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Abstract

The main objective of this work is to present one of the most recent deep neural
networks to solve the super-resolution task, named DFCAN, as well as the study of
different methods that solve the same problem. Throughout the document, different
approaches are explained and compared, emphasising the state-of-the-art methods.

This work also contains different experiments done with the DFCAN using different
datasets. Finally, to complete the thesis, there is a guide for an easy-to-use Jupyter
notebook, created with the aim of being available for anyone, specifically designed
for people who do not have expertise in programming and deep learning.
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CHAPTER 1

Introduction

1.1 Image super-resolution

In the last decades, imaging techniques have undergone a rapid development due to
the technology progress, and as a result, the resolution has also improved. Image
resolution refers to how much detail is portrayed in an image and it is usually
measured in pixels.

This development has resulted in an increase of demands to generate high resolution
images from existing low-resolution images. The fact is that there are some applica-
tions that need this resolution enhancement, such as security surveillance, where the
image resolution is inferior in order to ensure the stability of the recording devices
in the long term. Moreover, considering the high cost of some devices that obtain
high resolution images, purchasing them is not an option.

Therefore, resolution enhancement is still needed, and with the aim of addressing
that problem, the super-resolution (SR) task has been a research focus in the com-
puter vision field, which consists of reconstructing a high-resolution (HR) image
from one or more low-resolution (LR) images. As previously mentioned, a high reso-
lution image has more details than a low resolution one, hence it can be quite useful
in certain areas such as security surveillance, medical imaging and satellite imaging.

1



2 Introduction

(a) Original HR image (b) Corrupted LR image (c) SR result

Figure 1.1: Example of a super-resolution result for a magnetic resonance imaging (MRI)
image 1

More particularly, in the medical field, images can be quite determining in diagnosis
and research. Medical imaging can play a significant role to determine the presence
of many diseases and analysis of experimental results, so enlarging medical images
can help medical experts to elevate diagnosis accuracy in pathology research (see
Figure 1.1). For example, in an X-ray, the detail needs to be rather high in order
to detect possible fractures, or even tumors, therefore obtaining images with poor
resolution is out of question. Due to this fact, doctors rely on expensive medical
imaging systems, and it is of the utmost importance to discover inexpensive and
effective ways to obtain high resolution images without resorting to sophisticated
devices.

Along the same lines, microscopy is also fundamental in the medical area of study,
which is the science of using physical systems to view small objects. Those systems
are known as microscopes. Originally, microscopes were plainly optical devices, using
finely ground lenses to expand the resolution of samples. More recently, the field of
microscopy has started to use technologies such as electron beams or even physical
probes to produce high-resolution samples. Compared to macroscale photographs,
microscopy images demand greater accuracy, therefore the SR algorithms must be
more precise for the predictions to be acceptable.

1Figure taken from: [4]
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1.1.1 Objectives of this project

Over the years, the methods aimed to solve the task of super-resolution have evolved
obtaining solid results. Especially, the study of deep learning methods are currently
at its peak, given the fact that the results they obtain surpass previous methods
that will be later explained in this work (see Section 2.2).

Taking this into account, the main goal of this project is the study of modern deep
learning methods for the super-resolution task, particularly for microscopy images.
More specifically, one of the goals is to use a deep neural network that generates
high resolution images from low resolution ones. The architecture that is going to
be tested in order to achieve this is the Deep Fourier Channel Attention Network
(DFCAN) [5], a network inspired by the spatial domain channel attention mechanism
employed in the deep residual channel attention network (RCAN) [6]. This network
has been very recently proposed in an article published in Nature Methods [5].

As deep learning methods have not been thoroughly explored for optical microscopy,
the architecture will be subjected to testing using microscopy images. The test
dataset that we will used is composed by LR-SR image pairs, created using multi-
modality structured illumination microscopy (SIM). This dataset is publicly avail-
able with the name of BioSR 2.

Secondly, it is important to mention that although the investigation and testing of
super-resolution methods are important, they are limited to the computer science
community since the creation and use of them require a minimum knowledge in
the field. This limitation can entail a deceleration in its development since less
testing means less information. For example, for the medical imaging, the testing
and feedback of the experts can lead to the improvement of these methods. Besides,
these achievements can loose significance if the interested people can not make use of
them. Therefore, with the goal of closing this gap, the platform ZeroCostDL4Mic [7]
was created, which provides access to user-friendly Jupyter Notebooks for popular
pre-existing networks. These cover a range of important image analysis tasks (e.g.,
segmentation, denoising, restoration, label-free prediction).

For this reason, the DFCAN architecture will be implemented in a notebook for the
ZeroCostDL4Mic project. The platform offers 3 types of implemented networks:

1. Fully supported: considered mature and considerably tested by the Zero-
2Dataset available in: BioSR dataset

https://doi.org/10.6084/m9.figshare.13264793
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CostDL4Mic team.

2. Under beta-testing: an early prototype of networks which may not be stable
yet.

3. Contributed: networks following the ZeroCostDL4Mic guidelines and con-
tributed by community members. The ZeroCostDL4Mic team does not main-
tain these networks, but they have been tested so that they offer a similar
workflow experience and quality control.

Therefore, the final notebook for this project falls under the Contributed category
and thus, it will follow their guidelines and will be submitted to them.

To sum up, the main objectives of this work will be the following:

1. Familiarisation and study of state-of-the-art techniques for the single image
super-resolution (SISR) task.

2. Implementation of a modern network for super-resolution in microscopy im-
ages, more specifically, the DFCAN network.

3. Adaptation of the implemented network to the ZeroCostDL4Mic scheme.

4. Evaluation on real data.



CHAPTER 2

Background

2.1 Technical background

The most commonly used image sensors nowadays are the charge-coupled devices
(CCDs) and the complementary metal oxide sensors (CMOSs) [8], two different
technologies for capturing images digitally by converting light into electric charge
and processing it into electronic signals.

Figure 2.1: Processing of light into electrical signals 1. Firstly, the microlenses collect
the light which is then passed to the following layer, the colour filters. These filters are
indispensable because the image sensor are unable to reproduce colours by themselves.
Lastly, the filters pass the information to the photodiodes, which generate the electrical
signal output.

5



6 Background

The spatial resolution, the number of pixels utilised in construction of a digital
image, is restrained by the CCD array and the optical lens, so one of the options
to increase that resolution is to decrease the pixel size. However, there is a problem
with that approach: as the pixel size decreases, the amount of light decreases too,
and thus the image quality is degraded by shot noise, a property of the light field.
Another solution to increase the spatial resolution is to increase the focal length,
but this approach results in an enlargement of cameras which inflates its price.
Despite CCDs being superior in terms of image resolution, sensor sensitivity, noise
suppression and technology development, CMOSs have been more studied recently,
due to the high cost of manufacturing CCD based cameras.

All in all, the limitations of the hardware technology have made it vital to study
algorithms to accomplish the task of super-resolution.

2.2 Image Super-resolution methods

As previously stated, image super-resolution refers to the task of obtaining high
resolution images from low resolution ones. However, this task can be categorised
into different groups depending on elements like the number of images used to obtain
the HR image.

According to the number of input LR images, the SR can be classified into single
image super-resolution (SISR) and multi-image super-resolution (MISR), although
the former one is significantly more used considering that it is more efficient. MISR
methods use patch recurrence across images to obtain correlation. However, the
computational cost of these methods is especially high. On the other hand, in the
SISR problem, the LR image is usually a low-pass filtered and downsampled version
of an HR image, therefore, this is considered an ill-posed problem due to the fact
that one LR image can correspond to several possible HR images.

1Figure taken from: The Nanotech Museum website

https://www.tel.com/museum/exhibition/principle/cmos.html


2.2 Image Super-resolution methods 7

Figure 2.2: The super-resolution imaging model. Bk , Mk and Dk indicate the blur
matrix, warp matrix and down-sampling matrix, respectively. nk represents the additive
noise, while Ok is the operator cropping the observable pixels from yk. The first image
represents the high resolution (HR) image, which is then modified by different methods
obtaining a low resolution (LR) image. As it can be seen, variations in the methods produce
different low resolution images, meaning that obtaining a HR image from a LR one is an
ill-posed problem, since a HR image can correspond to different LR images and vice versa.
2

To date, SISR algorithms are primarily divided into three categories: interpolation-
based methods, reconstruction-based methods and learning-based methods. Inter-
polation - based SISR methods, such as Lanczos resampling [9] and bicubic interpola-
tion [10], are very speedy and straightforward, but they lack accuracy. Reconstruction-
based SR methods often use complex prior knowledge to restrict the possible solution
space with the outcome of generating sharp details. However, as the scale factor in-
creases, the performance of many reconstruction based methods diminish, and thus
the methods become more time-consuming.

Learning-based SISR methods, or example based methods, are highly relevant con-
sidering their fast computation and remarkable performance. These methods usually
employ machine learning algorithms to analyse relationships between the LR and
its corresponding HR image from training examples [11] [12].

2Figure taken from: [8]
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Up to now, deep learning based models have been highly considered to solve this
task, as they have proved to obtain excellent results compared to the aforementioned
methods [13]. In a nutshell, deep learning is a subfield of machine learning that uses
multilayered neural networks with the purpose of learning diverse representations of
data.

2.3 Single image super-resolution problem formulation

Given a LR image Y downsampled from the corresponding HR image X, they can
be related by the following degradation model,

Y = D(X,α) (2.1)

where α is the parameter by which X is degraded, and D the degradation process.
The goal of SISR is to solve the equation so that it obtains a good approximation of
the HR image by reversing the degradation process shown in Equation (2.1), which
can be represented as follows,

X̂ = R(Y, β) (2.2)

where R is the SISR reconstruction function, β its parameter and X̂ the estimation
of the HR image.

In theory, the SR problem is the inverse of the degradation process, so the former
one depends on the later. One of the most used degradation process is blurring,
downsampling and the addition of noise, where most common noise addition is
the white Gaussian noise and the blurring is usually done by convolving the high
resolution image with a Gaussian kernel. The process can be represented as

Y = SBX +N (2.3)

where S is the downsampling, B the blurring and N the noise addition.

However, regardless of how sophisticated the degradation process is, the real world
is more complex and therefore, there are countless factors that the artificial degra-
dation process does not take into account. In consequence, the reconstructions of
SR real-world images do not have as good results as predictions of the downsampled
images may have.
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2.4 Evaluation of single image super-resolution algorithms

As the SISR algorithms have been increasingly developed in recent years, the meth-
ods by which these algorithms’ performance is evaluated have also been a focus in re-
search. Depending on whether the human is involved in said evaluation, the methods
can be divided into two categories: subjective evaluation and objective evaluation.
The evaluator of the subjective evaluation is human while the objective evaluation
uses a mathematical model to evaluate. Currently, the most used objective evalua-
tion methods include structural similarity index (SSIM), peak-signal-to-noise-ratio
(PSNR), root mean squared error (RMSE) and perceptual index (PI).

2.4.1 Structural similarity Index (SSIM)

The SSIM metric, first introduced in a 2004 IEEE paper [14], measures the per-
ceptual difference between two similar images. However, this metric can not deduce
which one is better, so it has to be indicated which one is the original and which
one has been processed. This aims to replicate humans visual perception system,
which is highly capable of identifying structural information from a scene and thus
identifying the differences between the information extracted from a reference and
a sample scene.

The metric gives a value between -1 and 1. The higher the score, the more similar
both images are. It is common to adjust the value range to [0,1].

The SSIM consists of three features from an image: brightness, contrast and struc-
ture. Firstly, brightness is measured by averaging all the pixel values. It is denoted
by µ :

µx =
1

N

N∑
i=1

xi (2.4)

where x is the input image. The brightness comparison function l(x, y) is then a
function of µx and µy.

Secondly, the contrast is measured by taking the standard deviation of all the pixel
values. It is denoted by σ, as shown in the following equation:
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σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

(2.5)

The contrast comparison c(x, y) is then the comparison of σx and σy.

Lastly, the signal is normalised by its own standard deviation and the structure
comparison s(x′, y′) is calculated on these normalised signals:

x′ =
(x− µx)

σx
, y′ =

(y − µy)

σy
(2.6)

Finally, the SSIM function is defined as presented in:

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (2.7)

where l(x, y) compares the brightness, c(x, y) compares the contrast and s(x′, y′)

compares the structure.

Figure 2.3: Diagram of the structural similarity (SSIM) measurement system. Firstly,
the luminance (or brightness) is measured for both images, which are then used in the
luminance comparison function (l(x, y)). Secondly, the contrast is measured for both images
and the results are used in the contrast comparison function (c(x, y)). Lastly, the signals
are normalised using the previously calculated luminances and contrasts and they are used
to make the structure comparison. Finally, the three comparison functions are combined
to create the SSIM function. 3

3Figure taken from: [14]
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It is important to mention that applying this metric regionally can obtain a more
accurate evaluation than applying it globally. In other words, it is better to apply it
in small sections of the image and taking the mean overall, than applying it all over
the image. This is because the feature statistics of an image are usually unevenly
distributed in the pixel space and, furthermore, it replicates more truthfully the
characteristics of the human visual system, as human eyes tend to focus on a region
of an image rather than on the whole image.

2.4.2 Multi-scale structural similarity (MS-SSIM)

This metric, developed by Wang et al. [15], is a slightly improved version of the
previously mentioned SSIM (see Section 2.4.1). It is based on the premise that in
the real world, the sampling density of the image signal, the distance from the image
plane to the observer, and the perceptual capability of the observer’s visual system
are elementary components that influence the perceivability of image details, and
therefore, in practice the subjective evaluation of a given image varies when these
factors vary.

With the aim of addressing this matter, the MS-SSIM simulates different spatial
resolutions by iterative downsampling and weighting the luminance, contrast and
structure components of the SSIM at different scales, which has proven to be more
accurate than SSIM for some circumstances [16].

Figure 2.4: Multi-scale structural similarity measurement system. L: low-pass filtering; 2
↓: downsampling by 2. The MS-SSIM system iteratively downsamples and calculates the
luminance, contrast and structure of both signals (images). 4

4Figure taken from: [15]
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2.4.3 Peak-signal-to-noise-ratio (PSNR)

The peak-signal-to-noise-ratio [17] represents the ratio between the maximum pos-
sible value of a signal and the power of distorting noise that affects the quality of
its representation. In the specific case of images, that value is 255. It is represented
by the following formula:

PSNR = 20 ∗ log
(
MAX(f)√
MSE

)
(2.8)

where the MSE is:

MSE =
1

MN

∑M

n=1

∑N

m=1
[ĝ(n,m)− g(n,m)]2 (2.9)

where ĝ and g refer to the resulting image and original image respectively, and their
sizes are M(height)×N(width). MAX is the maximum value of the pixels, as said
before, 255.

The larger the PSNR value, the smaller the difference between the predicted image
and the original image, which means the better the image quality. Nevertheless, as
opposed to SSIM, this method is based on global statistics of the pixels, so the
human eyes’ characteristics are not taken into account.

2.4.4 Root mean squared error (RMSE)

The root mean squared error has also been a frequently used image quality metric.
This metric is scale-dependent accuracy measure, which means that it is very sen-
sitive to large or small errors in measurements, therefore it cannot be used to make
comparisons between series using different scales. It is represented as follows:

RMSE =
√
MSE (2.10)

where the MSE is as defined in Equation (2.9)
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2.5 Convolutional neural networks

Before explaining the state-of-the-art methods for the super-resolution task, it is
important to describe the Convolutional neural networks (CNN). The CNN is a
Deep Learning algorithm that was developed for use in image processing and com-
puter vision. It is inspired by the functioning of the animal visual cortex, which can
identify objects and characteristics in the images it sees. Research performed from
the 1950s to the 1980s established that vision is processed through a sequence of
layers. Each neuron in the first layer takes input from a small region of the visual
field (its receptive field). Different neurons are specialised to detect particular local
patterns or features, such as vertical or horizontal lines. In the second layer, cells
take input from cells in the first layer, combining their signals to detect more com-
plicated patterns over a larger receptive field. Hence, each layer can be considered
as a representation of the first input image.

CNNs emulate this design, by taking an image as an input and feeding it to every
layer of the model. Hence, CNNs are similar to the Multilayer perceptron (MLP),
but with a slight difference. MLP use fully connected layers, meaning that every
element of the output depends on every element of the input. On the other hand,
CNNs use convolutional layers that take advantage of spatial locality. Each output
element corresponds to a small region of the image, and only depends on the input
values in that region, which can reduce the number of parameters of the model.
Moreover, CNNs assume that the parameters are the same for every local region
of the image, so if a layer uses one set of parameters to detect vertical lines in a
local region, it uses the same parameters to detect vertical lines in every region.
Consequently, the number of parameters for the layer is independent of the size of
the image. In addition, this network has to learn a convolutional kernel which has
the function of defining how output features are computed from a local region of the
image.

On the other hand, each layer is composed by neurons, which are mathematical
functions that calculate the weighted sum of multiple inputs and output an acti-
vation value , with the aim of highlighting the relevant features of the image. The
first layer of the CNN detects basic features such as horizontal, vertical, and diag-
onal edges. The second one extracts more complex features, for instance corners.
Therefore, each layer detects more complex features than the previous one, so when
a layer reaches certain degree of complexity it can detect higher-level features such
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as objects, eyes or faces.

Figure 2.5: Example diagram of a basic convolutional neural network (CNN) architecture.
CNNs combine both feature extraction and classification. The network consists of five
different layers: input, convolution, pooling, fully-connected, and output. The input layer
specifies a fixed size for the input images. The image is then convolved with multiple
learned kernels using shared weights. Next, the pooling layers reduce the size of the image
while trying to maintain the contained information. These two layers constitute the feature
extraction part. Afterwards, the extracted features are weighted and combined in the fully-
connected layers, which represents the classification part of the CNN. Finally, there is one
output neuron for each category in the output layer. 5

5Figure taken from: [18]
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State of the art

3.1 Deep learning based super-resolution

In recent times, DL-based SISR algorithms have demonstrated great superiority to
aforementioned methods (see Section 2.2). The first deep learning architecture to
solve the SISR task was the super-resolution convolutional neural network (SRCNN),
presented by Dong et al. [19] This architecture is a three layer convolutional neural
network (CNN), where the filter sizes of each layer are 64×1×9×9, 32×64×5×54

and 1× 32× 5× 5.

Figure 3.1: Diagram of the SRCNN architecture. The LR image is fed into the model
going through three layers, each of which has a different task: patch/feature extraction,
nonlinear mapping and reconstruction. 1

15
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The model’s objective is to find an optimal model to predict SR from unobserved
examples, having previously trained on a training set of LR-HR images. The SRCNN
comprises the following steps:

1. Preprocessing: Upscale the LR image to desired HR image using bicubic
interpolation.

2. Feature extraction and representation: This operation extracts patches
from the LR images and represents each patch as a high-dimensional vector.
These vectors include a set of feature maps and the number of said feature
maps is equal to the dimension of the vector. The first convolutional layer is
represented by the following equation:

F1(y) = max(0,W1 ∗ Y +B1) (3.1)

where W1 represents the filters and B1 the offsets. The size of filters W1 is
c × f1 × f1 × n1, where c is the number of channels in the input image, f1 is
the channel size of the filter, n1 is the number of filters, and B1 is a vector of
n1 dimensions, each of which is associated with the filters.

3. Non-linear mapping: This operation maps the features between the LR and
HR patches, specifically, it nonlinearly maps each high-dimensional vector onto
another high-dimensional vector. These vectors comprise another set of feature
maps. The first layer extracts an n1-dimensional feature for each patch. In the
second operation, we map each of these n1-dimensional vectors into an n2-
dimensional one. The operation of the second layer is:

F2(Y ) = max(0,W2 ∗ F1(Y ) +B2) (3.2)

Here W2 contains n2 filters of size n1 × f2 × f2, and B2 is n2-dimensional. To
increase non-linearity, it is possible to add more convolutional layers, but it
can increase the complexity of the model (n2×f2×f2×n2 parameters for one
layer), resulting in more training time.

4. Reconstruction: In the traditional methods, the final full image is produced
by averaging the predicted overlapping high resolution patches. Inspired by this

1Figure taken from: [20]
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procedure, this operation aggregates the HR patch representations to generate
a final HR image that is as similar as possible to the original HR image. It can
be expressed by the following equation:

F (Y ) = W3 ∗ F2(Y ) +B3 (3.3)

HereW3 corresponds to c filters of a size n2×f3×f3, and B3 is a c-dimensional
vector.

Although this architecture is composed by only three layers, its results substantially
outperforms other algorithms not based on deep learning, which can be attributed
to the CNN’s capacity to learn valid representations from big data. Regardless of the
accomplishment of the SRCNN, it presents some problems that led to investigate
other architectures:

1. The input of SRCNN, the bicubic LR, has some inconveniences: (1) detail-
smoothing effects introduced by these inputs can result in wrong estimations
of the image structure; (2) employing the interpolated versions as input is very
time-consuming.

2. The SRCNN only has three layers, so it is natural to enquire if the addition
of more layers can improve the performance.
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3.2 Deep single image super-resolution models

3.2.1 Very deep convolutional network (VDSR) and deeply recursive con-

volutional network (DRCN)

In light of the success of deep convolutional networks, Kim et al. proposed two
models: very deep convolutional network (VDSR) [21] and deeply recursive convolu-
tional network (DRCN) [22], both of them composed by 20 convolutional layers. The
VDSR network (see Figure 3.2) was presented as an improvement of the SRCNN
network, which aimed to solve the following problems:

1. Reliance on the context of small image regions. For a large scale factor, the
information contained in a small patch is not sufficient for detail recovery.

2. Slow training convergence.

3. The network only works for a single scale. Each SRCNN model is trained to
operate for a single scaling factor, so a model has to be trained and stored for
each scaling factor, which is not practical.

For the first problem, the VDSR uses a large receptive field that takes a large image
context into account. In convolutional neural networks, hidden units of each layer
take as input a subset of units in their previous layer and thus, they form spatially
contiguous receptive fields. The architecture ensures that the learned filters produce
the strongest response to a spatially local input pattern. In addition, adding more
layers leads to filters that become increasingly global, making them responsive to
a larger region of pixel space. In [21], Kim et al. demonstrate that the size of the
receptive field is proportional to the models depth and that, in the SR task, this
corresponds to the amount of contextual information that can be used. In other
words, the larger the receptive field, the better, since it means that the network can
use more context to predict image details.

On the other hand, to hasten the speed of the convergence, the learning rates were
highly increased by using a learning rate of 10−1 instead of the SRCNN learning
rate, 10−4. However, this boost in the learning rate can lead to exploding gradients,
and therefore, to solve this issue, residual-learning and gradient clipping are used.
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In SRCNN, the network must conserve all input detail since the image is discarded
and the output is generated solely from the learned features. This approach is ad-
equate for that network, since it is composed by only three layers. In contrast, the
VDSR has 20 layers, requiring very long-term memory. Residual learning tackles
this problem, so that instead of predicting the whole image the model learns the
difference between inputs and outputs, resulting in a faster convergence and better
accuracy.

To address the third problem, the proposed method is modifying the scaling factor
while training, which proves to be effective. Therefore, to verify this statement, the
VDSR was trained with a single scaling factor and with scale augmentation, which
confirmed that the latter one could cope with any scale used during training.

Figure 3.2: VDSR network structure. Composed by pairs of convolutional and nonlinear
layers repeatedly. 2

However, the convolution kernels in the nonlinear mapping part (see step 3 in Section
3.1) are very similar, and thus Kim et al. further proposed DRCN [22] with the aim
of reducing the parameters. In [22], it is stated that increasing depth by adding
new weight layers introduces more parameters, which can trigger two problems:
overfitting and a huge increase in the weight of the model, difficulting its storage.
Consequently, the DRCN repeatedly applies the same convolutional layer several
times, meaning that the number of parameters stays constant even if more recursions
are performed.

2Figure taken from: [21]
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The network consists of three parts: embedding network, inference network and re-
construction network. The embedding network takes the input image and represents
it as a set of feature maps (see Figure 3.3).

The inference network is the main component that solves the super-resolution task.
A single recursive layer analyses a large image region and each recursion applies
the same convolution followed by a rectified linear unit (ReLU). With convolution
filters larger than 1×1, the receptive field is widened with every recursion, and thus,
as explained before for the VDSR, the network uses more context to predict image
details. Finally, the reconstruction network transforms the multi-channel feature
maps into the original image space (one or three channels).

Figure 3.3: Architecture of the DRCN basic model. 3

3.2.2 Enhanced deep residual network (EDSR) and Wide-activated deep

super-resolution network (WDSR)

The Enhanced deep residual network (EDSR), proposed by Lim et al. [3], is based
on the improvement of the SRResNet [2]. This network incorporates some enhance-
ments with regard to the SRResNet. Firstly, the EDSR removes the usage of batch
normalisation (BN) in the residual blocks (see Figure 3.4). This layer comes from the
initial ResNet [1], which was first proposed to solve other higher leveled computer
vision problems such as classification and detection, so its performance is not as good
for a low-level computer vision problem as super-resolution. Moreover, the BN layer
consumes as much memory as the convolutional layer in front of it, so discarding it
can save memory resources. Secondly, since the first improvement results in saving

3Figure taken from: [22]
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memory, the EDSR stacks more layers and it also increases the number of output
features for each layer, which leads to a better performance with the same comput-
ing resources as the SRResNet. Lastly, during training, the model was trained for
a scaling factor of ×2 for the purpose of using the generated weights to train the
model for ×3 and ×4 scaling factors, a strategy that reduced the training time and
improved the final performance.

Figure 3.4: Comparison of residual blocks in original ResNet [1], SRResNet [2], and
EDSR [3]. As it can be seen, the EDSR removes the batch normalisation blocks on the
grounds that it is not useful for low-level computer vision tasks. The disposal of these
layers contributes to a reduction of memory usage. 4

However, JiaHui Yu et al. presented the Wide-activated deep super-resolution net-
work (WDSR) in [23], an improvement of the EDSR. The WDSR introduced two
major improvements: the first one is to remove all the redundant convolutional layers
(see Figure 3.5) which increases the training speed and reduces the memory. Sec-
ondly, the usage of weight normalisation. In [23], JiaHui Yu et al. demonstrates that
this strategy obtains better results than batch normalisation (BN) or no normal-
isation. Weight normalisation consists of rewriting each weight W by multiplying

4Figure taken from: [3]
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it by a scalar s and the vector v, fixing the v vector. Additionally, using weight
normalisation does not need further storage.

Figure 3.5: Comparison of EDSR (left) and WDSR (right) architectures 5. The WDSR
introduces two improvements in relation to the EDSR: removing all the redundant convo-
lutional layers and the usage of weight normalisation.

3.2.3 Residual channel attention network (RCAN)

Another deep learning network is the residual channel attention network (RCAN)
network, proposed in [6], by Zhang et al. The main statement in [6] is that the deeper
the networks, the more difficult it is to train them. The low resolution inputs contain
a considerable amount of low-frequency information, which is treated equally across
channels, thus hindering the representational ability of CNNs. In addition, most of
the preceding networks do not have a large network depth, a characteristic that has
demonstrated to be very influential in computer vision tasks.

Therefore, with the aim of creating a very deep network with superior results, the
residual in residual (RIR) structure is proposed, which consists of a collection of
residual groups (RG) with long skip connections where each of these groups contains
a set of simplified residual blocks with short skip connections. This structure allows
an ample low-frequency information to be bypassed through these skip connections,
permitting the main network to focus on the high-frequency information. Moreover,
the structure allows to train very deep CNN with high performance. As a matter of
fact, the RCAN has been the deepest model for the SISR task, with over 400 layers.

Additionally, the network implements a channel attention (CA) mechanism (see
Figure 3.6), whose task is to focus on the most informative features exploiting the
interdependencies among feature channels. The first operation is a global average
pooling to get the channel with a size of 1 × 1 × C, which is a channel descriptor

5Figure taken from: [23]
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containing rough information. Then it divides the channel by the ratio r, which is
a downsample, and then it upsamples to get the weight coefficient of each channel.
The final operation is to multiply the original feature from the residual to obtain a
new feature that has been redistributed to the channel weight. This technique allows
to control how much information is passed up to the next layer in the hierarchy.

Figure 3.6: Channel attention (CA).
⊗

denotes element-wise product andHGP the global
average pooling. 6

Finally, both mechanisms, the RIR and the CA, are combined resulting in the resid-
ual channel attention block (RCAB), with which the RCAN network has been cre-
ated.

Figure 3.7: RCAN network architecture. 7This network is composed by a collection of
residual groups (RG) with long skip connections where each of these groups contains a
set of simplified residual blocks with short skip connections. The network implements a
channel attention (CA) mechanism, whose task is to focus on the most informative features
exploiting the interdependencies among feature channels. These both mechanisms are then
combined creating the residual channel attention block (RCAB).

6Figure taken from: [6]
7Figure taken from: [6]
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3.3 Democratising deep learning for bioimage analysis: Zero-

CostDL4Mic

As previously stated (see Section 3.1), deep learning has been a powerful tool for
the super-resolution task, since it has brought great progress. However, the train-
ing of DL neural networks requires certain resources that beginners can find hard to
acquire. Moreover, the creation and use of these methods demand a minimum knowl-
edge in the computer science field, thus remaining out of reach for most researchers.
The training of DNNs often needs local servers with high computational capability
or expensive DL-ready workstations, which implies financial resources and a com-
mitment to maintain them. Another option is to purchase computational resources
provided by cloud services, but the fact remains that not everyone has the resources
to train a DL network.

In case of not training, there is the option of using a pretrained network for some
common tasks such as cellular segmentation or super-resolution. However, if the
datasets to be predictedwor bear no resemblance to the ones with which these models
have been trained, it is most likely that the prediction will not be correct, since it has
been proved that models perform best on datasets similar to the training dataset.
Therefore, this fact leads again to the need of having financial resources and the
barrier it entails for several potential users.

Hence, with the purpose of overcoming this barrier, the team of ZeroCostDL4Mic8

has developed an entry-level, cloud based platform that allows most users to have
access to DL technology, and it is specifically targeted for microscopy DL. Zero-
CostDL4Mic is a collection of fully annotated Jupyter notebooks with an easy-to-use
graphical user interface. The only requirement to be able to use them is having a
Google account, since it provides all the requisites to run the notebooks. One of the
objectives of ZeroCostDL4Mic is to provide researchers and experts with no coding
background with the ability to use DL, so it is not necessary any prior knowledge
in coding.

Google colab 9 is a highly used tool among data mining and deep learning experts,
yet it is necessary to have coding and deep learning knowledge in order to derive full
benefit from it. By creating a user-friendly interface, the team of ZeroCostDL4Mic

8Link to ZeroCostDL4Mic site
9Link to Google Colab

https://github.com/HenriquesLab/ZeroCostDL4Mic
https://colab.research.google.com/


3.3 Democratising deep learning for bioimage analysis: ZeroCostDL4Mic 25

achieves the goal of leveraging this tool so that more people can take advantage of
it. Google Colab provides free access to remote virtual machines with a maximum
runtime duration of 12 hours, the maximum time for each session. The virtual ma-
chines include a storage of 68GB, which can be used to save training data, models
and results, 12 or 25 GB of RAM, which depends on the session, and access to high
quality GPUs, commonly Tesla P100, T4 or K80.

The notebooks provided by the team cover a range of important image analysis tasks
(e.g. segmentation, denoising, restoration, label-free prediction). Although each of
them is different, they follow the same structure pattern, so that the main steps are
the following:

1. Installing the relevant libraries, which takes less than a minute.

2. Loading the training datasets.

3. Training the model. The training time varies on the model.

4. Validating the data. Once trained and validated, the models can be down-
loaded and used on other data.

However, there are limitations in the use of Google Colab. For example, the avail-
ability of RAM determines the number of images that can be used in the training
and the runtime duration limit of 12 hours constraints the number of epochs. Never-
theless, the ZeroCostDL4Mic notebooks can be efficiently trained with good results
with the Google Colab resources, but it is important to mention that these note-
books are best suited for small-scale studies with microscopy data (a few 10GB of
data).

For the development of larger scale studies, the team recommends an investment
in local infrastructure or cloud-based platforms, and since the ZeroCostDL4Mic
notebooks are not dependent on Google Colab, they can be ported to any platform
that supports Jupyter notebooks.

In any case, for novice users or students, it is recommended to explore and investi-
gate with the free resources before deciding to invest in paid-for platforms or local
infrastructure.





CHAPTER 4

Model description / Methods

4.1 Deep Fourier Channel Attention Network layers

As previously mentioned in Section 1.1.1, the DFCAN [5] is a network influenced
by the RCAN network, more specifically, inspired by the spatial domain channel
attention mechanism employed in the RCAN (see Section 3.2.3). The main difference
between both of them is that the residual channel attention block is replaced by the
Fourier channel attention block. The goal of these DL networks is to extract the most
relevant features of the images, i.e., the high-frequency information, so the authors
hypothesise that instead of using the structural differences in the spatial domain,
leveraging the frequency content differences across distinct features in the Fourier
domain might enable the DLSR networks to learn hierarchical representations of
high-frequency information more precisely.

As shown in Figure 4.1, the DFCAN architecture starts with a convolutional layer
and a Gaussian error linear unit (GELU) [24] which is defined as:

GELU(x) = 0.5 · (1 + erf(x/
√
2)) (4.1)

where erf is the following error function:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (4.2)
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Figure 4.1: DFCAN architecture. The left diagram shows the general architecture en-
capsulating the Fourier Channel Attention Blocks (FCAB). The right diagram shows the
FCAB architecture.1

Afterwards, the output of the GELU is fed to four identical residual groups, each
of them composed by four Fourier channel attention blocks (FCAB) and a skip
connection. The residual group is denoted as:

RG(x) = x+ FCAB4(x) (4.3)

where x is the input feature maps of the RG and FCAB4 is defined as:

FCAB4(x) = FCAB(FCAB(FCAB(FCAB(x)))) (4.4)

Then, the output of the RG is fed into another convolutional layer followed by a
1Figure taken from: [5]
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GELU activation function. The next three layers, i.e., the pixel shuffle [25] layer, the
convolutional layer and the sigmoid activation function are responsible of upscaling
the image so that the size is the same as the ground truth image. Finally, the DFCAN
outputs the predicted super-resolution image.

4.2 Loss function

Another difference between the DFCAN and RCAN is the loss function. The DFCAN
loss function is defined as a combination of the SSIM loss and the MSE loss. On
one hand, the MSE loss improves pixel accuracy and equalises the dynamic range
of prediction. On the other hand, the SSIM loss refines the structural similarity of
the output, so the idea is that the combination of the two loss functions can solve
both problems. Therefore, the loss function can be formulated as:

LDFCAN(Ŷ , Y ) =MSE(Ŷ , Y ) + λ[1− SSIM(Ŷ , Y )] (4.5)

where Ŷ is the output image of the DFCAN, Y the ground truth image and λ a
scalar weight with the function of balancing the contribution of the SSIM and MSE,
which is usually set to 0.1 by the authors.

Figure 4.2: Diagram of the training process of the DFCAN. The low resolution image is fed
into the network, which outputs a super-resolution image prediction. The loss function (or
the objective function) evaluates the quality of the model taking into account the predicted
image and the ground truth image on each epoch in order to improve the performance on
the next epoch. 2

2Figure taken from: [5]





CHAPTER 5

Experiments

The objective of this chapter is to show the functionality of the DFCAN network
and validate its implementation and application. For a selected set of images, the
quality of the images produced by DFCAN will be evaluated taking into account
some evaluation metrics mentioned in Section 2.4, some visual comparisons between
the LR images, HR images and their respective predictions and the training time
for each model.

The chapter starts with an explanation of the dataset provided by Chang et al. in
[5]. Secondly, Section 5.2 explains how said dataset has been preprocessed in order
to start with the training. Finally, Section 5.3 presents all the experiments and their
corresponding parameters used to train the network. This section is divided into
different subsections, one for each different set of experiments.

To start with, Section 5.4.1 presents the experiments done using the DFCAN network
and F-actin dataset, which will be later explained in Section 5.1. The second set
of experiments, displayed in Section 5.4.2, are done by using the RCAN network,
another state-of-the-art network for the SISR problem (see Section 3.2.3), with the
purpose of comparing the performance of both DFCAN and RCAN networks on
the same dataset. Lastly, in Section 5.4.3, the experiments are conducted using the
DFCAN network with a dataset external to the one provided by the authors, with
the aim of analysing the network’s performance on a dataset that has not been
tested by the DFCAN’s authors.

31
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5.1 Dataset description

The dataset used for the experiments is the one provided by Chang et al. in [5].
In order to create the dataset, the authors employed a structured illumination mi-
croscopy (SIM) system, thus obtaining well matched pairs of LR-HR images. This
dataset is called BioSR and it is divided into different subdatasets depending on the
biological structure they contain. The different structures are clathrin-coated pits
(CCPs), endoplasmic reticulum (ER), microtubules (MTs) and F-actin filaments,
listed in order of structural complexity, from the simpler structure (CCPs) to the
more complex one (F-actin) (See Figure 5.1). Each subdataset contains 50 sets of
raw SIM images, each of them at ten escalating levels of excitation light intensity.
It is of interest mentioning that the images with the highest excitation level are the
best predicted by the DFCAN.

For the experiments of this work specifically, the F-actin dataset was used, the
one with the most complex structure in the BioSR dataset. Since the dataset was
obtained by using the multimodality structured illumination microscopy, the images
are in raw format, meaning that the processing of the images is minimal and that
they preserve all of their information. This ensures a better processing of the images
later on.
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Figure 5.1: Examples of the BioSR dataset, grouped by the different biological structures
(CCPs, ER, MTs, F-actin), and ordered by the increasing structural complexity. The first
image of each group represents the low resolution image, and the rest on the right are the
predicted outputs by different networks for super resolution.1

1Figure taken from: [5]
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5.2 Dataset preprocessing

Firstly, considering that the images are provided in raw format, the first step before
working with the dataset was transforming them into another format, in this case,
into Tag Image File Format (TIFF) format. For that purpose, the authors of the
network provide a Matlab2 script that processes the raw images. Additionally, the
processing of the images includes data augmentation, but in this case the data
augmentation was done later on the notebook, therefore the code was modified so
that it only converted the images from raw to TIFF without the augmentation.

Since the Matlab script makes a partition to separate the training and test sets,
the dataset obtained after converting the images to TIFF format contains 492 pairs
of LR-HR images for the training and 120 pairs of LR-HR images for the testing.
Regarding the dimensions, the LR and HR images have the dimensions of 502× 502

pixels and 1004×1004 pixels respectively, thus the scaling factor is 2. The images in
Figure 5.4 are an example of an LR-HR pair with their respective dimension axes.

On the other hand, with the purpose of having a more assorted dataset, data aug-
mentation was applied. The first step in the notebook after loading the images was
to extract several samples from each original image. This was done by taking ran-
dom crops from the images respecting the scaling factor, so the dimensions of the
crops are 256× 256 for the HR images, and 128× 128 for the LR images. However,
it is important to bear in mind that even though the crops are random, the sample
has to be the same for the LR image and its respective HR image, so the function
responsible for that task takes the same pair of crops from each pair of images. In
Figure 5.2, there is an example of a pair of extracted patches from the respective
pair of images.

2Matlab website

https://www.mathworks.com/products/matlab.html
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(a) Extracted patch from a low resolution image. LR image dimensions: 502× 502; LR patch
dimensions:128× 128

(b) Extracted patch from a high resolution image. HR image dimensions: 1004× 1004; HR patch
dimensions: 256× 256

Figure 5.2: Example of a patch extraction. Even though the extracted regions are arbi-
trary, for each extracted patch, the region of the LR and HR patches have to be the same,
so that the network will train with the LR patches and then compare their prediction with
the HR counterpart patches

After doing the cropping, the new dataset was subjected to other data augmentation
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techniques, more precisely, horizontal flips, vertical flips and random rotations by a
multiple of 90 degrees, all of them commonly used in super-resolution since they do
not require the use of pixel interpolation. Thus, with this last step the dataset is
ready to train the network.

(a) Original image (b) Vertical flip

(c) Horizontal flip (d) Rotation of 90 degrees

Figure 5.3: Examples of the techniques of data augmentation. (a) original image, (b)
image transformed with a vertical flip, (c) image transformed with an horizontal flip, (d)
image transformed with a rotation of 90 degrees
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(a) Training image at low resolution

(b) Training image at high resolution

Figure 5.4: Example of a pair of LR-HR images from the F-actin dataset with the di-
mension axes.
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5.3 Training

The training process was done in a notebook making use of the services provided by
Google Colab (see Section 3.3). Some of the parameters varied with the purpose of
searching the best hyperparamaters, but several are inherent to the network:

1. Optimizer: Adam [26]. It is defined as an extension to Stochastic gradient
descent method.

2. Loss function: The loss function defined by Chang et al. in [5] (see Equation
4.5)

3. Reduce on plateau: Function that schedules the learning rate on a 1 cycle
policy as per Leslie Smith’s paper [27]

4. Evaluation metric: Mean squared error (see Equation 2.9)

5. Number of residual groups: four

6. Number of RCAB: four

Additionally, the callback Earlystopping was used, also from the Keras library 3.
This callback stops the training when a monitored metric has stopped improving, in
this case the validation loss. This method checks at the end of every epoch whether
the loss is no longer decreasing and, if that’s the case, the training finishes. The
function has a patience parameter, in the case of these experiments the patience is
set to ten, so the training will be stopped after ten epochs with no improvement.

5.4 Search of hyperparameters / Results

Before the implementation of the Zerocost notebook, some experiments were per-
formed with the aim of testing the results of the network and finding the parameters
that obtained the best results. This section will present the different experiments
and their results.

All of the experiments were done after setting a reproducibility seed, so that the
obtained results were as reproducible as possible.

3Earlystopping from the Keras library: Earlystopping

https://keras.io/api/callbacks/early_stopping/
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5.4.1 DFCAN with the F-actin dataset

The first experiments were conducted on the F-actin dataset, composed by images
of F-actin filaments, the most complex biological structures in the dataset provided
by Chan et al. [5]. These experiments were done by creating a training set of 1476
patches extracted from the original images, with a validation set of the 10% of the
training set. Table 5.1 shows the parameters and results for eight different experi-
ments.

No. LR # Eps BS PSNR SSIM MSSIM Time
1 0.0003 10 8 26.358 0.759 0.861 30
2 0.0005 10 8 27.392 0.809 0.881 30
3 0.001 10 8 28.522 0.837 0.896 65
4 0.001 5 8 27.447 0.767 0.876 15
5 0.0015 5 8 27.444 0.779 0.878 33
6 0.001 10 4 29.427 0.846 0.903 30
7 0.001 10 1 18.076 0.115 0.329 34
8 0.005 10 8 18.076 0.115 0.329 29
9 0.0007 10 1 18.076 0.115 0.329 35

Table 5.1: Experiments of DFCAN network with F-actin dataset and DFCAN loss (Equa-
tion 4.5). The column No. is used to denote the number of experiment. The column Network
represents the network used in this experiments. The column LR is filled by the learning
rates used in each experiment. The column #Eps indicates the number of epochs the
model has trained in each experiment. BS represents the batch size. The next 3 columns
indicate the evaluation metrics, PSNR (Section 2.4.3), SSIM (Section 2.4.1) and MSSIM
(Section 2.4.2) on the test set. The last column, Time indicates the training time for each
experiment in minutes. The bold line highlights the experiment with the best results.

As shown in Table 5.1, Experiment 1 obtains decent results, although compared to
the rest it is not one of the best. However, in Figure 5.6, it can be seen that the
loss and MSE stabilise on the fourth epoch, finally reaching a loss value of 0.0089
for the training and a loss value of 0.0091 for the validation. Both values are almost
identical, a sign that the network is not overfitting.

Figure 5.5 shows three sets of LR, ground truth (HR) and prediction images. Al-
though the three might seem the same image to the naked eye, all of them are
different samples, because as mentioned in Section 5.1, the dataset contains ten
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samples for ten escalating levels of excitation light intensity for each different bio-
logical structure. The aim of this dataset is to show that the predictions for images
with high levels of light intensity are better than the predictions with low levels of
light intensity. The sets of images in Figure 5.5 are ordered by the light intensity,
from lower to higher intensity. Therefore, as it can be seen, the last set obtains the
best result among the three of them.

Figure 5.5: Results for Experiment 1. This Figure shows three sets of LR, ground truth
(HR) and prediction images, ordered by light intensity. The set with the best results is the
last one, which has the highest level of light intensity.
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Figure 5.6: Loss and MSE training history for Experiment 1

For Experiment 2, it can be seen that by increasing the learning rate from 0.0003

to 0.0005 the metrics improve, and since the training time remains the same, it can
be concluded that the set of hyperparameters of the second experiment is better
than the first one. As shown in Figure 5.7, the loss and MSE are stabilised even
earlier than in Experiment 1, reaching a loss value of 0.0089 and a MSE value of
0.0011 for the validation. In addition, Figure 5.8 shows better results if compared
with the results in Figure 5.5. A comparison is displayed in Figure 5.9, where the
improvement is more noticeable.

Figure 5.7: Loss and MSE training history for Experiment 2
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Figure 5.8: Results for Experiment 2
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(a) Result from Experiment 1 (b) Result from Experiment 2

Figure 5.9: Comparison of the third image from experiments number 1 and 2. As it can
be seen the image in (b) shows better results than (a).

Continuing with Experiment 3, since an increment of the learning rate resulted in
an improvement of the prediction, the rest of the parameters were left unchanged
and the learning rate was set to 0.001. As shown in Table 5.1, the results are the
best of the three and the second best of all of the experiments, but the training time
is twice as much as in the previous experiments. As for the training loss history and
MSE history, they are almost identical to the ones shown in Figure 5.7 since the
training finishes with a validation loss of 0.0087 and a MSE of 0.0011.

For Experiment 4, the idea was to check if training with less epochs, five in this
case, made a big difference, and as the results show, the metrics are worse than in
the third experiment and similar to the first two, but since the training time is 15
minutes, it is worth taking this set of hyperparameters into consideration if speed
is needed.

Experiment 5 was made with the same set of hyperparameters as the fourth one,
except for the learning rate, which was set to 0.0015. The results however do not
show an improvement.
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Figure 5.10: Results for Experiment 3

Regarding Experiment 6, it can be seen that the metrics surpass those of the rest
of the experiments. Comparing it to the third experiment, the results are better in
every sense since aside from improving the metrics, the training time is half of the
former’s training time.

As depicted in the training history shown in Figure 5.12, the loss and MSE de-
scend drastically, reaching a loss value of 0.0084 and a MSE value of 0.000097 for
the validation, represented by the orange line in the figure. In addition, the train
and validation are almost identical from the fourth epoch on, so the model is not
overfitting.
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Figure 5.11: Results for Experiment 6
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Figure 5.12: Loss and MSE training history for Experiment 6

However, there is a detail that needs to be taken into account: the set of hyperpa-
rameters for this sixth experiment is on the limit. In other words, an increase in
the learning rate or a decrease in the batch size results in a high sudden increase
in the loss and MSE of the model’s training, which leads to suboptimal predictions.
Experiment 7 reflects this issue, where the only difference regarding the previous
experiment is that the batch size is 1 instead of 4. In Figure 5.13, it can be seen that
the training for this experiment starts in relatively good loss and MSE values but
they immediately scale upwards and they stay the same throughout all the training
time.

Figure 5.13: Loss and MSE training history for Experiment 7
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Figure 5.14: Results for Experiment 7

The consequences of the model not learning in the training is that the resulting
predictions are completely black images, as it can be seen in the third column of
Figure 5.14. This happens because a very high number of pixels are black, so these
poor predictions tend to predict black pixels. The results, as shown in Table 5.1
greatly differ from all the previous experiment metrics.

Experiments 8 and 9 were done to reinforce this statement. Regarding the former,
even with a batch size of eight, which was a solid value for the first five experiments,
it produces poor results if combined with a learning rate of 0.005. The same happens
with the latter, in which the learning rate was set to 0.0007 which is not as high as
the 0.0015 learning rate of Experiment 5. When combined with a batch size of one,
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the results are the same as in the previous experiment. As for the predicted images,
all of them are completely black images for both experiments.

Finally, to complete this set of experiments, instead of using the loss function created
specifically for the DFCAN (see Equation 4.5), some tests were made using the Mean
Absolute Error (MAE) as the loss function. As shown in Table 5.2, the metrics from
the test set tend to be lower than in Table 5.1, so these experiments verify that the
DFCAN loss indeed improves the performance of the network.

No. LR # Eps BS PSNR SSIM MSSIM Time
1 0.0003 10 8 25.341 0.762 0.864 63
2 0.0005 10 8 24.986 0.755 0.853 29
3 0.001 10 8 26.948 0.811 0.874 28
4 0.001 5 8 25.226 0.759 0.854 15
5 0.0015 5 8 26.408 0.785 0.873 14
6 0.001 10 4 29.359 0.864 0.891 76

Table 5.2: Experiments of DFCAN network with F-actin dataset and MAE loss. The
column No. is used to denote the number of experiment. The column Network represents
the network used in this experiments. The column LR is filled by the learning rates used
in each experiment. The column #Eps indicates the number of epochs the model has
trained in each experiment. BS represents the batch size. The next 3 columns indicate the
evaluation metrics, PSNR (Section 2.4.3), SSIM (Section 2.4.1) and MSSIM (Section 2.4.2)
on the test set. The last column, Time indicates the training time for each experiment in
minutes. The bold line highlights the experiment with the best results.

5.4.2 RCAN with the F-actin dataset

The second set of experiments was conducted with the RCAN network (see Section
3.2.3) and the F-actin dataset with the aim of comparing the performance of both
networks on the same dataset. These experiments were done by creating a training
set of 1476 patches extracted from the original images, with a validation set of
the 10% of the training set. Table 5.3 reflects all of the experiments with their
respective training parameters and prediction metrics. As it can be seen, in general,
the RCAN outperforms the DFCAN, since all of the metrics from the test set show
higher values than the DFCAN results. For these experiments, the loss function used
for the training was the MAE.
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No. LR #Eps BS PSNR SSIM MSSIM Time
1 0.0003 10 8 30.775 0.893 0.916 25
2 0.0005 10 8 30.834 0.895 0.917 26
3 0.001 10 8 30.916 0.898 0.919 25
4 0.0005 5 8 30.763 0.890 0.915 7
5 0.0005 5 4 30.831 0.894 0.916 13
6 0.0005 5 1 31.006 0.900 0.921 43

Table 5.3: Experiments of RCAN network with F-actin dataset and MAE loss. The column
No. is used to denote the number of experiment. The column Network represents the
network used in this experiments. The column LR is filled by the learning rates used
in each experiment. The column #Eps indicates the number of epochs the model has
trained in each experiment. BS represents the batch size. The next 3 columns indicate the
evaluation metrics, PSNR (Section 2.4.3), SSIM (Section 2.4.1) and MSSIM (Section 2.4.2)
on the test set. The last column, Time indicates the training time for each experiment in
minutes. The bold line highlights the experiment with the best results.

Starting with Experiment 1, as the hyperparameters are the same as for the first
experiment of the DFCAN (see Table 5.1), they can be directly compared. The
results of the RCAN are higher than the DFCAN, but the training time almost
the same. Figure 5.15 shows the training history of the model, where it starts with
a validation loss of 0.0438 and a validation mean squared error of 0.0048 and it
finishes with a validation loss of 0.0254 and a validation mean squared error of
0.0014. Although the training values and validation values start with a big gap,
they quickly stabilise, and in the tenth epoch the values are practically the same.

Figure 5.15: Loss and MSE training history for Experiment 1

As for the predicted images, the results are remarkable, and as previously explained,
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the first LR-HR-Prediction set has a more contrasting prediction than the next two
sets.

Figure 5.16: Results for Experiment 1

Following with the next two experiments, as Table 5.3 shows, they all obtain very
similar results to the first one, with an identical training time. Experiment 4, how-
ever, obtains almost the same results as the first experiment but with the advantage
that the training time is only seven minutes comparing with the 25 minutes of the
first one. This was done by reducing the training epochs from ten to five. The same
happens with Experiment 5 which has almost the same results as the second one
but with a training time of 13 minutes instead of 26. Finally, the sixth experiment
obtains the best results as it finishes its training with a validation loss of 0.0238 and
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a validation mean squared error of 0.0012. Figure 5.17 shows the training history of
this last experiment.

Figure 5.17: Loss and MSE training history for Experiment 6

Lastly, to complete this set of experiments, all of the experiments in Table 5.3 but
using the DFCAN loss as the loss function, obtaining the results displayed in Table
5.4. The results do not differ greatly from the RCAN trained with MAE loss but the
training time is doubled for all of the experiments except for the sixth one, which
in fact, is reduced to the half.

No. LR # Eps BS PSNR SSIM MSSIM Time
1 0.0003 10 8 30.669 0.889 0.918 64
2 0.0005 10 8 30.769 0.892 0.919 67
3 0.001 10 8 30.910 0.897 0.921 69
4 0.0005 5 8 30.605 0.886 0.918 35
5 0.0005 5 4 30.725 0.890 0.918 37
6 0.0005 5 1 30.939 0.898 0.922 19

Table 5.4: Experiments of RCAN network with F-actin dataset DFCAN loss (Equation
4.5). The column No. is used to denote the number of experiment. The column Network
represents the network used in this experiments. The column LR is filled by the learning
rates used in each experiment. The column #Eps indicates the number of epochs the
model has trained in each experiment. BS represents the batch size. The next 3 columns
indicate the evaluation metrics, PSNR (Section 2.4.3), SSIM (Section 2.4.1) and MSSIM
(Section 2.4.2) on the test set. The last column, Time indicates the training time for each
experiment in minutes. The bold line highlights the experiment with the best results.
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5.4.3 DFCAN with the electron microscopy image dataset

Finally, the last set of experiments was done using the DFCAN with another dataset
composed by Electron Microscopy (EM) images. This dataset was produced by
Lichtman Lab at Harvard University (Daniel R. Berger, Richard Schalek, Narayanan
"Bobby" Kasthuri, Juan-Carlos Tapia, Kenneth Hayworth, Jeff W. Lichtman). Their
corresponding biological findings were published in [28]. The training and test data
sets are both 3D stacks of 100 sections from a serial section Scanning Electron Mi-
croscopy (ssSEM) data set of mouse cortex. These experiments were done by using
creating a training set of 1600 patches of 256 × 256 extracted from the original
images, using a validation set of the 10% of the training set. The applied data aug-
mentation techniques were horizontal flips, vertical flips and random rotations by a
multiple of 90 degrees, presented in Figure 5.3.

This dataset does not include the LR image for each high resolution one, so the LR
images were created synthetically by adding noise and downsampling the images
(see [29]). Figure shows an example of a LR-HR patch images.

Figure 5.18: Example of a LR-HR patch pair from the EM dataset.

Regarding the results of the training, Table 5.5 shows the experiments done for this
dataset. As it can be seen, the values of the metrics tend to be higher comparing
them with the results in Table 5.1, and the training times remain very similar to
the times of Table 5.1.
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No. LR # Eps BS PSNR SSIM MSSIM Time
1 0.0003 10 8 27.751 0.912 0.980 31
2 0.0005 10 8 27.711 0.915 0.985 32
3 0.001 10 8 31.006 0.94575 0.989 31
4 0.001 5 8 29.338 0.929 0.985 16
5 0.0015 5 8 30.768 0.949 0.989 16

Table 5.5: Experiments of DFCAN network with EM dataset and DFCAN loss (Equation
4.5). The column No. is used to denote the number of experiment. The column Network
represents the network used in this experiments. The column LR is filled by the learning
rates used in each experiment. The column #Eps indicates the number of epochs the
model has trained in each experiment. BS represents the batch size. The next 3 columns
indicate the evaluation metrics, PSNR (Section 2.4.3), SSIM (Section 2.4.1) and MSSIM
(Section 2.4.2) on the test set. The last column, Time indicates the training time for each
experiment in minutes. The bold line highlights the experiment with the best results.

Starting with Experiment 1, the training history, as it can be seen in Figure 5.19,
shows a big difference between the training and validation metrics in the beginning
but it rapidly lowers and stabilises reaching a validation loss of 0.0023 and a valida-
tion mean squared error of 0.00091 in the last epoch. On the other hand, Figure 5.20
shows the results for three input LR images. The predictions are visually good but
if they are closely inspected it can be seen that they do not have the same quality
as the ground truth. Figure 5.21 shows an example of a ground truth patch and its
prediction, where the prediction is slightly more blurred. Experiment 2 shows results
very similar to Experiment 1.

Figure 5.19: Loss and MSE training history for Experiment 1
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Figure 5.20: Results for Experiment 1

Figure 5.21: Ground truth patch (left) and its prediction (right), from Experiment 1



5.4 Search of hyperparameters / Results 55

The third experiment however shows higher values of the metrics than the previous
two. If compared to the experiments from the F-actin dataset in Table 5.1, the
Experiment 3 from both tables have the same set of hyperparameters, and in both
cases the results are one of the best from their respective Tables. Figures 5.22 and
5.23 show the image results and training history respectively.

Figure 5.22: Results for Experiment 3
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Figure 5.23: Loss and MSE training history for Experiment 3

As for the experiments in Section 5.4.1, an increase in the learning rate shows an
improvement in the results, but learning history is not as stable as for the exper-
iments with a lower learning rate. The training history shows this in Figure 5.23,
where in the third epoch it presents a peak in the loss and MSE. However, in this
case, the loss and MSE quickly stabilise again.

Experiment 4 is the same as Experiment 3 but with five training epochs instead of
ten. The results of the metrics, as expected, are a bit lower but since the training time
is 16 minutes instead of 31, it can be taken into consideration if the training time is
of great importance. Lastly, the fifth experiment, with a learning rate of 0.0015 and
five training epochs, shows the best SSIM and MSSIM and the second best PSNR
of all the experiments for the EM dataset. The training time is 16 minutes so it
can be considered that this set of hyperparameters is the best in terms of results
and training time. Figures 5.24 and 5.25 show the training history and the results
respectively.

Figure 5.24: Loss and MSE training history for Experiment 5
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Figure 5.25: Results for Experiment 5





CHAPTER 6

Zerocost notebook

Finally, the last task for this thesis was to create an easy-to-use notebook so that
anyone could experiment with the network without the need of having coding skills.
As previously stated (see Section 3.3), in order to make this network usable for
everyone, a Jupyter notebook was developed from the ZeroCostDL4Mic team.

To start with, Jupyter notebooks are composed by cells. There are two types of cells,
text cells and executable cells. The former ones are purely informative cells, but the
later ones can be executed by clicking a play button positioned on the top left side
of the cell.

Figure 6.1: Example of an executable cell in the notebook. As it can be seen, the cell has
a play button on the top left side.

Executable cells are composed by the code that has to be executed and the code
is usually not hidden, but in this case, as the code is not relevant for the users, it
is concealed so that it does not confuse them. For example, for the cell showed in
Figure 6.1, which is the first executable cell of this notebook, the code that is behind
the text is the one showed in Figure 6.2. However, the code could be seen by double
clicking on the cell.

59
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Figure 6.2: Code of the cell displayed in Figure 6.1. Usually, the code is not hidden and
it is showed as it is in this figure, but in this case the code is out of view with the aim of
being more user-friendly. More specifically, this cell’s functionality is to check if the user
has access to a GPU for that session.

Once executed, the cells usually have an output, although not always. For example,
for the cell in Figure 6.1, the output after executing it is the one showed in Figure
6.3, which displays if the user has GPU access in that notebook session and the
technical data of the granted GPU.

Figure 6.3: Output of the cell showed in Figure 6.1. It shows if the user has GPU access
in that notebook session and the specifics of the GPU.
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After executing that first cell, the next executable cell gives the possibility of con-
necting the session to Google Drive. This allows the notebook to access all the files
saved in the users Google Drive account, so that if the user has the dataset he/she
intends to use for that session it can be easily accessed.

Figure 6.4: Cell that connects the notebook session to the user’s Google Drive account.
In the cell, it is explained step by step what has to be done to connect to the Google Drive.

After connecting the session to the Google Drive, the files and folders can be accessed
from the Files site situated on the notebook’s left side.

Figure 6.5: Files site of the notebook. If the session is connected to the Google Drive
account, the files and folders will be accessible from here.
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However, if the user does not have a dataset to start the testing of the network,
there is a default dataset that can be downloaded from the cell in the Section 3.1
of the notebook. After downloading it, the files and folders will be displayed in the
Folders site showed in Figure 6.5.

The next step in the notebook is to indicate the parameters with which the network
is going to be trained. Each parameter is defined in a text cell located above the
cell displayed in Figure 6.6. All the parameters have a default value, which are the
values that gave one of the best results for the default dataset.

Figure 6.6: Definable parameters for the training of the network. The variables are pre-
defined to adjust to the default dataset, but they have to be modified for the training with
different datasets.
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The last parameters are the advanced parameters, which are not recommended to
be changed by the beginners. If the Use_Default_Advanced_Parameters checkbox
is checked, the network will use the values displayed in Figure 6.6 even if they have
been changed. If the checkbox is not checked, the training will use the ones specified
by the user.

Following the definition of the parameters, there is a cell to indicate if data aug-
mentation is going to be applied as part of the training. As showed in Figure 6.7,
if the Use_data_augmentation checkbox is checked, the dataset will be augmented
by the next three parameters: rotation, horizontal flip, and/or vertical flip. Any of
them can be checked for the data augmentation.

Figure 6.7: Executable cell that gives the option of choosing if data augmentation is
desired and if affirmative, what type of data augmentation is going to be selected.

The next step after deciding about the data augmentation is choosing if the model
should start training with pre-trained weights. As shown in Figure 6.8, if the check-
box is not checked, the training will start from scratch, but if not, the next param-
eters should be specified. Pretrained_model_choice only has one option so it can
be left like that. Weights_choice has two options: last and best. The former are the
weights that gave the best results in the training of the model and the latter are the
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last weights of the training. Lastly, the pretrained_model_path must be correctly
specified since it is the path where the weights file will be searched.

Figure 6.8: Executable cell that gives the option of loading pre-trained weights as the
initial weights of the training. There are two types of weights that can be chosen, Best and
Last. The former are the weights that gave the best results in the training of the model
and the latter are the last weights of the training. When a DFCAN model is trained in
this notebook, both types of weights are saved for future use.

The next phase consists of the training. The first cell in the training section is
executed to prepare the model for the training (see Figure 6.9)

Figure 6.9: Executable cell that prepares the model for the training. It is compulsory to
execute this cell before starting the training.

On the other hand, the second cell starts the training (see Figure 6.10). After ex-
ecuting it, the output will show epoch by epoch what are the loss and MSE for
the training and validation. For each epoch, the weights will be saved if the loss
metric is better than all the loss values of the previous epochs. On the last epoch,
the weights will also be saved. It can happen that the last and best weights are the
ones of the last epoch, so in that case the Best and Last weight files will contain the
same information.
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Figure 6.10: Executable cell that starts the training of the model. The training will go
on for as many epochs as defined in the parameter number_of_epochs from Figure 6.6.

Once the training has finished, there is an option to evaluate the model by using a
part of the dataset that the model has not seen in the training. This evaluation is very
recommendable for newly trained models. The first step is to indicate if the model
to be evaluated is the one trained in that session or a saved one. If the chosen option
is a saved model, it has to be indicated where is it saved in the QR_model_folder
parameter (see Figure 6.11) and the scale factor of the saved model.

Figure 6.11: Executable cell that provides the option to evaluate the currently trained
model or a saved model.
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After all the parameters have been chosen, the next executable cell displays two
charts: the training loss and validation loss vs. epoch number in linear scale and the
training loss and validation loss vs. epoch number in log scale (see Figure 6.12).

Figure 6.12: Evaluation charts, the output of the evaluation executable cell. The guide
to interpret the charts is just above the executable cell.

The following cell in Section 5.2 of the notebook, predicts the images of the quality



67

control dataset, whose path has to be indicated before executing the cell in Figure
6.13. The output is a widget from which it can be chosen the wanted file from all
of the predicted ones. Each option displays the low resolution, high resolution and
predicted images.

Figure 6.13: Executable cell that displays a set of low resolution, high resolution and
predicted images. As the output is a widget, it provides the option of choosing among all
the predicted images.

Finally, the last evaluation method is calculating the PSNR, SSIM and MSSIM
metrics. The first executable cell from the Section 5.3 of the notebook (see Figure
6.14) calculates those metrics as an average of all the dataset. On the other hand,
the second executable cell of the section provides the option of watching the SSIM
and RSE maps between the original images (upsampled using simple interpolation)
and the target images, together with the maps between the predicted and target
images. Figure 6.15 presents an example of the way the metrics are computed and
displayed. This method allows the user to visually compare the difference between
the low definition image and the predicted one, as both of them are compared to
the ground truth image.
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Figure 6.14: Executable cell that calculates the PSNR, SSIM and MSSIM metrics. Each
metric is an average of all the image predictions. The higher the values, the better the
predictions.

Figure 6.15: Executable cell that displays the SSIM and RSE Target vs Source maps,
SSIM and RSE Target vs. prediction maps for every predicted image. The image can be
selected on the widget.
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The final section of the notebook gives the option of using the model for predicting
the super-resolution images for a dataset composed by low-resolution images. The
functioning of this section is similar to the one of the predictions of the quality
control dataset of the notebook (Section 5.2 of the notebook). For these last cells,
there are some parameters that need to be defined. Firstly, the user needs to input
the folder where the dataset to be predicted is located. Then the path where user
wants the predictions to be saved. Finally, there is an option of choosing the model
trained in the session for the prediction or another one, so it is not compulsory to
train a network in order to use the prediction functionality of the notebook if the
user has a previously trained model that she/he wants to use. If this second option
is chosen there are two additional parameters that need to be specified: the path
where the trained model is saved and the scale factor of that model. This can be
seen in Figure 6.16.

Figure 6.16

Finally, as it is shown in Figure 6.17, in the last executable cell there is a widget to
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choose among all the images, which displays the selected input image and its corre-
sponding prediction. After making the predictions it is recommended to download
the images if they are not saved in a folder located in the Google Drive account,
as when the session is finished every file that is not saved in the Drive account is
deleted.

Figure 6.17: Executable cell containing a widget to choose among all the LR-Prediction
images, which displays the selected input image and its corresponding prediction.
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Conclusions

As previously mentioned in Chapter 1, one of the objectives of this project was
solving the super-resolution task by studying modern deep learning methods, par-
ticularly for microscopy images. This goal was achieved in Chapters 2 and 3 by
investigating different deep learning methods, their functioning and results.

The second goal was to implement one of the most recent networks to solve the
super-resolution task. The chosen network to complete this goal was the DFCAN
network, one of the most recent networks for the SR task as it was published the same
month that this project was started. To further develop this project, the notebook
was made following the guidelines of the ZeroCostDL4Mic team, whose goal is to
make deep learning methods available to people who do not have expertise in the
field of deep learning or programming. The resulting notebook is an easy-to-use
notebook available to everyone.

Additionally, the DFCAN network was submitted to a thorough testing explained in
Chapter 5. Firstly, the network was tested with the F-actin dataset, provided by the
network’s authors. The best hyperparameter set was the number 6 from Table 5.1
and the predicted images show good results, as they drastically improve the quality
of the low resolution images. Secondly, the network was tested with an electron
microscopy image dataset and as shown in Table 5.5, the results are slightly better,
so the type of image to be predicted can influence the network’s performance.

Lastly, in the original DFCAN publication, the authors claim their network surpasses
the performance of the RCAN network, so in order to strengthen the experiments,
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the same dataset used for DFCAN was used with the RCAN network. The results
obtained by this second network are in fact better than the DFCAN results, so
even though the DFCAN is a more recent network, the RCAN still obtains better
quantitative results, as the RCAN evaluation metrics were better than the DFCAN
ones.

That said, none of the results achieve the quality of the high resolution images,
which leads to the conclusion that the investigation of methods to solve the SR task
is not finished.

All in all, it is important to point out that even though the predicted images are not
as good as the HR images, the results can be of great use for the biologists, since
the improvement from a LR image to a SR image is significant. Additionally, the
availability of the network to everyone can result in a thorough testing, which can
lead to the investigation of new methods that can improve the current results.
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APPENDIX A

Gantt Diagram

Figure A.1: Gantt diagram displaying the tasks of the thesis with their respective duration
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