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Abstract

Researchers Antoñana et al. developed a technique for global time-renormalization of the
gravitational N-body problem. In their paper, it is speculated that it may be useful for
finding periodic orbits, but they do not perform any experiments to test this hypothesis.
Influenced by their work, the aim of this project is to find planar three-body choreogra-
phies of different topologies.

This project takes a lot of inspiration from Simó’s work done on N-body choreographies
and the figure eight. In his paper, he proposes efficient methods for finding planar chore-
ographies. The main driver of our work is that some of the problems Simó faced in his
work could be lessened by making use of global time-regularization.

Two completely different approaches were taken to tackle the problem. The first approach
consists of finding choreographies by solving an optimization problem in the space of so-
lutions to the differential equations of Newton’s law of gravitation. The second approach
involves generating curves with the desired topology, and then using variational calculus
to find solutions that satisfy Newton’s laws.

With the first approach, we found thousands of choreographies of many different topolo-
gies. We also managed to show that the second approach is viable, although the results
were not anywhere close those of the first approach. Experiments showed that global time
renormalization reduces the number of Fourier coefficients for curve representation. It
was also experimentally verified that the integration of differential equations was much
more accurate with time-renormalization when using a constant step-size.

Two conclusions can be drawn from the results of the experiments. For one, both ap-
proaches greatly benefit from global time-renormalization. Secondly, our first approach is
more effective than the second in finding the most choreographies. However, the ability
to control the topology of the solutions is limited with the first approach, and not with the
second.
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CHAPTER 1

Introduction

The general N-body problem is a problem where the initial conditions of N point par-
ticles are given, and their subsequent motion needs to be determined, where the only
forces acting are of mutual attraction. The many variants of the generalized problem have
interested researchers in a broad range of disciplines, among others: mathematics, astro-
physics, molecular dynamics, and quantum physics.

The most common variant of the problem is the gravitational N-body problem, where the
bodies interact exclusively under Newton’s law of universal gravitation. This is precisely
the problem that has been tackled in this project. For vector positions qi = (xi,yi,zi), the
motion of the bodies can be described with a set of 3N second order differential equations:

q̈i = G ∑
j 6=i

m j
(q j−qi)

‖q j−qi‖3

In classical mechanics, the Kepler problem was one of the first problems to be addressed
concerning the gravitational N-body problem, which involves the interaction between two
particles. The first particle is fixed at the origin, and the second one is moving under
gravitational attraction. The method can be used to approximate the interaction between
two bodies when one of them has much greater mass than the other. For instance, a real
life example of this would be the motion of the Earth around the Sun. The solutions to the
Kepler problem are conic sections, such as circles, ellipses, parabolas, and hyperbolas.
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2 Introduction

In the 18th century, Newton’s formulations of his laws of motion and his law of universal
gravitation had huge scientific impact. These simple principles allowed him to completely
solve the two-body problem. He proved that when N = 2 the system can be reduced to the
system of ordinary differential equations of the Kepler problem. Yet, Newton was not so
successful in finding the solution to the three-body problem. When he was approximating
the motions of the Earth, Moon, and Sun, astronomer John Machin made the remark that
"... his head never ached but with his studies on the moon." [Schaffer, 1981].

In the late 19th century, a substantial prize was established for finding a global solution to
the N-body problem (or comparably, to prove that there is no such solution) by Oscar II
of Sweden. The goal was to find a solution for systems where N ≥ 3 in series expansion
which is valid for all time. The prize was awarded to Henri Poincaré because of his contri-
butions to classical mechanics, even though he was not able to solve the problem. In 1909,
a solution to the original problem was found by Karl Fritiof Sundman for a special case
of the three-body problem with non-zero angular momentum [Sundman et al., 1913].

Nowadays, most scientists believe that there is no general closed-form solution to the
N-body problem like the one there is for the two-body problem, as it is supported by
overwhelming experimental evidence. Despite that, Sundman’s work inspired scientists to
continue looking for solutions to the problem, and in 1990, Qiu-Dong Wang found a gen-
eralization of Sundman’s solution for N≥ 3. Wang’s method defines a time-renormalization
function in order to reparameterize the solution with a new independent variable. This
reparameterization leads to the existence of a globally convergent power series expansion
of the solution [Qiu-Dong, 1990].

Sundman’s and Wang’s contributions were of great theoretical interest, but their practical-
ity is limited due to the slow convergence of the power series expansions. This is why the
use of methods such as numerical integration of ordinary differential equations is needed
to approximate solutions. It is challenging to find numerical solutions to the problem in
the case that there are close encounters; that is, two of the bodies pass close to each other.
To decrease numerical error, either a method for strategically adapting the step-size or
some kind of time-renormalization is needed.

In 2020, Antoñana et al. published a paper proposing global time-renormalization func-
tions of the N-body problem [Antoñana et al., 2020]. This paper has practicality in mind,
and the renormalization methods proposed are useful for numerically approximating so-
lutions with close encounters. In their paper, it is explained how the technique can be used
in place of an adaptive method, and how periodic time-renormalized solutions with close
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encounters tend to require far less Fourier coefficients. Because of that, the technique is
speculated to be efficient for finding periodic solutions to the N-body problem.

The search of periodic N-body orbits has always been an area of interest. In the year
2000, Chenciner and Montgomery explained the idea of an N-body choreography. In
such an orbit, the bodies follow a periodic curve where they all switch places uniformly
[Chenciner and Montgomery, 2000]. The first choreography ever found dates back to 1772,
when Lagrange described the periodic orbit of three bodies that form an equilateral trian-
gle. In 1993, Cris Moore discovered the figure eight choreography, named after its shape
[Moore, 1993].

In 2001, in response to Chenciner and Montgomery, Carles Simó proposed methods for
the search of three-body planar choreographies [Simó, 2001]. In his paper, he explains a
special symmetry shared among many choreographies and how it can be exploited in order
to obtain new choreographies. He also proposes a variational method for approaching the
search. Lastly, he explains the need for adaptive methods for the numerical approximation
of choreographies with close encounters, as well as the use of many Fourier coefficients.

This project takes great inspiration from Simó’s work, with the aim of improving upon
it. The main idea of the project is to reimplement the methods proposed by Simó, but
by introducing time-renormalization methods proposed by Antoñana et al. Nevertheless,
several original ideas have also been proposed and tested in our work, with the ultimate
intention of finding new families of choreographies of different topologies.





CHAPTER 2

Preliminaries

2.1 N-body choreography

An N-body choreography is a special kind of T periodic curve that satisfies Newton’s law
of gravity. This kind of periodic solution has the property that all N bodies share a com-
mon orbit and are uniformly spread out around this orbit [Chenciner and Montgomery, 2000].
In other words, all of the bodies switch places at every 1/Nth of the period of the orbit.

More precisely, solution u is said to be an absolute choreography with relative period T/N

if

u(T/N) = Pu(0)

where matrix P is the permutation matrix denoting cycle (1→ 2→ ··· → N→ 1) of the
bodies:

P =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
1 0 0 . . . 0


5



6 Preliminaries

Figure 2.1: Diagram of a choreography with relative angle β = π/2 at t ∈ [0,T/12) (left) and at
t ∈ [0,T/3) (right).

Another kind of choreography can be defined where permutation can occur at angle β ,
called relative choreography. A choreography is a relative choreography with relative pe-
riod T/N if there exists β ∈ (0,2π] such that:

u(T/N) = P(β )u(0)

where matrix P(β ) = Rβ P denotes the cycling of the bodies composed with the rotation
of the plane by angle β .

Absolute choreographies can be considered to be a special case of relative choreographies
where β/(2π) = p/q is an irreducible fraction. The absolute period of the choreography
would then be qT/N, where T/N is the relative period (see Figure 2.1). A special kind
of absolute choreography occurs when β = 2π , called simple choreography. In case of
β 6= 2π , the choreography is said to be a non-simple absolute choreography.

2.2 Topology of three-body choreographies

The phase space of the original planar three-body problem has 6 dimensions for the posi-
tions of bodies and 6 for their velocities, totaling 12 dimensions. In Richard Mongomery’s
paper, a method for reducing the dimensionality of the solutions to the problem is pro-
posed [Montgomery, 2014].

Because of Galilean invariance, congruent triangles with congruent velocities must have
congruent motions under Newton’s equations of motion. It is impossible to define a sys-
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tem of 2nd order ODEs for the three side lengths of the triangles formed by the three
bodies. Despite that, the author manages to derive three alternative variables, w1,w2,w3,
that can be used similarly to the side lengths.

The shape space of solutions to the ODEs is homeomorphic to R3 and it is parameterized
by the vector (w1,w2,w3), called the shape sphere. The shape sphere has all collinear
solutions lying on the disc delimited by the equator. Three radial lines on the collinear
disc represent all three two-body collisions, while the three body-collision is in the center
of the sphere (see Figure 2.2). Because of these properties, this representation brings new
insight into the geometry of choreographies.

Periodic solutions to the three-body problem are closed loops in the shape sphere, and
choreographies are periodic solutions with the permutation symmetry. As an example for
this, the figure eight choreography can be seen represented in Figure 2.3.

The collinear triangles of a choreography can be used to encode it in a way that its topo-
logical properties are represented. More specifically, this encoding is a finite sequence
c = (c1, . . . ,ck) ∈ {1,2,3}k representing the collinear triangles in chronological order.

In the case of the figure eight choreography, its code is (3,1,2,3,1,2). Permutation sym-
metry can be observed in the code if it is split into three chunks: (3,1)→ (2,3)→ (1,2).
Therefore, a simpler code can be obtained, namely the relative code, in the case of the
figure eight being (3,1).

In order to define code equivalence, the shape space defined by Montgomery needs to
be modified. The modified space is simply the shape sphere minus all four points of
collision. This way, if two choreographies are homeomorphic, then there is a continuous
transformation between them where no collision occurs.

Lastly, it is important to note that because of the periodicity of choreographies, any cyclic
permutation of the code will result in an equivalent representation. Not only that but a
choreography can be modified so that more collinear triangles occur, introducing repeat-
ing patterns into the code. In other words, two choreographies with codes of different
lengths can be homeomorphic to each other. That is the case of the figure eight and the
celtic knot:

• Code of the figure eight: (3,1,2,3,1,2)

• Code of the celtic knot: (3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2)
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Figure 2.2: Diagram of the shape sphere.
Figure 2.3: The figure eight choreography on the
shape sphere.

The similarities between these two curves can very easily be seen by looking at their
respective codes. Because of this, we are especially interested in choreographies with the
simplest possible code. That is the case of simple choreographies, because of β = 2π their
code is as simple as it can be. In the case of the two choreographies mentioned above, we
see that the celtic knot is homeomorphic to the figure eight, the latter being a simple
choreography.

2.3 Global time-renormalization

The equations of motion are said to be renormalized if no critical points can be reached
starting from a non-degenerate state. With global time-renormalization time is reparame-
terized by introducing a new independent variable τ in order to globally time-renormalize
the equations of motion, by moving the critical points to infinity. The time-renormalization
technique proposed by Antoñana et. al is also efficient for numerical integration with fixed
steps, as it behaves similarly to adaptive methods [Antoñana et al., 2020]. The basic idea
is that fictitious time is dilated in the presence of close encounters, and it is contracted
whenever the bodies are far from each other. Intuitively, it makes sense that critical points
are moved to infinity, as time would get infinitely dilated.

The motion of the three bodies on the plane in compact form

d
dt

u = f (u),

where
u = (x1,y1,x2,y2,x3,y3, ẋ1, ẏ1, ẋ2, ẏ2, ẋ3, ẏ3)



2.4 Numerical integration of ordinary differential equations 9

is the system’s state vector.

In order to apply time-renormalization, if an appropriate function s(u) is chosen, the new
independent variable τ (fictitious time) can be defined

τ =
∫ t

0

dt ′

s(u(t ′))
.

State vector u is defined as a function of τ

d
dτ

u = s(u) f (u)

Several time-renormalization functions are defined in their paper, each designed with a
specific purpose in mind. In our case, we are working with choreographies, which have
three bodies of equal mass. Because of that, the function defined in page 10 of their paper
is suitable for the task. It only takes into account the positions of the bodies:

d
dτ

qi = s(q) q̇i,

d
dτ

q̇i = s(q) ∑
j 6=i

1
‖q j−qi‖3 (q j−qi),

d
dτ

t = s(q),

where

s(q1, . . . ,qN) =

(
∑

1≤i< j≤N

1
‖qi−q j‖2

)−1/2(
∑

1≤i< j≤N

1
‖qi−q j‖

)−1/2

2.4 Numerical integration of ordinary differential equations

Numerical Integration is the computation of an approximate solution to a definite inte-
gral. The requirement of numerical methods for finding solutions to ordinary differential
equations becomes apparent in situations where the computation of the antiderivative is
either intractable, or an analytical expression does not exist at all.

There are several algorithms that numerical integration covers, such as Monte Carlo meth-
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ods and Bayesian methods. We are only interested in numerical methods for approximat-
ing solutions to ordinary differential equations from the initial value, to a given degree of
accuracy.

Given the system of differential equations:

dxi

dt
= fi(t,x1, . . . ,xM; p)

It can be rewritten into compact form:

du
dt

= f (t,u, p), u(t0) = u0

where,

• t0 is the initial value of the free variable, usually time.

• u0 is the initial state of the system.

• p is the parameter vector, with constant values.

The simplest method for numerical integration is known as the Euler method, named after
Leonhard Euler. Time is discretized t0, . . . , tk, where tk = tk−1 + h for step size h > 0.
Generally, the lower h is, the more accurate is the solution obtained, but that comes at the
cost of increased computational load.

The main difficulty of this process is that uk ≈ u(tk) has to be computed despite the lack
of a precise expression for u(t). To achieve this, for indices k = 1, . . . ,n the following
equation is used to sequentially calculate uk:

uk = uk−1 +h f (tk−1,uk−1, p)

The insight into the method is that for h≈ 0,

u(t +h)−u(t)
h

≈ d
dt

f (t,u(t), p)

and consequently, by taking t = tk−1, and h = tk− tk−1,

u(tk)≈ u(tk−1)+h f (tk−1,u(tk−1), p)
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2.5 Newton-Raphson method

The Newton-Raphson method, also known as Newton’s method, is an algorithm for quickly
finding a root of a real-valued continuous differentiable function starting from an initial
guess. It iteratively produces better approximations until the desired precision is reached.
It was named after Isaac Newton and Joseph Raphson.

The intuition behind it is that if the initial point is close enough to the root, then the
function can be approximated by a straight line. A straight line can be drawn tangent to
the initial guess, and the intersection between the x-axis and the tangent line is a bet-
ter approximation than the initial guess. The process can then be repeated, successively
increasing the precision of the result.

More precisely, let f ∈C1 be a real-valued function with variable x and f ′ its derivative.
Provided that the initial guess x0 is close enough to a root of f , then:

x1 = x0−
f (x0)

f ′(x0)

Value x1 is a better approximation of the root than x0. Then this step can be repeated
starting from x1, iteratively bettering the approximation, until convergence is obtained.
Given xi, the i-th approximation, next term xi+1 is obtained as

xi+1 = xi−
f (xi)

f ′(xi)
(2.1)

Besides the geometric explanation of formula (2.1), it can also be explained as the trunca-
tion of the function’s Taylor series expansion. The Taylor series expansion of f in (x−x0)

is

f (x) =
∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n

Therefore, by truncating the series at the second term and assuming that x is a root of f ,
we obtain:
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f (x) = f (x0)+ f ′(x0)(x− x0) = 0

f (x0)

f ′(x0)
+ x− x0 = 0

x = x0−
f (x0)

f ′(x0)

Newton’s method has some limitations. The biggest issue to encounter is that the algo-
rithm can enter a cycle. If there is a point of inflexion in between x0 and the root, the
method may oscillate back and forth, never reaching convergence.

2.6 Trigonometric interpolation via DFT

Trigonometric interpolation is a technique of interpolation by using trigonometric poly-
nomials. The task is to find a function that passes through some given sample points,
and this is achieved with a sum of sines and cosines. Because of the use of trigonomet-
ric functions, this method is especially useful for periodic functions. In this section only
uniformly spaced sample points are considered, as the trigonometric coefficients can be
obtained with the discrete Fourier transform.

Given function f , uniformly distributed 2M + 1 sample points f (t0), f (t0 + h) . . . , f (t0 +

2Mh) are given, for some positive integer M > 0. The complex f̂k trigonometric coeffi-
cients for k = 0, . . . ,M:

f̂k =
1

2M+1

2M

∑
j=0

exp
(
−ik

2π j
2M+1

)
f j

The trigonometric polynomial that interpolates between the given sample points:

p(t) = f̂0 +
M

∑
k=1

(
f̂k exp(i k ω t)+ f̂k exp(−i k ω t)

)
= f̂0 +2

M

∑
k=1

(
Re( f̂k) cos(k ω t)− Im( f̂k) sin(k ω t)

)
,

where ω = 2π/(h(2M+1)).
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In other words, p(t0 + jh) = f (t0 + jh) is satisfied for indices j = 0,1, . . . ,2M.

In case an even number of sample points is given, the process of obtaining the coeffi-
cients and evaluating the trigonometric polynomial is very similar. For 2M sample points
f (t0), f (t0 +h) . . . , f (t0 +(2M−1)h)

f̂k =
1

2M

2M−1

∑
j=0

exp
(
−ik

π j
M

)
f j

The trigonometric polynomial:

p(t) = f̂0 +2
M−1

∑
k=1

(
Re( f̂k) cos(k ω t)− Im( f̂k) sin(k ω t)

)
+Re( f̂M) cos(M ω t),

It can be proven that the the process of obtaining the derivative of the trigonometric poly-
nomial that interpolates uniformly distributed sample points f0, f1 . . . , fN−1 can be inter-
preted as a linear transformation:



p′(ta)

p′(ta +h)

p′(ta +2h)
...

p′(tb−h)

p′(tb)


= ω DN



f (ta)

f (ta +h)

p(ta +2h)
...

f (tb−h)

f (tb)


Matrix DN is an N×N matrix where the entries on the diagonal equal zero. For j 6= k,
entry of the jth row, kth column is:

• If N is odd,
(−1) j−k

2
csc
(
( j− k)

π

N

)
• If N is even,

(−1) j−k

2
cot
(
( j− k)

π

N

)
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2.7 Floating-point arithmetic

Floating-point numbers are the most common representation of real numbers in comput-
ing. As opposed to integer arithmetic, floating-point numbers are approximations of real
numbers.

For x ∈ R−{0}, its normalized binary representation is the following:

x =±[a1.a2a3 . . . ]×2e

where digits ai ∈ {0,1} and exponent e ∈ Z. This representation is unique.

Computers have to work with a limited number of bits, most common being 32 and
64. For this reason, there is a trade-off between range and precision. Real numbers are
represented very similarly to their normalized form, but with a fixed number of signifi-
cant digits. The set of machine numbers is the set of numbers represented in the form of
x = ±[a1.a2a3 . . .ad]× 2e, for d digits. Consequently, floating-point arithmetic is just an
approximation of real number arithmetic and computers have to deal with round-off error.

For the real number x, its floating point representation f l(x) is the machine number closest
to it. The absolute representation error of x is the following:

|x− f l(x)| ≤ 2e−d

The relative error for any non-zero real number is:

∣∣∣∣x− f l(x)
x

∣∣∣∣≤ 2−d

Machine epsilon is ε = 2−d .

For any x, y real numbers, addition and multiplication are defined such that:

x⊕ y = f l( f l(x)+ f l(y))

x⊗ y = f l( f l(x)× f l(y))

Floating point arithmetic operations do not follow the typical properties of precise arith-
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metic. They satisfy the commutative property, but not the associative property nor the
distributive property. Their inverses, subtraction and division, are defined similarly:

x	 y = f l( f l(x)− f l(y))

x� y = f l( f l(x)/ f l(y))

For function y = f (x), to measure how much output y changes for a small change in x, the
condition number κ is defined:

κ := lim
x̄→x

|( f (x̄)− f (x))/ f (x)|
|(x̄− x)/x|

=

∣∣∣∣x f ′(x)
f (x)

∣∣∣∣
Therefore, when |x̄− x/x| ≈ 0,

∣∣∣∣ f (x̄)− f (x))
f (x)

∣∣∣∣≈ κ

∣∣∣∣ x̄− x
x

∣∣∣∣
For functions with two real inputs z = f (x,y), the condition number is similarly defined:

κx := x
∂ f (x,y)/∂x

f (x,y)
κy := y

∂ f (x,y)/∂y
f (x,y)

When relative errors are small, |(x̄− x)/x| ≈ 0 and |(ȳ− y)/y| ≈ 0 ,

f (x̄, ȳ)− f (x,y)≈ ∂ f (x,y)
∂x

(x̄− x)+
∂ f (x,y)

∂y
(ȳ− y)

Thus, ∣∣∣∣ f (x̄, ȳ)− f (x,y)
f (x,y)

∣∣∣∣≈ ∣∣∣∣x∂ f (x,y)/∂x
f (x,y)

(
x̄− x

x

)
+ |y∂ f (x,y)/∂y

f (x,y)

(
ȳ− y

y

)∣∣∣∣
=

∣∣∣∣κx

(
x̄− x

x

)
+κy

(
ȳ− y

y

)∣∣∣∣
≤ |κx|

∣∣∣∣ x̄− x
x

∣∣∣∣+ |κy|
∣∣∣∣ ȳ− y

y

∣∣∣∣
When the condition number for a problem is low it is said that the problem is well-
conditioned, whereas a problem with a high condition number is said to be ill-conditioned.
The conditioning of elementary arithmetic operations is the following:
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• Addition is ill-conditioned when y≈−x, as κx =
x

x+y ,κy =
y

x+y .

• Subtraction is ill-conditioned when y≈ x, as κx =
x

x−y ,κy =
y

x−y .

• Multiplication is well-conditioned, as κx = κy = 1.

• Division is well-conditioned, as κx = 1,κy =−1.

2.8 Formal description of the problem

As explained in the introduction, the goal of this project is to find many three-body chore-
graphies that have different encodings. In this section a more precise definition is given.

In section 2.7 the basics on floating point arithmetic are explained. Since subtraction is ill-
conditioned, the original differential equations may not be ideal for numerical methods.
In order to avoid an excessive cumulative error, relative coordinates can be used instead:

xi j := x j− xi

yi j := y j− yi

where (i, j) = (1,2),(2,3),(3,1)

The differential equations can be rewritten for qi j = (xi j,yi j):

q̈12 =−2
qi j

‖qi j‖
+

q31

‖q31‖
+

q23

‖q23‖

q̈23 =−2
q23

‖q23‖
+

q12

‖q12‖
+

q31

‖q31‖
q̈31 =−2

q31

‖q31‖
+

q23

‖q23‖
+

q12

‖q12‖

(2.2)

The condition for a curve to be a relative choreography remains unchanged:

u(T ) = P(β )u(0) (2.3)

Therefore, our aim is to find many u(τ) parametric curves that satisfy both (2.2) and (2.3).
Also, it is important that the solutions obtained have different codes.



CHAPTER 3

Approach 1: Optimization problem

3.1 Description of the approach

Our task is to find three-body choreographies with different topological properties. The
precise description of this idea can be found in section 2.8.

The problem can be posed as an optimization problem. That is, a space of candidate so-
lutions composed of candidates for choreographies is defined, together with an objective
function that measures the proximity to being a choreography of said candidates.

To solve the optimization problem, algorithms for continuous optimization are used. Local
minima are expected to be crude approximations of relative choreographies, and they can
later be made more accurate.

One special aspect of our method is the continuation algorithm. The search space of the
optimization problem is reduced in such a way that it is very easy to find solutions. In
exchange, some choreographies are lost, but these missing choreographies may be found
later with this technique.

In order to find solutions of different topologies, we have developed multiple objective
functions. Each function takes into account a kind of symmetry, and also some consider
what we have named the symmetry index of a choreography.

17
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3.2 Encoding of candidate solutions

3.2.1 Encoding of asymmetrical solutions

The initial state of a candidate u0 encodes the entire curve u(t), as it can be approxi-
mated through numerical methods. That is why only the initial state is used to represent
a candidate solution. This way, only 12 variables have to be optimized, the positions and
velocities of the particles on the plane. Of course, this implies that there is always some
amount of numerical error originating from the integration of the differential equations
that needs to be taken into consideration.

The naive search space consisting of all possible initial states has many redundancies. For
example, the solution to the differential equations encoded by u0 and the same curve with
some translation applied to it will have the same geometry, and therefore it should have
the same evaluation of the objective function. Some restrictions are set to the encoding
of the candidates in order to get rid of some redundant solutions. These restrictions are
based on the ones Simó defines in his paper [Simó, 2001].

Firstly, we will fix the center of mass to the origin, since the geometry of a curve does not
depend on the location of said curve. This is achieved by defining the following equation:

‖q1 +q2 +q3‖2 = 0

Similarly, we will also set the linear momentum to zero:

‖q̇1 + q̇2 + q̇3‖2 = 0

This lets us solve for the initial position and speed of one of the bodies from the values
of the other two bodies. Consequently, only the initial conditions of two of the bodies
are needed to represent a candidate solution. This way we are reducing the search space,
making optimization easier. In this case it is body number one that is inferred from the
values of the other two.

For any three-body choreography it is true that at some point in time the three bodies must
form an isosceles triangle. This is explained by the symmetrical properties of choreogra-
phies. An intuition to understand this is by drawing a line between two of the bodies. In
case of a choreography, the third body must cross the line, forming an isosceles triangle.
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With this in mind, because of the periodicity of choreographies, we can assume that the
initial state of a candidate solution is an isosceles triangle. This triangle can be placed
with its symmetry axis laying on top of the x axis because of rotational symmetry. We can
also assume that body number 1 is located on the asymmetrical vertex.

Lastly, we can set the total energy of the system to a fixed value. This is because of the
scale invariance property of the N-body problem. The only detail to take into account
when setting the total energy of the system, is that it must be negative as the three bodies
need to be orbiting each other. In this case the total energy of the system will be set to
−1/2, as it is frequently done in related work.

With all of these restrictions set, it is possible to completely determine an initial state with
only the values of x2, y2, ẋ1, ẋ2, and ẏ2.

ẏ1 + ẏ2 + ẏ3 = 0,

1
2

3

∑
i=1
‖q̇i‖2− ∑

(i, j)∈I

1
‖qi j‖

=−1
2

Combining both equations,

1
2
(ẏ2

1 + ẏ2
3) = ∑

1
‖qi j‖

− 1
2
− 1

2
(ẋ2

1 + ẋ2
2 + ẏ2

2 + ẋ2
3)

ẏ2
1 + ẏ1ẏ2 +

1
2

ẏ2
2 = ∑

1
‖qi j‖

− 1
2
− 1

2
(ẋ2

1 + ẋ2
2 + ẏ2

2 + ẋ2
3)

From here, we can solve for ẏ1. So done, the initial states of the bodies can be defined
in terms of x2, y2, ẋ1, ẋ2, and ẏ2. To define the space in a nicer way, the search space is
formed by the 5-tuple (x2,y2,α,γ2,γ3), where α ∈ [0,π/2], γ2,γ3 ∈ [0,2π). The initial
state determined by these values is the following:

x12 = 3x2, y12 = y2, x23 = 0, y23 =−2y2, x31 =−3x2, y31 = y2,

ẋ1 =−ẋ2− ẋ3, ẏ1 =−ẏ2− ẏ3,

ẋ2 = λ cos(α)cos(γ2), ẏ2 = λ cos(α)sin(γ2),

ẋ3 = λ sin(α)cos(γ3), ẏ3 = λ sin(α)sin(γ3),
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Figure 3.1: Simó’s initial isosceles configuration.

where λ > 0 is determined by the restriction that the energy must be equal to −1/2.

The initial state of the system is obtained with function ψ5:

ψ5(a,b,α,γ2,γ3) = (3a,b,0,−b,−3a,b,

−λ cos(α)cos(γ2)−λ sin(α)cos(γ2),−λ cos(α)sin(γ2)−λ sin(α)sin(γ2),

λ cos(α)cos(γ2),λ cos(α)sin(γ2),λ sin(α)cos(γ2),λ sin(α)sin(γ2))

3.2.2 Encoding of symmetrical solutions

A special kind of symmetry shared among several choreographies is described in Simó’s
paper [Simó, 2001]. The bodies form an isosceles triangle with the symmetry axis on the
x axis and the first body on the asymmetrical vertex. The velocity of the first body does
not have a horizontal component, and the speeds of the second and third bodies have the
same y component but different x. To get a better understanding of the shape, see Figure
3.1.

On top of the restrictions defined in section 3.2.1, we will also assume that the choreogra-
phies satisfy Simó’s symmetry. This will let us represent a candidate solution with only
x2,y2, ẋ2, and ẏ2:

x3 = x2, y3 =−y2, ẋ3 =−ẋ2, ẏ3 = ẏ2.

and,
x1 =−2x2, y1 = 0, ẋ1 = 0, ẏ1 =−2ẏ2.

Scale invariance allows us to fix the total energy of the system to a value of our choice, in
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this case, −1
2 . This way, the total energy will be the following:

ρ
2− 1

2|y2|
− 2√

9x2
2 + y2

2

=−1
2
,

where ρ =
√

3 ẏ2
2 + ẋ2

2, thus

ẋ2 = ρ cos(γ), ẏ2 =
ρ√
3

sin(γ)

where γ ∈ [0,2π]

Therefore, the triplet (x2,y2,γ) will determine the initial state of the system, a candidate
solution. Variable γ will be in the range [0,2π], and x2 and y2 will both be positive real
numbers.

We have the additional constraint that:

1
2|y2|

+
2√

9x2
2 + y2

2

− 1
2
≥ 0 (2)

Finally, function ψ3 is defined to turn the triplet (x2,y2,γ) into an initial configuration u0:

ψ3(a,b,γ) =
(
−2a, 0, a, b, a, −b,

0,
ρ

−2
√

3
sin(γ), ρ cos(γ),

ρ√
3

sin(γ),−ρ cos(γ),
ρ√
3

sin(γ)
)

3.3 Objective functions

3.3.1 General definition of the objective function

Several objective functions were used for the search of three-body choreographies. Each
of these functions has been designed to target a specific kind of symmetry. Even if they
each serve a different purpose, all of them have the same underlying structure.

In general, the objective functions will consist of what we call a trigger function g(t) and a
callback function h(ut). The idea behind the trigger function is that it is used to detect the
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values of τ for which a specific configuration of the bodies happens, for example, forming
an isosceles triangle. Then, the callback function is called at those specific timestamps to
determine the quality of the solution.

The objective functions are all of the following form:

F(q) = min
τ∈Gq

h(q(τ))

where
Gq = {τ : g(q(τ)) = 0}

To compute the objective function, a discretization of the process is necessary. The step-
by-step algorithm is the following:

1. Firstly, using either ψ3 or ψ5, initial state u0 is obtained from the encoded candidate
solution from the optimization problem.

2. Once the initial state of the system is known, states u1, . . . ,un are calculated via nu-
merical integration. A Runge-Kutta method of order 8 was used for the integration.

3. Then, g is evaluated in each discrete step ui and an approximation of the roots is
obtained with linear interpolation.

4. Lastly, h is evaluated in each of these steps and the minimum is returned.

3.3.2 Symmetry-based objective functions

Asymmetrical objective function

The asymmetrical objective function is designed to be used with solutions with asymmet-
rical encodings, defined in section 3.2.1. The choreographies targeted are not assumed to
have any kind of special symmetry at all, besides the permutation symmetry explained in
section 2.1.

This function needs to return a heuristic on how close to being a choreography the candi-
date solution is. To achieve that, it has to find τ such that ‖Pq(0)−q(τ)‖2 is minimized.
This minimization can be done analytically. To maximize the chance of finding a choreog-
raphy, we will also minimize for ‖P−1q(0)−q(τ)‖2, that is, we will allow the permutation
to happen in either direction.
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The basic idea behind the function is the following: because we know that the initial po-
sition of the bodies is an isosceles triangle, g is defined such that its roots are on isosceles
triangles. Then, h simply compares the angles of these triangles with those of q0.

First off, we need to detect an isosceles configuration with g. But, it is only necessary to
check whether there is an isosceles triangle where body number one is on either symmetri-
cal vertex. This is because initially this body is on the asymmetrical vertex, so either body
two or body three has taken its place after the permutation. This is done by comparing dot
products:

giso(u(τ)) = (q23 ·q31−q31 ·q12)(q32 ·q12−q12 ·q23)

Then, with function h the cosines of the angles of triangles q0 and qτ are compared:

h(qτ) =(c(q31(0),q12(0))− c(q23(τ),q31(τ)))
2+

(c(q12(0),q23(0))− c(q31(τ),q12(τ)))
2+

(c(q23(0),q31(0))− c(q12(τ),q23(τ)))
2+

‖q̇1− q̇3‖2 +‖q̇2− q̇1‖2 +‖q̇3− q̇2‖2

where c is proportional to the cosine of the angle between two vectors c(u,v) = u× v.

It is trivial that if F(q) = 0 then q(t) is a relative choreography.

Isosceles objective function

The isosceles objective function is used with solutions with the isosceles symmetry de-
fined by Simó, explained in section 3.2.2. These choreographies form a very special con-
figuration that can be exploited with a specialized objective function.

Simó explains in his paper how if a choreography satisfies the initial conditions defined
in section 3.2.2, then this choreography has an extra symmetry. At τ = T/6 these chore-
ographies form an isosceles triangle, not necessarily the same as the one at u(0), where
the moduli of the velocities on the asymmetrical vertices are equal to each other.

Because of a property of the N-body problem called reversibility, it is ensured that the
bodies will trace a symmetrical path from then on, and that they will form an isosceles
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triangle at T/3 with the exact dimensions of the initial one. In other words, if the bodies
form this special triangle at T/6, it can be proven that it is a choreography.

Trigger function g is the same as in section 3.3.2, because we also need to evaluate h on
isosceles configurations only.

Callback function h is used for calculating whether the bodies form this special interme-
diate isosceles triangle. First, two helper functions are defined. Function h2 is used in case
body number two is on the asymmetrical axis. Similarly, h3 is used for body three:

hiso2(u(τ)) = ((x23− x12)ẋ23 +(y23− y12)ẏ23)
2 +(‖q̇12‖2−‖q̇31‖2)2

hiso3(u(τ)) = ((x31− x23)ẋ31 +(y31− y23)ẏ31)
2 +(‖q̇12‖2−‖q̇23‖2)2

Again, we do not need to worry about body number one being on the asymmetrical axis.

The callback function calculates which body is on the asymmetrical axis and the corre-
sponding function is used based on that:

hiso(u(τ)) =

{
hiso2(u(τ)) if ν(u(τ))≥ 0
hiso3(u(τ)) else

where
ν(u(τ)) = 2(q31 ·q12)−q12 ·q23−q23 ·q31

Collinear objective function

The collinear objective function detects a special collinear configuration of the bodies.
This configuration was first described by Simó in 2002 when analyzing the properties of
the figure eight [Simó, 2002]. All three bodies align such that one of the bodies is at the
origin. The moduli of the velocities of the two bodies at each end of the line segment are
equal.

Collinear configurations can be detected as follows

gcol(u(τ)) = x12y23− y12x23

The callback function needs to detect that one body is perfectly centered and that the
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moduli of the velocities of the two edgemost bodies are equal. Similarly to the isosceles
function, we will define one helper function for each of the possible bodies that can be at
the origin:

hcol2(u(τ)) = ‖q23−q12‖2 +‖q̇3− q̇1‖2

hcol3(u(τ)) = ‖q31−q23‖2 +‖q̇1− q̇2‖2

The callback function calculates the centermost body in the collinear formation and the
corresponding function is used based on that:

hiso(u(τ)) =

{
hcol2(u(τ)) if |x31(τ)|− |x12(τ)| ≥ 0
hcol3(u(τ)) else

3.3.3 Indexed objective functions

Several objective functions are defined in section 3.3.2 with the aim of increasing the
diversity of the choreographies to be found. In this section we introduce the concept of
symmetry index, with the idea of further increasing the diversity of the solutions.

The symmetry index of a choreography is the number of times an isosceles triangle is
formed within the timespan of a relative period. More precisely, the index of a choreog-
raphy is

ι(q(t)) = |{τ ∈ [0,T/3) : g(q(τ)) = 0}|

Different choreographies have different indices, so the usefulness for increasing diversity
is evident. Two choreographies with the same absolute code may have different num-
bers, as they may have different relative codes. Two simple choreographies with the same
absolute and relative code must have the same index.

All choreographies with the symmetry defined in section 3.3.2 must have an even symme-
try number. With the same reasoning, all choreographies with colinear symmetry defined
in 3.3.2 must have a symmetry number that is a multiple of 4.

A new kind of generic objective function can be defined so that the index of the chore-
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ographies is taken into account. All of these objective functions will have the following
structure:

Fi(q) = h(q(τi))

where τi is the element number i of Gq.

With this method, we can take the functions defined in section 3.3.2 and define new ones
by fixing the index. It was experimentally verified that indices 1 through 4 are the most
common, so those are the ones chosen. Together with the original objective functions, 15
functions were defined:

• General asymmetrical function. Fasy

• Asymmetrical functions with indices 1 through 4. Fasy
i

• General isosceles function. F iso

• Isosceles functions with indices 1 through 4. F iso
i

• General collinear function. Fcol

• Colinear functions with indices 1 through 4. Fcol
i

These functions will be used independently to each other in the local search, as described
in section 3.4.

3.3.4 Properties of the objective functions

The definition of the general structure of the objective functions as well as that of sev-
eral objective functions is given in section 3.3. Despite the different definitions of these
functions, they all share many properties.

All objective functions are computed in linear time, O(n):

1. The computation of ψ3 or ψ5 is done in O(1) time.

2. The numerical integration step to obtain u1, . . . ,un is done in linear time.

3. The obtaining of the roots of g is done in linear time.
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4. The evaluation of h is technically done in linear time at worst, although for contin-
uous curves (such as solutions to Newton’s law of gravitation) this is negligible.

Another property of all objective functions is that they are well-behaved in several bounded
regions of their domain, because they are piecewise compositions of elementary functions
with infinitely differentiable curves as inputs.

Also, since all objective functions are bounded in [0,∞), a minimization algorithm would
be expected to converge for relatively many different candidate solutions, because of these
well-behaved regions.

It was experimentally verified that attractors are a problem with this kind of objective
function. Attractors are solutions to which many initial points converge, which would
prevent our algorithm from finding solutions other than these. This is detrimental to our
method because our aim is to find choreographies of different kinds. Of course, the goal
of using many different objective functions is to lessen this kind of problem.

3.4 Local search

For finding local minima of the functions defined in section 3.3, local search was used.
Techniques for unconstrained optimization were used for the search, and therefore some
adjustments needed to be made in order for the constraints to be satisfied. Most of the
constraints were about the scope of the variables, but these are loose as they are used in
order to get rid of redundancy.

The only constraint that is problematic is related to the energy of the system. We know
that the potential energy of the system in terms of x2 and y2 is

T (x2,y2) =
1

2|y2|
+

2√
9x2

2 + y2
2

Since the total energy of the system equals 1/2, in order for the kinetic energy to be
positive, we have following constraint:

1
2|y2|

+
2√

9x2
2 + y2

2

− 1
2
≥ 0
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The objective function needs to be adjusted so that the constraint is met:

F̃(q) =

F(q) if ρ2 > 0

∞ else

Using this newly defined function, local search can be applied. First, the initial point
(α,β ,γ) or (x2,y2,α,γ2,γ3) is randomly chosen from a uniform distribution, such that
all constraints are satisfied. Then, the Nelder-Mead algorithm is used in order to find a
local minimum of F̃ . As mentioned earlier, this method is unconstrained. Lastly, if the
algorithm converges and F̃(q) = 0, then q is a choreography.

3.5 Curve continuation

3.5.1 Insight

Let C1 be the space of all real valued continuous functions that are continuously differen-
tiable on R. Then, the set of all relative choreographies where no collision between any
two bodies happens forms multiple continuous curves in C1, as was shown by Simó in his
paper. Every choreography is part of a curve, and throughout the entirety of any curve the
code remains unchanged.

This property can be exploited to generate even more choreographies starting with the
ones found with the local search. The idea behind it is that because every choreography
is part of a curve, slight perturbations may be applied in a precise direction in order to get
a new one. This can be then repeated iteratively to explore a curve in its entirety. A curve
ends at points of collision between the bodies, known as critical points. It is possible to
skip over these critical points, but that would change the code of the choreographies.
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3.5.2 Formal definition of the curves

Solution q(τ) is a choreography if there exists T > 0 and β ∈ [−π,π] where for indices
i = 1, . . . ,3

xi(T ) = cos(β )xi+1(0)− sin(β )yi+1(0),

yi(T ) = sin(β )xi+1(0)+ cos(β )yi+1(0),

ẋi(T ) = cos(β ) ẋi+1(0)− sin(β ) ẏi+1(0),

ẏi(T ) = sin(β ) ẋi+1(0)+ cos(β ) ẏi+1(0).

Here, indices are cyclic. For example where it says i = 3+ 1 it should be interpreted as
i = 1.

When performing the local search for relative choreographies, we assumed that the initial
values q(0) satisfied some symmetry conditions when using the symmetrical encoding
defined at section 3.2.2. This way we obtained the approximate initial values q̃ of some
choreographies.

We will increase the precision of these approximations by making use of Newton’s method.
No symmetry condition will be assumed, as this will allow for a processing of both sym-
metric and asymmetric relative choreographies.

Considering that if q(τ) is a choreography then q(T0+τ) is also a choreography, for every
T0, and also that by rotating q we also get a choreography, in general we can assume that:

x3(0) = x2(0), y3(0) =−y2(0),

thus,

x1(0) =−2x2(0), y1(0) = 0, ẋ1(0) =−ẋ2(0)− ẋ3(0), ẏ1(0) =−ẏ2(0)− ẏ3(0).

Nine free variables are used to determine a relative choreography, which will be arranged
in vector z = (z1,z2, . . . ,z9) where

x2(0) = z1, y2(0) = z2, ẋ2(0) = z3, ẏ2(0) = z4, ẋ3(0) = z5,

ẏ3(0) = z6, T = z7, β = z8, P = z9,

where P = t(T ) is the physical relative period.
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The initial conditions are defined:

u(0) = χ(z)

where
χ(z) = (3z1,z2,0,−2z2,−3z1,z2,−z3− z5,−z4− z6,z3,z4,z5,z6,0)

In order for solution u(τ) to be a relative choreography with rotation angle β it is enough
that it satisfies these equations:

x12(T ) = cos(β )x23− sin(β )y23,

y12(T ) = sin(β )x23 + cos(β )y23,

x23(T ) = cos(β )x31− sin(β )y31,

y23(T ) = sin(β )x31 + cos(β )y31,

ẋ1(T ) = cos(β ) ẋ2− sin(β ) ẏ2,

ẏ1(T ) = sin(β ) ẋ2 + cos(β ) ẏ2.

The remaining conditions to be a choreography are obtained straight away with the four
conditions involving the center of mass and because of the conservation of energy and
angular momentum.

To the six conditions listed we will add that the total energy is equal to −1/2, and lastly
that t(T ) = z9.

These eight conditions can be written in compact form as g(u(T ),u(0),β ,P) = 0 where

g(u∗,u,β ,P) =



x∗12− cos(β )x23 + sin(β )y23,

y∗12− sin(β )x23− cos(β )y23,

x∗23− cos(β )x31 + sin(β )y31,

y∗23− sin(β )x31− cos(β )y31,

ẋ∗1− cos(β ) ẋ2 + sin(β ) ẏ2

ẏ∗1− sin(β ) ẋ2− cos(β ) ẏ2

H(u)+ 1
2

u∗13−P


Let’s assume that u(T ) is obtained with some integration method with n steps and constant
step-size. Then, function φn is defined such that this approximation is a function of z where
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u(z)≈ φn(z).

Lastly, in order for z to represent a relative choreography, the following system of equa-
tions needs to be satisfied:

g(φn(z),χ(z),z8,z9) = 0 (3.1)

There are nine free variables and eight equations. In fact, system (3.1) is an implicit defi-
nition of the curves of relative choreographies.

3.5.3 Curve continuation method

A naive approach to the continuation of the curves would be to gradually increase and
decrease z8 = β and to solve for the rest of the variables. This way, the algorithm would
be processing choreographies of changing relative angle, which would guarantee finding
new choreographies. The problem with this technique is that if the curve bends towards
the β axis, the algorithm will not be able to continue the curve.

To avoid that issue, the intersection between the curve and a carefully chosen hyperplane
are considered for the continuation of the curve.

Specifically, to determine a solution to system (3.1) that is close to z0 ∈R9, the intersection
between that system and hyperplane α · (z− z0) = 0 is calculated, where an appropriate
value for α ∈ R9 is chosen. In other words, we will calculate a solution f (z) = 0 that is
close to z0 (for example, with Newton’s method), where:

f (z) :=

(
g(φn(z),χ(z),z8)

α · (z− z0)

)
(3.2)

Let z1 ∈R9 represent a relative choreography, where β 1 = z1
8. To begin the continuation of

the curve, let β 2 = β 1 +∆β , for a small ∆β . Using a non-linear solver z2 can be obtained
where z2

8 = β 2 and f (z2) = 0, α = (0, . . . ,0,1).

The criteria for choosing ∆β is that Newton’s method takes the desired number of it-
erations to get from z1 to z2. The number of iterations is chosen based on experiments
performed with different choreographies.

Afterwards, from points z1 and z2 of the curve of relative choreographies, a third point z3

is obtained. To explain the general procedure, let’s assume that points zi−2 and zi−1 are
given, and zi needs to be obtained. First off, let unit vector α equal
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α =
1

‖zi−1− zi−2‖
(zi−1− zi−2)

An initial approximation z̃i of point zi is obtained by linear interpolation:

z̃i = zi−1 +α λ
i,

where lambda is a small number.

Then, point z̃i will be the initial point z0 of the equation (3.2). Then Newton’s method
is applied to get the desired solution zi. Again, λ i needs to be determined. Our criteria
will be the same as before, to choose a value so that the number of iterations of Newton’s
method is in the range [it0, it1].

This same method can also be used to increase the precision of the initial values obtained.
In case of a simple choreography, simply fixing β 1 = 0 and applying Newton’s method
to solve the system (3.2) will give us the z vector of this same choreography but to a
higher precision. Then, the initial state of the system is just χ(z). In case of a relative
choreography, it is desirable that β 1 is set to a simple fraction of 2π close to β 0.

3.5.4 Continuation algorithm

Given an approximation of the initial state of a relative choreography found with the local
search, this state is not very accurate. Therefore, the first step is to apply the Newton
Raphson method so that system of equations (3.1) is satisfied, in order to increase the
numerical precision of the initial state. In this step, β = z8 is fixed since the curve does
not need to be continued yet. In case of non-convergence, the curve is discarded.

For the continuation of the curve, it is necessary to represent it with an appropriate data
structure. Farey secuence Fl is used to generate a list of fractions of 2π . When performing
the continuation of the curve, whenever β passes over one of said fractions, the precise
choreography concerning the angle is interpolated linearly and the initial state z stored
in a dynamic list containing all relative choreographies with said angle. Thus, when the
continuation algorithm finishes, the curve is represented by a set of lists, each containing
relative choreographies with a set angle.

Because of the high computational cost of doing the continuation of a curve, it is in our
interest to perform checks in order to avoid repeating the continuation of the same curve
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multiple times. Every time a fraction of 2π in Fl is reached, the relative choreography is
compared with other relative choreographies with the same angle in other curves. In case
the choreography was already found in some other curve, the continuation of the curve is
halted as there is no need to keep going.

Finally, the representation of the curves enables the easy obtention of simple choreogra-
phies. For each curve, simple choreographies are in the list containing choreographies
with β = 0. Relative choreographies with simple fractions of 2π can also be obtained,
which usually have interesting shapes.

3.6 Experiments

With all the techniques defined in this chapter, three tasks were carried out:

1. The first task was to perform a local search for three-body choreographies using
the optimization method described in section 3.4. Since fifteen different objective
functions were defined, fifteen independent local searches needed to be performed.

The device chosen for the task has 16 cores. This is very convenient for the search
as it enables the execution of all fifteen searches in parallel, each on its own thread,
plus one additional thread for the operating system and miscellaneous processes.

The search was carried out throughout 22 days. In order to avoid loss of data, all
solutions were stored in the hard drive of the device at the time of their obtention,
and backups were made periodically.

2. The second task was to employ the continuation algorithm to generate new chore-
ographies starting from the ones found with the local search. These initial solutions
were first filtered in order to get rid of repeated curves and any non-choreographies.

The initial idea was to run the continuation algorithm defined in section 3.5.4 with
all the choreographies obtained. However, because of lack of time, the algorithm
was only applied to choreographies with the most interesting properties.

3. Lastly, an experiment to evaluate the effectiveness of global time-renormalization
with uniform step-size was performed. Some of the choreographies obtained via the
local search and the continuation algorithm were used for this. They were chosen
based on their relative angle and how extreme their close encouters are.
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The initial states of said choreographies were taken, and then numerical approxi-
mations of the solutions were made both with and without time-renormalization. A
highly accurate approximation was also obtained by making use of high-precision
floating point numbers and a very small step-size. To make an estimation of the
error we simply took the solutions obtained with and without renormalization and
compared them with the highly accurate solutions.

Of course, similar tests were done at the beginning of the project, as a sanity check.
However, these tests were done with simpler orbits, as their purpose was to just
verify that our implementation was correct.

3.7 Results

• In total 5392 relative choreographies were found with the local search, 166 of which
being simple. The amount of relative choreographies obtained with each objective
function is shown in Table 3.1 and the amounts of simple choreographies are shown
in Table 3.2.

Examples of the kind of choreographies found with the collinear function can be
found in appendix A, together with their initial state vectors.

• The continuation algorithm was applied to the figure eight, heart, and ladybug. The
continuation of the figure eight can be seen in Figure 3.3 and the heart in Figure
3.4. The continuation of the ladybug was also performed and another choreography
with the same shape was found (see Figure 3.5).

• Nine choreographies were chosen for the experiment based on their relative angle
and the closeness of their closest encounter, shown in Figure 3.2. The initial con-
figurations of these choreographies are shown in Table 3.5, and their codes in Table
3.3.

The average and maximum errors with and without time-renormalization of the
choreographies selected are shown in Table 3.4, together with the closeness of the
closest encounter.



3.8 Conclusions 35

3.8 Conclusions

The search with the isosceles objective function found the greates number of choreogra-
phies, as shown in Table 3.1. These numbers may mislead one into believing that it is the
best method among those three. However, by taking a look at table 3.2, we can see that
the collinear function is able to find many simple choreographies.

The solutions found with the asymmetrical function were very innaccurate and with many
non-choreographies. The asymmetrical function was designed to find choreographies that
do not follow Simó’s symmetry, but all choreographies found with the function either
have said symmetry or they belong to the family of a choreography with said curve. The
isosceles function was successful at finding a great number of relative choreographies,
but there was not a lot of diversity among them. This is because two very similar rela-
tive choreographies with slightly different relative angles are considered different. So the
number of distinct simple choreographies is not too high compared to the sheer amount of
relative choreographies found. The collinear function was the opposite, as it found very
few solutions, but the vast majority of them had interesting properties (see A.1). They also
were very precise in comparison with the solutions found with the other functions.

Lastly, on Table 3.1 no relative choreographies were found with the collinear function
with index 2. This is most likely due to human error and has nothing to do with the
objective function itself.

The relative choreographies obtained with the functions with different indices were sim-
ilar to the ones obtained with the general function. Also, the same choreography could
appear with two different indices. This happened because if a choreography is mirrorred
it can result in the same shape but different index.

The most interesting choreography found was the ladybug. We believe that this choreog-
raphy was not previously found. It is a simple choreography and it is homeomorphic to
the figure eight, but it does not belong to the same family of relative choreographies; it
lays on a completely different curve.

The continuation of the figure eight can be seen in Figure 3.3. The images are very in-
structive for understanding the connection between the figure eight and the celtic knot.
However, the choreographies found were not of our interest because Simó already did
the continuation of the figure eight. The same thing can be said about the continuation of
heart, shown in Figure 3.4.
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Function General Index = 1 Index = 2 Index = 3 Index = 4
Fasy 727 13 484 159 181
F iso 1582 677 361 558 495
Fcol 71 30 0 32 22

Table 3.1: Number of distinct relative choreographies obtained with each objective function.

Function General Index = 1 Index = 2 Index = 3 Index = 4
Fasy 14 1 5 5 4
F iso 38 7 15 3 11
Fcol 21 1 0 25 16

Table 3.2: Number of distinct simple choreographies obtained with each objective function.

The continuation of the ladybug on the other hand was very interesting, as this choreog-
raphy was not found by others before. What was even more interesting is that the curve
joined two choreographies with very similar geometry (see Figure 3.5). It turns out that
for any choreography, there can be multiple versions of it with the same geometry. An-
other example of this phenomenon can be seen in Figure A.1 with the two versions of the
spider.

Finally, nine choreographies were selected and used for the experiment testing the numer-
ical errors (see Figure 3.2). The figure eight was selected for the experiment, together with
the celtic knot and the star, which belong to the same family. The family sharing heart and
four-leaf clover were also chosen. In the family of the ladybug we have the ladybug, fer-
ret, and the cross. Finally, the spider does not belong to any of the other’s families, but it
is homeomorphic to the heart.

Table 3.4 shows that global time-renormalization is clearly necessary if a constant step-
size is used when approximating choreographies with close encounters. The error in-
creases the closer the bodies meet. An adaptive method could also be used with a similar
effect.
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Name Code β Simple
Figure eight 312312 π No
Heart 133221 0 Yes
Ladybug 312312 0 Yes
Spider 213213213213213213213213213213 π No
Ferret 133221133221 π No
Cross 122331122331122331122331 π No
Celtic knot 312312312312312312312312 π/2 No
Four-leaf clover 133221133221133221133221 π/2 No
Star 312312312312312312312312312312 2π/5 No

Table 3.3: Geometric properties of the choreographies selected.

Name Closest Mean Maximum Mean Maximum
encounter No TR No TR GTR GTR

Cross 4.3226e-3 3975.8 8543.6 3.8951e-11 6.2544e-10
Celtic knot 1.0069e-1 288.64 658.51 2.9598e-14 1.4322e-13

Star 3.7212e-1 1.1884e-8 1.1794e-7 2.1502e-14 4.3520e-14
Spider 5.5382e-1 5.1530e-11 5.1350e-10 5.7244e-13 5.4267e-12

Ladybug 7.2609e-1 2.2214e-14 4.7832e-1 6.4651e-15 1.8324e-14
Ferret 7.3118e-1 7.6542e-9 1.2075e-7 6.7977e-9 1.2629e-7

Four-leaf clover 8.6789e-1 1.8527e-8 3.4578e-7 3.2259e-9 5.3489e-8
Heart 1.6785 5.4987e-14 3.0065e-13 1.0636e-14 4.6109e-14

Figure eight 1.7776 2.0173e-15 5.0202e-15 2.8045e-15 5.9702e-15

Table 3.4: Estimation of the approximation error made in the integration of each curve with and
without global time-renormalization.
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(a) Figure eight (b) Heart (c) Ladybug

(d) Spider (e) Ferret (f) Cross

(g) Celtic knot (h) Four-leaf clover (i) Star

Figure 3.2: The nine selected figures for the experiments.
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Name x2 y2 γ

Figure eight 1.3914 -0.8888 -0.3533
Heart 0.2973 -2.6624 0.000
Ladybug 1.5708 -1.2761 1.0237
Spider 1.6198 -2.5128 2.4112
Ferret 1.2503 -1.1980 0.5630
Cross 1.6702 -2l3497 -3.0858
Celtic knot 1.2227 2.3562 -0.5588
Four-leaf clover 0.3755 -2.9764 -0.1836
Star 1.3009 -1.9462 -0.5477

Table 3.5: Initial states of the choreographies selected.
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Figure 3.3: The continuation of the figure eight choreography. Top-left to bottom-right.



3.8 Conclusions 41

Figure 3.4: The continuation of the heart choreography. Top-left to bottom-right.

Figure 3.5: Both ladybug choreographies side by side.





CHAPTER 4

Approach 2: Variational method

4.1 Description of the approach

Our task is to find three-body choreographies of different topological properties. A de-
tailed explanation of this idea can be found in section 2.8.

In section 3 the problem is posed as an optimization problem. In this section, a completely
different approach is used. The problem is posed as a variational calculus problem, in-
spired by Vanderbei’s paper [VANDERBEI, 2004]. Instead of trying to find solutions that
satisfy the permutation symmetry of choreographies in the space of solutions to Newton’s
law of universal gravitation, the opposite is done. Curves with the desired topology are
generated that satisfy permutation symmetry, and then they are modified in order to satisfy
gravitational force.

To generate an initial solution, two methods were used, the naive method and the corrected
method. The idea behind the naive method is to generate the desired collinear configura-
tions and then to interpolate between them to generate the entire curve. This method is
flawed and therefore another method is defined, called the corrected method. The cor-
rected method takes the desired code and works backwards from it, forcing the generated
curve to have said code.

To solve the variational calculus problem, the curve is passed as the initial point to an
algorithm for continuous optimization. The algorithm then tries to minimize the action
functional starting from that initial point. If the algorithm converges into a local minimum,

43
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it is guaranteed to be a solution to Newton’s equations as it is a stationary point of the
action.

With the approach of the optimization problem, the ability to control the codes of the
choregraphies obtained was completely out of our reach. On the other hand, this method
allows for a more specialized search of choreographies. Given a code, the method would
find a choreography that matches said code, in case of convergence.

4.2 Code inference

Given any P periodic N-body curve (not necessarily a choreography), a code can be as-
signed to said curve in such a way that it encodes its topological features, as explained in
section 2.2. To achieve this, the algorithm needs to list the index of the middlemost body
of each collinear formation, chronologically sorted.

Because of the discrete structure of computers, discretized curves are used to estimate
their code. This means that since rounding error is inevitable, the inferred codes may be
inaccurate if the correct hyperparameters are not chosen.

To detect that all three bodies form a straight line, the same function is used as in section
3.3.2. This function is equal to zero if and only if all three bodies are aligned:

gcol(u(τ)) = x12y23− y12x23

To detect for which values of tau g(q(τ)) equals zero, naively checking for which values
of τ the sign of the output changes does not suffice. This is because we can have that g just
barely reaches zero at a certain value of τ but never changes signs, similar to the function
x2 at the origin for example.

The roots of g are found by detecting when the derivative of its square changes from
negative to positive, and then checking whether g≈ 0 at that specific point. The derivative
of its square will only go from negative to positive at local minima of the square of g. We
will call this new function h:

h(t) =
1
2

d
dt
(g(q(t))2) = g(q(t))g′(q(t))
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where

g′(q) = (ẋ2− ẋ1)(y3− y2)+(x2− x1)(ẏ3− ẏ2)− (ẋ3− ẋ2)(y2− y1)− (x3− x2)(ẏ2− ẏ1)

For every time h changes signs, the exact instant at which h equals zero is estimated by
linear interpolation. This will result in the sequence τ1, . . . ,τk′ .

Because all local minima of g2 will be selected, the values for τ detected with the above
method also include some that are not roots of g. In other words, even though the method
detects all roots of g, it also detects some non-roots of g (false positives). To deal with
this, we will simply evaluate g on each of these points and discard any non-roots. Of
course, because of the rounding error we will be checking whether g(τi)

2− ε < 0, for
some small ε . Since for any continuous curve the number of false positives is very low,
efficiency-wise it is not a matter of concern.

Lastly, to determine which body is closest to the middle, the moduli of vectors q12, q23,
and q31 can be compared. For example, if body number one is in the middle then ‖q23‖2

will be greater than both ‖q12‖2 and ‖q31‖2.

4.3 Curve generation

4.3.1 Naive method for curve generation

The code of a P periodic curve represents in chronological order the middlemost body
each time all three bodies are aligned through [0,T ). This is explained in-depth in section
2.2.

The first step of the variational approach is to generate a P periodic curve for a given
code, not necessarily a solution to Newton’s differential equations. This naive approach
involves first generating the points of the curve concerning the collinear configurations,
and then interpolating between them to obtain a continuous curve.

More precisely, we have the code c = (c1,c2, . . . ,cl), where ci is the index of the body
closest to the center at collinear configuration number i. We fix P = 2π , and then the
positions of the bodies at l discrete points are defined for i = 1, . . . , l:
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ti = P
(i−1)

l

θi =
2π

a
(i−1)

xci(ti) = 0

yci(ti) = 0

x(ci mod 3)+1(ti) = cos(θi)

y(ci mod 3)+1(ti) = sin(θi)

x(ci+1 mod 3)+1(ti) =−cos(θi)

y(ci+1 mod 3)+1(ti) =−sin(θi)

for some constant value of a > 0. In our case a = 3 was chosen, as the curve can get quite
cluttered for high values of a. Also, note that if a ∈ 1,2 then the curves generated are
degenerate and not ideal for the task.

In order for the curve defined to be a choreography, another condition has to be satisfied:
all three bodies must permute. To achieve this, points will be generated for t ∈ [0,T ),
for T = P/3. Then, the rest of the points regarding the collinear configurations will be
generated via permutation. That is, the rest of the points are generated in order to satisfy

qi(t) = q j(t +T ((i− j) mod 3)) (4.1)

Once all l points are obtained, trigonometric interpolation is used to interpolate between
them and to obtain a continuous P periodic curve.

The generated curve has three nice properties:

• Because of the symmetry of the initial points generated, the interpolated points also
satisfy equation (4.1).

• For all l points, the center of mass is at the origin. The equivalent for that statement
is that the interpolating trigonometric polynomial of order l−1 has its coefficients
0, 3, 6, 9, . . . equal to zero. Because of this, all interpolated points also have the
center of mass at the origin.

• Collision is impossible when θ is not a multiple of π . We have no formal proof for
this property, but it is suggested by experimental evidence.
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Finally, P was fixed to 2π at first, but the scale of the system is not appropriate for the
minimization of the system for that value of P. By using the scale invariance principle,
curve q is rescaled to Q = νq, for a value of ν that minimizes the action functional.

Trivially,

A(νq) = K(q)ν2 +T (q)/ν

thus,

arg min
ν>0

A(νq) =
(

T (q)
2K(q)

)1/3

Even if this method is guaranteed to generate a curve that has the collinear configurations
that appear in the code, undesired collinear configurations also appear in some cases. For
example, let’s say a curve with relative code 123 is needed to be generated. Then, the
method successfully generates a curve with collinear configurations with body 1 in the
middle first, body 2 and then body 3. But, other collinear configurations may also appear
in between them, as a result of the interpolation. Consequently, the actual code of the
curve generated may be something like 2132223.

4.3.2 Corrected method for curve generation

The incorrect behavior of the naive method defined in section 4.3.1 taken into account, a
new method is defined that fixes it. The goal is the same, from a given code to generate the
according choreography. The insight behind this method is to force the generated curve to
have the given code, with what can be understood as reversing the logic for the algorithm
for code inference defined in section 4.2.

Because this method involves rotations of the curves, instead of using tuples of parametric
curves q jk(t) = (x jk(t),y jk(t)), parametric curves of complex numbers are used such that
z jk(t) = x jk(t)+ y jk(t)i. This way, they can easily be represented in polar coordinates,
z jk = r jkeiθ jk

By comparing angles we can detect collinear configurations, and also which body is in
the middle. For example, when θ12 = θ31, then body number 2 is closest to the center, and
also |θ12−θ23|= π . Therefore, by defining the parametric curve θ(σ) := θ12(t)−θ31(t),
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the l discrete values for σ that make θ = 0 can be set. A uniform distribution can be used,
σ = 0,2π

1
l ,2π

2
l , . . . ,2π

l−1
l , and reparameterization θ(σ) to θ(t) can be done afterwards.

Once l discrete points for θ(σ) are calculated, we need to obtain θ12 and r12, as z12 can
be obtained from them. Of course, since we only have information about θ(σ), this is not
enough to determine the values for θ12(σ) and r12(σ). Because we have some freedom,
parameters α1, . . . ,αm are defined such that θ12(σ) and r12(σ) can be determined. These
αi parameters concern r and the angular momentum. This way, θ12(σ) and r12(σ) can be
defined as functions of αi.

Then, using trigonometric interpolation N discrete points can be obtained with uniform
distribution σ = 0,2π

1
N ,2π

2
N , . . . ,2π

N−1
N . From there z12(σ) is obtained for those N val-

ues of θ12(σ) and r12(σ).

Once obtained z12(σ), a change of parameters can be done. The connection between σ

and t is defined as

dt
dσ

∣∣∣∣
σ=σ j

= s j, (4.2)

where σ j =
2π j
N for j = 0,1, . . . ,N. The values for s are obtained by fixing the total energy

to −1
2 :

With notation d
dt z = ż and d

dσ
z = z′, then z′ = żs.

We have the following formula for the energy:

H =
3

∑
j=1

(
|ż j|2

6
− 1
|z j|

)

By fixing the energy to −1
2 :

−1
2
=

3

∑
j=1

(
|ż j|2

6
− 1
|z j|

)

=
3

∑
j=1

(
|z′j|2

6s2 −
1
|z j|

)

=
1
s2

3

∑
j=1

|z′j|2

6
−

3

∑
j=1

1
|z j|
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Solving for s

s =

√√√√√ ∑
3
j=1
|z′j|2

6

∑
3
j=1

1
|z j| −

1
2

The N discrete values for t can be obtained with these s1, . . . ,sN by solving the system of
differential equations (111).

With this procedure, given a code and parameters αi, we are able to obtain N values of z12.
It can be proven that the curve generated has the code specified by reductio ad absurdum.

Finally, note that the curve z12 depends on values αi, which have not been fixed yet. This
means that its action can be defined in terms of αi: A(α1, . . . ,αm). It can now be posed
as an optimization problem to find the values of αi that minimize the action. Once the
optimal values for αi are found, z12 will be completely known and the entire curve z can
be determined by permutation. It is ensured that z has the desired code.

It is important to note that by minimizing the action in relation to αi we are not looking
for a solution to Newton’s laws of gravitation, we do not expect to find a solution to
those equations. Instead, the goal of that optimization is to find an initial curve z0 that is
reasonably scaled for later minimization of the action.

4.4 Action functional

4.4.1 Definition of the action functional for choreographies

The action functional is a functional that takes a curve z(t) = (z1(t),z2(t),z3(t)) and re-
turns a real number and it is comprised of kinetic and potential energy functions T and V .
Curve z(t) is a stationary point of the action, ∇A(z) =~0, if and only if z is a solution to
Newton’s differential equations for universal gravitation.

Functions T and V for three-body curves:

T (ż) =
1
2

3

∑
i=1
‖żi(t)‖2

V (z) = ∑
1≤i< j≤3

1
‖zi(t)− z j(t)‖
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Action for P periodic curves:

A(z;P) =
∫ P

0
(T (ż(t))+V (z(t)))dt

If curve z(t) is a choreography, it is enough to compute the action for a third of the period
T = P/3. Variable z is redefined so that it only represents the motion of the first body:

x(t) := x1(t)

y(t) := y1(t)

Then, because of permutation symmetry:

x2(t) = x(t +
P
3
)

y2(t) = y(t +
P
3
)

x3(t) = x(t +2
P
3
)

y3(t) = y(t +2
P
3
)

The action can then be redefined to only integrate on the bounded interval [0,P/3):

A(z;P) = 3
∫ P

3

0
(T (ż(t))+V (z(t)))dt

4.4.2 Discretization of the action

No closed form solution for calculating the action functional is known. Therefore, a dis-
cretization of the functional is necessary in order to numerically approximate it. Uniform
discretization is enough for this purpose because we are working with periodic curves.
As the number of discrete samples N increases, the method converges exponentially. The
intuition behind this feature is that because of the periodicity of the curve, the approxima-
tion errors cancel each other out.
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Uniform discretization of the action for discrete points t1, . . . , tN :

ÃN(z;P) = 3
N/3

∑
j=1

(T (ż(t j))+V (z(t j)))

Let N = 3M, we will use the following notation:

Z = (z1, . . . ,zN)

Ż = (ż1, . . . , żN)

The action can be rewritten with the newly defined notation:

ÂM(Z;P) = 3
M

∑
j=1

(Tj(Ż)+Vj(Z)),

where

Tj(Ż) =
1
2
(‖ż j‖2 +‖ż j+M‖2 +‖ż j+2M‖2)

Vj(Z) = ‖z j(t)− z j+M(t)‖−1

+‖z j+M(t)− z j+2M(t)‖−1

+‖z j+2M(t)− z j(t)‖−1

Because it is in our interest to define the action as a function of positions zi only, deriva-
tives żi need to be estimated. To do so, differentiation matrix DN is used (defined in section
2.6):

 ż1

. . .

żN

= ω DN

 z1

. . .

zN

 (4.3)

where ω = 2π

P .

We will assume that all three bodies are lined up on the x axis in the initial state, without
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loss of generalization. In that case, we have that:

yM = y2M = y3M = 0.

Note that x = ℜ(z) and y = ℑ(z) for a simpler notation.

This is important in order for the solutions that satisfy ∇A(z) =~0 to be isolated. In other
words, this initial collinear configuration has to be assumed so that the Hessian matrix is
not singular.

Therefore, when minimizing the discrete action there will be 6M−2 variables:

• 3M variables for the x coordinate.

• 3M−3 variables for the y coordinate.

• One variable for ω > 0 (or equivalently T = 2π/ω).

One more assumption can be done in order to reduce the dimensionality of the problem,
to make the minimization of the gradient easier. For indices j = 1, . . . ,M:

z j+2M =−z j− z j+M (4.4)

and as a result of equations (4.3) and (4.4):

ż j+2M =−ż j− ż j+M

In this case, there will be 4M−1 variables to optimize:

• 2M variables for the x coordinate.

• 2M−2 variables for the y coordinate.

• One variable for ω > 0 (or equivalently T = 2π/ω).

4.5 Experiments

Two tasks were carried out applying the techniques defined in this chapter:
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Name Closest No TR No TR GTR GTR
encounter e = 10−6 e = 10−12 e = 10−6 e = 10−12

Cross 4.3226e-3 6713 19843 478 6461
Celtic knot 1.0069e-1 6623 7455 326 650
Star 3.7212-1 2956 6235 346 676
Spider 5.5382e-1 1725 3596 338 1693
Ferret 7.3118e-1 1166 9479 274 8965
Ladybug 7.2609e-1 460 920 115 208
Four-leaf clover 8.6789e-1 649 10841 202 9389
Heart 1.6785 64 118 44 80
Figure eight 1.7776 58 110 48 106

Table 4.1: Number of Fourier coefficients needed for the interpolation of the curves.

1. It is convenient to verify the adecuacy of global time-renormalization for trigono-
metric interpolation. To do so, the same choreographies as in section 3.6 were se-
lected because of their different close encounters. Then, the number of Fourier co-
efficients needed to represent each curve with an error lower than 10−6 and 10−12

were calculated both with the regularized and the non-regularized equations.

The error was calculated as the mean squared error between the discretized chore-
ography and the interpolated points.

2. A search for choreographies with simple codes was performed. First off, curves
with the desired code were generated using the generation algorithms defined in
section 4.3. Then, the discretized action functional was minimized using Nelder-
Mead. Finally, in case of convergence a relative choreography with the desired code
is obtained.

4.6 Results

1. The number of Fourier coefficients needed for the representation of each curve are
shown in Table 4.1. The distance between the bodies in the closest encounter is also
shown.

2. We have applied our initial implementation of the variational approach to the figure
eight choreography. The initially generated curve and the result obtained can be
seen in Figure 4.1.
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Figure 4.1: The curve generated with figure eight’s code (left) and the result of minimizing its
action (right).

Figure 4.2: The curves generated with the hearts’s code (left) and the celtic knot’s code (right).
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4.7 Conclusions

As seen in Table 4.1, the number of Fourier coefficients needed to interpolate a periodic
curve with a close encounter is much greater when no time-regularization is used. This
fact becomes especially apparent with the interpolation of the cross and the celtic knot.
The use of global time-regularization for the minimization of the action functional is
clearly beneficial, as the curves are discretized as a set of uniformly distributed points.

The obtention of the figure eight shows that the approach is viable for finding choreogra-
phies. No other choreographies were found, and the limiting factor here was the lack of
time. Therefore, the idea that the approach is flawed based on the sole fact that only one
choreography was found is inaccurate. As shown in section 4.4.2, the discretized action
used in this method does not include any form of time-renormalization, thus making it
much more challenging to find a stationary point of its gradient for curves with a close
encounter, as proven by the first experiment.

By taking a look at Figure 4.1, it is clear that the initially generated curve was already
close to the resulting solution, and we also know that the figure eight choreography does
not have any close enconters. These factors combined create almost ideal conditions for
the convergence of the minimization of the non-renormalized action. In contrast, the
curves with the codes of the heart and the celtic knot can be seen in Figure 4.2, and it
is clear that they are not as close to their corresponding choreographies compared to the
figure eight.





CHAPTER 5

Conclusions and future work

5.1 Conclusions

The detailed conclusions of each approach can be found in sections 3.8 and 4.7. In this
section general conclusions are drawn based on the results obtained with both approaches.

The first approach was successful at finding many choreographies. With the local search
alone, 5392 relative choreographies and 166 simple choreographies were found in to-
tal. The most interesting family of choreographies discovered was the ladybug’s, as we
believe that it was not previously known. The collinear function seemed to be the most
promising of them all. The implementation of indices did not result in a much greater
variety of results, so that approach may not be ideal.

The continuation of the ladybug brought a new insight into our understanding of chore-
ographies, which is that there can be multiple choreographies with the same shape but
slightly altered. The algorithm also showed the connection between different choreogra-
phies, such as the figure eight and the celtic knot, and it enabled the discovery of new
choreographies, such as the cross.

The variational method is definitely interesting, because of the ability of choosing the
desired code. However, because of lack of time, only the figure eight choreography was
obtained with the method.

The results of the experiments performed to determine the effectiveness of global time-
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renormalization were similar to those obtained by Antoñana et al. Both experiments show
that the method is definitely beneficial for both approaches.

5.2 Future work

It would be interesting to define new objective functions for the local search to exploit
different kinds of symmetries, similarly to how the collinear function was defined. In
fact, the choreographies obtained with the collinear function show many different kinds
of symmetries.

The figure eight, heart, and ladybug were the only choreographies whose curve got contin-
ued. The continuation of other curves could be done in order to obtain new simple chore-
ographies. Especially, the choreographies obtained with the collinear function would be
interesting choices, because we believe that many of them were not found before. An
example would be the spider, which could be continued to find a simple choreography
isomorphic to the heart.

The variational approach needs two changes done. For one, time-renormalization should
be done to the action in order to decrease the number of points needed to represent a curve,
leading to a faster optimization process. Secondly, the curve generation process is not
ideal, and it could be improved to generate curves that are closer to actual choreographies.
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APPENDIX A

Initial values of some choreographies

Some of the choreographies obtained with the collinear function can be seen in Figure
A.1, and their initial values in Table A.1.

z1 z2 z3 z4 z5 z6 z7 z8 z9

1.6198 -2.5139 -0.1891 0.0978 0.1891 0.0978 29.8926 0.0003 43.3783
-1.3915 -0.8891 -0.6836 -0.1456 0.6836 -0.1456 13.4303 2.7182 21.7727
2.4369 -1.7981 -0.1924 0.0473 0.1924 0.0473 21.6628 2.6592 28.7017
1.6177 -2.8046 -0.1324 0.0765 0.1324 0.0765 16.1109 2.0950 21.6930
2.8652 -0.2537 -1.3033 0.0385 1.3033 0.0385 55.6791 0.0107 69.7850
1.7607 -0.8332 -0.6642 0.1048 0.6642 0.1048 28.2365 0.0077 43.4511

Table A.1: Initial z vectors of the selction of choreographies obtained with the collinear function.
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Figure A.1: A selection of choreographies obtained with the collinear objective function.



APPENDIX B

Source code of the project

The source code was written in the Julia programming language. This code was then put
together into a set of Jupyter notebooks, which allow for an interactive execution of the
code. They are licensed under the MIT license; a permissive free software license. The
notebooks can be found in the following repository:

https://github.com/MarkelZ/3body-problem

63

https://github.com/MarkelZ/3body-problem




Bibliography

[Antoñana et al., 2020] Antoñana, M., Chartier, P., Makazaga, J., and Murua, A. (2020).
Global time-renormalization of the gravitational n-body problem.

[Chenciner and Montgomery, 2000] Chenciner, A. and Montgomery, R. (2000). A re-
markable periodic solution of the three-body problem in the case of equal masses.
Annals of Mathematics, pages 881–901.

[Montgomery, 2014] Montgomery, R. (2014). The three-body problem and the shape
sphere.

[Moore, 1993] Moore, C. (1993). Braids in classical dynamics. Phys. Rev. Lett.,
70:3675–3679.

[Qiu-Dong, 1990] Qiu-Dong, W. (1990). The global solution of the n-body problem.
Celestial Mechanics and Dynamical Astronomy, 50.

[Schaffer, 1981] Schaffer, S. (1981). Richard s. westfall, never at rest. a biography of
isaac newton, cambridge university press, 1980, 8vo, pp. xviii, 908, illus., £25.00.
Medical History, 25(4):432–434.

[Simó, 2001] Simó, C. (2001). New families of solutions in n-body problems. In Euro-

pean Congress of Mathematics, pages 101–115. Springer.

[Simó, 2002] Simó, C. (2002). Dynamical properties of the figure eight solution of the.
In Celestial Mechanics: Dedicated to Donald Saari for His 60th Birthday: Proceedings

of an International Conference on Celestial Mechanics, December 15-19, 1999, North-

western University, Evanston, Illinois, volume 292, page 209. American Mathematical
Soc.

65



66 BAppendix

[Sundman et al., 1913] Sundman, K. F. et al. (1913). Mémoire sur le problème des trois
corps. Acta mathematica, 36:105–179.

[VANDERBEI, 2004] VANDERBEI, R. J. (2004). New orbits for then-body problem.
Annals of the New York Academy of Sciences, 1017(1):422–433.


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	N-body choreography
	Topology of three-body choreographies
	Global time-renormalization
	Numerical integration of ordinary differential equations
	Newton-Raphson method
	Trigonometric interpolation via DFT
	Floating-point arithmetic
	Formal description of the problem

	Approach 1: Optimization problem
	Description of the approach
	Encoding of candidate solutions
	Encoding of asymmetrical solutions
	Encoding of symmetrical solutions

	Objective functions
	General definition of the objective function
	Symmetry-based objective functions
	Indexed objective functions
	Properties of the objective functions

	Local search
	Curve continuation
	Insight
	Formal definition of the curves
	Curve continuation method
	Continuation algorithm

	Experiments
	Results
	Conclusions

	Approach 2: Variational method
	Description of the approach
	Code inference
	Curve generation
	Naive method for curve generation
	Corrected method for curve generation

	Action functional
	Definition of the action functional for choreographies
	Discretization of the action

	Experiments
	Results
	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Initial values of some choreographies
	Source code of the project
	Bibliography

