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Geometric intuition is a crucial tool to
obtain deeper insight into many concepts
of physics. A paradigmatic example of its
power is the Bloch ball, the geometrical
representation for the state space of the
simplest possible quantum system, a two-level
system (or qubit). However, already for a
three-level system (qutrit) the state space
has eight dimensions, so that its complexity
exceeds the grasp of our three-dimensional
space of experience. This is unfortunate, given
that the geometric object describing the state
space of a qutrit has a much richer structure
and is in many ways more representative for
a general quantum system than a qubit. In
this work we demonstrate that, based on the
Bloch representation of quantum states, it
is possible to construct a three dimensional
model for the qutrit state space that captures
most of the essential geometric features of
the latter. Besides being of indisputable
theoretical value, this opens the door to a
new type of representation, thus extending
our geometric intuition beyond the simplest
quantum systems.

1 Introduction
Nowadays virtually every student of quantum
mechanics learns about the Bloch sphere and the
Bloch ball as the geometrical representations of pure
and mixed states of qubits, respectively. These
objects have become indispensable for developing
an intuition of elementary concepts such as
basic quantum operations and the action of
decoherence [1], or more advanced topics like the
Majorana representation of symmetric multi-qubit
states [2]. Nonetheless, the more experienced
practitioner in the field of quantum mechanics is
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aware of various shortcomings of the Bloch ball if
systems of higher dimension d > 2 are to be discussed.
For example, the entire surface of the Bloch ball is
covered by pure states, whereas most of the boundary
of higher-dimensional state spaces is formed by mixed
states. Those parts of the boundary may either be
flat or curved, however, their curvature is different
from that of the pure-state surface parts, which
actually represents a single unitary orbit. Another
important fact not shown by the Bloch ball is that
not every orthogonal transformation can be applied
to any quantum state: Whenever a state is not
an element of the inscribed sphere of the state
space of maximum radius there exist rotations in
Bloch space that take it outside the state space
and therefore are not allowed. Consequently, it is
a long-standing question whether it is possible to
construct a consistent three-dimensional model for
higher-dimensional state spaces Qd, d ≥ 3, that
captures at least a part of these important geometric
features.

2 Bloch ball for qubits
Let us briefly recapitulate the properties of the Bloch
ball for qubits, d = 2. According to Fano [3, 4]
density operators of qubits are parametrized by using
the Pauli matrices σx, σy, σz and the identity 12

ρ = 1
2 (s012 + x σx + y σy + z σz) (1a)

s = Tr (σsρ) , (1b)

with real numbers s ∈ {x, y, z}, |s| ≤ 1, and the
normalization s0 = 1. The state space Q2 of all qubit
density operators is represented by a ball of radius
1 about the origin of R3, that is, each point (x, y, z)
of this ball corresponds to exactly one state ρ. Pure
states lie on the surface (forming a connected set),
whereas mixed states are located inside the Bloch
sphere, with the fully mixed state at the center.
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Interestingly, the convex combinations of two states,
ρ = λρ1 + (1 − λ)ρ2 (0 ≤ λ ≤ 1), are given by
the straight line connecting the points of ρ1 and ρ2.
A common choice of computational basis states is
{|0〉 , |1〉}, which correspond to north and south pole
of the sphere and form the regular simplex ∆1, the
special case of ∆d−1 for d = 2. This shows that
the vectors in R3 belonging to the basis states are
not orthogonal. These vectors are orthogonal in R4

including the direction of s0, but their projections into
R3 lose this property.

Every density matrix can be obtained by unitarily
rotating a diagonal density matrix, that resembles
a classical probability distribution. Since for d = 2
the special unitary group SU(2) is the universal cover
group of the rotation group SO(3), every rotation of
the Bloch ball Q2 ⊂ R3 has a corresponding unitary
rotation in the state space. From this perspective, the
Bloch ball is obtained by all possible rotations of the
simplex ∆1 in R3.

To the best of our knowledge, the idea that
the parametrization in Eq. (1) entails a useful
visualization for the non-unitary dynamics of a spin
1
2 , e.g., in a situation of radiation damping was put
forward by Feynman and co-workers [5].

3 A Bloch-ball analog for a qutrit
Over the years much work has been done to elucidate
the geometry of the state space of higher level
systems, with special focus on the qutrit state space
Q3 [6–25]. To develop an intuition for the full
high-dimensional geometry of the qutrit state space,
subsets, cross sections and projections onto two
and three dimensions were extensively studied [6,
7, 10, 12, 15, 17, 18, 20–23] and multi-parameter
representations of qutrit states were developed [14,
21, 24–26]. While these approaches can reproduce
many geometric properties correctly, they do not give
a global view of the Bloch body.

In this section we review known facts about
the higher dimensional state space, with focus on
dimension d = 3, collecting a list of requirements
we wish our model to reproduce. We then construct
a three dimensional global model of the state space,
that reproduces astonishingly many properties of Q3.

3.1 Qutrit geometry
In analogy to qubits, density matrices describing the
state of a d-level quantum system can be parametrized
by the identity 1d and d2 − 1 traceless Hermitian
matrices [4, 6, 27]. So the quantum state space Qd
can be represented by a subset in Rd2−1, constrained
by inequalities that arise from the positivity of the
density operators [10, 11]. While it is still true that
the quantum state space Qd is obtained by rotating
the simplex ∆d−1 in Rd2−1, it is no longer a sphere

as not all rotations are allowed. In fact, for d > 2
the special unitary group SU(d) is a proper subgroup
of the rotation group SO(d2-1), meaning that the
quantum state spaceQd is a proper subset of the d2−1
dimensional (Hilbert-Schmidt) ball.

For qutrits the density matrices are parametrized
by the identity 13 and the normalized Gell-Mann
matrices Xj , Yk (j, k = 1, 2, 3), and Z1, Z2 (see
Appendix),

ρ = 1
3

13 +
3∑
j=1

xj Xj +
3∑
k=1

yk Yk +
2∑
l=1

zl Zl


(2a)

xj = Tr (Xj ρ) , yk = Tr (Yk ρ) , zl = Tr (Zl ρ) ,
(2b)

with real numbers xj , yk, and zl, hence their
space has eight dimensions. A Euclidean
metric, corresponding to that of our everyday
geometric experience, is induced in this space
by the Hilbert-Schmidt norm, ‖ρ1 − ρ2‖2≡√

3 Tr [(ρ1 − ρ2)2].
The geometric properties of Q3 we wish for a global

model to reproduce were thoroughly discussed by
Bengtsson et al. in Ref. [18].
i) Most importantly, Q3 is a convex set with the
topology of a ball, so the model should share
this characteristics. There are no pieces of lower
dimension attached to it (“no hair” condition).
ii) The actual Bloch body is neither a polytope nor a
smooth object.
iii) The Bloch body has an outer sphere of radius

√
2

and an inner sphere of radius 1/
√

2 [28].
iv) The pure states (rank 1) form a connected
set on the surface at maximum distance

√
2 from

the completely mixed state 1
313. Its measure is

zero compared to that of Q3. In particular we
aim at prominently displaying the three pure states
corresponding to the preferred basis for the model.
v) Density matrices on the surface of Q3 are of rank
1 or 2, whereas states inside Q3 are of full rank (rank
3).
Finally, there are some additional properties
specifically related to the nature of Q3 as a convex
set:
vi) The set of quantum states is self-dual.
vii) All cross sections of Q3 do not have non-exposed
faces. All corners of two-dimensional projections of
Q3 are polyhedral.

3.2 A three dimensional model for a qutrit
Surprisingly, it is indeed possible to find an object
in R3 representing Q3 that obeys most of the
requirements in this list. In fact, there are (at least)
two solutions with slightly different advantages. First
we construct an object that fulfills properties i–iv)
and also partially v). It represents a valid model
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for Q3 that we call Q
(1)
3 . Then we show that this

first solution can be extended to a model Q
(2)
3 that

possesses in particular also the property vi). Yet that
model does not obey vii).

It is well known that the computational basis states
in d dimensions form the corners of a regular simplex
∆d−1 in Qd [6, 18], that is, for a qutrit a basis will be
represented by ∆2, an equilateral triangle. We insist
that our model for Q3 displays and emphasizes one
particular basis {|0〉 , |1〉 , |2〉}, because the mapping
between physical states and points in the model will
depend on this choice. Hence, we use the coordinates
[cf. Eq. (2b)]

z1 = Tr (Z1 ρ) , z2 = Tr (Z2 ρ) ,

to faithfully represent the diagonal matrices as a
simplex ∆2 in the horizontal coordinate plane. In
particular, the basis state |2〉 corresponds to (z1, z2) =
(0,−

√
2), whereas the states |0〉 and |1〉 are located

in (±
√

3
2 ,
√

1
2 ), respectively. The completely mixed

state lies at the origin (0, 0).
For the remaining six coordinates we are left with

only one direction in R3. Here, we propose to use the
coordinate

w =

√√√√ 3∑
j=1

x2
j + y2

j , (3)

which assumes only non-negative values. Hence we
have our first model for Q3,

Q
(1)
3 = {(z1, z2, w) ∈ R3 s.t.

Eqs. (2b), (3) ∀ρ ∈ Q3}. (4)

The interpretation for the coordinates of a point
P = (z1, z2, w) is simple. Imagine the state ρ
corresponding to P written as a sum of its diagonal
and offdiagonal parts,

ρ = ρdiag + ρoffdiag .

While the distance of P from the origin in the plane

equals the Hilbert-Schmidt length
√

3 Tr(ρ2
diag)− 1

of the diagonal part of the Bloch vector for
ρ, the vertical distance of P from the plane is
the Hilbert-Schmidt length of this Bloch vector’s

offdiagonal part,
√

3 Tr(ρ2
offdiag). The result is shown

in Fig. 1.

3.3 Global geometric properties
Let us analyze the properties of this first model for
Q3 with respect to our list of requirements. The
surface of this object corresponds to a hemisphere of
radius

√
2, where the three spherical segments beyond

the triangle in the plane are cut off. Evidently, it is
both convex and simply connected, without anything

1
31

|0〉〈0|

|1〉〈1|
|2〉〈2|

|+3〉〈+3|

1
2(|0〉〈0| + |1〉〈1|)

|+2〉〈+2|

z1 z2

w

Figure 1: The model Q(1)
3 of the qutrit Bloch body Q3

according to Eq. (4). The location of the basis states |j〉
is specified. The semicircular surface in the foreground is
the image of the Bloch ball spanned by the states |0〉 and
|1〉 and, in this representation, has the “north pole” |+2〉 =

1√
2 (|0〉 + |1〉). The point with the largest w coordinate is

the image of the maximally coherent superposition |+3〉 =
1√
3 (|0〉 + |1〉 + |2〉). Note that all the pure states with

|〈j|ψ〉|2 = 1
3 get mapped to this point, in particular all the

bases which are mutually unbiased with {|0〉 , |1〉 , |2〉}.

else attached to it. The flat surfaces of the cuts
are connected with the smooth upper boundary by
a sharp corner, so the object is neither smooth nor
a polytope. Since our model preserves the length of
the Bloch vector, it is still circumscribed by an outer
sphere of radius

√
2 and center at the origin. The

radius of the inner (hemi-)sphere coincides with that
of the in-circle of the simplex ∆2 in the horizontal
plane and equals 1/

√
2.

The spherical part of the surface above the ground
plane corresponds to the set of pure states, hence
to density matrices of rank 1. They form a
simply connected surface of measure zero at maximal
distance

√
2 from the origin. The cuts are half

circles, in fact, these flat surfaces are the images of
the three two-dimensional Bloch balls corresponding
to the pairs of states {|0〉 , |1〉}, {|0〉 , |2〉}, and
{|1〉 , |2〉} (cf. also Fig. 1). This means, these
surfaces correspond to states of at most rank 2. It

is understood that the base of Q
(1)
3 represents an

artificial cut – similar to the base of the sculpture
of a bust – that does not represent a boundary of Q3.
The states on the other surfaces are of lower rank, all
states of rank 3 reside in the interior of the model.
However rank-2 states that have all of the basis
vectors |0〉, |1〉, |2〉 in their span are located inside

Q
(1)
3 , although in Q3 they are part of the boundary.

But the rank-2 states do not cover the entire interior
of Q

(1)
3 . Evidently, all points inside the inner sphere

are of rank 3, since rank-2 states have purity of at
least 1

2 . However the set of points corresponding only
to rank-3 states is larger than that; see Sec. 3.4 for
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details. Conversely, the interior points outside that
set correspond both to rank-2 and rank-3 states. In
particular, in agreement with property v), the images
of rank-3 states cover the complete interior. Thus,

we have established that our construction Q
(1)
3 has all

the desired properties i–iv) of our list, property v) is
at least partially satisfied.

We may ask how the coordinates in Q
(1)
3 are related

to those of the actual state space Q3. Clearly our
model is neither a projection nor a cross section.
Instead, it resembles a representation in cylindrical
coordinates: Our “diagonal coordinates” z1, z2
correspond to two longitudinal axes, whereas each

rj =
√
x2
j + y2

j (where j = 1, 2, 3) may be viewed as a

radial coordinate belonging to mutually orthogonal
directions. Our model does not display the polar
angles and shows only the total radial distance.

3.4 Local algebraic properties
We have mentioned that the simplex ∆2 represents
the diagonal states faithfully, it is isomorphic to that
set just as the Bloch ball is isomorphic to Q2. But

our three-dimensional model Q
(1)
3 cannot represent all

states of the eight-dimensional state space faithfully.

In fact, a general point of Q
(1)
3 corresponds to

infinitely many states and the simplex representing
the basis states |j〉〈j|, j = 0, 1, 2 is the only set of
states with a unique preimage. States mapped onto
the same point in the model belong to the equivalence
class of states with the same diagonal entries and
purity, they form a five-dimensional manifold in
the original state space Q3. These subspaces are
closed under the action of unitary operators that
commute with Z1 and Z2, in particular diagonal
unitary operators. As a consequence the model is
invariant under these transformations.

The action of general unitary transformations,
however, is displayed by our model. Since the purity
remains unchanged, all points in the unitary orbit
have the same distance from the origin. This orbit
forms a subset of a sphere, its shape depends on the
eigenvalues of the transformed state. As previously
elucidated, a point in the interior represents a whole
subspace of states with possibly different eigenvalues,
so it makes little sense to talk about the orbit of
a point in our model. However, diagonal states
in the ground triangle are depicted faithfully and
therefore uniquely identify a unitary orbit. One
only needs to use the eigenbasis of the state to
investigate which points can be reached by unitary
transformations. The permutations of the diagonal
entries correspond to SU(3) rotations, therefore the
unitary orbit includes six points on the triangle (for
non-degenerate eigenvalues). Since the eigenvalues
of a matrix majorize the diagonal entries, the orbit
remains on a sphere above this hexagon. Vice versa,
every point on the sphere above the hexagon can

Figure 2: The SU(3) orbit of the state ρ0 = 6
10 |0〉〈0| +

3
10 |1〉〈1| + 1

10 |2〉〈2| is represented by the blue spherical
surface. The image of ρ0 together with the other five points
in the z1-z2 plane forms the Birkhoff polytope (see text). The
eigenvalue vectors of the diagonal states inside the polytope
are majorized by that of ρ0, ( 6

10 ,
3

10 ,
1

10 ).

be reached through a unitary transformation, see
Fig. 2. If the eigenvalues are degenerate, the hexagon
becomes a triangle. A special case are the pure states,
the unitary orbit of a pure state coincides with the

upper surface of Q
(1)
3 .

This visualization establishes a direct connection to
the action of doubly stochastic matrices on classical
probability distributions. A classical probability
distribution p majorizes exactly the probability
distributions M.p, where M is a doubly stochastic
matrix. The set of distributions majorized by p
is called the Birkhoff polytope [6]. The action of
doubly stochastic matrices on classical probability
distributions corresponds to the action of unitary
transformations on normalized diagonal matrices.
That is, for every doubly stochastic matrix M
there exists a unitary matrix U , such that M.p =
diag(U.D.U†), where D is a diagonal matrix with p =
diag(D). In the model this is visualized by unitarily
transforming a diagonal state and then projecting it
onto the ground triangle. This exactly reproduces
the Birkhoff polytope, but it also generalizes it in the
sense that the norm of the offdiagonal part remains
visible.

The images of SU(3) orbits also allow us to identify
the set of images of rank-2 states. The rank-2 diagonal
states are exactly the sides of the base triangle.
Therefore the rank-2 states are given by all the orbits
of those points. It is readily seen that the boundary
arcs connecting two triangle sides form half-circular
cones that each have one of the basis states as apex,
and are tangential to the insphere at their base. The
points inside those cones, as well as the points inside
the inner sphere, are not covered by those orbits, and
therefore correspond only to states of rank 3. This
rank-3 only region is convex; indeed it is the convex
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hull of the interior of the insphere and the interior of
the base triangle.

Note that the mirror image of this region and its
boundary forms the lower part of our second model

Q
(2)
3 which will be described in Sec. 4.

The map that takes the qutrit state space to our
model is decidedly nonlinear, but amazingly retains
some linear properties of the state space for the image.
Any convex combination of two diagonal qutrit states
δ = λδ1 + (1−λ)δ2 with λ ∈ (0, 1) is again a diagonal
state and its image lies on the straight line connecting
the image points of δ1 and δ2. But even the convex
combinations ρ = λσ+ (1−λ)δ of an arbitrary qutrit
state σ with a diagonal state δ are located on the
straight line connecting σ and δ. The mixture of
the diagonal parts is faithfully represented, but in
this case, this holds also for the offdiagonal parts,
because δoffdiag simply vanishes. Consequently, for
any problem involving two arbitrary states we can
find a visualization of their mixture by means of a
straight line: It is enough to consider the problem in
the eigenbasis of one of the states.

Another noteworthy aspect of our model Q
(1)
3 is

the separate treatment of diagonal and offdiagonal
parts of the state. The diagonal matrices may be
viewed as states in a classical probability space [18].
They become nonclassical by adding coherences, i.e.,
an offdiagonal part. The w coordinate in our model
is the 2-norm for the offdiagonal part of the state.
As the 1-norm of the offdiagonal part is established
as a coherence measure [29] and the 1-norm is
lower-bounded by the 2-norm, our model explicitly
shows a lower bound to the coherence of a given
quantum state. Correspondingly, the maximally
coherent state |+3〉 = 1√

3 (|0〉 + |1〉 + |2〉) is located

at the north pole of the hemisphere.

4 Self-dual qutrit geometry
The model we have discussed so far does not meet
the requirements v) and vi) of our list. In particular
it is not self-dual, that is, our three-dimensional Bloch
vectors do not fulfill the following condition. Let ~ξ be
the Bloch vector belonging to a state on the boundary
of the state space. Then for the set of Bloch vectors
~η defining the dual hyperplanes enveloping the state
space on the side opposite to ~ξ we have [18]

~ξ · ~η = −1 . (5)

Our model so far is not self-dual simply because
for vectors ~ξ on the surface with w > 0 the dual
planes do not touch the lower boundary of our Bloch
body model. We will now demonstrate that the
model can be extended by adding a “lower part” with
coordinates w < 0 so that the entire object becomes
self-dual.

Figure 3: Constructing the dual of the surface of the model
Q

(1)
3 . Red: Cross section for determining the dual states ρ̃(p)

of the mixtures ρ(p) in Eq. (8). Gray: We have included the
part that has been cut from the full Bloch body (see Fig. 4,
which shows the complete object Q(2)

3 from the same point
of view). By rotating the section highlighted in red by the
angle β (see text) one obtains the lower conical part of Q(2)

3 .

4.1 Self-dual extension of Q
(1)
3

To achieve self-duality, consider first the pure states Π
with Tr(Π2) = Tr(Π) = 1. If we denote the vector of

Gell-Mann matrices by ~h and the Bloch vector of the
state Π by ~π, we can write Π = 1

3 (13 + ~π · ~h). Recall
that reversing the sign of all coordinates in the qubit
Bloch sphere amounts to a point reflection operation
at the maximally mixed state. This fact suggests that
we might try reversing the sign of w in a process of
reversing all of the coordinate signs, for example in an
operation of the kind ρ −→ α13 − ρ (where α > 0).
We have to make sure that the result is again positive.
In Ref. [30] the so-called universal state inversion map
S(ρ) = ν(1 − ρ) was introduced; it guarantees that
the result actually is a state. We choose the prefactor
ν = 1

2 so as to normalize the resulting qutrit state
and write

S(ρ) ≡ ρ̃ = 1
2(13 − ρ) . (6)

The inverted state ρ̃ is positive and for pure states we
have Tr(ΠΠ̃) = 0. Therefore,

0 = 1 + ~π · ~̃π , (7)

that is, the Bloch vector ~̃π defines the dual plane for ~π
(and vice versa). As the image of ~π determines a point
in the spherical part of the boundary of our model,
also the image of ~̃π lies on a spherical surface, however,
with half the radius because of the prefactor ν = 1

2 .
The result is that the spherical part of our model

Q
(1)
3 gets replicated in the region w < 0, whereat it

is point-reflected at the origin and scaled down by a
factor 1

2 .
This reasoning cannot be applied for the mixed

boundary states of the model. Rather, we apply
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state inversion xj → −xj , yk → −yk, zl → −zl and
determine the boundary states by explicit calculation.
Consider, for example, the mixtures (cf. Fig. 3)

ρ(p) = p |+2〉〈+2| + 1− p
2 (|0〉〈0|+ |1〉〈1|) (8)

with 0 ≤ p ≤ 1. It is straightforward to show that the
dual states are given by

ρ̃(p) = 1
3

(
13 −

√
2

1 + 3p Z2−
√

6 p
1 + 3p X1

)
= 1

3

(
13 − (1− q)

√
2 Z2−q

[√
2

4 Z2 +
√

6 p
4 X1

])
(9)

with q = 4p
1+3p . That is, also ρ̃(p) lies on

a straight line connecting |2〉〈2| and the dual of
|+2〉〈+2|. An analogous calculation applies to all
mixtures of 1

2 (|0〉〈0| + |1〉〈1|) with pure states on
the circumference of the {|0〉 , |1〉} “Bloch sphere”.
Instead of considering the cross section in the z2-w
plane for the states ρ̃(p) we can rotate this plane
about the z2 axis by an angle β (see Fig. 3), so
that the pure state on the circumference becomes

cos
(
π−2β

4

)
|1〉+ sin

(
π−2β

4

)
|0〉.

The shape of the corresponding parts of the cross
section remains the same as in the one shown in Fig. 3.
Consequently, the dual states of the qubit Bloch ball
{|0〉 , |1〉} are located on a half circular cone with apex
in |2〉〈2| (cf. Fig. 4). Due to the three-fold symmetry

of Q
(1)
3 the regions near the other pure states |0〉〈0|,

|1〉〈1| can be constructed analogously.
Once we have found the shape [i.e., the boundary

coordinates wmax(z1, z2) and wmin(z1, z2)] of the
self-dual object, we also need to provide a rule to
decide whether a given state ρ from inside Q3 is
mapped to the “upper” (w > 0) or the “lower”
(w < 0) part of the object. In other words, from
ρ we can determine the coordinates z1, z2, |w| as well
as wmin(z1, z2), but how can we decide about the sign
of w?

In the following we describe a procedure to define
this mapping ρ −→ P (z1, z2, w). It is both
straightforward and consistent (however, there might
be other choices). Let ρ be an arbitrary qutrit state
with smallest eigenvalue λmin. First we subtract as
much of the fully mixed state so that one eigenvalue
vanishes, i.e.,

ρ′ = 1
1− 3λmin

(ρ− λmin13) (10)

is a rank-2 state with Bloch coordinates (z′1, z′2, |w′|).
Then

|w′| > |wmin(z′1, z′2)|

|w′| ≤ |wmin(z′1, z′2)|

}
=⇒

{
w > 0

w < 0
. (11)

This implies that in the case of equality the state ρ′

is located at the lower boundary in Q
(2)
3 . Moreover,

|0〉〈0|

|1〉〈1||2〉〈2|

Figure 4: The self-dual model Q(2)
3 of the qutrit state space

Q3.

together with ρ′ also all its mixtures with 1
313 belong

to the lower part of Q
(2)
3 , ensuring its compactness.

The meaning of this definition is clear: In comparison

to the structure of Q
(1)
3 , in Q

(2)
3 we redistribute the

location of the rank-2 states ρ′. If the purity of ρ′

is large enough for its diagonal coordinates (z′1, z′2) it
needs to remain in the upper part, w > 0, otherwise
it goes to the lower part, w < 0.

This concludes the construction of the self-dual
model Q

(2)
3 for the qutrit Bloch body, see Fig. 4:

Q
(2)
3 =

{
(z1,z2, w) ∈ R3 s.t.

Eqs. (2b), (3), (11)∀ρ ∈ Q3
}
. (12)

We note that the extension to a self-dual object can

be applied as well to the half-circle model Q
(1)
2 of the

d = 2 Boch ball. Then, however, the rule given in
Eq. (11) to determine the sign of w (without any
addendum) does not improve the model. This is
because in d = 2 all offdiagonal elements can be made
real and positive by applying a single appropriate
diagonal unitary to the state. In contrast, for d > 2 at
most 2(d−1) offdiagonal matrix elements of a generic
state can simultaneously be made positive by applying
a diagonal unitary.

4.2 More convexity properties and relation to
previous work
Convexity properties of the state space in the context
of the Bloch-ball representation for d = 2 (and even
for d = 3) were discussed early on, e.g., by Bloore [7]
who analyzed the stratification of the state space with
respect to the matrix rank. For a qutrit, all states of
reduced rank r < 3 are part of the boundary. The
four-dimensional set of rank-1 states |ψ〉〈ψ| forms the
extremal states of the convex state space, as they do
not have a convex decomposition into other states ρ1
and ρ2, |ψ〉〈ψ| 6= λρ1 + (1 − λ)ρ2 with 0 ≤ λ ≤ 1.
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Geometrically they are part of the outer sphere,
because they have distance

√
2 from the origin.

As described in the previous section, the lower

part of our self-dual model Q
(2)
3 consists of three

half-circular cones, each with a basis state as
their apex, which end at a half-sized point mirror
image of the pure-state spherical section, that is,
at the insphere. This description matches exactly
the one of the internal boundary separating the
points corresponding to rank-2 states from those
corresponding only to rank-3 states in the model

Q
(1)
3 , except that it is below the base triangle rather

than above. Also in the previous section, it was
established that rank-2 states are mapped to the lower
half exactly if doing so does not locate them outside
the model.

This allows us to determine the image of the set of

rank-2 states in Q
(2)
3 . The only rank-2 states that fit

into the lower part are exactly those which in Q
(1)
3 lie

on the internal boundary between rank-2 states and
rank-3 only states. Therefore all rank-2 states that get
mapped into the lower half of the self-dual model are
mapped onto the model’s surface, while the interior
of the lower part consists only of rank-3 states, just
as criterion v) requires.

However, the same is not true in the upper part.

Almost all the rank-2 states in the interior of Q
(1)
3 are

not moved to the lower part and therefore are also in

the interior of Q
(2)
3 . Only the points on the internal

rank boundary in Q
(1)
3 are moved to the boundary

of Q
(2)
3 , leaving only rank-3 states on the internal

boundary. That is, criterion v) is still not perfectly

satisfied. However, the new model Q
(2)
3 is self-dual by

construction and hence obeys the criterion vi).

The last criterion vii) is critical because also

the self-dual model Q
(2)
3 cannot reproduce these

properties. This can be observed in the highlighted
cross section in Fig. 3. The point corresponding
to 1

2 (|0〉〈0| + |1〉〈1|) is non-exposed and counts as
a non-exposed face of the two-dimensional cross
section [18]. As these non-exposed faces occur at
points where the self-dual extension is attached to

Q
(1)
3 one might speculate that their occurrence is a

price to pay for having such an extension. Moreover,
the highlighted cross section in Fig. 3 coincides with

the projection of Q
(2)
3 in the direction of the z1 axis.

Neither the corner corresponding to |2〉〈2| nor that of
|+2〉〈+2| is polyhedral.

The self-duality of Q
(2)
3 is particularly interesting,

because it enables us to analyze how findings from
previous work are featured in our model. As a first
example we consider the duality of boundary states
on outer and inner spheres. As was elucidated in
Refs. [11, 20], boundary states on the outer sphere
have their dual counterparts on the inner sphere,
and vice versa. This property can be observed in

Figs. 3 and 4 and is guaranteed by construction via
the universal state inversion, Eq. (6), (7).

It is noteworthy that the universal state inversion
(or reduction [31]) map finds an explicit geometric
application here. Until now it was mainly associated
with entanglement properties of multi-party states,
although the relevance of geometrical concepts was
implicit also in that context (cf., e.g., [32]).

One of the most notable qutrit three-sections is
the so-called obese tetrahedron (or three-dimensional
elliptope). It was already noted by Bloore [7] and
thoroughly studied by Goyal and co-workers [20] (see
Sec. 5.4 and Fig. 5 in Ref. [20]). Its barycenter is
the completely mixed state and the corners are given
by the four non-orthogonal states 1√

3 (|0〉 ± |1〉 ± |2〉).
The faces are bulgy, because the tetrahedron contains
with its corner points also their duals on the opposite

side. The image of the tetrahedron in Q
(2)
3 is the

part of the vertical axis belonging to the model: The
corner points are all mapped to the north pole, the
barycenter to the origin and the centers of the faces
to the point with z1 = z2 = 0 and w = − 1√

2 .

The last example we mention here is the conical
three-section, Sec. 5.1 and Fig. 2 in Ref. [20].
Instead of the [128] section we consider the
(unitarily equivalent) [138] section which indeed has

a three-dimensional image in Q
(2)
3 . The states of the

cone are formed by all convex combinations of the
real states of the {|0〉 , |1〉} Bloch ball (a circular disk)
and the state |2〉〈2|. Therefore, one might expect
the image to include for w > 0 the corresponding
half-cone with the semicircular surface at z2 = 1√

2 and

the apex at z2 = −
√

2. However, this is only partially
correct, because a part of the half-cone gets mapped
to values w < 0 according to our rule, Eq. (11).
This includes the complete half-cone attached to |2〉〈2|
for values w < 0 and z2 ≤ −

√
2

4 . Moreover, also
the half-cone with apex in the origin and base at

z2 = −
√

2
4 with base radius

√
6

4 gets mapped to w < 0.
The union of both parts at w < 0 and w ≥ 0
corresponds to the half-cone mentioned before, that
is, to one half of the actual conic three-section.

5 Quantum channels
In order to give yet another demonstration that
our method directly connects to the well-known
properties of the Bloch sphere/ball visualization
we show the action of three standard decohering
channels (cf. Ref. [1]) on a qutrit. The depolarizing
channel corresponds to driving a state towards the
completely mixed state 1

313, whereas phase-damping
amounts to mixing a state with its diagonal part.
Amplitude-damping describes the relaxation to one

of the basis states. Following the discussion of Q
(1)
3

the action of these channels on the qutrit Bloch body
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is evident and completely analogous to what is known
for the d = 2 Bloch ball (cf. Fig. 5).

The channels are characterized by their Kraus
operators Kj that obey the relation

∑
j K
†
jKj =

13. For the depolarizing channel we have K0 =√
1− 8γ/9 13, Kj =

√
γ/9 hj , where hj (j = 1 . . . 8)

stands as a shortcut for all the Gell-Mann matrices,
so that

ρ′(γ) = (1− γ) ρ + γ 13 . (13)

The parameter γ ∈ [0, 1] describes the strength of the
channel action.

The Kraus operators for phase damping (or
pure dephasing) in its simplest version are K0 =√

1− 2γ/3 13, K1 =
√
γ/3 Z1, K2 =

√
γ/3 Z2.

Under the action of the depolarizing and the
phase-damping channel, the shrinking of the Bloch

body model Q
(1)
3 occurs proportionally along straight

lines, and the images of states that are represented by
the same point will again be represented by the same
point in the shrunken model. The same is, however,
not true for the amplitude-damping channel.

The amplitude damping channel considered is of the
form given by Grassl et al. [33], with γ01 = γ02 =: γ
and γ12 = 0, so that the states |1〉 and |2〉 are damped

equally. That is,

K0 = |0〉〈0|+
√

1− γ |1〉〈1|+
√

1− γ |2〉〈2|
K1 = √γ |0〉〈1| (14)
K2 = √γ |0〉〈2| .

This results in non-equal scaling of the non-diagonal
elements. Whereas ρ01 and ρ02 scale with a prefactor
of
√

1− γ, the element ρ12 gets a prefactor of (1−γ).
This does not matter for diagonal states (w = 0),

which are mapped into the model uniquely, and which
are therefore again scaled linearly, by

z1 7→ z′1 =
√

3
2 +

(
z1 −

√
3
2

)
(1− γ) (15)

z2 7→ z′2 = 1√
2

+
(
z2 −

1√
2

)
(1− γ) (16)

Note that these two coordinates are scaled the same
way for all the states.

For pure states, the absolute value of the
offdiagonal elements is uniquely determined by the
diagonal elements, and since only the absolute value
enters into the w coordinate, again each point of the
original model gets mapped to only one point of the
shrunken model. In particular, the w coordinate of
pure states gets mapped according to

w′2 = (1− γ)2

[
2
3

(
1− z2

2 −
z2√

2

)
+ z1

(
2√
3
z2 −

√
2
3

)]

+ (1− γ)
[

4
3 − z2

1 +
(√

2
3 −

2√
3
z2

)
z1 −

z2
2
3 +

√
2z2

3

]
. (17)

For non-diagonal mixed states, states with different
distribution of absolute values in the offdiagonal
matrix elements get mapped to the same point in the
model. Therefore states that are represented by the
same point will get mapped by the channel to states
represented by different points. It is obvious that the
value of w will always be mapped somewhere into the
range [(1 − γ)2w, (1 − γ)w), but that range will not
be exhausted for all source points.

6 Conclusion
We have presented two ways of visualizing the
eight-dimensional state space of a qutrit in R3,
thereby preserving a number of essential geometric
properties of Q3, cf. Ref. [18]. Depending on the
context one or the other representation may appear
more useful. Our findings are relevant, because the

properties of Q
(1)
3 and Q

(2)
3 are much closer to those

of arbitrary higher-dimensional state space than the
Bloch ball for qubits.

Thus we hope our results are helpful to develop
a more precise intuition for objects in higher
dimensions, which are commonly encountered in
quantum information science.

It is conceivable that there are more possibilities for
such visualizations along the lines of this work. The
essential features of this visualization persist even if
we use it to represent state spaces of dimensions d > 3
(splitting the generalized Gell-Mann into a diagonal
and off-diagonal part in an identical fashion). Finding
the most useful geometrical representation of those
and categorizing them is a direction that we believe
to yield further fruitful insight in the future.
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a) b) c)

Figure 5: Action of quantum channels on the qutrit state space in Q
(1)
3 representation: a) depolarizing, b) phase-damping,

and c) amplitude-damping channel.
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7 Appendix
For completeness, we provide the definition for the
Gell-Mann matrices that we use in Eqs. (2a) and
(9). Please note that we use a normalization to the
dimension d = 3 (as opposed to the normalization
to 2 conventionally used in high-energy physics).
Moreover, also the enumeration differs from the usual
one and is adapted to our coordinate description:

X1 =
√

3
2

 0 1 0
1 0 0
0 0 0

 Y1 =
√

3
2

 0 −i 0
i 0 0
0 0 0



X2 =
√

3
2

 0 0 1
0 0 0
1 0 0

 Y2 =
√

3
2

 0 0 −i
0 0 0
i 0 0



X3 =
√

3
2

 0 0 0
0 0 1
0 1 0

 Y3 =
√

3
2

 0 0 0
0 0 −i
0 i 0



Z1 =
√

3
2

 1 0 0
0 −1 0
0 0 0

 Z2 = 1√
2

 1 0 0
0 1 0
0 0 −2

 .
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