
On-demand Serverless Video Surveillance with Optimal Deployment
of Deep Neural Networks

Unai Elordi1,2, Luis Unzueta1, Jon Goenetxea1, Estíbaliz Loyo1, Ignacio Arganda-Carreras2,3,4
 and Oihana Otaegui1

1Vicomtech, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
2Basque Country University (UPV/EHU), San Sebastian, Spain

3Ikerbasque, Basque Foundation for Science, Bilbao, Spain
4Donostia International Physics Center (DIPC), San Sebastian, Spain

Keywords: Video Surveillance, Serverless Computing, Deep Neural Networks Optimizations.

Abstract: We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures.
A serverless architecture allows running code in response to events, automatically managing the required
computing resources. However, these resources have limitations in terms of execution environment (CPU
only), cold starts, space, scalability, etc. These limitations hinder the deployment of DNNs, especially
considering that fees are charged according to the employed resources and the computation time. Our
deployment approach is comprised of multiple decoupled software layers that allow effectively managing
multiple processes, such as business logic, data access, and computer vision algorithms that leverage DNN
optimization techniques. Experimental results in AWS Lambda reveal its potential to build cost-effective on-
demand serverless video surveillance systems.

1 INTRODUCTION

Serverless computing is a cloud-native platform that
hides server usage from developers and runs
developer code on-demand, automatically scaled, and
billed only for the time the code is running (Castro et
al., 2019), under the scope of the Function-as-a-
Service (FaaS) paradigm. It represents an evolution in
cloud computing, which matches better the original
expectations for being treated as a utility (Ishakian et
al., 2018). Its two key features are cost (pay-as-you-
go billing with millisecond granularity) and elasticity
(scaling from zero to "infinity"). It allows developers
to concentrate on providing a piece of code (function)
to be executed by the serverless computing platform
and to delegate all their operational complexity and
scalability to the cloud provider without requiring a
high level of cloud computing expertise.

Most relevant cloud providers, such as Amazon,
IBM, Microsoft, and Google, have already released
serverless computing platforms, which are gaining
popularity due to their simplicity and economic
advantages. However, all these advantages over
"serverfull" architectures come at the expense of

some limitations of the current stateless platforms
(Ishakian et al., 2018), namely:

• The stateless nature of functions, which
prevents them to be executed, relying on the
serverless platform runtime to maintain the
state between invocations to optimize
performance.

• The lack of access to GPUs (despite very recent
initiatives to solve this limitation (Kim et al.,
2018)), which prevents deployed algorithms
from making use of high parallelization
capabilities within function instances.

• Cold" starts, i.e., additional latencies that occur
when the serverless function is invoked for the
first time, due to the required setting-up of
containers (part of the core capability of
serverless platforms) and bootstrapping.

• Scalability limits, i.e., despite their high
scalability capabilities they cannot scale up to
"infinity.

• Space constraints for the deployed program,
i.e., the main code, its dependencies, and the
required resources (e.g., data files).

Elordi, U., Unzueta, L., Goenetxea, J., Loyo, E., Arganda-Carreras, I. and Otaegui, O.
On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural Networks.
DOI: 10.5220/0010344807170723
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 4: VISAPP, pages
717-723
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

717

These limitations are especially relevant to build
an on-demand video surveillance system (VSS) with
computer vision algorithms that involve the
deployment of Deep Neural Networks (DNNs), as
their complexity is significantly higher for hardware
platforms with limited computational resources
(Bianco et al., 2018). Thus, very recently important
efforts are being done towards the goal of optimizing
DNNs, such as new methodologies (Elordi et al.,
2018) (Frankle and Carbin, 2019), new
microprocessor classes (e.g., Intel's VPUs (Intel,
2019) and Google's TPUs (Google, 2019) and new
software tools for DNN model optimization included
in deep learning frameworks (e.g., TensorFlow
(Google, 2020), PyTorch (Facebook, 2019) and
OpenVINO (Intel, 2020)). However, since both DNN
optimization techniques and serverless architectures
are still at early stages, few works have yet focused
on the optimal deployment of DNNs on serverless
platforms, tackling simultaneously the characteristics
of both components.

Our main motivation is to help building cost-
effective on-demand VSSs, leveraging (1) the latest
advances of DNN optimization techniques for
inference purposes along with (2) tailored
deployment strategies to make the most of current
FaaS architectures. Although this paper is focused on
optimal DNN deployment in serverless
environments, our approach considers the security
and privacy measures to preserve the biometric data
on VSS environments (Biometrics Institute, 2020).

This work represents a step forward in distributed
computational VSS infrastructures and the Video-
Surveillance-as-a-Service (VSaaS) paradigm (Limna
and Tandayya, 2016). We have taken AWS Lambda
(Baird et al., 2017) as the baseline to design our
methodology.

2 SERVERLESS VSS PLATFORM

The FaaS platforms are materialized in function
instances, which have two stages (Baird et al., 2017).
The first stage begins when the FaaS function is
invoked for the first time, creating an isolated runtime
environment with the necessary resources. This
process takes additional time to be completed and,
consequently, this stage is called the cold start stage.
When the container initialization is finished, the
remaining function instances are executed
concurrently. This second stage is called the warm
stage.

Wrong management of resources in the
initialization process and the concurrent instances

could drastically increase the cold start and serverless
execution (warm stage) time. Therefore, the key is to
identify strategies to minimize processing time in
both stages for a good quality of service. In the
following, we summarize the current performance
strategies presented in the literature (Baird et al.,
2017) (Bardsley et al., 2018).

• Concise function logic if 3rd-party
dependencies are required, avoid using open-
source packages. Since their general-purpose
and 3rd-party interdependency nature, open-
source packages include more functionalities
than required and, thus, can cause a significant
slowdown in cold start time and increase
processing time.

• Third-party dependencies: limit the space and
the use of third-party libraries to match the
serverless function storage limitations.

• Resource management: limit the
reinitialization of local variables on every
instance. Instead, use global/static variables or
singleton patterns to handle the application
scope variables.

• Allocated function memory: finding the trade-
off between the configuration of computing
resources and execution cost can be the key to
optimal serverless execution.

• Language agnostic advice: the interpreted
programming languages achieve faster initial
invocation time, while compiled languages
perform best in the warm stage.

• Keep the container in the warm state: make
preconfigured periodical calls to serverless
functions to avoid changing to a cold stage.

Although these strategies are available for general

serverless architectures, the complexity of DNN
models (Bianco et al., 2018) requires a deep analysis
of DNN model deployment to cope with the
serverless platform limitations. With that purpose, we
present a FaaS architecture with tailored DNN
optimization strategies to maximize inference
efficiency.

The proposed serverless architecture is illustrated
in Figure 1, together with the lifecycle of the
processing pipeline, where each processing task is
numbered from 1 to 11. This pipeline contains two
main components: the initialization process (from
step 1 to 7) and the on-demand invocation task (from
step 8 to 11). The event controller shown in the
architecture represents the event-triggering design of
FaaS platforms (see Figure 1). In this context, each
input-image source triggers an event to the FaaS
function. In terms of security, the images are stored

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

718

in a Virtual Private Cloud (VPC). Also, the image
data is encrypted.

Following the serverless strategies described
above, the designed FaaS function references the
resources in the global scope (software layers) and the
processing workload relies on the handler function.

3 INITIALIZATION PROCESS

When the serverless function is invoked for the first
time (cold start), the initialization process begins, and
the warm-up process initializes the runtime execution
container along with the software layers (step 2-3).
Then, DNN models are downloaded to the runtime
container (step 5-6). Finally, the DNN models are
loaded along with library initializations.

FaaS functions should be simple and concise.
Besides, FaaS architectures are based on ephemeral
storage, which means data will be erased when the
function finishes. Based on these requirements, we
decoupled the functionalities into three layers which
are shared across serverless function instances:

• Deep Learning (DL) layer: in charge of
handling DNN workload operations such as
model loading and inference processing, along
with pre- and post-processing low-level image
operations for Computer Vision (CV).

• High-Level Algorithm (HLA) layer: containing
the library for complex CV pipelines such as
face detection, face recognition and body pose
detection, supported by several DNN models
for inference processing.

• Business Logic (BL) layer: which provides
utilities deal with for accessibility to I/O
operations, communications, and business
logic algorithms.

Ideally, an optimal initialization process will

preserve the accuracy and the inference latency of
DNN models (Bianco et al., 2018) under FaaS
limitations such as storage size, memory
consumption, and computing resources. Model
compression techniques, such as pruning and
quantization (Han et al., 2015), reduce the size of the
DNN files, and therefore the required amount of
memory to load the compressed model, lessening the
cold start delay. These compression techniques are
especially relevant when several DNN models are
loaded into a layer, because of the rigorous constraint
of storage size on FaaS platforms. However, these
techniques require special attention in the
deployment, since too much compression could affect
the accuracy of the models (Liu et al., 2018).

