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Brønsted Base Catalyzed One-Pot Synthesis of Stereodefined Six-
Member Carbocycles Featuring Transient Trienolates and a Key 
Intramolecular 1,6-Addition. 
Olatz Olaizola, Igor Iriarte, Giovanna Zanella, Enrique Gómez-Bengoa, Iñaki Ganboa, Mikel Oiarbide* 
and Claudio Palomo* 

Abstract: A catalyst-driven one-pot reaction sequence is developed 
for the enantio- and diastereoselective synthesis of tetrasubstituted 
cyclohexenes from simple unsaturated ketones or thioesters. The 
method involves a tertiary amine/squaramide-catalyzed α–selective 
addition of transiently generated trienolates to nitroolefins, 
subsequent base-catalyzed double bond isomerization, and an 
intramolecular (vinylogous) 1,6-addition reaction as yet unreported 
key carbocyclisation step that proceeded with essentially perfect 
stereocontrol. 

Six-membered carbocycles are ubiquitous structural motifs in 
natural products and bioactive substances, and their 
stereoselective synthesis has attracted huge interest. This has 
traditionally relied on the venerable Diels-Alder reaction, with 
several metal- and organocatalyzed variants being established 
already.[1] Catalytic, one-pot domino processes[2] are also 
valuable approaches, provided that each bond-forming step 
occurs with high site- and stereofidelity. This is usually achieved 
by using substrates bearing carefully selected, and strategically 
positioned, donor and acceptor reaction sites. In this context, 
covalent aminocatalysis have revealed extremely versatile owing 
to the complementary donor/acceptor character of the 
intervening enamine/iminium species, enabling the de novo 
construction of six-membered carbocycles from minimally 
functionalized aldehyde and ketone substrates.[2,3] Common to 
these domino processes, the key ring-closing step is achieved 
through three major approaches: the intramolecular 1,2- and 
1,4-addition reactions, the latter in its endo and exo variants 
(Figure 1a). It is remarkable that, to the best of our knowledge, 
no method relying on an intramolecular (vinylogous) 1,6-addition 
approach[4] has been reported so far, despite such approach 
would require minimally functionalized substrates. Here we 
describe a catalytic, enantio- and diastereoselective one-pot 
construction of six-membered carbocycles that ends up with an 
unprecedented intramolecular 1,6-addition step. The new 
method requires Brønsted base catalysts[5] as the only reaction 
promoter and can equally start from simple unsaturated ketones 
or (thio)esters (Figure 1b). 
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Figure 1. Catalytic one-pot construction of six-membered carbocycles. 

In this conception conversion of III to II seemed conjugation-
driven and feasible, but transformations II→I and IV→III 
appeared most difficult and unpredictable. While stereocontrol of 
II→I may become an issue,[6] the catalytic Cα-alkylation of 
transiently generated trienolates IV to produce III remained 
unaddressed so far, posing obvious site- and stereoselectivity 
concerns.[7] Quite recently we have documented.[8] that 
bifunctional Brønsted base/H-bonding catalysts successfully 
induce in situ formation of dienolates and their α-selective 
reaction, most likely through an anchoring effect. We 
hypothesized that the present setting might be a good platform 
to further proof the generality of the concept. At the outset, the 
reaction of deconjugated thioester 1A[9] and nitrostyrene 2a[10] in 
dichloromethane in the presence of 10–20 mol% of several 
amine bases was investigated. As data in Table 1 show, the 
reaction progressed to essentially full conversion upon 24 hours 
at room temperature regardless the base used, although product 
distribution varied considerably. With simple tertiary amine Et3N, 
isomerization to the conjugated diene 3A occurred along with 
minor formation of α-addition product 4Aa. With sterically bulkier 
amine iPr2EtN, the 4Aa/3A ratio increased notably, but at the 
expense of diastereoselectivity. The 4Aa/3A product distribution 
was very similar using chiral, dimeric catalyst (DHQD)2PYR, and 
the dr of product 4Aa was high (>20:1). Using stronger amine 
base DBU caused isomerization of substrate to conjugated 
thioester 3A. However, in this case cycloadduct 6Aa was 
produced for the first time (entry 4), and with essentially perfect 
diastereoselectivity (dr >20:1).[11] We presumed that this 
cycloadduct might be formed via cyclization of acyclic precursor 
5Aa, followed by double bond isomerization. To proof this 
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Table 1. Catalyst-dependent product distribution in the reaction of 
polyunsaturated thioester 1A with nitrostyrene.[a]
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Entry Cat 3A 4Aa 5Aa 6Aa 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11
12 
13 
14 

Et3N 
iPr2EtN 
(DHQD)2PYR
DBU 
DBU (0 ºC) 
DBU (0 ºC, 40 h) 
MTBD (RT, 16 h) 
MTBD (0 ºC, 16 h) 
MTBD (–10 ºC, 16 h) 
C1 
C1 + MTBD[c] 
C2 + MTBD[c] 
C3 + MTBD[c] 
C4 + MTBD[c] 

83 
45 
45 
70 
58 
58 
100 
100 
100 
20 
20 
23 
25 
18 

17 (>20:1) 
55 (1.4:1) 
55 (>20:1) 

[b]

-- 
-- 
-- 
-- 
-- 

80 (>20:1) 
-- 
-- 
-- 
-- 

--
-- 
-- 
-- 
18 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

--
-- 
-- 

30 (>20:1) 
24 (>20:1) 
42 (>20:1) 

-- 
-- 
-- 
-- 

65[d] (>20:1, 81ee) 
72[d] (>20:1, 78% 

ee) 
68[d] (>20:1, 88% 

ee)

[a] Reactions carried out at 0.1 mmol scale, using 1 equiv. of each 1A and
2a and 10 mol% catalyst in 0.1 mL CH2Cl2 at room temperature. The ratios
of products 3A/4Aa/5Aa/6Aa formed correspond to 1H NMR integration.
Data in parenthesis correspond to d.r. and ee. [b] ee not determined. [c]
Cocatalyst MTBD (20 mol%) was added after 16 h and stirring kept for
additional 24 h.[d] yield after isolation of product by column chromatography.
1.5 equiv. of 1A were used.

assumption the same reaction was carried out at lower 
temperature (entry 5, 0 °C) affording a mixture of 3A, isomerized 
α-adduct 5Aa, and 6Aa. When this mixture was allowed to stir 
for longer time at 0 °C, a mixture of 3A (58%) and 6Aa (42%) 
was isolated (entry 6), indicating that indeed 5Aa is an 
intermediate in the formation of 6Aa. The use of even stronger 
guanidine base MTBD was disappointing, as isomerized 
thioester 3 was the only isolated product regardless the reaction 
temperature (entries 7-9). It thus seems that conjugated 
thioester 3A is a thermodynamic sink. Then, with the hope to 
ease the C–C bond forming event by simultaneous activation of 
the electrophile, bifunctional Brønsted base/H-bonding catalysts 
were investigated. Gratifyingly, the reaction carried out in the 
presence of squaramide C1[12] led to α-addition adduct 4Aa with 
the highest isolated yield so far (80%) along with 20% of 
isomerized material 3A (entry 10). When this mixture was stirred 
for an additional 20 h in the presence of 20 mol% DBU or MTBD, 
total conversion of 4Aa into the cyclisation product 6Aa was 
observed, the latter obtained in 65% isolated yield as essentially 

pure diastereomer and most significantly in 81% ee (entry 11). 
For this one-pot two-step transformation,[13] the structurally 
related amine-squaramide catalysts C2 and C3 resulted equally 
effective, affording single diastereomer cycloadduct 6Aa in 
yields of 72% and 68% and ee’s of 78% and 88%, respectively 
(entries 12, 13). Finally, the quinine-derived catalyst C4 led to 
improved 94% ee (entry 14). 

Several thioesthers 1, with variable aryl groups at sulfur, 
and nitroalkenes 2 were subjected to the optimized conditions, 
consisting of, first, stirring the mixture in the presence of 10 
mol% C4 and, second, one-pot treatment with 20 mol% of either 
DBU or MTBD. As the results in Table 2 show, the reaction with 
nitrostyrenes bearing electron-reach MeO and Me p-substituents 
(adducts 6Ab, 6Ac) or electron-poor p-substituent Cl (adduct 
6Ad) all proceeded with good yields, perfect regio- and 
diastereoselectivity and enantioselectivity of 90% ee or higher. 

Table 2. Catalytic enantioselective reaction of thioesters 1 with nitroolefins 
to afford tetrasubstituted cyclohexenes 6.a
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[a] Reactions carried out at 0.1 mmol scale, using 1.5 equiv. of 1 and 10
mol% catalyst in 0.1 mL DCM at room temperature. Variable amounts
(∼20%) of isomerized starting material were observed in most entries [b]
Yield after chromatography. [c] Determined by 1H NMR (300 MHz). [d] ee
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determined by chiral HPLC. 

The position of substitution neither affected the reaction 
efficiency as the good yields and high selectivities obtained with 
the m- and o-substituted nitrostyrenes 2e and 2f show (adducts 
6Ae and 6Af). With respect to variation in the thioester group, 
thioesters with o-p triisopropyl substituted phenyl groups 
(products 6B ) worked equally well, as did thioesters with only o- 
or only p-substituted phenyls (adducts 6C–6E). 

The scope of this new design approach to cyclohexenes 
was next examined from deconjugated dienones 7–13 which, as 
far as we are aware, have neither been studied under Brønsted 
base/H-bonding catalysis conditions. As shown in Table 3, the 
reaction of unsaturated ketone 7 with nitrostyrene 2a in the 
presence of 10 mol% catalyst C4 cleanly afforded α-addition 
adduct 14a in 74% 

Table 3. Catalytic enantioselective one-pot two-step synthesis of 
tetrasubstituted cyclohexenes from ketone trienolates and nitroolefins.[a]

R1

O R
NO2

Me7
8
9

10
11
12
13

R1: Ph
R1: 4-MeC6H4
R1: 2-Naphthyl
R1: 3,5-Me2C6H3
R1: Me
R1: nBu
R1: iBu

16
17
18
19
20
21
22

R1: Ph
R1: 4-MeC6H4
R1: 2-Naphthyl
R1: 3,5-Me2C6H3
R1: Me
R1: nBu
R1: iBu

b) MTBD (20 mol%)

CH2Cl2, RT, 16 h
R1

O

R1

O
NO2

Ra) 2, C4 (10 mol%)

14
15

R1: Ph
R1: 4-MeC6H4

CH2Cl2, RT, 16 h

14a 84% y, dr 2.4:1, 93%/87% ee

14c 85% y, dr 2.1:1, 97%/90% ee

15a 82% y, dr 2.1:1, 95%/89% ee
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NO2
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a
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c
e
f
g16

R: Ph
R: 4-MeOC6H5
R: 4-MeC6H5
R: 3-ClC6H5
R: 2-ClC6H5
R: nPr

80% y, dr >20:1, 93% ee
78% y, dr >20:1, 93% ee
82% y, dr >20:1, 96% ee
77% y, dr >20:1, 86% ee
73% y, dr >20:1, 95% ee
74% y, dr 2.6:1, 94% ee

O
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O
NO2

Me
18f

81% y, dr >20:1, 90% ee
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O
NO2

Me

72% y, dr >20:1, 92% ee

Me

Me

O
NO2

Me

19a

22a

68% y, dr >20:1, 92% ee

69% y, dr >20:1, 90% ee
20b

Me

O
NO2

Me

OMe

21a
21b
21d

R: H, 71% y, dr >20:1, 93% ee
R: Me, 77% y, dr >20:1, 90% ee
R: Cl, 75% y, dr >20:1, 94% ee

[a] Reactions carried out at 0.1 mmol scale, using 1.2 equiv. of 7–13 and in 0.1 
mL DCM at room temperature. Yield after chromatography. Dr are determined 
by 1H NMR (300 MHz). Ee are determined by chiral HPLC.

