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Experimental semi‑autonomous 
eigensolver using reinforcement 
learning
C.‑Y. Pan1, M. Hao1, N. Barraza1, E. Solano1,2,3,4* & F. Albarrán‑Arriagada1*

The characterization of observables, expressed via Hermitian operators, is a crucial task in quantum 
mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. 
In this work, we implement a semi-autonomous algorithm to obtain an approximation of the 
eigenvectors of an arbitrary Hermitian operator using the IBM quantum computer. To this end, we only 
use single-shot measurements and pseudo-random changes handled by a feedback loop, reducing the 
number of measures in the system. Due to the classical feedback loop, this algorithm can be cast into 
the reinforcement learning paradigm. Using this algorithm, for a single-qubit observable, we obtain 
both eigenvectors with fidelities over 0.97 with around 200 single-shot measurements. For two-qubits 
observables, we get fidelities over 0.91 with around 1500 single-shot measurements for the four 
eigenvectors, which is a comparatively low resource demand, suitable for current devices. This work is 
useful to the development of quantum devices able to decide with partial information, which helps to 
implement future technologies in quantum artificial intelligence.

Increasing the computational capabilities of machines is an essential field in artificial intelligence. In this context, 
machine learning algorithms have emerged with great force in the last decades1,2. This class of algorithms can 
be divided into two families, learning from big data and learning from interactions. Learning from big data can 
be classified into two categories, supervised and unsupervised learning. In the supervised learning paradigm, 
we have a set of labeled data named training data, from which we want to infer some classification function to 
sort unlabeled new data. Unsupervised learning algorithms do not use training data. In this paradigm, the goal 
is to extract the statistical structure of an unsorted data set and divide it into different groups according to some 
criteria (clustering problem)3–8.

In the category of learning from interactions we have the Reinforcement Learning (RL) algorithms9–18. The 
idea in this paradigm is that a known and manipulable system called agent (A) interacts with a non-manipulable 
system called environment (E). Here, the goal is to optimize a task G (A,E) , which depends on the state of A and 
E. For this, we use feedback loops to change the state of A using the information extracted from the interaction 
with E. Some impressive and recent examples of RL are the AI players for different strategy games like Go19, 
Chess20, or StarCraft II21.

On the other hand, it has been shown that quantum computing22 can overcome some fundamental limits of 
classical computing, e.g., in searching problems23, factorization algorithms24, solving linear equation systems25,26, 
and for linear differential equations27. Therefore, it was natural to merge machine learning techniques with the 
advantages of quantum computing in the topic known as Quantum Machine Learning (QML)28–35.

With the development of Noisy Intermediate-Scale Quantum (NISQ) devices36, the research on simple quan-
tum information protocol (suitable for NISQ quantum computers) and  in QML has grown in the last years. The 
IBM quantum computer is one of the most famous open NISQ devices, which can be programmed using Qiskit37, 
an open-source python package, to create and run quantum programs using the IBM quantum cloud service38.

One of the most useful algorithms for linear algebra, and hence for quantum mechanics, are the quantum 
eigensolvers. The hybrid quantum-classical algorithms like variational quantum eigensolver (VQE)39–41 take 
advantage due to its easy implementation in NISQ devices. The main idea of this class of algorithm is to calculate 
some expectation value (like energy) with a quantum processor, and then use a classical optimizer (like vari-
ational one) to reach the solution42. Nevertheless, it has been recently proposed an algorithm that uses a quantum 
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optimizer43. Each iteration of the classical optimizer algorithm involves many single-shot measurements in the 
quantum system, which are required to calculate an expectation value. The development of an algorithm with 
more quantum features will involve the use of a more primitive classical subroutine.

In this paper, we implement the semi-autonomous eigensolver proposed in Ref.44. The protocol can obtain 
an approximation of all eigenvectors for an arbitrary observable using single-shot measurements instead of 
expectation values. Here, we use the most basic classical subroutine, which involves only pseudo-random changes 
handled by the outcome of the single-shot measurement and a feedback loop. Due to this feedback loop, this 
algorithm can be classified in the RL paradigm. Using our protocol, we can obtain a high fidelity approximation 
for all eigenvectors. In the single-qubit case, we get fidelities larger than 0.97 and larger than 0.91 for a two-qubit 
observable in around 200 and 5000 single-shot measurements, respectively. This work opens the door to explore 
alternative paradigms in hybrid classical-quantum algorithms, which is useful for developing semi-autonomous 
quantum devices that decide with incomplete information.