FaaSification consists in changing the execution
runtime from monolithic architectures (code
processed in the same execution unit) to FaaS
architecture. Based on (Spillner et al., 2017), this
process depends on the Atomic Units (AU), which
depending on the level of complexity (3rdparty
dependencies, inter-function dependencies, etc) is
classified as shallow (AU: functions or method),
medium (AU: lines of code) and deep (AU:
instructions). Since the complexity of the DNN
processing algorithm lies in three functions (load
model, DNN inference, post-processing), our
approach is deployed following a shallow
FaaSification supported by HLA and DL layers.

4 ON-DEMAND INVOCATION
TASKS

After the first invocation of a serverless function
instance, the system verifies that all resources are in
the warm state and ready for DNN inference. Next,
several instances of the handler function are triggered
by the input data. These handler instances execute a
set of CV algorithms that involve multiple DNN
inferences (step 10). Supported by HLA and DL layer
to process CV tasks and DNN inferences, when the
FaaS function finishes, the BL layer encodes the
algorithm output in the preferred output (step 11).

The serverless platform capabilities to offload the
computation across several instances could leverage
an impressive DNN inference throughput. However,
the virtualization nature of this platform hardware
resources relies on a bottleneck, especially, when CV
processing tasks require to process many DNN
models at the same pipeline.

Based on the analysis of the computational
complexity of DNN models (Bianco et al., 2018),
choosing the ones that lower inference time while
preserving the accuracy is crucial for this type of
architecture. Moreover, vectorization programming
libraries such as Single Input Multiple Output
(SIMD) instructions and multi-threading-block
libraries provide extra processing power.

The assigned memory to each FaaS function
instance plays an important role in performance
optimization because more memory per function
means more resources for the handler function, but
also a higher price per execution. On the contrary,
FaaS instances are billed by function execution time,
so less time per function means a lower price. Thus, a
good trade-off between allocated memory and
function execution cost becomes an essential strategy.

On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural Networks

719

Figure 1: The proposed serverless video surveillance system architecture.

5 VSS CASE STUDY AND
EXPERIMENTS

We evaluate the potential of our approach in the
following case study: a VSS that periodically receives
(every few minutes) images acquired by several
surveillance cameras to detect human presence and
recognize registered individuals in uncontrolled
environments.

Deep Learning models are complex and require a
huge amount of processing power. A Deep Learning
model inference lies in Matrix-multiplication,
regularization, and the number of weights. So,
choosing the most optimal DNN with minimum
latency and maximum accuracy is a crucial strategy.
More specifically, in this VSS we deploy four DNNs
trained for the following purposes:

• Camera coverage detection (CM): a
MobileNet v1-based image classifier to detect
whether the image comes from a camera that
has been covered (by a hand, a sticker, etc.) or
not.

• Human body points detection (BP): an
OpenPose-based regression model with
MobileNet v1 as the backbone to detect
people’s body landmarks.

• Human face landmarks detection (FL): a
classic convolutional design-based regression
model that localizes both eyes, nose tip, and
mouth corners in a cropped facial image.

• Human face reidentification (FR): a MobileNet
v2-based facial feature extractor for
reidentification purposes. The extracted facial
features are compared with the registered ones

to determine whether they correspond to
registered individuals.

The table 1 shows the performance parameters of

the selected models.

Table 1:Selected DNN model parameters.

NAME Complexity
(GFlops)

AVG
Precission

(Mp)

AVG
Precission(%)

CM 0.569 4.24 70.9
HP 15.435 4.099 42.8
FL 0.021 0.191 92.95
FR 0.588 1.107 99.47

We have taken AWS Lambda as a baseline to

design and test our methodology. The source code is
written in Python language. We used OpenVINO as
DNN framework and OpenCV for CV algorithms.
Also, we used the AWS boto3 library for I/O
operations. Since video surveillance environments
manage biometric data, to preserve the security of
user privacy, we stored all images in a Virtual Private
Cloud (VPC) along with an encrypted Amazon S3
storage service. We also have given the minimum and
only necessary permissions to the handler lambda
function. Finally, we monitor function calls with
Amazon X-Ray. The low-economic impact to process
10,000 images with different batch sizes per request
and memory configurations per function is shown in
Figure 2. Notice the minimum memory to support the
VSS application logic is 704MB. The cost calculation
is based on the following equation:

cost = nr *((0.0009765625*am)*

(0.001*ru(rd,m)*mcc+mrc (1)

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

720

Where:
• nr: number of requests in a month
• am: allocated memory (in MB)
• rd: request duration (in ms)
• ru: round up operation to the nearest M

multiple (m=100 ms)
• mcc: monthly compute charges (0.0000166667

USD/GB-s)
• mrc: monthly request charges (0.0000002

USD/request)

This cost experiment evinces that more images

per request involve cost-saving, especially when the
allocated memory function is higher. However,
despite the cost fluctuation of the first three
configurations (704MB to 1536MB) being negligible,
the price evolution of the remaining configurations is
increased from 13.38% (2048MB) to 61%.
(3008MB). Despite the AWS Lambda free tier offers
1 million Amazon Lambda function instances, these
function instances are activated with images (put
request) coming from S3 online storage service. This
S3 free tier offers 2000 put requests (images) in a
month. So, for this experiment, the Amazon free tier
is discarded because it represents only the 1% of the
experiment.

Figure 2: Average cost to process 10K images with VSSH
in AWS Lambda. The horizontal axis represents image
batch size per request (1,5,10) and the colour bars represent
the allocated memory per function, from 704MB to
3008MB. AWS free tier is not included in this experiment.

Figures 3 and 4 analyse the influence of the cold
start delays according to local and global scope
resource management strategies. In the local scope
strategy, all initialization process is executed in the
handler function while the global scope initializes all
resources before the first handler function. Each
figure contains three different lines which represent
container setup time (blue), function runtime init time
(red), and function code execution total time (green).
The container setup is the time delay to create an
isolated image container. In the function runtime init
we evaluate the time delay of the serverless function

resources (loading external resources, classes
initializations, loading 3rdparty libraries, code
downloading). Finally, the function code execution
calculates the total execution time of a serverless cold
instance.

Figure 3: Cold start time analysis of the global scope
strategy according to the amount of allocated memory per
function (from 704MB to 3008MB).

Figure 4: Cold start time analysis of the local scope strategy
according to the amount of allocated memory per function
(from 704MB to 3008MB).

This analysis of the resource management
strategies reveals that initializing the resources in the
global scope improves the performance of the cold
start delays (about 2-4 seconds difference). Also, the
increased time delay of the global scope in function
runtime initialization is due to the DNN models, code,
and libraries are loaded in this step.

As it was expected, as far as the allocated memory
per function instance increases, the cold-start time
delay is reduced in both scope strategies. This time
reduction is especially visible when the allocated
memory is between 704 and 1536MB. In contrast, the
container setup’s minimal time variations reveal that
the FaaS container initialization does not depend on
the allocated memory per function instance.

To analyse the cost-worthiness of serverless
computing deployment, Figure 5 unveils that our
FaaS architecture leverages an outstanding

1,
54

1,
52

1,
49

1,
54

1,
52

1,
49

1,
55

1,
52

1,
491,
74

1,
73

1,
702,

17

2,
12

2,
082,

50

2,
46

2,
39

1 5 1 0Co
st

 (U
SD

)

Number of images per request

704MB 1024MB 1536MB 2048MB 2560MB 3008MB

0,40 0,30 0,40 0,40 0,40 0,40
3,80 3,80 3,40 2,90 2,90 2,70

18,20

12,30
8,30 6,90 6,70 6,70

704 1024 1536 2048 2560 3008

Ti
m

e
(s

)

Memory (MB)

Func code exec

Func runtime
init
Cont setup

0,43 0,31 0,59 0,44 0,46 0,370,67 0,69 0,61 0,66 0,65 0,63

22,40

16,00

10,60 9,40 9,10 8,90

704 1024 1536 2048 2560 3008

Ti
m

e
(s

)

Memory (MB)

Func code
exec
Func
runtime init
Cont setup

On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural Networks

721

performance with an important time saving from
hours that would be needed with an off-the-shelf PC
to minutes (our approach). Also, the influence of the
allocated memory per function instance is shown in
Figure 3, where the reduction of the processing time
is very significant, especially between the 704MB
and 1536MB configurations.

Figure 5: Total times to process 10K images with the VSS
in AWS-Lambda. The colour bars represent image batch
size.

Considering the economic and the time
performance analysis shown in Figures 2, 3, and 4,
we conclude that the optimal allocated memory per
function remains on 1536MB. Also, as observed in
Figure 3, the optimal way to achieve the maximum
processing throughput is processing one image per
each FaaS instance.

6 DISCUSSION AND
CONCLUSION

The FaaS platform environment offers a suitable
distributed execution model to provide parallel
processing at a high scale. Nevertheless, the resource
limitations of this platform collide with the DNN
complex environment.

To overcome this challenge, we have presented a
methodology to optimally deploy several DNN
models to FaaS platforms supported by the latest CV
techniques to maximize the DNN processing
performance at minimum cost.

We have also evaluated a VSS case study
supported by experimental results that reveal an
outstanding performance improvement of our
serverless architecture. Furthermore, we conclude
that the major bottleneck lies in the processing of each
FaaS function, while the influence of the memory
allocation per function is visible in the processing
speed. Nevertheless, there is a large room for

improvement in reducing the DNN complex
environment, while the bottleneck could be addressed
by analysing the possibilities of distributing the DNN
processing into multi-tenant systems.

ACKNOWLEDGEMENTS

This work has been partially supported by the
program ELKARTEK 2019 of the Basque
Government under project AUTOLIB.

REFERENCES

Baird, A., Huang, G., Munns, C., and Weinstein, O. (2017).
Serverless Architectures with AWS Lambda: Overview
and Best Practices [White paper].

Bardsley, D., Ryan, L., and Howard, J. (2018). Serverless
Performance and Optimization Strategies. In
Proceedings of the IEEE International Conference on
Smart Cloud (SmartCloud). pages 19–26.

Bianco, S., Cadene, R., Celona, L., and Napoletano, P.
(2018). Benchmark analysis of representative deep
neural network architectures. IEEE Access, 6:64270–
64277.

Biometrics Institute. (2020). The Three Laws of
Biometrics. https://www.biometricsinstitute.org/the-
three-laws-of-biometrics/

Castro, P., Ishakian, P., Muthusamy, V., and Slominski, A.
(2019). The server is dead, long live the server: Rise of
serverless computing, overview of current state and
future trends in research and industry. arXiv preprint
arXiv:1906.02888.

Elordi, U., Unzueta, L., Arganda-Carreras, I., and Otaegui,
O. (2018). How can deep neural networks be generated
efficiently for devices with limited resources? In
Proceedings of the International Conference on
Articulated Motion and Deformable Objects, pages 24–
33.

Facebook. (2019). PyTorch torch.optim.
https://pytorch.org/docs/stable/optim.html

Frankle, J. and Carbin, M. (2019). The lottery ticket
hypothesis: Finding sparse, trainable neural networks.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Google (2019). Cloud TPU. https://cloud.google.com/tpu
Google (2020). TensorFlow model optimization.

https://www.tensorflow.org/lite/performance/modelopt
imization

Han, S., Mao, H., and Dally, W. J. (2015). Deep
compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding.
arXiv preprint arXiv:1510.00149.

Intel (2019). Intel Movidius VPU.
https://www.movidius.com/solutions/vision-
processing-unit.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

704 1024 1536 2048 2560 3008

Ti
m

e
(m

in
ut

es
)

Memory (MB)

1 img/req 5 img/req 10 img/req

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

722

Intel (2020). OpenVINO toolkit.
https://software.intel.com/en-us/openvino-toolkit

Ishakian, V., Muthusamy, V., and Slominski, A. (2018).
Serving deep learning models in a serverless platform.
In Proceedings of the IEEE International Conference
on Cloud Engineering (IC2E), pages 257–262.

Kim, J., Jun, J., Kang, D., Kim, D., and Kim, D. (2018).
GPU enabled serverless computing framework. In
Proceedings of the Euromicro International
Conference on Parallel, Distributed and Network-
based Processing (PDP), pages 533–540.

Limna, T. and Tandayya, P. (2016). A flexible and scalable
component-based system architecture for video
surveillance as a service, running on infrastructure as a
service. Multimedia Tools and Applications,
75(4):1765–1791.

Liu, Z., Sun, M., Zhou, T., Huang, and G., Darrell, T.
(2018). Rethinking the value of network pruning. In
Proceedings of the International Conference on
Learning Representations (ICLR).

Spillner, J., Mateos, C., and Monge, D. A. (2017). Faaster,
better, cheaper: The prospect of serverless scientific
computing and HPC. In Proceedings of the Latin
American High Performance Computing Conference,
pages 154–168.

On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural Networks

723

