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Abstract

In this project, we have first carried out a study of the state of the art in object detection
with Deep Learning, and then we have designed and implemented an approach that is
oriented to be run in a cloud service by non-expert users. More specifically, due to its
possible applications in microscopy image analysis, a web-based solution that uses the
state-of-the-art RetinaNet model has been developed in the open-source ZeroCostDL4Mic
environment 1. Moreover, our implementation uses the TensorFlow 2 object detection
API, that allows different backbone networks, and it has been accepted as part of the
official ZeroCostDL4Mic platform. Finally, the evaluation of the proposed solution has
been performed in a public dataset and compares positively with alternative state-of-the-
art approaches.

All the code associated with this project is available and can be run in the following link:
https://github.com/ErlantzCalvo/RetinaNet_ZeroCostDL4Mic

1https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
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CHAPTER 1

Introduction

1.1 Object detection in microscopy images

In the Bioimage analysis1 field, a great part of the financial and personal resources are
destined to the manual annotation of images. For years, computer vision has provided
methods to try to automate that process and alleviate that burden. Nowadays, thanks to
the use of Deep Learning, great results are being achieved in that direction for many types
of microscopy imaging and modalities.

Object detection is a computer technology related to computer vision and image pro-
cessing that deals with detecting instances of semantic objects of a certain class (such as
humans, buildings, or cars) in digital images and videos. Two different examples of object
detection are shown in Figure 1.1.

1Bioimage analysis focuses on the use of computational techniques to analyse bioimages, especially
cellular and molecular images, at large scale and high throughput.
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2 Introduction

Figure 1.1: Example of object detection from the PASCAL VOC dataset. From left to right: two
pairs of input images and their corresponding detected objects (bounding boxes and class names),
Source: https://www.jeremyjordan.me/object-detection-one-stage/

Object detection is currently used in many everyday applications like face detection tools
or medical applications such as cancer detection, improving our quality of life in recent
years.

Our work in this project will be driven by the ZeroCostDL4Mic [4] project. This project
aims to automatise the training and implementation of Deep Learning approaches for
microscopy. Moreover, the idea is to build a solution where non-expert users are able to
create, train and run Deep Learning models despite their possible lack of knowledge on
this topic. To carry out this task, a user friendly executable environment which runs in
a cloud service has been created. Indeed, the main purpose of this project is to build a
state-of-the-art object detection with Deep Learning approach which can easily perform
good quality object predictions on images.

1.2 Objectives

The main function of this project is to build a Deep Learning object detection approach
that can be easily used by non-expert users on user-provided microscopy images. To
achieve this objective, we have the following tasks to develop:

1. Bibliographic study of the state-of-art in object detection with Deep Learning to
obtain the best results with the technology we have available to date.

2. Study of the Tensorflow Object Detection API2 development platform to be able to
create and test state-of-the-art object detection models.

2https://github.com/tensorflow/models/blob/master/research/object_detection/
README.md

https://www.jeremyjordan.me/object-detection-one-stage/
https://github.com/tensorflow/models/blob/master/research/object_detection/README.md
https://github.com/tensorflow/models/blob/master/research/object_detection/README.md
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3. Study of the ZeroCostDL4Mic platform to implement Deep Learning based object
detection models for non-expert users.

4. Selection and development of a solution based on both platforms, so users can
achieve results with an acceptable minimum quality in their specific datasets.

5. Evaluation of the proposed solution using public datasets.

6. Comparison between this project’s approach and alternative ones.





CHAPTER 2

State of the art

Object detection is a common problem in the domain of computer vision which deals
with identifying and locating objects of certain classes in an image. Interpreting the object
localisation can be done in various ways, including creating a bounding box around the
object (see Figure 1.1) or marking every pixel in the image which contains the object
(called segmentation) [1].

Although nowadays the most popular solutions for object detection tasks are based on
Deep Learning, object detection has been a problem of interest in computer vision for a
long time. Therefore, a brief introduction will be made in the following sections. Also, we
will cover some theory behind object detection that will be needed to understand terms
along the project.

2.1 Introduction to object detection

As a longstanding, fundamental and challenging problem in computer vision, object de-
tection has been an active area of research for several decades. The goal of object detection
is to determine whether there are any instances of objects from given categories (such as
humans, cars, bicycles, dogs or cats) in an image and, if present, to return the spatial
location and extent of each object instance.

Object detection methods can be grouped into one of two types: detection of specific
instances versus detection of broad categories. The first type aims to detect instances

5
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of a particular object (such as Donald Trump’s face, the Eiffel Tower, or a neighbour’s
dog), essentially a matching problem. The goal of the second type is to detect (usually
previously unseen) instances of some predefined object categories (for example humans,
cars, bicycles, and dogs).

Figure 2.1: Types of object detection methods. Examples of detection of specific object (first row)
and detection of generic object categories (second row). Source: [1]
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2.2 Object detection progress in the past decades

Figure 2.2: Milestones of object detection and recognition, including feature representations. The
time period up to 2012 is dominated by handcrafted features, a transition took place in 2012 with
the development of Deep Convolutional Neural Networks (DCNNs) [2] for image classification
by Krizhevsky et al., with methods after 2012 dominated by related deep networks. Most of the
listed methods are highly cited and won a major ICCV or CVPR prize. Source: [1]

The first researches in the object recognition field were based on template matching tech-
niques and simple part-based models [6], focusing on hardly variant shapes objects, such
as faces. Before 1990, the leading paradigm of object recognition was based on geomet-
ric representations, with the focus later moving away from geometry and prior models
towards the use of statistical classifiers, such as Neural Networks, based on appearance
feature.

For years, the multistage hand tuned pipelines of handcrafted local descriptors and dis-
criminative classifiers dominated a variety of domains in computer vision, including ob-
ject detection, until the significant turning point in 2012 when Deep Convolutional Neural
Networks (DCNNs) [7] achieved their record-breaking results in image classification with
the AlexNet model, using GPUs for training a DCNN for first time, which makes feasi-
ble the computationally high costs. When AlexNet came out showing the availability of
GPUs with very high computational capability, the object detection field as well as the
Deep Learning field were revolutionised, giving a boost to the use of DCNN.
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2.3 Deep Learning for object detection

As we have mentioned before, since AlexNet showed its potential, the research focus in
most aspects of computer vision has been specifically on Deep Learning methods. The
main challenge of object detection is to develop a model that can achieve high accuracy
in the detection and localisation tasks with high efficiency. The high efficiency requires
that the entire detection task runs in real time with a manageable memory and storage
consumption, so all kind of devices can run it, such as smartphones or cars.

The milestone approaches appearing since Deep Learning entered the field are organised
into two main categories:

• Two-stage (also known as two-shot) detection frameworks, which include a pre-
processing step for generating object proposals.

• One-stage (also known as one-shot) detection frameworks, or region proposal free
frameworks, which do all the process in the same step.

2.4 Single-shot detector and two-shot detectors

In object detection tasks, the model aims to sketch tight bounding boxes around desired
classes in the image, alongside each object labelling.
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2.4.1 Two-shot detectors

The two-shot detector approaches are based on two different steps: (1) the region propos-
als (candidate regions for the object of interest) and (2) the classification of those regions
and refinement of the location prediction.

Figure 2.3: Structure of a two-shot or two-stage detection model. A traditional CNN ex-
tract feature maps form the input image. Those feature maps are passed to the Region Pro-
posal Network which detects the object instances in the feature maps and then the de-
tected objects coordinates and the feature maps are passed to the classifier where the objects’
classes are predicted. Source: https://medium.com/egen/region-proposal-network-rpn-
backbone-of-faster-r-cnn-4a744a38d7f9

As we can see in Figure 2.3, the two-shot detector uses a traditional CNN (usually pre-
trained with the ImageNet dataset) as backbone, which is used to extract feature maps
from the input image and then pass those feature maps to the Region Proposal Network
and to the classifier.

When the feature maps are passed to the Region Proposal Network (RPN), this outputs
rectangular object proposals. Each proposal has an objectness score, an indicator of be-
longing to an object class or background.

https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
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(a) Example of how a Region Proposal Network (RPN) works.

