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AINGERU FERNÁNDEZ-BERTOLIN, PHILIPPE JAMING and SALVADOR
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Abstract

In this paper we consider uncertainty principles for solutions of certain PDEs on H-type groups. We first
prove that, on H-type groups, the heat kernel is an average of gaussians in the central variable so that it does
not satisfy a certain reformulation of Hardy’s uncertainty principle.

We then prove the analogue of Hardy’s Uncertainty Principle for solutions of the Schrödinger equation with
potential on H-type groups. This extends the free case considered by Ben Säıd, Dogga and Thangavelu [BTD]
and by Ludwig and Müller [LM].
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1. Introduction

The aim of this paper is to prove a version of Hardy’s Uncertainty Principles (UP) on
H-type groups. Let us recall that Hardy’s uncertainty principle states that a function f and
its Fourier transform

f̂(ξ) = (2π)−d/2
∫

Rd
e−iξ·xf(x) dx, ξ ∈ R

d,

cannot both have fast decay simultaneously:

Theorem 1.1 (Hardy [Ha]). Let f be a function such that f(x) = O(e−|x|2/β2
) and

f̂(ξ) = O(e−4|ξ|2/α2
). If 1/αβ > 1/4 then f ≡ 0 while if 1/αβ = 1/4, f is a constant multiple

of e−|x|2/β2
.

The case 1/αβ > 1/4 is sometimes refered to as the super-critical case and 1/αβ = 1/4
as the critical one. The gaussian function that provides the critical decay is ubiquitous in
harmonic analysis and one may then ask why it also appears here. One may for instance
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argue that the gaussian is the heat kernel on Rd and it is indeed possible to reformulate
Hardy’s Theorem in terms of solutions of the free heat equation :

Let u be a solution of ∂tu = ∆u. If u(x, 0) and e|x|
2/δ2u(x, 1) are in L2(Rd) for some

δ ≤ 2, then f ≡ 0.
On the other hand, if u(x, 0) is a finite measure and e|x|

2/4u(x, 1) is in L∞(Rd) then

u(x, t) = cpt where ht is the heat kernel on Rd and c is a constant.

Recall that ht(x) = (4πt)−n/2e−|x|2/4t. Let us reproduce the argument, apparently due to
E. Zuazua, that can be found in the introduction of [EKPV1] (see also [Ja]):

Consider u0 = u(x, 0) and f = e∆u0 = u(x, 1). Then e|x|
2/δ2f ∈ L2(Rd) and e4|x|

2/22 f̂ =
û0 ∈ L2(Rd) so that, from Cowling and Price’s L2 extension of Hardy’s Theorem, f = 0.
Backward uniqueness of the heat evolution then implies that u0 = 0. On the other hand,
when δ = 2 and u0 is a bounded measure, then e|x|

2
f̂ ∈ L∞(Rd). Thus, if we also assume

that e|x|
2/δ2f ∈ L∞(Rd), then Hardy’s Theorem implies that f = ch1.

Thus on Rd, the heat kernel has a critical decay rate at two different times and super-
critical decay rate implies that the solution vanishes. The question then arizes whether the
heat kernel has some optimal decay rate on non-abelian Lie groups i.e. is also an optimizer
of an uncertainty principle in that setting.

There is indeed a vast literature concerning extensions Hardy’s uncertainty principle that
would characterize the heat kernel in other setting. Among the references related to this
paper, let us mention the extensive work by Baklouti, Kaniuth, Thangavelu and coauthors,
[BK,BT,KK,PT,SST,Th1,Th2], where extensions to various Lie groups have been proven (see
also the survey [FS] and the book [Th3]). Let us summarize the kind of results contained
in those papers. On most Lie groups, rather optimal decay rates are known for the heat
kernel. One then reformulates Hardy’s theorem in a way that makes sense in the Lie group
considered. It then turns out that the super-critical case of Hardy’s theorem is valid in many
settings i.e. only 0 has faster decay than the heat-kernel. However, so far, no version of
Hardy’s Theorem on Lie groups allows to characterize the heat kernel in the critical case. On
the other hand, there is also no version that shows that the heat kernel is not characterized
as having critical decay.

In this paper, we will focus on a family of nilpotent Lie groups known as H-type groups
and that includes the Heisenberg group. Those groups can be seen as Rn × Rm with a non-
euclidean structure and the center is Rm (m = 1 for the Heisenberg group). We will show that
the heat kernel on H-type groups does not satisfy a certain reformulation of the uncertainty
principle in terms of the (Euclidean) Fourier transform on the center.

In order to state this reformulation, let us first recall that a function f ∈ L2(Rm) is
positive definite if its Fourier transform is positive. We can then define the cone

C = {f ∈ L2(Rd) : f ≥ 0, f̂ ≥ 0}

of positive, positive definite functions. This is a convex cone. An extremal of C is any f ∈ C,
f &= 0 such that, if f = f1 + f2 with f1, f2 ∈ C, then there exists λ ∈ [0, 1] such that f1 = λf
and f2 = (1 − λ)f . The cone C and its extremals have been studied in [JMR] and a full
characterization of its extremals is still open. However, the following is a reformulation of
Hardy’s Uncertainty principle in the critical case:
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For every t > 0, the heat kernel on Rm, ht is an extremal of C.
We will show that this is not the case on H-type groups. More precisely, as said above, we

identify an H-type group G with Rn×Rm where Rm is the center. Then the heat kernel G is
a function of 2 variables, pt(x, z) where z is the central variable. Of course, pt is positive. It
turns out that z → pt(x, z) is also positive definite so that pt(x, ·) ∈ C. However, we will show
that, when x is fixed, this function is an average of Gaussians pt(x, z) =

∫ +∞
0 e−t|z|2 dµx(t)

and that the measure µx has a support that is not a single point. As a consequence, pt(x, ·) is
not an extremal, for any x. We consider this as an indication that the heat kernel might not
be characterized via an uncertainty principle, due to its lack of concentration in the central
variable.

Another possible direction is to restate Hardy’s Uncertainty Principle in terms of solutions
of the free Schrödinger equation. This direction has first been investigated by Chanillo [Ch]
who noticed that Hardy’s UP can be reformulated as follows:

Let u be a solution of i∂tu + ∆u = 0. If u(x, 0) = O(e−|x|2/β2
), u(x, 1) = O(e−|x|2/α2

)
and αβ < 4, then u ≡ 0. Also, if αβ = 4, u has as initial datum a constant multiple of

e−(1/β2+i/4)|x|2 .

Chanillo then skillfully transfers this result to solutions of the Schrödinger equation on
complex solvable Lie groups (up to the end point αβ = 4). This strategy of proof has also
been adopted by Ben Säıd, Dogga and Thangavelu in [BTD] to extend Chanillo’s version
of Hardy’s UP to H-type groups and, independently and almost simultaneously, by Ludwig,
Müller [LM] for general step 2 nilpotent Lie groups. Our aim here is to further extend the
result in [BTD] to cover solutions of linear Schrödinger equations of the form

i∂tu(g, t) + LGu(g, t) + V (g, t)u(g, t) = 0, (g, t) ∈ G× [0, T ] (1.1)

where G is an H-type group and with some restrictions on the potential V .
In the Euclidean case, this extension was given by Escauriaza, Kenig, Ponce and Vega

[EKPV1,EKPV2] where the authors developed a machinery based on real variable calculus
in order to prove Hardy’s Uncertainty Principle, which typically is proved via complex anal-
ysis. This method has then been adapted to different settings, including to the Magnetic
Schrödinger equation [BFGRV,CF1,CF2]. By using a Radon transform we have been able
to reduce the setting of of the Schrödinger equation on H-type groups to the one in [CF2].
Doing so our main result concerning solutions of Schrödinger equations is then the following:

Theorem 1.2. Let G be an H-type group. Let T > 0 and s,σ > 0. Let V be a

bounded real-valued potential that is independent on time and on the central variable. Let

u ∈ C1([0, T ],H1(G)) be a solution of (1.1). Assume that there is a C > 0 such that

|u(x, z, 0)| ≤ Cps(x, z),

|u(x, z, T )| ≤ Cpσ(x, z).

If sσ < T 2, then u ≡ 0.
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The actual result is more general as it allows some complex and time-dependent potentials,
provided they go sufficiently fast to 0 at infinity. For the precise statement that requires the
introduction of several notations, see Theorem 3.1. In the case V = 0 we recover the result
in [BTD].

The remaining of the paper is organized as follows: In Section 2 we introduce H-type
groups as well as the different concepts we need to explain in order to state and prove our
results. This section concludes with the proof that the heat kernel is not an extremal positive
positive definite function in the central variable. In Section 3 we turn to the study of the
linear Schrödinger equation using real variable methods. By using different reductions first to
the Heisenberg group and then to the Euclidean setting, we give sufficient decrease conditions
on a solution to vanish identically. Then, we prove our main result in this section by relating
these decrease conditions to the decrease of the heat kernel.

2. H-type groups

In this section, we gather the necessary information we will need on H-type groups.
H-type groups were first introduced in [Ka]. [BLU, Chapter 18] contains an extended devel-
opment of their fundamental properties; some of them being further extended in [El]. We
follow closely the presentation of this last paper here, and refer the reader to [BLU,El] for
further details. Note that, for briefness of presentation, we present as definition some results
that actually need proofs.

For elements of Rk we denote by | · | the Euclidean norm and by 〈·, ·〉 the Euclidean scalar
product. We write N = {0, 1, 2, . . .} for the non-negative integers. For α = (α1, . . . ,αk) ∈ Nk

we use the classical multi-index notations |α| = α1 + · · ·+ αk.
If f, g are two functions X → R, we write f(x) ! g(x) —resp. f(x) + g(x)— to mean

there exist finite positive constants C1, C2 such that f(x) ≤ C2g(x) —resp. C1g(x) ≤ f(x) ≤
C2g(x)— for all x ∈ X.

2.1. Generalities

Definition 2.1. Let g be a finite-dimensional real Lie algebra with center z &= 0. We say
g is of H-type (or Heisenberg type) if g is equipped with an inner product 〈·, ·〉 such that:

1. [z⊥, z⊥] = 0 and;

2. for each z ∈ z, define Jz : z⊥ → z⊥ by

〈Jzx, y〉 = 〈z, [x, y]〉

whenever x, y ∈ z⊥. Then Jz is orthogonal whenever 〈z, z〉 = 1.

An H-type group is a connected, simply connected Lie group whose Lie algebra is of H-type.

It can be shown that an H-type group is a stratified 2-step nilpotent Lie group. In
particular, we have an orthogonal decomposition g = z⊥⊕ z such that [z⊥, z⊥] = z. Moreover,
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z⊥ has even dimension. We will denote by 2n = dim z⊥ and m = z and we identify z⊥ + R2n

and z = Rm. It turns out that m and n can not be arbitrary. Indeed, writing 2n = a24p+q

where a is odd and 0 ≤ q ≤ 3, then R2n × Rm can be endowed with a Lie algebra structure
of H-type as above if and only if m < ρ(2n) := 8p + 2q.

As G is step 2 nilpotent, G can be identified with g = R2n+m as set. An element g ∈ G
is thus of the form g = (x, z) with x ∈ R2n, z ∈ Rm. According to the Baker–Campbell–
Hausdorff formula, the group operation is then given by

(x, z) · (y, z′) = (x+ y, z + z′ +
1

2
[x, y]).

The identity of G is (0, 0), and the inverse operation is given by (x, z)−1 = (−x,−z). The
maps {Jz : z ∈ Rm} are identified with 2n×2n skew-symmetric matrices which are orthogonal
when |z| = 1. In particular, |Jzx| = |x| |z|.

Next, for a ∈ R\{0}, we define the dilations ϕa(x, z) = (ax, a2z). Note that this is both a
group and a Lie algebra automorphism. We also denote by ϕa the action of ϕa on functions:
for a function f on R2n+m we denote ϕa · f(x, z) = f(ax, a2z).

We let {e1, . . . , e2n} denote the standard basis for R2n, and {u1, . . . , um} denote the
standard basis for Rm.

The Haar measure on G is simply the Lebesgue measure on R2n+m and convolution of
two functions is given by

f ∗ g(x, z) =
∫

G
f(ω)g

(

ω−1(x, z)
)

dω =

∫

R2n

∫

Rm
f(u, v)g(x − u, z − v +

1

2
[x, u]) dudv.

We can now identify g with the set of left-invariant vector fields on G, where Xi(0) =
∂

∂xi

and Zi(0) =
∂

∂zi
; then span {X1, ...,X2n} = z⊥, span {Z1, ..., Zm} = z. A computation shows

that

Xi =
∂

∂xi
+

1

2

m
∑

j=1

〈

Jujx, ei
〉 ∂

∂zj
and Zj =

∂

∂zj
.

The elementary Lie brackets are given by

[Xi,Xj ] =
m
∑

k=1

〈Jukei, ej〉Zk

and all other elementary brackets are 0.
Note that the Xi’s are homogeneous of degree 1 and the Zj are homogeneous of de-

gree 2 with respect to ϕa: Xi(ϕa · f) = aϕa · (Xif), Zj(ϕa · f) = a2ϕa · (Zjf). We will
use the following notation: if α = (α1, . . . ,α2n,α2n+1, . . . ,α2n+m) ∈ N2n+m then Xα =
Xα1

1 · · ·Xα2n
2n Zα2n+1

1 · · ·Zα2n+m
m and w(α) = α1 + · · · + α2n + 2α2n+1 + · · ·+ 2α2n+m.

