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she lived rather than before her time.
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SUMMARY
Few complete human genomes from the European Early Upper Palaeolithic (EUP) have been sequenced.
Using novel sampling and DNA extraction approaches, we sequenced the genome of a woman from ‘‘Pesxtera
Muierii,’’ Romania who lived �34,000 years ago to 13.53 coverage. The genome shows similarities to mod-
ern-day Europeans, but she is not a direct ancestor. Although her cranium exhibits both modern human and
Neanderthal features, the genome shows similar levels of Neanderthal admixture (�3.1%) to most EUP
humans but only half compared to the �40,000-year-old Pesxtera Oase 1. All EUP European hunter-gatherers
display high genetic diversity, demonstrating that the severe loss of diversity occurred during and after the
Last Glacial Maximum (LGM) rather than just during the out-of-Africa migration. The prevalence of genetic
diseases is expected to increase with low diversity; however, pathogenic variant load was relatively constant
from EUP to modern times, despite post-LGM hunter-gatherers having the lowest diversity ever observed
among Europeans.
INTRODUCTION

The chronology of the Upper Palaeolithic (UP) from about 45 kya

in Europe was characterized by drastic climatic change1 and

marks the time of the first appearance of anatomically modern

humans (AMHs) in Europe (�45,000 BP).2–4 It is commonly

believed that themigration into Europe followed twomain routes:

along theMediterranean and along theDanube fluvial corridor.5,6

The Carpathian Mountains in present-day Romania are located

close to the second suggested route, and some of the earliest

AMH remains from Europe have been found in this region, ce-

menting it as being an important region for early human occupa-

tion in Europe. Remains excavated in caves from South-West

Romania, such as ‘‘Peștera cu Oase,’’ ‘‘Peștera Muierii,’’ or ’’Peș-
tera Cioclovina Uscat�a,’’ are part of the handful of European

AMH individuals older than 30 kya that have been found to

date (Figure 1).7–9 In 1952, skeletal parts attributed to three

AMHs were found in Pesxtera Muierii in current-day Romania

(STAR Methods), although with some elements showing
Current Biology 31, 2973–2983,
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Neanderthal-like traits.10 Even though the context is slightly un-

clear, the Aurignacian tool found in the vicinity make it likely that

the human remains can be associated with this technological

tradition.10 During the Early Upper Palaeolithic (EUP), several

shifts in material culture have been documented,9,11,12 and ge-

netic evidence13–16 points to reoccurring population changes.

Placingmodern human origins in Africa and the ensuingmigra-

tions out of Africa to colonize the rest of the globe is one of the

success stories of molecular genetics,17 confirming hypotheses

that emerged from the fossil record. The observed difference in

genetic diversity between sub-Saharan Africans and non-Afri-

cans18 has been explained by the bottleneck associated with

the migration of a relatively small group of individuals out from

Africa.18–20 The lower diversity outside of Africa has also been

suggested to cause less effective purging of harmful variants, re-

sulting in an increased ‘‘genetic load’’ in, e.g., Europeans

compared to Africans,21–24 although others argue that the reduc-

tion in effective population size has not been substantial enough

to cause increased genetic load.25,26
July 26, 2021 ª 2021 The Authors. Published by Elsevier Inc. 2973
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Figure 1. Map of selected EUP individuals

These individuals have been genomically investigated. The map also shows later individuals which were sequenced to a high genome coverage. See also

Data S1.
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We sequenced and analyzed the genome of Pesxtera Muierii 1

(PM1) dated to �34 ky calBP.27 Taken together with the data

offered by the few other complete EUP genomes,28,29 a picture

of relatively high genetic diversity in EUP Europe emerges , a di-

versity that declines during and after the Last Glacial Maximum

(LGM) (�24–19 kya) and that only recovers after the migration

(and mixing) of genetically diverse Neolithic groups into Europe.

We further investigated pathogen-selective pressures on im-

mune system genes and describe the landscape of medically

relevant variants in the genomes of EUP Europeans, showing

deleterious variant loads that are similar to those of modern-

day European populations.

RESULTS

The preservation of DNA is generally poor in specimens from the

EUP, typically limiting the possible inferences from these data.

To date, genomes of >13 coverage have been retrieved from

AMH older than 30 ky from four sites and eight individuals:

Ust’-Ishim (n = 1), Kostenki (n = 1), Yana (n = 2), and Sunghir

(n = 4),28–31 with Pesxtera Muierii 1 being the 9th. A few more

EUP individuals have been analyzed for genome-wide SNP

data, although the poor preservation of the material has limited

the retrieval of data to in-solution SNP capture.14–16

We extracted DNA from small portions of four teeth from the

Pesxtera Muierii 1 individual. Using state-of-the-art approaches,

including silica-based DNA extraction protocols,32,33 the DNA

preservation and proportion of endogenous human DNA in
2974 Current Biology 31, 2973–2983, July 26, 2021
PesxteraMuierii 1 was at about 1% to 2% (Figure 2), similar to pre-

vious observations from material of this age and from Eu-

rope.14,30 Based on these DNA extracts, the genome coverage

that could be expected when sequencing libraries to depletion

was calculated at about 0.53. However, we used a novel DNA

extraction approach, including a less invasive sampling tech-

nique coupled with improved digestion buffer. In contrast to

sampling into the bone material in order to collect bone powder,

a larger proportion of the bone material is protected from the

heat created from the sampling equipment when a diamond cut-

ting wheel is used to remove a piece of the bone material. Using

this sampling method, only the part where the diamond cutting

wheel is cutting through is affected by increased temperature

from the equipment, and thereby a less invasive method is

used. More recently, we have expanded this ‘‘less invasive’’

technique to other bone elements, including to plug-drill a small

hole (�5mmdiameter) into, e.g., the petrous bone, therebymini-

mizing the impact on the petrous bone. This sampling approach

resulted in the proportion of endogenous genomic DNA ,

increasing up to 33-fold in the novel DNA extracts compared

to current state-of-the-art ancient DNA (aDNA) extraction tech-

niques (Figure 2).33–35 In these DNA extracts, the endogenous

DNA content was 49% (mean across libraries; STAR Methods),

allowing us to obtain a genome coverage of 13.493. We note,

however, that this improvement could be partly due to stochas-

ticity regarding the preservation within this particular specimen.

In total, we built 42 blunt-end double-stranded libraries from 8

independent DNA extractions, which were sequenced on the



Figure 2. Proportion of endogenous human DNA

Comparison of the traditional sampling method compared to the here

described DNA extraction method. See also Figure S1.
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Illumina X10 and HiSeq 2500 platforms (STAR Methods) until

depletion of unique sequences. The fragmentation and nucleo-

tide mis-incorporation patterns were consistent with a pattern

of DNA damage typical of aDNA, with low-moderate contamina-

tion levels. We estimate autosomal and mitochondrial contami-

nation of Pesxtera Muierii 1 to be below 6%, with a point estimate

of 5.7% for the nuclear genome and 1.5% after filtering poten-

tially affected heterozygous sites (STAR Methods; Figure S1C).

The sequence data of Pesxtera Muierii 1 confirm the previous

assignment of Pesxtera Muierii 1 to the basal mitochondrial hap-

logroup U6* (STAR Methods; Figure S2A),36 making PM1 the

only occurrence of the U6 haplogroup found until now in prehis-

toric Europeans. Derived U6 haplotypes are primarily found

among prehistoric and present-day North African populations,

but not among modern-day Europeans.36 There is ample evi-

dence of migrations from Eurasia into North Africa during the

Holocene and possibly earlier,37,38 potentially explaining this

observation.36 f4 statistics show no evidence of an excess of

autosomal allele sharing between PM1 and Iberomaurusian

Moroccan hunter-gatherers (STAR Methods; Figure S3D).38

Although the Pesxtera Muierii 1 cranium has been suggested to

exhibit a mosaic of morphological features related to both AMHs

and Neanderthals,9,27 the genome shows similar levels of Nean-

derthal admixture (point estimate of 3.1%) compared to other
EUP humans from the same time frame (Figures S3E and

S3F)14,28–30 and only modest elevation compared with modern-

day Europeans (2.2%–2.7%).39 We further find that Pesxtera
Muierii 1 carries fewer but longer Neanderthal segments

compared to post-LGM individuals and more but shorter seg-

ments than the older Ust’-Ishim individual, consistent with a sin-

gle Neanderthal introgression event for these individual’s ances-

tors. The �40-ky-old Pesxtera Oase 1 mandible, also excavated

in modern-day Romania, showed a different pattern, with a

Neanderthal ancestor just a few generations back and 6%–9%

Neanderthal admixture.40 Hence, despite the fact that both Pesx-
tera Muierii 1 and Pesxtera Oase 1 have been suggested to carry

archaic morphological traits,7,9,27 they show distinctly different

Neanderthal admixture levels and history. Pesxtera Muierii 1

carried the ancestral variants for known SNPs involved in

pigmentation similar to other individuals from EUP Eurasia and

likely had relatively dark skin pigmentation and brown eyes

(STAR Methods).

Several genetically distinct hunter-gatherer groups were likely

present in Eurasia between 45 and 30 kya,13–16 differing in their

relationship to later Stone Age groups and modern-day popula-

tions. Archaeogenomic studies have revealed a separation be-

tween European (e.g., Goyet Q116-1 from present-day Belgium

and Sunghir III and Kostenki 14 from present-day Russia)14,29,30

and East Asian hunter-gatherers (e.g., Tianyuan)41,42 in this

period, but genetic data also exist from groups that did not

contribute directly to modern-day Eurasians (e.g., Ust’-Ishim

and Oase 1).28,40 Genetically, Pesxtera Muierii 1 falls into the ge-

netic variation of European hunter-gatherers of similar age (Fig-

ure 3), but not with the older Ust’-Ishim or Oase 1 individuals,

despite the geographic proximity to the latter. The genetic

resemblance between these EUP individuals (Sunghir III,

Kostenki 14, and Pesxtera Muierii 1) shows extensive genetic sim-

ilarities across space (2,000 km separate the Romanian and

Russian sites) and suggests that stratification rather follows

time than geography. Modeling the relationships as admixture

graph, Pesxtera Muierii 1 is genetically intermediate between

Eastern and Western European hunter-gatherer groups and

shows distant relationships to later hunter-gatherers who

contributed to modern Europeans (Figure 3). PM1 shows similar

affinities to all modern-day European populations (Figure S2B),

but she also displays substantial private genetic drift (Fig-

ure S3H), suggesting that she represents a group that was a

side branch to the ancestor of modern-day Europeans.

The availability of high-coverage ancient genomes allows us to

obtain unbiased estimates of genetic diversity in these different

groups and time periods. Interestingly, heterozygosity is signifi-

cantly higher in pre-LGM hunter-gatherers than in post-LGM

hunter-gatherers (Figure 4A; only the confidence intervals of

Sunghir III and Kotias overlap). A similar loss of diversity during

the LGM has been seen in mitochondrial haplogroups.13

Although most of the reduced diversity betweenmodern-day Af-

rican and non-African populations has been attributed to bottle-

neck(s) associated with the out-of-African migration, the genetic

diversity across time in Europe (Figure 4) illustrates the impact

and importance of subsequent climatic and demographic

events. First, we can conclude that it is not the migration out of

Africa that solely caused the reduction in diversity; rather, it ap-

pears that the low diversity was caused by the low population
Current Biology 31, 2973–2983, July 26, 2021 2975



Figure 3. Admixture graph modeling of pre-Neolithic human history

in Europe focusing on PM1

The positioning of individuals along the vertical axis corresponds to their

radiocarbon dates; population split times and dates of admixture events are

unknown; private drift not to scale. See also Figures S1–S4 and Data S1.

Figure 4. Diversity in the EUP

(A) Relative heterozygosity displayed for 9 ancient high-coverage samples,

also showing the size of ice cover in Europe (area in million km2) during the last

glacial period.43 Error bars indicate two standard errors estimated through a

block-jacknife procedure.

(B) Runs of homozygosity for the 9 ancient individuals and modern pop-

ulations.18

See also Figures S1 and S3 and Data S1.
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density outside Africa for an extended period of time coupled

with population turnovers, as seen in Europe. Second, after the

LGM, Europe was likely recolonized by relatively small hunter-

gatherer groups from one or very few glacial refugia, and only

later large-scale migrations associated with farming practices

led to an increase of genetic diversity approaching the levels

before the LGM. In addition to heterozygosity, we assessed

runs of homozygosity (ROHs) in ancient and modern individuals

with high-coverage genomes sequenced. ROHs can be seen as

evidence for identity by descent and used to reflect the recent

demographic history of an individual, because the length of the

ROH is affected by factors such as recent consanguinity leading

to long identical tracts and long-term small population sizes indi-

cated by many short identical tracts. ROHs have been used to

show that pre-LGMhunter-gatherers probably had social behav-

iors avoiding mating between close relatives.29 Consistent with

per-site heterozygosity, ROHs suggest pre-LGM hunter-gath-

erers to bemuchmore diverse than their post-LGM counterparts

(Figure 4B). Notably, the younger pre-LGM hunter-gatherers

Sunghir III and PM1 show intermediate levels of genetic diversity

in both analyses. This illustrates that the loss of genetic diversity

during and after the LGM was likely caused by the harsh climate

conditions during those times, coupled with recolonizations and

population turnovers initiated from small groups.

The complete genome sequence from Pesxtera Muierii 1,

together with the sequence data from previously published
2976 Current Biology 31, 2973–2983, July 26, 2021
high-coverage ancient genomes,28,29,34,44–46 allowed us to

investigate the disease-associated variant landscape among

European Stone-Age individuals (from EUP to the Neolithic).

We used amethodology drawn frommedical genetics47 to inves-

tigate potential pathogenic mutations and changes in their

frequency.

We first explored whether there are any differences in terms of

mutational burden in the coding part of the genome (exome) of

ancient individuals grouped into pre-LGM hunter-gatherers,

post-LGM hunter-gatherers, and Neolithic farmers, compared

to each other and to modern-day healthy individuals (STAR

Methods). We focused on substitution variants that were homo-

zygous, with known dbSNP entries (rs IDs) in the coding regions,

in order to avoid the potential false-positive variants in ancient

genomes due to effects of post mortem DNA damage and

slightly greater sequencing error rates in these genomes. There

were no significant differences in the burden of coding protein-

altering variants between the ancient genomes compared to

modern-day genomes, as shown by similar numbers of non-syn-

onymous variants, non-synonymous and synonymous variant

ratio, and stop-gain variants (Data S1G; Figure 5). We used



Figure 5. Comparison of predicted deleterious variants in temporal groups of ancient (pre-LGM, post-LGM, and Neolithic) and modern

exomes

For (A) extreme PhyloP scores and high CADD scores (B) (see also Figure S5). P.adj., Wilcoxon test Bonferroni-adjusted p value. See also Figure S5 and Data S1.
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two proxies to assess the load of possibly damaging variants

among all missense variants: (1) distribution of nucleotide

conservation scores (vertebrate PhyloP > 3.0)48 and (2) distribu-

tion of CADD (combined annotation-dependent depletion)

scores >15 (Figure 5).49 For these measures, the three groups

of ancient genomes (pre-LGM, post-LGM, and Neolithic)

showed no significant difference frommodern exomes (Figure 5).

In addition, none of the individual ancient exomes showed a

significant difference from modern-day exomes (Figure S5).

The EUP census population size could have led to increased

occurrence of possibly damaging variants due to inbreeding

and bottlenecks, but the lack of difference is instead in line

with the high diversity of the pre-LGM population.

Although we do not have a strong indication of a higher num-

ber of damaging variants in exomes from most time periods, the

ancient individuals may carry a different set of damaging variants

compared to modern-day humans. We scanned the ancient ge-

nomes and identified several variants that stood out as poten-

tially involved in human pathology. Here, we focus on rare, likely

homozygous variants in the exomes of prehistoric humans

(Table 1) or variants that have a HGMD (human gene mutation

database) entry (Data S1I). We identified two variants in genes

that in recent literature have been suggested to be associated

with severe, monogenic diseases. First, one homozygous

missense variant (p.(Glu1413Lys)) was identified in ANKRD11.

Heterozygous pathogenic variants in that gene have been

described as the cause of the severe KBG syndrome;50 patients

with this disease are characterized by macrodontia, distinctive

craniofacial features, short stature, skeletal anomalies, global

developmental delay, seizures, and intellectual disability. How-

ever, we excluded this diagnosis based on the different inheri-

tance pattern, the unknown effect of this missense variant, as

well as the cranial characteristics of the Peștera Muierii 1 individ-

ual. Second, the exact same variant in AIPL1 (p.(His82Tyr)) that

we identified in the Bichon individual was previously described

in a compound heterozygous state in a sporadic case of
recessive form of Leber congenital amaurosis 4 (OMIM:

604393) and retinitis pigmentosa. However, the Bichon variant

p.(His82Tyr) is not in a functional domain, and the same variant

is described 3 times in ExAC in homozygous state (23 in EUR

and 13 SA). These observations make us argue that this is

very unlikely a pathogenic variant in a homozygous state. These

two examples cast doubt on the idea that these variants are

pathogenic and demonstrate that sequencing and in-depth anal-

ysis of ancient genomes can help draw conclusions on the path-

ogenicity of potential disease-causing mutations in modern-day

patients: the earlier reported case of Leber congenital amaurosis

4 is thus unlikely to have been caused by this specific AIPL1mu-

tation. In addition, we identified several rare, likely homozygous,

non-synonymous variants in Peștera Muierii 1 that are of poten-

tial medical interest (Data S1J). Among them, we identified a ho-

mozygous nonsense variant in IL-32 p.(Trp169*), a gene impor-

tant in carcinogenesis (STAR Methods).51

Assessment of ancient genomes can also inform on the

shaping of immune responses by different pathogen burdens

during history. Cytokines are crucial immune mediators of host

defense against pathogens. We assessed the presence of five

gene polymorphisms known to be strongly associated with

higher cytokine production capacity (STAR Methods). Interest-

ingly, Pesxtera Muierii 1 genome harbors the variants associated

with a strongly increased cytokine production capacity for 4

of these 5 SNPs: heterozygous carrier for C allele of TLR1

rs4833095; homozygous carrier of G allele for TLR6

rs5743810; heterozygous carrier for G allele of TLR10

rs11096957; and heterozygous carrier for T allele of IL-10

rs1800872.53 In addition, the Peștera Muierii 1 individual was a

carrier of heterozygous IFNG rs2069727, associated with an

average cytokine production. Overall, these data suggest that

Peștera Muierii 1 individual was a high responder in terms of

cytokine production capacity, although less than 4% of mod-

ern-day Europeans display this combination of high-cytokine

polymorphisms. Considering the protective effects of high
Current Biology 31, 2973–2983, July 26, 2021 2977



Table 1. Summary of rare (<1%) likely homozygous, non-synonymous variants identified in PM1 and other ancient exomes

Sample ID R./C. Chr.

Genomic

position

(hg19) Ref. Var. Reads

Var.

reads

SNP ID

(dbSNP144)

SNP

freq. (%)

In-house

freq. (%)

GnomAD

freq. (%) Protein change c.DNA variant PhyloP

CADD

PHRED

score

GATK

quality

score

PM1 R. chr1 243,328,858 C T 3 3 rs572733185 0.020 0 0.0008047 p.(Val802Met) NM_014812.2(CEP170):

c.2404G > A

0.01 0.012 92.28

PM1 R. chr2 139,316,900 G A 27 22 rs145753116 0.439 0.276 0.3993 p.(Ser236Asn) NM_001001664.2(SPOPL):

c.707G > A

7.843 14.71 733.77

PM1 R. chr7 2,473,130 G C 5 5 rs201518792 NA 0.116 0.3405 p.(Ala286Pro) NM_001243794.1(CHST12):

c.856G > C

1.25 12.7 171.9

PM1 R. chr7 77,261,719 C T 21 20 rs201001953 NA 0.026 0.06898 p.(Ser684Leu) NM_002835.3(PTPN12):

c.2051C > T

5.381 26.8 691.81

PM1 R. chr10 114,925,405 C G 15 13 rs201257936 0.998 0.032 0.2812 p.(Pro495Ala) NM_001146274.1(TCF7L2):

c.1483C > G

2.527 12.79 453.89

PM1 R. chr11 70,279,800 G A 26 26 rs763439626 NA 0 0.001414 p.(Val461Ile) NM_001184740.1(CTTN):

c.1381G > A

0.782 3.301 1,011.77

PM1 R. chr16 3,119,157 G A 4 4 rs775284592 NA 0 0.0008204 p.(Trp169a) NM_001308078.1(IL-32):

c.506G > A

�0.231 11.8 128.03

PM1 R. chr16 89,348,713 C T 10 9 rs140373729 0.020 0.019 0.04843 p.(Glu1413Lys) NM_001256182.1(ANKRD11):

c.4237G > A

5.366 15.28 302.18

Bichon R. chr17 6,337,271 G A 35 35 rs144822294 0.059 0.274 0.1682 p.(His82Tyr) NM_014336.3(AIPL1):

c.244C > T

0.191 7.845 1,111.77

Kotias R. chr16 2,296,927 G A 67 67 rs112729404 0.658 0.735 0.6972 p.(Thr76Met) NM_001919.3(ECI1):

c.227C > T

6.033 9.763 1,719.77

Kotiasa C. chrX 153,595,771 C T 2 2 rs267606816 NA 0 0 p.(Gly288Arg) NM_001110556.1(FLNA):

c.862G > A

7.809 14.76 52.74

Loschbour R. chr5 78,280,974 G A 4 4 rs201168448 0.219 0.604 1.047 p.(Ala33Val) NM_000046.4(ARSB):

c.98C > T

�0.344 9.108 52.74

Ust’-Ishim R. chr19 15,285,063 G T 18 18 rs141320511 NA 0.094 0.4296 p.(Leu1518Met) NM_000435.2(NOTCH3):

c.4552C > A

5.547 24.7 651.77

Ust’-Ishim R. chrX 105,279,368 C T 24 24 rs2234036 NA 0.196 0.4466 p.(Ala211Thr) NM_000354.5(SERPINA7):c.631G > A 3.867 12.14 806.77

This highlights all variants after these filters with known dbSNP entry for PM1; for all other ancient genomes, only variants with HGMDentry are shown. See also Figure S5 andData S1. GnomAD allele

frequency was added (03/2020).52 Chr., chromosome; freq., frequency; IL-32, interleukin-32; R., rare (<1% population frequency); ref., reference nucleotide; var., variant nucleotide.
aThis variant was only present in 2/2 reads, i.e., did not fulfill the R3 reads filter
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immune responses in the context of high infection burden,53 it is

likely that this genetic makeup represents an adaptive state

conferring protection against pathogenic microbes.

DISCUSSION

The deep sequencing of the Peștera Muierii 1 woman enabled us

to identify a surprising genetic diversity in pre-LGM populations,

which brings a new understanding of the early European popula-

tion of AMH. These data propose a novel paradigm, in which

early AMH populations after migration out of Africa were much

more diverse than previously believed, and the bottlenecks

associated with loss of diversity were caused by glacial climatic

periods in northern latitudes. In line with the high diversity

observed in EUP genomes, the burden of damaging variants in

these individuals was largely the same as in modern-day individ-

uals. This is clearly a different pattern from the high burden of

deleterious variants found in small isolated populations,26 which

may help us understand the different views of genetic load in

humans.21,22,24–26 However, these ancient high-coverage ge-

nomes represent a very small sample size, and it is unclear

whether the results can be extrapolated to the entire populations

living during these time periods. Finally, using novel methodolo-

gies employed in medical genomics, we mined the genomes of

ancient individuals for potential pathogenic variants. We have

identified several interesting rare variants with medical conse-

quences in the EUP genomes. In the case of other variants iden-

tified, such as the AIPL1 (p. (His82Tyr)) described in a sporadic

case of Leber congenital amaurosis 4, we propose that they

are unlikely to be pathogenic based on insufficient literature ev-

idence. Additionally, one could argue that living completely blind

would have been very challenging in the Palaeolithic. However,

we also note that care for individuals with congenital disorders

or injuries is present in the archaeological record since the Mid-

dle Pleistocene,54–56 and if the variant was verified as causing

blindness, we could add another example of early human care

for an individual with a severe disorder. This example shows

that analysis of ancient genomes can also help in the pathoge-

nicity assessment of rare genetic variants in modern-day

patients.

This study opens the door to a new approach to the study of

ancient genomes, in which classical population genetics can

be combined with medical genomics to draw conclusions about

demographics and disease epidemiology. Future research chal-

lenges will extend to broaden these medical genetics observa-

tions in larger populations, to study patterns of selection in

ancient populations, and to directly identify the refugia and hu-

man populations from which the hunter-gatherers resurged after

the LGM.
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Millon).

85. Chirica, V. (2001). Gisements Paleolithiques de Mitoc: le Paleolithique

Superieur de Roumanie a la Lumiere des Decouvertes de Mitoc (Helios).

86. Borziac, I., Chirica, V., and V�aleanu, M.C. (2006). Culture et Soci�et�es

Pendant le Pal�eolithique Sup�erieur à Travers l’Espace Carpato-
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Pestano, J.J., and González, A.M. (2014). The history of the North

African mitochondrial DNA haplogroup U6 gene flow into the African,

Eurasian and American continents. BMC Evol. Biol. 14, 109.

112. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y.,

Genschoreck, T., Webster, T., and Reich, D. (2012). Ancient admixture

in human history. Genetics 192, 1065–1093.

113. Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B.,

Brandt, G., Nordenfelt, S., Harney, E., Stewardson, K., et al. (2015).

http://refhub.elsevier.com/S0960-9822(21)00592-3/sref71
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref71
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref71
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref72
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref72
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref72
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref73
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref73
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref73
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref74
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref75
https://c14.arch.ox.ac.uk/oxcal.html
https://c14.arch.ox.ac.uk/oxcal.html
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref77
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref77
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref77
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref77
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref78
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref78
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref78
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref78
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref78
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref79
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref80
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref81
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref81
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref81
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref81
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref81
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref82
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref82
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref82
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref82
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref83
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref83
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref84
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref85
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref85
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref86
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref86
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref87
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref87
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref87
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref87
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref88
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref88
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref89
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref89
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref89
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref89
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref90
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref91
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref92
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref92
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref92
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref92
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref93
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref93
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref93
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref94
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref94
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref94
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref94
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref95
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref96
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref96
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref96
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref96
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref96
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref97
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref97
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref98
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref98
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref98
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref98
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref99
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref99
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref99
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref100
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref100
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref100
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref100
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref101
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref101
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref101
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref101
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref101
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref102
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref102
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref102
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref103
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref103
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref103
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref103
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref104
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref104
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref104
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref104
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref105
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref105
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref105
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref105
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref106
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref106
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref106
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref106
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref106
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref107
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref107
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref107
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref107
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref108
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref108
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref108
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref108
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref109
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref109
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref109
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref109
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref110
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref110
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref110
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref111
http://refhub.elsevier.com/S0960-9822(21)00592-3/sref111


ll
OPEN ACCESSArticle
Massive migration from the steppe was a source for Indo-European lan-

guages in Europe. Nature 522, 207–211.

114. Jones, E.R., Zarina, G., Moiseyev, V., Lightfoot, E., Nigst, P.R., Manica,

A., Pinhasi, R., and Bradley, D.G. (2017). The neolithic transition in the

Baltic was not driven by admixture with Early European farmers. Curr.

Biol. 27, 576–582.

115. Wang, C., Szpiech, Z.A., Degnan, J.H., Jakobsson, M., Pemberton, T.J.,

Hardy, J.A., Singleton, A.B., and Rosenberg, N.A. (2010). Comparing

spatial maps of human population-genetic variation using Procrustes

analysis. Stat. Appl. Genet. Mol. Biol. 9, 13.

116. Skoglund, P., Malmström, H., Raghavan,M., Storå, J., Hall, P., Willerslev,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Ancient individual This study PM1/Pesxtera Muierii 1

Chemicals, peptides, and recombinant proteins

QIAGEN MinElute kit QIAGEN Cat#28004

Guanidine hydrochloride Sigma-Aldrich Cat#50933

EDTA, 0.5M, pH 8.0 Thermo Fisher Scientific Cat#15575020

Agencourt AMPure XP Beckman Coulter Cat#A63882

Critical commercial assays

High Sensitivity D1000 Reagents (Tapestation 2200) Agilent Cat#5067-5585

High Sensitivity D1000 Screentape (Tapestation 2200) Agilent Cat#5067-5584

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat#10616763

Deposited data

Human sequence data (European nucleotide archive) This study ENA: PRJEB33172

Oligonucleotides

IS1_adapter P5: A*C*A*C*TCTTTCCCTACACGACGCT

CTTCCG*A*T*C*T (* = Phosphorothioate)

N/A Biomers

IS2_adapter P7: G*T*G*A*CTGGAGTTCAGACGTGTG

CTCTTCCG*A*T*C*T (* = Phosphorothioate)

N/A Biomers

IS3 adaptor P5+P7: A*G*A*T*CGGAA*G*A*G*C

(* = Phosphorothioate)

N/A Biomers

IS4 PCR primer: AATGATACGGCGACCACCGAGATC

TACACTCTTTCCCTACACGACGCTCTT

N/A Biomers

P7 indexing primer: CAAGCAGAAGACGGCATACGAG

ATnnnnnnnGTGACTGGAGTTCAGACGTGT

N/A Biomers

IS7 amplification primer: ACACTCTTTCCCTACACGAC N/A Biomers

IS8 amplification primer: GTGACTGGAGTTCAGACGTGT N/A Biomers

Software and algorithms

MergeReadsFastq_cc.py Kircher57 https://bioinf.eva.mpg.de/fastqProcessing/

FilterUniqSAMCons_cc.py Kircher57 https://bioinf.eva.mpg.de/fastqProcessing/

BWA Li and Durbin58 http://bio-bwa.sourceforge.net/

samtools Li et al.59 http://www.htslib.org/

Ry Skoglund et al.60 https://github.com/pontussk/ry_compute

GATK Schmidt61 https://gatk.broadinstitute.org/hc/en-us

Picard Broad Institute62 https://broadinstitute.github.io/picard/

vcftools Danecek et al.63 http://vcftools.sourceforge.net/

verifyBAMID Jun et al.64 https://genome.sph.umich.edu/wiki/VerifyBamID

ANGSD Korneliussen et al.65 http://www.popgen.dk/angsd/index.php/ANGSD

READ Kuhn et al.66 https://bitbucket.org/tguenther/read/src/master/

jModeltest Darriba et al.67 https://github.com/ddarriba/jmodeltest2

BEAST Bouckaert et al.68 https://www.beast2.org/

Tracer 1 Rambaut et al.69 http://tree.bio.ed.ac.uk/software/tracer/

smartpca Patterson et al.70 https://github.com/DreichLab/EIG/

ADMIXTURE Alexander et al.71 https://dalexander.github.io/admixture/download.html

PLINK Purcell et al.72 and

Chang et al.73
https://www.cog-genomics.org/plink/

pong Behr et al.74 https://github.com/ramachandran-lab/pong

(Continued on next page)

e1 Current Biology 31, 2973–2983.e1–e9, July 26, 2021

https://bioinf.eva.mpg.de/fastqProcessing/
https://bioinf.eva.mpg.de/fastqProcessing/
http://bio-bwa.sourceforge.net/
http://www.htslib.org/
https://github.com/pontussk/ry_compute
https://gatk.broadinstitute.org/hc/en-us
https://broadinstitute.github.io/picard/
http://vcftools.sourceforge.net/
https://genome.sph.umich.edu/wiki/VerifyBamID
http://www.popgen.dk/angsd/index.php/ANGSD
https://bitbucket.org/tguenther/read/src/master/
https://github.com/ddarriba/jmodeltest2
https://www.beast2.org/
http://tree.bio.ed.ac.uk/software/tracer/
https://github.com/DreichLab/EIG/
https://dalexander.github.io/admixture/download.html
https://www.cog-genomics.org/plink/
https://github.com/ramachandran-lab/pong


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

AdmixTools Patterson et al.70 https://github.com/DreichLab/AdmixTools

treemix Pickrell and Pritchard75 https://bitbucket.org/nygcresearch/treemix/wiki/Home

SNPeff Cingolani et al.76 https://pcingola.github.io/SnpEff/

Hirisplex-S Chaitanya et al.77 https://hirisplex.erasmusmc.nl/

Other

Proteinase K Sigma-Aldrich Cat#P6556

High Pure Viral Nucleic Acid Large Volume Kit

(spin columns)

Roche Cat#5114403001

Buffer Tango (10x) Thermo Fisher Scientific Cat#BY5

ATP Solution (100mM) Thermo Fisher Scientific Cat# R0441

T4 Polynucleotide Kinase (10U/mL) Thermo Fisher Scientific Cat#EK0032

T4 DNA polymerase (5 U/mL) Thermo Fisher Scientific Cat#EP0061

PEG-4000 (50%) Thermo Fisher Scientific Cat#EL0012

T4 DNA Ligase (5 U/mL) Thermo Fisher Scientific Cat#EL0012

Bst DNA polymerase, large fragment NEB Cat# M0275L

Maxima SYBR Green qPCR master mix (2X) Thermo Fisher Scientific K0252

AMpliTaqGoldDNA polymerase Thermo Fisher Scientific 4311816

OxCal v4.3 Ramsey78 https://c14.arch.ox.ac.uk/oxcal/OxCal.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mattias

Jakobsson (mattias.jakobsson@ebc.uu.se).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the human sequence data reported in this paper is: European Nucleotide Archive: PRJEB33172.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

During the transition from the Middle to the Upper Palaeolithic in Europe several significant changes in both culture and climate took

place. TheMiddle Palaeolithic Mousterian andMicoquian cultures were replaced by the Aurignacian and subsequent Gravettian cul-

tures typical of the Early Upper Palaeolithic. How and why these changes took place between �45 and �40 Kyr BP is complex and

still under debate.

Located at the crossroads between the Eastern, Mediterranean and Central Europe, Romania holds an obvious key geographical

position in relation to all the models proposed for the origin of the European UP. Hosting some of the oldest directly dated AMH re-

mains found thus far in Europe, Romania seems to have provided a likely early scene for various interactions between the local Nean-

derthal population and the dispersing Aurignacian population. In addition, the local Palaeolithic record, to which many generations of

scholars have contributed, is abundant.10,79–87 Systematic prehistoric investigations have been undertaken for more than a century,

resulting in many archaeological, paleontological and anthropological discoveries, albeit unequally reported and studied. The

Romanian Palaeolithic had also long attracted the scientific attention of foreign researchers aiming at incorporating this record

into the general European chrono-cultural framework.14,36,88–96

The human bones from Peștera cu Oase were found without any lithic assemblage and it is impossible to link them to any techno-

complex such Aurignacian or Gravettian. The bones were carried by water from outside of the cave along with other animal bones.9

A similar situation is the discovery of the skull from Peștera Cioclovina Uscat�a, which was found in association with bears bones and

three flint tools during phosphates exploitation.8

Pesxtera Muierii (The Woman’s Cave, ‘Muiere’ is an archaism for woman.) is a multi-chambered karstic system near Baia de Fier,

Gorj County, Romania. In 1952, the remains of three human individuals were found in this cave. According to the field notes the Palae-

olithic bones were found in the same place, but at different depths. Initially, the archaeologist who supervised the excavation
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suggested that all the bones came from the same individual. As no bone element was found more than once it is still possible that all

the bones do belong to the same individual.10,27,97

A skull (frontal, both maxillae, left zygomatic, parietal bones – but with some missing parts – and occipital), the right side of a

mandible, ten teeth, a scapula and a tibia were assigned to the individual Muierii 1. Muierii 2 is a temporal bone, and Muierii 3 is a

fibula.10 The left temporal bone (Muierii 2) cannot be articulated with the skull due to the missing areas from the left parietal and

occipital. Based on the size and color (taphonomic transformation in the soil), it was considered to belong to another individual.10

The skull is currently in Oltenia Museum, Craiova, Dolj County, comprehensive morphological description can be found in Dobos

et al.10

METHOD DETAILS

Radiocarbon data
The dates for the zygomatic (PM1, OxA-15529) and temporal (PM2, OxA-16252) bones have been re-calibrated with OxCal 4.3

(https://c14.arch.ox.ac.uk/oxcal/OxCal.html) and the results are quite different: for OxA-15529 the determined age is 32407-

31758 calBC (95.4% probability) and for OxA-16252 the determined age is 31806-30892 calBC (95.4% probability). The overlap

between them is about 48 years.

Sampling and DNA extraction
The selection of the sample wasmade for teeth without caries or deep fissures thatmight extend into the pulp. Initially, two teeth were

selected (Tooth A and Tooth B).36 The processing of the samples and the DNA extraction were performed in the laboratory of the

University of Medicine and Pharmacy at Craiova (Romania). The processing of the samples involved the application of a series of

strict criteria detailed in P€a€abo et al.98 and Gilbert et al.99 for the authentication of results. In our case, the extraction and preparation

of the PCR was undertaken in a positive-pressure sterile chamber, physically separated from the laboratory where post-PCR pro-

cesses are carried out. All the work surfaces were cleaned regularly with sodium hypochlorite and irradiated with UV light. Suitable

disposable clothing was worn (lab coat, mask, gloves and cap). Contamination controls were applied in both the extraction and

amplification processes. The teeth were extracted in different moments. In order to eliminate surface contamination, the teeth

were subjected to a process of depurination using acids (solution of 20% acetic acid, 15% HCl and then with 70% ethanol), and

the entire surface was irradiated with ultraviolet light. Each tooth was cut off with sterile jeweller saws between the crown and the

root, and the pulp cavity was scraped with sterile dental tools.

Two additional teeth were sampled in 2015 due to the limited DNApreservation of the first two teeth samples (Tooth A andB). Three

samples were taken: powder and a small solid piece of the tip of the root from one additional tooth (Tooth D), and powder from

another tooth (Tooth C). Each sample was incubated in 5 mL of lysis buffer (0.5M EDTA; 50mM Tris HCl; SDS 0.5%; 0.01 mg/ml Pro-

teinase K) for 2 h at 56�Cwith agitation. Subsequently, DNA was extracted by the phenol-chloroformmethod. Blank tubes were also

processed as extraction controls. Extracts were purified with Centricon-30 spin columns (Amicon), obtained 60-70ul of DNA extract,

add water to 300 ul, three aliquots of 100 mL each were finally stored.36,100 These two teeth were extracted at the Institute of Anthro-

pology, Bucharest (Romania), and DNA extracts later brought to the University of the Basque Country in Spain and Uppsala

University in Sweden. DNA extraction and library preparation were performed in a dedicated ancient DNA clean room facility at

the department of Organismal Biology, Human Evolution, Uppsala University, containing positive air-pressure and with incoming

air passing through HEPA filter. The lab is regularly irradiated using UV (254 nm) and all work spaces are cleaned using sodium

hypochlorite. Protective clothing was used and all the work was performed in safety bench class II.

DNA was extracted from powder using silica-based methods either as in Dabney et al.33 using silica spin-column containing a vol-

ume extender from High Pre-Viral Nucleic Acid Large Volume kit (Roche)101 or Yang et al.32 The following modifications were imple-

mented in the method from Yang et al.32 The powder was incubated in 1 mL lysis buffer, (final concentrations: 0.45M EDTA, (pH 8.0

and 0.2 mg/ml Proteinase K)) and agitating the tubes for 18-24 h at 37�C. Additional 0.1 mg/ml Proteinase K was added followed by

incubation at 55�C for 4-5 h. Remaining powder was pelleted by centrifugation at 2000 rpm for 5 minutes and supernatant was trans-

ferred to Amicon Ultra-4 PLTK Ultracel-PL membrane 30kDa filter (Millipore). This was followed by centrifugation for 10-15 minutes

at 5000 rpm and 100 ml was transferred to silica-based membrane for binding and elution of DNA using Minelute purification kit

(QIAGEN) according tomanufacturer’s recommendations.32,34,102,103 The total volume of each extract was 50-110 ml (eluted in buffer

EB, QIAGEN) and 1-2 extraction blanks were processed as controls.

In previous experimentation, we have noted improvements of endogenous DNA content when avoiding powerdization of the tooth

material. In order to directly test that possibility, we sampled both powder and a small solid piece from the same tip of tooth (Tooth D).

The solid piece was removed using a Dremel Multi Tool and a diamond cutting wheel. The powder was treated using the standard

protocol, described above. For DNA isolation of the solid piece, 2mm x 1mm x 3 mm tooth piece was pre-digested in 1 mL EDTA

(0.5M, pH 8) for 30 minutes at 37�C and thereafter the EDTA solution was discarded.104 This was followed by incubation in 1 mL lysis

buffer (final concentrations: 0.45M EDTA, (pH 8.0 and 0.2 mg/ml Proteinase K) agitating for 24 hours at 37�C. Thereafter, the same

protocol as for powder was used.32–34,101–103 In order to completely dissolve the small piece of the tip of the root the extraction was

repeated following the same procedure as described above. In total two DNA extracts were prepared from one solid piece and a total

of three DNA extracts were prepared using bone powder. The sequencing results between powder and the solid piece are compared

in Figure 2.
e3 Current Biology 31, 2973–2983.e1–e9, July 26, 2021
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Library building (Uppsala protocol)
Double stranded DNA libraries for Illumina sequencing were prepared from 20 ml DNA extract using protocol by Meyer and Kircher35

with modifications as in Günther et al.103 In total 42 DNA libraries were prepared from 8 extracts, 3 from Spain and 5 from Uppsala. In

order to determine the number of cycles for library amplification, qPCR was performed (CFX Connect 96 BioRad). A total volume of

25 ml, containing 1 ml of DNA library, 1X MaximaSYBRGreen mastermix and 200 nM each of primer IS7 and IS835 were set up in du-

plicates. Libraries were amplified in quadruplicates using amplification protocol as in Günther et al.103 The PCR reactions were

pooled and purified using AMPure XP (Beckman Coulter) according to manufacturer’s protocol and quantified on the Tapestation

2200 system using High Sensitivity D1000 screen tapes (Agilent Technologies). Purified libraries were pooled in equimolar concen-

tration and deep sequenced on an Illumina HiSeq 2500 using v.4 chemistry and 125 bp paired-end reads or HiSeqX, 150bp paired-

end reads using v2.5 chemistry at the SNP & SEQ Technology Platform, Uppsala University.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of next generation sequence data
Adapters where trimmed and pair-end reads were merged using MergeReadsFastq_cc.py,57 which requires at least 11 base pair

overlap between overlapping reads. Bwa 0.7.1358 was used to map the reads as single end reads to the human reference (build

hg19). Non-default parameters for bwa were -l 16500 -n 0.01 -o 2.46,105,106 Reads longer than 35 base pairs and with less than

10% mismatches to the reference were kept for further analysis. Biological sex was determined using the Ry script as described

in Skoglund et al.60 to female. To ensure maximal retention of reads all sequencing runs of the same library were merged (using sam-

tools v.0.1.1959) before removal of PCRduplicates (per library) with amodified version of FilterUniqSAMCons_cc.py,57 which ensures

random assignment of bases in a 50/50 case. Reads with identical start and end positions are identified as PCR duplicates and

collapsed. All 42 libraries were thenmerged, resulting in an estimated genome coverage of 13.5X and 1492Xmitochondrial coverage.

The seven individuals with genome coverage of 13x or higher28,34,44–46 were subjected to diploid genotype calling. Before geno-

type calling, the base qualities of all Ts in the first five base pairs of a read and all As in the last five base were set to 2. Picard62

was then used to add read groups and indel realignment was conducted with GATK61 using the indels identified in phase 1 of the

1000 genomes project (KGP)107 as a reference. Genotypes were then called with GATK v3.5.0’s UnifiedGenotyper and the param-

eters -stand_call_conf 50.0, -stand_emit_conf 50.0, -mbq 30, -contamination 0.02 and –output_mode EMIT_ALL_SITES using

dbSNP version 142 as known SNPs. vcftools63 was then used to extract SNPs from the VCF file excluding all filtered SNPs and tran-

sitions for non-UDG treated samples.

Authentication of data and contamination estimates
PM1 exhibits common characteristics of ancient DNA with short fragment length (Figure S1A) and a high frequency of cytosine to

thymine transitions at the 50 end.108,109 Figure S1B shows that PM1 have the typical damage pattern for ancient DNA.

To investigate potential contamination different methods were applied. Mitochondrial contamination was estimated with the

method described in Green et al.110 with positions lifted over from hg18 to hg19. Private or near-private alleles (< 5% in 311 modern

mtDNAs),110 with a base and mapping quality greater than 30, as well as a coverage of at least 10x of the ancient sample were used.

Sites where a transition substitution and a consensus allele of either C or G were removed to compensate for postmortem damages.

To obtain a contamination estimate and counts of consensus and alternative alleles were added together across all sites110

(Data S1A).

To estimate autosomal contamination the program VerifyBam64 was used together with the 1000 genomes reference panel after

removing all transversion sites (Data S1B). This left 5,270,838 SNPs. VerifyBamID estimated the contamination of PM1 to about 6%.

To compensate for this we investigated how much this affects diploid calls. Restricting the analysis to sites with confidently called

diploid genotypes with minimum coverage of 10x reduced the estimated contamination to 2.5%, probably because contamination

has only an effect on diploid calls at low coverage sites. The effect of contamination would be falsely called heterozygous sites which

made us apply additional filters on such sites to reduce contamination even further. We required the variant allele to be present at

least to a certain proportion of the total number of reads at that site. We observed that a proportion of 0.2 results in an autosomal

contamination of 1.5% (Figure S1C) which is not uncommon in aDNA studies and should not substantially affect our downstream

analyses of genetic diversity. We performed identical filtering for all high coverage genomes before analyzing genetic diversity.

As a final quality control, we also estimated relative error rates using ANGSD65 by comparison to an out-group (chimpanzee map-

ped against hg19) and an error free individual. To generate an ‘‘error-free’’ sample, reads with a mapping quality higher than 35 from

KGP phase 1107 CEU male, NA12342, were used to call a fasta consensus sequence (using the -doFasta command in ANGSD). By

comparing the quantity of derived alleles in our samples in relation to the quantity between the error-free individual and ancestral

state a relative error can be calculated. All reads were used but only sites where both ancestral, ‘‘perfect’’ sample and the sample

have at least a coverage of one with a base quality higher than 30 were used. The results do not indicate that PM1 has more error

than other non-damage repaired samples (Figure S1E).

Kinship between PM1 and PM2
To investigate kinship between Muierii 214 and our Pestera Muierii 1, READ66 was used. READ divides the genome into non-overlap-

pingwindows and calculates the proportion of non-matching alleles inside each of thesewindows. The samples are then classified as
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either unrelated, second-degree, first-degree or identical individuals or twins. Using the KGP SNP positions ancient samples from

similar dating and geographical region were compared. It is difficult to achieve a good expectation for unrelated individuals in this

case as we cannot make good population assignments for Upper Palaeolithic individuals,14 which may lead to overestimation of

the relationship between two individuals.66 Despite Muierii 2 having a relatively low coverage (0.0046x) READ suggests that they

are the same individual or identical twins (Data S1C). This is not an effect of coverage since Cioclovina 1 has lower coverage than

Muierii 2 and no relationship is identified for him. We also added shotgun30 and SNP capture data14 for the Kostenki 14 individual

as a positive control, and they were successfully identified as the same individual. To complement this analysis, we calculated pair-

wise mismatch rates between different sequencing libraries of PM1 and compared the values to the differences between PM1 and

PM2which falls at the lower end of the within PM1 distribution (Figure S1D). This suggests that the two remains belonged to the same

individual or identical twins.

Definition of the mitochondrial haplotype of PM1
The mitogenome of PM1 was previously identified as a basal haplogroup U6*, with a private mutation at position T10517A which had

not previously been found in any ancient or modern human.36 Since then U6 has been identified in one more ancient specimen, PM2,

the sample originating from the same cave as PM1,14 now also suggested to be related to or the same individual as PM1 (Data S1D).

To call a consensus sequence for the mitochondrial genome of PM1, we used mpileup and vcfutils provided by samtools59 requiring

mapping and base qualities of at least 30. We reanalyzed the mitogenome from PM1, now at 1492 X coverage, and confirm the same

private mutation as previously found (Data S1D).

The Bayesian phylogenetic re-analysis was performed to infer the phylogenetic position of PM1. The best-fit model of evolution

was selected using jModeltest 267 under AIC, BIC, and AICc criteria prior to Bayesian analyses. Bayesian analyses were carried

out using BEAST 2.68 Two simultaneous runs of 50million generationswere conducted for the datasets and treeswere sampled every

1,000 generations, with the first 25%discarded as burn-in. Samples from the posterior were checked for acceptable effective sample

sizes (> 200) and the adequate convergence of the MCMC chains was checked using Tracer 1.69

The phylogenetic reanalysis was performed using the complete mitogenomes of 245 modern Homo sapiens, including 61 individ-

uals from the Upper Palaeolithic (15 individuals have been added to the previous analysis in Hervella et al.,36 41 humans from the

Neolithic, one individual from the 15th century and 143 modern samples (Data S1E). The modern humans were selected from all

the individuals with published mitogenomes and covered the whole phylogenetic diversity within the N hg lineage, with special

emphasis in the U lineage. The analysis was carried out using the HKY+G+I substitution model, strict molecular clock and coalescent

constant population tree prior, indicating the tip dates of the samples (Figure S2A).

We confirm the basal U6 mitochondrial haplogroup for the PM1 genome as described in Hervella et al.,36 and increase the

coverage in 1492X. Our estimates of the haplogroup U6 TMRCA that incorporate ancient genomes (including PM1) set the formation

of the U6 lineage back to 49.6 ky BP (95% HPD: 42–58 ky) (using a mutation rate of 2.06* 10�8 SD = 1.94 * 10�9). Our estimates are

almost identical in age to that by Secher et al.111 (45.1 ± 6.9 ky). Moreover, our conclusion has been supported by a recent study38

who presented genomic data from seven�15,000-year-old modern humans fromMorocco, defined six sub –haplogroup U6 (U6a1b,

U6a6b and U6a7), this being the most ancient signal of the back to Africa migration from Eurasia in Africa. They estimated a diver-

gence time of the haplogroup U6 with a value similar to Hervella et al.36 and Secher et al.111

In summary, given the presence of a basal U6mitogenome in Romania 34 ky BP, the presence of U6 haplotype derived in Northern

Africa 15ky,38 and the estimated TMRCA for U6 haplogroup, we can support the view that the PM1 mitochondrial lineage of South

East Europe is an offshoot that can be traced to the Early Upper Palaeolithic backmigration fromWestern Asia to North Africa, during

which the U6 lineage diversified. However, the timing and geographical direction for the spread of the U6 haplotypes, and their as-

sociation with a back-to-Africa migration, remains poorly understood.

Comparative Data
We compare the genome of PM1 to a set of published modern and ancient individuals. Comparative ancient NGS data (Data S1F)

were all mapped and filtered using identical parameters as PM1. The ancient data were thenmergedwith the HumanOrigins panel112

1.9 million transversions polymorphic in the Yorubans of the 1000 genomes phase 3 data107 as well as 1.2 million SNPs commonly

used in SNP capture.40,113 For each individual and site a random read covering the site with a minimummapping and base quality of

30 was drawn, and the allele was used as a pseudo haploid representation of the ancient individual. Indels were excluded and to

compensate for post-mortem damages transitions were set to missing data.

Principal Component Analysis
Weperformed a principal component analysis (PCA) to characterize the genetic relationship of PM1 and previously published ancient

individuals to modern populations. We used smartpca (v. 10210)70 to run a PCA on a selection of the Eurasian populations from the

Human Origins dataset as well as the KGP (1000 genomes) Eurasian populations represented by haplodized data. One PCA per in-

dividual was conducted for 54 ancient individuals14,28,29,34,44–46,113,114 using overlapping SNP sites only. We then used Procrustes

analysis115 to align the coordinate systems between the different PCAs.116 The results are shown in Figures S3A and S3B. While this

analysis reproduces some similarities among ancient individuals that mainly correlate with time (Fu et al.14), we need to highlight that

this type of comparison with modern populations may be misleading as some of the ancient individuals predate the development of

different lineages in Eurasia which contribute to the pattern seen in modern groups. The location of the chronologically Upper
e5 Current Biology 31, 2973–2983.e1–e9, July 26, 2021



ll
OPEN ACCESSArticle
Palaeolithic Ust’-Ishim andOase individuals outside of modern variation can serve as an example for this pattern, which is the reason

why we caution against the interpretation of other later hunter-gatherers overlapping with modern European groups in this PC1/PC2

space (Figures S3A and S3B). In fact, we see equal affinities for most of these Upper Palaeolithic hunter-gatherers to all modern

Europeans (see statistics below).

Model-based clustering
We performed model-based clustering of ancient and modern individuals using the approach implemented in ADMIXTURE.71 To

maximize the number of sites used, we employed the 1000 genomes panel as modern populations. The data were pruned for linkage

disequilibrium using PLINK (v.1.90)72,73 with parameters –indep-pairwise 200 25 0.4, and then unsupervised ADMIXTURE was run

with 2 to 20 clusters (K-values), 20 iterations each. Common modes among different runs and clusters were aligned along different

values of K using the greedy mode with pong (v.1.4.6).74 The results were then plotted in R.117 The results are shown in Figure S4.

Outgroup f3 statistics
To estimate shared drift among ancient individuals as well as between ancient and modern populations outgroup, we calculated f3
statistics using Admixtools version 3.0.112 All combinations of ancient individual and modern populations were tested with Yoruban

as an outgroup population. Standard errors were estimated using a block jackknife procedure.

Testing outgroup f3 statistics of PM1 against all other ancient individuals reveals a high proportion of shared drift between PM1 and

the published data for PM2which is consistent with the results of the kinship analysis suggesting that they are either identical twins or

the same individual. Comparing PM1 to other ancient individuals show the highest amounts of shared drift to European hunter-gath-

erers assigned to the Vestonice cluster in Fu et al.,14 confirming PM1’s position among the early European hunter-gatherers.

For eight high coverage individuals (Ust’-Ishim, Kostenki 14, Sunghir III, PM1, SF12 (Stora Förvar 12)), Loschbour, LBK, and ne1

(Polgár-Ferenci-hát 1)), we plotted the outgroup f3 results comparing them tomodern populations from the HumanOrigins dataset on

a geographic map of Europe. We used the fields package for R118 and the settings krig(theta = 3, m = 1) and predictSurface(extrap =

TRUE, nx = 2000, ny = 2000,type = ’’I’’). To be able to compare ancient individuals only the top 60% of all f3-values were included for

each individual plot (Figure S2B). The amount of shared drift increases over time as expected since later individuals should share

more history with modern groups. Most individuals do not show a strong geographic structure of their affinity which becomes

more pronounced in post-LGM individuals (sf12, Loschbour, LBK, ne1). Notably, PM1 lacks a strong affinity to modern North African

populations as suggested by her U6 mitochondrial haplogroup.36 While U6 seems to be a marker of back-migrations from Eurasia

into Africa, we do not see a stronger connection between PM1 and North Africans as opposed to other ancient Europeans. This is

further supported when testing for allele sharing between PM1 and the Iberomaurusian genomes from Taforalt using f4 statistics of

the form f4(Chimp, Taforalt; X, PM1). There is no indication that Taforalt and PM1 share alleles to the exclusion of other prehistoric

Europeans. Taforalt is symmetrically related to PM1 and other pre-LGM individuals while Taforalt shows an excess of allele sharing

with post-LGM individuals to the exclusion of PM1 (Figure S3D). The latter could be explained by later expansions from the Levant

into both Europe and North Africa.14,38,119 This suggests that the autosomal connection between ancient Europeans and North

Africans is similar for all individuals. Admixture studies of modern North African populations have shown substantial proportions

of Eurasian ancestry in these regions.37 Other admixture components, especially from sub-Saharan populations, contribute to a

very complex mixture of ancestries in North Africa.

Archaic ancestry
To estimate the proportion of Neanderthal admixture a in the ancient individuals we calculated f4 ratios with AdmixTools version

3.0112 using the following formula:

a=
f4 Chimp;AltaiNeanderthal;Yoruba;Xð Þ

f4 Chimp;AltaiNeanderthal;Yoruba;VindijaNeanderthalð Þ
where X is the individual/population for which we want to estimate archaic ancestry. Standard errors were estimated using a block

jackknife procedure. The archaic genomes used were, Altai Neanderthal120 (44x coverage) and Neanderthal Vindija33.19121 (24x

coverage). The estimated Neanderthal ancestry in the newly sequenced PM1 is 3.1% (SE: 0.41%) which is similar to contemporary

individuals. To investigate if Neanderthal ancestry decreased over time, we testedwhether sample age is correlatedwith Neanderthal

admixture. The samples were plotted based on sample age, with error bars representing 95% confidence interval (Figures S3E and

S3F). Excluding the outlier with recent Neanderthal admixture, Oase, a linear regression did not show a strong slope for both all-

ancient and modern samples (Figure S3F) as well as the high-coverage and modern samples (Figure S3E) (all-ancient samples:

p = 0.5144). These results are largely consistent with recent studies showing no substantial decline in Neanderthal ancestry over

the last 40,000 years but also sensitivity to the exact procedures used for estimation.39

We also investigated the distribution of Neanderthal related tracts across the genomes of prehistoric Europeans similar to the

approach of Sikora et al.29 and Seguin-Orlando et al.30 We first investigated informative sites as sites where both high coverage Ne-

anderthals fromAltai and Vindija are homozygous derivedwhile the derived allele is virtually absent (< 1%) among Africans in the 1000

genomes data. This information was obtained from Kuhlwilm and Boeckx.122 To reduce the effect of sequencing depth, we conduct-

ed this analysis on the pseudohaploid data of the prehistoric Europeans. A Neanderthal tract is defined as a run of consecutive

derived sites with a maximum of 200 kb and up to 13 ancestral alleles between derived alleles (corresponding to a binomial sampling
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probability of < 0.0001). As expected under a model where most Neanderthal ancestry can be traced to a single admixture event, we

find fewer but longer tracts in older individuals compared to post-glacial individuals (Figure S3G).

Treemix
To study the relationships among prehistoric populations, admixture graphs were constructed using TreeMix v1.12.75 This analysis

included PM1, Ust’-Ishim, Kostenki 14, Sunghir III, individuals representative of the clusters identified in Fu et al.14 (MA1, Vesto-

nice16, El Miron, Villabruna, Satsurblia, Goyet Q116-1), as well as Loschbour and Stuttgart to represent later populations. Modern

Mbuti were used as outgroup. Only sites without missing data in any individual among the captured SNPs were included in the anal-

ysis which restricted the analysis to 37,112 SNPs. As each population is represented by a single sample, correction for sample sizes

was switched off (-noss) and standard errors were calculated in blocks of 500 SNPs. TreeMix was runwith ten different random seeds

per setting and the run with the best likelihood was selected. Allowing for three migrations resolves all pairwise residual covariances

with |Z| > 2 and the migration edges are similar to the population connections observed in Fu et al.14

The general pattern of the graph is consistent with other results (Figure S3H). PM1 clusters with European hunter-gatherers while

MA1, Neolithic farmers and Caucasus hunter-gatherers form a separate clade. Migration edges mainly show connections among

European hunter-gatherers but we also observe admixture from Loschbour into the common ancestor of MA1, Neolithic farmers

and Caucasus hunter-gatherers.

Admixture graphs
In order to perform a phylogenetically more explicit assignment of PM1 into the major pre-LGM European hunter-gatherer gene

pools,14,29 we used qpGraph (version 6040) of ADMIXTOOLS112 to generate admixture graphs including a number of European hunt-

er-gatherer individuals. A user-definedmodel for the populations is used as input for qpGraph which then calculates all combinations

of f2, f3 and f4 statistics and fits drift parameters and admixture proportions. Each internal node in the graph can represent a bifur-

cation into two child populations and/or the recipient or source for two-way admixtures. The f statistics predicted by the model are

compared to the observed f statistics and deviations are expressed in multiples of standard error (Z score) which are estimated using

a block-jackknife across the genome. Low Z scores are usually interpreted as consistency between model and data. We used

qpGraph with the following parameters: blgsize: 0.005, lsqmode: YES, diag: 0.001, details: YES, hires: YES, allsnps: YES, precision:

0.0001, initmix: 1000.

Previous studies on European Upper Palaeolithic hunter-gatherers have identified major several major gene pools in pre-LGM Eu-

rope.14,29 Our goal is to understandwhere PM1 fits into suchmodels. We use a singleMbuti individual105,123 as outgroup and the pre-

LGM Ust’-Ishim, Kostenki 14, Sunghir III, Goyet Q116-1 as well as the post-LGM Loschbour14,28,30,46 as representatives of the

different hunter-gather groups. Adding PM1 to this set and using the 1240K capture SNP panel left 123,560 SNPs with overlapping

data. The resulting model (worst |Z| < 2.8) is shown in Figure S3G. It shows PM1 as a population drawing ancestry from both the

Russian Sunghir III as well as the Belgian Goyet Q116-1. PM1 is also distantly related to related to a population contributing parts

of the ancestry to later hunter-gatherers (Loschbour) who then serve as the connection to modern Europeans.46,113

Diversity measures
To obtain unbiased estimates of genetic diversity, we filtered all high coverage ancient individuals in the same way as PM1: after

diploid genotype calling with GATK UnifiedGenotyper, we only accepted heterozygous genotypes if the minor allele was present

in at least 20% of all reads covering that site and if the total coverage of that site was at least 0.76 times the average coverage of

that individual (approximately corresponding to 10x in PM1). To have high coverage modern individuals for comparison, we applied

the same genotype calling and filtering to 272 individuals from a worldwide set of populations sequenced as part of the Simons

Genome Diversity Project.18 We only used individuals published as ‘‘FullyPublic’’ and excluded two Khomani San as well as four

Ju\ʼhoan North individuals as we ascertained SNPs in a San individual (see below).

To avoid ascertainment biases, we ascertained SNPs in a single HGDP San individual sequenced as part of a separate proj-

ect.105,123 The bam file was filtered the same way as all other bam files and we ascertained 781,487 transversion sites (to avoid

post-mortem damages) heterozygous in this single individual and then used this set of sites for all analyses of genetic diversity. Addi-

tionally, we annotated these SNPs using SNPeff76 to be able to separate the signal between different site types (e.g., intergenic, in-

tronic, synonymous, non-synonymous). We calculated twomeasures of genetic diversity. First, we calculated relative heterozygosity

by counting the number of heterozygous SNP sites and dividing it by the total number of SNP sites covered for the individual. Stan-

dard errors were estimated using a block jackknife and a block size of 1000 SNPs. Second, plink v1.972,73 was used to assess runs of

homozygosity in the diploid genotype calls using the parameters–homozyg-density 50,–homozyg-gap 1000,–homozyg-kb 500,–ho-

mozyg-snp 100,–homozyg-window-het 1,–homozyg-window-missing 35,–homozyg-window-snp 100,–homozyg-window-threshold

0.02. The results of this analysis are shown in Figure 4, heterozygosity is only displayed for intergenic sites to avoid the potential

impact of natural selection on diversity at functional sites.

Phenotypic analysis
We used HIrisplex-S77 to predict pigmentation phenotypes for PM1. HIrisplex-S uses 41 SNPs to predict eye, skin and hair color and

it has been shown to perform well on modern Eurasians. This prediction is associated with some uncertainty in ancient individuals as
e7 Current Biology 31, 2973–2983.e1–e9, July 26, 2021



ll
OPEN ACCESSArticle
we do not know if there were functional alleles in these populations that are unknown today. The presence of unknown functional

variants is not unlikely considering the complex genetic architecture of pigmentation phenotypes.124,125

We did not include the insertion polymorphism rs312262906 into the predictionmodel. The HIrisPlexSmodel predicts the following

phenotype for PM1: brown eyes (p = 0.995), brown (p = 0.566) to black hair (p = 0.382) with dark shade (p = 0.931) and intermediate

skin color (p = 0.999). These results are similar to other European hunter-gatherers who are mainly ancestral for the known pigmen-

tation variants.14,126

Medical genetics analysis
The complete genome sequence from Pesxtera Muierii 1, together with the genomes of a few previously published high coverage ge-

nomes28,29,34,44–46 allows for the first analysis of ancient individuals from a medical perspective. We approached this with a meth-

odology used in medical genetics, but not yet adopted in aDNA studies, investigating shifts in potential pathogenic variants in ge-

nomes across Eurasia from EUP to the Neolithic.

All coding substitutions were extracted from the WGS dataset. To minimize the effect of post-mortem deamination, we excluded

heterozygous C/T and A/G sites with coverages below 10 and/or ratios of the two alleles more extreme than 25/75 or 75/25 across all

sequencing reads.

Subsequently all variants were annotated using a clinical annotation pipeline as previously described.47,127 This annotation

included protein consequences of the variants; nucleotide conservation score (vertebrate PhyloP); frequencies from public data-

bases (1000 genomes variant frequency data retrieved from db SNP144: https://www.ncbi.nlm.nih.gov/SNP/; ExAC [sept2016]:

http://exac.broadinstitute.org/; GoNL: https://www.nlgenome.nl/) as well as exome data of > 15,000 in-house exomes mainly

from individuals of Dutch descent; the annotation also checked for the presence of the same variant in ClinVar (https://www.ncbi.

nlm.nih.gov/clinvar/) or HGMD (http://www.hgmd.cf.ac.uk/; 2015 version); gene based annotations included OMIM entries, GO

term and KEGG annotations.

In order to compare the variant burden in ancient versus modern humans, we compared the variants detected in PM1 and all other

ancient exomes with 10 representative modern human exomes. The latter were exomes of healthy parents that gave birth to a child

with severe intellectual disability.47

To identify a burden of possibly damaging variants in ancient versus modern exomes, we calculated the ratio of non-synonymous/

synonymous variants; and counted most likely damaging variant categories a) stop-gains; b) variants with a CADD49 score > 15; c)

missense variants with a nucleotide conservation score (vertebrate PhyloP128) > 3.0.

Damaging burden test
We first explored whether there are any differences in terms of potential pathogenic variants or an overall higher burden of non-syn-

onymous variants in the coding part of the genome (exome) of PM1 and other ancient specimen compared to modern day healthy

humans. Because damage of ancient DNAs complicates a comparison with modern day human genomes, we focused on variants

that were likely homozygous, i.e., > 80% variant reads, with known dbSNP entries (rs IDs) in the coding regions, in order to avoid the

potential false-positive variants in ancient DNA specimen. When comparing coding variants in ancient versus modern day humans

(Data S1G), several interesting observations could be made:

a) Overall, we see slightly lower NS/S-ratio in ancient versus modern humans; i.e., on average a NS/S ratio of 0.914 in ancient

exomes versus 0.9471 in modern exomes. Thus, overall ancient exomes show on average lower degree of non-synonymous

variants. The lowest NS/S ratio is observed for STIII; Loschbour and Ust’-Ishim i.e., we see proportionally fewer homozygous

non-synonymous variants in those.

b) Despite this, among all NS variants, the percentage of possibly damaging variants (e.g CADD: > 15 or missense with high

nucleotide conservation score: vertebrate PhyloP > 3.0) is somewhat higher in some ancient exomes compared to modern

day exomes. The percentages of those variants are highest among post-LGM hunter-gatherers Bichon (however, this individ-

ual also has the lowest coverage and the data are not damage repaired) and Loschbour, followed by Sunghir III, sf12, Ust’-

Ishim and Kotias (Figure 5). This pattern seems more pronounced for variants with a high CADD score than in PhyloP scores

but statistical tests do not detect significant differences between individuals (Figure S5) or temporal groups (Figure 5).

c) Comparing the full distributions of CADD (Figure S5C) and PhyloP (Figure S5D) scores between temporal groups, shows sig-

nificant differences betweenmodern and ancient groups. The CADD scores seem highest in post-LGM hunter-gatherers while

PhyloP scores seem highest in pre-LGM hunter-gatherers.

The post-LGM hunter-gatherer group has the lowest level of neutral genetic diversity (Figure 4), which would suggest that

these individuals also carry a higher proportion of deleterious variants – both compared to modern populations and to pre-

LGM hunter gatherers. Our analysis of genetic load is inconclusive (differences between the two measurements CADD and Phy-

loP scores, differences between the full distribution and outliers), which means that there is no support for strong differences of

genetic load between the ancient groups. This suggests that, while the post-LGM hunter-gatherers lived in small groups and

also had a reduced effective population size, their genetic load was still at a level which was not substantially higher than

that of other groups.
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Medical genetic analysis of ancient individuals
While we do not have a strong indication for an overall higher degree of damaging variants in ancient exomes, we identified several

variants in Pestera Muierii 1 genome and the other ancient genomes that stood out as potentially involved in human pathology. Here

we focus on rare, likely homozygous variants in the exome of ancient DNA specimen (Data S1I), as well as likely homozygous non-

synonymous variants with a HGMD entry (http://www.hgmd.cf.ac.uk) (Data S1I).

PM1: To avoid over-interpretation of technical artifacts in the ancient DNA, we focused on variants that were known polymor-

phisms (dbSNP144 entries), yielding a total of 18,086 variants (Data S1I and S1J). Subsequently, we focused on likely homozygous

variants, i.e., requiring > 80% variant reads, with at least 3 reads total coverage, yielding 7,320 variants that fulfilled those criteria.

In order to identify rare homozygous variants, we filtered on population frequencies < 1% (based on 1000 genomes entries of

dbSNP144; ExAc, GoNL and our in-house exome database with > 15,000 exomes). This filter strategy resulted in 14 rare, likely ho-

mozygous variants, 8 of which were non-synonymous (Data S1J). This ‘‘clinical exome’’ interpretation yielded several interest vari-

ants for which additional information is available or the gene has a well understood function. These variants include rare, likely ho-

mozygous, variants in several potentially medically relevant genes, including PTPN12 (p.(Ser684Leu)), CTTN (p.(Val461Ile)), IL32

(p.(Trp169*)), and ANKRD11 (p.(Glu1413Lys)).

Among these remarkable observations is a premature stop-gain in IL32 p.(Trp169*). As this variant affects the last exon of IL32, the

immediate consequences on protein level are difficult to predict but an escape of nonsense-mediated-decay (NMD) and a resulting

truncated protein is likely. Interestingly, this variant was never described in any modern human (dbSNP, ExAc), but other stop-gain/

frameshifting variants in the same exon have been described in ExAC as rare events in the general population. IL32 encodes the inter-

leukin-32 protein, amember of the cytokine family, with an important role in immune responses51 andwhich has been associatedwith

cancer development.129 Polymorphisms in this gene modulate susceptibility to several types of malignancies.130–133 Interestingly,

two additional rare, likely homozygous, non-synonymous variants (Data S1J) were identified in genes for which also a cancer asso-

ciation was previously shown:PTPN12134,135 andCTTN.50 It would be therefore tempting to speculate whether these genetic variants

may have influenced susceptibility to cancer of the PM1 individual, but more data in additional ancient genomes in the future or addi-

tional functional evidence would be needed in order to be able to draw any general conclusions.

Finally, one likely homozygous missense variant was identified in ANKRD11. Heterozygous loss-of-function mutations or deletions

of this gene have been described as the cause of KBG syndrome (CITE). KBG syndrome is characterized by macrodontia, distinctive

craniofacial features, short stature, skeletal anomalies, global developmental delay, seizures and intellectual disability. Wewere how-

ever able to exclude this diagnosis based on the cranial characteristics: the Pestera Muierii 1 ancient individual does not resemble

any phenotypic features of KBG syndrome by systematically analyzing its skull for the prevalence of the clinical hallmarks of KBG

syndrome (Data S1M). We therefore consider the p.(Glu1413Lys) variant of ANKRD11 as likely benign.

Other ancient exomes: for all other ancient exomes similar filters were applied. Of all the rare, likely homozygous variants, we only

report those which have a HGMD entry, as well as more common likely homozygous variants with an HGMD entry (Data S1I). Addi-

tionally, we focused on all rare (< 1%) likely homozygous stop-gains identified in all exomes, those are summarized in Data S1K. Here

we have identified likely homozygous variants in possibly medically relevant genes including AIPL1 (p.(His82Tyr)), NOTCH3

(p.(Leu1518Met)), NLRP3 (p.(Gln705Lys)), and APC (p.(Gly2520Ser)). The exact same nucleotide changes in AIPL1 as identified in

Bichon specimen was previously described in a single, sporadic case of Leber congenital amaurosis 4 (OMIM: 604393) and retinitis

pigmentosa, in compound heterozygous state together with p.(His90Asp) (the latter is a known SNP). However, the Bichon variant

p.(His82Tyr) is not in a functional domain, and there is no functional evidence for pathogenicity;136 moreover, the same variant is

described 3 times in ExAC in homozygous state (2x in EUR, 1x SA). Alltogether, the evidence for pathogenicity of this variant is

too limited to be able to firmly diagnose this disorder, which in itself would have been severe as it causes blindness in the affected

individuals. While the NOTCH3 variant is interpreted by ClinVar as ‘likely benign’, and the APC missense variant is most likely also

benign, as it has been identified in 80 carriers in ExAC (mainly EUR, and SA/EA), the NLRP3 p.(Gln705Lys) homozygous variant

has been suggested as a recessive disease gene for cold-induced autoinflammatory syndrome, OMIM:120100). However, the

high variant population frequency of > 2% also suggests a benign nature of this specific variant.

Genetic variants and antimicrobial host defense
A long-standing host-pathogen ‘‘arm race’’ has shaped the human genome, as a result of selective pressures acting upon genes

involved in host resistance and immunity response. Among the genes and pathways involved in antimicrobial host defense, proin-

flammatory cytokines play a crucial role in the initiation of a successful response to pathogens. We assessed the presence of five

genetic polymorphisms known to be strongly associated with higher cytokine production capacity. Interestingly, Pesxtera Muierii 1

genome harbors the variants associated with a strongly increased cytokine production capacity for 4 of these 5 SNPs: heterozygous

carrier for C allele of TLR1 rs4833095, homozygous carrier of G allele for TLR6 rs5743810, heterozygous carrier for G allele of TLR10

rs11096957, and heterozygous carrier for T allele of IL10 rs1800872.53 In addition, the Pestera Muierii 1 individuals was carrier of het-

erozygous IFNG rs2069727, associated with an average cytokine production. All in all, these data suggest that Pestera Muierii 1 in-

dividual was a high responder in terms of cytokine production capacity; this combination of high-cytokine polymorphisms is present

in less than 4% of the modern European population. Considering the protective effects of high immune responses in the context of

high infection burden,53 it is likely that this represents an adaptive state conferring beneficial protective effects.
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