(b) The values that the reg net-
work outputs

Figure 2.4: Basic operation of a RPN. From left to right : (a) Example of the two-shot detector’s
RPN processing. A sliding window of size 3×3 produces k = 9 number of proposals. The sliding
window is composed by two sub-networks: a classification network (cls) to predict the objectness
score, and a regression network (reg) to estimate the coordinates of the proposals; (b) example
of the four values output by the regression sub-network. Source: https://medium.com/egen/
region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9

In Figure 2.4a, a RPN which uses a sliding window of 3× 3 dimensions is represented.
Each sliding window is mapped to a lower-dimensional vector which is fed into two sib-
ling fully-connected layers: a box-regression layer (reg) and a box classification layer
(cls). At each sliding window location, k region proposals are predicted, so the reg layer
has 4k outputs, being these outputs the bounding boxes coordinates of the upper-left cor-
ner and the coordinates of the lower-right corner as is represented in Figure 2.4b, and the
cls outputs 2k scores that estimate probability of object / not object for each proposal. The
k proposals are parameterised relative to k reference boxes, called anchors. Once all the
anchors have been predicted they are passed to the second step, the classification of the
predicted regions where the layer in charge is a traditional CNN which work is to predict
what class each object belongs to in the resulting region proposals.

2.4.2 Single-shot detector

The two-shot detection approaches have dominated the object detection field since RCNN [8]
and Faster RCNN [9] because of their results on popular benchmark datasets. This hap-
pens because two-shot detectors achieve (generally) better accuracy than the one-shot
detectors. Even though this feature is very important when we are looking for an object

https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
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detection model, it does not mean that the two-stage models are better than the one-stage
ones, because they are also computationally much more expensive and non-suitable for
devices such as smartphones or wearables.

Unlike the two-shot detectors, the single-shot detector (SSD) skips the region proposal
stage and yields final localisation and content prediction at once. This property makes
SSD detectors way faster than the two-shot detectors in both training and inference, which
is a very important factor for real-time applications.

Figure 2.5: SSD traditional model architecture. SSD has a base VGG-16 network followed by
multi-box convolutional layers. The VGG-16 base network for SSD is a standard CNN architecture
for high quality image classification but without the final classification layers, so it is used for fea-
ture extraction. Additional convolutional layers are added next for detection and they decrease in
size progressively. Source: https://towardsdatascience.com/review-ssd-single-shot-
detector-object-detection-851a94607d11

As we can see in Figure 2.5, the SSD approach is based on a feed forward convolu-
tional network that produces a fixed-size collection of bounding boxes, followed by a
non-maximum suppression step to produce the final detections. The non-maximum sup-
pression is the step in charge of cleaning the agglomeration of bounding boxes for the
same prediction.

https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
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Figure 2.6: Non-maximum suppression example removing the surplus predictions (left) and leav-
ing the best one for the given object (right). Source: https://towardsdatascience.com/non-
maximum-suppression-nms-93ce178e177c

In Figure 2.6, we show how the same objects contained in the image can be predicted
with different bounding boxes before carrying out the non-maximum suppression process
(left image) and how we get the best unique prediction for each object after the non-max
suppression process (right image). Indeed, the algorithm filters the predicted proposals,
leaving only the most accurate ones. More specifically, it takes a list of proposal boxes B,
corresponding confidence scores S and overlap threshold N as input and works as follows:

https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
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Algorithm 1 Non-Maximum suppression algorithm
1: INITIALIZE Out = /0

2: INITIALIZE Overlap_threshold = [0, 1]

3: while exist boxes in B do
4: Current_Proposal = proposal with highest S from B

5: Out = {Out, Current_Proposal}

6: Remove Current_Proposal from B

7: for P in B do
8: IOU =Calculate_IOU(Current_Proposal,Proposal)

9: if IOU > Overlap_threshold then
10: Remove P from B

11: end if
12: end for
13: end while
14: return Out

The Intersection over Union (IoU) calculation is used to measure the overlap between two
proposals, and it can be defined as follows:

IoU(b,bg) =
area(b∩bg)

area(b∪bg)

where b represents the first bounding box and bg represents the second bounding box. In
the numerator, we compute the area of overlap between the two bounding boxes.

The denominator is the area of union, or more simply, the area encompassed by the two
boxes.

Finally, the non-maximum suppression algorithm returns Out, the list with the proposals
that are classified as valid.

2.5 Object detection metrics

The mAP metric is a very popular evaluation metric used for object detection. Before
getting into the explanation of said metric we have to understand two concepts: Precision
and Recall. Precision measures how accurate a model’s predictions are. It measures how
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many of the predictions that the model’s made were actually correct.

Precision =
True Positives

True Positives+False Positives

Where True Positives are the samples predicted as positive as was correct and False Posi-

tives are the samples predicted as positive but was incorrect.