yield as a 2.4:1 mixture of diastereomers in 93% and 87% ee, 
respectively. The regio- and stereochemical outcome of this 
catalytic reaction appears to be independent of the nature of the 
nitroolefin and/or starting ketone used, as the results with 
nitroolefin 2c (adduct 14c 85% yield, 2.1:1 dr and 97%/90% ee) 
and p-tolyl ketone 8 (adduct 15a, 82% yield, 2.1.1 dr and 
95%/89% ee) illustrate.[14] Interestingly, the smooth base-
promoted intramolecular cyclization of thus formed adducts 
afforded in all the cases studied cyclohexenes 16-22 in a highly 
diastereoselective manner. For instance, phenyl ketone 7 upon 
reaction with nitrostyrenes 2a–2f provided adducts 16a–f with 
isolated yields in the range 73-82%, diastereomeric ratios >20:1, 
and enantioselectivity typically higher than 90%. The reaction 
with the aliphatic nitroalkene 2g did also proceed efficiently to 
give 16g, but in this instance a 2.6:1 mixture of diastereomers 
was formed. Other unsaturated enolizable ketones with aryl (8, 9, 
10) or alkyl (11, 12, 13) side chains were also tolerated,
affording the corresponding adducts 17–22 in good yields and
high stereoselectivity. These results overall make clear that the
high enantio- and regiocontrol imparted by bifunctional Brønsted
base catalysts during trienolates functionalization are
instrumental. Previously established technology using similar
polyunsaturated substrates, i.e. trienamine-mediated activation,
becomes unsuitable due to its inability to activate (thio)esters
and/or divergent reactivity patterns.[3h, 15]

The above results reinforce the hypothesis that 
cycloadducts are formed through an intramolecular 1,6-
addition[16] occurring in the isomerized dienone II (Figure 1). 
Thus, the low selectivity at Cα in the initially formed adducts III, 
such as 14 and 15, is irrelevant. To support this assumption and 
the almost perfect stereocontrol (with the exception of 16g), the 
energies of the TS for the carbocyclization step in its four 
possible nitronate-dienone face combinations were calculated. 
The energy barrier for the re,re approach was found to be 9.6 
kcal/mol (Scheme 1), that is, about 2 kcal/mol lower than any of 
the other three possible approaches (see the SI for details), in 
good agreement with the high diastereocontrol observed. 
According to the data at hand, a plausible scheme of events is 
depicted in Scheme 1, in which Brønsted base catalysis would 
be the unified activation mechanism. In that full picture, the low 
diastereoselectivies observed for the initial α-addition reaction of 
doubly unsaturated ketones to nitroolefins could be ascribed to 
their tendency to form variable mixtures of E and Z enolates.  
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Scheme 1. Plausible course of the one-pot reactions sequence. 

Conversely, the high diastereoselectivity attained with 
unsaturated thioesters would correlate with the relatively higher 
energy difference between thioester Z and E enolate, owing to 
the large arylthio group. The relative and absolute configuration 
of compound 6Ba was determined by X-ray single crystal 
structure analysis[17] and that of the remaining adducts was 
assumed based on a uniform reaction mechanism. 
 

Several transformations of these polysubstituted 
cyclohexene adducts were explored (Scheme 2). Selective 
reduction of the C–C double bond in thioester 6Af was achieved 
by simply using an excess of NaBH4 in isopropyl alcohol and 
CH2Cl2 mixture, affording cyclohexane 23 as the only isomer in 
68% isolated yield. In its turn, the reduction of enone 16b to 24 
could be achieved in 72% yield and without affecting the 
carbonyl group by using Et3SiH in the presence of Pd/C.[18] 
Interestingly, these cyclohexene adducts also resulted well 
suited for expanding the Nazarov cyclisation,[19] as demonstrated 
by the conversion of adducts 18b, 18f and 19a into products 25-
27 in good yields and as essentially single diastereomer. The 
structure of these polycyclic products were established by NMR 
experiments and corroborated by X-ray analysis of 26.[17] 
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Scheme 2. Elaboration of adducts through reduction and Nazarov cyclisation. 

In summary, a catalytic one-pot process to assemble 
stereodefined tetrasubstituted six membered carbocycles from 
polyunsaturated thioesthers or ketones is developed. The new 
method features: (i) a highly enantioselective α-addition of 
transiently generated trienolates to nitrolefins, (ii) an 
intramolecular 1,6-addition as previously unreported 
carbocyclisation approach, which proceeded with essentially 
perfect stereocontrol, and (iii) two intermediate C=C 
isomerization processes, with Brønsted base catalysts as the 
only promoters. Importantly, the α-addition pathway observed for 
trienolates is divergent from the [4+2] cycloaddition pathways 

dominant in trienamine mediated chemistry,[3h, 15] and provides a 
route to complementary cyclohexene systems. Given that both 
proton transfer and H-bonding are general activation modes, 
new enantioselective reactions involving trienolate-like π-
extended systems from carbonyl and non-carbonyl substrates 
might be predictable. 
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