Definition 2.2. The sublaplacian L for G is the operator given by:

L =
2n
∑

j=1

X2
j . (2.2)
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2.2. Carnot-Carathéodory distance Recall (see, e.g., [VSCC]) that the Carnot-Cara-
théodory distance to the origin associated to the sum of squares operator L is defined by

d(x, z) := inf
γ
|γ|

where the infimum is taken over all absolutely continuous curves γ : [0, 1] → G which are
horizontal and connect 0 with (x, z) i.e. γ(0) = 0, γ(1) = (x, z) and which are horizontal,
that is

γ′(t) =
2n
∑

j=1

aj(t)Xj
(

γ(t)
)

for a.e. t ∈ [0, 1]. Here, |γ| denotes the length of γ given by

|γ| =
∫ 1

0





2n
∑

j=1

|aj(t)|2




1
2

dt

We then define the Carnot-Carathéodory distance d via the formula d(g, h) = d(g−1h) where
we use the same letter d to designate the distance and the distance to 0. Note that, by
definition, d is left-invariant, i.e. d(g, h) = d(kg, kh) for every g, k, h ∈ G

The Carnot-Carathéodory distance d can be computed explicitly on G as follows: Define
the function ν : [0,π) → R by ν(0) = 0 and, for θ ∈ (0,π),

ν(θ) = −
d

dθ
[θ cot θ] =

θ − sin θ cos θ

sin2 θ
=

2θ − sin 2θ

1− cos 2θ
.

Then [El, Theorem 3.5]

d(x, z) =











|x| θ
sin θ if x &= 0, z &= 0

|x| if z = 0
√

4π|z| if x = 0

where θ is the unique solution in [0,π) of the equation ν(θ) =
4|z|
|x|2

.

Note that d
(

ϕa(x, z)
)

= ad(x, z) from which it is not difficult to show that d(x, z) +
|x|+ |z|1/2. Equivalently, d(x, z)2 + |x|2 + |z|. One can get a more precise result:

Lemma 2.3. For every (x, z) ∈ G,

π

4
(|x|2 + 4|z|) ≤ d(x, z)2 ≤ π(|x|2 + 4|z|). (2.3)

Moreover, the constants in this inequality are optimal.

Further, for every ε ∈ (0, 1), there exists a constant Cε such that, for every (x, z) ∈ G,

(1− ε)|x|2 + πε|z| ≤ d(x, z) ≤ (1 + ε)|x|2 +
20π

ε
|z|. (2.4)
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The first part of this lemma i.e. (2.3), is well known [VSCC]. We here take the opportunity
to find the best constants. The estimate (2.4) can be found in [LM] in a less precise form.

Proof. The inequalities are obvious when x = 0 or z = 0 so we assume that x, z &= 0.
Let F : [0,π] → R be defined by F (0) = 1 and, for θ ∈ (0,π],

F (θ) =
θ2

sin2 θ + θ − sin θ cos θ
=

θ2

θ + sin θ(sin θ − cos θ)
.

Note that, if θ is the unique solution in [0,π) of ν(θ) =
4|z|
|x|2

, then

F (θ) :=
(θ/ sin θ)2

1 + ν(θ)
=

d(x, z)2

|x|2 + 4|z|
.

It is therefore enough to check that π/4 = F (π/4) ≤ F (θ) ≤ F (π) = π.
But

F ′(θ) =
2θ

θ + sin θ(sin θ − cos θ)

−
θ2

(

θ + sin θ(sin θ − cos θ)
)2

(

1 + cos θ(sin θ − cos θ) + sin θ(sin θ + cos θ)
)

=
2θ

(

θ + sin θ(sin θ − cos θ)
)

)2
×

×
[

2
(

θ + sin θ(sin θ − cos θ)
)

− θ
(

1 + cos θ(sin θ − cos θ) + sin θ(sin θ + cos θ)
)]

which has same sign as

ψ(θ) := θ
(

1− sin θ(sin θ + cos θ)
)

+ (2 sin θ − θ cos θ)(sin θ − cos θ).

Notice that ψ(π/4) = 0 and that

ψ′(θ) = 1 + θ + (cos θ + θ sin θ)(sin θ − cos θ) + (sin θ − θ cos θ)(sin θ + cos θ)

= θ(1− cos 2θ − sin 2θ) + 1− cos 2θ + sin 2θ.

Now ψ′(π/4) = 0 and

ψ′′(θ) = 1 + cos 2θ + sin 2θ + 2θ(sin 2θ − cos 2θ) = 1 + cos(2θ)(1− 2θ) + sin 2θ(1 + 2θ).

From this, it is obvious that ψ′′ ≥ 2−π/2 on [0,π/4], thus ψ′ ≤ 0 on [0,π/4] therefore ψ thus
F decreases on [0,π/4]. In particular, π/4 = F (π/4) ≤ F (θ) ≤ F (0) = 1 for θ ∈ [0,π/4].

For θ ∈ [π/4, 3π/4] one easily checks that 1−cos 2θ−sin 2θ ≥ 0 and 1−cos 2θ+sin 2θ ≥ 0
thus ψ′ ≥ 0, thus ψ increases and is therefore non-negative. This in turn means that F ′ is
non negative, thus π/4 = F (π/4) ≤ F (θ) ≤ F (3π/4) for θ ∈ [π/4, 3π/4].

Finally, on [3π/4,π], 1 + cos(2θ) + sin 2θ ≤ 1 while cos(2θ)− sin(2θ) ≤ −1 thus ψ′′(θ) ≤
2(1−θ) ≤ 0. Therefore ψ′(θ) ≥ ψ′(π) = 0 and ψ is increasing, ψ(θ) ≥ ψ(3π/4) = 3π/4+2 > 0.
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It follows that F is increasing on [3π/4,π] thus F (π/4) ≤ F (3π/4) ≤ F (θ) ≤ F (π) = π for
θ ∈ [3π/4,π].

The proof of (2.4) then follows the steps of [LM]: on one hand,

d(x, z)2 ≥ max
(

d(x, 0)2, d(0, z)2
)

≥ max(|x|2,π|z|) ≥ (1− ε)|x|2 + πε|z|.

On the other hand

d(x, z)2 ≤
(

d(x, 0) + d(0, z)
)2 ≤ (|x|+

√

4π|z|)2 ≤ (1 + ε)|x|2 +
20π

ε
|z|.

as claimed.

2.3. Heat kernel

Definition 2.4. The heat kernel pt for G is the unique fundamental solution to the

corresponding heat equation

(

L−
∂

∂t

)

u = 0 that is, pt = etLδ0, where δ0 is the Dirac delta

distribution supported at 0.

In particular, if

(

L−
∂

∂t

)

u = 0 and u(x, z, 0) = u0(x, z) ∈ L2(R2n+m) then u(x, z, t) =

u0 ∗ pt(x, z).

Our next step is to record an explicit formula for pt(x, z). Various derivations of this
formula appear in the literature. For general step 2 nilpotent groups, [Ga] derived such a
formula probabilistically from a formula in [Le] regarding the Lévy area process. Another
common approach, worked out in [DP], involves expressing pt as the Fourier transform of
the Mehler kernel. Taylor [Ta] has a similar computation. Other approaches have involved
complex Hamiltonian mechanics [BGG], magnetic field heat kernels [Kl], and approximation
of Brownian motion by random walks [Hu]. Of particular interest to us is the approach by
Randall [Ra] who obtains the formula for H-type groups as the Radon transform of the heat
kernel for the Heisenberg group. In our notation, we find that

pt(x, z) = t−n−m
∫

Rm
e−

π
2 |λ| coth(2π|λ|)|t

−1/2x|2
(

|λ|/2π
2 sinh(2π|λ|)

)n

e2iπ〈λ,t
−1z〉 dλ (2.5)

Also this is not obvious from the above formula, pt is non-negative and pt ∗ pt′ = pt+t′ . Note
that pt(x, z) = t−m−np1(t−1/2x, t−1z) i.e. pt = t−m−nϕt−1/2p1.

Using Harnack inequalities one can show that

pt(x, z) ! C(ε)t−n−me
− 1

(4+ε)td(x,z)
2

. (2.6)

A similar statement actually holds for general nilpotent Lie groups. More precise estimates
have been obtained in [DP,El] but the one above is sufficient for our needs. Further, Randall
[Ra] has shown that pt admits an analytic extension with respect to the time parameter t to
the half-complex plane Re(t) > 0. The estimate (2.6) can be extended to complex time t:
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Lemma 2.5 (Estimate of the heat kernel). For every ε ∈ (0, 1), there exists C = C(ε)
such that, for every t > 0

pt(x, z) ≤
C

tn+m
exp

(

−
1

4t

(

(1− ε)|x|2 + πε|z|
)

)

.

Moreover, if t ∈ C with Re(t) > 0,

pt(x, z) ≤
C

Re(t)n+m
exp

(

−Re
1

4t

(

(1− ε)|x|2 + πε|z|
)

)

.

Proof. For t real, this formula follows from incorporating (2.4) into (2.6) and is well known
up to the numerical constants (see [VSCC, p 50]).

For complex t, we use the fact that pt admits an analytic extension and the result follows
by an application of Phragmén-Lindelöf as in Theorem 3.4.8 of [Da].

We are now in position to prove our first result:

Theorem 2.6. For every x ∈ Rn, there exists a non-negative finite measure νx on [0,+∞)
such that

i.

∫ +∞

0

1

τ
dνx(τ) < +∞;

ii. for every a > 0, νx([0, a]) > 0 and νx([a,+∞]) > 0;

iii. for every z ∈ Rm,

p1(x, z) =

∫ +∞

0

1

τ
e−π|z|2/τ2 dνx(τ).

In particular, for x fixed, z → p1(x, z) ∈ C but is not an extremal of C.

Proof. Let us write

Pn,m(x, z) =

∫

Rm
e−

π
2 |λ| coth(2π|λ|)|x|

2

(

|λ|/2π
2 sinh(2π|λ|)

)n

e2iπ〈λ,z〉 dλ.

In particular, Pn,1 is the heat kernel of the Heisenberg group, as shown by Hulanicki [Hu].
Randall [Ra] showed that

Pn,m(x, z) = cn,m

∫

Sm−1
Pn,1(〈z, θ〉) dσ(θ) (2.7)

where σ is the normalized Lebesgue measure on the unit sphere Sm−1 of Rm and cn,m is a
normalization constant. Further, when m < ρ(2n), Randall has shown that Pn,m is the heat
kernel on R2n × Rm with the H-type group structure mentioned above.

One consequence of (2.7) is that, for every m, Pn,m is a non-negative function. On the
other hand, let us denote by ϕx the function defined on R by

ϕx(u) = e−
π
2 u coth(2πu)|x|2

(

u/2π

2 sinh(2πu)

)n

.
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Then Pn,m is the Fourier transform of the radial extension to Rm of ϕx, i.e. Pn,m(x, z) =
F [ϕx(|λ|)](z) where F is the usual Fourier transform on Rm. It then follows from a celebrated
theorem of Schoenberg [Sc] (see also [SvP] for a more modern proof and further references),
that ϕx is an average of Gaussians with respect to some finite non-negative measure νx

ϕx(u) =

∫ +∞

0
e−πτ2u2

dνx(τ).

One easily checks that
∫∞
0 ϕx(u) du is finite, thus Fubini’s theorem yelds

∫ ∞

0
ϕx(u) du =

∫ +∞

0

∫ ∞

0
e−πτ2u2

dudνx(τ) =

∫ +∞

0

1

τ
dνx(τ) < +∞.

In particular, νx has essentially no mass at 0.

Next, it follows from Fubini’s theorem again that

p1(x, z) =

∫

Rm

∫ +∞

0
e−πτ2|λ|2 dνx(τ)e

2iπ〈λ,z〉 dλ =

∫ +∞

0

1

τ
e−π|z|2/τ2 dνx(τ)

as claimed.

If there were an ax such that νx([0, ax]) = 0 then we would have ϕx ! e−πa2x|u|
2
which

is obviously not the case. On the other hand, if the support of νx where included in [0, ax],
then ϕx would extend into an entire function of order 2, |ϕx(u + iv)| ! eπa

2
xv

2
. But this is

again not the case since

|ϕx(iu)| =
(

|u|/2π
| sin 2πu|

)n

→ +∞

when u → k/2, k ∈ Z \ {0}.
For x fixed, we can now write p1(x, z) = g(z) + h(z) with

g(z) =

∫ +∞

0

1

τ
e−π|z|2/τ21[0,1)(τ) dνx(τ) and h(z) =

∫ +∞

0

1

τ
e−π|z|2/τ21[1,+∞) dνx(τ).

As νx([0, 1]), νx([1,+∞)) > 0, g, h &= 0. Further, using the same reasoning as above, one can
show that g has faster decay than p1(x, ·) and that h extends holomorphically to C while
p1(x, ·) does not. Therefore g, h are not multiples of p1(x, ·).

Remark 2.7. A similar result holds for pt thanks to the scaling property

pt(x, z) = t−m−np1(t
−1/2x, t−1z).

It would be nice if the measure νx could be determined explicitly. Our attempts to do so
have not succeeded.
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3. The Schrödinger equation in H-type groups: A “real” approach

In this section we deal with a solution of the Schrödinger equation for the sub-Laplacian
of an H-type group G (isomorphic to R2n × Rm),

i∂tu(g, t) + LGu(g, t) + V (g, t)u(g, t) = 0, (g, t) ∈ G× [0, T ], (3.8)

where g = (x, z), x ∈ R2n, z ∈ Rm. We assume that the potential satisfies the following
hypothesis.

Hypothesis 1. The potential V is independent of the central variable and can be written
in the form V (x, z, t) = V1(x) + V2(x, t) where,

• V1 is a real-valued bounded potential;

• for some a, b, T > 0,

sup
t∈[0,T ]

sup
x∈R2n

|e
T2|x|2

(at+b(T−t))2 V2(x, t)| < +∞. (3.9)

Note that, if V satisfies Hypothesis 1 for some a, b then it also satisfies the hypothesis for
a′ ≥ a and b′ ≥ b. Also (3.9) implies that

sup
t∈[0,T ]

sup
x∈R2n

|ImV2(x, t)| < +∞.

Theorem 3.1. Let a, b, T > 0 and let V be a potential satisfying Hypothesis 1 with

parameters a, b, T . Let u ∈ C1([0, T ],H1(G)) be a solution of (3.8). Assume that there are

c, C > 0 and a function g ∈ L1(Rm) such that

|u(x, z, 0)| ≤ Ce−c|z|−|x|2/b2 , (3.10)

|u(x, z, T )| ≤ g(z)e−|x|2/a2 (3.11)

If ab < 4T , then u ≡ 0.

Remark 3.2. The condition sσ < 4T is essentially optimal in the sense that the result
does not hold when sσ > 4T . Indeed, take V = 0, ε, T > 0 and u(x, z, 0) = pεT (x, z) so that
u(x, z, T ) = p(ε+i)T (x, z). It follows from Lemma 2.5 that

|u(x, z, 0)| ≤ Cεe
− π

4T |z|e−|x|2 (1−ε)
4εT

while

|u(x, z, T )| ≤ Cε,T e
− πε2

4(1+ε2)T
|z|
e
−|x|2 (1−ε)ε

4(1+ε2)T

Thus (3.10) is satisfied with b2 = 4εT
(1−ε) while (3.10) is satisfied with a2 = 4(1+ε2)T

(1−ε)ε . It follows
that

a2b2 = 16T 2 1 + ε2

(1− ε)2

11



and any number > 16T 2 can be written in this form.
Note that if |u(x, z, 0)| ≤ Ce−d(x,z)2/β2

and |u(x, z, T )| ≤ Ce−d(x,z)2/α2
then, with (2.4),

we get that (3.10)-(3.11) hold with a = (1 + ε)α, b = (1 + ε)β and ε > 0 arbitrarily small.
It follows that, if αβ < 4T then u ≡ 0. The above example again shows that this is false if
αβ > 4T .

Proof. The proof of this theorem is then done in several steps.

Step 1. Reduction to T = 1.

Note that if u is a solution of (3.8) on G× [0, T ] and U(x, z, t) = u(
√
Tx, Tz, T t) then U

is a solution of

i∂tU = LGU + VTU (3.12)

in G× [0, 1] where VT (x, z, t) = TV (
√
Tx, Tz, T t). Note that VT satisfies Hypothesis 1 with

parameters ã = a/T, b̃ = b/T, 1. Moreover, (3.10) implies that

|U(x, z, 0)| ≤ Ce−cT |z|−T |x|2/b2 = e−cT |z|−|x|2/b̃2

while (3.11) implies that |U(x, z, 1)| ≤ g(Tz)e−|x|2/ã2 . Therefore, it is enough to prove The-
orem (3.1) for T = 1.

Step 2. Reduction to the Heisenberg group.

This reduction has been pointed out in [BTD,Ra] and is done via a partial Radon trans-
form:

Proposition 3.3. Let u and V be as in Theorem 3.1. Let η ∈ Sm−1 be a unit vector in

Rm and η⊥ = {ξ ∈ Rm : 〈ξ, η〉 = 0}. Define,

Uη(x, s, t) =

∫

η⊥
u(x, sη + z̃, t) dz̃, x ∈ R

2n, s ∈ R, t ∈ [0, 1].

Then Uη is a solution of the following Schrödinger equation

i∂tUη + LHnUη + V (x, t)Uη = 0, (x, s, t) ∈ H
n × [0, 1], (3.13)

where LHn stands for the sub-Laplacian on the Heisenberg group Hn. Moreover, there exists

C1 and c1 positive constants depending only on C and c such that, for (x, s) ∈ Hn

|Uη(x, s, 0)| ≤ C1e
−c1|s|−|x|2/b2 ,

|Uη(x, s, 1)| ≤ g̃(s)e−|x|2/a2

where g̃(s) :=

∫

η⊥
g(sη + z̃) dz̃ is the Radon transform of g.

Note that g̃(s) is well defined for almost every s, η and that g̃ ∈ L1(R) for almost every η.

12



Proof. The fact that Uη satisfies (3.13) is established in [BTD,Ra]. It remains to establish

the Gaussian bounds on U . Since Uη(x, s, t) =

∫

η⊥
u(x, sη + z̃, t) dz̃, we have

|Uη(x, s, 0)| ≤
∫

η⊥
|u(x, sη + z̃, 0)|dz̃ ≤ Ce−|x|2/b2

∫

η⊥
e−c|sη+z̃| dz̃.

Taking into account that z̃ ∈ η⊥, and that η is a unit vector, we get

|sη + z̃|2 = s2 + |z|2 ⇒ |sη + z̃| ≥
|s|+ |z̃|√

2
.

Using this estimate leads to the desired decay for Uη(x, s, 0). Moreover,

|Uη(x, s, 1)| ≤
∫

η⊥
|u(x, sη + z̃, 1)|dz̃ ≤ e−|x|2/a2

∫

η⊥
g(sη + z̃) dz̃

as claimed.

Step 3. Reduction to the magnetic Laplacian on Rn.

We now show that Schrödinger equations on the Heisenberg group can be seen as magnetic
Schrödinger equations.

Proposition 3.4. Let u and V be as in Theorem 3.1. Let Uη be defined in Proposition

3.3.

For ξ ∈ R, consider the partial Fourier transform of U in the central variable:

fξ(x, t) =

∫

R

Uη(x, z, t)e
iξz dz.

Then fξ is a solution of the following magnetic Schrödinger equation

i∂tfξ +∆Cfξ + V fξ = 0,

where ∆C = (∇− iCξ)2 and Cξ =
Mξx
2 with Mξ = ξ

(

0 −In×n

In×n 0

)

.

Moreover fξ(x, 0) admits a holomorphic extension to fξ+iη(x, 0) in {|η| < c}. Further,

|fξ(x, 0)| ≤ Ce−|x|2/b2 ,

|fξ(x, 1)| ≤ ‖g̃‖L1e−|x|2/a2 .
(3.14)

Proof. We recall that

L =
2n
∑

j=1

X2
j = ∆R2n +

1

4
|x|2

∂2

∂z2
+

n
∑

j=1

(

xj
∂

∂xn+j
− xn+j

∂

∂xj

)

∂

∂z
.
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Then,

−i∂tfξ = −
∫

R

i∂tUeiξz dz

=

∫

R

∆R2nUeiξz dz +
1

4
|x|2

∫

R

∂zzUeiξz dz +
n
∑

j=1

∫

R

(xj∂n+j∂zU − xn+j∂j∂zU) eiξz dz

+V (x, t)

∫

R

Ueiξz dz

= ∆R2nfξ −
ξ2

4
|x|2fξ − iξ

n
∑

j=1

(xj∂n+jfξ − xn+j∂jfξ) + V fξ = ∆Cfξ + V fξ

as claimed.
The last part of the proposition is immediate using the definition of fξ as a partial Fourier

transform in the central variable.

Step 4. Conclusion

Using the previous step, fξ is a solution of

i∂tfξ +∆Cfξ + V fξ = 0,

that satisfies the Gaussian estimates (3.14). Further, since ab < 4, there exists δ > 0 such
that ab < 4 sin δ

δ . Now, using Theorem 1.11 in [CF2] (in the case A ≡ 0, which implies that the
result is valid in any even dimension) combined with the previous results that give information
about the evolution and decay of fξ, we conclude that, for 0 < ξ < δ, t ∈ [0, 1], fξ(x, t) = 0.
In particular, for t = 0 we get that fξ(x, 0) = 0 for 0 < ξ < δ. But, from Proposition 3.4, we
know that fξ(x, 0) admits an holomorphic extension to a strip {ξ + iζ : |ζ| < c}. It follows
that fξ(x, 0) = 0 on the whole real line (ζ = 0).

As ξ is arbitrary and fξ(x, 0) is the partial Fourier transform of Uη(x, s, 0), we conclude
that Uη(x, s, 0) = 0.

Finally, Uη is the Radon transform of u, we conclude that u = 0, which is the desired
result.

As an immediate corollary, we can now obtain the following result, which is stated in a
slightly more restrictive form as Theorem 1.2 in the introduction:

Corollary 3.5. Let T > 0 and s,σ > 0. Let V be a potential satisfying Hypothesis 1

with parameters 2
√
σ, 2

√
s, T . Let u ∈ C1([0, T ],H1(G)) be a solution of (3.8). Assume that

there is a C > 0 such that

|u(x, z, 0)| ≤ Cps(x, z).

|u(x, z, T )| ≤ Cpσ(x, z).

If sσ < T 2, then u ≡ 0.
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Remark 3.6. The case V = 0 of this theorem has been obtained by Ben Säıd, Thangavelu,
Dogga [BTD] for H-type groups and by Ludwig and Müller [LM] for general step 2 nilpotent
Lie groups.

Proof of Corollary 3.5. From Lemma 2.5 we get

|u(x, z, 0)| ≤ Cε exp

(

−
1

4s

(

(1− ε)|x|2 + πε|z|
)

)

|u(x, z, T )| ≤ Cε exp

(

−
1

4σ

(

(1− ε)|x|2 + πε|z|
)

)

.

Let aε = 2
√

σ
1−ε and bε = 2

√

s
1−ε . As sσ < T 2, for ε small enough, aεbε =

4
1−ε

√
sσ < 4T .

Further V satisfies Hypothesis 1 with parameters aε, bε, T . Applying Theorem 3.1 we thus
get u = 0.
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