Methods
Basics on RL paradigm.  We briefly describe the basic components of the RL paradigm. As mentioned 
above, in an RL algorithm, we define two systems: the agent A and the environment E. The interaction among 
these systems can be divided in three basic steps, the policy, the reward function (RF) and the value function (VF). 
The policy refers to the general rules of the algorithm and can be subdivided into three stages: first, the interac-
tion, where we specify how A and E interact; second, the action, which refers to how A changes its perception of 
E modifying some internal parameters; and third, the information extraction, that defines the process used by A 
to infer information from E. The information extraction can be done directly by A or using an auxiliary system, 
named register, if A cannot read the response of the environment.

The RF is the criterion to reward or punish A in each iteration using the information collected from E. This 
step is the most important in any RL algorithm because the right choice of the RF ensures the optimization of 
the desired task G (A,E) . Finally, the VF evaluates a figure of merit related to the task G (A,E) , which provides 
us the utility of the algorithm. The main difference between RF and VF is that the first evaluates each iteration 
to increase the performance locally in time without considering the history of the algorithm. At the same time, 
VF depends on the history of the algorithm, which takes into consideration a large number of iterations given 
the global performance of the algorithm.

RL protocol.  We define the basic parts of our protocol as an RL algorithm. The state of the agent is denoted 
by

where D̂k is a unitary transformation to prepare the desired agent state, the state |j� is the initial state provided 
by the quantum processor in the computational basis, and the subindex k denotes the iteration of the algorithm. 
The environment is expressed as an unknown Hermitian operator Ô written as

with α(j) and |E (j)� the jth eigenvalue and eigenvector of Ô , respectively. The task G is set to maximize the fidelity 
between the state of the agent, |A (j)

N � , after N iterations, and the eigenvectors |E (j)� , or in other words, we want 
to find the matrix D̂k that diagonalizes the observable Ô.

Now, the policy is as follows:
Interaction: The observable Ô generates an evolution given by the unitary transformation

where τ is a constant related with the elapsed time of the interaction. The agent state after this evolution is

Information extraction: We measure the state |Ā (j)
k � in the basis {|A (ℓ)

k �} . For this purpose we apply the trans-
formation D̂†

k obtaining

followed by a single-shot measurement in the computational basis {|ℓ�} obtaining the outcome value m with 
probability |c(m)|2 . This outcome refers to the resulting state |A (m)

k � after the measuring process.
Action: According to Eq. (3) if |A (j)

k � is equal to some eigenvector of Ô , we obtain c(j) = 1 in Eq. (4). Using 
this condition we define the next rule for the action. If the outcome is m  = j ⇒ c(j)  = 1 , then |A (j)

k � is not an 
eigenvector of Ô . In this case ( m  = j ), we modify the agent for the next iteration defining operator D̂k+1 as

(1)|A (j)
k � = D̂k|j�,

(2)Ô =
∑

j

α(j)|E (j)��E (j)|,

(3)Ê = e−iÔ τ =
∑

j

e−iα(j)τ |E (j)��E (j)|,

(4)Ê|A (j)
k � = |Ā (j)

k � =
∑

ℓ

c(ℓ)|A (ℓ)
k �.

(5)D̂†
k |Ā

(j)
k � =

∑

ℓ

c(ℓ)|ℓ�,

(6)D̂k+1 = D̂kûj,m(θ ,φ, �),
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with

where,

Then,

up to a global phase. Therefore, û(θ ,φ, �) is a general rotation in the {|j�, |m�} subspace. The angles are random 
numbers given by

where the range amplitude wk will be updated in each iteration according to the RF, which will be specified later. 
Now, for the case m = j , the state |A (j)

k � could be an eigenvector of Ô , then we define

We can summarize Eqs. (6) and (11) as

Now, we define the reward function as

where p > 1 is the punishment ratio, and 0 < r < 1 is the reward ratio. This means that each time we obtain the 
outcome m  = j , we increase the amplitude range wk+1 , because m  = j means that we are further away from an 
eigenvector and greater corrections are required. In the other case, when m = j means that we are closer to an 
eigenvector, then, we reduce the value of wk+1 obtaining smaller changes for future iterations.

Finally, the value function will be the last value of the range amplitude wN after N iterations. If wN → 0 signi-
fies that we have measured m = j several times, then c(j) ≈ 1 , which implies that we obtain a good approximation 
of an eigenvector.

Results
Single‑qubit case.  We implement the algorithm described above in the IBM quantum computer. We start 
with the simplest case, which is to find the eigenvectors of a single-qubit observable. Since there are only two 
eigenvectors, we only need to obtain one of them, because the orthogonality property can determine the second 
one. Figure 1 shows the circuit diagram for this case. As we can see in Fig. 1 the agent in each iteration is given by

In this case, we have only one the rotation ( ̂u1,0 ) of the form of Eq. (7), then, for simplicity, we redefine the 
operator D̂k = D̂(θk ,φk , �k) as

where σ̂ (a) is the a-Pauli matrix and

with {�θ ,�φ ,��} ∈ wk[−π ,π ] and wk given by Eq. (13), considering only two outcomes ( m ∈ {0, 1} ) and 
j = 0 for the whole algorithm. The gate in Eq. (15) has the form of the general qubit-rotation provided by qiskit, 
therefore, it can be efficiently implemented in the IBM quantum computer. We denote by, F , the maximum 

(7)ûj,m(θ ,φ, �) = e
−i�Ŝ

(z)
j,me

−iθ Ŝ
(y)
j,me

−iφŜ
(z)
j,m ,

(8)
S
(z)
j,m = 1

2

(

|j��j| − |m��m|
)

,

S
(y)
j,m = − i

2

(

|j��m| − |m��j|
)

.

(9)
ûj,m(θ ,φ, �) = cos

(

θ

2

)

(

|j��j| + ei(�+φ)|m��m|
)

+ sin

(

θ

2

)

(

−eiφ |j��m| + ei�|m��j|
)

(10){θ , �,φ} ∈ wk · [−π ,π ],

(11)D̂k+1 = D̂k .

(12)D̂k+1 = D̂k





�

l �=j

ûl,m(θ ,φ, �) · δl,m + I · δj,m



.

(13)wk+1 = wk



p ·
�

l �=j

δl,m + r · δj,m





(14)|A (0)
k � = D̂k|0�.

(15)D̂(θk ,φk , �k) = e−i
�k
2
σ̂ (z)

e−i
θk
2
σ̂ (y)

e−i
φk
2
σ̂ (z)

,

(16)
θk+1 = θk +�θ · δ1,m,
φk+1 = φk +�φ · δ1,m,
�k+1 = �k +�� · δ1,m,
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fidelity between the agent state, |A (0)
N � , and one of the eigenvectors at the end of the algorithm. We find that F 

is related to the probability of obtaining the outcome m = 0 ( P0 ) by (see appendix A)

where � = τ |α(0) − α(1)| is the gap between the eigenvalues of τ Ô [see Eqs. (2) and (3)]. Figure 2 shows P0 as a 
function of the fidelity F for different values of �.

For the implementation we use the initial values θ1 = φ1 = �1 = 0 , w1 = 1 and the quantum processor 
“ibmqx2”. The algorithm is run until wN < 0.1 . Since the algorithm converges stochastically to the eigenvectors, 
we perform 40 experiments in order to characterize the performance of the algorithm by the central values of the 
data set. Also, we compare the performances of our algorithms with the VQE algorithm for the same environ-
ments using the same quantum processor. To test the algorithm, we use three different environment Hermitian 
operators:

1.	 τ Ô = π

2
σx ⇒ � = π ⇒ F = 1

2
(1+

√
P0).

Here, we choose the reward ratio r = 0.9 and the punishment ratio p = 1/r . The results of the 40 experiments 
are collected in the Apendix Table 1 (Supplemental material) and summarized in the histograms of Fig. 3. From 
Fig. 3a, we can see that the probability P0 is bigger than 0.85 in 36 cases, which implies, as is shown in Fig. 3b, 
that most cases give fidelities larger than 0.94. Also, we have 36 experiments with F > 0.96 , the average fidelity 
is F̄ = 0.98 and the standard deviation is σ = 0.019 which represent the 2% of the average fidelity F̄ . Also, 
the average number of iterations of the algorithm in the 40 experiments is N̄ = 103 , the minimum number of 

(17)

P0 =
1− cos(�)

2

[

(2F − 1)2 − 1
]

