction of the complex
structure sector. In this setting it was shown that the
complete mass spectrum of the axiodilaton and complex
structure sector (including the truncated fields) can be
explicitly computed in the large complex structure (LCS)/
weak string coupling regime. More specifically, for the
class of vacua, which can be found parametrically close to
the LCS point [29,30] and up to exponentially small
corrections, the scalar moduli masses are given by the
simple analytic formula
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Here, the quantity ξ parametrizes the complex structure
moduli space, ranging in ξ ∈ ½0; 1=2Þ for h2;1− > h1;1þ or in
ξ ∈ ð−1; 0� for h2;1− < h1;1þ , with the LCS point located at
ξ ¼ 0, and with h2;1− and h1;1þ denoting the number of
complex structure and Kähler moduli fields of the Calabi-
Yau orientifold, respectively. The quantity m3=2 is the
gravitino mass, and

m̂ðξÞ≡ 1ffiffiffi
2

p
�
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3ð1 − 2ξÞ3

p
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In the present paper we prove that, in the LCS regime
and provided the fluxes are conveniently constrained, the
EFT of generic Calabi-Yau compactifications always
admits a consistent truncation of all complex structure
fields but one. Here, in contrast with [26], we do not require
the presence of a discrete isometry group, and our result
relies instead on the existence of monodromy transforma-
tions around the LCS point. That is, we will require only the
invariance of the EFT under discrete shifts of the complex
structure fields zi

zi → zi þ vi; vi ∈ Zh2;1 ; ð3Þ

combined with an appropriate transformation of the fluxes
of the form fields. This invariance is a common feature of
all Calabi-Yau compactifications in the LCS regime.
Moreover, the choice of field surviving the truncation is
highly nonunique, with each possibility associated to a
different monodromy direction vi.
This simple, and yet powerful, observation allows us

to extend the results of [26] to generic Calabi-Yau com-
pactifications and, as a consequence, opens the door to

generating a large landscape of vacua with an unprec-
edented analytic control over the mass spectrum of the
axiodilaton and complex structure moduli. It is important to
note that solutions discussed here are not the dominant
class in the landscape. In fact, they only constitute a small
fraction of the total number of vacua for large values of
h2;1− ≫ 1. However, as we shall see below, our approach
allows us to search for these solutions in a very efficient
way, which makes it particularly attractive for explicit
constructions of de Sitter vacua.

II. CONSISTENT TRUNCATION OF THE EFT

We begin by introducing the effective supergravity
theory describing the low-energy regime of type-IIB
string theory compactified on a Calabi-Yau orientifold
M̃3. The couplings of the theory are conveniently expressed
by specifying an integral and symplectic homology basis
fAI; BIg of H3ðX3;ZÞ, satisfying AI ∩ BJ ¼ δIJ and
AI ∩ AJ ¼ BI ∩ BJ ¼ 0, with I ¼ 0;…; h2;1− . In particular,
the components in this basis of the Calabi-Yau (3,0) form
ΩðziÞ can be encoded in the period vector

ΠT ≡ ðF I; XIÞ ¼
�R

BI
Ω;

R
AI Ω

�
: ð4Þ

Here XI are projective coordinates in the complex structure
moduli space, and the corresponding moduli fields can be
defined to be zi ≡ Xi=X0, i ¼ 1;…; h2;1− . Then, to leading
order in α0 and the string coupling gs, the Kähler potential
of the corresponding four-dimensional effective supergrav-
ity theory reads [31,32]

K ¼ −2 logV − logð−iðτ − τ̄ÞÞ − log ð−iΠ† · Σ · ΠÞ; ð5Þ

where V denotes the Kähler moduli-dependent volume of
M̃3 in units of 2π

ffiffiffiffi
α0

p
and measured in Einstein frame, and

Σ ¼
�

0 1
−1 0

�
is the symplectic matrix. The quantities F I

can be expressed as the derivatives of a holomorphic
function of the XI , the prepotential F ðXIÞ, which in the
LCS regime admits the expansion

F ¼ −
1

3!
κijkzizjzk −

1

2!
κijzizj þ κizi þ

1

2
κ0 þ…; ð6Þ

where we have chosen the gauge X0 ¼ 1. The terms κijk,
κij, and κi are numerical constants which can be computed
from the topological data of the mirror manifold toM3 (see
[33]). In particular, the quantities κijk are integers, the
coefficients κij and κi are rational, and the constant κ0 ¼
ζð3ÞχðM3Þ=ð2πiÞ3 is determined by the Euler number
χðM3Þ of the Calabi-Yau. The prepotential also receives
contributions from world-sheet instantons, which are sub-
leading in the LCS regime, and thus they will be neglected
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in the following calculations. The presence of the Ramond-
Ramond and Neveu-Schwarz-Neveu-Schwarz three-form
fluxes, respectively Fð3Þ andHð3Þ, induces the Gukov-Vafa-
Witten superpotential W for the dilaton and complex
structure moduli [34]

ffiffiffiffiffiffiffiffi
π=2

p
W ¼ NT · Σ · Π; ð7Þ

where we have introduced the flux vector

N ≡ f − τh; f ¼
�R

BI Fð3ÞR
AI

Fð3Þ

�
; h ¼

�R
BI Hð3ÞR
AI

Hð3Þ

�
;

ð8Þ

with ffIA; fBI ; hIA; hBI g ∈ Z. Then, the configurations of the
axiodilaton and complex structure fields fτc; zicg, which
minimize the scalar potential while preserving supersym-
metry, are those satisfying the F-flatness conditions

ð∂τ þ ∂τKÞWjτc;zic ¼ ð∂zi þ ∂ziKÞWjτc;zic ¼ 0: ð9Þ

The present description of the EFT has an inherent
redundancy associated to the choice of homology basis.
More specifically, a change of basis induces a transforma-
tion of the period and flux vectors

Π → S · Π; N → S · N; ð10Þ

with S ∈ Spð2h2;1− þ 2;ZÞ, leading to different descrip-
tions of the same theory. Finally, the requirement that the
period vector transforms by symplectic transformations
under the monodromies (3) leads to the following condition
on the couplings [35,36]:

κijvj þ
1

2
κijkvjvk ¼ 0 mod Z: ð11Þ

We will now prove the main result of this paper:
Theorem: Let us consider a h2;1− -dimensional vector vi of

coprime integers, which lies in the Kähler cone of the mirror
Calabi-Yau. Then, the Ansatz zi ¼ ẑvi with ẑ ∈ C defines a
consistent supersymmetric truncation of the EFT given by
(5), (6), and (7) when the flux configuration is of the form

N0
A ¼ 0; Ni

A ¼ viN̂A;

NB
i ¼ qκijkvjvkN̂

B −
�
κij þ

1

2
κijkvk

�
Nj

A; ð12Þ

and NB
0 arbitrary. Here N̂A ≡ f̂A − τĥA, N̂B ≡ f̂B − τĥB

with ff̂A; ĥA; f̂B; ĥBg ∈ Z and q−1 ≡ gcdðκijkvjvkÞ.
Proof.—First, note that the constraint (11) ensures that

the vectors f and h defined in (8) have integer components,
as required by the flux quantization condition. To prove that

the Ansatz zi ¼ ẑvi with ẑ ∈ C defines a consistent super-
symmetric truncation of the EFT with the fluxes (12), we
need to check that the F-flatness condition wið∂zi þ
∂ziKÞWjẑvi ¼ 0 is satisfied along all directions wi orthogo-
nal to the reduced field space defined by the truncation
Ansatz, i.e., orthogonal to vi, regardless of the value of ẑ
and τ [17,37–39]. Substituting the flux configuration (12)
into (7) we find that the F-flatness condition reads

κijkwivjvk
��

ẑþ i
2

�
NA − iqNB

�
þ wi½∂ziKW�ẑvi ¼ 0:

ð13Þ

Actually the two terms in this expression vanish
independently, as they are both proportional to
κijkwiImðzjÞImðzkÞ ¼ 0, which is zero in the LCS regime.
Indeed, this quantity vanishes at any configuration zi where
the holomorphic vector wi is orthogonal to ImðziÞ [26]
(see also Appendix A and [28,40,41]). ▪
The previous result guarantees that the Ansatz zi ¼ ẑvi

can be consistently substituted into the action, obtaining a
reduced theory with an effectively one-dimensional com-
plex structure moduli space parametrized by ẑ. The cou-
plings of the reduced action are still characterized by (5)
and (7), but with an effective prepotential given by

F̂ ≡ −
1

3!
κvvvẑ3 þ

1

2 · 2!
κvvvẑ2 þ κvẑþ

1

2
κ0 ð14Þ

and an effective four-dimensional flux vector

N̂ ≡ ðNB
0 ; qκvvvN̂B; 0; N̂AÞT; ð15Þ

where we introduced the shorthands1 κvvv ≡ κijkvivjvk and
κv ≡ κivi. Any solution of this reduced theory is also a
solution of the full action in the LCS regime and to leading
order in α0 and gs. Furthermore, if the fields surviving the
truncation satisfy the F-flatness conditions (9), then the
axiodilaton/complex structure sector of the complete theory
will satisfy them as well [17,42].
Therefore, given an EFT for some Calabi-Yau compac-

tification, we can immediately generate large families of
flux vacua in the LCS regime (one family for each choice of
vi), where we can compute the mass spectrum of the
complete axiodilaton/complex structure sector. Indeed, we
just need solve the F-flatness conditions (9) for the reduced
model defined by (14) and (15). Then, the mass spectrum at
the resulting vacua can be obtained using the results in [26],
which apply whenever the complex structure sector can be
consistently truncated to a single field. More specifically,
the formula (1) gives the squared masses of all the 2h2;1− þ 2

1The freedom (10) allows to shift κijvivj by an arbitrary
integer, what we use to set κijvivj ¼ − 1

2
κijkvivjvk in (14) [35].
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scalar modes in the axiodilaton/complex structure sector,
including the truncated ones, in terms of a single parameter
ξ≡ −3Imκ0

2κvvvImðẑÞ3, and normalized by the gravitino mass

m2
3=2 ≡ eKjWj2 ¼ 3QD3=ðπð2 − ξÞV2Þ; ð16Þ

where QD3 ≡ fT · Σ · h ≥ 1 is the flux induced D3 charge.
In Eq. (1), the masses with λ ¼ 0, 1 are those associated to
the fields surviving the truncation fτ; ẑg, while those with
λ ¼ 2;…; h2;1− are the masses of the remaining fields in the
truncated sector. It is also worth mentioning that solutions
to (9) with N0

A ¼ 0 are of particular interest, as they are the
only ones that can be found parametrically close to the LCS
point [26–30], which is where we have the best perturbative
control of the EFT.
To end this section, let us briefly comment on the

D3-tadpole constraint. In a given compactification, the
number of solutions at LCS compatible with the spectrum
(1) N can be estimated using the continuous flux approxi-
mation of [43]. We find

N ðQD3 ≤ Q�
D3; gs ≤ g�sÞ ∝

X
vi∈CK

g�s jImκ0jðQ�
D3Þ3

q2κ2vvv
; ð17Þ

where Q�
D3 is the available D3 charge in the compactifi-

cation, gs ¼ ðImτÞ−1 is the string coupling, and the pro-
portionality constant is of order one (see Appendix C). The
sum in the previous formula extends over all vectors vi in
the Kähler cone (CK) of the mirror dual to M3. Although
the actual number of vacua depends on the choice of
compactification, this result shows thatN only represents a
very small fraction of the total number of flux vacua N ≪
N total ∝ ðQ�

D3Þ2ðh
2;1
− þ1Þ when h2;1− ≫ 1 [43]. Nevertheless,

the method described above allows us to very efficiently
search for these solutions, as we demonstrate next with an
explicit example.

III. EXAMPLE: THE HYPERSURFACE WP4
½1;1;1;6;9�

We will now illustrate our results by constructing an
ensemble of the class of vacua presented above. For this
purpose we will consider the compactification of type-IIB
string theory in an orientifold of the Calabi-Yau hypersur-
face WP4

½1;1;1;6;9�, which has h1;1þ ¼ 2 Kähler moduli and

h2;1− ¼ 272 complex structure fields. For geometries admit-
ting a G ¼ Z18 × Z6 isometry group, and provided only
G-invariant fluxes are turned on, the complex structure
sector can be consistently truncated, leaving only two
surviving complex structure fields which also transform
trivially under G. In the LCS regime, the couplings for the
two G-invariant complex structure fields are determined by
a prepotential with coefficients [44]

κ111 ¼ 9; κ112 ¼ 3; κ122 ¼ 1;

κ11 ¼ −
9

2
; κ22 ¼ 0; κ12 ¼ −

3

2
; ð18Þ

κi ¼ ð17
4
; 3
2
Þ, and κ0 ¼ −540ζð3Þ=ð2πiÞ3. Recall that the

presence of the group G is not necessary for our results to
apply, however, such isometries are often required to make
the computation of the EFT couplings tractable (see [45]).
We will also assume the same configuration of orientifold
planes and D7-branes as in [20], which allows for flux
vacua with D3 charge satisfying QD3 ≤ 138.
The procedure described above allows us to further

reduce the complex structure sector to a single field.
Consider for definiteness the truncation Ansatz defined
by the monodromy direction vi ¼ ð1; 1Þ. The resulting
effective prepotential (14) is given by the couplings
κvvv ¼ 21 and κv ¼ 23

4
. In order to construct the vacua

ensemble, we first generated the collection of all flux tuples
ffB0 ; hB0 ; f̂A;B; ĥA;Bg with entries in the interval ½−15; 15�
satisfying the tadpole constraint (∼2 × 107 in total). For
each of these, we numerically solved the F-flatness con-
ditions (9) of the reduced model given by (14) and (15),
employing the software Paramotopy [46–48]. The
resulting set of 17,054 solutions is displayed in Fig. 1
(blue dots), which shows the distribution of vacua on a

FIG. 1. Numerically generated distribution of flux vacua on
the fundamental domain of the reduced field space, with
Reτ ∈ ½−1=2; 1=2Þ, Imτ > 1 and Reẑ ∈ ½−1=2; 1=2Þ for the
WP4

½1;1;1;6;9� model. The plot represents a total of 28,683 vacua

obtained by reducing the EFT along the monodromy direction
vi ¼ ð1; 1Þ. We indicated in red vacua with large (>5%) instanton
corrections to the Kähler metric and m3=2, and in blue (17,054
solutions) those with corrections <5%.
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fundamental domain of fτ; ẑg. This ensemble includes
only solutions at the weak string coupling/LCS regime,
i.e., where gs < 1 and with small instanton corrections
to the prepotential (using the similar criteria to [26]).
It is interesting to note that for this particular branch of
vacua, the continuous flux approximation (17) predicts
N jvi¼ð1;1Þ ∼ 105, which represents a very small fraction of
the total number of vacua, N total ∼ 1013. This result shows
the efficiency of our method, which led us to find a
significant fraction of this branch of solutions, regardless
of them arising with low frequency in the landscape.
As we detailed before, the truncation Ansatz zi ¼ viẑ

together with (12) allows us to lift each of these solutions to
a vacuum of the completeWP4

½1;1;1;6;9� model. After the lift,
we computed the scalar mass spectrum at each vacuum for
the axiodilaton and the G-invariant zi modes (λ ¼ 0, 1, 2)
by direct diagonalization of the Hessian of the flux
potential of the WP4

½1;1;1;6;9� model. The result perfectly
matched the formula (1) in all cases. It is important to
emphasize that, at each of the obtained solutions, Eq. (1)
also gives the masses of the 270 truncated complex fields,
which transform nontrivially under G, i.e., the modes with
λ ¼ 3;…; 272. This is a remarkable result, given that we
only used the EFT couplings for the G-invariant moduli
computed in [44]. A statistical analysis of the flux vacua
obtained by this procedure can be found in Appendix B.

IV. DISCUSSION

In this paper, we presented a method to construct
ensembles of flux vacua for generic Calabi-Yau compacti-
fications at LCS, where the masses of the axiodilaton and
complex structure moduli are given by the universal
formula (1). This result provides full analytic control, to
leading order in α0 and gs, over the masses of those fields
and, therefore, the vacua we consider are an excellent
stepping stone towards the complete stabilization of the
compactification, i.e., including the Kähler moduli.
Interestingly, up to an overall scale, the masses given in
(1) are completely determined by the vacuum values of the
complex structure fields. As a consequence, knowing the
magnitude of the α0 and nonperturbative corrections which
generate the Kähler moduli potential, it is possible to
guarantee the stability of the axiodilaton and all the
complex structure fields by restricting the search of vacua
to appropriate regions of moduli space. In particular, the
spectrum (1) involves a single asymptotically massless
mode in the neighborhood of the LCS point μ2−1jξ→0 ¼ 0

[26], with all the remaining masses being at least of the
order of the gravitino massm3=2. In other words, in the LCS
limit there is only one potentially dangerous mode which
might threaten the stability of the compactification. On the
contrary, away from the LCS point the mass of the lightest
mode in (1) becomes of the order of m3=2, and thus as long
as the perturbative and nonperturbative contributions to the

EFT are under control, the final vacuum with the Kähler
moduli fixed will not develop an instability. Nevertheless, it
is expected that such contributions will induce small
corrections in the spectrum (1), which, in particular, will
lift the degeneracy of the modes λ ¼ 2;…; h2;1− .
As a final remark, note that the class of vacua we

discussed is only appropriate for the construction of
LVS solutions, but not for the KKLT scenario. For the
solutions presented here, the flux superpotential satisfies
W0 ≡ Vm3=2 ≥ 1=

ffiffiffi
π

p
[see Eq. (16)], while the KKLT

vacua require W0 to be exponentially small. Therefore, a
logical future direction would be to consider the stabiliza-
tion of the Kälher moduli at the class of vacua presented
here within the LVS framework. Another interesting
continuation of this work would be to study other trunca-
tion schemes compatible with the more general vacua
discussed in [26], where the spectrum can also be explicitly
computed, and W0 could be arbitrarily small.
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APPENDIX A: F-FLATNESS CONDITION FOR
THE TRUNCATED MODULI

The proof of Eq. (13) relies on the following property
satisfied by the couplings of the prepotential (6) in the LCS
regime (neglecting instanton corrections)

κijkwiImðzjÞImðzkÞ ¼ 0; ðA1Þ
where wi is any holomorphic vector orthogonal to ImðziÞ
with respect to the moduli space metric. This result was
derived in [26] (see Eqs. (4.2) and (4.5) there), however, as
the conventions used here are slightly different to those
of [26], for completeness we will briefly outline the
proof in this Appendix. We will assume the Euler number
of the Calabi-Yau to be nonvanishing, but it is straightfor-
ward to extend the argument to the case χðM3Þ ¼ 0,
where ξ ¼ Imκ0 ¼ 0.
The Kähler potential for the complex structure sector

derived from (5) and (6) reads

Kcs ¼ − log

�
4

3
κijkImðziÞImðzjÞImðzkÞ − 2Imðκ0Þ

�
;

ðA2Þ
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and the corresponding moduli space metric on this sector
Kij̄ ≡ ∂i∂ j̄Kcs is

Kij̄ ¼ −2eKcs
κijkImðzkÞ

þ 4e2K
cs
κilmκjnpImðzlÞImðzmÞImðznÞImðzpÞ: ðA3Þ

For the instanton contributions to the prepotential (6) to be
suppressed, i.e., in the LCS regime, the field configuration
must be such that ImðziÞ lies in the Kähler cone of the
mirror Calabi-Yau (see [33]), what, in particular, implies
that κijkImðziÞImðzjÞImðzkÞ must be nonvanishing and
positive.
Let us consider now the product Kij̄u

iImðzjÞ, where ui is
a generic holomorphic vector not necessarily orthogonal
to ImðziÞ. Using that the tensor κijk is totally symmetric,

and the definition ξ≡ −2eKcs Imκ0
1þ2eKcs Imκ0

,2 this product can be

expressed as

Kij̄u
iImðzjÞ ¼ −

ξð1 − 2ξÞ
ð1þ ξÞ2Imκ0

κijkuiImðzjÞImðzkÞ: ðA4Þ

Setting ui ¼ ImðziÞ in the previous equation, we obtain

Kij̄ImðziÞImðziÞ ¼ 3ð1 − 2ξÞ
4ð1þ ξÞ2 ; ðA5Þ

implying that at field configurations where ξ ¼ 1=2, the
moduli space metric becomes degenerate, and thus the EFT
is not well defined. Moreover, the case jξj → ∞ corre-
sponds to configurations outside the LCS regime where
κijkImðziÞImðzjÞImðzkÞ ¼ 0, and thus the EFT defined by
the polynomial prepotential (6) cannot be trusted.3 Finally,
to prove Eq. (A1) we substitute ui ¼ wi in (A4), with wi

orthogonal to ImðziÞ, leading to

−
ξð1 − 2ξÞ

ð1þ ξÞ2Imκ0
κijkwiImðzjÞImðzkÞ ¼ 0; ðA6Þ

which can only be vanishing at physical configurations
away from the LCS point (ξ ¼ 0) provided (A1) is satisfied.

APPENDIX B: VACUA STATISTICS FOR THE
WP4

½1;1;1;6;9� HYPERSURFACE

In this Appendix, we will discuss the statistical proper-
ties of the class of solutions presented in the main body. In
particular, wewill analyze the distribution of these vacua on
the reduced moduli space fτ; ẑg and the probability density

functions for the scalar masses in (1). For this purpose,
following the method presented before, we numerically
constructed an ensemble of flux vacua on an orientifold of
the Calabi-Yau hypersurface WP4

½1;1;1;6;9� and extracted the

corresponding probability distributions by the direct exami-
nation of this set of solutions. As shown below, these
numerical results are in good agreement with the analytical
probability distributions derived in [26], which describe the
statistics of compactifications with an effectively one-
dimensional complex structure sector (see also [43]). It
is important to emphasize that our analytical description of
the probability distributions is independent of the choice of
Calabi-Yau and the truncation Ansatz. Therefore, the
statistical features observed here for theWP4

½1;1;1;6;9� ensem-

ble are expected to be present in generic compactifications
as well.
In order to have a sufficiently large sample of vacua for

the statistical analysis, we considered the effective reduc-
tion of the complex structure sector along the monodromy
directions vi ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þg, and we combined in
a single ensemble the solutions to the F-flatness conditions
(9) found for each of the three cases. Other families could
also have been considered; however, the study of any of
them is very computationally demanding and, due to the
universal features of these vacua, we do not expect to gain
any new information from studying a different family.
Furthermore, to relax the tadpole constraint on the

fluxes, we considered the setting adopted in [49], where
the type-IIB compactification on WP4

½1;1;1;6;9� was regarded
as the orientifold limit of F-theory on an elliptically fibered
Calabi-Yau fourfold, M4. In the F-theory framework, the
maximum allowed D3 charge induced by the fluxes is
determined by the Euler number of the fourfold, leading in
the present case to4 QD3 ≤ χðM4Þ=24 ¼ 273 [49].
For each choice of vi, we proceeded in a similar way as

described in the main body of the paper. First, we generated
a collection of 107 flux tuples ffB0 ; hB0 ; f̂A;B; ĥA;Bg drawn
from a uniform distribution with support in ½−25; 25� and
subject to the tadpole constraint QD3 ≤ 273. Then we
searched for solutions to the corresponding F-flatness
Eqs. (9) with the aid of the software Paramotopy. The
resulting ensemble contains 206,479 vacua in the weak
string-coupling regime, i.e., with ðImτÞ−1 ¼ gs < 1, out of
which 95,626 are in the LCS regime. Here we defined the
LCS regime by the condition that the leading instanton
contributions to the prepotential (6), given by (see [44])

F inst ¼ −
135

2π3
iei2πz

1 −
3

8π3
iei2πz

2 þ…; ðB1Þ
2This definition reduces to the one in the main text when

zi ¼ ẑvi.
3Actually, all field configurations with ξ < −1 or ξ> 1=2 are

unphysical since the field space metric always has at least one
negative eigenvalue there [26].

4The caveat on this approach is that it introduces additional
D7-brane moduli fields. For simplicity, here we will ignore those
additional moduli, and we refer the reader to [23,50–54] for
discussions on their stabilization.

BLANCO-PILLADO, SOUSA, URKIOLA, and WACHTER PHYS. REV. D 103, 106006 (2021)

106006-6



induce small relative corrections (<5%) to moduli space
geometry (i.e., to the field space metric and the canonically
normalized couplings κijk) and to the gravitino mass m3=2

[26]. It is important to mention that our definition of the
LCS regime is more restrictive than just requiring F inst to
be small (in absolute value) with respect to the perturbative
part of the prepotential (6) (see, e.g., [55]). Indeed, the
moduli space metric becomes degenerate far from the LCS
point (ξ → −1 for χðM3Þ > 0 and ξ → 1=2 for χðM3Þ < 0),
and thus, in that regime, the metric eigenvalues are small
and very sensitive to the instanton corrections, even for
small ratios jF inst=F j ∼ 0.01.
The method used here for avoiding duplicities in the

counting of vacua is essentially the same as the one used in
[26] (see also [56]). However, the case at hand requires
certain specific considerations related to the truncation of
the moduli space so, for completeness, we will briefly
summarize this method in the next section.

1. Redundancies and solution duplicates

The description of the EFT presented in the main text has
two inherent redundancies, namely those associated to the
choice of holonomy basis (10) and the well-known
SLð2;ZÞ modular transformations acting on τ. Those
vacua, which can be related to each other by these gauge
transformations, should be regarded as physically equiv-
alent, and thus when constructing the ensemble one must
ensure that each distinct solution is only counted once.
Regarding the choice of holonomy basis, the coefficients

κij, κi, and κ0 are only defined modulo integers with dif-
ferent representatives associated to different choices of this
basis. Therefore, by selecting a particular expression for
the prepotential the symplectic gauge is partially fixed,
with the residual gauge given by the monodromy trans-
formations around the LCS point, i.e., zi → zi þ δip with
p ∈ 1;…; h2;1− . As a result of imposing the truncation
Ansatz zi ¼ ẑvi, the gauge freedom is further reduced,
leaving as the only source of gauge redundancy the
monodromy transformations zi → zi þ vi, which amounts
to the shift

ẑ → ẑþ 1 ðB2Þ

on the field surviving the truncation. The corresponding
symplectic transformation SðvÞ ∈ Spð2h2;1− þ 2;ZÞ acts on
the period vector as (see [35])

Πðzi þ viÞ ¼ SðvÞ · ΠðziÞ; with SðvÞ ≡
�
A B

0 C

�
:

ðB3Þ

The matrices A and B are given by

A ¼
�
1 −vi

0 1

�
; B ¼

�
2κv þ 1

6
κvvv −κjv þ 1

2
κjvv

−κiv − 1
2
κivv −κijv

�
;

ðB4Þ

and C ¼ ðATÞ−1. Note that the condition (11) is necessary
for SðvÞ to have integer entries, which also requires the
additional constraint 2κv þ 1

6
κvvv ¼ 0 mod Z [36].

Finally, to obtain the action of the residual monodromy
transformation (B3) on the fluxes of the reduced theory, we
just need to impose the Ansatz (12) together with (10). We
find the transformation rules

N̂A → NA;

N̂B → N̂B − q−1N̂A;

NB
0 → NB

0 þ κvvvðN̂A − qN̂BÞ: ðB5Þ

The condition N0
A ¼ 0 is preserved.

In addition to these transformations, one must also take
into account the modular transformations SLð2;ZÞ, which
act on the axiodilaton and the fluxes as

τ →
aτ þ b
cτ þ d

;

�
f

h

�
→

�
a b

c d

�
·

�
f

h

�
; ðB6Þ

with a; b; c; d ∈ Z and ad − bc ¼ 1.
In order to eliminate equivalent solutions related by

the transformations (B3) and (B6), all the vacua in the
ensemble were transported to a fundamental domain
defined by Reτ ∈ ½−1=2; 1=2Þ, jτj> 1, and Reẑ ∈
½−1=2; 1=2Þ using (B2), (B5), and (B6). Once in the
fundamental domain duplicate solutions are easily identi-
fied and discarded, as they correspond to those with the
same configuration for the fields and the fluxes. The result
of this procedure for the ensemble of vacua discussed in the
main text was displayed in Fig. 1. The corresponding
distribution of vacua on the fundamental domain for the
ensemble analyzed in this Appendix shows no significant
differences with respect to Fig. 1, and thus we have not
displayed it here.

2. Analytic formulae and numerical results

We now turn to the analysis of the statistical properties
of the ensemble. As shown in [26], for compactifications
with an effectively one-dimensional complex structure
sector and a large D3-charge tadpole QD3jmax ≫ 1, the
statistics of the flux ensemble can be accurately described
using the continuous flux approximation of [43]. This
approximation consists in neglecting the quantization of
the fluxes, which are then treated as continuous random
variables with a uniform distribution, only subject to the
tadpole constraint fT · Σ · h ≤ QD3jmax. Using this sim-
plification as the starting point, it is possible to derive the
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following expression for the distribution of vacua in the
reduced complex structure space [26]

ρðξÞdξ ¼ N ·
ð1þ ξÞ

ð2 − ξÞ2ξ2=3 dξ; ξ≡ −3Imðκ0Þ
2κvvvImðẑÞ3 ; ðB7Þ

where, for convenience, we have given the distribution of
ImðẑÞ in terms of the parameter ξ. In the previous expression
and the following ones, N represents a normalization
constant, which should be determined for each particular
distribution. It is remarkable that this distribution is inde-
pendent of the details of the Calabi-Yau orientifold, or the
choice of the surviving field in the reduced theory, i.e., of vi.
As a consequence, this expression can be used to describe
mixed ensembles containing vacua from different compac-
tifications and/or obtained from different truncation
Ansätze.
The distribution of values for the parameter ξ obtained

numerically for our ensemble of vacua, combining the
cases vi ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þg, is displayed in Fig. 2.
The figure shows a stacked histogram with the 95,626
vacua at the LCS regime indicated in (light and dark) blue
and in orange those solutions with a large contribution from
instantons (>5%). Since the formula (B7) was obtained
while completely ignoring the contribution from instan-
tons, it is expected to work only in the regime of ξ space
where few vacua, or none, are discarded due to having large
corrections (that is, for ξ≲ 0.12). Furthermore, due to the
limitations of our numerical method, the flux integers in the
ensemble range only in the interval ½−25; 25�, leading to an
artificial bound to how close the vacua in the ensemble can
be to the LCS point, ξ≳ 0.001 [26]. As a consequence, the

distribution (B7) is expected to describe correctly the
statistics of vacua in the range ξ ∈ ½0.001; 0.12�, which
we have indicated in Fig. 2 in dark blue.
The distribution (B7), normalized in its range of validity,

is also indicated in the figure with a dashed line and, as it
can be observed, it provides a very good description for the
density of flux vacua. It is also interesting to note that,
despite the divergence of the distribution (B7) at ξ ¼ 0, this
function is normalizable in ξ ∈ ½0; 1=2Þ, and thus it predicts
a finite number of vacua in any neighborhood of the
LCS point.
Regarding the axiodilaton, it can also be shown that,

according to the continuous flux approximation, the string
coupling constant gs ¼ ðImτÞ−1 has a uniform probability
distribution in this class of vacua or, equivalently, the
probability density function for the imaginary part of τ is of
the form ρðImτÞ ∝ ðImτÞ−2. This is also consistent with the
distribution, which we obtained numerically, as it can be
seen in Fig. 3.
In order to write the expression for the mass distribu-

tions, it is convenient to define the following functions of
the parameter ξ:

m̃λðξÞ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2ξÞ=3p
m̂ðξÞ λ ¼ 0;ffiffiffiffiffiffiffiffiffiffi

ð1−2ξÞ
pffiffi

3
p

m̂ðξÞ λ ¼ 1;

1þξ
3

λ ¼ 2;…; h2;1− ;

ðB8Þ

which give the fermion masses at no-scale vacua mλ,
normalized by the gravitino mass m̃λ ≡mλ=m3=2 [26].
Then, combining the previous expressions with (B7) and
using that the functions m̃λðξÞ are monotonic, it is imme-
diate to obtain h2;1− þ 1 separate probability distributions,
one for each of the rescaled fermion masses

FIG. 2. Density of flux vacua in the reduced complex structure
space in terms of the parameter ξ. The plot shows the numerical
distribution obtained directly form the ensemble of 206,479 flux
vacua. We have indicated in (dark and light) blue the 95,626
vacua with small (<5%) instanton corrections and in orange
those where the instanton contribution is large (>5%). The
dashed line represents the analytic distribution (B7) normalized
in the range ξ ∈ ½0.001; 0.12�, where most vacua are in the LCS
regime and the continuous flux approximation holds (dark blue).

FIG. 3. Distribution of the string coupling gs, in terms of
g−1s ¼ Imτ. The histogram represents the normalized distribution
of the data points lying in the interval ξ ∈ ½0.001; 0.12�, while the
dashed curve is the expected result from the continuous flux
approximation.
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ρfλ ðm̃λÞdm̃λ ¼ N ·
ð1þ ξÞ

ð2 − ξÞ2ξ2=3ðdm̃λðξÞ=dξÞ

				
ξðm̃λÞ

dm̃λ;

ðB9Þ

where λ ¼ 0;…; h2;1− . Finally, from the relation

μ2�λ ¼ ðm2
3=2 �mλÞ2 ðB10Þ

between the scalar and fermion masses [17], we can obtain
h2;1− þ 1 separate probability distributions, one for each pair
of normalized scalar masses μ̃2�λ ≡ μ2�λ=m

2
3=2

ρsλðμ̃2λÞdμ̃2λ ¼ N · μ̃−1λ ½ρfλ ð1þ μ̃λÞ þ ρfλ ðj1 − μ̃λjÞ�dμ̃2λ :
ðB11Þ

In order to generate the numerical mass distributions
for our ensemble of vacua, at each solution to (9) we
diagonalized the Hessian of the scalar potential induced by
the fluxes, i.e., the potential in the theory defined by (5),
(6), and (7) with the couplings (18), which describe the
G-invariant sector of the moduli space in the WP4

½1;1;1;6;9�
model. In all cases, the resulting masses for the three
G-invariant modes (including the axiodilaton) were in
agreement with Eq. (1) with λ ¼ 0, 1, 2. The numerical
distributions for the scalar μ2�0, μ

2
�1, and μ2�2 are displayed

in Fig. 4, along with the theoretical distribution (B11)
normalized in the range ξ ∈ ½0.001; 0.12�. As expected
from the analysis of the distribution ρðξÞ (B7), in Fig. 4 we
can see that the theoretical probability densities for the
masses are in good agreement with the obtained numerical
results. The most significant feature of these plots is that the
density distribution for μ2�1 is peaked around zero, indicat-
ing that a large fraction of vacua involve a light field in the
spectrum. This can be understood recalling that, on the one
hand, vacua with N0

A ¼ 0 (as those discussed here) can be
found parametrically close to the LCS point [28–30], and
thus a large fraction is expected to be found near ξ ¼ 0 (see
Fig. 2). On the other hand, as we mentioned in the main
text, from (1) it follows that the spectrum of these vacua
contains an asymptotically massless mode in the limit
ξ → 0, which explains the peak of ρs1ðμ21Þ at μ21 ¼ 0

observed in Fig. 4(b). This feature is expected to be generic
for the class of vacua discussed here, regardless of the
choice of Calabi-Yau compactification or the truncation
Ansatz, as both the mass spectrum (1) and the probability
distributions (B10) and (B11) are completely universal.
Note also that half of the masses in the spectrum are smaller
than the gravitino mass m2

3=2.
The sharp edges of the mass spectra shown in Fig. 4

correspond to the cutoffs we have set on the parameter
ξ ∈ ½0.001; 0.12�, with the peaks of the probability distri-
butions corresponding to the minimum value of ξ. The
effect of changing the bounds of ξ can be seen in Fig. 5.

The plot in Fig. 5(a) represents the combined distribution
for the masses of the three G-invariant modes with
ξ ∈ ½0.001; 0.02�. As is can be seen the distribution
becomes very peaked, with the maxima at the values

(a)

(b)

(c)

FIG. 4. Numerical distributions for the normalized scalar
masses μ̃2�λ ¼ μ2�λ=m

2
3=2 of the G-invariant modes, λ ¼ f0; 1; 2g

in the ensemble of 95,626 vacua at LCS. In each figure, the
dashed line represents the analytic formula (B11) for each value
of λ, normalized in the same range ξ ∈ ½0.001; 0.12�. The darker
regions represent the solutions for which the continuous flux
approximation applies.
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μ2�λ=m
2
3=2 ¼



0;
4

9
;
16

9
; 4

�
; ðB12Þ

which is precisely the strict LCS limit (ξ → 0) of the
spectrum (1). This result illustrates the appearance of an
asymptotically massless mode at vacua located in a small
neighborhood of the LCS point. Figure 5(b) shows the
combined mass distribution for the G-invariant modes, with
the parameter ξ restricted to ξ ∈ ½0.13; 0.5Þ, that is, for
vacua with small instanton corrections but well separated
from the LCS point. In the inset of Fig. 5(b) we can see that
for all these vacua the mass of the lightest mode is now
bounded below μ2−1 ≳ 0.11m2

3=2. Then, as we mentioned in
the main text, it can be seen that by excluding solutions
from a neighborhood of the LCS point we can construct an
ensemble of vacua whose spectrum does not contain light
modes and thus which are good candidates for considering
the stabilization of the Kähler moduli.

We note that the combined density distribution for the
scalar masses given in Fig. 5 is quite peaked around specific
values. This is in contrast with the general predictions
based on the statistical modeling of a landscape where
this distribution is found using Random Matrix Theory
[16,17,57,58]. The origin of this difference comes from the
lack of sufficient complexity in our ensemble of effective
field theories. The reason for this is that the structure of the
couplings in our ensemble of vacua is quite rigid and does
not display the sufficient random nature for the scalar
potential induced by the fluxes to be described by a
multidimensional Gaussian random field.
Finally, the 270 truncated complex structure fields

transforming nontrivially under the symmetry group G
have the same masses as the G-invariant modes with
λ ¼ 2, namely μ2�λ ¼ ð1� 1

3
ð1þ ξÞÞ2 for all λ ¼ 2;…h2;1− ,

and thus their probability distributions coincide with the
one displayed in the lower plot of Fig. 4. Let us emphasize
again that this is a rather exceptional result, as the EFT
couplings for these fields are not determined by (18), and
thus they were unknown a priori.

APPENDIX C: ESTIMATE OF THE
NUMBER OF VACUA

In this Appendix we will outline the proof of Eq. (17),
which is an estimate for the number of vacua in a
compactification compatible with the spectrum (1). More
specifically, we will compute the number of flux vacua in
the branch determined by a vector vi in the Kähler cone of
the mirror dual to M3, and which are subject to a tadpole
constraint of the form QD3 ≤ Q�

D3, where Q�
D3 is the

available D3 charge, that is,

N viðQD3 ≤ Q�
D3; gs ≤ g�s ; jξj ≤ ξ�Þ: ðC1Þ

As described in the main text, these vacua are given by the
solutions to the no-scale equations (9) in the EFT deter-
mined by the prepotential (14) and the flux Ansatz (15). The
number of these solutions can be counted using a gener-
alized version of the Kac-Rice formula

N vi ¼
X
ff;hg

ΘðQD3 −Q�
D3Þ

×
Z

d4uj detD2Wjδð2ÞðDuAWÞδð2ÞðDūAW̄Þ; ðC2Þ

where we used the shorthand uA ¼ fτ; ẑg, and we are
summing over the integer flux parameters ff; hg ¼
ff0B; h0B; f̂A;B; ĥA;Bg. Following [43], in the following we
will make use of the continuous flux approximation, valid
when the available D3 charge is large QD3 ≫ 1, and which
allows to replace the sums over flux integers by an integral:

X
ff;hg

→
Z

d4fd4hδðf0AÞδðh0AÞ: ðC3Þ

(a)

(b)

FIG. 5. Complete distribution of scalar masses μ̃2λ , λ ¼ f0; 1; 2g
in the ensemble of 95,626 vacua at LCS. In each histogram,
solutions with (a) ξ ∈ ½0.001; 0.02� and (b) ξ ∈ ½0.13; 0.5Þ have
been highlighted. The insets in these plots show the mass
distribution near μ̃2 ≈ 0, illustrating the presence of an asymp-
totically massless mode at vacua near the LCS point (a), and the
absence of light modes in the spectrum when solutions near the
LCS point are excluded (b).
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Here the integration is done over the continuous variables
ff0A;B; h0A;B; f̂A;B; ĥA;Bg, and the Dirac delta functions
enforce the constraint f0A ¼ h0A ¼ 0. Using the integral
representation of the Heaviside theta, and changing from
the previous real flux parameters to the complex entries of
the flux vector N̂ [see Eq. (15)], the expression (C2) can be
rewritten as [26,43]

N vi ¼
1

2πi

Z
C
dα

eαQ
�
D3

α
N ðαÞ: ðC4Þ

Here C runs along the imaginary axis passing the zero to
the right, and

N ðαÞ≡ 1

q2κ2vvv

Z
d4N̂d4 ¯̂NδðN0

AÞδðN̄0
AÞe3Kde−αQD3

×
Z

d4uj detD2Wjδð2ÞðDuAWÞδð2ÞðDūAW̄Þ; ðC5Þ

with eKd ¼ 1=ð2ImτÞ. After trading the complex variables
N̂I

A;B for the quantities

F0 ≡ ffiffiffi
α

p
VeK=2D0W;

F1 ≡ ffiffiffi
α

p
VeK=2D1W;

Z0 ≡ ffiffiffi
α

p
VeK=2W;

Z1 ≡ ffiffiffi
α

p
VeK=2D0D1W; ðC6Þ

where the derivatives are expressed in a canonically
normalized basis feτ0; eẑ1g, the parameter α disappears from

Eq. (C5), except for an overall factor α−2 [26]. This allows
us to easily perform the integral (C4), leading to

N vi ¼
ðQ�

D3Þ3
3!q2κ2vvv

Z
d4ujgje−Kcs

×
Z

ðdZ1dZ̄1Þe−jZ0j2−jZ1j2 jHj1=2; ðC7Þ

with Z0 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð1 − 2ξÞp

Z̄1. Here we used the notation
e−Kcs ¼ −iΠ† · Σ · Π, jgj is the determinant of the moduli
space metric, and jHj is the determinant of the Hessian of
the scalar potential along the fτ; ẑg directions expressed in
a canonically normalized basis. The rest of the computation
can be done exactly as explained in Appendix C.4 of [26].
We obtain the final result

N viðQD3 ≤ Q�
D3; gs ≤ g�s ; jξj ≤ ξ�Þ

¼ 3π

16

g�s jImκ0jðQ�
D3Þ3

q2κ2vvv

jξ�=ξ0j1=3
ð2 − ξ�Þ ; ðC8Þ

where ξ0 ≡ 3jImκ0j=2κvvv. Using that the instanton con-
tributions to the prepotential are exponentially suppressed
for jξj ≤ ξ� ≈ ξ0 (see Appendix D. 3 of [26]), and that
2 − ξ ¼ Oð1Þ, it is immediate to arrive to the estimate in
Eq. (17) for the number of vacua at LCS consistent with the
spectrum (1). Given the remarkable accuracy of the
continuous flux approximation in characterizing the mass
spectra (see Fig. 4), we expect the estimate in Eq. (17) to be
quite precise.
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