Figure 2.7: Example of how precision works. Here it can be seen that the model has predicted
1 True Positive and 0 False Positives, so applying the previous formula we get Precision =
1. Source: https://towardsdatascience.com/map-mean-average-precision-might-
confuse-you-5956f1bfa9e2#:~:text=The%20mean%20Average%20Precision%20or,an%
20IoU%20threshold%20of%200.5

Recall measures how well you find all the positives.

Recall =
True Positives

True Positives+False Negatives

The general definition for the Average Precision (AP) is finding the area under the precision-
recall curve above.

AP =
∫ 1

0
Precision(Recall) dRecall

Precision and recall are always between 0 and 1. Therefore, AP falls within 0 and 1 also.
Before calculating AP for the object detection, we often smooth out the zigzag pattern
first.

https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2#:~:text=The%20mean%20Average%20Precision%20or,an%20IoU%20threshold%20of%200.5
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2#:~:text=The%20mean%20Average%20Precision%20or,an%20IoU%20threshold%20of%200.5
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2#:~:text=The%20mean%20Average%20Precision%20or,an%20IoU%20threshold%20of%200.5
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Figure 2.8: Precision and Recall representation. Source: https://jonathan-hui.medium.
com/map-mean-average-precision-for-object-detection-45c121a31173

In order to avoid the integration in the AP formula and the impact of its wiggles, a point
interpolation is done over the Precision function. This interpolation is usually composed
by 11 points, so after dividing the Recall value from 0 to 1.0 11 times we get the following
formula:

AP =
1

11 ∑
r={0,0.1,0.2,...,1.0}

Precision(r)

Finally, we can calculate the mAP metric that is the average of the AP calculated for all
the classes in the sample, this is,

mAP =
1
N

N

∑
n=1

APi

Where N is the number of classes in the sample.

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173




CHAPTER 3

Methodology

In the year 2018, a group of researchers from the Facebook AI Research (FAIR) team
published a paper called Focal Loss for Dense Object Detection [3] where they showed
how the best object detectors to that date, when it comes to accuracy, were based on a two-
stage approach. Then, they presented the single-shot detector called RetinaNet, which not
only improved the one-stage models but also surpassed the metrics provided by the two-
stage ones.

In this project, we have implemented the RetinaNet single-stage object detection model in
the ZeroCostDL4Mic project, to facilitate its use to non-expert users. Thus, making avail-
able to the community this state-of-the-art object detection approach for microscopical
image analysis.

3.1 RetinaNet

The RetinaNet model is a one-stage detector that, for the first time, matched the state-
of-the-art results of more complex two-stage detectors in the public benchmark dataset
COCO1, such as the Feature Pyramid Network (FPN) [10], which is an architecture made
by the same authors as RetinaNet, or Faster R-CNN variants. In order to achieve this

1Source: https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-
comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

17

https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
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performance, the RetinaNet model added two improvements over existing single-stage
object detection models: the Focal Loss and FPN.

The RetinaNet detector is a single network composed of a backbone network and two-
task specific sub-networks. The backbone is an existing convolutional network model that
extracts feature maps from the input images. The first sub-network’s task is to classify the
backbone’s output into a class, like a common CNN does. The second sub-network’s task
is to make a bounding box regression. This architecture is well represented in Figure 3.1.

Figure 3.1: RetinaNet detector’s architecture. From left to right: (a) first part of the backbone
network (a ResNet in the figure as well as in the original paper), (b) FPN where objects are detected
and localised in each FPN’s level by the class (c) and box (d) sub-networks. Source: https:
//developers.arcgis.com/python/guide/how-retinanet-works/

In this section, we will explained the reasoning behind both concepts, the Focal Loss and
the FPN, and how they work, so we can delve deeper into the model and understand why
it has outperformed the past object detection models.

3.1.1 Focal Loss

In the original paper, they claim that the big difference in accuracy between the two-stage
detectors and the one-stage detectors lies in a class imbalance problem during training.
This happens because, in the one-stage object detection models, there is a dense sampling
of anchor boxes, making the model suffer from a very large foreground-background class
imbalance. This issue is natively resolved by the region proposal network of the two-stage
detectors, where the number of candidate object locations are narrowed down to a small
number, filtering out most background samples. In Table 3.1, we show an example of the
number of boxes that the model generates compared to other approaches, so we can notice
the class imbalance problem. This problem is caused by the tiny error of each negative
example. Normally, the model will not be 100% certain that the box does not contain
any objects. This cause that, if the model predicts that a box contains no objects with a

https://developers.arcgis.com/python/guide/how-retinanet-works/
https://developers.arcgis.com/python/guide/how-retinanet-works/
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security of 0.9, there’s an error of 0.1. This is applied to all the boxes that don’t contain
any objects, adding a major error value.

Model Number of boxes
Faster R-CNN [9] 1-2k

YOLOv2 [11] 1k

OverFeat [12] 1-2k

RetinaNet [3] 100k

Table 3.1: Comparison of boxes number between different object detection models. Note: the k
letter stands for thousand.

Figure 3.2: Foreground-background class imbalance. Source: https://towardsdatascience.
com/neural-networks-intuitions-3-focal-loss-for-dense-object-detection-
paper-explanation-61bc0205114e

In Figure 3.2, we can see an example of the problem about foreground-background men-
tioned in the paper. Note that, even though in the image there are some negative examples
in the top-down borders (the ones with colour red), in the actual model there would be
almost 100k boxes like those which would increase the loss function.

To solve this problem, a new loss function called Focal Loss is presented, eliminating
this barrier. Indeed, the Focal Loss is designed to address the one-stage object detection
scenario in which there is an extreme imbalance between foreground and background
classes during training (i.e. 1:1000). The Focal Loss is based on the cross entropy loss for
binary classification, which is defined as follows:

https://towardsdatascience.com/neural-networks-intuitions-3-focal-loss-for-dense-object-detection-paper-explanation-61bc0205114e
https://towardsdatascience.com/neural-networks-intuitions-3-focal-loss-for-dense-object-detection-paper-explanation-61bc0205114e
https://towardsdatascience.com/neural-networks-intuitions-3-focal-loss-for-dense-object-detection-paper-explanation-61bc0205114e


20 Methodology

CE(p, y) =

−log(p) i f y = 1

−log(1−p) otherwise
(3.1)

where y ∈ {±1}, which specifies the ground-truth class (i.e., if there is an actual object
in the given region or not), and p ∈ [0,1] which is the model’s estimated probability for
the class with label y = 1. This way, when y = 1 and p is high (p ≈ 1) the loss value for
that prediction will be −log(1) = 0 and, when p tends to 0, the loss value is increased.
Otherwise, when y = −1, what means that there is no object that can be detected in the
region, the higher is p, the higher is the loss value.

For notational convenience, pt is re-written as

pt =

p if y = 1

1-p otherwise
(3.2)

and therefore CE(p,y) =CE(pt) =−log(pt).

The reason why this loss function does not work properly for the one-stage object detec-
tion approaches is because, as it can be seen in Figure 3.3, even examples that are easily
classified incur a high loss. When the loss of a large number of easily classified examples
is summed, the resulting value can overwhelm the loss value of the rare class, even if each
rare class has a significantly higher loss individually.

Let’s put ourselves in the case where we have 100,000 easy examples and 100 hard ex-
amples. Looking at Figure 3.3, we can think that each easy example will output a 0.1 loss
value (having the model a confidence value of 0.9 then −log(0.9)≈ 0.1), while the hard
ones, assuming the prediction fails with 0.1 confidence, will output 2.3 (−log(0.1)≈ 2.3).

T he loss f rom easy examples = 100,000×0.1 = 10,000

T he loss f rom hard examples = 100×2.3 = 230

easy examples loss
hard examples loss

=
10,000

230
= 43

In the previous equation, it can be seen that we obtain a loss value 43 times greater from
the easy examples than from the hard ones, and that is the reason why the Cross Entropy
loss is not the best loss for one-stage object detection models.
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Figure 3.3: Example of Cross Entropy limitation. The ranges of loss values for both, the well
classified examples [0.6,1.0] and the wrong classified examples [0,0.6) are indicated with arrows.
The 100,000 easy examples receive a loss value 40 times lower than the 100 hard examples (ap-
proximately 0.1 vs 2.3 each). Source: [3]

One solution for this problem is the use of the α-Balanced Cross Entropy, which is a
common method for addressing this class imbalance adding a weighting factor α ∈ [0,1]
for class 1 and 1 - α for class -1. In practice α is usually set to a value represented
inversely by the class frequency, this is, the higher the number of a given class, the lower
the value of α , being the lower the loss value. The α-Balanced Cross Entropy is defined
as below:

CE(pt) =−αt log(pt)

This loss is considered as an experimental baseline for the proposed Focal Loss.

The α-Balanced Cross Entropy balances the importance of positive/negative examples,
but it does not differentiate between easy/hard examples, and this is the reason why the
Focal Loss is the turning point of the paper. In order to address this sample-difficulty
issue, the paper proposes to reshape the loss function, so the easy examples have a lower
weight and thus focus training on negative outputs of hard examples. To achieve this goal
a modulating factor (1− pt)

γ is added to the Cross Entropy formula:

Focal Loss(pt) = (1− pt)
γ log(pt)

In this formula, we have the tunable focusing parameter γ , where γ ≥ 0 and γ ∈ [0,5].
In this definition of Focal Loss can be noted that, when pt tends to 1, the modulating
factor approximates to 0 becoming the loss value lower for well classified examples. The
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tunable focusing parameter γ adjusts the rate at which the example’s down-sampling is
made. When γ = 0, the Focal Loss formula is converted to the Cross Entropy formula,
and as the γ value is incremented, the modulating factor value increases.

Demonstration of Focal Loss conversion to CE when γ = 0:

Focal Loss(pt) = (1− pt)
0log(pt)→ Focal Loss(pt) = 1× log(pt) (3.3)

Cross Entropy(pt) = 1× log(pt) (3.4)

The authors of the RetinaNet point out that the γ value with best results in their experi-
ments is γ = 2.

In practice, an α-balanced Focal Loss variant is used since it shows slight accuracy im-
provement over the normal Focal Loss implementation:

Focal Loss(pt) = α(1− pt)
γ log(pt)

Finally, the authors say that the loss layer is implemented with the sigmoid function in
order to obtain the probability p and use it in the loss function.

Figure 3.4: The sigmoid function converts the value given as input into a real value contained in
the range (0,1).
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3.1.2 Feature Pyramid Networks (FPN)

Figure 3.5: Feature Pyramid Network (FPN). FPN composes of a bottom-up and a top-down
pathway. The bottom-up pathway is the usual convolutional network for feature extraction. As
we go up, the spatial resolution decreases. With more high-level structures detected, the semantic
value for each layer increases. FPN provides a top-down pathway to construct higher resolution
layers from a semantic rich layer. Lateral connections are added in order to improve the upscaling
process. Source: https://jonathan-hui.medium.com/understanding-feature-pyramid-
networks-for-object-detection-fpn-45b227b9106c

The main purpose of the Feature Pyramid Networks (FPN) is to augment the standard
convolutional network’s output with a top-down pathway and lateral connections so the
model gets a multi-scale feature pyramid from a single image (Figure 3.5). That way, each
level of the pyramid can be used for detecting objects in a different scales.

3.1.3 Bottom-Up Pathway

The Bottom-Up Pathway is the feedforward computation of the CNN chosen as back-
bone, which computes a feature hierarchy composed by multiple feature maps, smaller
and smaller in each step, specifically with a scaling step of 2. Usually, there are multiple
layer producing outputs in the same hierarchy step so, in order to build our later feature
pyramid, the last output of every step is taken. This choice is because the last layer of
every step should have the strongest features.

https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
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3.1.4 Top-Down Pathway and Lateral Connections

The main objective of the Top-Down Pathway process is to get semantically stronger
features using the outputs obtained in the Bottom-Up Pathway process. The key of this
process is the use of different the different levels of the feature pyramid to get the most
semantically rich features of the input image.

Figure 3.6: The top-Down Pathway process starts from the top of the feature pyramid and de-
scends every level. The first layer is obtained from the last output of the Bottom-Up pathway. The
1×1 filter is applied to the given output, obtaining the M5 layer and making a prediction on that
layer. Then, the layer is upsampled, outputting the same feature map with twice the resolution.
After the upsampling is done, an element-wise operation is done between the upsampled feature
map and C4 with the 1× 1 convolution applied, obtaining the M4 layer. After the element-wise
merge operation, a convolutional filter of size 3× 3 is applied to the M4 layer. This process is
repeated for the remaining levels of the feature pyramid.

The Top-Down Pathway process, as its name suggests, starts from the top of the feature
pyramid and descends every level. The first layer, also known as the top of the pyramid,
is obtained from the last output of the Bottom-Up pathway, this is, the output with the
smallest resolution and semantically the richest one. The 1× 1 filter is applied to the
given output, obtaining the M5 layer and making a prediction on that layer. After that
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prediction is done, the layer will be upsampled using the nearest neighbours upsampling2

algorithm, giving as result the same feature layer as the previous one but with twice the
resolution. Now that the upsampled feature map and the C4 layer have the same dimen-
sions, a element-wise operation is done between the upsampled feature map and C4 with
the 1× 1 convolution applied which is passed from the bottom-up pathway through lat-
eral connections, obtaining the M4 layer. The element-wise operation enhances the fea-
tures from the upsampled layer using the features from the bottom-up pathway. After the
element-wise merge is done, a convolutional filter of size 3×3 is applied to the resulting
M4 layer, so the possible aliasing effect made by the merge operation is corrected, and a
prediction is made with that filtered layer (P4). This process is repeated for the remaining
levels of the feature pyramid (in Figure 3.6, M3 and M2 layers).

2The nearest neighbour algorithm has the effect of simply doubling rows and columns, doing an inter-
polation of the resulting point’s neighbours.
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3.2 ZeroCostDL4Mic project

Figure 3.7: Visual summary of how ZeroCostDL4Mic works. This picture is taken from the Zero-
CostDL4Mic original paper [4]. (a) Paths to exploiting DL. Training on local servers and inference
on local machines (or servers) (first row), cloud-based training and local inference (second row),
cloud-based training and inference (third row) and pre-trained networks on standard machines
(fourth row). (b) Overview of ZeroCostDL4Mic. The workflow of ZeroCostDL4Mic, featuring
data transfer through Google Drive, training, quality control and prediction via Google Colab.
(c) Overview of the bioimage analysis tasks currently implemented within the ZeroCostDL4Mic
platform.

The ZeroCost4Mic project is an entry-level, cloud-based Deep Learning-deployment plat-
form (Figure 3.7-b) that simplifies Deep Learning use for microscopy. The project is a
unified collection of self-explanatory Jupyter Notebooks, featuring an easy-to-use graph-
ical user interface (GUI) that requires only a web browser and a Google account for a
user to run any of their DL-based tasks (Figure 3.7-c). All calculations are performed in
the cloud using Google Colaboratory (Colab for short), avoiding the need to purchase or
install graphical processing units (GPUs) and associated software. Not needing GPUs nor
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computational capacity, together with being so simple to use for all kind of users (only a
few mouse clicks are needed), make this project a great tool for non-experts users to use
Deep Learning and automatise/improve plenty of visual tasks for microscopic images.
Additionally, ZeroCostDL4Mic guides researchers on how to generate the training data
necessary for Deep Learning, allowing them to get a deeper understanding of how the
Deep Learning models work and giving them the capacity of running the models with
different parameter configurations, so they can improve their results on specific datasets.

The ZeroCostDL4Mic project is composed of several models, each of them with the pur-
pose of solving a specific task. Today those tasks include image segmentation and ob-
ject detection (using U-Net [13], StarDist [14] and YOLOv2 [11]), image denoising and
restoration (using CARE [15] and Noise2Void [16]), super-resolution microscopy (using
Deep-STORM [17]) and image-to-image translations (using label-free prediction—fnet [18],
pix2pix [19] and CycleGAN [20]).

Each of the ZeroCostDL4Mic notebooks follows the same workflow structure that covers
all the crucial steps of every Deep Learning project, starting from the dependencies’ im-
portation, making the data processing, going through the model loading and training, and
using that model, either for its validation or for inference over unseen data.



28 Methodology

Figure 3.8: ZeroCostDL4Mic notebook’s example. A first view of the ZeroCostDL4Mic Jupyter
notebook structure in the Google Colaboratory virtual environment. This picture is taken from the
ZeroCostDL4Mic original paper [4].

In order to measure the model’s quality, the ZeroCostDL4Mic notebooks contain the
Quality Control (QC) section, where the user can test the model with new data (it should
be unseen data for a fair measurement) and estimate quantitative metrics that indicate
the model’s prediction accuracy by comparing that prediction to ground-truth data. Those
metrics vary for each model’s task since their result can not be generalised and also their
outputs aren’t even related. For instance, object detection models output multiple real
numbers indicating the objects contained in the given image and their associated classes,
while denoising models output the input image without noise/stitches in it.

Another very common issue in Deep Learning is the lack of quality and/or quantity of data
that will be used to build the model. