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Immunogenomics of Colorectal Cancer Response to
Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial
and Validation Cohorts
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BACKGROUND & AIMS: Colorectal cancer (CRC) shows vari-
able response to immune checkpoint blockade, which can only
partially be explained by high tumor mutational burden (TMB).
We conducted an integrated study of the cancer tissue and
associated tumor microenvironment (TME) from patients
treated with pembrolizumab (KEYNOTE 177 clinical trial) or
nivolumab to dissect the cellular and molecular determinants of
response to anti- programmed cell death 1 (PD1) immuno-
therapy. METHODS: We selected multiple regions per tumor
showing variable T-cell infiltration for a total of 738 regions
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Response of colorectal cancer to immune checkpoint
blockade is highly variable, and molecular and cellular
determinants of response remain poorly understood.

NEW FINDINGS

Tumor mutational burden is insufficient to predict
response in colorectal cancer. Additional predictors are
clonal immunogenic mutations, clonally expanded T
cells, low Wnt activation, active immune escape, and
high CD8 T cells and antigen-presenting macrophage
infiltration.

LIMITATIONS

Due to the restricted use of anti-programmed cell death 1
immunotherapy in hypermutated colorectal cancers, our
study has a limited patient cohort size. Additional data
from prospective studies are needed.

IMPACT

Colorectal cancer stratification based on tumor mutational
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from 29 patients, divided into discovery and validation co-
horts. We performed multiregional whole-exome and RNA
sequencing of the tumor cells and integrated these with T-cell
receptor sequencing, high-dimensional imaging mass cytom-
etry, detection of programmed death-ligand 1 (PDL1) inter-
action in situ, multiplexed immunofluorescence, and
computational spatial analysis of the TME. RESULTS: In
hypermutated CRCs, response to anti-PD1 immunotherapy
was not associated with TMB but with high clonality of
immunogenic mutations, clonally expanded T cells, low acti-
vation of Wnt signaling, deregulation of the interferon gamma
pathway, and active immune escape mechanisms. Responsive
hypermutated CRCs were also rich in cytotoxic and prolifer-
ating PD1þCD8 T cells interacting with PDL1þ antigen-
presenting macrophages. CONCLUSIONS: Our study clarified
the limits of TMB as a predictor of response of CRC to anti-PD1
immunotherapy. It identified a population of antigen-
presenting macrophages interacting with CD8 T cells that
consistently segregate with response. We therefore concluded
that anti-PD1 agents release the PD1-PDL1 interaction be-
tween CD8 T cells and macrophages to promote cytotoxic
antitumor activity.
burden is limited and may be improved by accounting for
other predictors, including the abundance of antigen-
presenting macrophages in proximity to CD8 T cells.
Keywords: Anti-PD1 Immunotherapy; Tumor Mutational

Burden; Wnt Signaling; Interferon Gamma; CD8 T cells.

nticancer therapy based on immune checkpoint
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Abbreviations used in this paper: A-FRET, amplified Förster resonance
energy transfer; B2M, beta-2-microglobulin; CD, cluster of differentiation;
CRC, colorectal cancer; DB-CRC, durable benefit colorectal cancer; GzB,
granzyme B; IMC, imaging mass cytometry; mIF, multiplexed immunoflu-
orescence; nDB-CRC, no durable benefit colorectal cancer; PD1, pro-
grammed cell death 1; PDL1, programmed death-ligand 1; RNA-seq, RNA
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sequencing (TCR-seq); TCGA, The Cancer Genome Atlas; TMB, tumor
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Ablockade has driven a paradigm shift in the treat-
ment of several cancer types.1 Pembrolizumab and nivolu-
mab, 2 antibodies targeting programmed cell death 1 (PD1)
expressed on T cells, have shown efficacy in advanced
hypermutated colorectal cancers (CRCs).2 Response is
thought to depend on rich immune infiltration and high
tumor mutation burden (TMB) leading to increased pro-
duction of peptide neoantigens.3 However, despite perva-
sive tumor immunogenicity, response is highly variable, and
approximately half of patients with hypermutated CRCs
show no benefit from treatment.4

We have dissected the extent to which TMB, cancer
dysfunctional genes and pathways, as well as the qualita-
tive and quantitative immune composition of the tumor
microenvironment (TME) influence response to immune
checkpoint blockade. To reproduce the most common
clinical scenario where metastatic biopsies are not
routinely taken, we performed a high-dimensional and
multiregional profile of primary CRCs or local relapses
from 29 patients, divided into a discovery and a
validation cohort. The discovery cohort was composed of
patients with metastatic disease treated with pem-
brolizumab as first-line therapy within the KEYNOTE 177
phase III clinical trial5 or nivolumab. Most patients did not
receive previous treatment, which offered the ideal
opportunity to identify critical factors for response to
treatment in cancer genetic and transcriptional dysregu-
lation and immune microenvironment composition. We
then extended the study to a more heterogenous validation
cohort of patients who received anti-PD1 agents alone or
in combination and as first-line therapy or in a
chemorefractory setting to assess the general validity of
our findings.
Methods
Patient Populations

Formalin-fixed paraffin-embedded blocks were obtained
from surgical resections of the primary tumor or local relapse of
16 patients (UH1–UH16, discovery cohort) and 13 patients
(UH17–UH29, validation cohort). UH1 through UH10 were
treated with pembrolizumab as part of the KEYNOTE 177 clinical
trial (NCT02563002)5 and UH11 through UH16 were treated
with nivolumab as first-line therapy. UH17 through UH19 were
part of the KEYNOTE 177 trial, UH26 received pembrolizumab,
UH20 through UH25 and UH29 were treated with nivolumab,
UH27 received ipilimumab in combination with nivolumab and
then nivolumab alone, and UH28 received nivolumab and then
ipilimumab in combination with nivolumab.
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Response to therapy was assessed using Response Evalua-
tion Criteria In Solid Tumors 1.1.6 Patients were considered to
achieve durable benefit if the disease did not progress for at
least 12 months after receiving immunotherapy, and no durable
benefit if the disease progressed within 12 months. Further
details on treatment and other clinical parameters, including
tumor staging and prior lines of treatment, are reported as
Supplementary Methods and Supplementary Table 1.

CD3 and H&E Staining
Cluster of differentiation (CD) 3 immunostaining was per-

formed on several slides across the depth of each analyzed
tumor block, for a total of 418 regions. Slides were digitally
acquired at 20� resolution and loaded into QuPath7 to quantify
the number of CD3þ cells/mm2. H&E staining was performed
on 13 additional slides of the validation cohort.

Imaging Mass Cytometry
Imaging mass cytometry (IMC) was performed in 77 re-

gions of the discovery and validation cohorts using 3 panels of
42 antibodies in total. IMC data analysis was done with SIM-
PLI.8 Positive areas for combinations of markers were quanti-
fied and normalized over the tissue area or the area of selected
immune populations. After segmentation, cell identities were
assigned according to the highest overlap with marker-specific
masks. Unsupervised cell clustering was performed with
Seurat9 and used to compare the relative abundances of cell
subpopulations between tumor groups. High-density clusters of
CD68þCD74þ cells were identified using DBSCAN.10

Multiplexed Immunofluorescence
Multiplexed Immunofluorescence (mIF) was performed in

24 whole slides of the discovery and validation cohorts using
an automated Opal-based mIF staining protocol with 8 anti-
bodies. Fluorescently labeled slides were scanned, and images
were loaded into inForm (Akoya Biosciences) for spectral
unmixing and autofluorescence isolation.

Whole-Exome Sequencing
Whole-exome sequencing (WES) was conducted on 32

macrodissected tumor regions and matched normal tissue of
the discovery cohort. Sequencing data were aligned using BWA
MEM.11 Somatic single-nucleotide variants (SNVs) and indels
were called using Strelka.12 ANNOVAR13 was used to annotate
exonic or splicing SNVs and indels, and damaging SNVs and
indels were identified as previously described.14 Copy number
analysis was done using ASCAT15 and integrated with gene
expression data. Amplified genes, deleted genes, hetero-
zygously deleted genes with a damaging mutation in the other
allele, and copy number neutral genes with at least 1 damaging
mutation were considered as damaged genes. Immunogenic
mutations were predicted using Polysolver16 and Neo-
PredPipe,17 and their clonality was assessed using PyClone.18

RNA Sequencing
We conducted 30-RNA sequencing (RNA-seq) on 88 mac-

rodissected regions of the discovery and validation cohorts.
Raw reads were processed using the Lexogen QuantSeq 30

messenger RNA-seq pipeline.19 Differential gene expression
was assessed using DESeq2.20 Pathway enrichment analysis of
differential expressed genes was done using MetaCore 20.3
build 70200 (Clarivate Analytics).
T-Cell Receptor b-Chain Sequencing
T-cell receptor b-chain sequencing (TCR-seq) was per-

formed on 28 macrodissected regions of the discovery cohort.
Genomic DNA was submitted to Adaptive Biotechnologies
(Seattle, WA) for nonlymphoid tissue (survey level) TCR-seq.21

Data were analyzed using the immunoSEQ Analyzer toolset.
PD1-PDL1 Amplified Förster Resonance Energy
Transfer

In situ interaction between PD1 and programmed death-
ligand 1 (PDL1) was measured in 58 regions of the discovery
cohort via amplified Förster resonance energy transfer (A-
FRET)22 at FASTBASE Solutions (Derio, Spain). FRET efficiency
was calculated from 793 optical fields of view to cover the
whole surface of the regions analyzed. The results were
expressed as the median fields of view values per region.
Detailed protocols and methods are provided in the
Supplementary Methods.
Results
Response of Hypermutated Colorectal Cancers
Is Associated With Clonal Immunogenic
Mutations and Clonally Expanded T Cells

To assess how immune infiltration correlates with tumor
genetic and transcriptional alterations in CRC, we per-
formed a multiomic and multiregional profile of 24
sequential slides (A–K) from formalin-fixed paraffin-
embedded tumor blocks, for a total of 562 regions from 16
patients of the discovery cohort (Figure 1A). Ten of these
patients received pembrolizumab (UH1–UH10) and 6 nivo-
lumab (UH11–UH16) as a first-line treatment in advanced
metastatic setting. According to Response Evaluation
Criteria In Solid Tumors 1.1, 9 patients achieved durable
benefit, and 7 had no durable benefit from the treatment
(Supplementary Table 1). We validated the main findings of
the study in 176 additional regions from 13 patients with
CRC (UH17–UH29, Supplementary Figure 1A) treated with
anti-PD1 agents alone or in combinations with other im-
mune checkpoint inhibitors as first-line therapy or in a
chemorefractory setting (Supplementary Table 1). Ten of
them reached a durable benefit, and 3 had no durable
benefit (Figure 1A).

Because T cells are the effector cells that mediate the
response to anti-PD1 immunotherapy, we selected multiple
regions per block with variable T-cell content in proximity
to the tumor infiltrating margins (Supplementary
Figure 1B). These regions were then projected in all
sequential slides to perform additional CD3 immunohisto-
chemistry for quantification of T-cell variability in the 3-
dimensions of the tumor as well as IMC, mIF, WES, RNA-
seq, TCR-seq, and A-FRET detection of the PD1-PDL1
interaction in situ (Figure 1B).
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As a first analysis, we compared T-cell infiltration be-
tween and within tumors (Supplementary Figure 1C). In
both the discovery (Figure 1C) and validation
(Supplementary Figure 1D) cohorts, we observed wide-
spread intertumor and intratumor heterogeneity of T-cell
infiltration, with up to a 38-fold difference in CD3þ cell
densities between patients and up to a 20-fold difference
between regions of the same patient (Supplementary
Table 2). To investigate how heterogeneity in T-cell infil-
tration correlated with TMB, we performed multiregional
WES in the discovery cohort by selecting 2 regions per pa-
tient, 1 with high and 1 with low T-cell infiltration
(Supplementary Table 2). TMB was comparable between
regions of the same patient (Figure 1D) and did not corre-
late with T-cell density across samples (Figure 1E). Similar
lack of correlation was observed in hypermutated CRCs
from The Cancer Genome Atlas (TCGA) (Supplementary
Figure 1E), indicating TMB independence of T-cell
heterogeneity.

WES also showed that the TMB in 3 patients (UH2, UH3,
and UH6) was lower than 12 mutations/megabase pair
(TCGA lower bound of CRC hypermutated phenotype23)
despite negative MLH1 and PMS2 immunostaining and
consistent with resistance to treatment (Supplementary
Table 1). All patients of the validation cohort had hyper-
mutated CRCs (Supplementary Table 1).

Given that approximately 50% of patients with hyper-
mutated CRC do not respond to immunotherapy, we
compared TMB between hypermutated CRCs with durable
benefit (DB-CRCs) and those with no durable benefit (nDB-
CRCs) to assess the role of TMB as a marker of response
within hypermutated CRC. Surprisingly, in the discovery
cohort, DB-CRCs had a significantly lower TMB than nDB-
CRCs (Figure 1F). When adding hypermutated CRCs from
the validation cohort and published studies,24–28 we
observed no significant difference between DB- and nDB-
=
Figure 1. Study design and quantification of tumor heterogeneity
treatment was assessed with Response Evaluation Criteria In S
from formalin-fixed paraffin-embedded (FFPE) CRC blocks befo
chemistry (slides A, B, F, H, and J), IMC (slide C), mIF (slide D), W
I1–I5), and A-FRET detection of PD1-PDL1 interaction in situ (slid
identified in slide A and projected to all other slides. (C) Quantific
in 60 regions of the discovery cohort using Qupath.7 Values w
missing measures. (D) TMB of 32 sequenced regions in the
threshold of hypermutated CRC (12 mutations/megabase pairs
histochemistry staining of slide F (discovery) and slide E (valid
across multiple regions per slide is reported. For the discovery
sequenced regions. For the validation cohort, TMB was obtaine
associated P value are shown. (F) Comparison of TMB betwe
hypermutated CRCs from the validation cohort (Supplementary
unavailable and the overall survival from the start of immunoth
months). (H) Comparison of neoantigenic index (ratio of predicte
clonality of immunogenic mutations in 17 regions with >30% tu
were excluded because of unreliable mutation clonality assessm
shown). (J) Comparison of productive clonality of TCR beta rear
(Supplementary Table 2). The number of patients in each tumo
using the 2-sided Wilcoxon’s rank sum test. The horizontal line
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CRCs (Figure 1G). Together with the lack of response in
non-hypermutated CRCs (Supplementary Table 1), these re-
sults indicate that a TMB below 12mutations/megabase pair
is a predictor of resistance to anti-PD1 immunotherapy in
CRC. Above this threshold, TMB is not a predictor of response.

To understand whether the proportion of cancer-
associated neoantigens differed between responders and
nonresponders, we predicted how many cancer mutations
were potentially immunogenic in each patient. In the dis-
covery cohort, the ratio between immunogenic mutations
and all mutations (neoantigenic index) was similar between
DB- and nDB-CRCs (Figure 1H). However, we observed a
high number of clonal immunogenic mutations in DB-CRCs
(Figure 1I), indicating expansion of tumor cells with the
same potential immune targets. Similar results were
observed using an external data set of hypermutated CRCs
treated with immune checkpoint inhibitors25

(Supplementary Figure 1F). Consistent with dominant
antigenic targets, the productive TCR repertoire was also
more clonal in DB-CRCs (Figure 1J).

Therefore, although hypermutated CRCs responding to
anti-PD1 agents do not have more mutations than those
failing to respond, they have significantly more clonally
expanded immunogenic mutations and T-cell clones.
Durable-Benefit Colorectal Cancers Show
Widespread Immune Dysregulation and Silencing
of the Beta-2-Microglobulin Gene

To dissect CRC molecular determinants of response to
anti-PD1 agents in CRC, we compared genetic and tran-
scriptional dysregulations between hypermutated and non-
hypermutated CRCs as well as between DB- and nDB-CRCs.

Genes of the Wnt pathway were frequently damaged
(Supplementary Figure 2A, Supplementary Table 3) and
transcriptionally deregulated (Figure 2A, Supplementary
. (A) Description of the study cohorts. Clinical benefit from the
olid Tumors 1.1. (B) Experimental design: 24 sequential slides
re treatment were used for multiregional CD3 immunohisto-
ES (slides E1–E5), RNA-seq (slides G1–G5), TCR-seq (slides
es K1–K2). Multiple regions with variable CD3 infiltration were
ation of CD3þ cells/mm2 from immunohistochemistry staining
ere normalized within each patient. The gray boxes indicate
discovery cohort. The dotted line corresponds to the TMB
).23 (E) Correlation between CD3þ cells/mm2 from immuno-
ation) and TMB across samples. Average CD3þ cell density
cohort, TMB was calculated as the average between the 2
d from the FM1 test.40 Pearson correlation coefficient R and
en DB- and nDB-CRCs of the discovery cohort and (G) in
Table 1) and published studies.24–28 For26,28 response was
erapy was used to define DB (�12 months) and nDB (<12
d immunogenic mutations over all nonsilent mutations) and (I)
mor purity (Supplementary Table 2). Regions with lower purity
ent.41 Results hold true even when using all regions (data not
rangements between DB- and nDB-CRCs with available data
r group is reported in brackets. Distributions were compared
in the middle of each box indicates the median; the top and
respectively, and the vertical lines mark points within 1.5 the



Figure 2. Cancer and immune aberrations across CRC groups. (A) Representative enriched pathways in differentially
expressed genes between hypermutated and non-hypermutated CRCs of the discovery cohort. The false discovery rate (FDR)
was calculated using Benjamini-Hochberg correction. Proportions of immune-related pathways over all enriched pathways are
reported as pie chart. Normalized enrichment scores (NES) from single sample Gene Set Enrichment Analysis (ssGSEA)42 of 68
transcriptional targets of the Wnt pathway29,43 between hypermutated and non-hypermutated CRCs from (B) the discovery
cohort and (C) TCGA. Representative pathways enriched in differentially expressed genes between DB- and nDB-CRCs from
the (D) discovery and (E) validation cohorts. (F) Representative IMC images of CRCs with mutated and wild-type (WT) B2M
protein. Scale bar ¼ 50 mm. Comparison of normalized tumor and stroma B2Mþ areas between DB- and nDB-CRCs of the (G)
discovery and (H) validation cohorts. Number of patients in each tumor group is reported in brackets. Distributions were
compared using the 2-sided Wilcoxon’s rank sum test. IFN, interferon; MHC, major histocompatibility complex. The horizontal
line in the middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical lines mark minimum and maximum of all the data.
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Table 4) in hypermutated compared with non-hypermutated
CRCs. Moreover, Wnt downstream targets were significantly
downregulated in hypermutated compared with non-
hypermutated CRCs (Figure 2B) as confirmed in TCGA
(Figure 2C). Transcriptional Wnt activation is known to
reduce T-cell infiltration,29,30 suggesting a potential impact
on the TME composition of these tumors.

Genes encoding members of the interferon gamma
pathway, antigen presentation machinery, and other immune-
related processes were damaged (Supplementary Figure 2A)



Figure 3. Comparison of T cells infiltrates between CRC groups. (A) IMC analysis workflow using SIMPLI.8 For each region,
images of the markers used (Supplementary Table 5) were preprocessed to extract pixel intensities. Masks for tumor and
stroma were derived and used for the pixel analysis. Each region was segmented into single cells that were assigned to tumor
or stroma, phenotypically identified through expression of representative markers, and used for single cell clustering. (B)
Comparison of normalized CD3þ areas and (C) CD3þ cells between DB and nDB-CRCs in the discovery cohort. Benjamini-
Hochberg false discovery rate (FDR) correction was applied for testing over 5 immune populations. (D) Comparison of
normalized CD3þ areas and (E) CD3þ cells between DB- and nDB-CRCs in the validation cohort. (F) Uniform Manifold
Approximation and Projection (UMAP) map of 20,890 T cells in 38 regions from 16 CRCs of the discovery cohort. Cells were
grouped in 13 clusters based on the expression of 12 phenotypic markers using Seurat9 (Supplementary Table 8) and colored
according to the mean intensities of representative markers. The circles indicate the 2 clusters enriched in hypermutated
CRCs. (G) Proportions of cluster 1 (CD8þGzBþ cells) and cluster 2 (CD8þKi67þ cells) over the total T cells in hypermutated and
non-hypermutated CRCs. Distributions were compared using the 2-sided Wilcoxon’s rank sum test. Benjamini-Hochberg FDR
correction was applied for testing over 13 clusters. (H) IMC-derived images of tumor-associated markers (E-cadherin and pan-
keratin) and CD8 and GzB or CD8 and Ki67 in 2 representative samples. Scale bar ¼ 100 mm. (I) Comparisons of normalized
CD8þGzBþ and CD8þKi67þ areas between hypermutated and non-hypermutated CRCs. Distributions were compared using
the 2-sided Wilcoxon’s rank sum test. Benjamini-Hochberg FDR correction was applied for testing over 25 combinations of T-
cell markers (Supplementary Table 6). The horizontal line in the middle of each box indicates the median; the top and bottom
borders of the box mark the 75th and 25th percentiles, respectively, and the vertical lines mark minimum and maximum of all
the data.
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Figure 4. Difference in CD74þ macrophages between DB- and nDB-CRCs. (A) Uniform Manifold Approximation and Projection
(UMAP) map of 16,748 macrophages in 30 regions from 13 hypermutated CRCs in the discovery cohort. Cells were grouped in
9 clusters based on the expression of 11 phenotypic markers using Seurat9 (Supplementary Table 8) and colored according to
the mean intensities of representative markers. The circle indicates the cluster enriched in DB-CRCs. (B) Proportions of cluster
3 (CD68þCD74þ cells) over the total macrophages in DB- and nDB-CRCs. Distributions were compared using the 2-sided
Wilcoxon’s rank sum test. Benjamini-Hochberg false discovery rate (FDR) correction was applied for testing over 9 clus-
ters. (C) IMC-derived images of CD74, CD16, and CD163 and tumor-associated markers (E-cadherin and pan-keratin) in 2
representative samples. Scale bar ¼ 100 mm. (D) Comparisons of normalized CD74þ area between DB- and nDB-CRCs in the
discovery, (E) validation, and (F) both cohorts using the 2-sided Wilcoxon’s rank sum test. For the discovery cohort, Benjamini-
Hochberg FDR correction was applied for testing over 9 combinations of macrophage markers (Supplementary Table 6). (G)
CD74þ macrophages in the validation and (H) combined cohorts were identified by applying a threshold of 0.1 CD74
expression to all macrophages after IMC image histologic inspection. Mean marker intensities in CD74þ and CD74� mac-
rophages are reported and normalized across all markers and cells. (I) Comparison of normalized of CD74þ macrophages
between DB- and nDB-CRCs in the validation and (J) combined cohorts. Distributions were compared using the 2-sided
Wilcoxon’s rank sum test. The number of patients in each tumor group is reported in brackets. The horizontal line in the
middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical lines mark minimum and maximum of all the data.
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Figure 5. Functional characterization of CD68þCD74þ cells. (A) CD68þCD74þ cells in 10 DB-CRCs from both cohorts were
identified by applying a threshold of 0.35 CD74 expression to all CD68þ cells after IMC image histologic inspection. (B) Mean
marker intensities in CD68þCD74þ and CD68þCD74 cells. Values were normalized across all markers and cells. Marker
distributions were compared with the 2-sided Wilcoxon’s rank sum test, and Benjamini-Hochberg false discovery rate (FDR)
correction was applied to account for testing over 14 markers. Fold change between the mean expression in CD68þCD74þ

and CD68þCD74 cells is reported. DC, dendritic cells. (C) Percentage of CD68þCD74þ cells expressing selected markers
associated with antigen presentation and M1 and M2 phenotypes. (D) Uniform Manifold Approximation and Projection (UMAP)
maps of 2726 CD68þCD74þ cells in 17 regions from 10 DB-CRCs. Cells were grouped in 6 clusters based on the expression of
16 phenotypic markers using Seurat9 and colored according to the mean intensities of representative markers. The circle
indicates a CPDL1-expressing cluster. (E) Single-cell segmentation (upper panel) and IMC images (lower panels) of selected
CD68þCD74þ cell-associated markers from a representative DB-CRC. The right bottom panel reports the combination of all
the selected markers. Scale bar ¼ 100 mm.
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or transcriptionally dysregulated in hypermutated DB-CRCs
compared with nDB-CRCs in the discovery (Figure 2D,
Supplementary Table 4) and validation (Figure 2E) cohorts.
Interestingly, 2 DB-CRCs showed a clonal truncating mutation
(T91fs) in the beta-2-microglobulin (B2M) gene encoding the
invariable subunit of the major histocompatibility complex
class I complex (Supplementary Figure 2B). Because a B2M
antibody was part of the IMC panel (Supplementary Table 5),
we could assess that a B2M truncating mutation led to no
protein expression in the tumor compared with a widespread
B2M expression in CRCs with wild-type B2M (Figure 2F). In
general, B2M protein expression was significantly reduced in
the tumor but not in the stroma of DB-CRCs in the discovery
(Figure 2G) and validation (Figure 2H) cohorts as well as in
both cohorts combined (Supplementary Figure 2C). In mela-
noma, B2M loss has been associated with resistance to im-
mune checkpoint inhibitors.31 Our data indicate an opposite
association in CRC, supporting similar recent observations.32
Hypermutated Colorectal Cancers Are Enriched
in Cytotoxic and Proliferating CD8 T Cells

To understand the role of TME in the response to anti-
PD1 agents, we analyzed multiple tumor regions of the
discovery cohort with IMC (Supplementary Figure 3A) using
markers for T cells, macrophages, neutrophils, dendritic
cells, and B cells as well as the tissue structure
(Supplementary Table 5). After regional ablation and image
processing, we verified that the relative proportion of
stroma and tumor cells was similar across samples
(Supplementary Figure 3B–F). We then applied 2 indepen-
dent and complementary analytical approaches. In one, we
compared the normalized pixel area of individual or com-
bined markers (pixel analysis, Figure 3A). In the other, we
applied single-cell segmentation, assigned cell identities,
and compared the relative abundance of immune cell pop-
ulations identified through unsupervised single-cell clus-
tering (single-cell analysis, Figure 3A). Outcomes of all
analyses were validated by independent histologic assess-
ment of unprocessed images.

Hypermutated DB- and nDB-CRCs showed no difference
in normalized CD3þ area (Figure 3B, Supplementary
=
Figure 6. Interaction between CD74þ macrophages and GzBþK
validation and (B) combined cohorts were identified by applying
cells, after IMC image histologic inspection. Markers of mean
CD8þKi67-T cells were normalized across all markers and cells.
the nearest CD74þ macrophage in the discovery, validation, and
1.1-mm bins, and the density curves fitting the histograms were
cells were compared using the 2-sided Wilcoxon’s rank sum tes
High-resolution mIF image of a representative CRC with a highl
interactions with CD8þGzBþ and CD8þKi67þ T cells (zoom-ins).
bars ¼ 10 mm. (F) Correlation between normalized T cells and m
validation cohorts. Pearson correlation coefficient R and asso
macrophages, CD8þGzBþ, and CD8þKi67þ T cells between regi
2 regions, the total cells in the high or low regions were norm
normalized of CD74þ macrophages between DB- and nDB-CRC
(right) T-cell infiltration regions. Distributions were compared usi
the middle of each box indicates the median; the top and bot
respectively, and the vertical lines mark points within 1.5 the in
Table 6) or proportion of CD3þ cells (Figure 3C,
Supplementary Table 7), confirming that overall T-cell
infiltration does not correlate with TMB (Figure 1E) or
response to therapy. To further investigate whether DB- and
nDB-CRCs differed in specific T-cell subpopulations, we
performed single-cell clustering using 12 T-cell markers
(Supplementary Table 5). We found no qualitative or
quantitative differences in T-cell subpopulations between
DB- and nDB-CRCs (Supplementary Table 8, Supplementary
Figure 4).

Given their relevance to immune checkpoint inhibitors,
we further profiled T cells in the validation cohort by adding
5 markers of T-cell function to the 12 used previously
(Supplementary Table 5). We confirmed no significant dif-
ference in the normalized CD3þ area or proportion of CD3þ

cells between DB- and nDB-CRCs of the validation cohort
(Figure 3D and E). Moreover, single-cell clustering with all
17 phenotypic markers of T cells confirmed no difference in
T-cell infiltrates between DB -and nDB-CRCs
(Supplementary Table 8).

We repeated the same comparison between hyper-
mutated and non-hypermutated CRCs of the discovery
cohort. In this case, we found 2 clusters of CD8 T cells
(cluster 1, expressing granzyme B [GzB], and cluster 2,
expressing Ki67) significantly higher in hypermutated CRCs
(Figure 3F–H). Pixel analysis confirmed these results
(Figure 3I, Supplementary Figure 3G).

Our analysis identified the cytotoxic and proliferating
CD8 T-cell subpopulations that are specifically enriched in
hypermutated CRCs, confirming recent reports33 and likely
due to Wnt low activation observed in these samples
(Figure 2A and B). No qualitative or quantitative differences
in any subpopulation of T cells were detected between
hypermutated DB- and nDB-CRCs, which were both rich in
CD8 T cells.
Hypermutated Durable Benefit Colorectal
Cancers Are Enriched in CD74þ Macrophages

To further investigate the association of TME with
response, we compared the relative abundance of all other
main immune populations between hypermutated and non-
i67þ CD8 T cells. (A) CD8þGzBþ and CD8þKi67þ T cells in the
a threshold of 0.05 GzB and 0.15 Ki67 expression to CD8 T
intensities in CD8þGzBþ or CD8þKi67þ and CD8þGzB� or
(C) Distance distributions of CD8þGzBþ or (D) CD8þKi67þ to
combined cohorts. Distances between cells were divided into
measured. Distributions of PD1þ or PDL1þ and the rest of the
t. The dashed lines represent medians of the distributions. (E)
ighted cluster of CD74þ macrophages (main image) and their
The image was scanned at original magnification �40. Scale
acrophages in 26 DB- and nDB-CRCs of the discovery and
ciated P value are shown. (G) Ratios of normalized CD74þ

ons with high and low T-cell infiltration. For samples with more
alized and used to compute the ratio. (H) Comparisons of
s of the combined cohorts considering only high (left) and low
ng the 2-sided Wilcoxon’s rank sum test. The horizontal line in
tom borders of the box mark the 75th and 25th percentiles,
ter-quartile range.
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hypermutated CRCs or DB- and nDB-CRCs of the discovery
cohort.

We found no difference in dendritic cells, neutrophils,
and B cells between hypermutated and non-hypermutated
CRCs (Supplementary Table 8). However, we observed
proportionally higher CD68þCD74þ cells in DB-CRCs than in
nDB-CRCs (cluster 3, Figure 4A–C), which was confirmed by
pixel analysis (Figure 4D). To validate these results, we
profiled the macrophages also in the validation cohort. Pixel
analysis confirmed a higher normalized CD68þCD74þ area
in the validation samples alone (Figure 4E) and together
with the discovery cohort (Figure 4F). To identify
CD68þCD74þ cells, we applied a threshold of 0.1 CD74
expression to all macrophages in the validation cohort
(Figure 4G) and in all hypermutated CRCs (Figure 4H). We
verified that CD68þCD74þ cells identified in this way
matched phenotypically to cells in cluster 3 of the discovery
cohort (Supplementary Figure 5A–C). Comparing the pro-
portion of CD68þCD74þ cells between DB-CRCs and nDB-
CRCs we found that it was higher in DB-CRCs of the vali-
dation cohort alone (Figure 4I) and when all hypermutated
CRCs were analyzed together (Figure 4J). Therefore, we
found that CD68þCD74þ cells are associated with response
to anti-PD1 immunotherapy in CRC.

To further characterize these cells, we profiled selected
DB-CRCs from both cohorts (Supplementary Table 2) with
16 additional markers (Supplementary Table 5) and iden-
tified CD68þCD74þ cells applying a threshold on CD74
expression (Figure 5A). All stained markers, except those
associated with dendritic cell functions, were more
expressed in CD68þCD74þ cells than in CD68þCD74� cells
(Figure 5B). HLA-ABC, HLA-DR, CD40, CD16, and CD163
were expressed in >80% of CD68þCD74þ cells, whereas
M2-associated markers, such as CD206 and FOLR2, were
specific to smaller subsets (Figure 5C). This expression
profile suggested that CD68þCD74þ macrophages may have
a T-cell–activating phenotype. Interestingly, approximately
40% of them expressed both M1 and M2 markers, consis-
tent with phenotypic plasticity (Supplementary Figure 5D).
Single-cell clustering identified 6 distinct groups of
CD68þCD74þ cells, one of which expressed high levels of
PDL1, together with CD40, CD16, and CD163, but not CD206
and FOLR2 (Figure 5D). Independent histologic inspection
confirmed coexpression of these markers in CD68þCD74þ

cells (Figure 5E).
Finally, we compared the normalized PD1 or PDL1

protein expression between DB- and nDB-CRCs and found
no significant differences in the discovery (Supplementary
Figure 6A), validation (Supplementary Figure 6B), and
combined (Supplementary Figure 6C) cohorts. This was
supported by gene expression analysis (Supplementary
Figure 6D and E) and single-cell clustering, which detected
no qualitative or quantitative differences in PD1þ or PDL1þ

cells (Supplementary Table 8). In general, the expression of
both PD1 and PDL1 genes was low (Supplementary
Figure 6F), as confirmed also in TCGA CRCs, where their
expression was significantly lower than in melanoma and
lung cancer (Supplementary Figure 6G). Consistent with
their low expression, we could detect PD1-PDL1 protein
complex formation in only a minority of regions
(Supplementary Table 2), and A-FRET intensity was lower
than in melanoma and renal cancer.22 The proportion of
regions with detectable PD1-PDL1 complex was signifi-
cantly less in hypermutated than in non-hypermutated
CRCs, whereas there was no difference between DB- and
nDB-CRCs (Supplementary Figure 6H).

Our analyses suggest that a subset of antigen-presenting
macrophages with a T-cell– activating phenotype may play a
key role in CRC response to anti-PD1 immune therapy. The
overall expression of PD1 and PDL1 is low at the gene and
protein levels and they show no association with response,
indicating that unlike other cancer types,2 they are not
biomarkers of response in CRC.
CD74þPDL1þ Macrophages Interact with PD1þ

Cytotoxic and Proliferating CD8 T Cells
Our deep investigation of immune infiltrates showed

that hypermutated DB-CRCs are immune hot tumors, with
high levels of CD74þ macrophages compared with nDB-
CRCs as well as of cytotoxic and proliferating T cells asso-
ciated with the hypermutated phenotype. Because CD74þ

macrophages also expressed PDL1 while the 2 CD8 T-cell
populations expressed PD1 (Supplementary Table 8,
Supplementary Figure 4), we asked whether these cells
were proximal in the TME and interacted through PD1-
PDL1 contact.

To interrogate this, we identified CD8þGzBþ and
CD8þKi67þ cells in the validation cohort (Figure 5A) and in
all hypermutated CRCs (Figure 6B) by applying a threshold
of 0.05 (GzB) and 0.15 (Ki67) expression to all CD8 T cells.
We verified that these cells were phenotypically similar to
clusters 1 (CD8þGzBþ cells) and 2 (CD8þKi67þ cells) of the
discovery cohort (Supplementary Figure 7). These 2 pop-
ulations did not selectively express any additional T-cell
markers used in the validation cohort, except the immune
checkpoint protein LAG3 (Figure 6A). The absence of TCF7
expression in proliferating CD8 T cells suggested that they
do not have stem-like characteristics and are not analogous
to recently described intratumoral T-cell developmental
niches.34,35

After identifying the CD8þGzBþ and CD8þKi67þ T-cell
subpopulations, we measured the centroid distance be-
tween them and CD68þCD74þ cells. We then measured the
distance between CD8þGzBþPD1þ or CD8þKi67þPD1þ and
CD68þCD74þPDL1þ cells and found that they were closer
than to other cells in the discovery, validation, and com-
bined cohorts (Figure 6C and D). Moreover, a substantial
fraction of CD74þ macrophages (52% in DB-CRCs and 32%
in nDB-CRCs) aggregated in high-density clusters composed
of �5 cells/10,000 mm234. These computationally identified
clusters of CD74þ macrophages also contained CD8þGzBþ

and CD8þKi67þ cells (Supplementary Figure 8). The exis-
tence of these clusters was confirmed through independent
histologic inspection (Supplementary Figure 9), which also
detected direct interactions between CD8þGzBþPD1þ or
CD8þKi67þPD1þ and CD68þCD74þPDL1þ cells. To confirm
these interactions at higher resolution, we performed mIF
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with 8 key markers defining CD74þCD68þ, GzBþCD8þ, and
Ki67þCD8þ cells (Supplementary Table 5). We confirmed
the presence of clusters of CD74þ macrophages in close
proximity to CD8þGzBþ and CD8þKi67þ T cells and detec-
ted their interaction via PD1-PDL1 contact (Figure 6E,
Supplementary Figure 10).

Taking advantage of the multiregional profiles, we
asked how the observed intratumor T-cell heterogeneity
(Figure 1C, Supplementary Figure 1D) affected the
distinctive infiltration pattern of DB-CRCs. First, we
observed that tumor regions rich in T cells were also rich
in macrophages (Figure 6F), indicating that intratumor
heterogeneity involves a more general pattern of coinfil-
tration. Next, we investigated how the 3 key populations of
DB-CRCs (CD8þGzBþ, CD8þKi67þ, and CD68þCD74þ cells)
were distributed across regions of the same tumor. We
observed that their relative proportions were highly vari-
able between high and low infiltrate regions and that no
clear pattern could be seen discriminating DB- and nDB-
CRCs (Figure 6G). Despite such a heterogeneous composi-
tion of the immune infiltrates, we observed consistently
higher proportion of CD74þ macrophages in DB-CRCs than
in nDB-CRCs independently of T-cell infiltration levels
(Figure 6H).

Our data consistently indicate that CD74þ macrophages
differ between DB- and nDB-CRCs across cohorts and re-
gions. We therefore propose that their interaction with
CD8þGzBþPD1þ and CD8þKi67þPD1þ cells through PDL1
is key to confer durable benefit from treatment.
Discussion
In this study, we integrated multiregional genomic,

transcriptomic, histopathologic, and immune-phenotypic
data to characterize the tumor-immune interactions deter-
mining response of CRC to immune checkpoint blockade.

After extensive unsupervised investigation of variability
in leukocyte subpopulations between hypermutated DB-
and nDB-CRCs using multiple approaches, we found CD74þ

macrophages were the only immune cell population that
consistently segregated with response in DB-CRCs. This is
remarkable, given the observed genetic and immune inter-
and intratumor heterogeneity and the diversified treatment
history and suggests that CD74þ macrophages could be
further developed as a robust predictor of response in a
broad range of patients. These macrophages express PDL1
and are in close proximity to PD1þ CD8 T cells, indicating
that the PD1/PDL1 interaction between these cells may
restrain CD8 T-cell function and may be the one that anti-
PD1 antibodies break to release cytotoxic antitumor activity.

The high cytotoxic CD8 infiltration in hypermutated
CRCs is likely enabled by the low activation of the Wnt
pathway, resulting in an immune hot environment. To evade
immune elimination, hypermutated DB-CRCs develop im-
mune escape mechanisms via genetic inactivation or tran-
scriptional repression of antigen-presenting genes.
Interestingly, unresponsive hypermutated CRCs do not
show such a pervasive disruption of the antigen
presentation machinery, despite comparably high levels of
CD8 infiltration. The molecular mechanisms by which these
tumors survive the attack of cytotoxic CD8 T cells need
further investigation, although a possible explanation could
reside in their significantly reduced proportion of CD74þ

macrophages.
Similarly, further investigations are required to explain

how tumors lacking B2M can respond to immunotherapy. In
B2M-null CRC mice, response to anti-PD1 agents relies on
CD4 T cells rather than CD8 T cells.36 Although we did not
observe any difference in CD4 T cells between DB- and nDB-
CRCs, this suggests that anti-PD1 agents may act through
several mechanisms, including antigen-independent T-cell
activation or reinduction of B2M expression.

Our study also highlights cancer-specific traits of
response to anti-PD1 immunotherapy. We show that in CRC,
high TMB is necessary but not sufficient to achieve durable
benefit and that above the critical threshold of the hyper-
mutated phenotype, even CRCs with very high TMB may not
respond to treatment. This is different from lung cancer and
melanoma, where response always positively correlates
with TMB.37,38 In CRC, a low TMB is a marker of resistance,
not because of a low neoantigenic load but because it is
associated with a higher activation of the Wnt pathway
leading to immune cold tumors.

Moreover, while the impairment of antigen presentation
in immune hot tumors is shared across cancer types,39 the
association of B2M loss with response and the overall low
PD1 and PDL1 expression are specific traits of CRC. This
suggests that universal predictors of response to immuno-
therapy may not exist and that the specific genetics of the
tumor as well as the features of the TME should be
considered. In the case of CRC, these may include clonal
immunogenic mutations and expanded T cells, low activa-
tion of the Wnt pathway, and high infiltration of CD8 T cells
coupled with CD74 macrophages.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/j.
gastro.2021.06.064.
References

1. Ribas A, Wolchok JD. Cancer immunotherapy using

checkpoint blockade. Science 2018;359:1350–1355.
2. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors

with mismatch-repair deficiency. N Engl J Med 2015;
372:2509–2520.

3. Van den Eynde M, Mlecnik B, Bindea G, et al. The link
between the multiverse of immune microenvironments in
metastases and the survival of colorectal cancer pa-
tients. Cancer Cell 2018;34:1012–1026.e3.

4. Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in
colorectal cancer: rationale, challenges and potential.
Nat Rev Gastroenterol Hepatol 2019;16:361–375.

http://www.gastrojournal.org
https://doi.org/10.1053/j.gastro.2021.06.064
https://doi.org/10.1053/j.gastro.2021.06.064
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref1
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref1
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref1
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref2
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref2
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref2
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref2
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref3
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref3
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref3
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref3
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref3
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref4
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref4
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref4
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref4


1192 Bortolomeazzi et al Gastroenterology Vol. 161, No. 4

CLINICAL
AT
5. André T, Shiu K-K, Kim TW, et al. Pembrolizumab in
microsatellite-instability–high advanced colorectal can-
cer. N Engl J Med 2020;383:2207–2218.

6. Hoos A, Eggermont AM, Janetzki S, et al. Improved
endpoints for cancer immunotherapy trials. J Natl Cancer
Inst 2010;102:1388–1397.

7. Bankhead P, Loughrey MB, Fernandez JA, et al. QuPath:
open source software for digital pathology image anal-
ysis. Sci Rep 2017;7:16878.

8. Bortolomeazzi M, Montorsi L, Temelkovski D, et al.
A SIMPLI (Single-cell Identification from MultiPLexed
Images) approach for spatially resolved tissue pheno-
typing at single-cell resolution. bioRxiv 2021;2021. 04.
01.437886.

9. Butler A, Hoffman P, Smibert P, et al. Integrating single-
cell transcriptomic data across different conditions,
technologies, and species. Nat Biotechnol 2018;36:411–
420.

10. Ester M, Kriegel H-P, Sander J, et al. A density-based
algorithm for discovering clusters in large spatial data-
bases with noise. Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data
Mining 1996:226–231.

11. Li H. Aligning sequence reads, clone sequences and
assembly contigs with BWA-MEM. Preprint at: https://
arxiv.org/abs/1303.3997 2013.

12. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and
accurate calling of germline and somatic variants. Nat
Methods 2018;15:591–594.

13. Wang K, Li M, Hakonarson H. ANNOVAR: functional
annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res 2010;38:e164.

14. Mourikis TP, Benedetti L, Foxall E, et al. Patient-spe-
cific cancer genes contribute to recurrently perturbed
pathways and establish therapeutic vulnerabilities in
esophageal adenocarcinoma. Nat Commun 2019;
10:3101.

15. Van Loo P, Nordgard SH, Lingjaerde OC, et al. Allele-
specific copy number analysis of tumors. Proc Natl Acad
Sci U S A 2010;107:16910–16915.

16. Shukla SA, Rooney MS, Rajasagi M, et al. Comprehen-
sive analysis of cancer-associated somatic mutations in
class I HLA genes. Nat Biotechnol 2015;33:1152–1158.

17. Schenck RO, Lakatos E, Gatenbee C, et al. Neo-
PredPipe: high-throughput neoantigen prediction and
recognition potential pipeline. BMC Bioinform 2019;
20:264.

18. Roth A, Khattra J, Yap D, et al. PyClone: statistical
inference of clonal population structure in cancer. Nat
Methods 2014;11:396–398.

19. Moll P, Ante M, Seitz A, et al. QuantSeq 30 mRNA
sequencing for RNA quantification. Nat Methods 2014;
11:i–i.

20. Love MI, Huber W, Anders S. Moderated estimation of
fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol 2014;15:550.

21. Carlson CS, Emerson RO, Sherwood AM, et al. Using
synthetic templates to design an unbiased multiplex PCR
assay. Nat Commun 2013;4:2680.
22. Sánchez-Magraner L, Miles J, Baker CL, et al. High
PD-1/PD-L1 checkpoint interaction infers tumor selec-
tion and therapeutic sensitivity to anti-PD-1/PD-L1
treatment. Cancer Res 2020;80:4244.

23. Cancer Genome Atlas N. Comprehensive molecular
characterization of human colon and rectal cancer. Na-
ture 2012;487:330–337.

24. Goodman AM, Kato S, Bazhenova L, et al. Tumor
mutational burden as an independent predictor of
response to immunotherapy in diverse cancers. Mol
Cancer Ther 2017;16:2598.

25. Le DT, Durham JN, Smith KN, et al. Mismatch repair
deficiency predicts response of solid tumors to PD-1
blockade. Science 2017;357:409–413.

26. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD,
et al. Tumor mutational load predicts survival after
immunotherapy across multiple cancer types. Nat Genet
2019;51:202–206.

27. Schrock AB, Ouyang C, Sandhu J, et al. Tumor muta-
tional burden is predictive of response to immune
checkpoint inhibitors in MSI-high metastatic colorectal
cancer. Ann Oncol 2019;30:1096–1103.

28. Valero C, Lee M, Hoen D, et al. The association between
tumor mutational burden and prognosis is dependent on
treatment context. Nat Genet 2021;53:11–15.

29. Grasso CS, Giannakis M, Wells DK, et al. Genetic
mechanisms of immune evasion in colorectal cancer.
Cancer Discov 2018;8:730–749.

30. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic b-
catenin signalling prevents anti-tumour immunity. Nature
2015;523:231–235.

31. Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance
to checkpoint blockade therapy through inactivation of
antigen presentation. Nat Commun 2017;8:1136.

32. Middha S, Yaeger R, Shia J, et al. Majority of B2M-
mutant and-deficient colorectal carcinomas achieve
clinical benefit from immune checkpoint inhibitor therapy
and are microsatellite instability-high. JCO Precis Oncol
2019;3. PO.18.00321.

33. de Vries NL, van Unen V, Ijsselsteijn ME, et al. High-
dimensional cytometric analysis of colorectal cancer re-
veals novel mediators of antitumour immunity. Gut 2020;
69:691–703.

34. Jansen CS, Prokhnevska N, Master VA, et al. An intra-
tumoral niche maintains and differentiates stem-like
CD8 T cells. Nature 2019;576:465–470.

35. Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral
Tcf1þPD-1þCD8þ T cells with stem-like properties
promote tumor control in response to vaccination and
checkpoint blockade immunotherapy. Immunity 2019;
50:195–211.e10.

36. Germano G, Lu S, Rospo G, et al. CD4 T cell dependent
rejection of beta 2 microglobulin null mismatch repair
deficient tumors. Cancer Discov 2021;11:1844–1859.

37. Gurjao C, Tsukrov D, Imakaev M, et al. Limited evidence
of tumour mutational burden as a biomarker of response
to immunotherapy. bioRxiv 2020;2020. 09.03.260265.

38. Wood MA, Weeder BR, David JK, et al. Burden of tumor
mutations, neoepitopes, and other variants are weak

http://refhub.elsevier.com/S0016-5085(21)03178-4/sref5
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref5
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref5
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref5
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref5
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref6
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref6
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref6
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref6
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref7
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref7
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref7
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref8
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref8
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref8
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref8
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref8
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref9
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref9
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref9
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref9
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref10
https://arxiv.org/abs/1303.3997%202013
https://arxiv.org/abs/1303.3997%202013
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref12
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref12
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref12
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref12
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref13
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref13
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref13
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref14
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref14
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref14
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref14
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref14
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref15
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref15
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref15
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref15
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref16
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref16
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref16
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref16
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref17
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref17
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref17
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref17
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref18
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref18
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref18
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref18
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref19
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref19
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref19
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref19
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref19
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref20
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref20
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref20
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref21
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref21
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref21
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref22
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref22
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref22
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref22
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref23
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref23
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref23
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref23
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref24
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref24
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref24
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref24
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref25
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref25
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref25
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref25
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref26
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref26
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref26
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref26
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref26
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref27
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref27
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref27
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref27
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref27
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref28
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref28
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref28
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref28
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref29
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref29
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref29
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref29
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref30
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref30
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref30
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref30
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref31
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref31
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref31
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref32
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref32
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref32
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref32
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref32
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref33
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref33
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref33
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref33
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref33
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref34
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref34
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref34
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref34
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref35
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref36
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref36
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref36
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref36
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref37
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref37
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref37
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref38
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref38


October 2021 CRC Response to Checkpoint Blockade 1193

CL
IN
IC
AL

AT
predictors of cancer immunotherapy response and
overall survival. Genome Med 2020;12:33.

39. McGranahan N, Rosenthal R, Hiley CT, et al. Allele-
specific HLA loss and immune escape in lung cancer
evolution. Cell 2017;171:1259–1271.e11.

40. Frampton GM, Fichtenholtz A, Otto GA, et al. Devel-
opment and validation of a clinical cancer genomic
profiling test based on massively parallel DNA
sequencing. Nat Biotechnol 2013;31:1023–1031.

41. Tarabichi M, Salcedo A, Deshwar AG, et al. A practical
guide to cancer subclonal reconstruction from DNA
sequencing. Nat Methods 2021;18:144–155.

42. Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA
interference reveals that oncogenic KRAS-driven can-
cers require TBK1. Nature 2009;462:108.

43. Herbst A, Jurinovic V, Krebs S, et al. Comprehensive
analysis of b-catenin target genes in colorectal carci-
noma cell lines with deregulated Wnt/b-catenin signaling.
BMC Genomics 2014;15:74.
Author names in bold designate shared co-first authorship.

Received February 5, 2021. Accepted June 22, 2021.

Correspondence
Address correspondence to: Francesca D. Ciccarelli, PhD, Cancer Systems
Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United
Kingdom. e-mail: francesca.ciccarelli@crick.ac.uk; or Jo Spencer, PhD,
School of Immunology and Microbial Sciences, King’s College London,
London SE1 9RT, United Kingdom. e-mail: jo.spencer@kcl.ac.uk.

Acknowledgments
The authors thank Professor Rebecca Fitzgerald (University of Cambridge) and
Professor Toby Lawrence (King’s College London) for critical comments to the
manuscript. The authors acknowledge technical support from the Advanced
Sequencing, the Flow Cytometry and the Experimental Histopathology
Platforms of The Francis Crick Institute, the National Institute for Health
Research Biomedical Research Centre Immune Monitoring Core Facility
Centre based at Guy’s and St Thomas’ National Health Service Foundation
Trust and King’s College London, Christopher Applebee and Sánchez-
Magraner for the FRET analysis, and Joe Brock for graphical illustrations.
The views expressed are those of the authors and not necessarily those of
the National Health Service, the National Institute for Health Research or the
United Kingdom Department of Health. The results published here are in part
based upon data generated by The Cancer Genome Atlas managed by the
National Cancer Institute and National Human Genome Research Institute.
WES (EGAD00001006165) and RNA sequencing (EGAD00001006164) data
have been deposited in the European Genome-phenome Archive. TCR-seq
(https://doi.org/10.5281/zenodo.3744371) and IMC (https://doi.org/10.5281/
zenodo.3743253) data have been deposited in Zenodo. The code used in
this study and all supporting data are available upon request.

CRediT Authorship Contributions
Michele Bertolomeazzi, MRes (Formal analysis: Equal; Software: Lead; Writing
– original draft: Equal).
Reda Keddar, MRes (Formal analysis: Equal; Methodology: Lead; Writing –

original draft: Supporting).
Lucia Montorsi, PhD (Data curation: Equal; Formal analysis: Equal; Writing

– original draft: Supporting).
Amelia Acha, PhD (Data curation: Equal; Formal analysis: Equal; Writing –

original draft: Supporting).
Lorena Benedetti, PhD (Data curation: Supporting; Formal analysis:

Supporting).
Damjan Temelkowski, PhD (Methodology: Supporting; Software:

Supporting).
Subin Choi, MRes (Data curation: Supporting).
Nedyalko Petrov, MRes (Methodology: Supporting).
Katrina Todd, PhD (Methodology: Supporting).
Patty Way, PhD (Methodology: Supporting).
Jonny Kohl, PhD (Methodology: Supporting).
Tamara Denner, PhD (Methodology: Supporting).
Emma Nye, PhD (Methodology: Supporting).
Robert Goldstone, PhD (Methodology: Supporting).
Sophia Ward, PhD (Methodology: Supporting).
Gareth Wilson, PhD (Methodology: Supporting).
Maise Al Bakir, PhD (Methodology: Supporting).
Charles Swanton, PhD (Methodology: Supporting).
Susan John, PhD (Formal analysis: Supporting).
James Miles, MRes (Methodology: Supporting).
Banafshe Larijani, PhD (Methodology: Supporting).
Victoria Kunene, PhD (Resources: Supporting).
Elisa Fontana, PhD (Resources: Supporting).
Toby Arkenau, PhD (Resources: Supporting).
Peter Parker, PhD (Methodology: Supporting).
Manuel Rodriguez-Justo, PhD (Formal analysis: Supporting; Investigation:

Supporting; Resources: Lead; Writing – original draft: Supporting).
Kai-Keen Shiu, MD PhD (Investigation: Supporting; Resources: Lead; Writing

– original draft: Supporting).
Jo Spencer, PhD (Conceptualization: Equal; Formal analysis: Equal; Writing –

original draft: Equal).
Francesca Ciccarelli, PhD (Conceptualization: Equal; Funding acquisition:

Lead; Investigation: Lead; Supervision: Lead; Writing – original draft: Equal).

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was supported by the Francis Crick Institute which receives its core
funding from Cancer Research UK (FC001002, FC001169, FC001745,
FC001130), the UK Medical Research Council (FC001002, FC001169,
FC001745, FC001130), and the Wellcome Trust (FC001002, FC001169,
FC001745, FC001130). Francesca D. Ciccarelli is supported by Cancer
Research UK (C43634/A25487), Guys and St Thomas Charity (R170504), the
European Union’s Horizon 2020 Research and Innovation programme under
the Marie Skłodowska-Curie grant agreement No. CONTRA-766030, the
Cancer Research UK King’s Health Partners Centre at King’s College
London (C604/A25135), and the Cancer Research UK City of London Centre
(C7893/A26233).

http://refhub.elsevier.com/S0016-5085(21)03178-4/sref38
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref38
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref39
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref39
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref39
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref39
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref40
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref40
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref40
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref40
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref40
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref41
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref41
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref41
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref41
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref42
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref42
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref42
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref43
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref43
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref43
http://refhub.elsevier.com/S0016-5085(21)03178-4/sref43
mailto:francesca.ciccarelli@crick.ac.uk
mailto:jo.spencer@kcl.ac.uk
https://doi.org/10.5281/zenodo.3744371
https://doi.org/10.5281/zenodo.3743253
https://doi.org/10.5281/zenodo.3743253

	Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation Cohorts
	Methods
	Patient Populations
	CD3 and H&E Staining
	Imaging Mass Cytometry
	Multiplexed Immunofluorescence
	Whole-Exome Sequencing
	RNA Sequencing
	T-Cell Receptor β-Chain Sequencing
	PD1-PDL1 Amplified Förster Resonance Energy Transfer

	Results
	Response of Hypermutated Colorectal Cancers Is Associated With Clonal Immunogenic Mutations and Clonally Expanded T Cells
	Durable-Benefit Colorectal Cancers Show Widespread Immune Dysregulation and Silencing of the Beta-2-Microglobulin Gene
	Hypermutated Colorectal Cancers Are Enriched in Cytotoxic and Proliferating CD8 T Cells
	Hypermutated Durable Benefit Colorectal Cancers Are Enriched in CD74+ Macrophages
	CD74+PDL1+ Macrophages Interact with PD1+ Cytotoxic and Proliferating CD8 T Cells

	Discussion
	Supplementary Material
	References
	Acknowledgments
	CRediT Authorship Contributions


