MASTER DEGREE IN INDUSTRIAL ENGINEERING

MASTER'S FINAL THESIS

ELECTRICAL PROJECT DESIGN FOR A CABINET IN AN ENGINE ROOM OF A COOLING PLANT

Student: Gregorio Urionabarrenechea, Xabier **Mentor:** Špoljarić, Tomislav

Curso: 2020-2021

Fecha: 15 JUL 2021

- > <u>TITLE</u>: Electrical project design for a cabinet in an engine room of a cooling plant.
- <u>ABSTRACT</u>: In the master's thesis presented below, the reconstruction design of an electrical cabinet is carried out to suit the new needs of the consumers in the engine room of a cooling plant in the meat sector. The aim is to present the control and protection of this engine room by means of a unifilar scheme, which includes identification of consumers, valves, cable selection, correct wiring connection for the proper functioning of the PLC, selection of protection elements, and so on. To carry out the development of this design, the EPLAN software will be used.
- KEY WORDS: Project design, cabinet, protection, control, engine room, EPLAN.
- <u>TÍTULO</u>: Diseño del proyecto eléctrico de un armario en la sala de máquinas de una planta de refrigeración.
- <u>RESUMEN:</u> En el trabajo de fin de máster que se presenta a continuación, se lleva a cabo el diseño de reconstrucción de un armario eléctrico que se adecúe con las nuevas necesidades de los consumidores de la sala de máquinas de una planta de refrigeración del sector cárnico. Se pretende presentar mediante un esquema unifilar el control y la protección de la mencionada sala de máquinas, lo que incluye identificación de consumidores, válvulas, selección de cables, correcta conexión del cableado para el buen funcionamiento del PLC, selección de elementos de protección, etc. Para llevar a cabo el desarrollo de dicho diseño, se hará uso del software EPLAN.
- PALABRAS CLAVE: Diseño del proyecto, armario, protección, control, sala de máquinas, EPLAN.
- > <u>NASLOV</u>: Projekt elektroinstalacija razdjelnika u strojarnici rashladnog postrojenja.
- <u>SAŽETAK:</u> U diplomskom radu je prikazan tijek izrade projekta rekonstrukcije električnog ormara koji se prilagođava novim zahtjevima nvestitora. Ormar se nalazi u strojarnici rashladnog postrojenja u prehrambenoj industriji. U projektnoj dokumentaciji se nalazi crtani dio, lista potrošača i kabela, projektni proračuni i tehnički opis. Za razvoj ovog dizajna koristit će se softver EPLAN.
- KLJUČNE RIJEČI: Projektiranje projekta, kabinet, zaštita, kontrola, strojarnica, EPLAN.
- IZENBURUA: Hozte-instalazio bateko makina-gelaren armairu elektriko baten proiektu elektrikoa diseinua.
- LABURPENA: Jarraian aurkezten den master amaierako lanean, armairu elektriko bat berreraikitzeko diseinua egiten da, haragi-sektoreko hozte-instalazio bateko makina-gelako kontsumitzaileen behar berrietara egokitzeko. Eskema unifilar baten bidez aurkeztu nahi da aipatutako makina-gelaren kontrola eta babesa, eta horrek barne hartzen du kontsumitzaileen identifikazioa, balbulak, kableen hautaketa, PLCren funtzionamendu egokirako kableen konexio egokia, babes-elementuen hautaketa, etab. Diseinu hori garatzeko, EPLAN softwarea erabiliko da.
- GAKO-HITZAK: Proiektuaren diseinua, armairua, babesa, kontrola, makina-gela, EPLAN.

LIST OF CONTENTS

I.	MEMORY		6
	1. INT	FRODUCTION	6
	2. PR	OJECT ASSIGNMENT	7
	3. TE(CHNICAL DESCRIPTIONS	9
	3.1. N	MAIN DIVIDER ON/OFF IN EMERGENCY	9
	3.2. 0	CONDENSING TOWER OPERATION CONTROL	9
	3.3. 0	COOLING TOWER OPERATION CONTROL	10
	3.4. A	AMMONIA CONTROL SYSTEM FOR PUMPS, SEPARATORS AND COLLE	CTORS 10
	3.5. F	REGULATION OF THE OPERATION OF THE PRIMARY AND SECONDARY CIRCUIT WITH GLYCOL	(COOLING 11
	3.6. S	SCREW COMPRESSOR OIL COOLER PUMP CONTROL	12
	3.7.0	CONTROL OF SYSTEM OF PUMP OPERATION FOR CONSUMABLE HOT	WATER 12
	3.8. 0	CONTROL OF PUMPS AND REHEATING HEATERS ON THE HOT GLYCO	L SYSTEM 13
	3.9. 0	DPERATION AND PURPOSE OF OTHER ENGINE ROOM AND CONTROL CONSUMERS	. ROOM 13
	4. ELE	ECTRICAL CONSUMER DESCRIPTION	14
	4.1.0	CONDENSER SYSTEM (X2)	14
	4.2.	CONDENSER CIRCUIT PUMPS	15
	4.3.	PGW COOLING SYSTEM	16
	4.4.	WARM PGW TANK	17
	4.5.	WARM WATER TANKS	19
	4.6.	OIL COOLING CIRCUIT	20
II.	METHOD	OLOGY FOLLOWED IN THE DEVELOPMENT OF THE PROJECT	22
	1. DE	SCRIPTION OF PROJECT PHASES	22
	1.1.	STAGE 1: IDENTIFYING CONSUMERS	22
	1.2.	STAGE 2: SELECTION OF CONSUMER'S CIRCUIT BREAKERS	24
	1.3.	STAGE 3: SELECTION OF CONSUMER'S CONTACTORS	24
	1.4.	STAGE 4: SHORT CIRCUITS AND CABLES CONDITIONS' CALCULATION	NS 25
	1.5.	STAGE 5: SELECTION OF THE CABLES	31
	1.6.	STAGE 6: SELECTION OF THE TERMINALS	
	1.7.	STAGE 7: SUPPLY FOR THE VALVES AND CONTROL DEVICES	
	1.8.	STAGE 8: IDENTIFICATION OF VALVES, SENSORS, AND PROBES	
	1.9.	STAGE 9: SELECTION OF THE CONTROLLER AND ITS MODULES	33 3

1.10. STAGE 10: WIRING OF THE AC DRIVES OF THE MOTORS
1.11. STAGE 11: WIRING OF THE CONTROL SYSTEM TO THE PLC
1.12. STAGE 12: SELECTION OF PROTECTION FOR CONTROL WIRING
1.13. STAGE 13: SELECTION OF COILS AND CONTACTORS FOR THE CONTROL SYSTEM
1.14. STAGE 14: CHECK OUT PART LISTS AND CABLE OVERVIEW
1.15. STAGE 15: DISPOSITION OF THE CABINET
III. CONCLUSIONS
IV. BIBLIOGRAPHY

LIST OF FIGURES

Figure 1. Engine Room Layout	8
Figure 2. Condenser Tower	. 14
Figure 3. Condenser Spray Pump	. 14
Figure 4. Condensers' fans	. 14
Figure 5. Condenser Circuit's Pumps	. 15
Figure 6. Pump Hermetic Cam (r) 2/4	. 15
Figure 7. PGW Cooling System	. 16
Figure 8. Grundfos TP100-130/4	. 16
Figure 9.Grundfos TPE 100-310/2 A-F-A-BQQE-OX1	. 17
Figure 10. Warm PGW Tank	. 17
Figure 11. Grundfos TPE3 50-240-S A-F-A-BQQE	. 18
Figure 12. Warm Water Tanks	. 19
Figure 13. PUMP Grundfos TPE 40-270/2 S-A-F-A-BQQE-HDB	. 20
Figure 14. Oil Cooling Circuit	. 20
Figure 15. Grundfos TP 50-190/2 A-F-A-BQQE-HX1	. 21
Figure 16. Localization of the consumers (w/o WWT)	. 23

LIST OF TABLES

Table 1. Spray Pump's T.C	. 14
Table 2. Condensers' fan T.C.	. 14
Table 3. Condenser Water Heater's T.C.	. 15
Table 4. Condenser Circuit Pumps' T.C	. 15
Table 5. Pumps' 1-2 T.C.	. 16
Table 6. Pumps' 3-4 T.C.	. 17
Table 7. Pump's T.C	. 18
Table 8. Heater's T.C	. 18
Table 9. Pump's T.C	. 20
Table 10. Main Pump's T.C.	. 21
Table 11. Cooling Tower's Pump's T.C	. 21
Table 12. Cooling Tower's Fan's T.C.	. 21
Table 13. Load Calculations	. 25
Table 14. Voltage Drops Calculations	. 27
Table 15. Cable Impedance Calculations	. 28
Table 16. Cable and Protection Conditions' Calculations	. 29
Table 17. Short Circuit condition's Calculations	. 30
Table 18. Example of PGW Cooling System with the data we have been able to obtain until this	
moment	. 32

I. MEMORY

1. INTRODUCTION

Due to the good work of a Croatian meat company, it has seen in its annual numbers a profit, that in order to increase it, they need their meat production to increase as well. The Croatian company has its own facilities, which contain the necessary machinery to process the amount of meat they produce now a days. However, they have enough space to carry out a possible improvement and expansion of the machinery that would mean an increase in the production of their goods.

The company, with the resources currently available in its production plant, has reached its profit ceiling and since there is still room for improvement and greater profits, the company is preparing to acquire new machinery and redesign the current plant so that it can continue to increase its production.

Improving the facilities will allow them to find out how far they can increase their production, so that the offer and demand of their goods will reach the optimal point and not be limited by their own facilities.

It is for all these reasons, that in the following document it is defined the reconstruction and remodeling to be carried out in the industrial plant. Being more precise, of what the entire project would cover, in this thesis it will only be taken place the remodeling and design of a new electric cabinet for the engine room of the whole cooling plant.

The development of the project has to be carried out with the participation of diverse engineering fields. The coordination and communication between the different departments is crucial to speed up and facilitate the labor. In the present project, as it is worked by the point of view of the electrical engineering department, it is needed to know the requirements, in terms of new consumers and their dispositions, that the energy engineering department establish for the remodeling and expansion of the resources in the facilities. It is also recommendable to know the preferences of the automatic engineering department to elaborate the design which best fits with their programming technique.

This project involves the elaboration of an electrical cabinet that fulfills the functions of protection and control of the electrical installation of the engine room of the meat industry referred to at the beginning of the introduction, in accordance with the needs and preferences established as explained in the previous section, by the other sets of engineering. For this purpose, it will be carried out the selection of protection elements according to the currents demanded by the consumers, correct selection of the contactors, selection of the appropriate wiring to suit the necessary technical requirements, the correct connection of the wiring of the consumers with the controller, etc.

2. PROJECT ASSIGNMENT

As can be read in the introductory part of the project, in this project the current engine room of the refrigeration plant of a meat company will have to be remodeled practically in its entirety. There are several objectives to be met by the project to successfully achieve the reform for which the reform is carried out.

First, new motors and pumps will have to be added in order to expand the system to accommodate the increased production of goods. Without this extra equipment, it would not be possible to increase the number of goods produced, as the facilities prior to this project were already working at maximum capacity.

As expected, the acquisition of new and more powerful machinery means that for regulatory reasons, new motor and pump start-up equipment will have to be added, i.e., new Soft Starters and more AC-Drives will have to be implemented.

To be able to handle all this new machinery and new control equipment, the controller that the plant has before this project is obsolete to be able to manage the control tasks, so it will be necessary to incorporate a new PLC to replace the existing control system.

The wiring of the system is also inadequate for the new elements to be added and what they cause. New calculations will have to be carried out in terms of load, voltage drop, impedance calculation, cable and protection conditions, and short circuits. Thanks to the parameterization that will be obtained from these calculations, it will be possible to choose the cabling that will replace the current one, and that will better adapt to the new needs of the system.

Universidad del País Vasco BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Figure 1. Engine Room Layout

3. TECHNICAL DESCRIPTIONS

3.1. MAIN DIVIDER ON/OFF IN EMERGENCY

Switching on the distributor is done by switching on the main power switch -Q0. Shutdown (emergency) is performed by pressing the emergency button -S0, while reconnection after emergency switch-off is done by pulling out the emergency button -S0, lowering the main switch lever -Q0 to position 0, then raising / switching on again switch to position 1.

The 230VAC control circuit is switched on / off via the -Q01 circuit breaker. Managing 230VAC circuit is intended for individual light signaling elements and control circuits of individual plug-in relays, thermal relays and contactors. The 24VDC control circuit is switched on / off via circuit breaker -Q00. The control circuit driven by the rectifier -V0 is intended for power supply regulators, individual light signaling elements, control circuits of individual plug-ins relays and power supply to the frequency and voltage converter control segments. Steering on / off the circuit of the 24VDC control system of the electric motor actuators of the valve is performed via circuit breaker.

3.2. CONDENSING TOWER OPERATION CONTROL

Switching on the condensing towers' consumers is done by setting the switches in the ON state, provided that the protective elements of the fan inverter pumps are switched ON. The switches are located on the closet door. The main control element of capacitor towers is the -A1 controller (PLC) which, guided by a signal from the pressure and outside temperature sensors, controls the switching of the fans and pumps of the associated capacitors, as well as the operation of the frequency converters of the fan capacitors. Converters of frequencies -U112 and -U113 according to the signal from the main controller -A1 control the fan speed condenser (PID speed control according to the difference between the desired reference and the actual amount of pressure). The pressure reference is taken with respect to the outside temperature above the set temperature, outside air (floating reference) or as a constant reference if the actual outdoor temperature is below the set outdoor temperature limit. The pumps are switched on according to the three-position system regulation with hysteresis, ie according to the difference of temperature / pressure of ammonia in the condenser line ammonia.

If the condenser water temperature falls below the set value, condenser water heaters are switching ON. Additional condition for operation of the heater (with low water temperature) is also the activation of the level switch which is placed on the capacitor tower in the designated place and serves as a securing element off if the water in the condenser tower is at a critically low level (below the heaters themselves). By that, heaters are protected from possible overheating, ie power failure.

The operation signal is located on the cabinet door: operation signals / fan blockage and signals operation / blockage of pumps of associated condensers.

3.3. COOLING TOWER OPERATION CONTROL

Switching on the cooling tower elements is done by a switch. The switch is located on the door closet.

The main control element for controlling the operation of the cooling tower is the -A1 controller (PLC) which, guided by the temperature sensor signal at the inlet of the three-way valve, controls the switching and cooling tower pumps, and placing the three-way valve in the appropriate position (position A: heat dissipation from screw compressor oil to hot glycol tank – reheating TG tank; position B: heat dissipation from the oil of the screw compressors to the refrigeration tower – refrigeration oil cooler medium). The pump and fan are switched on according to the three-position control temperature hysteresis.

If the water temperature in the cooling tower falls below the set value, the cooling tower water heaters switch ON. Additional heater operating condition (with low water temperature) is also the switching of the level switch which is mounted on the cooling tower in the designated place and serves as an element of securing the shutdown if there is water in the cooling tower at a critically low level (below the heaters themselves). This protects the heaters from possible overheating, ie power failure. By turning on the water heater of the cooling tower can be connected additional heater pumps provide reheating of the pump in critical situations, for which there is a defined electrical a circle located in the divider. Reheating circuit in critical low temperature situations also it also includes reheating via a water pipe heater located in the open space. Heaters for water supply pipes on the cooling tower and both condenser towers are regulated by a common thermostat placed in an open space under the cable ducts near the cooling tower.

The operation signal is located in the cabinet door: the operation signals of the fan and the cooling pump tower.

3.4. AMMONIA CONTROL SYSTEM FOR PUMPS, SEPARATORS AND COLLECTORS

Switching on the -30 ° C separator is done with a PLC, which makes it possible to operate the pumps in 4 modes:

- 0 Turned OFF
- 1 Pump 1 ON
- 2 Pump 2 ON
- 3 Both pumps ON

The operating conditions of each separator pump are:

- a) Motor protection switch switched on (-Q41 / -Q42).
- b) Thermal protection of the pump switched on (-K411 / -K421).
- c) Lower level switch turned on (ammonia level in the separator above allowed lower levels).
- d) Differential pump pressure switched on.
- e) Activated operation order by at least one tunnel evaporator controller via relay.

If one pump is blocked, the operation is automatically switched to another (and vice versa), if the other pump is not blocked.

Upper level switch -SNH30.0 on the -30 ° C separator acts as a lock signal of screw compressor and serves to ensure that screw compressors do not operate if a critically high level of ammonia occurs in a separator -30 ° C. The upper level switch -SNH10.0 on the -10 ° C separator acts as

blocking for piston compressor and serves to ensure that piston compressors do not operate if critically high levels of ammonia in the separator -10 $^{\circ}$ C.

Automatic regulation of the operation of the elements on the separator includes the following elements and theirs tasks:

- a) regulator -A1 (PLC) controls the operation of the valve with electric motor drive + NH3SEP30-Y1 for ammonia inflow to separator -30 ° C, by monitoring ammonia level in a separator -30 ° C via a level probe + NH3SEP30-B1. Valve position control mode is continuous PI regulation. The device also monitors the condition of the upper level in the separator -30 ° C (blocks flow, if switch turns off) and valve open condition. Top level switch when the permissible value of the ammonia level is exceeded, the solenoid valve switches off (closes the valve), thus ensuring the stoppage of the flow of ammonia into the separator -30 ° C.
- b) regulator -A1 (PLC) controls the operation of the valve with electric motor drive + NH3SEP10-Y2 for ammonia inflow to -10 ° C separator, by monitoring ammonia level in a separator -10 ° C via a level probe + NH3SEP10-B2. Valve position control mode is continuous PI regulation. The device also monitors the condition of the upper level in the separator -10 ° C (blocks flow, if switch turns off) and valve open condition. Top level switch when the permissible value of the ammonia level is exceeded, electromagnetic valve switches off (closes the valve), which ensures that the flow of ammonia to the separator -10 ° C is stopped.
- c) regulator -A1 (PLC) controls the operation of the valve with electric motor drive for ammonia inflow to the collector, by monitoring the ammonia pressure in tunnel pipeline via pressure probe. The valve position control mode is continuous PI regulation. The device also monitors the level of the level in the collector via a level probe + NH3SEPTUN-B3.
- d) The electric motor drive of the valve is controlled manually, by switching switch, where state 1 of the switch corresponds to switching the valve to medium mode -10 ° C, while state 0 corresponds to the valve setting to -30 ° C mode.

3.5. REGULATION OF THE OPERATION OF THE PRIMARY AND SECONDARY COOLING CIRCUIT WITH GLYCOL

Switching on the primary glycol pumps is done with switches, where each switch positions represent the following:

- 0 Off
- 1 Manual operation of the pump (open regulation)
- 2 automatic pump operation (closed pump control is controlled by controller -A1);

The protection conditions for the operation of the primary glycol circuit pumps are: pump motor protection switch switched ON and integrated pump thermal relay. In manual operation the pumps work by directly switching the switch to position 2. In automatic pump mode (subject to conditions

protection) is controlled by the PLC. The measuring signal of the regulation is the temperature probe placed in the left side of the glycol tank, while the temperature probe on the right side of the tank is used for monitoring. Type regulation is three-position, with temperature hysteresis. The operation signal is located on the cabinet door: operation signals / blockage of the primary glycol pumps.

Glycol secondary pumps are switched on by switching on -SM312 / -SM322 power supply of frequency and voltage converter control circuits -U312 / -U322 that control the pump speed secondary. Inverters function as regulatory protection elements and signal both operation and interlock individual pumps. The inverters also control the rotation speed via a pressure signal on two pipelines (consumers of expeditors / consumers of the technological part) through continuous PID regulation (references and actual pressure values in the system). Via analog signals that the converters send to the inputs of the PLC, the monitoring of operation of the pumps secondary is enabled on central – monitoring system.

The pump operation signal is located on the cabinet door: operation signals / blocking of pumps primary glycol.

3.6. SCREW COMPRESSOR OIL COOLER PUMP CONTROL

Switching on the working pump of the oil cooler of the screw compressors is done with a switch, where switch positions correspond to the following states:

-	0 – Off
-	1 – Pump 1 On
-	2 – Pump 2 On

A pump in operation runs at the same time as at least one of the two screw compressors.

The protection conditions for the operation of the oil cooler pumps are: the motor protection switch of the pump switched on (-Q61 / -Q62) and switched on pump thermal relay (-K611 / -K621). If one pump is blocked, the operation is automatically switched to the other (and vice versa), if the other pump is not blocked.

The pump operation signal is located on the cabinet door: operation signals / blocking of oil cooling pumps.

3.7. CONTROL OF SYSTEM OF PUMP OPERATION FOR CONSUMABLE HOT WATER

The three-stage switching PTV pumps is done by switches.

The operating condition of the 1st stage pump is, in addition to the, the motor protection switched on and the signal relay of the drive of one of the screw compressors is switched on. The 1st stage pump is running when at least one of the screw compressors is in operation. The speed control of the pump is controlled by a frequency converter which located at the pump itself. Regulation is performed via a digital pressure and heat sensor, while on the inverter it can also monitor the temperature in the PTV stage 1.

The operating condition of the 2nd stage pump is, with a switch and the motor protection switched on and the signal relay of the drive of one of the compressors is switched on. The 2nd stage pump works when at least one of the compressors is in operation. The pump speed control is controlled by a frequency converter located on the pump itself. The control is performed via a digital pressure

and heat sensor.

The operating condition of the 3rd stage pump is, in addition to a switch, the motor protection switched on and the signal relay of the drive of one of the screw compressors is switched on. Pump speed is controled by frequency converter located on the pump itself. Regulation is performed via two Pt1000 probes placed in 2nd and 3rd stage tanks and guided by the temperature difference. If the temperature of water in the 2nd stage tank is higher than that in the 3rd stage tank the pump is running. It's also possible to monitor pressure and temperature on converter via digital sensor. The pump operation signal is located on the cabinet door: operation signal / blocking of pumps three-stage PTV.

3.8. CONTROL OF PUMPS AND REHEATING HEATERS ON THE HOT GLYCOL SYSTEM

Switching on the melting pump is done with 2 switches (hot glycol pipeline pump according to consumers of the forwarder / technological part).

The operating condition of the tank reheat pump is the motor protection switched on and switched-on signal relay request by at least one regulator on expedition / technological part that works with dissolving hot glycol. Automatic pump operation controlled by the PLC, via the signal of temperature probe located on the suction side pumps. The type of regulation is three-position, with temperature hysteresis. In manual operation, the pump works by fitting a separate terminal located in the terminal box -X24VDC.

The operating condition of the hot glycol piping pump to evaporators is switched on motor protection switch and switched-on relay signal request by at least one regulator on the expedition / technological part that works with dissolving hot glycol. The signal relay for dissolving can be bypassed as a condition of operation by switching on the isolating terminal located next to the relay dissolution signal. In this case, the pump only operates with basic switching conditions (motor safety switch and control switch). The regulation of speed of the pump is done by a frequency converter which controls the pump speed via a digital temperature and pressure sensor.

Switching on the reheating heater is done by switching on the switch located inside divider. The operation of the heaters is fully automatic, and they are controlled by the PLC via temperature probe located in the hot glycol tank. If the temperature drops below the set levels of the controller starts a certain degree of reheating (one, two or all three heaters).

The regulation is cascading with three temperature hysteresis.

In addition to monitoring the operation of the elements in the hot glycol system, the PLC also enables monitoring of analog (speed) and digital (operation signals/ blocking) pump operation signals on the secondary glycol circle.

Pump and heater operation signaling is located on the cabinet door: operation signals / blockage of pumps and switching on signal of heater for reheating.

3.9. OPERATION AND PURPOSE OF OTHER ENGINE ROOM AND CONTROL ROOM CONSUMERS

The divider also contains protective and switching elements for the booster pump station pressure, optional protection, start / stop, and associated operation signaling and blockage fan for air extraction in the control room (if installed), protection of non-condensing gas separator, electrical reserve, and power switch tunnel dryer distributor.

4. ELECTRICAL CONSUMER DESCRIPTION

4.1. CONDENSER SYSTEM (X2)

These condenser towers are used to condense the vapor that circulates through the condensing coil. To carry out this commitment, the condenser tower is provided with 1 pump, 2 fans, and 1 water heater to avoid the possibility of water freezing in the water basin in cold seasons.

Figure 2. Condenser Tower

4.1.1. SPRAY PUMP

Figure 3. Condenser Spray Pump

Р	5,5 KW
V	3x400 V
I	11,3 A

Table 1. Spray Pump's T.C.

4.1.2. FAN (X2)

The purpose of the first axial fan is to draw outside cold air to the condensing coil to help the spray system to cool the vapor going into the coil. The second of the fans is an axial fan which extracts to the outside the warm saturated air which comes from the drift eliminator. The 2 fans are identical, so we are just going to show the picture of one of them and its technical characteristics.

Р	5'5 KW
V	3x400 V
I	11,3 A

Table 2. Condensers' fan T.C.

Figure 4. Condensers' fans

Universidad del País Vasco BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

4.1.3. WATER HEATER

The main task of this heater is to prevent the water that is cooled in the water basin from freezing, what could damage the pump in case of recirculate ice fragments.

Photography not found

Р	8 KW
V	230 V
I	34.8 A

Table 3. Condenser Water Heater's T.C.

4.2. CONDENSER CIRCUIT PUMPS

These 2 pumps, that they are identical, they are situated under the NH3 -30°C tank. The pumps have the characteristic that they are strew pumps, so they can compress the liquid inside them and pump it easier when it is too dense.

Figure 5. Condenser Circuit's Pumps

Figure 6. Pump Hermetic Cam (r) 2/4

Motor	AGX 4.5
Р	4.5 KW
V	3 x 400 V
I	10.4 A

Table 4. Condenser Circuit Pumps' T.C.

4.3. PGW COOLING SYSTEM

The PGW cooling system has 2 commitments. The first one is to pump this coolant to the room where the goods are manipulated. For that task we have 2 electric motors/pumps (P1, P2). The second task of the system is to send refrigerant to the room where the goods are stored. In this case the electric motors/tasks needed are larger (P3, P4) than the used for the first task.

4.3.1. PUMPS 1-2

They use soft starters for the motor starting. Soft Starter is used when the load is very big since the beginning, and it will ask for high current. That is why it is used a soft starter, to control those current peaks, starting slower (littler by little) the motor until it reaches its nominal speed.

Figure 8. Grundfos TP100-130/4

Р	4 KW
V	3 x 380-420D
Ι	7,9-8,15 A
f.d.p.	0,8

Table 5. Pumps' 1-2 T.C.

4.3.2. PUMPS 3-4

They use AC drives for the motor starting and regulation. AC drive is used in a similiar way as the soft starter. We can control the speed of the motor varying the output frecuency we send to the motor. Because the voltage is varied in the process of changing the speed/frecuency, the startup current is also controled.

Figure 9.Grundfos TPE 100-310/2 A-F-A-BQQE-OX1

Р	15 KW
V	3 x 380-480 V
Ι	30.0-26.0 A
f.d.p.	0.91-0.86

Table 6. Pumps' 3-4 T.C.

4.4. WARM PGW TANK

The Warm PGW Tank is formed by 2 motors which have installed an AC-Drive on them. It is also formed by 6 heaters as it is shown in the following picture.

Figure 10. Warm PGW Tank

4.4.1. PUMP (X2)

Р	2.2 KW
V	3 x 380-500 V
I	4.35-3.55 A
f.d.p.	0.91-0.85

Figure 11. Grundfos TPE3 50-240-S A-F-A-BQQE

Table 7. Pump's T.C.

4.4.2. HEATER (X6)

Photography	not found
-------------	-----------

Р	2 KW
V	230 V
I	9,0 A

Table 8. Heater's T.C.

4.5. WARM WATER TANKS

The Warm Water Tank circuit is composed by 3 identical pumps that are located under of each tank. Each pump serves for each stage of the warm water.

Figure 12. Warm Water Tanks

4.5.1. PUMP (X3)

This are 3 identical pumps which have an AC Drive installed in themselves soy they can regulate the speed of their rotational movement.

Р	1.5 KW
V	3 x 380-500 V
I	2.9-2.4 A
f.d.p.	0.92-0.85

Figure 13. PUMP Grundfos TPE 40-270/2 S-A-F-A-BQQE-HDB

Table 9. Pump's T.C.

4.6. OIL COOLING CIRCUIT

This Circuit is formed by 2 pumps that are in charge of move the oil, and it is also formed by a little cooling tower which includes a pump and a fan.

4.6.1. MAIN PUMP (X2)

This pump works directly connected on line. Its power demand is so low that it allows us to connect t directly on line independently of the current peaks that may appear.

Р	1.5 KW
V	1 x 220-230/240 V
I	8,9-9,9 A
f.d.p.	0.98/0.99

Figure 15. Grundfos TP 50-190/2 A-F-A-BQQE-HX1

Table 10. Main Pump's T.C.

4.6.2. COOLING TOWER'S PUMP

This is a direct on line pump due to his low current demand, in deed is the consumer with the lowest current demand.

Photography not found

Р	0.25 KW
V	3 x 400 V
Ι	0.80 A
f.d.p.	0.7

Table 11. Cooling Tower's Pump's T.C.

4.6.3. COOLING TOWER'S FAN

This motor, as the same as the cooling tower's pump, it is a direct on line motor. Although it has higher current and power demand than the pump before, it is low enough to endure the current peaks when starting directly on line the motor.

Photography not found

Р	2.2 KW
V	3 x 400 V
Ι	5.0 A
f.d.p.	0.81

Table 12. Cooling Tower's Fan's T.C.

II. METHODOLOGY FOLLOWED IN THE DEVELOPMENT OF THE PROJECT

This section will describe the tasks and steps that have been followed to carry out this project. The necessary calculations will be clearly explained and developed in the corresponding section.

The first part of this section will focus on the explanation of each step that has been followed to carry out the development of the project.

In the second part, the time required to carry out each of the tasks related to the project will be graphically visualized by means of the Gantt diagram.

1. DESCRIPTION OF PROJECT PHASES

1.1. STAGE 1: IDENTIFYING CONSUMERS

In the first stage of the development of the project, the purpose was to identify the consumers that make up the machine room of the meat company's refrigeration plant. To this end, the plans of the machine room were carefully and closely studied, highlighting those energy-consuming elements to be considered in the design of the electrical protection and control cabinet. Once the consumers of the system have been located, they are grouped in groups, in such a way that we can work in blocks. These groups are the following: Condenser system (x2), Condenser circuit pumps, PGW cooling system, Warm PGW tank, Warm water tanks and Oil cooling circuit.

After grouping and locating the consumers, we will identify the manufacturer and model of the consumers used in the machine room. In case the department in charge of selecting the devices and constituent elements of the machine room does not know the technical characteristics of the consumers, it will be necessary to go to the manufacturer's website to obtain the data sheet of the consumers and thus be able to tabulate the technical characteristics of each one of them.

The result of this section is what can be found in section 4 of chapter I Memory.

Universidad Euskal Herriko del País Vasco Unibertsitatea BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Figure 16. Localization of the consumers (w/o WWT)

1.2. STAGE 2: SELECTION OF CONSUMER'S CIRCUIT BREAKERS

Once the technical characteristics of the consumers are known, we move on to the second stage of the project, which is none other than the selection of the circuit breakers for the consumers. To carry out this selection we must take into account specifically the current demand of the consumers. The objective is to find a circuit breaker that, in addition to being suitable for the number of phases of the consumer, the rated current that it allows to circulate is just above the current demanded by the consumer.

To carry out this selection of protection elements we have used the catalog of the manufacturer EATON, that is why and for a greater homogenization of the electrical cabinet we have tried to respect and take the circuit breakers of the same family, the PKZMO. This last one is something totally optional, but it makes that the cabinet looks better in its interior. At the same time, it is also optional that these circuit breakers have, in case of single phase, 2 NO, and in case of three phase, 4 NO, so that the remaining one after having connected the phases can be connected to a possible monitoring of the protection system.

For this particular project, the only models that are not of the PKZMO family are those that protect the consumers that are connected directly on line, for these cases the FAZs have been chosen.

When choosing these circuit breakers, it is important to know how to choose the maximum time that can let an overcurrent flow, since the moment of connecting the consumers an over current demand will be registered, so without being a fault, the circuit breaker has to be cautious to let this current flow for a maximum period of time. If this time is exceeded, the circuit breaker will disconnect the consumer from the grid thinking that a fault has occurred. This maximum period of time of current flow is represented by the first letters of the alphabet, A, B, C, D, and the most used ones as it has been in this project, are the circuit breakers of type B and C.

1.3. STAGE 3: SELECTION OF CONSUMER'S CONTACTORS

For this third stage, similar to what happened in the previous section, we will have to look at the technical characteristics of the consumers, but instead of looking at the current demanded by the consumers, this time we will take into account the power demanded by the consumers. From a certain quantity of power already established by norm, the direct connection to the grid of the consumers who demand a higher power than the mentioned one is not allowed. This is because in case of a direct connection to the grid there will be an over current demand that could unbalance the power supply system and in turn, due to its high amperage, it could also damage the elements connected to that consumer including itself.

For motors that do not allow a direct connection to the power buses, because otherwise it would be quickly solved with the use of NO simple contactors connected to a coil that would give them the order to open and close the circuit, we have used 2 different variants in the project. The first alternative that has been used in the project is the addition of AC-Drives to those motors or pumps that are interesting to regulate their speed in the case they already do not come with AC-Drives connected to themselves.

The second solution is the use of a Soft Starter. This is helpful to avoid the mentioned overcurrent when a consumer is started and there is no interest in regulating the speed of the consumer.

1.4. STAGE 4: SHORT CIRCUITS AND CABLES CONDITIONS' CALCULATIONS

After selecting the consumer, the circuit breaker, and the contactor, what will be needed is the cable that connects these elements together and connects them also to the mains. For this, in this stage, by means of some formulas we are going to study the load, the voltage drop that occurs in the cable, the impedance of the cable, cable and protection, and short circuit.

1.4.1. THE LOAD

What is studied in this section is the total current that will flow through the power buses, in order words, it will be calculated the current that the consumers demand to each power buses. This way it can be determined the main power circuit breaker's dimension and it will be also helpful to determine the cross-section of the main buses. What it has to be considered in order to obtain a real value is that all the consumers may not work at the same time, because while some of them may be working, there can be other consumers' effects are the opposite, so that is why the maybe not work at the same time. So, calculating the main load it is not only a question of summing up all the currents of the consumers, it also has a logistical part which make you consider the worst situation possible. Let see this with our project's calculation.

DT advaca	Active power [W]	Current [A]				
DT adress	L1	L2	L3	L1	L2	L3
-M111	2218,2	2218,2	2218,2	11,3	11,3	11,3
-M112	2557,4	2557,4	2557,4	11,3	11,3	11,3
-M113	2557,4	2557,4	2557,4	11,3	11,3	11,3
-WH111	8000,0	0,0	0,0	34,8	0,0	0,0
-M121	2218,2	2218,2	2218,2	11,3	11,3	11,3
-M122	2557,4	2557,4	2557,4	11,3	11,3	11,3
-M123	2557,4	2557,4	2557,4	11,3	11,3	11,3
-WH121	0,0	8000,0	0,0	0,0	34,8	0,0
-M21	2041,5	2041,5	2041,5	10,4	10,4	10,4
-M22	2041,5	2041,5	2041,5	10,4	10,4	10,4
-M311	1570,4	1570,4	1570,4	8	8	8
-M312	5889,0	5889,0	5889,0	30	30	30
-M321	1570,4	1570,4	1570,4	8	8	8
-M322	5889,0	5889,0	5889,0	30	30	30
-M41	853,9	853,9	853 <i>,</i> 9	4,4	4,4	4,4
-M42	853,9	853,9	853 <i>,</i> 9	4,4	4,4	4,4
	4000	0	0	17,4	0	0
-WH41	0	4000	0	0	17,4	0
	0	0	4000	0	0	17,4
-M51	569,3	569,3	569,3	2,9	2,9	2,9
-M52	569,3	569,3	569,3	2,9	2,9	2,9
-M53	569,3	569,3	569,3	2,9	2,9	2,9
-M61	0	0	2231,5	0	0	9,9
-M62	0	0	2231,5	0	0	9,9
-M63	196,3	196,3	196,3	0,8	0,8	0,8
-M64	981,5	981,5	981,5	5	5	5
	26871,4	26871,4	31334,3	126,8	126,8	146,6

Table 13. Load Calculations

As it can be seen in the "Load Calculations" table, the maximum amount of current will be carried by the L3. It can also be pointed out that the load is not perfectly symmetrical, but it depends on what consumers are running. For example, the yellow squares are not considered to calculate the main load for each power line, because having those heaters working would mean there would be some other consumers that would not be working. Anyways, when it comes to select the main circuit breaker, the quantity calculated is only the 70-80% of the endurance of the main circuit breaker, just to consider new possible consumers, or that it has been connected some consumers while they would not be working simultaneously.

1.4.2. VOLTAGE DROP

The conductors that make up the system have impedances that may affect to the voltage that reaches the consumers. The impedance of the cables is low, but it has always to be considered. When the current flows through the cable it appears a voltage drop from the beginning of the cable to the circuit consumer, so it has to try to maintain the same rated voltage in the beginning of the cable until the consumer.

As it may seem logical, there are some rules which determine the maximum voltage drop permitted in the path of each cable throughout the circuit. The value that it has to be considered in this project it is a maximum voltage-drop of the 5%. This voltage drop is calculated considering steadystate conditions. In the table below are shown the voltage drop calculations regarding this project.

DT adress	Voltage [V]	Active power[kW]	Current [A]	Length [m]	Total cross section [mm ²]	Voltage drop on cable [%]	Total voltage drop [%]
	400	85,1	146,6	120	120	0,933	0,933
-M111	400	6,7	11,3	80	4,0	1,459	2,392
-M112	400	7,7	11,3	80	4,0	1,683	2,616
-M113	400	7,7	11,3	80	4,0	1,683	2,616
-WH111	230	8,0	34,8	80	16	2,653	3,586
-M121	400	6,7	11,3	80	4	1,459	2,392
-M122	400	7,7	11,3	80	4	1,683	2,616
-M123	400	7,7	11,3	80	4	1,683	2,616
-WH121	230	8,0	34,8	80	16	2,653	3,586
-M21	400	6,1	10,4	15	1,5	0,672	1,605
-M22	400	6,1	10,4	15	1,5	0,672	1,605
-M312	400	17,7	30,0	45	6	1,453	2,386
-M322	400	17,7	30,0	45	6	1,453	2,386
-M311	400	4,7	8,0	40	1,5	1,378	2,311
-M321	400	4,7	8,0	40	1,5	1,378	2,311
-M41	400	2,6	4,4	40	1,5	0,749	1,682
-M42	400	2,6	4,4	40	1,5	0,749	1,682
	230	4,0	17,4	40	4	2,653	3,586
-WH41	230	4,0	17,4	40	4	2,653	3,586
	230	4,0	17,4	40	4	2,653	3,586
-M51	400	1,7	2,9	65	1,5	0,811	1,744
-M52	400	1,7	2,9	55	1,5	0,687	1,62

-M53	400	1,7	2,9	50	1,5	0,624	1,557
-M61	230	2,2	9,9	60	4	2,22	3,153
-M62	230	2,2	9,9	60	4	2,22	3,153
-M63	400	0,6	0,8	80	1,5	0,344	1,277
-M64	400	2,9	5,0	80	2,5	1,033	1,966

Table 14. Voltage Drops Calculations

To obtain the voltage drop % of each cable it has applied a formula that can be seen in any manufacture manual, but what it is important to consider is that the total voltage drop % is the one that starts in the LV part of the transformer until it reaches the consumer. So, the total voltage drop has to be the addition of the main cable's voltage drop and each consumer's cable voltage drop. To minimize the voltage drop there are several parameters that can be changed. The current and the length are two parameters that they can be changed to minimize the voltage drop, but at the same time it has not much change, because the current is what the consumer needs, and the length of the cable is supposed to be as short as possible to be a cheaper installation and have less voltage drop. After discarding those parameters, the characteristic that it will be changed is the cross-section of the cable. The larger the section, the smaller it will be the voltage drop. Theoretically, it shouldn't be a cable with a section largen than 6 mm², that is the maximum the terminals in the cabinet allow, but even though, the heaters' cables need bigger cables, so to maintain a voltage drop below the danger zone (4%-5%) not only it was necessary to increase the cross-section of the main cables from 75 mm² to 120 mm².

1.4.3. IMPEDANCE CALCULATION

In this part of the calculations, it is calculated the impedance of the cable circuit from the LV part of the transformer to the consumer. These calculations are required to obtain the calculations of the maximum and minimum short circuit currents that it may appear. To fulfill the following table it has to consult the data sheet of the cable manufacture in order to obtain *rcable* and <u>I_{cable}</u>

DT adress	Length [m]	rcable [mΩ/m]	I _{cable} [mH/km]	Rk [mΩ/phase]	Xk [mΩ/phase]	R [mΩ/phase]	X [mΩ/phase]	Z [mΩ/phase]
	120	0,15	0,256	18,36	9,65	18,36	9,65	20,74
-M111	80	4,61	0,34	368,8	8,54	387,16	18,19	387,59
-M112	80	4,61	0	368,8	0,00	387,16	9,65	387,28
-M113	80	4,61	0	368,8	0,00	387,16	9,65	387,28
-WH111	80	1,15	0,262	92	6,58	110,36	16,23	111,55
-M121	80	4,61	0,34	368,8	8,54	387,16	18,19	387,59
-M122	80	4,61	0	368,8	0,00	387,16	9,65	387,28
-M123	80	4,61	0	368,8	0,00	387,16	9,65	387,28
-WH121	80	1,15	0,262	92	6,58	110,36	16,23	111,55
-M21	15	12,1	0,366	181,5	1,72	199,86	11,37	200,18
-M22	15	12,1	0,366	181,5	1,72	199,86	11,37	200,18
-M312	45	3,08	0	138,6	0,00	156,96	9,65	157,26
-M322	45	3,08	0	138,6	0,00	156,96	9,65	157,26

-M311	40	12,1	0,366	484	4,60	502,36	14,24	502,56
-M321	40	12,1	0,366	484	4,60	502,36	14,24	502,56
-M41	40	12,1	0,366	484	4,60	502,36	14,24	502,56
-M42	40	12,1	0,366	484	4,60	502,36	14,24	502,56
	40	4,61	0,348	184,4	4,37	202,76	14,02	203,24
-WH41	40	4,61	0,348	184,4	4,37	202,76	14,02	203,24
	40	4,61	0,348	184,4	4,37	202,76	14,02	203,24
-M51	65	12,1	0,366	786,5	7,47	804,86	17,12	805,04
-M52	55	12,1	0,366	665,5	6,32	683,86	15,97	684,05
-M53	50	12,1	0,366	605	5,75	623,36	15,39	623,55
-M61	60	4,61	0,316	276,6	5,95	294,96	15,60	295,37
-M62	60	4,61	0,316	276,6	5,95	294,96	15,60	295,37
-M63	80	12,1	0,366	968	9,19	986,36	18,84	986,54
-M64	80	7,41	0,366	592,8	9,19	611,16	18,84	611,45

Table 15. Cable Impedance Calculations.

What it has a lot of influence in these cable impedance calculations is the length of each cable.

1.4.4. CABLE AND PROTECTION CONDITIONS' CALCULATIONS

The following calculations are necessary to fulfill some of the norms that all electrical project design has to suit regarding the consumer's nominal current, the circuit breaker that has been selected, and the endurance of the selected cable. Once the previously devices are selected, it is needed to check out their data sheets to fill the following table, because after some easy multiplications there are 2 conditions that must be fulfill.

The first condition that must be respected it that the nominal current of the consumer has to be lower than the protective element's nominal current and lower than the cable's nominal current endurance.

The second norm says that the protective element's breaking current must be lower than the cable's nominal current endurance times 1.45.

The calculations regarding this section of the actual project are the next ones:

			Protective		Total	Cable	e current		
DT adress	Current Ip [A]	Protective element nom. current In [A]	element breaking current I2 [A]	Length [m]	cross section [mm ²]	Nominal Iz [A]	30min max 1.45*Iz [A]	Condition 1 Ip ≤ In ≤ Iz	Condition 2 I2 ≤ 1.45*Iz
	146,6	200	250,0	120	120	318	461,1	YES	YES
-M111	11,3	12	15	80	4	25	36,3	YES	YES
-M112	11,3	12	15	80	4	26	37,7	YES	YES
-M113	11,3	12	15	80	4	26	37,7	YES	YES
- WH111	34,8	40	50	80	16	79	114,6	YES	YES
-M121	11,3	12	15	80	4	25	36,3	YES	YES
-M122	11,3	12	15	80	4	26	37,7	YES	YES
-M123	11,3	12	15	80	4	26	37,7	YES	YES

- WH121	34,8	40	50	80	16	79	114,6	YES	YES
-M21	10,4	12	15	15	1,5	19,5	28,3	YES	YES
-M22	10,4	12	15	15	1,5	19,5	28,3	YES	YES
-M312	30,0	32	40	45	6	34	49,3	YES	YES
-M322	30,0	32	40	45	6	34	49,3	YES	YES
-M311	8,0	10	12,5	40	1,5	19,5	28,3	YES	YES
-M321	8,0	10	12,5	40	1,5	19,5	28,3	YES	YES
-M41	4,4	6,3	7,9	40	1,5	19,5	28,3	YES	YES
-M42	4,4	6,3	7,9	40	1,5	19,5	28,3	YES	YES
	17,4	20	25	40	4	34	49,3	YES	YES
-WH41	17,4	20	25	40	4	34	49,3	YES	YES
	17,4	20	25	40	4	34	49,3	YES	YES
-M51	2,9	4	5	65	1,5	19,5	28,3	YES	YES
-M52	2,9	4	5	55	1,5	19,5	28,3	YES	YES
-M53	2,9	4	5	50	1,5	19,5	28,3	YES	YES
-M61	9,9	10	12,5	60	4	34	49,3	YES	YES
-M62	9,9	10	12,5	60	4	34	49,3	YES	YES
-M63	0,8	1	1,3	80	1,5	19,5	28,3	YES	YES
-M64	5,0	6,3	7,9	80	2,5	19,5	28,3	YES	YES

Table 16. Cable and Protection Conditions' Calculations

1.4.5. MAXIMUM AND MINIMUM SHORT CIRCUIT CONDITIONS' CALCULATIONS

In this section it has to be calculated the maximum short circuit that it can happen in our project's circuit, and also the minimum short circuit current that it can occur.

The circuit that composes the project it is formed by 3 phases. What it has to be found is what would be the worst scenario the circuit breaker may have to face. The condition related to these calculations mentioned previously is that the maximum short circuit current must be lower than the protective element's short circuit breaking current (Icu).

As the project is a 3-phase circuit, the maximum short circuit current than can appear is the one caused by a 3-phase short circuit fault. To calculate the value of this current it has to be previously calculated (1.4.3. IMPEDANCE CALCULATION) the impedance of the cables, because it is where the fault is going to circulate to close the circuit caused by the fault.

The second condition that has to be fulfilled is that the protective element's max breaking current (Irm) must be lower than the minimum short circuit current. The protection device should be able to operate in a maximum time to ensure people and circuit safety, for all short circuit current or fault current that may occur. To check that behavior, calculation of minimal short-circuit current or fault current is mandatory. Also, the elimination of the minimum short circuit current has to be done in less than 5 seconds to be compatible with the thermal constraints of the circuit conductors, The minimum short circuit current that may appear on this project is the one caused by a single-phase fault with the earth. Applying their corresponding formulas, both norms must be fulfilled.

DT adress	Voltage [V]	Protective element max breaking current (Short-Circuit Realease) <i>Irm</i> [A]	Protective element short circuit breaking current (Rated short-circuit breaking capacity) <i>Icu</i> [A]	Total cross section [mm ²]	3p s.c. current ISCmax [A]	Min. 1p s.c. current <i>Ik1min</i> [A]	Max allowable duration of s.c. <i>T (s)</i>	Condition 1: ISCmax < Icu	Condition 2: Irm < min(lk1, lk2)
	400	2000	50000	120	7042,99	4435,93	3,84	YES	YES
-M111	400	186	50000	4	655,42	237,37	0,49	YES	YES
-M112	400	186	50000	4	655,94	237,55	0,49	YES	YES
-M113	400	186	50000	4	655,94	237,55	0,49	YES	YES
-WH111	230	400	15000	16	1309,49	824,77	1,97	YES	YES
-M121	400	186	50000	4	655,42	237,37	0,49	YES	YES
-M122	400	186	50000	4	655,94	237,55	0,49	YES	YES
-M123	400	186	50000	4	655,94	237,55	0,49	YES	YES
-WH121	230	400	15000	16	1309,49	824,77	1,97	YES	YES
-M21	400	186	50000	1,5	1269,01	459,58	0,02	YES	YES
-M22	400	186	50000	1,5	1269,01	459,58	0,02	YES	YES
-M312	400	496	50000	6	1615,42	585,03	0,18	YES	YES
-M322	400	496	50000	6	1615,42	585,03	0,18	YES	YES
-M311	400	155	150000	1,5	505,48	183,06	0,12	YES	YES
-M321	400	155	150000	1,5	505,48	183,06	0,12	YES	YES
-M41	400	97,7	150000	1,5	505,48	183,06	0,12	YES	YES
-M42	400	97,7	150000	1,5	505,48	183,06	0,12	YES	YES
	230	200	15000	4	718,69	452,66	0,41	YES	YES
-WH41	230	200	15000	4	718,69	452,66	0,41	YES	YES
	230	200	15000	4	718,69	452,66	0,41	YES	YES
-M51	400	62	150000	1,5	315,55	114,28	0,30	YES	YES
-M52	400	62	150000	1,5	371,37	134,49	0,22	YES	YES
-M53	400	62	150000	1,5	407,40	147,54	0,18	YES	YES
-M61	230	100	15000	4	494,53	311,47	0,87	YES	YES
-M62	230	100	15000	4	494,53	311,47	0,87	YES	YES
-M63	400	15,5	150000	1,5	257,50	93,26	0,45	YES	YES
-M64	400	97,7	150000	2,5	415,46	150,46	0,48	YES	YES

Table 17. Short Circuit condition's Calculations

What these last calculations also says is that the cross-sections of the cables are relevant in term of short circuit currents' permissibility, because in contrast to the case of the voltage drop, the bigger the cross-section is, the larger the short circuit current will be, it has less impedance. So, it is logical to think that a bigger cross section may benefit the project because the voltage drop will always be lower while the consumers are working, but in the other side, if a short circuit occurs it would have worse consequences.

1.5. STAGE 5: SELECTION OF THE CABLES

Once the calculations explained in the previous stage have been made and the conditions required by the cables to fulfill the regulations in the Voltage Drop, Cable and Protection, and Short Circuit sections have been successfully satisfied, the only difficulty that the choice of cables will present from this moment on is mainly to know if the cable needs to have a screen or not.

The wiring system will be divided into 3 main groups. The first one will deal with the Main Supply wiring, the second one will deal with the wiring corresponding to the consumers, and the third group will be the one corresponding to the control system and values.

The Main Supply wiring is the simplest since it only covers the power input from the transformer to our cabinet. This wiring is made up of 4 cables, the 3 power buses and PEN, which will later be separated into PE and N. This wiring will be without screen and will have the measures established in the calculations of the previous section.

In the second group, the wiring that goes from the cabinet to the consumers, will have the measures established in the previous stage and will be of the NYY or NYCY type. The difference when choosing between one or the other is based on the need for shielding in the wiring. In the case where a shield is needed, it will be because the consumer is connected to an AC-Drive outside the motor itself (the AC-Drive is not incorporated). NYCY type wiring will be used for these cables. If no shielding is required, NYY type wiring will be used.

And finally, for the group of cables referring to the control system and valves, it is necessary to be very meticulous with the characteristics of the current that they transport, to know if it is transcendental or not that the information that they transport is sensitive and important that not even the smallest variations in the transported current are produced. In case you want to protect these cables with a shield, you will use LiYCY type cables, and for cables that do not need this additional protection for the transport of current, you will use OB-500 type cables.

To sum up this stage, it is key to know the purpose and destination of the cable to finally choose it correctly.

Universidad	Euskal Herriko						
del País Vasco	Unibertsitatea						

PROPYLEN-GLYCOL-WATER									
PUMPS 1-2. GRUNDFOS TP100-									
130/4 (x2)		CIRCUIT BREAKER		CONTACTOR		Cable			
P 4 KW		PKZM0-10/AK		(Soft Starter) DS7-340SX009N0-N		Power NYY 4x1,5			
V	3 x 380-420D	P (kW)	4	P (Kw)	4	4 Construction			
I	7,9-8,15 A	lu=le (A)	10	le (A)	9	Ext. Diameter (mm)	12,0-16,0		
f.d.p.	0,8	Ir (A)	6,3-10	Uc (V)	24	Insulation Thickness (mm)	0,8		
		Irm (A)	155	Us (V)	24	Short Circuit Current 1s (A)	170		
		Ue (V AC)	690	Uln (V)	200-480	Cu Weight (kg/km)	57,6		
		Uimp (V)	6000	Ue (V)	400	Cable Weight (kg/km)	220		
		Heat Loss (W)	6,48						
PUMPS 3-4. GRUNDFOS TPE 100-				1					
310/2 A-F-A-	BQQE-OX1 <mark>(x2)</mark>	CIRCUIT BREAKER		CONTACTOR		CONTACTOR (OPTIONAL)		CABLE	
Р	15 KW	5 KW PKZMO-32/AK		(AC Drive) ACS880-01-032A-3		(Direct On Line) DILM32-10 (24V 50Hz)		Power NYCY 4x6/6	
V	3 x 380-480 V	P (kW)	15	Frame Size	R3	P (kW)	15	Construction	Re
I	30.0-26.0 A	lu=le (A)	32	$I_n(A)$	32	le (A)	32	Diameter (mm)	2,9
f.d.p.	0.91-0.86	Ir (A)	25-32	Imax(A)	42	Heat Loss (W)	6,6	Ext. Diameter (mm)	17-21
		Irm (A)	496	P_n (KW)	15			Insulation Thickness (mm)	1
		Ue (V AC)	690	$I_{Ld}(A)$	30			Seath Thickness (mm)	1,8
		Uimp (V)	6000	$P_{Ld}(KW)$	15			Short Circuit Current 1s (A)	690
		Heat Loss (W)	9,56	$I_{Hd}\left(A ight)$	25			Cu Weight (kg/km)	297
				$P_{Hd}(KW)$	11			Cable Weight (kg/km)	580
				Noise level (dB(A))	60				
				Heat dissipation					
				(W)	457				
				Air flow (m3/h)	134				

Table 18. Example of PGW Cooling System with the data we have been able to obtain until this moment

1.6. STAGE 6: SELECTION OF THE TERMINALS

In this stage, which is arguably the shortest of all the stages, the task that has to be done is the selection of the terminals that are set on the cabinet which are used as the annex between the end of the cable inside the cabinet, and the start of the cable that goes to the consumer. The selection of this terminals is based on the cross-section area of the cables that reach the consumers. The placement of the terminals is intended to be done by consumer groups, and they are place together inside the cabinet. These terminals will be also located on the cables regarding the connection to the PLC, and as it has been told before, the selection of these terminals will depend directly of the cross-section of the control cables.

1.7. STAGE 7: SUPPLY FOR THE VALVES AND CONTROL DEVICES

In order to use the control elements, which in the case of this project will be a PLC, and for the correct operation of the valves, it will be necessary to connect a power converter with 24VDC output. The power system of the grid is 400VAC (230VAC phase-neutral) and the control equipment and valves cannot be connected directly to the power buses. In the case of this particular project, it has been decided to make use of 2 converters that have been connected to bus 3 (L3) to obtain as output of each one of them 2 additional 24VDC lines that will serve as supply for the protection equipment and valves independently.

1.8. STAGE 8: IDENTIFICATION OF VALVES, SENSORS, AND PROBES

As in a similar way to the stage 1, the purpose of this stage is to identify in the schematics the placement of the valves, probes, and sensors that have to be powered and controlled by the system. Since this assignment comes after having identify the consumers, it easier to find and place these devices in the schematics because it is more intuitive which consumer may need a sensor or a probe, or which system may need a regulation via a valve. Once we have identified the valves, sensors, and probes it will be useful to obtain their data sheets to acquire the knowledge needed regarding their supply needs and control connections terminals.

1.9. STAGE 9: SELECTION OF THE CONTROLLER AND ITS MODULES

The next stage, which begins the control section, has been the most complex of this project. When it came to the control of the engine room, the element chosen as controller was a Siemens S7-1500 PLC. This device is going to be the brain that monitors the states and controls, at the same time, the different consumers of the system taking into account the information that arrives to its inputs.

As for the modules that will accompany the CPU will depend on the number of consumers, valves, sensors and probes to be controlled.

To start with, a single DI module will be needed. The module in question will have 32 inputs which will be used to accomplish different tasks. On the one hand, it will be used for monitoring the states of the circuit breakers of the consumers that are connected directly on line or are

connected to soft starters. Those connected to an AC-Drive will not be necessary as the data transfer of these will be done by means of an etherline cable. The DI module also monitors the status of the valves in the -30 degree and -10 degree ammonia separators, one valve for each system. Finally, the DI module is in charge of receiving the ammonia level status in the separator tanks, monitoring the maximum and minimum ammonia level status in each of them.

As far as the DQ modules are concerned, only one module with 8 outputs will be required. These outputs will be used to make the connection to the grid of the consumers that are connected directly on line or by means of a soft starter as a start-up procedure.

For the control system we will also need an analog input module that will allow us to monitor and acquire the status of different probes located in different systems that make up the engine room. These probes are temperature sensors and level sensors that deliver an analog response with values between 4mA and 20mA.

As an additional analog control element, an AI/AQ module will be used in which 4 of its pins will be connected to 2 valves, 2 pins for each valve, which have the function of opening/closing the valves in the -30 degrees and -10 degrees ammonia separators to a greater or lesser extent in a progressive and desired manner.

The last module that will be necessary to add to the control system is the scalance module, by means of which it is possible to monitor, receive and act on the consumers that have an AC-Drive incorporated in themselves or that one is used for their control. This is possible because, as mentioned earlier in the paper, the AC-Drives are connected to the PLC via etherline cables.

1.10. STAGE 10: WIRING OF THE AC DRIVES OF THE MOTORS

When approaching this stage, it is important to differentiate between 2 groups.

The first one deals with stand-alone AC-Drives, these are those that are part of the control system of some of the consumers that do not have AC-Drives included in themselves. For this, what is done is a first selection of the model, of the company from which you want to acquire the AC-Drive, which in this case has opted for the AC-Drive of ABB. Once the AC-Drive has been selected, the user's manual is obtained, and then we go more specifically to the wiring section. Next, go the analogical inputs and relays output to know which pins of the AC-Drive are going to be needed and used. Analogical input will be needed to receive the information from the pressure sensors spread through the system, and the relays outputs will be used to monitor via a green and red light if the consumer connected to them is running or not. The rest of the monitoring and control of the AC-Drive is done by the PLC, as it has been described in previous stages, with the connection of an etherline cable.

The second group of AC-Drives concerns the AC-Drives that are installed itself to the actual consumer. To carry out the wiring of these AC-Drives, as it has been done with the previous group, there are needed the manuals of the consumers so it can be analyzed the pins that are going to be needed. In these AC-Drives there will also be added some lamps to monitor the actual situation of the consumer, a switch, and again, the etherline cable that will be connected to the PLC.

1.11. STAGE 11: WIRING OF THE CONTROL SYSTEM TO THE PLC

In the following stage there will be also a differentiation between 2 groups because of the disposition in the way they are set to make the consumers run, because the wiring itself is almost identical.

The first of the groups involves the consumers which are directly connected on line. The connection that allows the PLC to make the consumer run it is made by a coil and contactor. A coil is connected after the DQ module. When this coil receives the signal, it closes a NO contactor (24VDC), which at the same time it closes the control circuit, allowing the feeding of another coil which closes the main contactor (NO 230VAC) of the consumer making the direct online possible.

The second group corresponds to the consumers which are started with a soft starter. It is a similar case to the other group, but in this case, when the NO contactor (24VDC) closes, the contactor is feeding the soft starter making it work and starting the consumer if the protection of the control wiring allows it. It is explained in the next stage.

1.12. STAGE 12: SELECTION OF PROTECTION FOR CONTROL WIRING

The wiring control system that has been explained in the previous 2 stages has its own protection system to guarantee and ensure with more than one requirement the safety of the devices and the staff who may work in the maintenance of the devices.

The purpose of this stage is to add a second protection requirement to the consumer activation system so it cannot be started by a mistake.

To raise the security level, what it has been done independently the consumer is started by an AC-Drive, by a soft starter or by a direct on line connection, in all 3 cases, it also has to be turned on a switch which activates an auxiliary contactor (in the case of direct on line it would be the main contactor) that works with 230VAC. And finally, to protect this switch, coil, and contactor, it is also added a fuse which is cheap, not expected to melt, and protect the mentioned devices against possible short circuits.

1.13. STAGE 13: SELECTION OF COILS AND CONTACTORS FOR THE CONTROL SYSTEM

Finally, there have to be selected the coils that work with PLC, and there are also having to be selected the auxiliary contactors that give that extra protection level in the control system of the consumers.

The coils that work with the PLC may be found in the manual of the modules of the PLC. Otherwise, knowing that the PLC works with a 24VDC and that these coils are intended to be connected to same supply, the coils that are supposed to be chosen to have to work with 24VDC. Once the coils have been chosen, is typical for this kind of coils to have to also select a housing for them.

To choose the auxiliary contactor what it has to be done is first choose a 230VAC contactor, because that is the voltage that is used for the control system in the consumers. After that, we have to choose a contactor with a power level just above of the power that demands the consumer. In the case that a consumer is a heater or a resistive consumer, it can be chosen a contactor for motors (AC-3) but in this case a contactor which power capability is below the

resistive consumer's power demand (and continue going down if there is a better fit), because maybe its AC-3 current may not fit, but these devices have 1th thermal current, which indicates the current they endure in case of the consumer is a AC-1 consumer and it is higher than the AC-3 current. That is why at first look having lower power capability and a lower current endurance may seems it does not fit the resistive consumer, but it does. The only exception in this project has been the selection of the contactors for the heaters of the condenser systems. They are so big, that the contactor needed to fit the needs of these heaters are 4 NO contactors when only 1 phase is needed per heater.

1.14. STAGE 14: CHECK OUT PART LISTS AND CABLE OVERVIEW

This stage is only proposed once the drawing of the schematics is done, to make sure all the elements drawn in the schematics have their element selected in the part tab. And same with the cable selection, after the drawing is done it is good the make sure in the cable overview list that every cable drawn has assigned a cable type.

1.15. STAGE 15: DISPOSITION OF THE CABINET

In this last stage, the main purpose of it is to draw a 2D or 3D layout of the cabinet with all the elements that go inside it or them (depending on the amount on the elements that are needed to place inside. This stage is not compulsory to fulfill the aim of the project, but it is always a great sketch to have to check out how it would like the final disposition of the elements.

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

III. CONCLUSIONS

When carrying out cabinets project designs it is essential to have a good organization and to have clear what is needed to carry out the stages that have been followed as a roadmap to carry out the project.

It could be said that there are two parts that are differentiated at the time of carrying out the project.

The first one is related to the consumer side. For this phase it is not necessary to have a great understanding of the overall project, and how or why the engines do the work. In this first part of the project, it is essential to have the data sheet of the motors, since we mainly need the data of the current, the power and its location or distance to the cabinet. Knowing these three data we can carry out the first 8 stages, or what is the same, we can make the selection of the protection elements, contactors, and cables that each consumer will need.

The second part of the project involves the selection and connection of the control elements. This part can be considered more complex because this time you will need a general knowledge of the project and the new system you are trying to create, as well as when and how the consumers are activated. In addition to this it is needed ingenuity and imagination to carry out the design of the control wiring in a clear and concise manner, making the schematics easy to read and easily understandable. To carry out this task in addition to the above, it will also be necessary to read the manual of the control elements and the elements that they will control (such as AC-Drives), to understand which pins will have to be used in each case to ensure proper operation of the system. It is important to keep in mind that at any time a decision can be taken from other engineering departments, and it is necessary to improvise a new solution to what has already been proposed or incorporate a new element or machine to the project and be agile to incorporate it into the schematics.

In summary, it could be said that there is a part of the project that can be done automatically, since it involves little more than the use of a few formulas and a few data sheet data. However, for the second part where a greater understanding of the project and its component elements is required (wiring and operation manuals are needed), the experience of the project designer is a key factor in designing the wiring and operation of the control system. The more experience you have, the more resources you have internalized to carry out the design of the cabinet more quickly and efficiently, and the easier it is to overcome possible unforeseen events.

IV. BIBLIOGRAPHY

ABB Group. Leading digital technologies for industry — ABB Group. (s/f). Recuperado el 15

de julio de 2021, de Global.abb website: https://global.abb/group/en

Electrical and Industrial. (s/f). Recuperado el 15 de julio de 2021, de Eaton.com website:

https://www.eaton.com/us/en-us.html

Lapp Kabel. (s/f). Recuperado el 15 de julio de 2021, de Lappkabel.com website:

https://www.lappkabel.com/

S7-1500. (2021). Recuperado de

https://mall.industry.siemens.com/mall/en/hr/Catalog/Products/10204162?tree= CatalogTree

Schneider Electric Global. (s/f). Recuperado el 15 de julio de 2021, de Www.se.com website: https://www.se.com/ww/en/

Schrack Technik International: International. (2021, marzo 19). Recuperado el 15 de julio de 2021, de Schrack.com website: https://www.schrack.com/

Tim Kabel - Početna. (s/f). Recuperado el 15 de julio de 2021, de Tim-kabel.hr website: http://www.tim-kabel.hr/index.php?lang=hrvatski

Danfoss – Engineering Tomorrow. (s/f). Recuperado el 15 de julio de 2021, de Danfoss.com website: https://www.danfoss.com/en/

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

(S/f). Recuperado el 15 de julio de 2021, de Grundfos.com website:

https://www.grundfos.com/

V. ANNEXES

(TVŽ	TEHNIČKO V Polytechni	VELEUČILIŠTE U ZA CUM ZAGRABIENSE	GREBU Vrbik 8a, 10	www.tvz.hr)000 Zagreb	
Customer: Tehničko veleučilište u Zagrebu	End customer:	Tehničko veleučilište u Zagrebu	Object: El	ektrotehnički odelj TVZ-a	
	1	NUHAVUSKA Z, IUUUU ZAYIED	in the second se	JIIAVUSKA Z, IUUUU ZAYIED	
Hrvatska Project name: Electrical project	design for a cabine	Hrvatska t in an engine room of a	cooling plant	rvatska	
Hrvatska Project name: Electrical project Cabinet name: H1 Cabinet description: Cabinet Engine Room	design for a cabine	Hrvatska t in an engine room of a	н cooling plant	rvatska	
Hrvatska Project name: Electrical project Cabinet name: H1 Cabinet description: Cabinet Engine Room Drawn: Xabier Gregorio, bach. eng. el.	design for a cabine	Hrvatska t in an engine room of a 	H cooling plant	rvatska	
Hrvatska Project name: Electrical project Cabinet name: H1 Cabinet description: Cabinet Engine Room Drawn: Xabier Gregorio, bach. eng. el. Checked: Tomislav Špoljarić, dipl.eng. el.	design for a cabine Project number: Project date:	Hrvatska t in an engine room of a MFT-20/21 07.2021	H cooling plant Supply volt Control vol	rvatska	
Hrvatska Project name: Electrical project Cabinet name: H1 Cabinet description: Cabinet Engine Room Drawn: Xabier Gregorio, bach. eng. el. Checked: Tomislav Špoljarić, dipl.eng. el. Approved: Tomislav Špoljarić, dipl.eng. el.	design for a cabine Project number: Project date: Revision:	Hrvatska t in an engine room of a MFT-20/21 07.2021 R0	H cooling plant Supply volt Control vol Rated curre	rvatska 	

	0	1		2	3	4	5	6	7	8	9
Table					•	•					
lable	e or con	tents			1						
P	age no.	Plant		Cabinet				Page description			
	1				Title page						
	2				Table of contents						
	3				Table of contents						
	100	=H1		+Y1	MAIN SUPPLY						
	102	=H1		+Y1	CONDENSOR SYSTEM (I)						
	104	=H1		+Y1	CONDENSOR SYSTEM (II)					
	106	=H1		+Y1	CONDERSER CIRCUIT PU	MPS					
	108	=H1		+Y1	PGW COOLING SYSTEM						
	110	=H1		+Y1	WARM PGW TANK						
	112	=H1		+Y1	WARM WATER TANKS						
	114	=H1		+Y1	OIL COOLING CIRCUIT						
	116	=H1		+Y1	CONDENSORS' FANS CON	ITROL SYSTEMS					
	118	=H1		+Y1	PGW COOLING MAIN PUN	IPS' CONTROL SYSTEMS					
	120	=H1		+Y1	WARM PGW TANKS' PUM	PS CONTROL SYSTEM					
	122	=H1		+Y1	WARM WATER TANKS CC	NTROL SYSTEM					
	123	=H1		+Y1	MONITORING SOFT STAF	RTERS AND DOL CONSUMER	S				
	124	=H1		+Y1	PLC CPU+DIGITAL INPUT	MODULE					
	126	=H1		+Y1	PLC DIGITAL OUTPUT MC	DULE					
	128	=H1		+Y1	PLC ANALOGICAL MODUL	E					
	130	=H1		+Y1	PLC AI/AO MODULE						
	132	=H1		+Y1	PLC SCALANCE SWITCH						
	134	=H1		+Y1	SELENOID & 3WAY VALV	ES					
	135	=H1		+Y1	Terminal diagram						
	136	=H1		+Y1	Terminal diagram						
	137	=H1		+Y1	Terminal diagram						
	138	=H1		+Y1	Terminal diagram						
	139	=H1		+Y1	Terminal diagram						
	140	=H1		+Y1	Terminal diagram						
	141	=H1		+Y1	Terminal diagram						
	142	=H1		+Y1	Terminal diagram						
	143	=H1		+Y1	Terminal diagram						
	144	=H1		+Y1	Terminal diagram						
	145	=H1		+Y1	Terminal diagram						
	146	=H1		+Y1	Terminal diagram						
	147	=H1		+Y1	Terminal diagram						
	148	=H1		+Y1	Terminal diagram						
		1	1		1						
Project no.: M	FT-20/21 Revisi	on: R0 Revision date: 10	5.07.2021	<i>7</i> .		Custom	er: Tehničko veleučilište u Zagre	ebu C	bject: Elektrotehnički odelj TVZ-	a	Cabinet: +
Drawn: Xal	bier Gregorio, bac	h. eng. el.			POLYTECHNICUM ZAGRABIENSE VIEW	www.htt.hr a, 16060 Zageeb	Vrbij 8a, 10000 Zagreb		Konavoska 2, 10000 Zagr	eb	Plant: =
Checked: To	mislav Špoljarić, d	ipl.eng. el.		Page description	n: Table of contents	End cu	stomer: Tehničko veleučilište u Z	Zagrebu P	roject name: Electrical project of	design for a cabinet in an	Page: 2
Approved: To	mislav Špoljarić, d	ipl.eng. el.					Konavoska 2, 10000 Zag	reb	engine room of a	cooling plant	Follow: 3

0	1	2	3	4	5	6	7	8	9
Table of con	tents								
Page no.	Plant	Cabinet				Page description			
149	=H1	+Y1	Terminal diagram						
150	=H1	+Y1	Terminal diagram						
151	=H1	+Y1	Terminal diagram						
152	=H1	+Y1	Terminal diagram						
153	=H1	+Y1	Terminal diagram						
154	=H1	+Y1	Terminal diagram						
155	=H1	+Y1	Terminal diagram						
156	=H1	+Y1	Terminal diagram						
157	=H1	+Y1	Terminal diagram						
158	=H1	+Y1	Terminal diagram						
159	=H1	+Y1	Terminal diagram						
160	=H1	+Y1	Terminal diagram						
161	=H1	+Y1	Terminal diagram						
162	=H1	+Y1	Terminal diagram						
163	=H1	+Y1	Terminal diagram						
164	=H1	+Y1	Terminal diagram						
165	=H1	+Y1	Part list						
166	=H1	+Y1	Part list						
167	=H1	+Y1	Part list						
168	=H1	+Y1	Part list						
169	=H1	+Y1	Part list						
170	=H1	+Y1	Part list						
171	=H1	+Y1	Cable overview						
172	=H1	+Y1	Cable overview						
200	=H1	+Y1	Disposition of Cabinet						

Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021		Customer: Tehničko veleučilište u Zagrebu	Object: Elektrotehnički odelj TVZ-a	Cabinet: +
Drawn: Xabier Gregorio, bach. eng. el.	POLYTECHNICUM ZAGRABIENSE Vibik Ba, 1000 Zagreb	Vrbij 8a, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Plant: =
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Table of contents	End customer: Tehničko veleučilište u Zagrebu	Project name: Electrical project design for a cabinet in an	Page: 3
Approved: Tomislav Špoljarić, dipl.eng. el.]	Konavoska 2, 10000 Zagreb	engine room of a cooling plant	Follow: =H1+Y1/100

				_								-													-				·	
0		1		Ļ		2				3			4				5			6			7				8			9
114.9 / 230VAC -		• •				$- \dot{\phi}$			- \																		•			-> 230VAC / 134.0
114.9 / 230VAC →	HM111G GREEN -OKM111 /126.1		-HWH111G GREEN -OKWH111/126.1		-HM121G GREEN -OKM121 /126.2		-HM121R RED R S S RED R R RED R R RED	+WH121G extern -0KWH121/126.2		-HM21G GREEN -OKM21/126.3 -HM21G GREEN -OKM21/126.3		-HM22G GREW -OKM22/126.3				E Solution Running -HM321G area -0KM321 /126.4		-HWH41G GREN -OKWH41 /126.5			-HM620_cateN - 0KM62/126.6					-HM64G areav -OKM64/126.7 -AM64G areav -OKM64/126.7 		x1 \$ x2		→ 230VAC / 134.0
Project no.: MFT-20/21 Rev	vision: R0	Revisi	on date:	16.07.2	2021				TEUNIÓRO					Cust	omer: Tel	hničko ve	leučilište	u Zagre	bu		Object: E	ektroteh	nički od	elj TVZ-	-a				Cabinet: -	+Y1
Drawn: Xabier Gregorio, t	ach. eng. el							\bigcirc	POLYTECHNI	CUM ZAGRABIE	O ZAGREBU NSE VINK 8	www.tvz.hr a, 10000 Zagreb			Vrt	oij 8a, 10	000 Zagr	eb			K	onavoska	2, 100	00 Zagr	reb				Plant: =	=H1
Checked: Tomislav Špoljarić	, dipl.eng. e	Ι.				Page d	descript	tion: M	ONITO	RING S	OFT ST	ARTERS	AND	End	customer	: Tehničk	o veleuči	lište u Za	grebu		Project n	ame: Ele	ctrical r	project o	design	for a ca	abinet in	n an	Page: 1	123
Approved: Tomislav Špoljarić	, dipl.eng. e	l.						D	OL CON	SUMER	s		-			Konavos	ska 2, 10	000 Zag	eb		-	en	gine roc	m of a	cooling	g plant		-	Follow: 1	124

0	1	2	3	4	5	6	7	8	9
130.9 / PLC 24VDC -									
130.9 / PLC_0VDC									
		-Xfuse Q 33							
		2A Fuse	~	പര്ത് ത					
		₹	16.1 16.5 16.7 16.7 18.6 18.1 18.6 20.2 20.9 20.9	122 122 124					
				6 51					
			P1 P2 P2 P2 P2 P2 P2 P3						
1				ילתותות					
1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
				1					
				I					
Dreivet po i MET 20/21 Davi	ision PO	121	~	Customer	r Tohničko voloučiličto – 7	ahu		i adali TVZ a	Cohinoty 1 V1
Frojectic, wFI-20/21 [Rev	Revision date: 16.07.20	(TVŽ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer	. Termicko veleuciliste u Zagre	ebu	Object: Elektrotenhick		
Drawn: Xabier Gregorio, b	ach. eng. el.		Vibia Ba, 1000 Zagrab		Vrbij 8a, 10000 Zagreb		Konavoska 2,	10000 Zagreb	Plant: =H1
Checked: Tomislav Špoljarić,	, dipl.eng. el.	Page description	on: PLC SCALANCE SWITCH	End custo	omer: Tehničko veleučilište u Z	Zagrebu	Project name: Electri	cal project design for a cabinet in an	Page: 132
Approved: Tomislav Špoljarić,	, dipl.eng. el.				Konavoska 2, 10000 Zag	areb	engine	room of a cooling plant	Follow: 134

		0				1					2				3	3				4		5		6		7					8		—		
Т	erm	nina	al d	iag	rar	n																	•												
																		5	Q							2									
																		50	able				erminal st	rip		able									
																			nam			=H	1+Y1	L -XO		nam				1					
																		7	ē							a l				1					
																														1					
																																		1	
																				Con					S										
																			Cabl	nect		Teri	L L		nect	Cabl				1					
																		1	e t	iion		nina	npei		, in the second se	e ty									
																		5	ň	poin		-			po in										
																				-	External target			Internal ta	rget 🕇									Pi	ige
																						1		-Q00	3								-	/1/)0.4
																								-K1112									-		
																						2		-S0	13								-	/10	0.4
																														\square					
																														\square					
	_																													\vdash		\rightarrow	\rightarrow	<u> </u>	
								_	_			_							_											\vdash			—	<u> </u>	
	_					_	_					_				_			_							_				\vdash		+	—	<u> </u>	
\vdash			$\left \right $			_		_		$\left \right $		_				\rightarrow	_	_	_							_				┝──╊	\rightarrow	+	+	<u> </u>	
	_					_	_	_				_				_		_	-							-	-			┝─┼	_	+	—	<u> </u>	
	_			-			_					_				-	_		-							-				\vdash		+	+	<u> </u>	
	-			-								_				-			-							-				\vdash			+	<u> </u>	
	-						+									+										-							+	<u> </u>	
																+																	-		
										1 1																							+		
																																	-		
																														\square					
Projec	oject no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021													TELINI							Customer: Tehničko	veleučilište	u Zagrebu		Object: Elektro	tehničk	i odelj	TVZ-a					Cab	inet: +Y1	
Drawn	: Xa	bier G	regorio	bach.	eng. e	sl.							Ű	POLYTE	ECHNICUM 2	AGRABIE	NSE Vibil	www.tv k Ba, 10000 Zay	rz.hr greb		Vrbij 8a,	10000 Zagr	- eb		Konavo	oska 2,	10000	Zagreb	ט				Plan	t: =H1	·
Check	Checked: Tomislav Špoljarić, dipl.eng. el. Page description: Terminal diagram End customer: Tehničko veleučilište u Zagrebu Project name: Electrical project design for a cabinet in an engine room of a cooling plant engine room of a cooling plant Electrical project design for a cabinet in an engine room of a cooling plant engine room of a c										Page	2: 135																							
Appro	ved: Tomislav Špoljarić, dipl.eng. el.																				Kon	avoska 2, 10	000 Zagreb			engine	room		oiing	piant			Follo	w: 136	

0 1	2 3	4	5	6	7	8	9						
Terminal diagram	· · ·				1	·							
		Cable name		erminal strip •Y1-X0B1.1	Cable name								
		Connection point Cable type	External target	ਦ ਤ ਦ ਦ ਦ ਦ	Cable type Connection point		Page						
			1				/116.1						
			2	· ·			/116.2						
		1	3	• -X0B1.2	3:1		/116.2						
		-											
		-											
		1											
		1											
		1											
		-											
		┥ ┝──┼─											
		┥ ┝──┼─											
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$												
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$												
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$												
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	┥┝━┼╸											
				1 1									
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021			Customer: Tehničko veleučilište u	u Zagrebu	Object: Elektrotehnički	i odelj TVZ-a	Cabinet: +Y1						
Drawn: Xabier Gregorio, bach. eng. el.		. 10000 Zagreb	Vrbij 8a, 10000 Zagre	- b	Konavoska 2, 1	- 10000 Zagreb	Plant: =H1						
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagram		End customer: Tehničko veleučili	šte u Zagrebu	Project name: Electrica	al project design for a cabinet in an	Page: 136						
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska 2, 100	00 Zagreb	engine room of a cooling plant								

0 1	2 3	4	5	6	7 8	9						
Terminal diagram	·	·										
		Cable name	Termin =H1+Y1	al strip -X0B1.2	Cable name							
		Connection point Cable type	External target	Connection point Internal target	Cable type	Page						
			1			/116.3						
			2			/116.4						
			3	-X0B1.1 3:1		/116.4						
				-X0B2.1								
					+ + + + + + + + + + + + + + + + + + +							
					+ + + + + + + + + + + + + + + + + + +							
					+ + + + + + + + + + + + + + + + + + +							
					+ $+$ $+$ $+$ $+$ $+$ $+$							
					+ $+$ $+$ $+$ $+$ $+$ $+$							
					+ $+$ $+$ $+$ $+$ $+$ $+$							
					+ $+$ $+$ $+$ $+$ $+$ $+$							
				I I								
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.202			Customer: Tehničko veleučilište u Zagre	bu Object: Elektrote	hnički odelj TVZ-a	Cabinet: +Y1						
Drawn: Xabier Gregorio, bach. eng. el.		RABIENSE Vibik 8a, 10000 Zagrab	Vrbij 8a, 10000 Zagreb	Konavos	ka 2, 10000 Zagreb	Plant: =H1						
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagra	jram	End customer: Tehničko veleučilište u Z	agrebu Project name: E	Electrical project design for a cabinet in an	Page: 137						
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska 2, 10000 Zag	reb e	engine room of a cooling plant							

	C)				:	L				2					3					4			5		6		7					8				9
Te	erm	ina	al d	iag	gra	m								•													•										
																			Cable name				=	т H1 +	erminal st •Y1-X	^{rip} (0B2.1			Cable name								
																			Cable type	Connection point		External	target	Terminal	Jumper	Internal ta	rget										Page
																								1												, i i i i i i i i i i i i i i i i i i i	/116.6
																			1					2	•									,	/116.6		
																			1					3	•	-X0B1.2	. 3	1						, T	/116.6		
																			1							-X0B2.2	2									<u> </u>	
																			1																	<u> </u>	
																			1																		
																																				<u> </u>	
																																	-	-	-		
																			1														-		-	<u> </u>	
																																	-		-		
																																		-			
																																		-			
																			1														-	+	-	<u> </u>	
	+																													1			+	+		<u> </u>	
	+																																-+	+		<u> </u>	
	-						_	-																					-				+	+		<u> </u>	
	+			_										-							-												+	+		<u> </u>	
	+			_								-									-												+	+		<u> </u>	
	+											+																_	-	-			+	+	—	<u> </u>	
	-											-									-							_	-				+	+	<u> </u>	<u> </u>	
	-			_						_		_									_								-				+	+	—	<u> </u>	
	-			_						_		_									_							_	-				+	+	—	<u> </u>	
	-			_						_		_									_							+ + + + + + + + + + + + + + + + + + +							—	<u> </u>	
	1	I												_	1	I			I	I				I	I	I	I									I]
Project	no.: M	FT-20	/21 R	evisio	n: R0	F	levisio	n date	: 16.07	2.2021			1		HNIČKO V		TE 11 7400	EBU				Customer: T	ehničko vele	eučilište u	ı Zagrebu		Object: Elekt	otehnič	ki odelj	TVZ-a					Cab	inet: +)	(1
Drawn:	Xab	ier Gr	regorio	bach	. eng.	el.								2 10	LYTECHNIC	UM ZAGRAE	BIENSE	Vibik 8a, 100	www.tvz.hr 000 Zagreb			V	rbij 8a, 100	00 Zagrel	- 0		Kona	voska 2	, 10000	Zagrel	b				Plar	nt: =F	11
Checke	d: Ton	: Tomislav Špoljarić, dipl.eng. el. Page description: Terminal diagram End customer: Tehničko veleučilište u Zagrebu Project name: Electrical project design for a cabinet in an Page										Pag	e: 13	8																							
Approv	ed: Ton	nislav	Špolja	rić, dij	ol.eng.	. el.																	Konavos	ka 2, 1000	00 Zagreb	engine room of a cooling plant								Follo	ow: 13	9	

	()				1					2					3							5		6		7					8		—	9	
Te	erm	ina	al d	iag	jra	m																		•												
																			Cable name			=	т H1 +	erminal str •Y1-X	^{rip} 0 B2.2		Cable name									
																			Cable type	Connection point	Externa	l target	Terminal	Jumper	Internal ta	Connection point rget	Cable type								Paç	ge
																							1	•											/116	5.8
																			Ì				2										/116	5.8		
																			Ī				3	•	-X0B2.1	3:	L						/116	ة.8		
																			Ì						-X0B3.1											
																			Ī																	
																			Ī																	
																			Ī																	
																			ľ																	
																			ľ																	
																			ľ																	
																			ľ																	
																			ľ															+ +		
							-	-+			+	+	+	<u> </u>													-							+		
							-	-+			+	+	+	<u> </u>													-							+		
							-	-+			+	+	+	<u> </u>													-							+		
							-	-			-		+						ŀ															+		
							-	-			-		-						ŀ								_							+		
							-	-			-		-						ŀ								_							+		
							-	-			-		-						ŀ								-							+		
								-			-		-			_			-								_				_			+		
				_	-			-+			+	+	+						ŀ								-							+-+		
	-			_	-			-+			+	+	+						ŀ								-	-						+-+		
				_	-			-+			+	+	+						ŀ								-				_			+-+		
	-							-			+	+	+	-					ŀ															+		
	1	I	L						I		_	_	1	1			[<u> </u>	I	1	1]
Project	no.: M	FT-20,	/21 R	evisio	n: R0	R	evisior	n date	: 16.07.	2021					NIČKO VEI	EUČILIŠT		BU			Customer:	Tehničko vele	učilište u	I Zagrebu		Object: Elektro	otehničk	i odelj	TVZ-a					Cabir	net: +Y1	
Drawn:	Xab	ier Gr	egorio,	bach	. eng.	el.					1		Ľ	ジ POL	TECHNICU	M ZAGRABI		nbik 8a, 10000	ow tvz tir D Zagreb			Vrbij 8a, 1000	0 Zagrel)		Konav	oska 2,	10000	Zagreb)			<u> </u>	Plant	: =H1	
Checke	d: Ton	nislav	Špolja	ić, dip	ol.eng.	el.					Page	e descr	iption	Tern	ninal o	liagra	am				End custor	ner: Tehničko	veleučiliš	ite u Zagreb	bu	Project name:	Electri	cal proj	ject de	sign fo	or a cab	oinet in	an	Page	. 139	
Approv	ed: Ton	nislav	Špolja	rić, dip	ol.eng.	el.																Konavosk	a 2, 1000	00 Zagreb	engine room of a cooling plant								Follov	<i>N</i> : 140		

0 1	2	3	4	5	6	7	8	9						
Terminal diagram		· · ·		·			-							
			Cable name	=H1	Terminal strip +Y1-X0B3.1	Cable name								
			Connection point Cable type	Termina External target	ਦ ਭ ਦ ਦ P Internal ta	Connection point rget		Page						
				1	· ·									
				2	1			/118.2						
				3	-X0B2.2	3:1		/118.2						
					-X0B3.2									
			1											
			1											
			1					+ +						
			1					+ +						
			1					<u>+ +</u>						
			1											
			1											
			1											
			1											
				I				<u>1 1 </u>						
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07	21			Customer: Tehničko veleučilišt	e u Zagrebu	Object: Elektrotehnički odelj TVZ	-a	Cabinet: +Y1						
Drawn: Xabier Gregorio, bach. eng. el.			www.lvz.hr 0000 Zagreb	Vrbij 8a, 10000 Zag	jreb	Konavoska 2, 10000 Zag	reb	Plant: =H1						
Checked: Tomislav Špoljarić, dipl.eng. el.	Page descript	ption: Terminal diagram		End customer: Tehničko veleuč	čilište u Zagrebu	Project name: Electrical project	design for a cabinet in an	Page: 140						
Approved: Tomislav Špoljarić, dipl.eng. el.				Konavoska 2, 1	0000 Zagreb	engine room of a	cooling plant	Follow: 141						

0 1									2	2 3							4				5		6		7					8			9					
Terminal diagram																								•		•								•				
																			Cable name			Terminal strip =H1+Y1-X0B3.2																
																		:	Cable type	Connection point	External	target	Terminal	Jumper	Internal ta	rget	Cable type								Page	e		
																							1	•											/118.	7		
																							2	•											/118.	7		
																							3	•	-X0B3.1	3	1								/118.	.7		
																			_																			
																			_																			
																			-																			
													+						-																			
																			-																			
													+						-																			
																			-																			
													+					_																				
													+																									
													+						-																			
													+						-																			
							_	-					+	-					-									-										
							_	-					+	-					-									-										
				_			_	_					-						-																			
	+											-	+	+					-									-										
	+											-	+	+					-																			
	+											-	+	+					-									-			_							
	-											-	+	+					-								-	-										
												1	1												I													
Project	no.: M	FT-20	/21 R	evisio	n: R0	F	levisio	n date	: 16.07	2.2021											Customer:	Fehničko vele	učilište u	Zagrebu		Object: Elekti	otehničl	ki odelj	TVZ-a					Cabi	Cabinet: +Y1			
Drawn	Xab	ier Gr	regorio	bach	. eng.	el.						POLYTECHNICKU VELEUCILISTE U ZAGREBU www.hrz.hr POLYTECHNICUM ZAGRABIENSE Visik lis. 1000 Zagreb							tvz.hr lagreb			/rbij 8a, 1000	0 Zagrel	- D		Kona	voska 2,	10000	Zagreb)				Plant: =H1				
Checke	ecked: Tomislav Špoljarić, dipl.eng. el.									Pag	Page description: Terminal diagram									End customer: Tehničko veleučilište u Zagrebu					Project name	Electr	ical pro	ject de	sign fo	or a cab	pinet in	an	Page	: 141				
Approv	roved: Tomislav Špoljarić, dipl.eng. el.																			Konavoska 2, 10000 Zagreb						engin	Follo	Follow: 142										

0 1	2 3	4	5	6	7	8	9					
Terminal diagram	L. L			·	·	_ .						
		Cable name	Ter =H1+	minal strip Y1-X0M41	Cable name							
		Connection point Cable type	External target	ି ଅନୁ କ୍ Internal targe	Cable type Connection point		Page					
			1	•			/120.0					
			2	• -X0M42	2:1		/120.0					
			3	•			/120.1					
			4				/120.1					
			5				/120.2					
			II	I			<u>I I</u>					
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021		ACDEDI	Customer: Tehničko veleučilište u Z	Zagrebu	Object: Elektrotehnički odeli TV	Z-a	Cabinet: +Y1					
Drawn: Xabier Gregorio, bach. eng. el.		Vibik Ba, 10000 Zagreb	Vrbij 8a, 10000 Zagreb	-	Konavoska 2, 10000 Zag	Konavoska 2, 10000 Zagreb						
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagram		End customer: Tehničko veleučilište	e u Zagrebu P	Project name: Electrical project	me: Electrical project design for a cabinet in an						
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska 2, 10000) Zagreb	engine room of	a cooling plant	Follow: 143					

0 1									2 3							4					5			6			7					8				9						
Terminal diagram																																										
]		
																			ស											្ឋ												
																					Terminal strip =H1+Y1-X0M42							be														
												ame e																	lame													
									+									+																	+	+		-				
																			ດ	Conn						• •			Conn	ດ												
																			ablet	ectio				ermi		Jump			ectio	ablet												
																			type	ň po				nal		Der			n po	type												
																				int	E	xternal	target				Internal ta	rget	İnt										Page			
																								1		·													/120.7			
																								2		•	-X0M41		2:1										/120.7			
																											-X0M51							\square	\square	\perp		<u> </u>				
	_	_																						3		•								\rightarrow	\square	$ \rightarrow $	_	\perp	/120.7	4		
		+				_	_		_										-					4	_	•								\rightarrow	\rightarrow	+	_	—	/120.8	4		
	_	+	-			_	_		_	_									-					5	_	•								\rightarrow	\rightarrow	+	_	+	/120.8	-		
\vdash	_	+	-			-	-		_	_						_			-					_	_								_	\rightarrow	+	+	_	+		+		
-		+				-	-		+										-						-								-	+	+	+	_	+		+		
		+					+		+										-						+									-	-	-	_	+		+		
		+																	ŀ															-	-	-		+		1		
																														1 1								+		1		
] [
																																		$ \rightarrow $	\square	\perp		<u> </u>				
		_																																\rightarrow		\perp		—		4		
	_	_	_			_	_		_										-						_					┥╽				\rightarrow	\rightarrow	+		—		-		
		-	_			_	_		_										-						_									\rightarrow	+	+		+		-		
		-					-		_										-						_						_		_	+	+	+	_	+		+		
		+					-		+										-						-									-	+	+	_	+		+		
		+																	ŀ															-	-	-		+		1		
																			Ī											1 1								1		1		
Projec	Oject no.: MFT-20/21 Revision: R0 Revision date: 16.07.202									2021			TV	тени	VIČKO VEI	EUĞII IŠTI	E U ZAGREI	з.	a ha ha		Cu	stomer:	Tehničko v	eleučilišt	e u Z	agrebu		Object: E	Elektroter	nnički o	delj T	VZ-a					Ca	Cabinet: +Y1				
Drawn	Drawn: Xabier Gregorio, bach. eng. el.															IENSE V	ык 8a, 10000.	i Zagreb				Vrbij 8a, 10)000 Zag	reb			k	Konavosk	a 2, 10	000 Z	agreb					Pla	Plant: =H1					
Check	necked: Tomislav Špoljarić, dipl.eng. el.									Page	descri	ption:	Term	ninal d	liagra	am				End customer: Tehničko veleučilište u Zagrebu					u	Project name: Electrical project design for a cabinet in an								Pa	ge:	143						
Appro	pproved: Tomislav Špoljarić, dipl.eng. el.																				Konavoska 2, 10000 Zagreb						6	.gine I			- yes		F0	F0110W: 144								

0 1										2	2 3							4				5		6		7					8			9				
Terminal diagram																								•		•												
																			Cable name			Terminal strip =H1+Y1-X0M51																
																			Cable type	Connection point	Extern	al target	Terminal	Jumper	Internal ta	rget	Connection point	Cable type							Page			
																							1												/122.0			
																							2		-X0M42	2	:1								/122.0			
																									-X0M52													
																							3												/122.1			
																							4												/122.1			
																							5												/122.2			
											-										•			I	1				<u> </u>									
Project	no. M	FT-20	/21 R	evisio	n: R0	F	Revisio	n date	e: 16.07	7.2021											Custome	r: Tehničko vele	učilište u	Zagrebu		Object: Elekt	rotehnià	čki odel	TVZ-a					Cabi	net: +Y1			
Drawn	Xat	oier Gr	regorio	bach	. eng.	el.						TVZ TEHNICKO VELEUCILISTE U ZAGREBU www.ht/ht POLYTECHNICUM ZAGRABIENSE Vibil.lia. 1000 Zayab							rww.tvz.hr 00 Zagreb			Vrbij 8a, 100	00 Zagrel)		Kona	voska 2	2, 10000	Zagrel	b				Plan	Plant: =H1			
Checke	ecked: Tomislav Špoljarić, dipl.eng. el.									Pa	Page description: Terminal diagram									End customer: Tehničko veleučilište u Zagrebu Project na					Project name	ne: Electrical project design for a cabinet in an							Page	: 144				
Approv	roved: Tomislav Špoljarić, dipl.eng. el.																			Konavoska 2, 10000 Zagreb						engir	ne room	of a co	ooling	plant			Follow: 145					
		0					1				2					3					4		5		6		7	,				8				9		
--------	-----------------	--------	---------------	------------------	---------	-------	---------	--------	----------	--------	---------------	---------	----------	--------	---------	------------	-----------	---------------	------------	------------------	---	-----------------------	--------------	-----------------------------	-------------------------	---------------	------------------	------------	---------------------	---------	---------------------	--------	-------	---	---------------	------------		
Т	ern	nin	al d	liag	gra	m												•																				
																			Cable name			=	י H1+	erminal st ► Y1-X	^{rip} (0M52			Cable name										
																			Cable type	Connection point		External target	Terminal	Jumper	Internal ta	rget	Connection point	Cable type								Page		
																							1													/122.3		
																							2		-X0M51		2									/122.4		
																									-X0M53													
																							3													/122.4		
																							4													/122.5		
																							5													/122.5		
																																			\perp			
																																			\rightarrow			
													_	_	_	_													_		_				\perp			
													_		_																				\rightarrow			
																										-								,				
Projec	<u>t no.; N</u>	4FT-20	<u>)/21 [</u>	levisio	n: R0	F	Revisio	n date	e: 16.07	7.2021			(TVZ I	EHNIČKO	VELEUČILIŠ	TE U ZAGE	REBU	www.tvz.hr			Customer: Tehničko ve	leučilište (u Zagrebu		Object: Elekt	rotehni	čki ode	lj TVZ∹	a				ļ	Cabinet	: +Y1		
Draw	n: Xa	bier G	regorio	, bach rić di	n. eng.	el.						ao do-	<u> </u>			dia	D.ENGE	Vrbik 8a, 100	000 Zagreb			Vrbij 8a, 10	000 Zagre	D šte u Zacrol	bu	Regiect part	voska 2	2, 1000	U Zagro	eb	for a -	ahinat	in on		Page:	=H1 145		
Appro	ved: To	mislav	Špolia	rić, di	pi.eng	. el.					\dashv^{Pa}	iye aes	criptio	m: iei	mina	i diagi	am					Konavos	ska 2. 100	ste u zagrei 00 Zaareh	Ju	FIUJECL Hame	engi	ne roor	oject d n of a d	cooling	ior a ci j plant	abinet	in an	H	Follow:	146		
					. 9																		, ,-	5.7		-				-								

	()				1					2					3						5			6		7					8		<u> </u>		9
Т	erm	ina	al d	iag	jra	m																		•		•										
																			Cable name			=1	™ 11+	erminal str •Y1-X	^{rip} (0M53											
																			Cable type	Connection point	External targ	get	Terminal	Jumper	Internal ta	rget		0-Ho							•	Page
																							1												/	122.7
																							2		-X0M52		1								/	122.7
																							3												/	122.7
																							4												/	122.8
																							5												/	122.8
																			Ī																	
																			Ī																	
																																		-		
																																		-		
																																		-		
																																		-		
	+							-+		_	-	+																	+			-		+	<u> </u>	
								-			-	+																	+					+	<u> </u>	
								-			_	-							-										-			-		-		
	-							-			_								-										-					+	<u> </u>	
	+										-	+	-						-										+			-		+	<u> </u>	
	+										-	+	-						-										-			-		+	<u> </u>	
					-					_	_	-															_	-				-		<u> </u>	<u> </u>	
	_										_	-	<u> </u>			_			-										-			-		+	<u> </u>	
	_			_	_			_		_	_	-					_		-								_		-			-	_	+	<u> </u>	
	_			_	_					_	_	-					_		-								_		-			-	_	+	<u> </u>	
	_	I						[_	_	I											<u> </u>	1	I			<u> </u>						1	
Project	no.: M	FT-20,	/21 R	evisio	n: R0	R	evisio	n date	: 16.07.	2021			T	ТЕНІ	NIČKO VFI	EUĞII IŠTI	E U ZAGREF	30	w here he		Customer: Tehn	ničko veleu	ıčilište u	Zagrebu		Object: Elekti	otehnič	ki odelj	TVZ-a					Cab	inet: +Y	1
Drawn	Xat	ier Gr	egorio,	bach	. eng.	el.					1		\Box	2 POLY	TECHNICU	ZAGRABI	ENSE	ык 8a, 10000 2	Zagreb	<u> </u>	Vrbij	8a, 1000) Zagreł)		Kona	oska 2	, 10000	Zagre	b			<u> </u>	Plar	nt: =H	1
Checke	d: Tor	nislav	Špolja	ić, dip	ol.eng.	el.					Page	e descr	iption:	Tern	ninal d	liagra	m				End customer: T	Fehničko v	eleučiliš	te u Zagret	bu	Project name	Elect	rical pro	ject de	esign f	or a cal	binet ir	n an	Pag	e: 146	5
Approv	ed: Tor	nislav	Spolja	ić, dip	ol.eng.	el.															к	Konavoska	2, 1000	00 Zagreb			engir	ne room	of a co	ooling	plant			Follo	ow: 147	7

		0				1					2					3					4		5		6		7					8				9
Τ	erm	in	al d	iag	Irai	n																														
		Γ		Ť													±	÷													i T					
																	ND2	NDP	-																	
																	MP-	MP-	Gab				т	erminal st	rip		<u>a</u>									
																	MM	MM	e na					4 . \/4	, NO		e na									
																	Ň	Ξ	Ime				= 11	T+1T	-82		me									
	1														-		Ŋ	N																		
																	~	<u> </u>	~	Con						G										
																			abl	nect			Teri	L L		nect										
																			ety	ion			nina	npe		<u> </u>	ety									
																			pe	poir			<u> </u>			말	l De									
																				Ŧ		External target			Internal ta	rget A										Page
																				U1		+CNDPMP-M21	1	ı	-K212	2										/106.1
																			V1		+CNDPMP-M21	2	•	-K212	4										/106.1	
																		W1		+CNDPMP-M21	3	•	-K212	6										/106.2		
																				U1		+CNDPMP-M22	4	•	-K222	2										/106.3
																				V1		+CNDPMP-M22	5	•	-K222	4										/106.4
																				W1		+CNDPMP-M22	6	•	-K222	6										/106.4
																															\square					
																															\square					
																															\square					
															\square																\square	\square			\perp	
															\square																$ \square $	\square			\perp	
									_						\square																⊢	$ \rightarrow $			\perp	
									4				\rightarrow		\rightarrow																⊢	\rightarrow	\rightarrow		\perp	
															\rightarrow																⊢	\rightarrow	\rightarrow		\rightarrow	
									4				\rightarrow		\rightarrow																⊢	\rightarrow	\rightarrow		\perp	
																															⊢	\rightarrow	\rightarrow		\rightarrow	
																															⊢	\rightarrow	\rightarrow		\rightarrow	
									_												_		_				4				⊢	\rightarrow	\square		\perp	
									_												_		_				4				⊢	\rightarrow	\square		\perp	
																															\square					
Projec	no. M	FT-20)/21 R	evision	n: R0	Rev	vision o	date: 16	5.07.20	21				TEHN		UČIUŠTE		BU				Customer: Tehničko ve	eučilište u	ı Zagrebu		Object: Elektrote	hnički	odelj	TVZ-a						abinet:	: +Y1
Drawn	Xa	oier G	regorio	bach	eng. e								Ű	POLYTI	ECHNICUM	ZAGRABIE	NSE V	nbik 8a, 1000	vw.tvz.hr 0 Zagreb			Vrbij 8a, 100)00 Zagre	b		Konavos	ka 2, 1	.0000	Zagreb)				PI	lant:	=H1
Check	d: To	mislav	Špolja	rić, dip	l.eng.	el.					Page d	escrip	tion: 1	ermi	inal di	iagra	m					End customer: Tehničko	veleučili	šte u Zagret	ou	Project name: E	lectric	al proj	ect des	sign fo	or a cal	binet i	n an	Pa	age:	147
Approv	ed: To	mislav	Spolja	rić, dip	l.eng.	el.																Konavos	ka 2, 100	00 Zagreb		e	ngine	room	of a co	oling	plant			Fc	ollow:	148

		0					1				2					3					1	5		6		7					8				9
Т	erm	in	al d	lia	ara	m																			ł										
			1									1			+	+	+	+																	
															PGWCOOL-WM322	PGWCOOL-WM321	PGWCOOL-WM312	PGWCOOL-WM311	Cable name			т =Н	erminal str 1+Y1	^{rip} X3		Cable name									
															NYCY	NYY	ΝΥCΥ	NYY	Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type								F	age
																				U1	+PGWCOOL-M311	1		-K3112	2					-	+	-	_	/:	.08.1
																				V1	+PGWCOOL-M311	2		-K3112	4	1					-			/1	.08.1
																				W1	+PGWCOOL-M311	3	•	-K3112	6	1					+			/1	.08.2
																				U1	+PGWCOOL-M312	4	•	-K3121	2	1					-			/:	.08.3
																				V1	+PGWCOOL-M312	5	•	-K3121	4	1					-			/1	.08.3
																				W1	+PGWCOOL-M312	6	•	-K3121	6									/1	.08.3
																				PE	+PGWCOOL-M312	7	•	-U312	PE'	1								/1	.08.3
																				U1	+PGWCOOL-M321	8	•	-K3212	2	1								/1	.08.6
																				V1	+PGWCOOL-M321	9	•	-K3212	4	1								/1	.08.6
																				W1	+PGWCOOL-M321	10	•	-K3212	6	1								/1	.08.6
																				U1	+PGWCOOL-M322	11	•	-K3221	2									/!	.08.7
																				V1	+PGWCOOL-M322	12	•	-K3221	4									/1	.08.8
																				W1	+PGWCOOL-M322	13	•	-K3221	6	1								/1	.08.8
																				PE	+PGWCOOL-M322	14	•	-U322	PE'	1								/1	.08.8
																																		L	
																																		<u> </u>	
																																		L	
																																		<u> </u>	
																																			
																																			
																																		L	
Projec	t no.: M	!FT-2()/21	Revisio	n: R0	F	Revisio	n date	: 16.07.	2021	1		TV		IČKO VEI	FUČILIČT		FBU			Customer: Tehničko vel	eučilište u	ı Zagrebu		Object: Elektrote	nnički	odelj T	VZ-a					Cabi	net: +Y1	
Drawn	: Xa	bier G	regorio	, bach	. eng.	el.					1		Ű	7 POLYT	ECHNICUM	ZAGRAB	IENSE	Vibik Ba, 100	ewertvz.hr 100 Zagreb		Vrbij 8a, 100	000 Zagrel	b		Konavosk	a 2, 1	0000 Z	agreb					Plan	t: =H1	
Check	ed: To	mislav	/ Špolja	rić, di	ol.eng	. el.					Page	descri	ption:	Term	inal c	liagra	am				End customer: Tehničko	veleučiliš	šte u Zagret	ou	Project name: E	ectrica	al proje	ect des	ign for	r a cab	inet in	an	Page	:: 148	
Appro	/ed: To	mislav	/ Spolja	irić, di	ol.eng	. el.															Konavos	ka 2, 100	00 Zagreb		e	igine i		a coc	mg p	nanc			Follo	w: 149	

		0					1				2					3					4	5			6		7				8	3			9	
Т	erm	nin	al d	lia	gra	m																				·										
																-WWH41	-WM42	-WM41	Cable name				™ =H	erminal str 1+Y1	^{rip} . -X4		Cable name									
																ΝΥΥ	ΝΥΥ	ΝΥΥ	Cable type	Connection point	External targe	et	Terminal	Jumper	Internal ta	Connection point	Cable type								Page	
																				L1	+PGWWTNK-M4	11	1		-K411	2								++	/110.2	1
																			1	1	+PGWWTNK-M4	41	2	•	-K411	4	1								/110.2	1
																			1	2	+PGWWTNK-M4	41	3	•	-K411	6	1								/110.2	1
																			1	L1	+PGWWTNK-M4	12	4	•	-K421	2	1								/110.4	٦
]	1	+PGWWTNK-M4	12	5	•	-K421	4									/110.4	
																				2	+PGWWTNK-M4	12	6	•	-K421	6									/110.4	
																				1	+PGWWTNK-WH	141	7	•	-K431	2									/110.7	
																				1	+PGWWTNK-WH	141	8	•	-K431	4									/110.7	
																				1	+PGWWTNK-WH	141	9	•	-K431	6									/110.7	
																			ļ																	
																																		\square		
	_		<u> </u>										<u> </u>						1								4							$\downarrow \downarrow$		
											_		_		\square												4							++		
	_	_									_	_							4								4							++		4
	_	_									_		_		<u> </u>				4								4							++		_
	_	-	_								_	_	_														4							++		4
	_										_				$\left \right $				4								4							++		4
	+	-									_	_	+	-	┝──┤												4				_	_		+ +		_
	_	+	-									_	-		$\left - \right $				-								-							++		-
	_	_									_		_	-	┝─┤				-								-							++		-
	+	-	-								_	_	+		┝─┤												-				_			++		-
	-	-						_					+	-	+				1								-							++		-
	-	+											-		┝─┤												-							++		-
			1						I	I				1	<u> </u>			I	I	I	I			<u> </u>	1	I		I						<u> </u>		
Projec	no.: M	4FT-20	0/21	Revisio	n: R0	F	Revisio	n date	e: 16.07	7.2021				<u>}</u>		CUXX	T 11 740				Customer: Tehnià	ko veleu	čilište u	Zagrebu		Object: Elektrot	ehnički	odeli 1	TVZ-a					Cabine		
Drawn	: Xa	bier G	iregorio	, bach	i. eng.	. el.							C		NUCKO VEL		E U ZAGF	Vibik Ba, 10	www.tvz.hr 000 Zagreb		Vrbij 8	a, 10000	Zagreb)		Konavos	ska 2, 1	.0000 Z	Zagreb					Plant:	=H1	
Check	ed: To	mislav	/ Špolja	rić, di	pl.eng	ı. el.					Pag	e desc	ription	Terr	ninal (liagra	am				End customer: Te	hničko v	eleučiliš	te u Zagreb	bu	Project name:	Electric	al proje	ect des	ign for	r a cabi	net in	an	Page:	149	
Appro	/ed: To	mislav	/ Spolja	irić, di	pl.eng	ı. el.															Kc	navoska	2, 1000	0 Zagreb			engine	room o	or a coo	nng p	nant			Follow	: 150	

		0					1				2					3					4		5		6		7					8				9
Т	erm	nin	al c	lia	gra	m																				•										
																TWITIDU		T GMM-		emen elde)			י H=	erminal st 1+Y1	^{rip} L -X5		Cable name									
																-		NYY		Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point rget	Cable type									Page
																					L1	+WWTNK-M51	1		-K511	2										/112.1
																					L2	+WWTNK-M51	2	•	-K511	4	1									/112.1
																					L3	+WWTNK-M51	3	•	-K511	6	1									/112.1
																					L1	+WWTNK-M52	4	•	-K521	2										/112.4
																					1	+WWTNK-M52	5	•	-K521	4										/112.4
																					2	+WWTNK-M52	6	•	-K521	6										/112.4
																					L1	+WWTNK-M53	7	•	-K531	2										/112.7
																					1	+WWTNK-M53	8	•	-K531	4										/112.7
																					2	+WWTNK-M53	9	· ·	-K531	6	1									/112.7
																											1				\square					
																				_							1				\square	\square	\square			
			<u> </u>																								4				\square	\rightarrow	\rightarrow		\rightarrow	
																			_	_							4				\square		\square		\perp	
$ \vdash$	_												_	_			_	_	_	_							4				\vdash	\rightarrow	\rightarrow		\rightarrow	
	_																	_	_	_							4				\vdash	\rightarrow	\rightarrow		\rightarrow	
	_		_										+					+	_	_							4			$ \rightarrow $	\vdash	\rightarrow	-+		+	
													_				_	_	_	_							4				\vdash	\rightarrow	\rightarrow		+	
-	_												_	_		_	_	+	_	_							4			\rightarrow	\vdash	\rightarrow	\rightarrow	_	+	
	_	-	-										+			_	_	+	_	-							-			-+	\vdash	\rightarrow		_	—	
													_				_	_	_	-							-				\vdash	\rightarrow	\rightarrow		+	
-	_		-										+	_		_	_	+	_	_							-			\rightarrow	\vdash	\rightarrow	+	_	+	
	_												+				_	+	_	-							-			-	\vdash	\rightarrow	-+			
	_												+					+	-								1			\rightarrow	\vdash	\rightarrow	-+		+	
		1																						1	1	I	1				<u> </u>					
Dreive	t no · N	1ET 2	1/21 1	Ovicio	n· PA		Dovicia	n dat	or 16 0	7 2021			1	_				1				Customer: Tobničko vo	loučiličto ·	1 Zagrobu		Object: Elektrote	hnički	odeli 7	<u>- ۲\/7</u>						Cabinet	· +V1
Drawr	: Xa	bier C	iregoria	, bach	n. ena	! . el.	10010	ni udle	e. 10.0	.2021	-		(ŢVŻ	TEHNIČK POLYTEC	O VELEUO	ILIŠTE U . BRABIENS	ZAGREBU	www.hz Ba, 10000 Zag	e.hr		Vrbii 8a. 10	000 Zaare	a ∠agrebu b		Konavos	a 2, 1	0000 2	iv∠-a Zagreb	,				F	Plant:	=H1
Check	ed: To	misla	/ Špolja	rić, di	pl.eng	j. el.					Pa	age de	scripti	on: Te	ermin	al dia	gram					End customer: Tehničk	o veleučili	šte u Zagrel	bu	Project name: E	lectrica	al proj	ect des	sign fc	or a ca	ibinet i	in an	F	'age:	150
Appro	ved: To	misla	/ Špolja	rić, di	pl.eng	j. el.																Konavos	ska 2, 100	00 Zagreb		e	ngine	room	of a co	oling p	plant			F	-ollow:	151

	()				1					2					3					4		5		6		7					8				9
Те	erm	ina	al d	iag	ıra	m																		•		ł										
				ī											+	+	+	+																	[
															OCCIR-WM64	OCCIR-WM63	OCCIR-WM62	OCCIR-WM61	Cable name				т. =Н	erminal str 1+Y1	^{rip} X6		Cable name									
															NYY	NYY	NYY	NYY	Cable type	Connection point		External target	Terminal	Jumper	Internal tar	Connection point get	Cable type								Ρ	age
																				1		+OCCIR-M61	1	•	-K611	2					\square				/1	14.1
																				1		+OCCIR-M62	2	•	-K621	2					\square				/1	.14.3
																				U1		+OCCIR-M63	3	•	-K631	2					\square				/1	.14.5
																				V1		+OCCIR-M63	4	•	-K631	4					\square				/1	.14.5
																				W1		+OCCIR-M63	5	•	-K631	6									/1	.14.6
																				U1		+OCCIR-M64	6	•	-K641	2									/1	.14.8
																				V1		+OCCIR-M64	7	•	-K641	4									/1	.14.8
																				W1		+OCCIR-M64	8	•	-K641	6									/1	.14.8
																			1								1									
																			1								1								l	
																			1								1									
																			1								1									
																			1								1									
																			1								1				\square					
																											1				\square			-		
															1				1								1				\square					
	1							-						+	+				1								1				\square			+		
														+	+				1								1				\square			+	í	
	_I		L1		1	1	1	1	I	I	I				<u> </u>	1	I		1	1	_		1	1	I	I	1	1		I		I	I			
Project	no.: M	FT-20,	/21 Re	evisio	ו: R0	R	evisior	n date	: 16.07	7.2021			7	T			TELLZACE	EDII				Customer: Tehničko ve	leučilište u	ı Zagrebu		Object: Elektrote	hnički	odelj	TVZ-a					Cabi	net: +Y1	
Drawn	Xat	ier Gr	egorio,	bach	eng.	el.								2	LYTECHNICI	JM ZAGRA	BIENSE	Vibik Ba, 10	www.tvz.hr 000 Zagreb			Vrbij 8a, 10	000 Zagrel	- -		Konavos	ka 2, 1	0000	Zagreb)				Plan	t: =H1	
Checke	d: Tor	nislav	Špoljar	ić, dip	l.eng.	el.					Pa	ge des	criptio	n: Ter	minal	diagr	am					End customer: Tehničk	o veleučiliš	áte u Zagreb	ou	Project name: E	lectric	al proj	ect des	sign fo	or a cal	binet ir	n an	Page	: 151	
Approv	ed: Tor	nislav	Špoljar	ić, dip	l.eng.	el.																Konavos	ka 2, 100	00 Zagreb		e	ngine	room	of a co	oling	plant			Follo	w: 152	

		D					1				2					3					4	5		6		7					8				9
Т	erm	ina	al d	liag	gra	m																			•										
														+CNDSYS1-WWH111	+CNDSYS1-WSWH1	+CNDSYS1-WM113	+CNDSYS1-WM112	+CNDSYS1-WM111	Cable name			יי H1=	erminal str L +Y1 ·	^{rip} -X11		Cable name									
														NYY	OB-500	NYCY	NYCY	NYY	Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type									Page
																				U1	+CNDSYS1-M111	1		-K1112	2				\rightarrow	-+	+	+	+	+	/102.1
																				V1	+CNDSYS1-M111	2		-K1112	4	1			\rightarrow		+			+	/102.1
																				W1	+CNDSYS1-M111	3		-K1112	6	1					+		-		/102.2
																				U1	+CNDSYS1-M112	4		-K1121	2	1			\neg		-	-	-		/102.3
																				V1	+CNDSYS1-M112	5	•	-K1121	4	1					-				/102.4
																				W1	+CNDSYS1-M112	6		-K1121	6	1			-		+				/102.4
																				PE	+CNDSYS1-M112	7	•	-U112	PE'	1					-				/102.4
																			1	U1	+CNDSYS1-M113	8	•	-K1131	2	1									/102.6
																			1	V1	+CNDSYS1-M113	9	•	-K1131	4	1									/102.6
																				W1	+CNDSYS1-M113	10	•	-K1131	6	1									/102.6
																				PE	+CNDSYS1-M113	11	•	-U113	PE'	1									/102.7
																				13	+CNDSYS1-SWH11	12	•	-0KWH11	1 11										/102.7
																				14	+CNDSYS1-SWH12	13	•	-K1141	A1										/102.7
																				1	+CNDSYS1-WH111	14	•	-K1141	2										/102.8
																															\square				
																										1			\square	$ \longrightarrow $	\square	\square			
												_														4			$ \rightarrow $		\rightarrow	\rightarrow	\rightarrow	\perp	
												_														4			$ \rightarrow $	\rightarrow	\rightarrow	\rightarrow	\square		
	_											_														4					\rightarrow	\rightarrow	\rightarrow	—	
	_											_														4			$ \rightarrow $		\rightarrow	\rightarrow	\rightarrow	\rightarrow	
												_														4			\rightarrow		\rightarrow	\rightarrow		+	
	_																									4			\rightarrow	\rightarrow	\rightarrow	\rightarrow	-+	+	
												_														-			\rightarrow	<u> </u>	\rightarrow	\rightarrow	+	+	
																					1	1													
																									-										
Project	no. M	FT-20	/21 5	levisio	n: R0	F	Revisio	on date	e: 16.07	7.2021	_		TV		NIČKO VE		TE U ZAGE	REBU	www.tvz.hr		Customer: Tehničko vel	leučilište ι	ı Zagrebu		Object: Elektrote	hnički	odelj 1	TVZ-a						Cabinet	: +Y1
Drawn	: Xat	Dier Gi	Šnolio	, bach	. eng.	el.					Dar	n daas		Torr		diaa		Vibik Ba, 10	000 Zagreb		Vrbij 8a, 100	JUU Zagrel	D Šte u Zagrok	bu	Konavosk Project name:	ka 2, 1	0000 Z	Lagreb	ian f-	or 0.001	hinot :			'lant:	=H1 152
Approv	ed: Tor	nislav	Špolia	rić, di	ol.eng	. el.						je desči	ipuon:	iern	ninai (ulagr	am				Konavos	ka 2, 100	oce u zagret 00 Zaareb	Ju	e	ngine i	n proje	ect des	ign to oling r	ה a cat plant	Jinet II	nan	F	Follow:	153
					9						_												5											<u> </u>	

		0					1				2					3					4	5		6		7					8				9
Т	erm	ina	al d	liag	gra	m							I												•			I							
														+CNDSYS2-WWH121	+CNDSYS2-WSWH2	+CNDSYS2-WM123	+CNDSYS2-WM122	+CNDSYS2-WM121	Cable name			יז H1=	erminal str L +Y1 ·	^{rip} -X12		Cable name									
														NYY	OB-500	NYCY	NYCY	NYY	Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type									Page
														┝──┦	\vdash					U1	+CNDSYS2-M121	1		-K1212	2				\rightarrow	-	+	+			/104.1
																				V1	+CNDSYS2-M121	2		-K1212	4	1			\rightarrow	-	+	-		+	/104.1
												+								W1	+CNDSYS2-M121	3		-K1212	6	1					+	+			/104.2
																				U1	+CNDSYS2-M122	4		-K1221	2	1			\neg		-	-			/104.3
																				V1	+CNDSYS2-M122	5	•	-K1221	4	1					-				/104.4
												+								W1	+CNDSYS2-M122	6		-K1221	6	1			-		+	+			/104.4
																				PE	+CNDSYS2-M122	7	•	-U122	PE'						-		-		/104.4
																			1	U1	+CNDSYS2-M123	8	•	-K1231	2	1									/104.6
																			1	V1	+CNDSYS2-M123	9	•	-K1231	4	1									/104.6
																			1	W1	+CNDSYS2-M123	10	•	-K1231	6	1									/104.6
																				PE	+CNDSYS2-M123	11	•	-U123	PE'										/104.7
																				13	+CNDSYS2-SWH21	12	•	-0KWH12	1 11										/104.7
																				14	+CNDSYS2-SWH22	13	•	-K1241	A1										/104.7
																				1	+CNDSYS2-WH121	14	•	-K1241	2										/104.8
																															\square				
														\square	\square														\square		\square				
												_		\square	\square											4			$ \rightarrow $		\rightarrow	\rightarrow	\square	\perp	
											_			\square	\square														$ \rightarrow $		\rightarrow	\rightarrow			
	_											_	_	\vdash	\vdash																\rightarrow	\rightarrow	\rightarrow	—	
											_	_		!	!											-			$ \rightarrow $		\rightarrow	\rightarrow	\rightarrow	\rightarrow	
	_											_	_	\vdash	\vdash											-			\rightarrow		\rightarrow	\rightarrow	-+	+	
	_										_	_	_	\vdash	\vdash														\rightarrow		\rightarrow	\rightarrow		+	
	-										_	_	+	—┦															\rightarrow		\rightarrow	\rightarrow	\rightarrow	+	
																														[
Project	no. M	FT-20	/21 5	levisio	n: R0	F	Revisio	on date	e: 16.07	7.2021			TV	12 TEH	INIČKO VE	LEUČILIŠ	TE U ZAGE	REBU	www.tvz.hr		Customer: Tehničko vel	eučilište u	u Zagrebu		Object: Elektrote	nnički	odelj T	TVZ-a					C	Cabinet	: +Y1
Drawn	Xat	pier G	řegorio Špolio	, bach	. eng.	. el.					De -			/ POLY			adivot:	Vrbik 8a, 10	000 Zagreb		Vrbij 8a, 100	00 Zagrel	b te u Zaarak	bu	Konavosk Project pamo: 5	a 2, 1	0000 2	Zagreb			hin -+ '			'lant:	=H1
Approv	ed: Tor	nislav	Špolia	rić, di	ol.eng	. el.						je uesci	ipuon:	iern	inai (ulagr	am				Konavosi	ka 2, 100	oce u zagret 00 Zaareb	Ju	ei	ngine i	a proje room o	of a co	ign to oling r	plant	Jinet II	nan	L.	Follow:	155
			1.5		9																		5											<u> </u>	

	0					1						—			2					4		5		6		7					<u> </u>				
	0					1									5					7		5		0		,									
Te	erm	ina	l dia	agr	am								_			_	_																		
										-W_NH3_TUN_B1	-W_NH3_10_B1	-W_NH3_30_B1	-W_WWT3_B1	-W_WWT2_B1	-W_WWT1_B1	-W_PGW_COOL_B2	-W_PGW_COOL_B1	Cable name				יי H==	erminal st L+Y1	^{trip} XAI		Cable name									
										UNITRONIC® LIYCY	Cable type	Connection point		External target	Terminal	Jumper	Internal ta	Connection point	Cable type								_	Page							
				-	_					-		+							1			1	-	-Yfuce	31.8	-		\vdash		$ \rightarrow$	+	-+	+	+	/128.1
							+							2	-	+FGWCOOL-B1	2		-xiuse	31.6	-		r+	-+	 	+	-+	+	+	/120.1					
							<u> </u>							3	_	+PGWCOOL-BI	2		-A4	2	-		⊢		\vdash	\rightarrow	-+	+	+	/120.1					
				_	_							<u> </u>							1	_	+PGWCOOL-B2	3				-		⊢		⊢	\rightarrow	-+	+	+	/120.2
				+-	_							<u> </u>							3	_	+PGWCOUL-B2	4		-A4	0	-		⊢		⊢−−	\rightarrow	-+	+	+	/128.2
				_	_					—	<u> </u>	—							1	_	+WWINK-B1	5				4		⊢		⊢	\rightarrow	\rightarrow	\rightarrow	+	/128.3
				_	_					—	—	—							3		+WWTNK-B1	6	•	-A4	10	4		⊢		⊢	\rightarrow	\rightarrow	\rightarrow	\rightarrow	/128.3
										_	<u> </u>	<u> </u>							1	_	+WWTNK-B2	7				4		$ \rightarrow $		⊢	\rightarrow	\square	-+		/128.4
												<u> </u>							3		+WWTNK-B2	8	•	-A4	14	1		\square		⊢	\square				/128.4
												\square							1		+WWTNK-B3	9						\square		\square	\square				/128.5
																			3		+WWTNK-B3	10	•	-A4	22										/128.5
																			+		+NH3SEP-B1	11	-												/128.6
																			-		+NH3SEP-B1	12	•	-A4	26										/128.6
																			+		+NH3SEP-B2	13	-			1									/128.7
																			-		+NH3SEP-B2	14	•	-A4	28	1				i T					/128.7
																			+		+NH3SEPTUN-B3	15				1									/128.8
												1							-		+NH3SEPTUN-B3	16	•	-A4	32	1		\square		i T	\neg		\top		/128.8
												1														1		\square		i T	\neg		\top		
										-	-	1														1				i t	\neg			-	
										-	-	+														1		\square	\rightarrow	\square	+		-		
										-	-	+														1		\square	\rightarrow	\square	+		-	-	
				-						-	+	+														1		$ \square$	-	\square	+		+	+	
				+							+	┼──														1		r+	\rightarrow	-+	+	+	+	+	
				+-	-					+	+	┼──								-						-		⊢ −+	\rightarrow	┌──┼	\rightarrow	\rightarrow	+	\rightarrow	
				_	_					—	+	—								_						-		<u> </u>		┝──┼	\rightarrow	\rightarrow	+	\rightarrow	
																												\square		\square					
Project	no.: MF	-T-20/2	21 Revi	sion: F	20	Revisio	on date	: 16.07	.2021	1		G		-NIČKO V		TE LI ZACI	REBI				Customer: Tehničko vel	eučilište u	J Zagrebu		Object: Elektrote	hnički	odelj 1	ſVZ-a					1	Cabine	c: +Y1
Drawn:	Xab	ier Gre	gorio, ba	ich. er	ng. el.					1		Ľ	5 POL	LYTECHNIC	UM ZAGRA	BIENSE	Vrbik 8a, 10	www.tvz.hr 000 Zagreb			Vrbij 8a, 100	00 Zagrel	b		Konavos	ka 2, 1	0000 2	Zagreb					F	Plant:	=H1
Checked	d: Tom	nislav Š	poljarić,	dipl.e	ng. el.					Page	descr	iption:	Terr	minal	diagr	am					End customer: Tehničko	veleučiliš	šte u Zagre	ebu	Project name: E	lectrica	al proj	ect des	ign fc	or a ca'	binet i	n an	F	Page:	154
Approve	ed: Torr	nislav Š	poljarić,	dipl.e	ng. el.																Konavos	ka 2, 100	00 Zagreb		e	ngine	room o	of a coc	ling p	plant			F	Follow:	155

	()				1					2					3				4		5		6		7					8			9	
Te	erm	ina	al d	iag	jra	m							I								I														
															i																				
																		Cab				т	erminal st	rip		<u>6</u>									
																		e na				_114		VDI		ena									
																		me				= 11	ι + Ι Τ.	-XDI		me									
									_				\vdash		⊢−−									1						\rightarrow					
																		0		Í		_) Ón	0									
																		able				fern	มีนา		lecti	able									
																		Ť	9			nina	per		<u><u> </u></u>	۲.									
																		ō								Ō									
																					External target			Internal ta	rget 7									Pag	je
															i – †	-			1	L	-A2	1		-Q111	12				\neg		+			/124	.1
															i – †				2	2	-A2	2		-Q114	12									/124	.1
															i T				-	3	-A2	3		-Q121	12	1								/124	.2
																			4	ł	-A2	4		-Q124	12									/124	.2
																			5	5	-A2	5	•	-Q21	12									/124	.2
													\square						e	5	-A2	6	•	-Q22	12	1			_					/124	.3
																			7	7	-A2	7	•	-Q311	12									/124	r.3
																			8	3	-A2	8	•	-Q321	12									/124	.3
																			1	1	-A2	9	•	-Q43	12									/124	<i>.</i> .3
																			1	2	-A2	10	•	-Q61	12									/124	.4
																			1	3	-A2	11	•	-Q62	12									/124	4
																			1	4	-A2	12	•	-Q63	12									/124	.4
																			1	5	-A2	13	•	-Q64	12									/124	5
																			1	2	-KY11	14	•	-A2	21									/124	.1
															\square				1	2	-KY12	15	•	-A2	22									/124	.2
													\square		\square				1	2	-KY13	16	· ·	-A2	23	1				\square				/124	.2
													\square		$ \square $				1	2	-KY21	17	•	-A2	24				\square	$ \blacksquare$				/124	.3
	_												\square		⊢				1	2	-KY22	18	•	-A2	25				$ \rightarrow $	$ \rightarrow $				/124	.3
													\square		\vdash				1	2	-KY23	19	•	-A2	26					\rightarrow				/124	.4
													\vdash		⊢−−∔																				
													\vdash		⊢															\rightarrow					
	_									_			\square		⊢––∔	_													\rightarrow	$ \rightarrow $					
													\square		⊢––														\rightarrow	\rightarrow					
															\square																				
Project	no.: M	FT-20	/21 R	evisio	n: R0	R	evision	date:	16.07.2	2021			T	у теци		FUČILIŠTE					Customer: Tehničko vel	eučilište u	ı Zagrebu		Object: Elektrote	hnički	odelj T	VZ-a					Cabi	et: +Y1	
Drawn	Xat	oier Gr	egorio,	bach	. eng.	el.					1		\bigcirc	POLY	TECHNICUM	ZAGRABIE	ENSE Vibil	Ba, 10000 Zagrel	b		Vrbij 8a, 100	00 Zagrel	b		Konavos	ka 2, 1	0000 Z	Zagreb					Plant	: =H1	
Checke	d: Tor	nislav	Špolja	ić, dip	ol.eng.	el.					Page	descri	iption:	Term	ninal d	liagra	m				End customer: Tehničko	veleučiliš	ste u Zagrel	bu	Project name: E	lectric	al proje	ect des	ign fo	or a cab	oinet ir	n an	Page	155	
Approv	ed: Tor	nislav	Spolja	rić, dip	ol.eng.	el.															Konavos	ka 2, 100	00 Zagreb		e	ngine	room c	or a coo	nung p	Jant			Follo	v: 156	

		0				1					2				3				4		5		6		7				8		\neg		9
Т	erm	nina	al d	iag	jra	m																		I									
				Ť																													
																		Cable name			יי H1=	erminal str + Y1 -	rip ∙XDQ		Cable name								
																		Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type							_	Page
	+			\rightarrow										-					1	-A3	1		-0KM111	A2						\vdash			/126.1
	+													+				F	2	-A3	2		-0KWH11	1 A2									/126.1
	+								-					+				F	3	-A3	3		-0KM121	A2									/126.2
	-				_									+				F	4	-A3	4		-0KWH12	1 A2						\vdash			/126.2
	-				_									+				F	5	-A3	5		-0KM21	A2						\vdash			/126.3
	-				_									+				F	6	-A3	6		-0KM22	A2						\vdash			/126.3
	-													+				F	7	-A3	7		-0KM311	A2					+	\vdash	-		/126.3
														-				F	8	-A3	8		-0KM321	A2						\vdash	_		/126.4
	-										-			+				F	11	-A3	9		-0KWH41	A2					+	\vdash	-	+	/126.5
	-										-			+				F	12	-A3	10		-0KM61	A2					+	\vdash	-	+	/126.5
	-			-							-			+				F	13	-A3	11		-0KM62	A2					+	\vdash	-	+	/126.6
	+													+				-	14	-43	12		-0KM63	A2					+	++	+	+	/126.6
	-													+				F	15	-A3	13		-0KM64	A2					+	+		+	/126.7
	-													+				F	10		10								+	+		+	
	-													+				-												\vdash	-		
	-													+				F												\vdash			
	-													-				F												\vdash	-		
	+													+				F															
	-													-				F												\vdash	-		
	-													+				F												\vdash			
	-										-			+				F										-	+	\vdash	-		
	-			-							-			+				F										-	+	\vdash	-	+	
	-													+				F											+	\vdash	-		
	-													+				F										-	+	\vdash	-	-	
		1	1			1	I				1		I		_1	<u> </u>	I				1	1	I	<u> </u>			I						
Projec	no · M	1FT-20	/21	evision	n: R0	Re	vision	date: 16	6.07.20)21										Customer: Tehničko vel	eučilište u	Zagrebu		Object: Flektroter	nnički <i>i</i>	odeli T	VZ-a				<u> </u>	Cabinet	: +Y1
Drawn	: Xa	bier G	regorio	, bach	eng.	el.	. 131011		5.07.20			(UTVŽ	20LYTECHN	VELEUČILIŠ ICUM ZAGRA	TE U ZAGREE	BU www.b	egreb		Vrbij 8a, 100	100 Zagrel)		Konavosk	a 2, 10	0000 Za	agreb				T I	Plant:	=H1
Check	ed: To	mislav	Špolja	rić, dip	l.eng.	el.					Page de	script	ion: Te	rmina	l diagi	am				End customer: Tehničko	veleučiliš	ite u Zagrel	ou	Project name: El	ectrica	l proje	ct desig	jn for a	a cabine	t in an		Page:	156
Appro	/ed: To	mislav	Špolja	rić, dip	l.eng.	el.														Konavos	ka 2, 1000	00 Zagreb		er	ngine r	oom of	a cooli	ng pla	nt		F	Follow:	157

	0 1										2				3					4			5		6			7				8				9
Т	ern	nin	al d	liag	grai	m																		•		•										
Γ																																				
																		ស	,									្ឋ								
																		blei	:				Te	erminal st	rip			ble								
																		lame				=	=H1	+Y1-	XFA1			1ame								
\vdash	_						_	-	-			-				+			_														-	_	-	
																				S							G									
																		Cabl		inect			Teri	ŭ			inect	Cabl								
																		etyp		ion			nina	nper			ion	etyp								
																		ă		oint			-				point	ŏ								
																					External	target			Internal ta	rget										Page
																				1L+	-A:	L	1	•	-QPLC		2									/124.0
																									-KY11			Ļ		_			\rightarrow	\perp	\perp	
	_	_					_	_								_	_	_	_									⊢		_			\rightarrow	\rightarrow	+	
⊢		_	_				_	_					_			_			-									⊢		_			\rightarrow	+	—	
	_	+	-				+	_				_		_		_		_	-									ŀ		_		$\left \right $	+	+	+	
		+					+					-		-		+			-									ŀ		_			+	+	+	
	+	+					+					\rightarrow				+			F									F					-		+	
																												F							+	
																												Г							1	
																												L		_			\rightarrow	\perp	\perp	
	_	_	-				_	_								_	_		_									_		_			\rightarrow	\rightarrow	—	
	_	+					_	_				_		_				_	-									ŀ		_			-+	+	—	
		+					+			+		-+		_		-	_	_	-									ŀ				$\left \right $	+	+	+	
\vdash	+-	+					+					-+				+			-									ŀ				$\left \right $	+	+	+	
																												F					-		+	
		\top																										F								
																			_									Ļ		_			\rightarrow	\perp	\perp	
														_	_		_									-		_			\rightarrow	\rightarrow	—			
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021								21			TVZ	TEHNK	ČKO VELEU	ČILIŠTE U	J ZAGREBU	www.trz.hr	r		Customer:	Tehničko vele	učilište u	I Zagrebu		Object: Ele	ektroteh	nički o	delj TVZ	-a				Ci	abinet:	+Y1		
Drawn: Xabier Gregorio, bach. eng. el.											\bigcirc	POLYTE	CHNICUM Z	AGRABIEN	SE Vitsik E	3a, 10000 Zagreb	ь		,	Vrbij 8a, 100	00 Zagreł) (h .		Ko	onavoska	a 2, 100	000 Zag	reb			<u> </u>	Pl	ant:	=H1		
Checked: Tomislav Špoljarić, dipl.eng. el.									Page de	escrip	tion: 1	ermi	nal dia	ngran	n				End custom	ier: Tehničko Konavosk	veleučiliš a 2, 1000	ste u Zagreł)0 Zagreb	ou	Project na	ame: Ele en	ectrical gine ro	project om of a	design cooling	for a c g plant	abinet	in an	Pa	ige: ollow:	157		
Approved: Tomislav Špoljarić, dipl.eng. el.																										-	-		•			<u> </u>				

0 1										2	2				3				4		5		6		7				8	3			9
Т	ern	nin	al d	liag	ıraı	m																											
		Τ		Ī																													
																	1	<u>2</u>			т	orminal ct	rin		្ឋទ្ឋ								
																						erminal su	np										
																		3		=	:H1+	-Y1-X	(SNH3		lam								
																	6	Ð							n l								
	-			-				-							_								1					-	+	+			
																			0					0									
																	2	ູ	onn		_			on	0								
																			ecti		ern	un un		ecti									
																	4	ŧ.	9		lina	per		9	₹								
																	6	Ð	poir						l a								
																			Ŧ	External target			Internal ta	raet 7									Page
	_	-						_	_					_	_			_							-			\rightarrow	+	+	_	++	(124.5
	_	+						_	-					_	_			-	1	+NH3SEP-SNH30.0	1	\square	-A2	31	-			-+	+	+	_	++	/124.5
	_	+					_	_	+					_	_			-	3	+NH3SEP-SNH30.0	2		-AZ	32	-			-+	+	+	_	++	/124.5
	_	_						_	_						_			_	1	+NH3SEP-SNH30.1	3				4			\rightarrow	\rightarrow	+	_	\vdash	/124.6
		_						_						_	_			_	3	+NH3SEP-SNH30.1	4		-A2	33	4			\rightarrow	\rightarrow	\rightarrow	_	++	/124.7
	_													_	_			_	1	+NH3SEP-SNH10.0	5				4			\rightarrow	-+	\perp	_	\vdash	/124.8
									4										3	+NH3SEP-SNH10.0	6		-A2	34	1			\rightarrow	\rightarrow	\perp		\vdash	/124.8
																			1	+NH3SEP-SNH10.1	7	L - J											/124.9
																			3	+NH3SEP-SNH10.1	8		-A2	35									/124.9
																									1								
																									1								
																									1			-					
																									1			-	-	-			
	+							+									_								1			-	-	+	+		
	-			_													_	-							1			-	+	+		\vdash	
	+							+	-							+		-			-				1			+	+	+	+	+	
	+						_	+					_	_		+		-			-				-	$\left \right $		\rightarrow	+	+		+ +	
	_							_						_	_			-							-			\rightarrow	-+	+	_	+	
	+							_						_	_	$\left \right $		-			_				-	$\left \right $		\rightarrow	\rightarrow	+	_	+-+	
	_							_						_	_			_							4			\rightarrow	\rightarrow	+	_	++	
	_							_							_						_				4			\rightarrow	\rightarrow	\rightarrow	_	\vdash	
	_														_			_			_				4			\rightarrow	-+	\perp		\vdash	
																												\square					
Project po.: MFT-20/21 Revision: R0 Revision date: 16.07.2021								21			TVZ	TEHNIČKO	VELEUČILIŠ	TE U ZAGREE	BU www.hc	z hr		Customer: Tehničko vel	eučilište ι	I Zagrebu		Object: Elektrote	hnički	odelj T	VZ-a					Cabine	:t: +Y1		
Drawn: Xabier Gregorio, bach. eng. el.											\bigcirc	POLYTECH	IICUM ZAGRA	BIENSE	bik 8a, 10000 Zag	greb		Vrbij 8a, 100	00 Zagre	b		Konavos	ka 2, 1	0000 Z	agreb					Plant:	=H1		
Check	ed: To	mislav	/ Špolja	rić, dip	l.eng.	el.				P	Page de	script	ion: Te	rmina	ıl diagı	am				End customer: Tehničko	veleučili	šte u Zagrel	bu	Project name: E	lectrica	al proje	ect desi	gn for	r a cabir	net in a	an	Page:	158
Approved: Tomislav Špoljarić, dipl.eng. el.																	Konavos	ка 2, 100	UU Zagreb		e	ingine l		л a COO	my p				Follow	: 159			

0 1 2												3						5		6		7					8		—	9				
Т	erm	nina	al d	iag	jra	m												I																
																-WY1.2	-WY1.1	-WY1.0	Cable name			י tH=	erminal str L+Y1·	rip -XY1		Cable name								
																UNITRONIC® LIYCY	LIYCY	NYY	Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type								Page
																				II	+NH3SEP-Y1	1		-Xfuse	1:B									/100.5
																				III	+NH3SEP-Y1	2		-V1	-	1								/100.5
																								-XY2										
																				А	+NH3SEP-Y1	3	•	-KY11	A1									/124.1
																				В	+NH3SEP-Y1	4	•	-KY12	A1									/124.1
																				С	+NH3SEP-Y1	5	•	-KY13	A1									/124.2
																				D	+NH3SEP-Y1	6	•	-A2	M//40									/124.2
														\square										-XY2										
														\square						E	+NH3SEP-Y1	7	•	-A5	21			\square			\perp			/130.4
													\square	\vdash	$ \rightarrow $					G	+NH3SEP-Y1	8	•	-A5	1			\vdash		\square	\perp		$\downarrow \downarrow$	/130.4
														\vdash														\vdash	$ \rightarrow $	\square	-+		++	
														\vdash														\vdash	$ \rightarrow $	\square	-+		++	
	_												\vdash	\vdash			_											<u> </u>			\rightarrow		++	
	_												\vdash	⊢	$ \rightarrow $		_											⊢	\rightarrow	\rightarrow	\rightarrow		++	
	_		$\left \right $								_		\vdash	⊢−−∔			_											⊢−∔	\rightarrow	\rightarrow	\rightarrow		+ +	
	_										_		\vdash	\vdash														<u> </u>	\rightarrow	-+	\rightarrow		++	
													\vdash	⊢−−														⊢−-	\rightarrow	\rightarrow	\rightarrow		++	
	_		$\left \right $								_		$\left - \right $	⊢−−∔		_	_											┢───╋	\rightarrow	\rightarrow	\rightarrow		+	
	_												$\left - \right $	⊢−−			\rightarrow											<u> </u>	\rightarrow	-+	-+		+	
	_						_			_	_		\vdash	⊢	\rightarrow	_	_											<u> </u>	\rightarrow	+	\rightarrow		+	
	_									_	_		\vdash	┌──┼		_	-											<u> </u>	\rightarrow	+	+		+	
	_	-									_		$\left - \right $	<u> </u>			_											<u> </u>	-+	-+	-+		+	
	_						-	-			_		\vdash	rł			\rightarrow											$ \rightarrow$	\rightarrow	+	-		++	
							1	<u> </u>							<u> </u>	L	_	I	I	I					I		1							
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021									TV	2 ТЕНІМ	VIČKO VEL'	UČILIŠTE	U ZAGRE	BU .	row by by		Customer: Tehničko vel	leučilište u	J Zagrebu		Object: Elektrote	nnički o	odelj T	īVZ-a					Cabin	±: +Y1				
Drawn: Xabier Gregorio, bach. eng. el.								1			7 POLYT	TECHNICUM	ZAGRABI	ENSE	Vrbik Ba, 100	00 Zagreb		Vrbij 8a, 100	000 Zagre	b		Konavosk	a 2, 10	0000 Z	'agreb					Plant:	=H1			
Check	ed: To	mislav	Špolja	rić, dip	ol.eng.	el.					Page	e descri	ption:	Term	inal d	iagra	m				End customer: Tehničko	o veleučili	šte u Zagrel	DU	Project name: El	ectrica	al proje	ect des	ign fo	ır a cab	inet in	n an	Page:	159
Approved: Tomislav Špoljarić, dipl.eng. el.																		Konavos	ка 2, 100	uu Zagreb		er	iyine f		" a COC	mig p				Follow	: 160			

0 1								2					3						5		6		7					8			9			
Т	erm	ina	al d	liag	gra	m																												
															-WY2.2	-WY2.1	-WY2.0	Cable name			י H=	ierminal str L+Y1:	^{rip} -XY2		Cable name									
															UNITRONIC® LIYCY	LIYCY	ΝΥΥ	Cable type	Connection point	External target	Terminal	Jumper	Internal ta	Connection point	Cable type								Pag	je
																			II	+NH3SEP-Y2	1	· ·	-Xfuse	2:B				-					/100	.6
																			III	+NH3SEP-Y2	2		-XY1	2:1	1								/100.	.6
																			А	+NH3SEP-Y2	3	· ·	-KY21	A1	1								/124.	.3
																		Ì	В	+NH3SEP-Y2	4	•	-KY22	A1	1		\square						/124.	.3
																		ĺ	С	+NH3SEP-Y2	5	•	-KY23	A1									/124.	.4
																			D	+NH3SEP-Y2	6	•	-XY1	6:1									/124.	.4
																			Е	+NH3SEP-Y2	7	•	-A5	25									/130.	.5
																			G	+NH3SEP-Y2	8	•	-A5	5									/130.	.5
																											\square							
																											\square			\square				
																											\square	\square	\square	\square				
											_	_													4		\square	$ \rightarrow $	$ \rightarrow$	\rightarrow				
											_	_															\square		\rightarrow	$ \rightarrow $				
											_																\square	$ \rightarrow $		\rightarrow				
	_										_														-		\vdash	\rightarrow	<u> </u>	\rightarrow				
	_										_														-		\vdash	\rightarrow	<u> </u>	\rightarrow				
		-									_	_													-		\vdash		\rightarrow	\rightarrow				
	_	-									_														-		\vdash	\rightarrow	<u> </u>	\rightarrow				
	_	-									_	+													-		\vdash	\rightarrow	<u> </u>	\rightarrow				
	_	-									_	_	-												-		\vdash	\rightarrow	\rightarrow	\rightarrow				
	_	-								_	+	+	-		_										-		\vdash	\rightarrow	\rightarrow	\rightarrow	_			
		-									_	-													-		\vdash	\rightarrow	\rightarrow		_			
									1								1	1	I.	I	1	I						_		l				
Desire no i MET 20/21 Devision Do								~								Customer: Tehničko vo	loučiličto i	1 Zagrebu		Object: Elektroto	hnički	odeli T	 T\/7_>					Cabir						
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021 Drawn: Xabier Gregorio, bach, eng. el.						\neg		(^T		NIČKO VEL	EUČILIŠTI I ZAGRABI	U ZAGR	EBU	ww.tvz.hr 0 Zagreb		Vrbij 8a. 100	000 Zagre	b		Konavos	ka 2, 1	0000 2	Zagreb)				Plant	: =H1					
Checked: Tomislav Špoljarić, dipl.eng. el.							Pag	je desc	ription	: Tern	ninal c	liagra	m				End customer: Tehničko	o veleučili	šte u Zagrel	bu	Project name: E	lectrica	al proj	ect des	sign fc	or a cat	oinet ir	n an	Page	160				
Approved: Tomislav Špoljarić, dipl.eng. el.																Konavos	ka 2, 100	00 Zagreb		е	ngine I	room	of a coo	oling p	plant			Follo	v: 161					

0 1	2 3	4	5	6	7		8	9
Terminal diagram		·	·					
		Cable name	יז H1=	erminal strip L +Y1-XY3		Cable name		
		Connection point Cable type	External target	ដ ភ្លេ ទុ រ Internal tai	Connection point rget			Page
			1	• -0KV1	14			/134.0
			I	1 1	I			
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021			Customer: Tehničko veleučilište u	J Zagrebu	Object: Elektrotehnič	čki odelj TVZ-a		Cabinet: +Y1
Drawn: Xabier Gregorio, bach. eng. el.		RABIENSE Vibik 8a, 1000 Zagreb	Vrbij 8a, 10000 Zagrel	- b	Konavoska 2	, 10000 Zagreb		Plant: =H1
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagra	gram	End customer: Tehničko veleučilis	šte u Zagrebu	Project name: Elect	rical project design f	or a cabinet in an	Page: 161
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska 2, 100	00 Zagreb	engir	ne room of a cooling	plant	Follow: 162

0 1	2 3	4	5	6		7	8	9
Terminal diagram		·			·	·		
		Cable name	י =H 1	Terminal strip L+Y1-XY4		Cable name		
		Connection point Cable type	Termina External target	ц щ ре е Іnternal tai	Connection point rget	Cable type		Page
			1	-0KV2	14			/134.2
		· · ·						
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021		21.1	Customer: Tehničko veleučilište	u Zagrebu	Object: Elektrotehn	ički odelj TVZ-a		Cabinet: +Y1
Drawn: Xabier Gregorio, bach. eng. el.	TVZ TEHNICKO VELEUCILISTE U ZAGREBU POLYTECHNICUM ZAGRABIENSE VIDA	BU www.tvz.hr bik.8a, 10000 Zagreb	Vrbij 8a, 10000 Zagre	2b	Konavoska	2, 10000 Zagreb		Plant: =H1
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagram		End customer: Tehničko veleučili	šte u Zagrebu	Project name: Elec	ctrical project design	n for a cabinet in an	Page: 162
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska 2, 100	000 Zagreb	eng	ine room of a coolir	ng plant	Follow: 163

0 1 2												3					4		5		6		7					8		\neg		9			
Т	erm	ina	al d	iag	gra	m																			ŀ										
																	-WY5	Cable name				י H1=	erminal str L +Y1 ·	^{rip} -XY5		Cable name									
																	ΝΥΥ	Cable type	Connection point		External target	Terminal	Jumper	Internal ta	Connection point rget	Cable type									Page
																			SN		+OCCIR-Y5	1	-												/134.4
																			1		+OCCIR-Y5	2	•	-0KV3	14					\square					/134.4
																			3		+OCCIR-Y5	3	•	-0KV3	12					\square					/134.5
																														\square					
																														\square					
																															\neg				
																															-	-			
																															-	-	-		
							-+	 -																		-				\vdash	+	-	+	-	
							-			_																					-				
				_			-			-																-					-+	+			
	-							 -		-										+						-	-			\vdash	+	+	+	+	
				_			-	 -		_																-	-			\vdash	+	+	-+	+	
							_	 _		_																-				\vdash	+	-+		-+	
			$\left \right $	_				 	_	-										-		_				-	-			\vdash	\rightarrow	+	\rightarrow	\rightarrow	
	_						_	 _		_																-	-			\vdash	\rightarrow	+	—	+	
	_			_				 _		_										_						-	-			\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
	_			_				 _		_												_				-	-			\vdash	\rightarrow	+	\rightarrow	\rightarrow	
	_							 		_												_				_	_			\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
								_										_		_				_				\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021							2021			TV	TEHN	NČKO VELE	UČILIŠTE	U ZAGREE	3U ,	wa be be			Customer: Tehničko ve	leučilište u	ı Zagrebu		Object: Elektrot	ehnički	i odelj	TVZ-a						Cabine	t: +Y1		
Drawn: Xabier Gregorio, bach. eng. el.									1		Ű	POLY	TECHNICUM	ZAGRABIE	NSE Vr	bik 8a, 1000	0 Zagreb			Vrbij 8a, 10	000 Zagre	b		Konavos	ska 2, 1	10000	Zagreb	0				/	Plant:	=H1	
Checked: Tomislav Špoljarić, dipl.eng. el.									Page	descri	ption:	Term	ninal d	iagra	m					End customer: Tehničk	o veleučili	šte u Zagret	bu	Project name:	Electric	al proj	ject de	sign fo	or a cal	binet ir	n an	ļ,	Page:	163	
Approved: Tomislav Špoljarić, dipl.eng. el.																			Konavos	ska 2, 100	00 Zagreb			engine	room	or a co	oling	plant			!	Follow	164		

0 1	2 3	4	5		6		7	8	9
Terminal diagram	2 5	-			0		,	0	3
		<u> </u>					- 1 1		1 1
		Cable name	=	Terminal st	rip Xfuse		Cable name		
		Connection point Cable type	External target	Jumper Terminal	Internal tar	Connection point get	Cable type		Page
		11:3	-OKYM1	314 1	-V1	1			/100.6
		13	-0K%22	35		1			/100.0
		111	- SONKU /BL	336 •		1			/102.0
		1	-SM121	7 •		1			/104.0
		1	-SM21	11 •		1			/106.0
		1	-SM22	12 •		1			/106.2
		1	-SM311	13 •		1			/108.0
		1	-SM41	17 ·		1			/110.1
		1	-SM42	18 •		1			/110.3
		1	-SWH41	19 ·		1			/110.6
		1	-SM51	20 •		1			/112.0
		1	-SM52	21 •		1			/112.3
		1	-SM53	22 •		1			/112.6
		1	-SM61	23 •		1			/114.0
		1	-SM62	24 •		1			/114.2
		1	-SM63	25 •		1			/114.4
		1	-SM64	26 •		1			/114.7
		11	-Q111	27 •					/124.1
		A1	-0KM111	28 •					/126.1
		A1	-0KWH41	29 •					/126.5
		L+	-A4	30 ·	-A1	2L+			/128.0
		1:1	-XAI	31 •		1			/128.1
		L+//41	-A5	32 t	-A4	L+			/130.4
			-A6-L1+	33					/132.2
Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021	TVZ TEHINIČKO VELEUČILIŠTE U ZAGREBU POLYTECHNICUM ZAGRABIENSE	www.bz.hr	Customer: Tehničko veleuč	ciliste u Zagrebu Zagreb		Object: Elektroteh	nički odelj TVZ-a	a	Cabinet: +Y1
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Terminal diagram	oro zagap	End customer: Tehničko ve	eleučilište u Zaore	bu	Project name: Fle	a 2, 10000 2dgre	lesign for a cabinet in an	Page: 164
Approved: Tomislav Špoljarić, dipl.eng. el.			Konavoska	cooling plant	Follow: 165				

						1				
0	1	2	3	4	5	6	7	8		9
Part list										
Device tag			Part description				Part number	Manufacturer	Quantity	Page
-A1	SIMATIC S7-1500, CPU 1511-1 P	N, CENTRAL PROCESSING UN	IT WITH WORKING MEMORY	150 KB FOR PROGRAM AND	1 MB FOR DATA, 1. INTERFAC	Œ:	6ES7511-1AK02-0AB0	SIE	1	/124.0
-A2	SIMATIC S7-1500, DIGITAL INPL	JT MODULE DI 32xDC 24V HF	, 32 CHANNELS IN GROUPS O	F 16/ INPUT DELAY 0.05 2	OMS/ INPUT TYPE 3 (IEC 6113	31)/	6ES7521-1BL00-0AB0	SIE	1	/124.1
-A3	SIMATIC S7-1500, DIGITAL OUT	PUT MODULE DQ 32 X 24V D	C/0.5A HF/ 32 CHANNELS IN O	GROUPS OF 8, 4 A PER GROU	P/ SINGLE-CHANNEL DIAGNO	SIS/	6ES7522-1BL01-0AB0	SIE	1	/126.0
-A4	SIMATIC S7-1500, ANALOG INPL	JT MODULE AI 8 X U/I HF, 16	BITS OF RESOLUTION, ACCU	RACY 0.1%, 8 CHANNELS IN	GROUPS OF 1/ COMMON MOD	DE	6ES7531-7NF00-0AB0	SIE	1	/128.0
-A5	SIMATIC S7-1500, ANALOG IN-/	OUTPUT MODULE AI 4X U/I/F	/RTD/TC ST/ 4 CHANNELS IN	GROUPS OF 4 PROCESSALAF	RMS/ DIAGNOSTICS AQ 2X U/I	I ST/ 2	6ES7534-7QE00-0AB0	SIE	1	/130.4
-A6	SCALANCE XC216 MANAGEABLE	LAYER 2 IE-SWITCH; 16X 10,	100 MBIT/S RJ45 PORTS; 1X	CONSOLE PORT; DIAGNOSIT	ICS-LED; REDUNDANT POWE	R SUPPLY;	6GK5216-0BA00-2AC2	SIE	1	/132.2
-FQ0	High quality miniature circuit-bre	aker, rated operating voltage	230/400V, rated switching cap	acity 10 kA according to UL	1077, CSA C22.2 No 235 and I	EC/EN	FAZ-C6/1	ETN	1	/100.3
-HM21G							XB4BV43	SE	1	/123.3
-HM21R							XB4BV44	SE	1	/123.3
-HM22G							XB4BV43	SE	1	/123.4
-HM22R							XB4BV44	SE	1	/123.4
-HM41G							XB4BVB3	SE	1	/120.0
-HM41R							XB4BVB4	SE	1	/120.1
-HM42G							XB4BVB3	SE	1	/120.7
-HM42R							XB4BVB4	SE	1	/120.7
-HM51G							XB4BVB3	SE	1	/122.0
-HM51R							XB4BVB4	SE	1	/122.1
-HM52G							XB4BVB3	SE	1	/122.3
-HM52R							XB4BVB4	SE	1	/122.4
-HM53G							XB4BVB3	SE	1	/122.7
-HM53R							XB4BVB4	SE	1	/122.7
-HM61G							XB4BV43	SE	1	/123.6
-HM61R							XB4BV44	SE	1	/123.6
-HM62G							XB4BV43	SE	1	/123.7
-HM62R							XB4BV44	SE	1	/123.7
-HM63G							XB4BV43	SE	1	/123.7
-HM63R							XB4BV44	SE	1	/123.8
-HM64G							XB4BV43	SE	1	/123.8
-HM64R							XB4BV44	SE	1	/123.8
-HM111G							XB4BV43	SE	1	/123.1
-HM111R							XB4BV44	SE	1	/123.1
-HM112G							XB4BVB3	SE	1	/116.2
-HM112R							XB4BVB4	SE	1	/116.2
-HM113G							XB4BVB3	SE	1	/116.4
-HM113R							XB4BVB4	SE	1	/116.4
-HM121G							XB4BV43	SE	1	/123.2
Project no.: MFT-20/21	Revision: R0 Revision date: 1	6.07.2021		www.tvz.hr	: Tehničko veleučilište u Zagre	ebu	Object: Elektrotehnički odelj TVZ-a		Cabinet: +	-Y1
Drawn: Xabier Gregor	rio, bach. eng. el.		POLT LEORINGUM ZAGHABIENSE Vibik Ba, 11	End custo	Vrbij 8a, 10000 Zagreb	arehu	Konavoska 2, 10000 Zagre	b	Plant: =	-H1 (65
Approved: Tomislav Špol	ljarić, dipl.eng. el.		i. raft list		Konavoska 2, 10000 Zag	reb	engine room of a c	ooling plant	Follow: 1	166

0	1		2	3	4		5		6	7	8		9
Part list													
Device tag				Part description						Part number	Manufacturer	Quantity	Page
-HM121R										XB4BV44	SE	1	/123.2
-HM122G										XB4BVB3	SE	1	/116.6
-HM122R										XB4BVB4	SE	1	/116.7
-HM123G										XB4BVB3	SE	1	/116.8
-HM123R										XB4BVB4	SE	1	/116.9
-HM311G										XB4BV43	SE	1	/123.4
-HM311R										XB4BV44	SE	1	/123.5
-HM312G										XB4BVB3	SE	1	/118.2
-HM312R										XB4BVB4	SE	1	/118.2
-HM321G										XB4BV43	SE	1	/123.5
-HM321R										XB4BV44	SE	1	/123.5
-HM322G										XB4BVB3	SE	1	/118.7
-HM322R										XB4BVB4	SE	1	/118.8
-HWH41G										XB4BV43	SE	1	/123.6
-HWH41R										XB4BV44	SE	1	/123.6
-HWH111G										XB4BV43	SE	1	/123.1
-HWH111R										XB4BV44	SE	1	/123.2
-HWH121G										XB4BV43	SE	1	/123.3
-HWH121R										XB4BV44	SE	1	/123.3
-K211	The types of the DS7 series are	soft starters for	r gently starting	three-phase current motors f	or applications with nor	rmal ope	erating frequency and a perfo	rmance		DS7-340SX012N0-N	ETN	1	/106.1
-K212	Contactor 3pole, 5,5kW, AC3, 14	4A, 230VAC + 1	NO built in							LA301413N-	SCHR	1	/106.0
-K221	The types of the DS7 series are	soft starters for	r gently starting	three-phase current motors f	or applications with nor	rmal ope	erating frequency and a perfo	rmance		DS7-340SX012N0-N	ETN	1	/106.3
-K222	Contactor 3pole, 5,5kW, AC3, 14	4A, 230VAC + 1	NO built in							LA301413N-	SCHR	1	/106.2
-K411	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/110.1
-K421	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/110.3
-K431	Contactor 3pole, 5,5kW, AC3, 14	4A, 230VAC + 1	NO built in							LA301413N-	SCHR	1	/110.6
-K511	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/112.0
-K521	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/112.3
-K531	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/112.6
-K611	Modular contactor 25A, 2NO, 24	4VAC 1MW Rate	d output AC-3/2	230V 1,30kW						BZ326474	SCHR	1	/114.0
-K621	Modular contactor 25A, 2NO, 24	4VAC 1MW Rate	d output AC-3/2	230V 1,30kW						BZ326474	SCHR	1	/114.2
-K631	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/114.4
-K641	Contactor 3pole, 4kW, AC3, 10A	A, 230VAC + 1N	O built in							LA301013N-	SCHR	1	/114.7
-K1111	The types of the DS7 series are	soft starters for	r gently starting	three-phase current motors f	or applications with nor	rmal ope	erating frequency and a perfo	rmance		DS7-340SX012N0-N	ETN	1	/102.1
-K1112	Contactor 3pole, 5,5kW, AC3, 14	4A, 230VAC + 1	NO built in							LA301413N-	SCHR	1	/102.0
-K1121	Contactor 3pole, 5,5kW, AC3, 14	4A, 230VAC + 1	NO built in							LA301413N-	SCHR	1	/102.3
	1												
Project no.: MFT-20/21	Revision: R0 Revision date: :	16.07.2021	(www.tvz.hr	stomer:	Tehničko veleučilište u Zagre	bu	Ob	nject: Elektrotehnički odelj TVZ-a		Cabinet: +	+Y1
Checked: Tomislav Špol	no, bach. eng. el. liarić, dipl.eng. el	r		vitik Ra. 1	Find	1 custor	vroij va, 10000 Zagreb ner: Tehničko veleučilište u 7a	arebu	Pro	NUNAVOSKA Z, 1UUUU Zagre	sign for a cabinet in an	Piant: =	=п1 166
Approved: Tomislav Špol	ljarić, dipl.eng. el.	/'	משב מבשנו ואנוטו				Konavoska 2, 10000 Zagr	eb		engine room of a c	oling plant	Follow: 1	167

0	1		2	3	4		5		6	7	8		9
Part list													
Device tag				Part description						Part number	Manufacturer	Quantity	Page
-K1131	Contactor 3pole, 5,5kW, AC3, 1	4A, 230VAC +	1NO built in							LA301413N-	SCHR	1	/102.5
-K1141	Modular contactor 40A, 4NO, 23	80VAC 3MW Ra	ated output AC-3,	230V 2,60kW, Rated output	AC-3/400V 12,50kW					BZ326442	SCHR	1	/102.8
-K1211	The types of the DS7 series are	soft starters fo	or gently starting	three-phase current motors f	for applications with	normal ope	erating frequency and a perfo	rmance		DS7-340SX012N0-N	ETN	1	/104.1
-K1212	Contactor 3pole, 5,5kW, AC3, 1	4A, 230VAC +	1NO built in							LA301413N-	SCHR	1	/104.0
-K1221	Contactor 3pole, 5,5kW, AC3, 1	4A, 230VAC +	1NO built in							LA301413N-	SCHR	1	/104.3
-K1231	Contactor 3pole, 5,5kW, AC3, 1	4A, 230VAC +	1NO built in							LA301413N-	SCHR	1	/104.5
-K1241	Modular contactor 40A, 4NO, 23	80VAC 3MW Ra	ated output AC-3	230V 2,60kW, Rated output	AC-3/400V 12,50kW					BZ326442	SCHR	1	/104.8
-K3111	The types of the DS7 series are	soft starters fo	or gently starting	three-phase current motors f	for applications with I	normal ope	erating frequency and a perfo	rmance		DS7-340SX009N0-N	ETN	1	/108.1
-K3112	Contactor 3pole, 4kW, AC3, 10A	, 230VAC + 1	NO built in							LA301013N-	SCHR	1	/108.0
-К3121	Contactor, 3pole,15kW/32A AC	3, 65A AC1, 23	0VAC							LA303233	SCHR	1	/108.2
-К3211	The types of the DS7 series are	soft starters fo	or gently starting	three-phase current motors f	for applications with	normal ope	erating frequency and a perfo	rmance		DS7-340SX009N0-N	ETN	1	/108.5
-K3212	Contactor 3pole, 4kW, AC3, 10A	, 230VAC + 1	NO built in							LA301013N-	SCHR	1	/108.5
-К3221	Contactor, 3pole,15kW/32A AC3	8, 65A AC1, 23	0VAC							LA303233	SCHR	1	/108.7
-0KM21	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.3
-0KM21	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.3
-0KM22	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.3
-0KM22	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.3
-0KM61	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.5
-0KM61	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.5
-0KM62	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.6
-0KM62	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.6
-0KM63	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.6
-0KM63	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.6
-0KM64	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.7
-0KM64	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ole for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.7
-0KM111	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.1
-0KM111	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.1
-0KM121	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.2
-0KM121	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ole for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.2
-0KM311	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.3
-0KM311	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.3
-0KM321	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.4
-0KM321	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.4
-0KWH41	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.5
-0KWH41	The CR-M4SS socket is from the	e CR-M (miniat	ure) relay range.	The standard socket is suital	ble for CR-M relays w	vith 2 and 4	4 c/o (SPDT) output contacts.	The socket		CR-M4SS	ABB	1	/126.5
-0KWH111	The CR-M024DC4 pluggable inte	erface relay is	from the CR-M (r	niniature) relay range. This r	elay operates with a	24 V DC ra	ated control supply voltage an	d has a 4		CR-M024DC4	ABB	1	/126.1
Project no.: MFT-20/21	Revision: R0 Revision date:	16.07.2021		TEHNIČKO VELEUČILIŠTE U ZAGREBU	www.hz.hr	Customer:	Tehničko veleučilište u Zagrel	bu	1	Object: Elektrotehnički odelj TVZ-a		Cabinet: +	-Y1
Drawn: Xabier Gregori	io, bach. eng. el. iarić dipl eng. el		Page description	Dort lict	10000 Zagreb	End custon	vrdij 8a, 10000 Zagreb ner: Tehničko veleučilište u 7a	arehu		Konavoska 2, 10000 Zagreb Project name: Electrical project da)	Plant: =	-ні 67
Approved: Tomislav Špolj	jarić, dipl.eng. el.		raye description	rait IISt			Konavoska 2, 10000 Zagr	reb		engine room of a co	oling plant	Follow: 1	68

0	1	2	3	4	5	6	5	7	8		9
Part list			ŀ	1							
Device tag			Part description					Part number	Manufacturer	Quantity	Page
-0KWH111	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/126.1
-0KWH121	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/126.2
-0KWH121	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/126.2
-KY11	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.1
-KY11	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.1
-KY12	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.1
-KY12	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.1
-KY13	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.2
-KY13	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.2
-KY21	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.3
-KY21	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.3
-KY22	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.3
-KY22	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.3
-KY23	The CR-M024DC4 pluggable inter	face relay is from the CR	M (miniature) relay range. This r	elay operates with a 24 V	DC rated control supply voltage an	nd has a 4		CR-M024DC4	ABB	1	/124.4
-KY23	The CR-M4SS socket is from the	CR-M (miniature) relay ra	nge. The standard socket is suita	ble for CR-M relays with 2	2 and 4 c/o (SPDT) output contacts	. The socket		CR-M4SS	ABB	1	/124.4
-200M0										0	/200.0
-200M1										0	/200.1
-200M3										0	/200.3
-200M5										0	/200.5
-200M6										0	/200.6
-200M8										0	/200.8
-Q0	Moulded Case Circuit Breaker Typ	be A, 3-pole, 50kA, 200A	Anlagen- und Kabelschutz					MC220231	SCHR	1	/100.0
-Q0	Shunt trip 208-250VAC/DC for MC	C2/3						MC299763	SCHR	1	/100.0
-Q0V	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-C10/1	ETN	1	/100.3
-Q00	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-C6/2	ETN	1	/100.2
-Q01	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-C6/1	ETN	1	/100.4
-Q21	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-12/AK	ETN	1	/106.1
-Q22	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-12/AK	ETN	1	/106.3
-Q41	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-6,3/AK	ETN	1	/110.2
-Q42	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-6,3/AK	ETN	1	/110.4
-Q43	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-B20/3	ETN	1	/110.7
-Q51	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-4/AK	ETN	1	/112.1
-Q52	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-4/AK	ETN	1	/112.4
-Q53	Motor-protective circuit-breaker v	with lockable rotary handl	e to IEC/EN60947, 3 pole size PK	ZM0, with adjustable over	load and non-delayed short-circuit	release,		PKZM0-4/AK	ETN	1	/112.7
-Q61	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-C10/1	ETN	1	/114.1
-Q62	High quality miniature circuit-brea	aker, rated operating volt	age 230/400V, rated switching ca	pacity 10 kA according to	UL 1077, CSA C22.2 No 235 and I	EC/EN		FAZ-C10/1	ETN	1	/114.3
Project no.: MFT-20/21	Revision: R0 Revision date: 16	5.07.2021	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU POLYTECHNICUM ZAGRABIENSE	www.tvz.hr	omer: Tehničko veleučilište u Zagre	bu	Obje	ct: Elektrotehnički odelj TVZ-a	b	Cabinet: +	-Y1
Drawn: Xabler Gregor Thecked: Tomislav Špol	no, pach. eng. el. liarić, dipl.eng. el.	Dana dasari	vitik 8a	10010 Zagreb	vroij va, 10000 Zagreb customer: Tehničko veleučilište u 7:	aarebu	Proie	KUNAVOSKA 2, 10000 Zagrel	u asign for a cabinet in an	Plant: =	-n1 68
Approved: Tomislav Špol	ljarić, dipl.eng. el.				Konavoska 2, 10000 Zag	reb		engine room of a co	poling plant	Follow: 1	.69

0	1	2	3	4		5		6	7		8		9	
Part list									•					
Device tag			Part description	n					Part number		Manufacturer	Quantity	Page	
-Q63	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pl	KZM0, with adjustable ov	verload and n	on-delayed short-circuit r	release,		PKZM0-1/AK		ETN	1	/114.5	
-Q64	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pl	<zm0, adjustable="" ov<="" td="" with=""><td>verload and n</td><td>ion-delayed short-circuit r</td><td>release,</td><td></td><td>PKZM0-6,3/AK</td><td></td><td>ETN</td><td>1</td><td>/114.8</td></zm0,>	verload and n	ion-delayed short-circuit r	release,		PKZM0-6,3/AK		ETN	1	/114.8	
-Q111	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pl	KZM0, with adjustable ov	verload and n	ion-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/102.1	
-Q112	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pł	KZM0, with adjustable ov	verload and n	ion-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/102.3	
-Q113	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pł	KZM0, with adjustable ov	verload and n	ion-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/102.6	
-Q114	High quality miniature circuit-brea	aker, rated operating	voltage 230/400V, rated switching c	apacity 10 kA according	to UL 1077, (CSA C22.2 No 235 and IE	C/EN		FAZ-B40/1		ETN	1	/102.8	
-Q121	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pl	<zm0, adjustable="" ov<="" td="" with=""><td>verload and n</td><td>on-delayed short-circuit r</td><td>release,</td><td></td><td>PKZM0-12/AK</td><td></td><td>ETN</td><td>1</td><td>/104.1</td></zm0,>	verload and n	on-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/104.1	
-Q122	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pł	<zm0, adjustable="" ov<="" td="" with=""><td>verload and n</td><td>on-delayed short-circuit r</td><td>release,</td><td></td><td>PKZM0-12/AK</td><td></td><td>ETN</td><td>1</td><td>/104.3</td></zm0,>	verload and n	on-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/104.3	
-Q123	Motor-protective circuit-breaker w	vith lockable rotary ha	andle to IEC/EN60947, 3 pole size Pł	<zm0, adjustable="" ov<="" td="" with=""><td>verload and n</td><td>ion-delayed short-circuit r</td><td>release,</td><td></td><td>PKZM0-12/AK</td><td></td><td>ETN</td><td>1</td><td>/104.6</td></zm0,>	verload and n	ion-delayed short-circuit r	release,		PKZM0-12/AK		ETN	1	/104.6	
-Q124	High quality miniature circuit-brea	High quality miniature circuit-breaker, rated operating voltage 230/400V, rated switching capacity 10 kA according to UL 1077, CSA C22.2 No 235 and IEC/EN FAZ-B40/1								ETN	1	/104.8		
-Q311	Motor-protective circuit-breaker with lockable rotary handle to IEC/EN60947, 3 pole size PKZM0, with adjustable overload and non-delayed short-circuit release, PKZM0-10/AK									ETN	1	/108.1		
-Q312	Motor-protective circuit-breaker with lockable rotary handle to IEC/EN60947, 3 pole size PKZM0, with adjustable overload and non-delayed short-circuit release, PKZM0-3								PKZM0-32/AK		ETN	1	/108.3	
-Q321	Motor-protective circuit-breaker with lockable rotary handle to IEC/EN60947, 3 pole size PKZM0, with adjustable overload and non-delayed short-circuit release,								PKZM0-10/AK		ETN	1	/108.6	
-Q322	Motor-protective circuit-breaker with lockable rotary handle to IEC/EN60947, 3 pole size PKZM0, with adjustable overload and non-delayed short-circuit release,								PKZM0-32/AK		ETN	1	/108.7	
-QPLC	High quality miniature circuit-breaker, rated operating voltage 230/400V, rated switching capacity 10 kA according to UL 1077, CSA C22.2 No 235 and IEC/EN							FAZ-C6/2		ETN	1	/124.0		
-S0									XB4BS8445		SE	1	/100.3	
-SM21	On-Off switches according DIN EN 60669-1, VDE 0632 Part 1, Rated currents: 16/25/32 A, 250/400 VACPDC, Contacts: 1 NO/2 NO/3 NO/4 NO, Module width: 0,5/					width: 0,5/1		E211-16-10		ABB	1	/106.0		
-SM22	On-Off switches according DIN EN 60669-1, VDE 0632 Part 1, Rated currents: 16/25/32 A, 250/400 VACPDC, Contacts: 1 NO/2 NO/3 NO/4 NO, Module width: 0,5/					width: 0,5/1		E211-16-10		ABB	1	/106.2		
-SM41	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/110.1	
-SM41.1	Cam switch according to IEC/EN6	i0947, size T0, installa	ation form, front plate 48x48, degree	e of protection Front IP65	5 with black t	thumb grip, rated uninter	rupted		T0-1-8200/E		ETN	1	/120.1	
-SM42	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/110.3	
-SM42.1	Cam switch according to IEC/EN6	i0947, size T0, installa	ation form, front plate 48x48, degree	e of protection Front IP65	5 with black t	thumb grip, rated uninter	rupted		T0-1-8200/E		ETN	1	/120.8	
-SM51	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/112.0	
-SM51.1	Cam switch according to IEC/EN6	0947, size T0, installa	ation form, front plate 48x48, degree	e of protection Front IP6	5 with black t	thumb grip, rated uninter	rupted		T0-1-8200/E		ETN	1	/122.1	
-SM52	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/112.3	
-SM52.1	Cam switch according to IEC/EN6	i0947, size T0, installa	ation form, front plate 48x48, degree	e of protection Front IP65	5 with black t	thumb grip, rated uninter	rupted		T0-1-8200/E		ETN	1	/122.5	
-SM53	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/112.6	
-SM53.1	Cam switch according to IEC/EN6	i0947, size T0, installa	ation form, front plate 48x48, degree	e of protection Front IP65	5 with black t	thumb grip, rated uninter	rupted		T0-1-8200/E		ETN	1	/122.8	
-SM61	On-Off switches according DIN Ef	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/114.0	
-SM62	On-Off switches according DIN Ef	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/114.2	
-SM63	On-Off switches according DIN Ef	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/114.4	
-SM64	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/114.7	
-SM111	On-Off switches according DIN Ef	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/102.0	
-SM112	On-Off switches according DIN Ef	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/102.3	
-SM113	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/102.5	
-SM121	On-Off switches according DIN E	N 60669-1, VDE 0632	Part 1, Rated currents: 16/25/32 A,	250/400 VACPDC, Conta	acts: 1 NO/2	NO/3 NO/4 NO, Module v	width: 0,5/1		E211-16-10		ABB	1	/104.0	
Project no.: MFT-20/21	Revision: R0 Revision date: 16	5.07.2021	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU	www.htz.ht	stomer: Tehn	ničko veleučilište u Zagret	bu	Ob	ject: Elektrotehnički ode	lj TVZ-a		Cabinet: +	-Y1	
Drawn: Xabier Gregor	io, bach. eng. el.		POLYTECHNICUM ZAGRABIENSE Vibik	8a, 10000 Zagrab	Vrbij	j 8a, 10000 Zagreb			Konavoska 2, 1000	0 Zagreb	<i>.</i>	Plant: =H1		
Approved: Tomislav Spol	jarić, dipl.eng. el. jarić, dipl.eng. el.	Page de	Page description: Part list End customer: Tehničko veleučilište u Zagrebu Konavoska 2, 10000 Zagreb				gredu eb	Project name: Electrical project design for a cabinet in an engine room of a cooling plant			n for a cabinet in an ng plant	Page: 169 Follow: 170		

0	1	2	3	4	5	I	6	7	8		9
Part list											
Device tag			Part description					Part number	Manufacturer	Quantity	Page
-SM122	On-Off switches according DIN I)n-Off switches according DIN EN 60669-1, VDE 0632 Part 1, Rated currents: 16/25/32 A, 250/400 VACPDC, Contacts: 1 NO/2 NO/3 NO/4 NO, Module width: 0,5,						E211-16-10	ABB	1	/104.3
-SM123	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/104.5
-SM311	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/108.0
-SM312	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/108.2
-SM321	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/108.5
-SM322	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/108.7
-SWH41	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/110.6
-SWH111	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/102.7
-SWH121	On-Off switches according DIN I	EN 60669-1, VDE 0632 Part 1,	Rated currents: 16/25/32 A, 2	50/400 VACPDC, Contacts: 1	NO/2 NO/3 NO/4 NO, Module	width: 0,5/1		E211-16-10	ABB	1	/104.7
-U112								ACS880-01-12A6-3	ABB	1	/102.3
-U112	Fieldbus: Ethernet							FENA-01	ABB	1	/102.3
-U113								ACS880-01-12A6-3	ABB	1	/102.6
-U113	Fieldbus: Ethernet							FENA-01	ABB	1	/102.6
-U122								ACS880-01-12A6-3	ABB	1	/104.3
-U122	Fieldbus: Ethernet							FENA-01	ABB	1	/104.3
-U123								ACS880-01-12A6-3	ABB	1	/104.6
-U123	Fieldbus: Ethernet							FENA-01	ABB	1	/104.6
-U312								ACS880-01-032A-3	ABB	1	/108.3
-U312	Fieldbus: Ethernet							FENA-01	ABB	1	/108.3
-U322								ACS880-01-032A-3	ABB	1	/108.7
-U322	Fieldbus: Ethernet							FENA-01	ABB	1	/108.7
-V0	Single-phase Power Supply, puls	sing, 230VAC/24VDC, 6A at 50	°C electronic power supply, ho	ousing for DIN rail mounting				LP412406	SCHR	1	/100.2
-V1	Single-phase Power Supply, puls	sing, w.UPS, 230VAC/24VDC, 1	10A electronic power supply wi	th UPS function, housing for D	DIN rail mounting			LP442410	SCHR	1	/100.3
-Xfuse										0	/200.2

Project no.: MFT-20/21 Revision: R0 Revision	on date: 16.07.2021		Customer: Tehničko veleučilište u Zagrebu	Object: Elektrotehnički odelj TVZ-a	Cabinet: +Y1
Drawn: Xabier Gregorio, bach. eng. el.		POLYTECHNICUM ZAGRABIENSE Vibik & 1000 Zagrab	Vrbij 8a, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Plant: =H1
Checked: Tomislav Špoljarić, dipl.eng. el.		Page description: Part list	End customer: Tehničko veleučilište u Zagrebu	Project name: Electrical project design for a cabinet in an	Page: 170
Approved: Tomislav Špoliarić, dipl.eng. el.			Konavoska 2, 10000 Zagreb	engine room of a cooling plant	Follow: 171

				-		-		
	1	2 3	4	5	6	/	8	9
able overview							1	
Cable name	Source	Target		Cable type	Wires	Cross-section [mm ²]	Length [m]	Page
W0M41	-X0M41	+PGWWTNK-M41	NYY		5	1.5		/120.0
V0M42	-X0M42	+PGWWTNK-M42	NYY		5	1.5		/120.7
V0M51.1	-X0M51	+WWTNK-M51	NYY		5	1.5		/122.0
V0M52.1	-X0M52	+WWTNK-M52	NYY		5	1.5		/122.3
V0M53.1	-X0M53	+WWTNK-M53	NYY		5	1.5		/122.7
VB1.1	-X0B1.1	+CNDSYS1-B1.1	LiYCY		2	0.75		/116.1
VB1.2	-X0B1.2	+CNDSYS1-B1.2	LiYCY		2	0.75		/116.3
VB2.1	-X0B2.1	+CNDSYS2-B2.1	LiYCY		2	0.75		/116.5
VB2.2	-X0B2.2	+CNDSYS2-B2.2	LiYCY		2	0.75		/116.8
VB3.1	-X0B3.1	+PGWCOOL-B3.1	LiYCY		2	0.75		/118.1
VB3.2	-X0B3.2	+PGWCOOL-B3.2	LiYCY		2	0.75		/118.7
VM41	+PGWWTNK-M41	-X4	NYY		4	1.5		/110.2
WM42	-X4	+PGWWTNK-M42	NYY		4	1.5		/110.4
VM51	-X5	+WWTNK-M51	NYY		4	1.5		/112.1
VM52	-X5	+WWTNK-M52	NYY		4	1.5		/112.3
/M53	-X5	+WWTNK-M53	NYY		4	1.5		/112.7
/MS	+TLV-PEN	-Q00	NYY		4x	120		/100.0
VP2	-A6-P2	-U112	ETHERLINE®	PN Cat.5e Y	4	22		/116.1
VP3	-A6-P3	-U113	ETHERLINE®	PN Cat.5e Y	4	22		/116.3
VP4	-A6-P4	-U122	ETHERLINE®	PN Cat.5e Y	4	22		/116.5
/P5	-A6-P5	-U123	ETHERLINE®	PN Cat.5e Y	4	22		/116.7
/P6	-A6-P6	-U312	ETHERLINE®	PN Cat.5e Y	4	22		/118.1
/P7	-A6-P7	-U322	ETHERLINE®	PN Cat.5e Y	4	22		/118.6
/P8	-A6-P8	+PGWWTNK-M41	ETHERLINE®	PN Cat.5e Y	4	22		/120.2
VP9	-A6-P9	+PGWWTNK-M42	ETHERLINE®	PN Cat.5e Y	4	22		/120.9
VP10	-A6-P10	+WWTNK-M51	ETHERLINE®	PN Cat.5e Y	4	22		/122.2
VP11	-A6-P11	+WWTNK-M52	ETHERLINE®	PN Cat.5e Y	4	22		/122.5
/P12	-A6-P12	+WWTNK-M53	ETHERLINE®	PN Cat.5e Y	4	22		/122.9
/WH41	-X4	+PGWWTNK-WH41	NYY		5	4		/110.7
/Y1.0	-XY1	+NH3SEP-Y1	NYY		2x	1.5		/100.5
YY1.1	-XY1	+NH3SEP-Y1	LiYCY		4X	0.75		/124.1
VY1.2	-XY1	+NH3SEP-Y1	UNITRONIC®	LiYCY	2	0.75	1	/130.4
VY2.0	-XY2	+NH3SEP-Y2	NYY	NYY		1.5	1	/100.6
VY2.1	-XY2	+NH3SEP-Y2	LiYCY		4x	0.75	1	/124.3
VY2.2	-XY2	+NH3SEP-Y2	UNITRONIC®	UNITRONIC® LIYCY		0.75	1	/130.5
VY3			NYY		2x	1.5		/134.0
-WY3			NTT		2X	1.5		/134.0
t no.: MFT-20/21 Revision: R0	Revision date: 16.07.2021	TVZ, TEHNIČKO VELEUČILIŠTE U	ZAGREBU www.lvz.hr	Customer: Tehničko veleučilište u Zagreb	u Object: Elektr	otehnički odelj TVZ-a		Cabinet: +Y1
n: Xabier Gregorio, bach. eng. el		POLYTECHNICUM ZAGRABIENS	E Vibik Ba, 10000 Zagreb	Vrbij 8a, 10000 Zagreb	Kona	oska 2, 10000 Zagreb		Plant: =H1
ked: Tomislav Spoljarić, dipl.eng. el		Page description: Cable overview		End customer: Tehničko veleučilište u Za	grebu Project name	Electrical project design for a cooling plant	cabinet in an	Page: 171

0	1	2	3	4	5	6		7		8	9
Cable overview	1										
Cable name	So	urce	Target		Cable type		Wires	Cross-section	[mm²]	Length [m]	Page
-WY4				NYY			2x	1.5			/134.2
-WY5	-XY5	+0	DCCIR-Y5	NYY			3x	1.5			/134.4
-W_NH3_10_B1	-XAI	+N	NH3SEP-B2	UNITRONIC® LIYCY			2	0.75			/128.7
-W_NH3_30_B1	-XAI	+N	NH3SEP-B1	UNITRONIC® LIYCY			2	0.75			/128.6
-W_NH3_TUN_B1	-XAI	+N	NH3SEPTUN-B3	UNITRONIC® LIYCY			2	0.75			/128.8
-W_PGW_COOL_B1	-XAI	+P	PGWCOOL-B1	UNITRONIC® LIYCY			2	0.75			/128.1
-W_PGW_COOL_B2	-XAI	+P	PGWCOOL-B2	UNITRONIC® LIYCY			2	0.75			/128.2
-W_WWT1_B1	-XAI	+V	WWTNK-B1	UNITRONIC® LIYCY			2	0.75			/128.3
-W_WWT2_B1	-XAI	+V	WWTNK-B2	UNITRONIC® LIYCY			2	0.75			/128.4
-W_WWT3_B1	-XAI	+V	WWTNK-B3	UNITRONIC® LIYCY			2	0.75			/128.5

Project no.: MFT-20/21 Revision: R0 Revision date: 16.0	121 TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU UVELA IV	Customer: Tehničko veleučilište u Zagrebu	Object: Elektrotehnički odelj TVZ-a	Cabinet: +Y1
Drawn: Xabier Gregorio, bach. eng. el.	POLYTECHNICUM ZAGRABIENSE Vibik &s. 10010 Zagreb	Vrbij 8a, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Plant: =H1
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Cable overview	End customer: Tehničko veleučilište u Zagrebu	Project name: Electrical project design for a cabinet in an	Page: 172
Approved: Tomislav Špoljarić, dipl.eng. el.		Konavoska 2, 10000 Zagreb	engine room of a cooling plant	Follow: 200

Project no.: MFT-20/21 Revision: R0 Revision date: 16.07.2021	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU MORE AV V	Customer: Tehničko veleučilište u Zagrebu	Object: Elektrotehnički odelj TVZ-a	Cabinet: +Y1
Drawn: Xabier Gregorio, bach. eng. el.	POLYTECHNICUM ZAGRABIENSE Vibik Ea, 10010 Zagrab	Vrbij 8a, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Plant: =H1
Checked: Tomislav Špoljarić, dipl.eng. el.	Page description: Disposition of Cabinet	End customer: Tehničko veleučilište u Zagrebu	Project name: Electrical project design for a cabinet in an	Page: 200
Approved: Tomislav Špoljarić, dipl.eng. el.		Konavoska 2, 10000 Zagreb	engine room of a cooling plant	Follow: