
Computer Science Degree
Computation

End of Degree Project

Inferring pictures layout from given text
descriptions

Author

Carlos Domínguez Becerril

2021

Computer Science Degree
Computation

End of Degree Project

Inferring pictures layout from given text
descriptions

Author

Carlos Domínguez Becerril

Instructors
Gorka Azkune Galparsoro and Oier López de Lacalle Lecuona

Abstract

Generating an image from a textual description is a complex task when the number of ob-
jects and relations specified on it is high, since the number of different possible solutions
is very large. In this regard, humans tend to first imagine the layout of the described scene
before painting it. We name this first step text-to-layout and we explore it in depth in this
project.

This project explores various approaches that allow to infer the spatial layout of a picture
given the text that describes it. Natural Language Processing (NLP) techniques are applied
to represent and use the most important words and expressions in the text to obtain a
coherent layout. More precisely, this project explores if a structured version of the text
based on graphs can contribute to better represent the relations between objects.

Two different types of architectures have been developed based on graph convolutional
neural networks (GCNN). The first one consists in obtaining directly the bounding boxes
of the objects from the nodes of the graph, using hand-engineered heuristics. The second
one uses a sequence-to-sequence (seq2seq) architecture with the same GCNN-based en-
coder as the first approach, but adding a decoder that learns to generate the layout se-
quentially. Furthermore, to evaluate the quality of the generated layouts new metrics are
proposed, since the metrics currently used do not cover all the complexity associated with
this task.

As the result of this exploration, we found systems that outperform the previous state-
of-the-art in all the metrics on the MSCOCO dataset. Moreover, a visual comparison of
the generated layouts shows a better spatial relationship between the objects in the scene.
A thorough comparison of the different systems is provided through the analysis of the
newly proposed metrics and the visual quality of the layouts.

i

Contents

Abstract i

Contents iii

List of figures vii

List of tables xi

1 Introduction 1

2 Deep learning for text-to-layout 5

2.1 Neural network architectures . 6

2.1.1 Multilayer perceptron . 6

2.1.2 Recurrent neural networks . 7

2.1.3 Graph convolutional neural networks 8

2.2 Seq2Seq architecture . 10

2.3 Word embeddings . 11

2.4 Text-to-layout architectures . 12

2.4.1 SG2IM . 12

2.4.2 Obj-GAN . 13

iii

CONTENTS

3 MSCOCO Dataset 15

3.1 Dataset related problems . 16

3.2 Generation of graphs from text . 18

3.2.1 AMR . 19

3.2.2 Scene graph parser . 20

3.3 Dataset structure . 21

3.4 The dataset in numbers . 22

3.4.1 AMR . 23

3.4.2 SGP . 27

4 Developed architectures 31

4.1 SG2BB . 31

4.1.1 Architecture . 32

4.1.2 Matching . 34

4.2 GCN2LY . 38

4.2.1 Encoder . 38

4.2.2 Decoder . 39

4.3 RNN2LY . 43

5 Metrics to measure the quality of layouts 45

5.1 The necessity of developing new metrics 45

5.2 Proposed metrics . 46

5.2.1 Relative spatial categorical position 46

5.2.2 Aspect ratio . 48

5.2.3 Class matching . 49

5.2.4 Relative scale difference . 50

iv

6 Experiments and results 51

6.1 Experimental setup . 51

6.1.1 Dataset partitions . 51

6.1.2 Model selection . 52

6.2 Results . 52

6.2.1 SG2BB . 52

6.2.2 GCN2LY . 54

6.2.3 RNN2LY . 55

6.3 Comparison of the developed systems 60

6.4 Qualitative analysis of the results . 62

6.4.1 SG2BB . 62

6.4.2 Obj-GAN vs. GCN2LY and RNN2LY 63

7 Conclusions and future work 71

7.1 Conclusions . 71

7.2 Future work . 72

Appendix

A Appendix 77

A.1 Project objectives report . 77

A.1.1 Project description and goals . 77

A.1.2 Project planning . 78

A.1.3 Methodology . 83

A.1.4 Risks . 83

Bibliography 85

v

List of figures

1.1 Example of different valid layouts for the description “a person is talking
on the phone while walking a dog”. 2

2.1 MLP architecture diagram with an input layer, k hidden layers, and an
output layer. Source: Stanford university. 6

2.2 RNN architecture diagram, where a is the hidden-state. Source: Stanford
university. 8

2.4 A CGNN with multiple graph convolutional layers. Each node’s hidden
representation is obtained by aggregating feature information from its
neighbours. After feature aggregation, a non-linear transformation is ap-
plied to the resulted outputs. By stacking multiple layers, the final hid-
den representation of each node receives messages from a further neigh-
bourhood. Source: [Wu et al., 2019b]. 10

2.5 Diagram of a seq2seq model used for transforming historical data into a
prediction. Source: Soohwan Kim’s GitHub repository. 11

2.6 Words similarity. Similar words should have vectors that are close to each
other. Source: Chicago University. 11

2.7 Overview of the SG2IM architecture. Source: [Justin et al., 2018]. 12

2.8 Overview of the Obj-GAN architecture. Source: [Li et al., 2019b]. 14

3.1 A caption that describes correctly the scene. Caption: A baseball player
sliding into home plate, in a game. MSCOCO 2014. 16

vii

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://github.com/sooftware/seq2seq
https://cfss.uchicago.edu/slides/text-analysis-fundamentals-and-sentiment-analysis/

LIST OF FIGURES

3.2 A caption that does not describe correctly the scene for being too speci-
fic. Caption: The intersection of East Canal Street North, near West 717.
MSCOCO 2014. 17

3.3 Picture with 30 bounding boxes. MSCOCO 2014. 18

3.4 Example of an AMR graph. 19

3.5 Example of an SGP graph. 20

4.1 Overview of the SG2BB architecture. 32

4.2 Computational graph illustrating a single graph convolution layer. The
graph consists in two triples (o1,r1,o2) and (o3,r2,o2) with a total of
three objects and two edges. 33

4.4 Overview of the GCN2LY architecture. 38

4.6 Grid system of size 4x4. The ground truth objects are moved from their
original positions to the closest upper-left corner. 42

4.7 Overview of the RNN2LY architecture. 43

5.1 The ground truth bounding boxes (yellow) and the predicted bounding
boxes (green) in the same picture. The predicted layout is the same as the
ground truth layout but displaced to the right. Nevertheless, even if the
text description matches the predicted layout (and the ground truth layout
in sizes), the IoU is 0 because there is no overlap with the ground truth
layout and therefore, the predicted layout is considered incorrect. 46

5.2 Visual representation of how the relative spatial categorical position bet-
ween person and dog is obtained. Red points are the center of the boun-
ding boxes for each object. The dog is located on the right side of the
person as its center lies between Π

4 and −Π

4 47

5.3 Aspect ratio between ground truth and predicted object. 48

5.4 Relative scale difference between ground truth objects (green) and pre-
dicted objects (yellow). In this example, the predicted objects are scaled-
down and moved compared to the ground truth objects. The relative scale
is ≈ 0 because the relative areas between the objects are the same. 50

viii

6.1 SG2BB system MSE loss of bounding boxes. 53

6.2 SG2BB metrics evolution (development partition). 53

6.4 GCN2LY metrics evolution (development partition). 55

6.9 The ground truth objects (yellow), the predicted and matched objects
(green), and the predicted but not matched objects (blue). Each predicted
object is matched with the ground truth object that overlaps the most ta-
king into account the categories. When there are more predicted or ground
truth objects, these are left unmatched. 61

6.11 A dirt covered floor in a home kitchen. MSCOCO image ID: 65358. . . . 63

6.12 A woman sitting with a boy cutting a cake. MSCOCO image ID: 194097. 64

6.13 The baby zebra is standing near it’s mother. MSCOCO image ID: 23411. . 65

6.14 A man sliding into a base next to another baseball player. MSCOCO ima-
ge ID: 515982. 66

6.15 A tennis player contorts his body to make contact with the ball. MSCOCO
image ID: 520478. 67

6.16 A group of people sit around a table. MSCOCO image ID: 10986. 68

6.17 A child flies a kite with another child onlooking. MSCOCO image ID:
12543. 69

6.18 A dog looking up in at a frisbee. MSCOCO image ID: 79407. 70

A.1 Work Breakdown Structure of the project. 78

A.2 Gantt chart of the project. 82

ix

List of tables

3.1 Information about the number of valid captions that each picture has in
training, development, and testing partitions. AMR stands for valid cap-
tions for AMR representation, whereas SGP denotes valid captions for
SGP representation in all the tables. 23

4.1 Matching of ground truth objects with graph nodes. The cells in green are
the matches. In this case, the node “kite” is left unmatched because there
are not enough ground truth objects. 35

4.2 Number of objects in AMR graphs compared to number of objects in
MSCOCO. 37

6.1 Results obtained with several systems on our test partition for the text-
to-layout task. † indicates that those results are distorted by the heuristic
matching algorithm and thus not very significant. PT indicates that the
model uses a pretrained encoder. FT indicates that the model uses a pre-
trained and fine-tuned encoder. 60

A.1 Time estimates for each work unit. 81

A.2 Deliverables and their deadlines. 82

xi

CHAPTER 1

Introduction

Generating realistic images that match given text descriptions is a challenging problem
and has tremendous potential in different applications, such as image editing, video ga-
mes, and computer-aided design. Recently, thanks to the success of generative adversarial
networks (GANs) [Goodfellow et al., 2014] in generating realistic images, text-to-image
generation has made remarkable progress. Nowadays, GANs can generate realistic images
conditioned on given text descriptions [Li et al., 2019a], nevertheless, other architectures
such as multimodal transformers also offer good results [Ramesh et al., 2021].

Continuous improvements and innovations in these technologies have resulted in increa-
sing the realism of the pictures that work especially well in simple scenes where one main
object stands out (animals, faces, flowers, and so on) [Reed et al., 2016] [Zhang et al., 2017]
[Zhu et al., 2019]. Consequently, there is a need to develop and refine new technologies
for image synthesis of complex scenes composed of various objects and places, as well as
their relationships.

In this regard, several works in the field of image generation from text follow a three-step
process [Hong et al., 2018] [Justin et al., 2018] [Li et al., 2019b]:

• Generate the spatial composition of the objects contained in the text (i.e. size and
position), taking into account the relationships described in the text. For example, in
Figure 1.1 if “a person is talking on the phone while walking a dog”, we can obtain
different valid layouts (such as a, b, and c). In this case, the spatial layout should
include a person bounding box which is taller than wider, a phone bounding box

1

2 Introduction

located inside the person bounding box, specifically in the top part, which must be
smaller than the person, and a dog that should be close to the bottom of the person
with a bounding box taller than wider (examples a and b) or vice versa (example c).
These are only three possible layouts of an infinite number of them.

• Generate segmentation maps of the objects generated in step 1. These segmentation
maps will add shape to the bounding boxes which are going to be close to the final
output.

• Generate the final image using the segmentation maps from step 2 and the original
text.

Figure 1.1: Example of different valid layouts for the description “a person is talking on the phone
while walking a dog”.

This process mimics to some extent the way humans draw, by first composing a scene and
then painting the details. Despite the importance of the first step, composing the scene
coherently with text, few researchers have devoted themselves to develop and evaluate it
thoroughly. We think that the quality and reality of complex scenes are heavily attached to
the layout and therefore, a deep research in the task of text-to-layout must be done. Moreo-
ver, this task shows the capacity of current systems to learn and extract spatial knowledge
from text descriptions that usually are omitted but implied in the text. For example, given
the sentence “woman riding a horse”, the description does not say that the woman is on
top of the horse but the verb “riding” with nouns “woman” and “horse” implies exactly
that. Nevertheless, the difficulty of this task relies also on the human perception, which is
different for every individual and layouts that seem correct for someone, may be incorrect
for others and vice versa. Therefore, it is important to explore existing models, propose
improvements and evaluate their performance when composing the scenes. This project

3

will not only be devoted to devising new models but also to proposing new forms of auto-
matic evaluation that better measure the spatial composition of scenes, since the metrics
currently used do not cover all the complexity associated with this task.

The contributions of this project consists of two systems that use a structured version
of the text based on graphs and processed by a GCNN. The first one, called SG2BB that
obtains directly the bounding boxes of the objects from the nodes of the graph, using hand-
engineered heuristics. The second one, called GCN2LY that uses a seq2seq architecture
with the same GCNN-based encoder as the first approach, but adding a decoder to learn
to generate the layout sequentially. Moreover, this project also contributes to developing
new metrics in order to better measure the quality of the generated layouts regarding the
spatial composition of the scene and sizes of the objects drawn. The code developed to
implement the architectures and perform the experiments can be found in the GitHub
repository.

This project will explore the state-of-the-art systems in computer vision, natural langua-
ge processing, and deep learning for the improvement of these, which have immediate
practical applications in various fields related to image creation and editing.

https://github.com/CarlosDominguezBecerril/text-to-layout
https://github.com/CarlosDominguezBecerril/text-to-layout

CHAPTER 2

Deep learning for text-to-layout

To understand the following chapters well, some background knowledge is introduced
that will become essential in the coming explanations. Because it is not possible to go in-
depth into all the theoretical aspects that would be required to fully understand the content
in the next chapters, the reader is assumed to have an introductory level understanding of
basic Deep Learning (DL) techniques. The reader is referred to [Goodfellow et al., 2016]
and [Wu et al., 2019b] for a much more complete coverage on deep learning techniques.

Text-to-layout systems are usually presented as the first step of text-to-image systems in
the literature [Justin et al., 2018] [Li et al., 2019b]. In consequence, researchers have not
paid too much attention to the development and evaluation of this task, but several solu-
tions can be found based on different neural network architectures such as multilayer per-
ceptrons (MLP), recurrent neural networks (RNN), graph convolutional neural networks
(GCNN), and transformers.

5

6 Deep learning for text-to-layout

2.1 Neural network architectures

2.1.1 Multilayer perceptron

The goal of a multilayer perceptron is to approximate some function f ∗. For example,
a classifier y = f ∗(x) maps an input x to a category y. A multilayer perceptron defines
a mapping y = f (x;θ) and learns the value of the parameters θ that result in the best
function approximation.

Multilayer perceptrons are called multilayer because they are typically represented by
composing together many different functions. The model is associated with a directed
acyclic graph describing how the functions are composed together. For example, given th-
ree functions f (1), f (2), and f (3) connected in a chain, to form f (x) = f (3)(f (2)(f (1)(x))).
These chained structures are the most commonly used structures of neural networks, whe-
re f (1) refers to the first layer, f (2) to the second layer, and f (3) to the third layer. The first
layer of a multilayer perceptron is called the input layer, the intermediate layers are ca-
lled hidden layers, and the final layer is called the output layer. The number of layers
determines the depth of the model. An example of this architecture can be seen in Figure
2.1.

Figure 2.1: MLP architecture diagram with an input layer, k hidden layers, and an output layer.
Source: Stanford university.

If a multilayer perceptron has a linear activation function in all neurons, that is, a linear
function that maps the weighted inputs to the output of each neuron, then linear algebra
shows that any number of layers can be reduced to a two-layer input-output model. In
MLPs some neurons use a nonlinear activation function that was developed to model the
frequency of action potentials, or firing, of biological neurons.

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

2.1 Neural network architectures 7

Two common non-linear activation functions are the sigmoid (σ) and the rectified linear
unit (ReLU) functions described by Equations 2.1 and 2.2:

σ(x) =
1

1+ e−x (2.1)

ReLU(x) = max(0,x) (2.2)

There are various ways to learn the suitable weights of a neural network but this pro-
ject will only focus on backpropagation [Rumelhart et al., 1986] combined with gradient-
based optimization techniques such as stochastic gradient descent [Robbins, 2007].

2.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) are a family of deep learning architectures that are
specialized in processing data of sequential nature. RNNs are well-suited for several NLP
tasks due to the sequential essence of language and they are used extensively in the field.
Some examples of the use of RNNs in NLP and language-related topics are machine
translation [Wu et al., 2016], language modeling [Józefowicz et al., 2016], reading com-
prehension [Shen et al., 2017], question-answering [Andreas et al., 2016], and text sum-
marization [Mahmood and Len, 2017] to name a few.

There are many types of RNNs, however, they are all based on the same fundamental
ideas. A sequence of elements are processed one by one and to process any element, two
inputs are needed: a vector representation of the element and a state vector (also called
hidden-state) which encodes all the elements seen so far. Using these two inputs a RNN
cell will produce the next hidden-state as an output which also can be used to feed the
next RNN cell state.

A RNN at time-step t has hidden-state ht−1 and processes an element xt from a sequence
x. The RNN computes the next hidden-state ht as function f of the previous hidden-state
ht−1 and the element that is being processed xt as seen in Figure 2.2.

f needs to be suitable for DL techniques, therefore, it has to be a parametric function
f = fθ with parameters θ and differentiable with respect to θ , i.e, ∃ d f

dθ
to be able to use

gradient-based methods and optimize the parameters efficiently.

8 Deep learning for text-to-layout

ht = f (xt ,ht−1) (2.3)

Figure 2.2: RNN architecture diagram, where a is the hidden-state. Source: Stanford university.

Finally, f should be a non-linear function so that the capacity of the model can scale
with the depth of the deep learning model. The choice of f is important, for that reason,
different types of RNN architectures have been proposed such as Long-Short Term Me-
mory cells (LSTM) [Hochreiter and Schmidhuber, 1997] or Gated Recurrent Units (GRU)
[Cho et al., 2014] to name a few.

2.1.3 Graph convolutional neural networks

Graph neural networks were initially introduced by [Gori et al., 2005] and further elabo-
rated by [Scarselli et al., 2009]. These early studies were related to recurrent graph neural
networks (RGNN), where the target node’s representation is learnt by iteratively propa-
gating neighbour information until a stable fixed point is reached. However, this process
is computationally expensive and recently there have been increasing efforts to overcome
these challenges. The success of convolutional neural networks (CNNs) in computer vi-
sion (images can be considered as a special case of graphs as seen in Figure 2.3), encoura-
ged the development of different types of methods that re-define the notion of convolution
for graph data. This methods are under the umbrella of graph convolutional neural net-
works and are divided into two different approaches: the spectral-based approaches and
the spatial-based approaches.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

2.1 Neural network architectures 9

(a) 2D Convolution: Each pixel in an image
is a node and the neighbours are determined
by the filter size. The 2D convolution takes the
weighted average of pixel values of the red no-
de along with its neighbours. The neighbours
of a node are ordered and have a fixed size.

(b) Graph Convolution: The hidden represen-
tation of the red node can be obtained by avera-
ging the value of the node features along with
its neighbours. The neighbours of a node are
unordered and variable in size.

Figure 2.3: 2D Convolution vs. Graph Convolution. Source: [Wu et al., 2019b].

To understand what a graph convolutional neural network is, first a minimal set of defini-
tions are needed:

• Graph: A graph is represented as G = (V,E) where V is the set of vertices, also
called nodes and E is the set of edges. Let vi ∈V denote a node and ei j = (vi,v j)∈E

an edge pointing from v j to vi. The neighbourhood of a node v is defined as N(v) =

u ∈V |(v,u) ∈ E. The adjacency matrix A is an n×n matrix with Ai j = 1 if ei j ∈ E

and Ai j = 0 if ei j /∈ E. A graph may have node attributes X where X ∈ Rn×d is a
node feature matrix with xv ∈ Rd representing the feature vector of a node v. At
the same time, a graph may have edge attributes Xe , where Xe ∈ Rm×c is an edge
feature matrix with xe

v,u ∈ Rc representing the feature vector of an edge (v,u).

• Directed graph: A directed graph is a graph with all edges directed from one node
to another. An undirected graph is considered as a special case of directed graphs
where there is a pair of edges with inverse directions if two nodes are connected. A
graph is undirected if and only if the adjacency matrix is symmetric.

• Spatial-Temporal Graph: A spatial-temporal graph is an attributed graph where
the node attributes change dynamically over time. The spatial-temporal graph is
defined as G(t) = (V,E,X (t)) with X (t) ∈ Rn×d .

GCNN generalize the operation of convolution from grid data to graph data. To generate a
node v’s representation, its own features xv and neighbours’ features xu, where u ∈ N(v),
are aggregated. GCNN stack multiple graph convolutional layers to extract high-level
node representations. Figure 2.4 shows a GCNN for node classification.

10 Deep learning for text-to-layout

Figure 2.4: A CGNN with multiple graph convolutional layers. Each node’s hidden representation
is obtained by aggregating feature information from its neighbours. After feature aggregation,
a non-linear transformation is applied to the resulted outputs. By stacking multiple layers, the
final hidden representation of each node receives messages from a further neighbourhood. Source:
[Wu et al., 2019b].

2.2 Seq2Seq architecture

Seq2seq [Sutskever et al., 2014] is a common DL technique used in NLP (and also in
other fields) when dealing with tasks that require transforming data of sequential nature
(e.g. a sentence) between representations.

A seq2seq architecture transforms a sequence into another sequence. It does so by emplo-
ying two connected RNNs: a combination of an encoder and a decoder as seen in Figure
2.5. A key aspect of seq2seq methods is that the parameters of the whole architecture are
learnt end-to-end, which means that the gradient of the loss of the decoder, is propagated
through the whole computation graph that defines the architecture; even the encoder and
the embedding tables at the very beginning of the graph.

Seq2seq architectures have been employed with success in many tasks that involve trans-
forming a natural language fragment into another natural language fragment. Some exam-
ples are machine translation [Wu et al., 2016], conversational tasks [Andreas et al., 2016],
and text summarization [Mahmood and Len, 2017].

2.3 Word embeddings 11

Figure 2.5: Diagram of a seq2seq model used for transforming historical data into a prediction.
Source: Soohwan Kim’s GitHub repository.

2.3 Word embeddings

In natural language processing (NLP), Word Embeddings is a term used for real-valued
vectors that encode the meaning of a word such that the words that are closer in the vector
space should be similar. This characteristic can be seen in Figure 2.6. Some examples of
word embeddings are word2vec [Mikolov et al., 2013a], GloVe [Pennington et al., 2014],
fastText [Mikolov et al., 2013b], and Flair embeddings [Akbik et al., 2019] to name a few.

Figure 2.6: Words similarity. Similar words should have vectors that are close to each other.
Source: Chicago University.

In this project, we make use of GloVe embeddings. Global vectors for word representation
(GloVe) is an unsupervised learning algorithm for obtaining vector representations for
words. Training is performed on aggregated global word-word co-occurrence statistics
from a corpus, and the resulting representations showcase interesting linear substructures
of the word vector space.

https://github.com/sooftware/seq2seq
https://cfss.uchicago.edu/slides/text-analysis-fundamentals-and-sentiment-analysis/

12 Deep learning for text-to-layout

2.4 Text-to-layout architectures

Text-to-layout is the task of generating the layout of a picture given the text that describes
it. State-of-the-art methods for generating images from sentences struggle to represent
complex sentences with many objects. In this project two different approaches of text-to-
image (generation of pictures from text) have been tested: Scene Graph to Image (SG2IM)
[Justin et al., 2018] and Object-GAN (Obj-GAN) [Li et al., 2019b]. In both approaches,
the layout of the picture is first generated before drawing the final scene.

Text-to-layout defines the concept of bounding box as b∈R4 where the first two elements
b0 and b1 refers to the upper-left corner or center and b2 and b3 to the lower-right corner
or the width and height of the bounding box. Objects are defined as a set of given object
categories C.

2.4.1 SG2IM

Image generation from scene graphs (SG2IM) uses graph convolutions to first process
input scene graphs, then compute the scene layout by predicting bounding boxes and seg-
mentation masks for objects, and finally, convert the layout to an image using a cascaded
refinement network.

The architecture of this approach can be seen in Figure 2.7.

Figure 2.7: Overview of the SG2IM architecture. Source: [Justin et al., 2018].

2.4 Text-to-layout architectures 13

SG2IM system can be split into two parts: layout generation and image generation. This
project gives more importance to the layout generation which SG2IM does in three steps:

1. First the scene graphs are defined. Scene graphs describe objects and relationships
given a set of object categories C and a set of relationship categories R, then a
scene graph is a tuple (O,E) where O = {o1, ...,on} is a set of objects with each
oi ∈ C, and E ⊆ O×R×O is a set of directed edges of the form (oi,r,o j) where
oi,o j ∈ O and r ∈ R. For MSCOCO dataset [Lin et al., 2014], the graphs are gene-
rated in execution time taking into account all the ground truth objects and using
six mutually exclusive geometric relationships: left of, right of, above, below, insi-

de and surrounding. Worth mentioning that text is not involved here, therefore, the
objects that appear in the graph are not directly related to the text description of the
scene, which allows to create complex scenes.

2. After defining the scene graphs a graph convolutional neural network is used to
process the scene graphs in an end-to-end manner where the output vectors are
a function of a neighbourhood of their corresponding inputs so that each graph
convolution layer propagates information along edges on the graph.

3. Finally, after processing the scene graphs a multilayer perceptron is used to generate
the bounding boxes bi = (x0,y0,x1,y1) given the nodes embeddings.

For this project, the remaining steps that SG2IM uses for generating the picture are not
relevant.

2.4.2 Obj-GAN

Object-driven Attentive Generative Adversarial Networks (Obj-GAN) allows text-to-image
synthesis of complex scenes using a two-step (layout-image) process. First, the system ta-
kes a sentence as input and generates the layout, a sequence of objects specified by their
bounding boxes, shapes, and class labels Bt = (lt ,bt) with bt = (x,y,w,h)∈R4 and lt ∈C,
where C is a set of given object categories. The second step uses a multistage generative
network with two generators (G0,G1). The first generator G0 generates a low-resolution
image conditioned on the global sentence vector and the pre-generated layout, then the
second generator G1 refines the details of the picture by paying attention to the most
important words, generating a higher resolution image.

14 Deep learning for text-to-layout

The architecture of this approach can be seen in Figure 2.8. Obj-GAN is the state-of-the-
art for text-to-layout task and it will be used as the reference system to compare results.

Figure 2.8: Overview of the Obj-GAN architecture. Source: [Li et al., 2019b].

Obj-GAN system can be split into two parts: layout generation and image generation.
This project gives more importance to the layout generation which Obj-GAN does in two
steps:

1. First, the text is encoded using a pre-trained bi-LSTM word vectors. This text enco-
der uses a Deep Attentional Multimodal Similarity Model (DAMSM) [Xu et al., 2017]
with an attention mechanism which is able to compute the similarity between the
generated image and the sentence using both, the global sentence information and
the fine-grained word-level information.

2. Finally, the bounding boxes and object labels are generated sequentially using an
LSTM with teacher forcing and attention conditioned on the global sentence vector.

For this project, the remaining steps that Obj-GAN uses for generating the picture are not
relevant.

CHAPTER 3

MSCOCO Dataset

In this chapter, we introduce the dataset, the problems related with it, and the systems
to generate the graphs, which includes information about the tools used, the structure to
store all the information, and statistics related with the dataset.

The Microsoft Common Objects in COntext (MSCOCO) dataset [Lin et al., 2014] con-
tains 91 common object categories, such as car, person, pizza, or zebra, with 80 of them
having more than 5,000 labeled instances. In total the dataset has 2,500,000 labeled ins-
tances in 328,000 images. This dataset is widely used in computer vision, specifically in
object detection and object segmentation, due to each picture containing 5 captions that
describes the scene, object bounding boxes and labels that appear on it, and segmentation
maps for each object.

Figure 3.1 shows a picture with one of the captions that describes the scene and its res-
pective bounding boxes.

15

16 MSCOCO Dataset

Figure 3.1: A caption that describes correctly the scene. Caption: A baseball player sliding into
home plate, in a game. MSCOCO 2014.

3.1 Dataset related problems

In this project, MSCOCO 2014 is used as the reference dataset given its wide usage in the
community. Nevertheless, using this dataset brings two main problems: the captions of
some pictures do not describe well the scene and the number of bounding boxes of some
pictures is high.

The first problem of the dataset is that it contains some captions that may not be suitable
for the task due to the description of them being too specific for the pictures. An example
of this problem can be seen in Figure 3.2. This type of captions are going to add noise to
the task as there is not an easy way to remove them or reduce the impact on the system.
In this project, we have decided not do anything to overcome this problem.

3.1 Dataset related problems 17

Figure 3.2: A caption that does not describe correctly the scene for being too specific. Caption:
The intersection of East Canal Street North, near West 717. MSCOCO 2014.

The second problem of the dataset is that some pictures contain too many bounding bo-
xes which adds complexity to the task due to the need to differentiate between the main
and secondary objects (background objects). An example of this problem can be seen in
Figure 3.3. In this regard, a human-based approach is used to solve this problem. Humans
tend to draw first big objects, usually the most important ones in the scene, while leaving
the smallest ones, usually background objects, for the end. Therefore, the dataset is pre-
processed sorting the objects in descending order by their area size (from biggest area to
smallest).

18 MSCOCO Dataset

Figure 3.3: Picture with 30 bounding boxes. MSCOCO 2014.

3.2 Generation of graphs from text

Using graphs to represent the text ease the understanding of the objects and the relations
between the objects that appear. We think that explicitly representing this information can
contribute to representing better what is happening in the text, and therefore, improve
text-to-layout systems.

Generating a structured version of the text using graphs is a challenging task due to the dif-
ferent types of representations available. In this project, we focus on two types of graphs:
Abstract Meaning Representation (AMR) and Scene Graph Parser (SGP) graphs.

3.2 Generation of graphs from text 19

3.2.1 AMR

Abstract Meaning Representation (AMR) is a broad-coverage semantic formalism that
encodes the meaning of a sentence as rooted, directed, and labeled graph, where nodes
represent concepts and edges represent relations. AMR parsing is the task of transforming
natural language text into AMR. The AMR graphs used contain 85 different relations. An
example of this graph can be seen in Figure 3.4. The tool used to extract AMR graphs is
the one referred in [Cai and Lam, 2020] paper and available in Github.

Figure 3.4: Example of an AMR graph.

Figure 3.4, shows an AMR graph. In this case, “play-01” has two frame arguments “per-
son” and “frisbee” represented with “ARG0” and “ARG1” relations respectively. The text
specifies that there are three persons, therefore, “person” has a quantity relation “:quant”
that points to “three” node. Moreover, “play-01” action is done in a specific location re-
presented with the relation “:location” that points to “clear-01” node. “surround-01” node
has another two frame arguments “clear-01” and “tree” connected using “ARG0” and
“ARG1” relations respectively.

https://github.com/jcyk/AMR-gs

20 MSCOCO Dataset

AMR concepts (nodes) are either English words (“boy”), PropBank framesets (“want-
01”) [Kingsbury and Palmer, 2002], or special keywords. Keywords include special en-
tity types (“date-entity”, “world-region”, and so on.), quantities (“monetary-quantity”,
“distance-quantity”, and so on), and logical conjunctions (“and”, and so on).

3.2.2 Scene graph parser

Scene Graph Parser is a python toolkit for parsing sentences (in natural language) into
scene graphs (as symbolic representation) based on extracting a dependency parse of a
sentence that represents its grammatical structure and defines the relationships between
“head” words and words, which modify those heads. An example of this type of graph
can be found in Figure 3.5. The main difference between AMR and SGP graphs is that
AMR has a set of predefined relations, while SGP uses the ones that appear in the text.
The tool used to extract the SGP graphs is the one referred in [Wu et al., 2019a] paper and
available in Github.

Figure 3.5: Example of an SGP graph.

https://github.com/vacancy/SceneGraphParser

3.3 Dataset structure 21

Figure 3.5, shows a SGP graph. In this case, the relations and objects are extracted directly
from the text. The node “people” is connected to “frisbee” with the relation “playing” as it
is the action being performed. Moreover, the location where they are playing is specified
with the relation “in” connected to “clearing” node.

3.3 Dataset structure

For the task of text-to-layout generation, this project builds on the MSCOCO dataset
and further extends it with the basic information about the picture and either the graphs
generated using AMR or SGP. The following structure is proposed to store the graphs:

1 {

2 '00001':{

3 "image_filename": "00001.jpg",

4 "width": 256,

5 "height": 256,

6 "valid_captions": 2,

7 "graphs":[

8 {

9 "caption_n": 1,

10 "caption": "caption 1",

11 "objects": [["object1", 0], ["object2", 1], ["object3", 1]],

12 "relations": ["relation1", "relation2"],

13 "triples": [

14 [["object1", 0], "relation1", ["object2", 1]],

15 [["object2", 1], "relation2", ["object3", 2]]

16]

17 },

18 {

19 "caption_n": 2,

20 "caption": "caption 2",

21 "objects": [["object1", 1], ["object2", 0]],

22 "relations": ["relation1"],

23 "triples": [

24 [["object1", 0], "relation1", ["object2", 1]]

25]

26 }

27]

28 },

29 '00002'{

30 ...

31 }

32 }

22 MSCOCO Dataset

For a given image ID each image contains the following information:

• Image filename: name of the file that contains the image.

• Width: width of the image in pixels.

• Height: height of the image in pixels.

• Valid captions: number of valid captions for a given image.

• Graphs: a graph for each caption with the following information:

– Caption number: the identifier for a given caption.

– Caption: text that describes the picture.

– Objects: list of objects that appear in the graph. The first element is the name
of the object and the second element specifies whether the object is valid or
not (all objects are valid when processing the graphs using a GCNN. This can
be used to remove some nodes afterwards).

– Relations: list of relations that appear between objects in the graph.

– Triples: list of triples with a subject–relation–object structure. Each subject/ob-
ject contains an integer referencing the object in the list of objects that belongs
to, which allows having more than one node with the same name.

3.4 The dataset in numbers

The following section shows the information that each dataset has using AMR and SGP
graphs. The dataset is divided into three partitions: train, development, and testing contai-
ning 74504, 8279, and 40504 pictures respectively.

The following tables measure the mean, standard deviation, minimum, and maximum
values regarding the number of valid captions that each partition has using both types of
graphs. The training, development, and testing partitions information can be seen in Table
3.1.

This basic information shows that the number of valid captions for AMR and SGP graphs
are similar in the three partitions, therefore, the dataset a priori seems balanced.

3.4 The dataset in numbers 23

Training Development Testing

AMR SGP AMR SGP AMR SGP
mean 5.00 4.28 5.00 4.29 5.00 4.27
std 0.05 0.85 0.05 0.85 0.06 0.86
min 5.00 0.00 5.00 0.00 5.00 1.00
max 6.00 6.00 7.00 7.00 7.00 7.00

Table 3.1: Information about the number of valid captions that each picture has in training, deve-
lopment, and testing partitions. AMR stands for valid captions for AMR representation, whereas
SGP denotes valid captions for SGP representation in all the tables.

3.4.1 AMR

The following tables measure the mean, standard deviation, minimum, and maximum
values regarding the number of objects, number of relations, and number of triples that
each partition has for each AMR graph. To understand better the results graphical figures
are included showing how these quantities are distributed among the number of captions.
The training, development, and testing partitions information can be seen in Figures 3.6,
3.7, and 3.8 respectively.

The tables show that the dataset has similar values for number of objects, number of
relations, and number of triples per caption. Moreover, the figures show that most of the
captions have between 3 and 10 objects, between 3 and 6 relations, and between 3 and 10
triples. Nevertheless, the data shows that some graphs contain no triples, no objects, or no
relations, therefore, the dataset needs to be preprocessed to delete these graphs as they do
not contribute any information.

24 MSCOCO Dataset

Number
of objects

Number
of relations

Number
of triples

mean 6.36 4.23 5.54
std 1.81 1.25 1.93
min 0.00 0.00 0.00
max 40.00 13.00 39.00

(a) Statistics for Number of objects, number of re-
lations, and number of triples. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.6: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each caption has in the training partition.

3.4 The dataset in numbers 25

Number
of objects

Number
of relations

Number
of triples

mean 6.37 4.25 5.56
std 1.82 1.26 1.94
min 2.00 1.00 1.00
max 33.00 15.00 34.00

(a) Statistics for Number of objects, number of re-
lations, and number of triples. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.7: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each caption has in the development partition.

26 MSCOCO Dataset

Number
of objects

Number
of relations

Number
of triples

mean 6.34 4.22 5.53
std 1.79 1.25 1.91
min 0.00 0.00 0.00
max 34.00 14.00 33.00

(a) Statistics for Number of objects, number of re-
lations, and number of triples. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.8: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each caption has in the testing partition.

3.4 The dataset in numbers 27

3.4.2 SGP

The following tables measure the mean, standard deviation, minimum, and maximum
values regarding the number of objects, number of relations, and number of triples that
each partition has for each SGP graph. To understand better the results graphical figures
are included showing how these quantities are distributed among the number of captions.
The training, development, and testing partitions information can be seen in Figures 3.9,
3.10, and 3.11 respectively.

Number
of objects

Number
of relations

Number
of triples

mean 2.83 1.73 1.79
std 0.83 0.71 0.77
min 2.00 1.00 1.00
max 14.00 7.00 11.00

(a) Statistics for Number of objects, number of re-
lations, and number of triples. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.9: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each graph has in the training partition.

28 MSCOCO Dataset

Number
of objects

Number
of relations

Number
of triples

mean 2.84 1.74 1.80
std 0.83 0.72 0.77
min 2.00 1.00 1.00
max 14.00 7.00 11.00

(a) Number of objects, number of relations, and
number of triples statistics. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.10: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each graph has in the development partition.

3.4 The dataset in numbers 29

Number
of objects

Number
of relations

Number
of triples

mean 2.83 1.73 1.79
std 0.82 0.71 0.76
min 2.00 1.00 1.00
max 12.00 7.00 9.00

(a) Statistics for Number of objects, number of re-
lations, and number of triples. (b) Number of captions vs. Number of objects.

(c) Number of captions vs. Number of rela-
tions. (d) Number of captions vs. Number of triples.

Figure 3.11: Table and figures showing the statistics for number of objects, number of relations,
and number of triples that each graph has in the testing partition.

30 MSCOCO Dataset

The tables show that the dataset has similar values for number of objects, number of
relations, and number of triples per caption. Moreover, the figures show that most of the
captions have 1 or 2 objects, 1 or 2 relations, and 1 or 2 triples. The data shows that some
graphs contain no triples, no objects, or no relations, therefore, the dataset needs to be
preprocessed to delete these graphs as they do not contribute any information.

SGP graphs show a lack of information compared to AMR graphs when taking into ac-
count the number of objects, number of relations, and number of triples. Creating a struc-
tured version of the text that contains enough information to represent it correctly is im-
portant, and we think that SGP graphs may lack essential information that AMR graphs
have, therefore, this project will focus only on AMR graphs.

CHAPTER 4

Developed architectures

In this chapter, the two architectures developed will be presented. The first one consists in
obtaining directly the bounding boxes of the objects from the nodes of the graph after pro-
cessing them using a GCNN, while the second one uses a seq2seq architecture where the
encoder uses the same GCNN as the first approach and the decoder is the one responsible
of generating the layout sequentially taking into consideration the previously predicted
objects and their bounding boxes to generate a new one.

4.1 SG2BB

The first system developed, called SG2BB is explained in two sections. First, an overall
overview of the architecture is presented and finally, the matching system that matches the
nodes of the graph with the objects (and their respective bounding boxes) of the ground
truth (this step is only needed to train the model).

31

32 Developed architectures

4.1.1 Architecture

The system developed follows the same architecture as SG2IM [Justin et al., 2018] but
adding the following two key components:

• Graph generation from text (using AMR graphs).

• Matching algorithm of ground truth objects with nodes of the graph.

The main change compared to SG2BB, is that the new graphs include more relations
between nodes that may add more meaningful information compared to only using geo-
metric relationships. Moreover, the number of objects is increased as it includes objects
that appear in the captions and not only the ones given by the dataset.

An overview of the architecture can be seen in Figure 4.1.

Figure 4.1: Overview of the SG2BB architecture.

First, a text is given as input to the network, which is transformed into a graph using AMR
system. Once the graph is obtained, the matching algorithm, as explained in Section 4.1.2,
is applied, which takes as input the nodes of the graph O = {o1...on} and the ground truth
objects GT = {gt1...gtn} and assigns the ground truth objects to the nodes. The matching
algorithm is only needed during training time due to needing to specify explicitly which
node of the graph belongs to each object (as a reference) because the nodes will be used
to obtain the bounding boxes of the objects.

After defining the graphs, a graph convolutional neural network is used to process the
graphs in an end-to-end manner. Given nodes and edges of size Din, output vectors of size
Dout are obtained as a function of a neighbourhood of their corresponding inputs so that
each graph convolution layer propagates information along edges on the graph.

4.1 SG2BB 33

To calculate output vectors v′i,v
′
r ∈ RDout the functions gs,gp, and go are used for every

node and edge taking as input the triple of vectors (vi,vr,v j) for an edge where vi,vr ∈RDin

for all objects oi ∈ O and edges (oi,r,o j) ∈ E. The resulting output creates new vectors
for the subject oi, relation r, and object o j respectively.

Edges output vectors for v′r are computed as v′r = gp(vi,vr,v j). Nevertheless, updating
object vectors is more complicated, since an object oi can participate in many relationships
with other objects. To obtain v′i for an object, oi should depend on all vectors v j for objects
to which oi is connected, as well as the relation vectors vr that connects these. To this end,
for each edge starting at oi we use gs to compute a candidate vector, collecting all such
candidates in the set V s

i ; we similarly use go to compute a set of candidate vectors V o
i for

all edges terminating at oi. Concretely,

V s
i = {gs(vi,vr,v j) : (oi,r,o j) ∈ E} (4.1)

V o
i = {go(vi,vr,v j) : (o j,r,oi) ∈ E} (4.2)

The output vector for v′i for object oi is then computed as v′i = h(V s
i ∪V o

i) where h is
a symmetric function which pools an input set of vectors to a single output vector. An
example of the computational graph for a single graph convolution layer can be seen in
Figure 4.2.

Figure 4.2: Computational graph illustrating a single graph convolution layer. The graph consists
in two triples (o1,r1,o2) and (o3,r2,o2) with a total of three objects and two edges.

34 Developed architectures

Finally, after processing the scene graphs a multilayer perceptron is used to generate the
bounding boxes bi = (x0,y0,x1,y1) given the nodes embeddings, where (x0,y0) is the
upper-left corner and (x1,y1) the lower-right corner.

In order to train the neural network Mean Squared Error loss (MSE) is used. This loss
compares the ground truth bounding boxes (the ones assigned using the matching algo-
rithm) with the ones predicted by the multilayer perceptron.

The results for this architecture can be found in Section 6.2.

4.1.2 Matching

The matching algorithm is one of the most important characteristics of this system. It
works by taking into consideration the ground truth objects given by the dataset, which
are matched with the nodes of the graph. Most of the times, the number of objects in the
ground truth does not match the number of nodes in the graph, therefore, some objects
or nodes need to be left unmatched. The matching process consists in calculating the
cosine similarity between every object in the ground truth with every node in the graph
and then maximize the similarity by matching each object with a node without repeating
any of them. This problem is called the “linear sum assignment” also known as minimum
weight matching in bipartite graphs.

Formally, let X be a boolean matrix where Xi, j = 1 if row i is assigned to column j. Then
the optimal assignment has cost:

min
n

∑
i

m

∑
j

Ci, jXi, j (4.3)

where each Ci, j is the cost of matching vertex i with vertex j, that in our case is calculated
by the cosine similarity. An example of the matrix Ci, j can be seen in Table 4.1.

This is a minimization problem that is transformed into a maximization one in order to
obtain the maximum similarity between objects and nodes.

Constraints of the problem:

1. The matrix only contains positive numbers.

2. If the matrix has more rows than columns then not every row needs to be assigned
to a column. The same happens if there are more columns than rows.

4.1 SG2BB 35

GT / Nodes Man Kite Frisbee Plane

Airplane 0.1 0.2 0.4 0.8
Frisbee 0.3 0.4 1.0 0.7
Person 0.9 0.2 0.1 0.6

Table 4.1: Matching of ground truth objects with graph nodes. The cells in green are the matches.
In this case, the node “kite” is left unmatched because there are not enough ground truth objects.

The steps followed to match objects and nodes are the following ones:

1. Each ground truth object and graph node is transformed to a word embedding, more
specifically, GloVe embeddings [Pennington et al., 2014].

2. The cosine similarity between every object and node is calculated and the cost ma-
trix C is generated.

3. The cosine similarity is in the range [−1,1], therefore, each cell in matrix C is
changed to range [0,1] to satisfy the constraints. The formula used is: new_value1 =

old_value×0.5+0.5.

4. Invert all the values in matrix C to convert the problem into a maximization one.
The formula used is: new_value2 = 1−new_value1.

5. The problem is solved using the Hungarian algorithm [Kuhn., 1955].

To improve clarity, in Figure 4.3 we show how the system is able to correctly match
MSCOCO objects [Lin et al., 2014] using a manually modified version of an AMR graph
[Cai and Lam, 2020].

36 Developed architectures

Caption: People are getting off a boat on a rocky island.
Graph triples: [[“people”, “getting off”, “boat”], [“people”, “on”, “island”]].
Nodes to match: people, boat, island.

Figure 4.3: Comparison between ground truth objects (left) and the selected ones using the
matching algorithm (right). The right image legend shows the matching between ground truth
objects and graph nodes.

The biggest problem found using this algorithm is the loss of information as seen in Figure
4.3. The ground truth shows 13 persons but only one is matched correctly due to the graph
having the node “People” to refer to all those persons. Moreover, the algorithm needs to
match all the nodes, therefore, “island” is incorrectly matched with “person” due to being
the only possibility left.

Using AMR graphs [Cai and Lam, 2020] has the problem that some nodes that do not
have meaning like "play-01"may be matched. An example of an AMR graph, can be seen
in Figure 3.4.

To understand how much information is lost when the matching algorithm is applied a
new dataset has been developed using 100 different and randomly selected captions from
the MSCOCO dataset. In this dataset, each ground truth object is matched with the most
similar word that appears in the caption manually.

4.1 SG2BB 37

The matching algorithm obtains an accuracy of 33% for AMR graphs. This accuracy is
lower than expected, which may happen due to the large vocabulary that the dataset has
as seen in Table 4.2. The accuracy can be improved by adding a threshold of 0.7 that
improves the accuracy up to 62% in AMR graphs. Nevertheless, adding a threshold to the
algorithm incurs in having most of the times either one object or none for a given caption
which makes the scene being simple.

AMR COCO

Number of objects: 18662 80
Number of relations: 85 None
Number of objects per MSCOCO objects: 233 1

Table 4.2: Number of objects in AMR graphs compared to number of objects in MSCOCO.

The number of object categories that MSCOCO dataset has is not enough, as each object
needs to match on average 233 different objects from AMR objects, which is almost
impossible.

38 Developed architectures

4.2 GCN2LY

The second system developed is based on Obj-GAN [Li et al., 2019b] and we call it
GCN2LY. We made some modifications over the original architecture. On one hand, the
encoder is changed from an RNN to a GCNN to explore if a structured version of the text
can contribute to better represent the text. On the other hand, the decoder is changed from
using a gaussian mixture to a grid-based system, which is simpler to implement and more
flexible to adapt to the requirements of the dataset. An overview of the system can be seen
in Figure 4.4.

Figure 4.4: Overview of the GCN2LY architecture.

The system uses a seq2seq architecture that includes an encoder that transforms the graph
into a hidden representation and a decoder that using the hidden representation sequen-
tially generates the objects and their respective bounding boxes.

4.2.1 Encoder

First, a text is given as input to the network which is transformed into a graph using
the AMR [Cai and Lam, 2020] system. After defining the graphs, a graph convolutional
neural network is used to process the graphs in an end-to-end manner where the output
vectors are a function of a neighbourhood of their corresponding inputs so that each graph
convolution layer propagates information along edges on the graph. Once the graph is pro-
cessed the node embeddings are again processed using a bidirectional LSTM (bi-LSTM)
[Hochreiter and Schmidhuber, 1997], to compress all these embeddings into a hidden re-
presentation vector. For better explanations about how the GCNN works the reader is
referred to Section 4.1.1.

4.2 GCN2LY 39

4.2.2 Decoder

The decoder uses an LSTM to sequentially generate at every step t a hidden-state and an
output-state vector which are going to be used to generate the next object and bounding
box.

Let the output of the decoder at each time-step be Ot = (bt , lt), where bt = (x1,y1,w,h) is
a bounding box with four parameters: (x1,y1) refer to the center of the bounding box and
(w,h) to the width and height of the bounding box respectively. lt is the object category
to be drawn given a set of objects C.

At every time-step t, Ot is generated in the following way:

• First, using the bounding box and object category obtained in the previous step
Ot−1, a forward pass is done through the LSTM obtaining an output-state and a
hidden-state vector. The exception is t = 1, where l0 = 1 and b0 = (0,0,0,0) refe-
rring to the “ start of sequence <sos> ” token.

• Then, lt is obtained using a probability distribution with the probability for each
object to be drawn. This is done by introducing the output-state of the LSTM in a
dense layer. The probability distribution to obtain lt is a vector of size C where C is
the size of the set of given object categories and where each position in the vector
is a real number specifying the probability for an object to be drawn. The object to
draw lt is the index with the maximum value.

• After obtaining lt , (x1,y1) is obtained using a probability distribution with the pro-
bability for an object to be drawn in a specific position. This is done by introducing
the hidden-state of the LSTM and the one-hot encoding vector of the object to be
drawn lt to an MLP. The probability distribution to obtain (x1,y1) is a vector of size
N2, representing the size of the grid. Each position in the vector is the probability
for an object to be drawn in the upper-left corner that is referring. The position
(x1,y1) is obtained by sampling it from a multinomial probability distribution. For
better explanations about how the grid system works the reader is referred to Sec-
tion 4.2.2.

40 Developed architectures

• Finally, to obtain the width w and height h an MLP is used using the previous
sampled position (x1,y1), the one-hot encoding vector of the object to be drawn lt ,
and the hidden-state of the LSTM.

• This process is applied again until a maximum number of steps is achieved or when
“end of sequence <eos>” or “padding <pad>” token is obtained. On validation time,
and inspired on Obj-GAN, we filter redundant labels. This is done by sampling
an upper-bound threshold from a normal distribution using each object category’s
mean and standard deviation. The sampled value is used to select the objects that
we are going to keep.

To train the neural network three losses are used: categorical cross-entropy for the object
category, categorical cross-entropy for (x1,y1) position, and Mean Squared Error (MSE)
for width w and height h. Moreover, when generating the next object, attention and teacher
forcing are applied when training the model, therefore, at time-step t the real values of
time-step t − 1,GTt−1 = (bt−1, lt−1) and the global sentence information are used. The
attention mechanism [Bahdanau et al., 2015] takes the previous hidden-state h(t−1) of the
decoder, and all of the stacked forward and backward hidden-states from the encoder. The
layer will output an attention vector, at , that is the length of the encoder output, where
each element is between 0 and 1, and the entire vector sums 1. Intuitively, this layer pays
attention to the most relevant nodes of the input in order to correctly predict the next
object.

The results obtained using this architecture can be found in Section 6.2.

Decoder grid system

As shown in Section 6.4, SG2BB system draws all the objects in the center of the picture
with a bounding box that resembles a square. The same system was tried for GCN2LY
using the MLP after the LSTM in the decoder for each time-step, which gave similar
results, therefore, there was a need to develop a new system that draws the objects in
different locations with different shapes and sizes.

A careful review of the dataset shows that most of the objects bounding box centers, as
shown in Figure 4.5a and Figure 4.5b, are located in the center of the image and we think
that it may lead the neural network to guess that the optimal position in respect to the
MSE is always in the center of the picture.

4.2 GCN2LY 41

(a) Location of the centers of all person boun-
ding boxes.

(b) Location of the centers of all kite bounding
boxes.

Figure 4.5: All person and kite bounding boxes centers are located in the center of the picture.
Grid of size 16x16.

The neural network guesses that the optimal position for placing all the bounding boxes
is in the middle due to most of the centers being located there, which leads to a layout
that is not coherent with the text that describes it. To solve this problem, a probabilistic
component inspired by Obj-GAN [Li et al., 2019b] was developed.

Obj-GAN uses a gaussian mixture model in order to sample the bounding boxes. In our
case, we propose an original approach that consists in the creation of a grid matrix M of
size (N,N) as seen in Figure 4.6.

The grid can divide an image into sections of the same size, for example, a 4x4 grid
contains 16 sections with a width and height of 0.25, considering that the image size is in
the range [0,1]. Each position has a representative upper-left corner, for example, section 1
upper-left corner has position X = 0,Y = 0 and section 10 has position X = 0.50,Y = 0.25.

Using the intuition mentioned above, the grid can be considered as a discrete probability
distribution where each position is the probability to draw an object there. This probability
distribution can be learnt using a neural network and then, a position can be sampled using
a multinomial probability distribution. The upper-left corner of the sampled position can
be used as (x1,y1) (center) of the bounding box for a given object.

42 Developed architectures

Figure 4.6: Grid system of size 4x4. The ground truth objects are moved from their original
positions to the closest upper-left corner.

Using this approach, all ground truth objects need to be moved to the closest upper-left
corner which causes an error in their position. Nevertheless, this error can be minimized
using a bigger grid, for example, a 4x4 matrix has an error of 0.25 that in pixels is 64
pixels for a 256× 256 pixels image, therefore, each bounding box is moved 64 pixels
to the left and the top in the worst-case scenario. If a 32x32 matrix is used the error is
reduced to 0.03125 that in pixels is 8 pixels for 256×256 pixels image.

4.3 RNN2LY 43

4.3 RNN2LY

An additional third system based on GCN2LY has been developed where the encoder is
changed from a GCNN to an RNN and the same decoder is maintained. This system has
been developed in order to see and compare if a structured version of the text contributes
to improve the quality of the generated layout. An overview of the system can be found
in Figure 4.7. The RNN used is the one that Obj-GAN [Li et al., 2019b] uses.

Figure 4.7: Overview of the RNN2LY architecture.

CHAPTER 5

Metrics to measure the quality of layouts

In this chapter, we will discuss about the need of developing new metrics due to the ones
currently in use do not measure correctly the quality of the generated layouts. In Section
5.2 new metrics are proposed that better measure the spatial composition of scenes.

5.1 The necessity of developing new metrics

Nowadays, in order to measure the quality of bounding boxes, the Intersection over Union
(IoU) metric [Everingham et al., 2014] is provided. This metric, allows to measure the
overlap between the predicted and the ground truth bounding boxes and for object detec-
tion task, the precision and recall metrics are calculated using the IoU value for a given
IoU threshold, these are called precision@IoU and recall@IoU respectively. Research pa-
pers tend to give the results for the MSCOCO dataset [Lin et al., 2014] with a threshold
that goes from 0.5 to 0.95 with a step size of 0.05 and then calculating the average bet-
ween all the thresholds, also called mean average precision (mAP) and mean average
recall (mAR). These metrics, however, may not be suitable for the task of text-to-layout,
for that reason, there is a need for developing new metrics that are suitable and better
measure the spatial composition of scenes. In Figure 5.1 an example of why the IoU fails
to measure the quality of the layout is shown.

45

46 Metrics to measure the quality of layouts

A person walking a dog

Figure 5.1: The ground truth bounding boxes (yellow) and the predicted bounding boxes (green)
in the same picture. The predicted layout is the same as the ground truth layout but displaced to
the right. Nevertheless, even if the text description matches the predicted layout (and the ground
truth layout in sizes), the IoU is 0 because there is no overlap with the ground truth layout and
therefore, the predicted layout is considered incorrect.

5.2 Proposed metrics

The following metrics proposed have been developed in order to better measure the spatial
composition of scenes and are inspired on [Tan et al., 2019] and [Tripathi et al., 2019]
papers.

5.2.1 Relative spatial categorical position

This metric allows to identify whether an object is located to the left, right, above, or
below with respect to another object. To calculate this metric every pair of objects is taken
into consideration and two steps are performed. First, their respective bounding boxes
centers are calculated and then four imaginary lines are thrown from the center of one of
the two objects with the angles of Π

4 , 3Π

4 , 5Π

4 , and 7Π

4 as shown in Figure 5.2. Depending on
where the second object center lies the spatial categorical position is decided as follows:

5.2 Proposed metrics 47

• Between Π

4 and −Π

4 the second object is to the right of the first one.

• Between Π

4 and 3Π

4 the second object is above the first one.

• Between 3Π

4 and 5Π

4 the second object is to the left of the first one.

• Between 5Π

4 and 7Π

4 the second object is below the first one.

This metric is calculated for every pair of ground truth and predicted bounding boxes
considering the right-left symmetry (left and right are considered the same position), then
if both pairs (ground truth and the prediction) match the same spatial categorical position
the prediction is considered correct, otherwise incorrect. This metric lies in between [0,1]
taking the mean into account, therefore, for a given layout, a 1 means that all predicted
bounding boxes are well located with respect to the ground truth bounding boxes.

Figure 5.2: Visual representation of how the relative spatial categorical position between person
and dog is obtained. Red points are the center of the bounding boxes for each object. The dog is
located on the right side of the person as its center lies between Π

4 and −Π

4 .

48 Metrics to measure the quality of layouts

5.2.2 Aspect ratio

This metric allows to identify whether the predicted bounding boxes maintain the same
aspect ratio (width and height ratio) with respect to the ground truth bounding boxes. To
calculate this metric, for each predicted bounding box BBp, the ground truth bounding
box BBgt is retrieved, then the internal angle of both bounding boxes are calculated αp

and αgt in the range [0, Π

2] using the coordinates of both corners (left-bottom and top-
right). Finally the aspect ratio is given by |αp−αgt |, also in the range [0, Π

2]. An example
of how the metric is calculated can be seen in Figure 5.3.

Figure 5.3: Aspect ratio between ground truth and predicted object.

Depending on the height and width of the bounding boxes the internal angle can have the
following different values:

• If the bounding box is taller than wider, its internal angle is bigger than Π

4 .

• If the bounding box is as tall as wide, its internal angle is Π

4 .

• If the bounding box is wider than taller, its internal angle is smaller than Π

4 .

This metric is calculated for each ground truth and predicted bounding boxes which lies
in between [0, Π

2] taking the mean into account, therefore, if the obtained score is 0, the
prediction perfectly match the aspect ratios of the ground truth bounding boxes and the
closer the score gets to Π

2 the worse the bounding boxes are predicted.

5.2 Proposed metrics 49

5.2.3 Class matching

This metric allows to identify whether the predicted objects are the same to those that ap-
pear in the ground truth. For that purpose, the precision, recall, and F1-score [Powers, 2019]
are calculated.

Considering the following terminology:

• True Positive (TP): The ground truth class and the predicted class are the same.

• False positive (FP): The predicted class does not appear in the ground truth.

• False negative (FN): The ground truth class does not appear in the prediction.

The precision, recall, and F1-score meaning and equations are the following:

• Precision (P): The precision is the amount of correctly predicted classes that ap-
pear in the ground truth and is calculated as:

precision =
T P

T P+FP
(5.1)

• Recall (R): The recall is the amount of correctly predicted classes compared to all
the ground truth classes and is calculated as:

recall =
T P

T P+FN
(5.2)

• F1-Score (F1): The F1-score is a weighted average of precision and recall and is
calculated as:

F1-score =
2∗ recall ∗ precision

recall + precision
(5.3)

50 Metrics to measure the quality of layouts

5.2.4 Relative scale difference

This metric allows to identify whether the relative sizes of predicted and ground truth
bounding boxes are similar. For example, given two bounding boxes, person and phone,
no matter how big the person is, a phone will be smaller. To calculate this metric, first,
for every pair of ground truth bounding boxes, their respective pair of predicted bounding
boxes are retrieved. For each bounding box, the areas Ap1,Ap2,Agt1, and Agt2 are calcu-
lated, then the ratio of predicted areas and ground truth areas are calculated as Rp =

Ap1
Ap2

and Rgt =
Agt1
Agt2

. The absolute value between |Rp−Rgt | is the error for a pair.

Figure 5.4: Relative scale difference between ground truth objects (green) and predicted ob-
jects (yellow). In this example, the predicted objects are scaled-down and moved compared to
the ground truth objects. The relative scale is ≈ 0 because the relative areas between the objects
are the same.

This metric is calculated for every pair of ground truth and predicted bounding boxes.
Nevertheless, it does not have a defined maximum value, therefore, if the obtained score
is 0, the predicted bounding boxes perfectly match the relative scale difference of the
ground truth bounding boxes, and the bigger the value the worse are predicted.

CHAPTER 6

Experiments and results

In this chapter, the experiments and results of the architectures developed in this project
are covered. Before providing the final results the experimental setup is described, which
includes the partitioning of the dataset and the model selection criterion. Afterwards, a
deep analysis of the results is provided.

6.1 Experimental setup

6.1.1 Dataset partitions

The dataset selected for training and evaluating all the models is the MSCOCO 2014
dataset [Lin et al., 2014] which is divided into three partitions: training, development, and
testing. As the test set annotations are not publicly available, we use the development set
as our test set. This decision forces us to create a new development set. For that purpose,
the training partition has been further divided into two sets: the 90% of the contents of the
initial training partition (74504 pictures) form the new train set, while the remaining 10%
of the contents (8279 pictures) form the new development set. The testing partition (i.e.
the original development set) is maintained without any modifications (40504 pictures).

51

52 Experiments and results

6.1.2 Model selection

Model selection has been done using the new metrics proposed due to the losses not
providing enough information to measure the quality of the model as seen in Section
6.2. The metrics used for model selection are the following: relative spatial categorical
position (RSCP), aspect ratio (AR), relative scale (RS), precision (P), F1-score (F1), and
recall (R). These metrics have been all aggregated according to Equation 6.1.

score = RSCP+(1−AR)+(1− so f tmax(RS))+P+F1+R (6.1)

As AR and RS assign a lower value to better performance, we invert them for the ag-
gregation. Moreover, RS is the only metric with an undefined maximum, therefore, the
softmax function is applied in order to normalize it in the range [0,1] using the RS of all
the epochs.

The epoch with the highest score in the development dataset is the selected model to be
evaluated in the testing partition.

6.2 Results

In the following subsections, specific details of how each system is trained are provided.
The graphs used as input of the system are generated using the AMR [Cai and Lam, 2020]
system.

6.2.1 SG2BB

SG2BB, explained in Section 4.1, has been trained over 10 epochs using Adam optimizer
with a learning rate of 1e−4 and using a hidden size of 128 for the GCNN. In Figure 6.1
the evolution of the loss can be found.

Figure 6.1 shows that the system stalls fast after the first 2 epochs without any more im-
provement and starts overfitting after the fourth epoch. Nevertheless, the metrics proposed
show a slight improvement in every epoch as seen in Figure 6.2.

6.2 Results 53

Figure 6.1: SG2BB system MSE loss of bounding boxes.

Figure 6.2: SG2BB metrics evolution (development partition).

54 Experiments and results

6.2.2 GCN2LY

GCN2LY, explained in Section 4.2, has been trained over 30 epochs using Adam opti-
mizer, one cycle LR scheduler with a learning rate of 1e−3, weight decay of 1e−4, and a
hidden size of 256 for the encoder/decoder. This system uses the 10 biggest ground truth
objects by area and a grid system of 32×32. In Figure 6.3 the evolution of the losses used
can be found.

(a) Categorical cross-entropy loss for object
category.

(b) Categorical cross-entropy loss for x and y
(center of the bounding box).

(c) MSE loss for width and height of the boun-
ding box.

(d) MSE loss for x and y (center of the boun-
ding box).

Figure 6.3: Figures showing the training and development losses for GCN2LY system.

Figure 6.3 shows that there is a high difference between training and development sets
values with the development one not improving too much through time. Nevertheless, the
metrics used to evaluate the system show that there is an improvement in every epoch as
seen in Figure 6.4, therefore, the losses do not give insightful information about the real
performance of the model and the metrics are needed to measure the quality of it.

6.2 Results 55

Figure 6.4: GCN2LY metrics evolution (development partition).

6.2.3 RNN2LY

RNN2LY, explained in Section 4.3, has been trained over 30 epochs using Adam opti-
mizer, one cycle LR scheduler with a learning rate of 1e−3, weight decay of 1e−4, and a
hidden size of 256 for the encoder/decoder. This system uses the 10 biggest ground truth
objects by area and a grid system of 32× 32. Moreover, three versions of the encoder
have been trained: training the RNN with a random initialization of its weights, using a
pretrained RNN (the same one that Obj-GAN [Li et al., 2019b] uses) and keeping it fro-
zen during the training of the decoder, and fine-tuning the pretrained RNN in the target
task. The evolution of the losses for each system can be found in Figures 6.5, 6.6, and 6.7
respectively.

56 Experiments and results

(a) Categorical cross-entropy loss for object
category.

(b) Categorical cross-entropy loss for x and y
(center of the bounding box).

(c) MSE loss for width and height of the boun-
ding box.

(d) MSE loss for x and y (center of the boun-
ding box).

Figure 6.5: Figures showing the training and development losses for RNN2LY system with the
randomly initialized encoder.

6.2 Results 57

(a) Categorical cross-entropy loss for object
category.

(b) Categorical cross-entropy loss for x and y
(center of the bounding box).

(c) MSE loss for width and height of the boun-
ding box.

(d) MSE loss for x and y (center of the boun-
ding box).

Figure 6.6: Figures showing the training and development losses for RNN2LY system with the
pretrained and frozen RNN encoder.

58 Experiments and results

(a) Categorical cross-entropy loss for object
category.

(b) Categorical cross-entropy loss for x and y
(center of the bounding box).

(c) MSE loss for width and height of the boun-
ding box.

(d) MSE loss for x and y (center of the boun-
ding box).

Figure 6.7: Figures showing the training and development losses for RNN2LY system with the
pretrained but not frozen RNN encoder.

6.2 Results 59

Figures 6.5, 6.6, and 6.7 show that there is a high difference between training and de-
velopment sets values with the development one not improving too much through time.
Nevertheless, similar to what happens with GCN2LY system, the metrics used to evalua-
te the systems show that there is an improvement in every epoch as seen in Figure 6.8,
therefore, the losses do not give insightful information about the real performance of the
model and the metrics are needed to measure the quality of it.

(a) RNN2LY metrics with randomly initialized
weights.

(b) RNN2LY metrics with a pretrained and fro-
zen RNN encoder.

(c) RNN2LY with a pretrained but not frozen
RNN encoder.

Figure 6.8: RNN2LY metrics evolution (development partition).

60 Experiments and results

6.3 Comparison of the developed systems

In Table 6.1, the comparison between the developed systems is shown. Additionally, we
also add the results of a state-of-the-art system as a strong baseline: Obj-GAN1. Table
6.1 depicts the following metrics for each system obtained in our test partition: relative
spatial categorical position (RSCP), aspect ratio (AR), relative scale (RS), precision (P),
F1-score (F1), recall (R), precision with an IoU threshold of 0.3 and 0.5, and recall with
an IoU threshold of 0.3 and 0.5.

System RSCP ↑ AR ↓ RS ↓ P ↑ F1 ↑ R ↑ P@0.3 ↑ P@0.5 ↑ R@0.3 ↑ R@0.5 ↑

Obj-GAN 0.348 0.246 2216.491 0.866 0.566 0.499 0.257 0.094 0.227 0.073

SG2BB 0.279 0.208 14.750 0.891† 0.594† 0.578† 0.190 0.073 0.080 0.032
GCN2LY 0.449 0.191 7.540 0.893 0.594 0.520 0.362 0.172 0.286 0.159
RNN2LY 0.459 0.191 7.503 0.910 0.606 0.529 0.360 0.171 0.295 0.165
RNN2LYPT 0.464 0.188 7.587 0.907 0.609 0.534 0.358 0.171 0.291 0.164
RNN2LYFT 0.459 0.190 7.478 0.911 0.606 0.529 0.364 0.173 0.296 0.167

Table 6.1: Results obtained with several systems on our test partition for the text-to-layout task.
† indicates that those results are distorted by the heuristic matching algorithm and thus not very
significant. PT indicates that the model uses a pretrained encoder. FT indicates that the model uses
a pretrained and fine-tuned encoder.

Table 6.1 shows that GCN2LY and RNN2LY improve all the metrics significantly com-
pared to the baseline system Obj-GAN [Li et al., 2019b].

Unfortunately, the use of a structured version of the text does not incur in any improve-
ment of the generated layout compared to using plain text as seen with RNN2LY system
due to providing similar metrics and visual layouts as seen in Section 6.4. Nevertheless,
we want to remark that when converting text to graphs there is some information loss,
therefore, GCN2LY system could be better if this noise is reduced or removed.

We want to note that the relative scale metric for Obj-GAN system is not stable due
to generating too many small objects. Moreover, SG2BB precision, F1-score, and recall
metrics may be misleading because we use the matching algorithm itself to calculate the
values. In that sense, the provided results are an upper-bound and thus not very significant.

1The best execution among 10 has been taken for comparison due to high variations in the output.

6.3 Comparison of the developed systems 61

For GCN2LY and RNN2LY systems, in order to calculate the metrics, we match the
predicted objects with the ground truth objects by maximizing the IoU. The matching
is required as we do not have any reference object for each predicted one, and this can
be done using the matching algorithm proposed for SG2BB system. An example of this
matching can be seen in Figure 6.9.

Figure 6.9: The ground truth objects (yellow), the predicted and matched objects (green), and the
predicted but not matched objects (blue). Each predicted object is matched with the ground truth
object that overlaps the most taking into account the categories. When there are more predicted or
ground truth objects, these are left unmatched.

62 Experiments and results

6.4 Qualitative analysis of the results

In this section, a qualitative comparison of the obtained layouts using the previous systems
is shown.

6.4.1 SG2BB

(a) A dog looking up in at a frisbee. COCO
image ID: 79407.

(b) A tennis player contorts his body to ma-
ke contact with the ball. COCO image ID:
520478.

Figure 6.10: Figures showing the layout that SG2BB systems produces.

SG2BB system is not able to generate complex layouts as it places all the objects in the
center of the image, therefore, the relations specified in the captions are not maintained.
For example, in Figure 6.10a, the relation “looking up” appears in the caption, but SG2BB
places the “frisbee” in the middle of the picture. Moreover, it produces objects that do not
make sense, as seen in Figure 6.10b, where the system extracts the object “body”, but
this one is already placed as “person”, therefore, the object is repeated twice. The relative
sizes are not learned also. For example, in Figure 6.10a, the “frisbee” is too big compared
to the “dog”.

Taking into consideration all the previous points and the results in Table 6.1, we think that
SG2BB is not a suitable system for the text-to-layout task.

6.4 Qualitative analysis of the results 63

6.4.2 Obj-GAN vs. GCN2LY and RNN2LY

In this section, the comparison between the ground truth, Obj-GAN, GCN2LY, and RNN2LY
is done. Given that the different variants of RNN2LY are very similar, we only show the
layouts obtained with the randomly initialized encoder.

Caption: A dirt covered floor in a home kitchen.

Figure 6.11: A dirt covered floor in a home kitchen. MSCOCO image ID: 65358.

Figure 6.11, shows how the ground truth layout has many different objects, small and big,
related with “kitchen”. The three systems, Obj-GAN, GCN2LY, and RNN2LY are able
to extract objects that do not appear in the caption, but that are related with the concept
of “kitchen”. Nevertheless, Obj-GAN fails to produce a complex layout due to obtaining
only a “refrigerator” object. In the case of GCN2LY and RNN2LY, both of them are able
to build complex layouts using the most important objects, with RNN2LY being better
than GCN2LY, due to correctly placing the “sink” separated from the “oven”.

64 Experiments and results

Caption: A woman sitting with a boy cutting a cake.

Figure 6.12: A woman sitting with a boy cutting a cake. MSCOCO image ID: 194097.

Figure 6.12, shows how the ground truth layout has many different objects, mainly big
ones. The three systems, Obj-GAN, GCN2LY, and RNN2LY, are able to extract objects
that appear in the caption and related ones, such as dining table. Moreover, we can see
how GCN2LY and RNN2LY produce similar layouts that are more visually attractive
compared to Obj-GAN.

6.4 Qualitative analysis of the results 65

Caption: The baby zebra is standing near it’s mother.

Figure 6.13: The baby zebra is standing near it’s mother. MSCOCO image ID: 23411.

Figure 6.13, shows how the three systems, Obj-GAN, GCN2LY, and RNN2LY, are able to
extract two zebras as specified in the caption. Nevertheless, Obj-GAN is unable to main-
tain the relative sizes between the objects as one is surrounding the other. For GCN2LY
and RNN2LY, the relation “standing near” is achieved, as the zebras are placed close from
each other. Moreover, one zebra is smaller than the other, making the layout correct due
to one of them being a “baby zebra”.

66 Experiments and results

Caption: A man sliding into a base next to another baseball player.

Figure 6.14: A man sliding into a base next to another baseball player. MSCOCO image ID:
515982.

Figure 6.14, shows that Obj-GAN and GCN2LY are able to extract and place correctly the
objects related with the caption. These two systems, produce complex layouts maintaining
correctly the sizes between objects like the sports ball being much more smaller than a
person but similar compared to a baseball glove. Moreover, the baseball glove and base-
ball bat objects are placed close/overlapping the person as expected from a real layout.
Unfortunately, RNN2LY only produces persons, which makes the layout not realistic at
all.

6.4 Qualitative analysis of the results 67

Caption: A tennis player contorts his body to make contact with the ball.

Figure 6.15: A tennis player contorts his body to make contact with the ball. MSCOCO image
ID: 520478.

Figure 6.15, shows how the three systems are able to obtain exactly the same objects that
appear in the ground truth. Furthermore, the relative sizes of the objects are maintained,
such as the tennis racket being bigger than the sports ball but smaller than a person. The
three systems, place the tennis racket in a position close to the person’s hands, which
makes sense with the text description.

68 Experiments and results

Caption: A group of people sit around a table.

Figure 6.16: A group of people sit around a table. MSCOCO image ID: 10986.

Figure 6.16, shows a ground truth layout with many objects that are not placed accor-
ding to the text description. Moreover, the word “table” that appears in the caption does
not have a bounding box in the ground truth. The three systems, as expected, are able to
extract dining table and person objects with correct relative sizes from the caption. Ne-
vertheless, Obj-GAN is unable to place correctly the persons as they appear in the middle,
but GCN2LY and RNN2LY are able to understand the concept of “around” as they place
the persons around the table.

6.4 Qualitative analysis of the results 69

Caption: A child flies a kite with another child onlooking.

Figure 6.17: A child flies a kite with another child onlooking. MSCOCO image ID: 12543.

Figure 6.17, shows how RNN2LY is able to obtain two persons and a kite as mentioned in
the text description. Moreover, the kite is specified as "flying", and therefore it appears in
the upper part of the layout. Obj-GAN and GCN2LY, are able to place correctly the kite,
nevertheless, too many persons are extracted making the layout not realistic.

70 Experiments and results

Caption: A dog looking up in at a frisbee.

Figure 6.18: A dog looking up in at a frisbee. MSCOCO image ID: 79407.

Figure 6.18, shows how RNN2LY and Obj-GAN are able to understand the relation “loo-
king up” that appears in the caption, as the dog is placed below the frisbee. Nevertheless,
the sizes of the objects that appear in RNN2LY are better than Obj-GAN, because in the
latter the frisbee is too small. In the case of GCN2LY, it is able to extract the objects
correctly, but is not able to understand that the frisbee should be in the upper part of the
picture.

These examples clearly show that RNN2LY and GCN2LY are better than Obj-GAN in
building complex layouts. The systems developed are able to obtain more objects, main-
tain the relative sizes of them taking into consideration their interactions, and understand
the relations that appear in the text description to properly place the objects.

CHAPTER 7

Conclusions and future work

In this chapter, the conclusions of the project are provided and directions for future work
are proposed.

7.1 Conclusions

In this project, two methods for inferring the image layout from a given text description
are developed. The systems developed use AMR graphs to see if a structured version of
the text contributes to represent better the relations between objects compared to the tra-
ditional latent vector representation based on RNNs. In these graphs, nodes are objects to
be drawn and edges are the relations between objects. In both systems, graphs are proces-
sed using a graph convolutional neural network, which propagates information along the
edges in order to learn the relations between objects.

The first system, SG2BB, shows that using directly the node embeddings to obtain the
bounding boxes is not enough as it places all of them in the middle of the layout, which in
most cases is incoherent with the given description. Moreover, the system may generate
objects that do not have a representative meaning due to graphs having nodes with words
like “play-01”. In addition, using heuristics to match ground truth objects with graph
nodes leads to an inaccurate matching due to not having enough different ground truth
object categories in MSCOCO dataset.

71

72 Conclusions and future work

The second system, GCN2LY, solves the problems that SG2BB has. The objects are now
generated sequentially within a given set of objects categories, which avoids having ob-
jects with no meaning as it happened in SG2BB. Bounding boxes are generated using a
probability distribution based on a grid system, which allows to obtain the center of the
bounding box and then use it in an MLP to obtain the width and height. This allows to
generate layouts that are coherent with the text description.

During the development of this project, we saw that there is a necessity to use new metrics
to ensure that the generated layouts are coherent with the text description that describes
it, therefore, a new set of metrics are proposed that better measure the spatial composition
of scenes: relative spatial categorical position, aspect ratio, class matching, and relative
scale difference.

The metrics show that GCN2LY is better in all of them compared to the current state-
of-the-art system Obj-GAN. Moreover, a visual comparison between the layouts of both
systems shows a better spatial relationship between the objects in the scene, which makes
it more coherent with the text description.

Unfortunately, the use of a structured version of the text does not incur in any improve-
ment of the generated layout compared to using plain text as seen with RNN2LY system,
which modifies GCN2LY system by changing the GCNN by a RNN. Nevertheless, the
difference between these two systems is minimal, as the metrics and visual layout are
very similar, therefore, we think that a deep research in GCNNs and graph representa-
tions could lead to an improvement due to the limitations that RNNs have.

7.2 Future work

This project covers the basic scope of the text-to-layout task which can be continued in
the following research lines:

• Dataset: The systems have been trained using MSCOCO dataset which offers 80
different object categories. Increasing the number of object categories either using
COCO stuff or a completely different dataset could lead to a more meaningful la-
yout that can be used to draw more complex layouts.

• Graph representation: In this project, we make use of AMR graphs. Searching or
developing a new graph representation to build a better structured version of the text
that is more suitable for text-to-layout task could lead to improve GCN2LY results.

7.2 Future work 73

• GCNN architectures: In this project, SG2BB graph convolutional neural network
is used to process the graphs. Nevertheless, this architecture is not the only one
available, therefore, a different type of GCNN could lead to an improvement of the
results.

• Transformer encoder: In this project a GCNN is used to propagate information
along the edges in order to learn the relations between objects and obtain a repre-
sentation. Nowadays, transformers [Vaswani et al., 2017] are used in state-of-the-
art systems, therefore, using a pretrained transformer like BERT or training a new
one as an encoder could lead to a more complex and rich representation of the text
that could improve the generated layout by the decoder.

• Transformer decoder: In this project, an LSTM is used to generate the layout of
the text description. In the same way as the previous point, a transformer could also
be used as a decoder in order to generate a more complex layout and improve the
spatial relationship between the objects in the scene.

• Text-to-image: Text-to-image is the task of generating pictures from text descrip-
tions. As mentioned in the introduction, a three-step process can be used to generate
pictures and this project could be the first step of it.

Appendix

75

CHAPTER A

Appendix

A.1 Project objectives report

In this chapter, the objectives of the project are defined. The project definition covers
an overall description of the project, the concrete goals of the project, and the planning
and the methodology to achieve those goals. Finally, a list of identified risks that can
compromise the project is given.

A.1.1 Project description and goals

The main objectives of this project are to develop a new architecture that generates a
layout from a given text description, evaluate it thoroughly using different metrics, and
compare it with other related systems. To accomplish the previous objectives the work
can be divided into smaller tasks:

• Study the literature and understand the problem.

• Evaluate state-of-the-art implementations.

• Define and evaluate the dataset.

• Evaluate different ways to represent the text.

77

78 Appendix A

• Define the architecture.

• Define the metrics.

• Systems experiments and comparison.

The previous tasks will give a deep understating of how the research world works for
real-life problems.

A.1.2 Project planning

WBS diagram

A Work Breakdown Structure (WBS) is used to outline the work that needs to be done for
this project and is shown in Figure A.1. The project time estimates for each work unit can
be seen in Table A.1.

Figure A.1: Work Breakdown Structure of the project.

Appendix 79

Work units

In this section, a summary of each work unit and the estimation of the time that will be
spent on each one are going to be given. Because of the difficulty of this project, some of
these tasks may require more time than expected.

Planning

The work related to organizing the project that includes: what the project is about, what
are the goals, what are the tasks and when they need to be delivered, what milestones have
to be achieved and the deadline for those milestones, and what are the risks of this project.
The deliverable of this task is this report.

Control

Keeping the project focused, achieving the goals proposed according to the established
schedule, and solving any problem that could affect the project. This work is performed
in control meetings every week.

Memory and presentation

Writing the memory of the project with the work that has been made and the public
defense of it which will require to prepare materials for the presentation.

Datasets suitability

Search and study of datasets suitable for the project.

Understanding GCNN

Understanding an almost unused architecture in deep learning research. This will require
understanding well papers and different implementation approaches as there is huge lack
of information about it.

Text-to-layout systems

Investigate text-to-layout systems. This task requires to read papers about text-to-image,
as text-to-layout systems are almost nonexistent.

Transforming the dataset contents into graphs

Research different ways to transform text to graphs focusing on rules-based systems and
deep learning state-of-the-art systems with pretrained models.

80 Appendix A

Development of new metrics

Analyze the suitability of developing new metrics for text-to-layout systems and develop
them if convenient.

Understanding the code of the systems

Understanding the code of state-of-the-art systems. This will include understanding how
GCNNs are implemented and the potential improvements that can be applied to the sys-
tems in order to improve their performance.

System suitability analysis

Analyze if the systems are suitable for our project requirements and what changes need
to be done in order to fit our ideas.

System reimplementation

Reimplementation of systems that are old, not trained, or not working properly that may
affect our timeline.

Testing and debugging

Testing and debugging the reimplementation or modifications of the systems in order to
ensure that they work properly.

Systems experiments and comparison

Use the newly proposed metrics in the state-of-the-art and developed systems to compare
the improvements. This task will also include a visual comparison between all of them to
ensure that the new metrics work as intended.

Appendix 81

Work-unit Time estimate (hours)
Management 150
Planning 5
Control 45
Memory and presentation 100
Theoretical background acquisition 100
Datasets suitability 10
Understanding GCNN 30
Text-to-layout systems 60
Dataset and metrics 30
Transforming the dataset contents into graphs 10
Development of new metrics 20
System refactoring 200
Understanding the code of the systems 20
System suitability analysis 5
System reimplementation 150
Testing and debugging 25
Experiments and results 20
Systems experiments and comparison 20
Total 500

Table A.1: Time estimates for each work unit.

82 Appendix A

Gantt chart

A Gantt chart is used to illustrate the project schedule. This chart lists the tasks to be
performed on the vertical axis and the time intervals on the horizontal axis. The Gantt
chart is shown in Figure A.2.

Work units
2020 2021

October November December January February March April May June

Management

Planning
Control
Memory and
presentation

Theorical
background
acquisition

Datasets
suitability
Understanding
GCNN
Text-to-layout
systems

Dataset and
metrics

Transforming the
dataset contents
into graphs
Development of
new metrics

System
refactoring

Understanding
the code of the
systems
System suitability
System
reimplementation
Testing and
debugging

Experiments
and results

Systems
experiments and
comparison

Figure A.2: Gantt chart of the project.

Milestones

Table A.2 shows the deadline dates for the deliverables.

Deliverable Date
Implementation 20/06/2021
Memory 20/06/2021
Presentation 28/06/2021 - 09/07/2021

Table A.2: Deliverables and their deadlines.

Appendix 83

A.1.3 Methodology

This undergraduate thesis is carried out as a project of the IXA natural language pro-
cessing research group. The student receives support from two IXA instructors (Gorka
Azkune Galparsoro and Oier López de Lacalle Lecuona). The student is allowed to use
hardware resources from the IXA research group in the form of server nodes with CPU
and GPU capabilities.

Meetings

Regular meetings are arranged in a fixed slot every week with the two IXA instructors.
These meetings are held, either in the faculty or remotely using Google Hangouts. These
meetings’ objective is to control the progress of the project and talk about problems and
their possible solutions. Meetings outside the fixed time are scheduled to attend specific
doubts.

Work place

The student will work from home in a relaxed environment and good internet connection.

A.1.4 Risks

Given the size and scope of the project, there may be some uncertainties that will put the
project at risk. The following list describes some of the risks identified:

• COVID-19 situation: The uncertainty of the current situation may incur some
unexpected situations, such as the impossibility of holding the meetings in the fa-
culty and the student or instructors getting infected and therefore, the impossibility
to work and hold meetings for a while.

• Compute capabilities: Deep learning requires high amounts of computing and me-
mory resources. The student is given the possibility to use the IXA research group’s
shared resources in case the online free resources are not enough. These shared re-
sources may be in high demand for a given period, therefore, it is difficult to know
when they will be free.

84 Appendix A

• Research factors: The project has a research component that adds uncertainty to it
due to the bare use of GCNNs in the research community and the small number of
papers related to text-to-layout task.

Acknowledgments

This project has been partially supported by the Basque Government through the Ikasiker
grants program.

Bibliography

[Akbik et al., 2019] Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and
Vollgraf, R. (2019). FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP.
Association for Computational Linguistics.

[Andreas et al., 2016] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Lear-
ning to compose neural networks for question answering. CoRR.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine
Translation by Jointly Learning to Align and Translate. ICLR.

[Cai and Lam, 2020] Cai, D. and Lam, W. (2020). AMR Parsing via Graph-Sequence
Iterative Inference. ACL.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014).
On the properties of neural machine translation: Encoder-decoder approaches. CoRR.

[Everingham et al., 2014] Everingham, M., Eslami, S. M. A., Gool, L. V., Williams, C.
K. I., Winn, J., and Zisserman, A. (2014). The PASCAL Visual Object Classes Cha-
llenge: A Retrospective. International Journal of Computer Vision.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press.

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial
Networks. NeurIPS.

[Gori et al., 2005] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for
learning in graph domains. IEEE International Joint Conference on Neural Networks.

85

86 Appendix A

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Computation.

[Hong et al., 2018] Hong, S., Yang, D., Choi, J., and Lee., H. (2018). Inferring Semantic
Layout for Hierarchical Text-to-Image Synthesis. CVPR.

[Józefowicz et al., 2016] Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu,
Y. (2016). Exploring the limits of language modeling. CoRR.

[Justin et al., 2018] Justin, J., Gupta, A., and Li, F.-F. (2018). Image Generation from
Scene Graphs. CPRR.

[Kingsbury and Palmer, 2002] Kingsbury, P. and Palmer, M. (2002). From Treebank to
PropBank. In Proceedings of the 3rd International Conference on Language Resources

and Evaluation (LREC).

[Kuhn., 1955] Kuhn., H. W. (1955). The Hungarian Method for the assignment problem.
Naval Research Logistics Quarterly.

[Li et al., 2019a] Li, B., Qi, X., Lukasiewicz, T., and Torr, P. H. S. (2019a). Controllable
Text-to-Image Generation. NeurIPS.

[Li et al., 2019b] Li, W., Zhang, P., Zhang, L., Huang, Q., Xiaodong He, S. L., and Gao,
J. (2019b). Object-driven Text-to-Image Synthesis via Adversarial Training. CVPR.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays,
J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P. (2014). Microsoft COCO:
Common Objects in Context. CoRR.

[Mahmood and Len, 2017] Mahmood, Y.-A. and Len, H. (2017). Text summarization
using unsupervised deep learning. Expert Systems with Applications.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Effi-
cient estimation of word representations in vector space. In ICLR.

[Mikolov et al., 2013b] Mikolov, T., Corrado, G., Chen, K., and Dean, J. (2013b). Effi-
cient estimation of word representations in vector space. CoRR.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe:

Global Vectors for Word Representation. Association for Computational Linguistics.

BIBLIOGRAPHY 87

[Powers, 2019] Powers, D. M. W. (2019). Evaluation: From precision, recall and f-factor
to roc, informedness, markedness and correlation. Journal of Machine Learning Tech-

nologies.

[Ramesh et al., 2021] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford,
A., Chen, M., and Sutskever, I. (2021). Zero-Shot Text-to-Image Generation. ar-

Xiv:2102.12092.

[Reed et al., 2016] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H.
(2016). Generative Adversarial Text to Image Synthesis. ICML.

[Robbins, 2007] Robbins, H. (2007). A stochastic approximation method. Annals of

Mathematical Statistics.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. Nature.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Mon-
fardini, G. (2009). The Graph Neural Network Model. IEEE Transactions on Neural

Networks.

[Shen et al., 2017] Shen, Y., Huang, P.-S., Gao, J., and Chen, W. (2017). ReasoNet: Lear-

ning to Stop Reading in Machine Comprehension. Association for Computing Machi-
nery.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
Sequence Learning with Neural Networks. CoRR.

[Tan et al., 2019] Tan, F., Feng, S., and Ordonez, V. (2019). Text2scene: Generating com-
positional scenes from textual descriptions.

[Tripathi et al., 2019] Tripathi, S., Bhiwandiwalla, A., Bastidas, A., and Tang, H. (2019).
Using scene graph context to improve image generation. CoRR.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Go-
mez, A.Ñ., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR.

[Wu et al., 2019a] Wu, H., Mao, J., Zhang, Y., Jiang, Y., Li, L., Sun, W., and Ma, W.-Y.
(2019a). Unified Visual-Semantic Embeddings: Bridging Vision and Language With
Structured Meaning Representations. CVPR.

88 Appendix A

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,
Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR.

[Wu et al., 2019b] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2019b).
A Comprehensive Survey on Graph Neural Networks. CoRR.

[Xu et al., 2017] Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., and He, X.
(2017). AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Adversarial Networks. CoRR.

[Zhang et al., 2017] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Me-
taxas, D. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks. ICCV.

[Zhu et al., 2019] Zhu, M., Pan, P., Chen, W., and Yang, Y. (2019). DM-GAN: Dynamic
Memory Generative Adversarial Networks for Text-To-Image Synthesis. CVPR.

	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Deep learning for text-to-layout
	Neural network architectures
	Multilayer perceptron
	Recurrent neural networks
	Graph convolutional neural networks

	Seq2Seq architecture
	Word embeddings
	Text-to-layout architectures
	SG2IM
	Obj-GAN

	MSCOCO Dataset
	Dataset related problems
	Generation of graphs from text
	AMR
	Scene graph parser

	Dataset structure
	The dataset in numbers
	AMR
	SGP

	Developed architectures
	SG2BB
	Architecture
	Matching

	GCN2LY
	Encoder
	Decoder

	RNN2LY

	Metrics to measure the quality of layouts
	The necessity of developing new metrics
	Proposed metrics
	Relative spatial categorical position
	Aspect ratio
	Class matching
	Relative scale difference

	Experiments and results
	Experimental setup
	Dataset partitions
	Model selection

	Results
	SG2BB
	GCN2LY
	RNN2LY

	Comparison of the developed systems
	Qualitative analysis of the results
	SG2BB
	Obj-GAN vs. GCN2LY and RNN2LY

	Conclusions and future work
	Conclusions
	Future work

	Appendix
	Project objectives report
	Project description and goals
	Project planning
	Methodology
	Risks

	Bibliography