+ 1

⇒F = 1

2

(

1+
√

2(P0 − 1)

1− cos�
+ 1

)

,

Agent Environment
Measurement 

process

Reward/Punishment 
signal

Figure 1.   Diagram of the single-qubit protocol. The subindex k refers to the kth iteration. Blue lines represent 
the classical communication to the central processing unit. The gray arrows show feedback loops, where D̂k and 
D̂†
k are updated according to the measurement outcome.
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Figure 2.   P0 as a function of F for different values of �.
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iterations Nmin = 25 , and the maximum number of iterations Nmax = 528 . This number may look large, but we 
remark that we using only one single-shot measurement per iteration. In comparison, if we want to calculate a 
given expectation value, we require at least 1000 single-shot measurements for a single qubit. Then for this case, 
our algorithm requires less resources than any other classical-quantum algorithm that utilizes expectation values. 
For the VQE algorithm, first we choose 500 single-shot measurements per step and COBYLA as the classical 
optimization method. VQE needs 33 COBYLA iterations to converge, which means 16500 single-shot measure-
ments in total, i.e.100 times the resources needed in our algorithm, and get a fidelity of 0.997. If we change the 
number of single-shot measurements to 8192 per step (it is the maximum shots allowed by IBM), we need 35 
COBYLA iterations to converge, which means 286720 single-shot measurements, 1000 times more resources 
than our algorithms, nevertheless, the fidelity is 0.999.

2.	 τ Ô = π

4
σx ⇒ � = π

2
⇒ F = 1

2
(1+

√
2P0 − 1).

Now, we choose the reward ratio r = 0.9 and the punishment ratio p = 1.5/r . The results of the 40 experi-
ments are collected in the Appendix Table 2 (see supplemental material) and summarized in the histograms of 
Fig. 4. From Fig. 4a we can see that the probability P0 is bigger than 0.9 in 35 cases, which implies, as is shown in 
Fig. 4b, that most cases give fidelities larger than 0.94. Also, we have 30 experiments with F > 0.96 , the average 
fidelity is F̄ = 0.97 and the standard deviation is σ = 0.022 which represent the 2.3% of the average fidelity F̄ . 
Also, the average number of iterations of the algorithm in the 40 experiments is N̄ = 116 , the minimum number 
of iterations Nmin = 25 and the maximum number of iterations Nmax = 572 , again for this case our algorithm 

(a) (b)

Figure 3.   Histograms for the results of 40 independent experiments. with τ Ô = π
2
σx , r = 0.9 and p = 1/r . (a) 

Histogram for the probability to obtain m = 0 . (b) Histogram for the fidelity between the agent and the nearest 
eigenvector using Eq. (17).

(a) (b)

Figure 4.   Histograms for the results of 40 independent experiments. with τ Ô = π
4
σx , r = 0.9 and p = 1.5/r . 

(a) Histogram for the probability to obtain m = 0 . (b) Histogram for the fidelity between the agent and the 
nearest eigenvector using Eq. (17).
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uses less resources than the algorithm that use expectation values. As in the previous case, we compare the results 
with the VQE algorithm. For 500 shots per step, we get a fidelity of 0.883 with 23 COBYLA iterations, which 
means 11500 single-shot measurements, i.e.100 times more resources than our algorithm. For 8192 shots per 
step, the fidelity is 0.891 and we need 23 COBYLA iterations, the total single-shot measurements are 188416, 
i.e.1000 times more resources than in our algorithm.

3.	

τ Ô = cos
1

10
σx + sin

1

10
σy ⇒ � = 2

⇒ F = 1

2

(

1+
√

1+ 2(P0 − 1)

1− cos 2

)

We choose the reward ratio r = 0.9 and the punishment ratio p = 1.5/r as in the previous case. The results 
of the 40 experiments are collected in the Appendix Table 3 (see supplemental material) and summarized in 
the histograms of Fig. 5. From Fig. 5a we can see that the probability P0 is bigger than 0.85 in 39 cases, which 
implies, as is shown in Fig. 5b, that most cases give fidelities larger than 0.94. Also, we have 30 experiments with 
F > 0.98 , the average fidelity is F̄ = 0.98 and the standard deviation of σ = 0.015 which represent the 1.6% 
of the average fidelity F̄ . Also, the average number of iterations of the algorithm in the 40 experiments was 
N̄ = 227 , the minimum number of iterations Nmin = 26 and the maximum number of iterations Nmax = 782 . 
In this case, as Nmax is around 800, we compare the VQE algorithm, at first with 800 shots per step, obtaining 
a fidelity of 0.911 using 14 COBYLA iterations, which means, a total number of single-shot measurements of 
11200, i.e.50 times more resources than our algorithms. When we use 8192 per step, the fidelity is 0.999 and 
we need 14 COBYLA iterations, obtaining a total number of single-shot measurements of 114688, i.e.500 times 
more resources than our algorithm.

Even if VQE allows us to reach fidelities larger than 0.98 (the mean fidelity of our algorithm), it needs several 
resources, more than 100 times the resources using by our algorithm, which implies a great advantage of our 
proposal.

Two‑qubit case.  In this case, we have three different agent states given by

We update the matrix D̂k according to Eq. (12). To decompose the matrix D̂k in a set of one- and two-qubit gates, 
we use the method already implemented in qiskit45. To find all the eigenvectors we divide the protocol in three 
stages. In the first stage, we consider the agent state |A (0)

k � = D̂k|00� , with D̂1 = I and w1 = 1 . The outcome of 
the measure have four possibilities m ∈ {00, 01, 10, 11} and we run the algorithm until wn1 < 0.1 ( n1 iterations). 
After this, we have that |A(0)

n1 � = D̂n1 |00� is the approximation of one of the eigenvectors of Ô.
In the second stage, we consider the agent state |A (1)

k � = D̂k|01� , with D̂n1+1 = D̂n1 and wn1+1 = 1 . Now, we 
take into account only three outcome m ∈ {01, 10, 11} , since we suppose that |A (0)

N1
� is a good enough approxi-

mation. If we obtain m = 00 , we consider it as an error, and we define D̂k+1 = D̂k and wk+1 = wk , it means that 
we do nothing, and not apply the updating rule for D̂k+1 and wk+1 , we denote this error as c00 . We run this stage 
n2 iterations until wn1+n2 < 0.1 . As we do not do rotations in the subspace spanned by {|00�, |01�} during this 

(18)

|A (0)
k � = D̂k|00�,

|A (1)
k � = D̂k|01�,

|A (2)
k � = D̂k|10�.

(a) (b)

Figure 5.   Histograms for the results of 40 independent experiments. with τ Ô = cos 1
10
σx + sin 1

10
σy , r = 0.9 

and p = 1.5/r . (a) Histogram for the probability to obtain m = 0 . (b) Histogram for the fidelity between the 
agent and the nearest eigenvector using Eq. (17).
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stage, we have |A (0)
n1+n2� = |A (0)

n1 � . Now, we obtain the approximation of two eigenvectors |A(1)
n1+n2 � = D̂n1+n2 |01� 

and |A(0)
n1+n2 � = D̂n1+n2 |00�.

Finally, in the third stage, we consider the agent state |A (2)
k � = D̂k|10� , with D̂n1+n2+1 = D̂n1+n2 and 

wn1+n2+1 = 1 . Now, we have only two possibilities for the outcome measurement m ∈ {10, 11} . Here, we 
also suppose that D̂n1+n2 |00� and D̂n1+n2 |01� are good enough approximations. If we obtain m = 00 or 
m = 01 , we consider them again as an error and we do not apply the update rule, denoting these errors as 
c
′
00 and c01 , like in the previous stage. We run this case n3 iterations until wn1+n2+n3 < 0.1 . In this stage, we 

only modify the subspace expanded by {|10�, |11�} , then, we have that |A (0)
n1+n2+n3 � = |A (0)

n1+n2 � = |A (0)
n1 � 

and |A (1)
n1+n2+n3 � = |A (1)

n1+n2 � . After this procedure we obtained the approximation of all the eigenvectors 
{|A(0)

nT � = D̂nT |00�, |A
(1)
nT � = D̂nT |01�, |A

(2)
nT � = D̂nT |10�, |A

(3)
nT � = D̂nT |11�} , with nT = n1 + n2 + n3.

To test the algorithm, we choose three cases. First we consider the bi-local operator given by

In this case, the eigenstates and the eigenvalues are

We note that the ground state is degenerate, then any linear state of the form |φ� = a|E (0)� + b|E (1)� will be also 
ground state of the operator and the same for the other states. In this case we define the fidelity of our algorithm 
by the probability to measure the initial state |j�

We run this case using IBM backend “ibmq_vigo” and the results are shown in Appendix Table 4 (see supplemen-
tal material). In this case, we run the algorithm ten times and the mean fidelities are: F00 = 0.931 , F01 = 0.933 , 
F10 = 0.932 , and F11 = 0.919 . The mean number of iterations is N̄ = 272 . In this case, the mean errors are: 
c̄00 = 10 , c̄′00 = 8 and c̄01 = 5 . Therefore, the fidelity of our algorithm was higher than 0.91 for each eigenstate 
in less than 300 single-shot measurements. The same as the single-qubit case, we will compare with the VQE 
algorithm. At first, we choose 300 shots per step, and 56 COBYLA iterations, which means 16800 single-shot 
measurements, obtaining a fidelity of 0.976 for the ground state. Using 8192 shots per step, VQE needs 54 
COBYLA iterations to converge, which means 442368 single-shot measurements, obtaining a fidelity of 0.997 
for the ground state. In this case, VQE get a significantly more accurate result, but it is only for the ground state 
and uses 1000 times more resources than our algorithm which obtain all the eigenvectors.

The second example is the molecular hydrogen Hamiltonian with a bound length of 0.2 [Å]46:

with g0 = 2.8489, g1 = 0.5678, g2 = −1.4508, g3 = 0.6799, g4 = 0.0791, g5 = 0.0791 . In this case the environ-
ment is given by

with the next eigenvectors and eigenvalues

In this case, we choose the same method as the previous case to calculate the F , we choose IBM backend “ibmq_
valencia” and the results are shown in Appendix Table 5 (see supplemental material). In this case, we run the 
algorithm ten times and the mean fidelities are: F00 = 0.989 , F01 = 0.973 , F10 = 0.976 and F11 = 0.979 . The 
mean errors are: c̄00 = 7 , c̄′00 = 4 and c̄01 = 3 and the mean number of iterations is N̄ = 111 . In this case, we need 
less than 150 single-shot measurements to obtain the fidelity over 0.97. For the VQE algorithm, at first we choose 
120 shots per step and we need to use 59 COBYLA iterations, which means 7080 single-shot measurements, 

(19)1. τ Ô = σxσx =







0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0






.

(20)

|E (0)� = 1√
2
(|00� − |11�), α(0) = −1,

|E (1)� = 1√
2
(−|01� + |10�), α(1) = −1,

|E (2)� = 1√
2
(|00� + |11�), α(2) = 1,

|E (3)� = 1√
2
(|01� + |10�), α(3) = 1.

(21)Fj = Pj = |�j|D̂†
nT
ÊD̂nT |j�|2.

(22)H = g0I+ g1Z0 + g2Z1 + g3Z0Z1 + g4Y0Y1 + g5X0X1,

(23)2. τ Ô =







g0 + g1 + g2 + g3 0 0 g5 − g4
0 g0 + g1 − g2 − g3 g4 + g5 0

0 g4 + g5 g0 − g1 + g2 − g3 0

g5 − g4 0 0 g0 − g1 − g2 + g3






,

(24)

|E (0)� = − 0.03909568|01� + 0.99923547|10�, α(0) = 0.14421033,

|E (1)� =|00�, α(1) = 2.6458,

|E (2)� =0.99923547|01� + 0.03909568|10�, α(2) = 4.19378967,

|E (3)� =|11�, α(3) = 4.4118
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obtaining a fidelity of 0.994 for the ground state. When we use 8192 shots per step and VQE needs 64 COBYLA 
iterations to converge, it means 507904 single-shot measurements, obtaining a fidelity of 0.999 for the ground 
state. In this case, VQE can get better fidelities (larger than 0.99) but use again much more resources than our 
proposal, around 1000 times more to get only one of the eigenvectors.

The third case that we consider to test the algorithm is the non-degenerate two-qubit operator

3.   with eigenvectors and eigenvalues given by

We run the algorithm in the IBM quantum computer “ibmq_vigo”. In order to reduce the total number of itera-
tions, we run the three stages of the algorithm four times as follows: 

1.	 We choose r = 0.6, p = 1/r, D̂1 = I, w1 = 1 . Suppose that the total number of iteration after the three stages 
is N1 = η1.

2.	 We choose r = 0.7, p = 1/r, D̂η1+1 = D̂η1 , wη1+1 = 1 . Suppose that the total number of iteration after the 
three stages is N2 = η1 + η2.

3.	 We choose r = 0.8, p = 1/r, D̂N2+1 = D̂N2
, wN2+1 = 1 . Suppose that the total number of iteration after the 

three stages is N3 = η1 + η2 + η3.
4.	 We choose r = 0.9, p = 1/r, D̂N3+1 = D̂N3

, wN3+1 = 1 , and suppose that the total number of iteration after 
the three stages is N = η1 + η2 + η3 + η4.

We define the fidelity of each approximation as

To obtain a data set to evaluate the performance of our protocol, we perform ten independent experiments. 
These data are collected in Appendix Table 6 (see supplemental material). The average fidelities that we obtain 
are F̄00 = 0.941, F̄01 = 0.933, F̄10 = 0.929, F̄11 = 0.935 , the average number of iterations is N̄ = 1396 and 
the mean errors are: c̄00 = 29 , c̄′00 = 19 and c̄01 = 18 . Therefore, in this case we obtain the four eigenvectors with 
fidelities larger than 0.92 in less than 1500 single-shot measurements, which at least corresponds to 6 measure-
ments of mean values, being not enough for a classical-quantum algorithm that uses the optimization of mean 
values. For the VQE algorithm, we choose 2000 shots per step using 77 COBYLA iterations, which means 157000 
single-shot measurements obtaining a fidelity of 0.918 for the ground state. For 8192 shots per step, VQE needs 
88 COBYLA iterations to converge, it means 720896 single-shot measurements obtaining a fidelity of 0.944. In 
this case, VQE cannot surpass the performance of our algorithm, and use more than 100 times resources than 
our proposal only for the ground state.

For n−qubit observable ( n > 2 ), we can use the same protocol but considering more measurement outputs, 
which implies more stages in the algorithm.

Conclusions
In this work, we implement satisfactorily the approximate eigensolver44 using the IBM quantum computer. For 
the single-qubit case, we obtain fidelities larger than 0.97 for both eigenvectors using around 200 single-shot 
measurements. For the two-qubit case, we use around 1500 single-shot measurements to obtain the approxima-
tion of the four eigenvectors with fidelity over 0.9. Due to the stochastic nature of this protocol, we cannot ensure 
that the approximation converges asymptotically with the number of iteration to the eigenvectors. Nevertheless, 
it is useful to obtain a fast approximation to use as a guess into another eigensolver that can reach maximal fidel-
ity, like in the eigensolver of Ref.43. Also, we compare the performance of our proposal with the VQE algorithm, 
where VQE, in general, get better fidelities in the single-qubit case but use more than 100 times the number of 
resources than our algorithm. For two-qubit, the advantage in the maximal fidelity of VQE is a little better in 
comparison with our algorithm, but again, VQE needs several resources, i.e.more than 1000 times the resources 
used by our algorithm for all the eigenvectors. Also, the performance of the VQE algorithm depends on the 
variational ansatz used, which is not the case with our algorithm. This dependence of the VQE algorithms 
allows enhancing its performance using a better ansatz. The main goal of our algorithm is to get a high fidelity 

(25)τ Ô =







π − π
2

− π
4

− π
4

−π
2

π − π
4

− π
4

−π
4

− π
4

π
2

0

−π
4

− π
4

0 π
2






,

(26)

|E (0)� =1

2
(|00� + |01� + |10� + |11�), α(0) = 0,

|E (1)� = 1√
2
(|10� − |11�), α(1) = π

2
,

|E (2)� =1

2
(|00� + |01� − |10� − |11�), α(2) = π ,

|E (3)� = 1√
2
(|00� − |01�), α(3) = 3π

2
.

(27)Fℓm = max
k={0,1,2,3}

|�E (k)|D̂N |ℓm�|2.
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approximation for all the eigenvectors with few resources. This goal is completely satisfied in comparison with 
the resources needed for VQE. On the other hand, by manipulating the convergence criteria of our algorithm, we 
can reach better fidelities. Finally, this work also paves the way for the development of future suitable quantum 
devices to work with limited resources.

Data availability
The qiskit codes of the one-qubit case and the two-qubit case are available in https://​github.​com/​Panch​iyue/​
Qiskit-​Code/​tree/​main.
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