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Abstract: The morphology and crystallization behavior of two triblock terpolymers of polymethylene,
equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are
studied: PE22

7.1-b-PEO46
15.1-b-PCL32

10.4 (T1) and PE37
9.5-b-PEO34

8.8-b-PCL29
7.6 (T2) (superscripts

give number average molecular weights in kg/mol and subscripts composition in wt %). The three
blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated.
Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies
were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO
diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the
blocks was determined via three independent but complementary techniques: differential scanning
calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering),
and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase
segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock
terpolymers the crystallization process starts with the PE block, continues with the PCL block, and
ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the
PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can
identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopoly-
mer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or
microspherulitic at the last stage of the crystallization process. The complicated crystallization of
tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experi-
ments are combined. This knowledge is fundamental to tailor the properties of these complex but
fascinating materials.

Keywords: triblock terpolymers; polyethylene (PE); poly(ethylene oxide) (PEO); poly(ε-caprolactone)
(PCL); tricrystalline spherulites

1. Introduction

Crystallization in block copolymers is a subject widely studied in the past decades [1–11].
It is vital to understand the morphology upon crystallization since it is directly related to
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the final properties of a material. Many applications can take advantage of these materials
due to the different chemical nature of the segments that form a block copolymer [9,12–14].
In addition, many other factors such as composition, molecular weight, crystallization
protocol, segregation strength, and block miscibility affect the crystallization behavior. As
different morphologies can be developed, the final performance of the materials can be
tuned by varying these factors [2,4,7,9,11,15–18].

AB-type diblock copolymers with one or two crystallizable blocks have been studied
in the past few decades. Among medium or strongly segregated systems, the diblock
copolymer PE-b-PLLA [18–24] is a well-known system. Müller et al. [19–21] reported
strong segregation strength for these diblock copolymers and a lamellar morphology for
compositions close to 50/50. Therefore, they did not see any spherulitic-type morphology
as expected. When the content of PLLA in the diblock is between 89 and 96%, then
spherulitic morphologies have been reported in the literature, as PLLA conforms the
matrix phase [25]. The overall crystallization rate of both PLLA block and PE block in
the diblock copolymers [19–21] was slower than that of the corresponding PLLA and PE
homopolymers. In addition, coincident crystallization occurs, since the crystallization
transitions of the PE block and the PLLA block overlap employing cooling rates higher
than 2 ◦C/min.

Other double crystalline diblock copolymers show miscible or weakly segregated
behaviors, and several studies have been reported about the crystallization process of
these systems [7,26–33], although the most relevant ones are: PEO-b-PCL [7,34–51], PEO-b-
PLLA [52–65], and PCL-b-PLA [29,30,32,66–74], because of their possible applications in the
biomedical field due to the biodegradable and biocompatible nature of the blocks [14,75–78].
Additionally, some ABA-type systems have also been analyzed, such as PBT-b-PEO-b-
PBT [79], PEO-b-PEB-b-PEO [80], or PLLA-b-PVDF-b-PLLA [81], for instance. The addition
of a third potentially crystallizable block to diblock copolymers results in a more com-
plex analysis of the crystallization behavior. Few studies have been published about
tricrystalline triblock terpolymers, such as ABC-type triblock terpolymers and ABCBA
pentablock terpolymers, including the apolar PE block, and the polar PEO, PCL, and PLLA
blocks [17,24,37,42,82–96].

Palacios et al. studied the crystallization and morphology of ABC triblock terpolymers
with three crystallizable blocks: PEO, PCL, and PLLA [92–95]. They [92] highlighted the
triple crystalline nature of the PEO-b-PCL-b-PLLA triblock terpolymer, with the three dif-
ferent blocks crystallizing independently upon cooling from the melt. Even when changing
the PLLA content, crystallization of the blocks follows this sequence: the PLLA block first,
the PCL block second, and finally the PEO block. Melt miscibility of the three blocks was
confirmed by SAXS. In addition, PLOM experiments showed that the first crystallized
PLLA block determines the final morphology since the PCL block and the PEO block
crystallized within the interlamellar regions of the PLLA templated spherulites, main-
taining the superstructure determined by the PLLA block and forming triple crystalline
spherulites. The crystallization of the PCL and the PEO blocks was evidenced by a change
in the birefringence. There are several examples of confined crystallization of one block
within the lamellae of another previously crystallized block [1,7,97,98].

Furthermore, by SAXS and AFM experiments, Palacios et al. [94] were able to identify
a trilamellar self-assembly with lamellae of the three blocks at room temperature. Based
on extensive observations and SAXS simulations, they proposed an alternation of single
lamellae of PEO or PCL in between two PLLA lamellae. Very few reports have been
published about the crystalline morphology in AB diblock copolymers and ABC triblock
terpolymers from the melt by in situ AFM, and only two blocks crystallized in those
samples [99,100]. Palacios et al. [17] analyzed by in situ hot-stage AFM the evolution of
the trilamellar morphology upon melting of the PEO-b-PCL-b-PLLA triblock terpolymer.
Three different lamellar populations were detected at different temperatures; the melting
of each of the populations gives information about the corresponding block: the thinnest
lamellae corresponded to the PEO block (the first block to melt at 45 ◦C), the medium size
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lamellae to the PCL block (melted at 60 ◦C), and the thickest lamellae to the highest melting
temperature block, i.e., PLLA.

Still, few works have been published using the apolar PE block as one of the crystalliz-
able blocks in triblock terpolymers. Müller et al. [96] analyzed the crystalline behavior and
morphology of PE-b-PEO-b-PLLA and PE-b-PCL-b-PLLA triblock terpolymers employing
different cooling rates. DSC, WAXS, and PLOM techniques were used to confirm the
triple crystalline character of the copolymers. They concluded that there is no change in
the sequential crystallization for the PE21

2.6-b-PEO32
4.0-b-PLLA47

5.9 triblock terpolymer
using 1 or 20 ◦C/min, since the sequence remains the following: the PE block crystallizes
first, then the PLLA block, and finally the PEO block. However, the crystallization se-
quence changed in the PE21

7.1-b-PCL12
4.2-b-PLLA67

23.0 triblock terpolymer, since when
using 20 ◦C/min as cooling rate, the crystallization begins with the PE block. In contrast,
at 1 ◦C/min the PLLA is the first block to crystallize. PLOM experiments showed that this
variation in the crystallization sequence affects the final morphology, so the cooling rate is
a factor that can be used to tune the final properties.

In the present work, the triple crystalline nature of PE-b-PEO-b-PCL triblock ter-
polymers is analyzed, varying molecular weight and block content. The corresponding
PE-b-PEO diblock copolymers and PE homopolymers are also investigated. Samples were
synthesized by combining polyhomologation and catalyst-switch strategies. We study
the influence of molecular weight and block composition on the crystallization of these
triblock terpolymers, consisting in an apolar (PE) and two polar blocks, PEO (biocom-
patible) and PCL (biodegradable). The study employs differential scanning calorimetry
(DSC), in situ small-angle and wide-angle X-ray scattering (SAXS/WAXS), and polarized
light optical microscopy (PLOM). Understanding the crystalline behavior and the anal-
ysis of the morphology is essential to tune crystallinity and obtain novel materials with
enhanced properties.

2. Materials and Methods
2.1. Materials

All reagents used for the synthesis of the triblock terpolymers were purchased from
Merck KGaA (Darmstadt, Germany). Two different “catalyst switch” strategies were
used in the synthesis of the tricrystalline terpolymers poly (ethylene)-b-poly (ethylene
oxide)-b-poly (ε-caprolactone) (PE-b-PEO-b-PCL). First, the polyhomologation of dimethyl-
sulfoxonium methylide was performed to synthesize a hydroxyl-terminated polyethylene
(PE-OH) macroinitiator [101]. Then, the strong phospazene base t-BuP4 was employed
as the catalyst to promote the ring-opening polymerization (ROP) of ethylene oxide (EO)
to obtain PE-b-PEO, followed by the addition of diphenyl phosphate (DPP) to neutralize
t-BuP4. For the ROP of ε-caprolactone (CL), two different catalysts were used, Sn(Oct)2 for
T1 (organic/metal catalyst-switch), and phosphazene base t-BuP2 for T2 (organic/organic
catalyst-switch). These catalyst switch-strategies were applied to avoid as many possible
side-reactions during the ROP of CL in toluene at 80 ◦C (Scheme 1) [102].

Table 1 shows the molecular weights of each of the blocks of the synthesized triblock
terpolymers. The subscript numbers represent composition in wt %, and superscripts
indicate Mn values of each block in kg/mol. The polyethylene block precursors are not 100%
linear because of possible side reactions and monomer purity issues. NMR measurements
indicate that the PE block of T1 (see Table 1) contains 0.32% propyl side groups and 3%
methyl groups, and that of T2 contains 0.45% propyl side groups and 2% methyl groups.
Different melting points are obtained because of this variation in microstructure, since
the Tm value of PE7.1 is 129.7 ◦C, while that of PE9.5 is 117 ◦C (see Table S3), as the latter
contains a higher amount of short-chain branches.
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of the terpolymers is below 1.3 (for more details see our Ref. [103]).

The formation of double crystalline copolymers and triple crystalline terpolymers was
confirmed by differential scanning calorimetry (DSC), polarized light optical microscopy
(PLOM), and X-ray diffraction (SAXS/WAXS).

2.2. Methods
2.2.1. Differential Scanning Calorimetry (DSC)

Non-isothermal DSC experiments were carried out with a Perkin Elmer DSC Pyris 1
(Perkin Elmer, Norwalk, USA) equipped with a refrigerated cooling system (Intracooler
2P). Indium and tin standards were used for the calibration of the equipment. Aluminum
pans with about 3 mg of sample were tested using ultra-high quality nitrogen atmosphere.

A temperature range between 0 and 160 ◦C and 20 ◦C/min as cooling and heating rates
were employed in non-isothermal DSC experiments. The samples are kept for 3 min 30 ◦C
above the peak melting temperature of the block showing the highest melting temperature
to erase the thermal history of the samples. They are then cooled down at 20 ◦C/min
keeping them 1 min at low temperatures, and finally heating up also at 20 ◦C/min until
the block at the highest temperature melts.

2.2.2. Small-Angle and Wide-Angle X-ray Scattering (SAXS/WAXS)

Simultaneous in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scat-
tering (WAXS) experiments were performed at the ALBA Synchrotron facility in Barcelona
(Barcelona, Spain), beamline BL11-NCD. A Linkam THMS600 (Linkam, Surrey, UK) hot
stage coupled to a liquid nitrogen cooling system was used to cool and heat the samples,
which were previously placed into glassy capillaries. The same thermal protocol adopted
in the non-isothermal DSC experiments was used to get the SAXS/WAXS patterns, in
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which crystallization and melting of the samples are followed, thus obtaining comparable
results by the two different techniques.

The X-ray energy source was 12.4 keV (λ = 1.03 Å). For the SAXS setup, the distance
between the sample and the detector (ADSC Q315r detector, Poway, CA, USA, with a
resolution of 3070 × 3070 pixels, pixel size of 102 µm2) was 6463 mm with a tilt angle
of 0◦. Calibration was performed with silver behenate. Regarding WAXS configuration,
a distance of 132.6 mm was used between the sample and the detector, with a tilt angle
of 21.2◦. Chromium (III) oxide (Rayonix LX255-HS detector, Evanston, IL, USA, with
a resolution of 1920 × 5760 pixels, pixel size of 44 µm2) was employed for calibration.
Scattering intensity as a function of scattering vector, q = 4πsinθλ−1 data are obtained,
where λ is the X-ray wavelength, and 2θ is the scattering angle.

2.2.3. Polarized Light Optical Microscopy (PLOM)

An Olympus BX51 polarized light optical microscope (Olympus, Tokyo, Japan) was
used to follow the morphological changes occurring within the samples while cooled
and heated at a constant rate of 20 ◦C/min. For accurate temperature control, a Linkam
THMS600 (Linkam, Surrey, UK) hot stage with liquid nitrogen was used. Micrographs
were recorded by an Olympus SC50 camera (Olympus, Tokyo, Japan). First, a glass slide in
which samples are melted is used, with a glass coverslip, and then, 20 ◦C/min as cooling
and heating rates are employed. Morphological variations that occur during the application
of this constant rate are recorded as micrographs in which crystallization and melting of
each of the blocks can be followed.

Furthermore, the software ImageJ [103] was used to analyze the micrographs by
measuring transmitted light intensities. The increase in light intensity detected refers to
the increase in crystal content of a certain sample since crystallization of one component
has started. Crystallization of this component can be followed by the increase in inten-
sity by decreasing temperature, and the temperature range at which crystallization of a
specific block occurs can be determined. In order to detect intensity changes, the whole
micrographs are considered as “region of interest”. Thus, all superstructures that can be
formed during the cooling scans contribute to this analysis. So, the entire crystallization
process is followed by analyzing intensity changes as a function of temperature, and the
crystallization temperature of a particular block of the diblock copolymers and triblock
terpolymers can be determined.

3. Results and Discussion
3.1. Small-Angle X-ray Scattering (SAXS)

SAXS measurements are useful to study not only the phase segregation in the melt
but also if the phase segregation is kept when the block components crystallize or if
crystallization destroys it by breaking out the phase structure of the melt. Figure 1 shows the
SAXS patterns of the homopolymer PE7.1, the diblock copolymer PE32

7.1-b-PEO68
15.1, and

the triblock terpolymer PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1) upon cooling from the melt.

For the homopolymer PE7.1 and the diblock copolymer PE32
7.1-b-PEO68

15.1 (Figure 1a,b),
there is no phase segregation in the melt, as evidenced by the lack of scattering peaks in
the molten state. The broad peak that appears at lower temperatures corresponds to the
diffraction from crystalline lamellar stacks in the formed superstructures (i.e., spherulites
or axialites).
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Figure 1. SAXS ramp down patterns at 20 ◦C/min for (a) PE7.1, (b) PE32
7.1-b-PEO68

15.1, and (c) PE22
7.1-b-PEO46

15.1-b-
PCL32

10.4 (T1) at the indicated temperatures.

However, there is weak phase segregation for the PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1)

triblock terpolymer (Figure 1c) since there is a broad scattering peak in the melt, which
disappears as crystallization breaks out when the first block upon cooling from the melt
starts to crystallize (i.e., the PE block). This behavior is evidenced by the shift in q values
between the reflection in the melt and the weaker reflection at room temperature, which
appears at lower q values. The broad peak at room temperature corresponds to the average
long period of the lamellae formed during the crystallization process because the phase
structure established by phase segregation in the melt was destroyed by the break-out.

Figure 2 shows SAXS patterns of the homopolymer PE9.5, the diblock copolymer
PE52

9.5-b-PEO48
8.81, and the triblock terpolymer PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) at the
indicated temperatures reached upon cooling. In this case, the behavior of the homopoly-
mer PE9.5 (Figure 2a) is the same as for the homopolymer PE7.1 (Figure 1a) explained above,
not showing any phase segregation in the melt, as expected for a homopolymer.

The diblock copolymer PE52
9.5-b-PEO48

8.81 (Figure 2b) and the triblock terpolymer
PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) (Figure 2c) are phase segregated in the melt, with pos-
sible lamellar and interpenetrated morphologies, respectively, although more detailed
analysis of the scattering curves would be needed to ascertain the exact melt morphology.
The clear scattering peaks in the molten state in these two materials corroborate the phase
segregation behavior; however, their phase segregation is weak, since when the first block
crystallizes upon cooling, i.e., the PE block at 100 ◦C, the phase structure is destroyed, the
one generated by phase segregation in the melt, as deduced by the change in q values and
intensities of the scattering peaks.
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One way to predict the segregation strength in linear diblock copolymers is by multi-
plying the Flory-Huggins interaction parameter (χ) (evaluated at the interest temperature
in the melt) by N (the total degree of polymerization). The estimation becomes more
difficult in the case of triblock terpolymers. Different behaviors can be predicted depending
on the segregation strength values. Values equal or lower to 10 indicates miscibility in
the melt, between 10 and 30 weak phase segregation, between 30 and 50 intermediate
segregation, and if values are higher than 50, the systems are strongly segregated. A rough
approximation for each pair of blocks is reported in Table S1 (see Supporting Information),
using the solubility parameters of PE, PEO, and PCL from the literature [60,104]. In this
case, the predicted values suggest that at least the diblock copolymers should be strongly
segregated, but the experimental SAXS findings indicate miscibility for PE32

7.1-b-PEO68
15.1

and weak segregation for the PE52
9.5-b-PEO48

8.8.
As the dominant behavior during crystallization is that of break out, the final morphol-

ogy is that of crystalline lamellae arranged in superstructures like axialites or spherulites.
Therefore, we will not explore in detail the morphology of the materials in the melt, as it is
destroyed upon crystallization.

3.2. Non-Isothermal Crystallization by DSC

DSC cooling and heating scans of the homopolymers, diblock copolymers, and triblock
terpolymers of the two systems (Table 1) are discussed in this section. In addition, all data
obtained are collected in Tables S2–S4 (Supporting Information).

Figure 3 shows the cooling (A) and heating (B) DSC scans for the PE7.1 homopolymer,
PE32

7.1-b-PEO68
15.1 diblock copolymer, and PE22

7.1-b-PEO46
15.1-b-PCL32

10.4 (T1) triblock
terpolymer. The crystallization peak of each block (Tc) has been assigned using WAXS data
collected under identical conditions at the synchrotron (shown and described below). The
same color code is used throughout this work to highlight the crystallization and melting
of the different blocks (blue for PCL, red for PEO, and violet for PE). The sharp exotherm
(Figure 3A(a)) and subsequent endotherm (Figure 3B(a)) of the neat PE7.1 precursor is a
consequence of its linear character (synthesized by polyhomologation).
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each block.

In the PE32
7.1-b-PEO68

15.1 diblock copolymer, PE (violet arrow) is the first block crys-
tallizing upon cooling from the melt, and then the crystallization of the PEO block (red
arrow) occurs (Figure 3Ab). The crystallization of the PE block does not occur in a unique
step since three exothermic crystallization peaks appear for the PE block crystallization: at
118 ◦C, 82 ◦C, and 79 ◦C. This evidences that the PE block crystallizes in a fractionated way,
which means that several crystallization exotherms appear at lower temperatures instead
of a single crystallization exotherm corresponding to the PE block’s bulk crystallization
temperature. Note that as shown in Figure 1b, this diblock copolymer shows miscibility in
the melt, and as crystallization occurs from a homogeneous melt, as well as only having
32 wt % of PE block content and a relatively low molecular weight, the crystallization of
the PE block is somehow hindered, as evidenced by its crystallization enthalpy value of
22 J/g (Table S2). However, the sharp crystallization exotherm of the PEO block and the
high block content (68 wt %) suggest its high crystallization ability, as the enthalpy for the
PEO is 177 J/g (Table S2).

The crystallization in the PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1) triblock terpolymer

(Figure 3A(c)) starts with the PE block (violet arrow). In this case, the PE block content is
low (22 wt %), and a very small crystallization exotherm is observed in the cooling scan
(14 J/g) (Table S2). Crystallization continues with the PCL block (blue arrow) and the PEO
block (red arrow). Although the crystallization peaks of the PEO and the PCL blocks are
overlapped, WAXS results below demonstrate that the PCL block crystallizes some degrees
above the PEO block (Figure 5c). As we are not able to distinguish between both transitions,
an estimation of the crystallization enthalpies is reported in Table S2 by employing block
content for the calculations.

Figure 3B shows the subsequent heating scans with the endothermic melting peaks
(Tm) for each sample; data are collected in Table S3. The homopolymer PE7.1 (Figure 3B(a))
shows a crystallinity value of 75% (Table S4), as expected, observing the sharp melting
transition. For the diblock copolymer (Figure 3B(b)), melting starts with the PEO block
(red) with a crystallinity value of 85%; and it continues with the PE block melting (violet),
with a crystallinity value of only 7% (Table S4), because as previously mentioned, small
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block content and cooling from a homogenous melt are not the best scenarios to enhance
crystallization. The overlapped melting peak at the lowest temperature for the triblock
terpolymer (Figure 3B(c)) corresponds to the PEO (red) and the PCL (blue) blocks (an
estimation of the crystallinity values is provided in Table S4), whereas the melting at the
highest temperatures occurs for the PE block crystals, although its crystallinity degree is
only 5% (Table S4) of its 32 wt % block content in the terpolymer.

Figure 4 shows the cooling and heating scans of the PE9.5 homopolymer, the PE52
9.5-b-

PEO48
8.8 diblock copolymer, and the PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) triblock terpolymer.
The crystallization and melting transitions of the blocks in these samples (Figure 4A(c)–B(c))
follow the same trend described before in Figure 3, but with some differences due to the
phase behavior of the materials.
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The crystallization of PE9.5 homopolymer (Figure 4A(a)) occurs in a single and sharp
transition. For the PE52

9.5-b-PEO48
8.8 diblock copolymer (Figure 4A(b)), the crystallization

of the PE block (violet) occurs at high temperatures, followed by the crystallization of the
PEO block (red) at lower temperatures. Note that the PE block crystallizes in a unique
crystallization step in this diblock copolymer, not in a fractionated way as in the previous
diblock copolymer discussed before (Figure 3A(b)). The difference remains in the phase
behavior in the melt, on the one hand, since this diblock copolymer shows weak phase
segregation (as evidenced by SAXS experiments shown in Figure 2b), and the fact of being
segregated in the melt enhances the crystallization ability of the PE block. In addition, the
PE block content is higher in this copolymer (52 wt %) with a higher molecular weight
(9500 vs. 7100 g/mol). So, higher PE content and cooling from a segregated melt, do not
largely hinder its crystallization, showing a crystallization enthalpy of 81 J/g (Table S2).

The crystallization sequence in the PE37
9.5-b-PEO34

8.8-b-PCL29
7.6 (T2) triblock terpoly-

mer is the same as the one explained in the previous triblock terpolymer (T1) (Figure 3A(c)):
first the PE block (violet), and then the PCL (blue) and PEO (red) blocks. Although, also in
this case, there is an overlap of the crystallization peaks of the PCL and PEO blocks, WAXS
measurements show () that the PEO block crystallizes a few degrees lower than the PCL
block; and estimations of the enthalpies are provided in Table S2.



Polymers 2021, 13, 3133 10 of 25

The subsequent heating scans are shown in Figure 4B. The homopolymer PE9.5 in
Figure 4B(a) shows a clear melting transition and a crystallinity value of 55% (Table S4).
In the case of the PE52

9.5 -b- PEO48
8.8 diblock copolymer (Figure 4B(b)), the melting starts

with the PEO block (red) and ends with the PE block (violet). As previously mentioned,
segregation in the melt and higher PE content enhance its crystallization, and thus, a clear
and sharp melting transition with a crystallinity value of 27% is obtained (Table S4). Finally,
the PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) triblock terpolymer follows the same trend as in the
triblock terpolymer T1 (Figure 3B(c)): melting of the PEO (red) and PCL (blue) blocks
occur with a difference of some degrees, although not enough to distinguish between both
DSC melting transitions (demonstrated by WAXS experiments in Figures S3(c)–S4(c)); and
melting of the PE block showing a higher crystallinity degree (44%) (Table S3).

3.3. In Situ Wide Angle X-ray Scattering (WAXS) Real-Time Synchrotron Results

The crystallization of each block in the WAXS patterns is identified by analyzing
the crystal planes indexing for the PE, PCL, and PEO blocks reported in
Table S5 [29,32,38,60,64,66,92,105,106]. In addition, normalized intensity measurements
as a function of temperature upon cooling from the melt (at 20 ◦C/min) are provided,
confirming the samples’ double and triple crystalline nature.

As shown in Figure 5, all blocks are able to crystallize, as demonstrated by the presence
of their characteristic scattering peaks at certain q values, pointed out with the colors we
are employing throughout the whole work.

The PE7.1 homopolymer crystallization starts at 118 ◦C (Figure 5a), as its characteristic
scattering peak at 15.4 nm−1 (violet arrow) corresponding to the (110) crystallographic
plane appears at this temperature. Cooling down the sample, at 16.9 nm−1, the other
scattering peak of the (200) plane confirms PE crystallization. In addition, the normal-
ized WAXS intensity calculation as a function of temperature for the PE110 (15.4 nm−1)
reflection in Figure 6a confirms the crystallization of the PE block by the sharp increase of
the intensity.
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10.4 (T1) at different temperatures with colored arrows
indicating crystallization of each block and the (hkl) planes.

Figure 5b shows that the first block to crystallize, during cooling from the melt, in
the PE32

7.1-b-PEO68
15.1 diblock copolymer is PE at 118 ◦C (violet arrows) with its scat-

tering peaks at 15.4 and 16.9 nm−1 (reflections (110) and (200), respectively). At lower
temperatures, 34 ◦C, the PEO block (red arrows) starts to crystallize with its (120) and
(032)/(112)/(132)/(212) reflections at 13.8 and 16.4 nm−1, respectively. Although the crys-
tallization of these two blocks is clear, the normalized WAXS intensities calculated in
Figure 6b, show this sequential crystallization by analyzing separately the unique scat-
tering peaks of the PEO120 (13.8 nm−1) and the PE110 (15.4 nm−1). At high temperatures,
the intensity starts to increase at 118 ◦C due to PE crystallization, and the second increase
at 82 ◦C also corresponds to PE, because as reported in Figure 3A(b), PE crystallizes in
two steps.

Figure 5c corresponds to the PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1) triblock terpolymer.

In this case, the crystallization sequence starts with the PE crystallization (violet arrows),
as evidenced by the PE110 reflection at 82 ◦C and the PE200 reflection at 70 ◦C. One may
find this crystallization temperature low for the PE block, but as discussed previously in
Figure 3A(c), the PE content is low (22 wt %) and the crystallization enthalpy is 14 J/g.
The next block that crystallizes is the PCL block (blue arrows). At 42 ◦C, the PCL110
(15.5 nm−1), PCL111 (15.6 nm−1), and PCL200 (16.7 nm−1) reflections prove the presence
of PCL block crystals. The last block to crystallize upon cooling from the melt is the PEO
block (red arrows). The presence of its scattering peak at 13.8 nm−1 corresponding to the
(120) crystallographic plane at 32 ◦C confirms the crystallization. At lower temperatures,
the other characteristic peak of PEO (16.4 nm−1) appears at 30 ◦C corresponding to the
(032/112/132/212) plane (Figure 5c).
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7.1-b-PEO68
15.1 (PE110 (15.4 nm−1) and

PEO120 (13.8 nm−1)), and (c) PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (PEO120 (13.8 nm−1), PE110 (15.4 nm−1)
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The normalized intensities are analyzed to detect the exact temperature at which each
of the blocks crystallizes (Figure 6c). The joint reflections of PE110 (15.4 nm−1) and PCL110
(15.5 nm−1) are used to determine their crystallization temperature ranges. The first slight
change in intensity at 82 ◦C confirms PE crystallization (violet), barely noticeable due to
the low content of the PE block in the terpolymer (22 wt %). Then, the sharp increase at
42 ◦C indicates the crystallization of the PCL block (blue). The single PEO120 (13.8 nm−1)
reflection (along with the other PE and PCL reflections) confirms its crystallization by a
sharp increase in intensity.
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Similarly, in Figures 7 and 8, WAXS patterns upon cooling the melt (at 20 ◦C/min)
and the normalized intensity measurements confirm crystallization of all blocks in the
other set of samples listed in Table 1: the homopolymer PE9.5, the diblock copolymer
PE52

9.5-b-PEO48
8.8, and the triblock terpolymer PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2).
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In this case, Figure 7a shows that the crystallization of the homopolymer PE9.5 starts
at 112 ◦C (PE110 at 15.4 nm−1), and the second scattering peak appears at 100 ◦C, PE200
(16.9 nm−1) (see violet arrows). Figure 8a shows the broad temperature range at which PE
crystallizes since a plateau is not reached until approximately 60 ◦C, determining this way
that PE crystallizes in between 112 and 60 ◦C.

Continuing with Figure 7b, the first reflection at 103 ◦C ((110) reflection at 15.4 nm−1)
corresponds to the PE block, along with the (200) reflection (16.9 nm−1) at 100 ◦C (see violet
arrows). The second block to crystallize in this diblock copolymer at 39 ◦C is the PEO
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block (red arrows), identified due to the presence of the (120) reflection at 13.8 nm−1 and
((032)/(112)/(132)/(212) reflections at 16.4 nm−1. Once again, normalized intensities in
Figure 8b confirm the temperature ranges at which both the PE and the PEO blocks start to
crystallize due to the sharp increase in the intensity of the corresponding peaks.

To conclude, Figure 7c shows the WAXS patterns for the PE37
9.5-b-PEO34

8.8-b PCL29
7.6

(T2) triblock terpolymer. The crystallization sequence remains the same as in the previous
triblock terpolymer discussed above (Figure 5c): the PE block first (violet arrows) at 110 ◦C
((110) and (200) reflections at 15.4 and 16.9 nm−1); then the PCL block (blue arrows) at 46 ◦C
((110) and (200) reflections at 15.5 and 16.7 nm−1); and finally, the PEO block (red arrows)
at 34 ◦C ((120) and (032)/(112)/(132)/(212) reflections at 13.8 and 16.4 nm−1). In addition,
the normalized intensities shown in Figure 8c demonstrate the crystallization of the three
blocks by analyzing the joint reflection that the three blocks show at q values between
16.4 and 16.9 nm−1. Note that as the PE content is higher in this triblock terpolymer (T2)
(37 wt% vs. 22 wt%), the increase in intensity is clearer than in the previous triblock
terpolymer (T1), in which it was very low (Figure 6c).

In addition, to confirm the crystallization of every single block in the cooling scans, re-
sults for the subsequent heating scans are shown in the Supporting Information. Figures S1–S4
report WAXS diffraction patterns and normalized intensity measurements of both triblock
terpolymers here analyzed (T1 and T2).

3.4. Polarized Light Optical Microscopy (PLOM) Observations

PLOM was employed to follow crystallization of the blocks and to give evidence of
the final morphology. Micrographs taken at room temperature (after cooling the samples
at 20 ◦C/min) are shown in Figures 9–12.
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Figure 10. PLOM micrographs of the triblock terpolymer PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1) cooling the sample from the
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corresponding temperature, indicated at the top of the micrographs for (a) molten state at 120 ◦C, (b) PE at 80 ◦C, (c) PE and
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diblock copolymer. Although there are no clear PEO spherulites, it shows a double crys-
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Figure 11. PLOM intensity measurement calculation from data in Figure 10 as a function of tem-
perature during cooling from the melt at 20 ◦C/min, showing crystallization of (a) the PE block,
(b) the PCL block, and (c) the PEO block for the triblock terpolymer PE22

7.1-b-PEO46
15.1-b-PCL32

10.4

(T1). Colored data points and lines (violet for PE, blue for PCL, and red for PEO) are employed in
order to follow the crystallization of the blocks. Empty data points correspond to the molten state of
the sample.
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Figure 12. PLOM micrographs taken at room temperature after cooling the samples from the
melt at 20 ◦C/min for (a) PE9.5 and (b) PE52

9.5-b-PEO48
8.8, indicating the crystallized blocks at

room temperature.

Figure 9a corresponds to the homopolymer PE7.1, showing very small spherulites. In
Figure 9b, the PE32

7.1-b-PEO68
15.1 diblock copolymer shows large spherulites characteristic

of PEO. According to the evidence gathered in the previous sections, the PE block crystal-
lizes first, probably forming microspherulites that are later engulfed by the much larger
PEO block spherulites.

The triple crystalline morphology of the PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1) triblock

terpolymer is shown in Figure 10, in which the whole cooling process at 20 ◦C/min was
followed. Figure 10a indicates that the sample at 120 ◦C is in the molten state. Cooling to
80 ◦C (Figure 10b), the first block to start to crystallize is the PE block, forming very small
and barely observable microspherulites. Due to this difficulty, light intensity measurements
as a function of temperature were measured since slight changes in the PLOM micrographs
can be better detected.

Figure 11 shows all intensity changes that occur during the cooling scan of this
sample. Curve a of Figure 11 shows the increase in intensity related to the crystallization
of the PE block, which crystallizes until saturation at 80 ◦C. Going back to Figure 10c,
the second block to crystallize is the PCL block at 40 ◦C. A slight change is appreciable
in this micrograph, but the difference in intensity in curve b of Figure 11 confirms the
PCL block crystallization. Finally, Figure 10d,e shows the crystallization of the PEO block,
which corresponds to the sharp increase in intensity in curve c of Figure 11. Due to the
crystallization of the three blocks, a triple crystalline block copolymer is obtained.

The micrographs taken during the subsequent heating of this PE22
7.1-b-PEO46

15.1-b
PCL32

10.4 (T1) triblock terpolymer are provided in Figure S5 in the SI, along with the
normalized intensity calculations as a function of temperature also in the SI (Figure S6).
These graphs show the melting of all blocks, demonstrating the triple crystalline behavior
of the sample. In addition, all PLOM observations match very well with DSC (Figure 3)
and WAXS (Figures 5 and 6) results previously discussed.

Regarding the second system listed in Table 1, the same PLOM observations were
performed in order to compare the crystalline behavior of both series of samples. Figure 12
shows the PLOM micrographs at 25 ◦C of the precursors of the PE37

9.5-b-PEO34
8.8-b-

PCL29
7.6 (T2) triblock terpolymer after cooling the samples at a constant rate of 20 ◦C/min.

Figure 12a corresponds to the PE9.5 homopolymer, in which very small PE spherulites
can be observed. The micrograph in Figure 12b, on the contrary, refers to the PE52

9.5-
b-PEO48

8.8 diblock copolymer. Although there are no clear PEO spherulites, it shows a
double crystalline morphology at room temperature.

Figure 13 shows the cooling process employing as cooling rate 20 ◦C/min for the
triblock terpolymer PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2). As indicated in Figure 13a, at 118 ◦C,
the sample is melted. Decreasing temperature to 110 ◦C (Figure 13b), a slight change in
the micrograph indicates that the crystallization of the PE block occurred. In addition,
Figure 13c shows that all PE has crystallized until saturation at 50 ◦C. Once again, it is
challenging to notice meaningful changes in the micrographs, so the normalized intensity
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calculations as a function of temperature are provided in Figure 14. The first increase in
intensity shows the crystallization of the PE block (curve a of Figure 14). The following
slight increase in intensity corresponds to the crystallization of the PCL block (curve b of
Figure 14), also shown in Figure 13d at 40 ◦C. Cooling down the sample, the last block to
crystallize is the PEO block (Figure 13e,f), and its crystallization continues until saturation
is obtained at approximately 0 ◦C (Figure 13g). Curve c in Figure 14 indicates that the
crystallization of the PEO block starts at around 28 ◦C and continues with further decreases
in temperature.
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Figure 13. PLOM micrographs of the triblock terpolymer PE37
9.5-b-PEO34

8.8-b-PCL29
7.6 (T2) cooling the sample from the

melt at a constant rate of 20 ◦C/min. Colored squares (violet for PE, blue for PCL, and red for PEO) refer to the crystallized
block at the corresponding temperature indicated on the top of the micrographs for (a) molten state at 118 ◦C, (b) PE at
110 ◦C, (c) PE at 50 ◦C, (d) PE and PCL at 40 ◦C, (e) PE, PCL, and PEO at 28 ◦C, (f) PE, PCL, and PEO at 24 ◦C, and (g) PE,
PCL, and PEO at 0 ◦C.

Figures S7 and S8 in the SI provide the subsequent heating scan and the normalized in-
tensity measurements of the PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) triblock terpolymer, respec-
tively. The discussed results agree well with DSC (Figure 4) and WAXS (Figures 7 and 8)
according to the evidences discussed above.
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4. Conclusions

The main objective of this study is the analysis of the morphology and crystallization
of triblock terpolymers with three potentially crystallizable blocks: the apolar PE and the
polar PEO (biocompatible), and PCL (biodegradable) blocks, as well as their corresponding
precursors. Although adding a third block to diblock copolymers makes the study more
challenging, it was possible to ascertain the crystallization sequence of each of the blocks
following the crystallization process by three complementary techniques: DSC, WAXS,
and PLOM.

The aim of comparing two triblock terpolymers, PE22
7.1-b-PEO46

15.1-b-PCL32
10.4 (T1)

and PE37
9.5-b-PEO34

8.8-b-PCL29
7.6 (T2), was to determine the effect of composition and

molecular weight on the properties. Regarding melt miscibility, both triblock terpolymers
(T1 and T2) show weak phase segregation, and the microstructure present in the melt is
destroyed when crystallization of the first block starts (PE crystallization). Furthermore,
the crystallization of the three blocks upon cooling from the melt employing 20 ◦C/min as
cooling rate in both triblock terpolymers is identified. The crystallization sequence resulted
as follows: the PE block crystallized first, followed by the PCL block and finally by the
PEO block, as evidenced by DSC, in situ WAXS experiments, and PLOM observations with
light intensity calculations.

The crystalline behavior of both triblock terpolymers (T1 and T2) is very similar
regardless of the molecular weight and composition. However, for their corresponding
diblock copolymer precursors, the effect of the PE block content and the molecular weight
is significant. The PE32

7.1-b-PEO68
15.1 diblock copolymer is melt miscible, and the PE block

crystallization is hindered due to its low content (32 wt%). Nevertheless, in the PE52
9.5-

b-PEO48
8.8 diblock copolymer, the PE block crystallization is enhanced due to its higher

content (52 wt%) and phase segregated nature in the melt.



Polymers 2021, 13, 3133 20 of 25

The fact that three different blocks can crystallize in a triblock terpolymer forming
a triple crystalline material opens a window for new applications, such as drug delivery
devices. In this respect, a comprehensive understanding of these materials could be
beneficial to tune their crystallizability and obtain new materials with enhanced properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13183133/s1. Table S1: χ and χN values of diblock copolymers (precursors) and
diblock copolymer pairs in the triblock terpolymers, calculated at 180 ◦C. Table S2: Thermal DSC
cooling properties of the homopolymers PE, diblock copolymers PE-b-PEO, and triblock terpolymers
PE-b-PEO-b-PCL (T1 and T2). Crystallization enthalpies are normalized according to block content.
Table S3: Thermal DSC healing properties of the homopolymers PE, diblock copolymers PE-b-PEO,
and triblock terpolymers PE-b-PEO-b-PCL (T1 and T2). Melting enthalpies are normalized according
to block content in each of the samples. Table S4: Crystallinity values (%) of the samples calculated
from DSC heating scans taking into account the mass fractions of each of the blocks and using
Xc = (∆Hm/∆Hm,100%)·100 and enthalpy of fusion of 100% crystalline polymers (∆Hm,100%) is taken
from literature: 293 J/g for PE [107], 139 J/g for PCL [108] and 214 J/g for PEO [109]. Table S5: WAXS
indexation for all the samples [19,92]. Figure S1: WAXS patterns taken during subsequent heating
at 20 ◦C/min for (a) PE7.1, (b) PE32

7.1-b-PEO68
15.1, and (c) PE22

7.1-b-PEO46
15.1-b-PCL32

10.4 (T1) at
different temperatures with arrows indicating transitions for each block (violet for PE, blue for
PCL, and red for PEO) and the corresponding (hkl) planes of the blocks. Figure S2: Normalized
WAXS intensities as a function of temperature calculated from heating WAXS data in Figure S1 with
close-ups for (a) PE7.1, (b) PE32

7.1-b-PEO68
15.1, and (c) PE22

7.1-b-PEO46
15.1-b-PCL32

10.4 (T1). Colored
data points and lines (violet for PE, blue for PCL, and red for PEO) are employed to follow the
crystallization of each block. Empty data points represent the molten state of the corresponding
block in the samples. Figure S3: WAXS patterns taken during subsequent heating at 20 ◦C/min for
(a) PE9.5, (b) PE52

9.5-b-PEO48
8.8, and (c) PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) at different temperatures
with arrows indicating transitions for each block (violet for PE, blue for PCL and red for PEO) and the
corresponding (hkl) planes of the blocks. Figure S4: Normalized WAXS intensities as a function of
temperature calculated from heating WAXS data in Figure S3 for (a) PE9.5, (b) PE52

9.5-b-PEO48
8.8, and

(c) PE37
9.5-b-PEO34

8.8-b-PCL29
7.6 (T2). Colored data points and lines (violet for PE, blue for PCL, and

red for PEO) are employed to follow the crystallization of each block. Empty data points represent
the molten state of the corresponding block in the samples. Figure S5: PLOM subsequent heating
micrographs from 0 ◦C to the melt at 20 ◦C/min for the triblock PE22

7.1-b-PEO46
15.1-b-PCL32

10.4 (T1)
with colored boxes indicating the crystallization of each of the blocks (violet for PE, blue for PCL
and red for PEO) and the crystallized blocks in each of the micrographs for (a) PE, PCL, and PEO
at 0 ◦C, (b) PE, PCL, and PEO at 25 ◦C, (c) PE, PCL, and PEO at 50 ◦C, (d) PE, PCL, and PEO at
70 ◦C, (e) PE at 72 ◦C, (f) PE at 125 ◦C, and (g) molten state at 130 ◦C. Figure S6: PLOM intensity
measurements from micrographs of Figure S5 as a function of temperature indicating melting of
the (a) PEO block, (b) PCL block, and (c) PE block for the triblock terpolymer PE22

7.1-b-PEO46
15.1-b-

PCL32
10.4 (T1) with colored data points and lines (red for PEO, blue for PCL and violet for PE) to

follow the crystallization of each block. Empty data points represent the molten state of the sample.
Figure S7: PLOM subsequent heating micrographs from 10 ◦C to the melt at 20 ◦C/min for the
triblock PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) with colored boxes indicating the crystallization of each
of the blocks (violet for PE, blue for PCL and red for PEO) and the crystallized blocks in each of the
micrographs for (a) PE, PCL, and PEO at 10 ◦C, (b) PE, PCL, and PEO at 60 ◦C, (c) PE and PCL at
65 ◦C, (d) PE and PCL at 70 ◦C, (e) PE at 75 ◦C, (f) PE at 130 ◦C, (g) PE a 145 ◦C, and h) molten state
at 150 ◦C. Figure S8: PLOM intensity measurements from micrographs of Figure S7 as a function of
temperature indicating melting of the (a) PEO block, (b) PCL block, and (c) PE block for the triblock
terpolymer PE37

9.5-b-PEO34
8.8-b-PCL29

7.6 (T2) with colored data points and lines (red for PEO, blue
for PCL and violet for PE) to follow the crystallization of each block. Empty data points represent the
molten state of the sample.
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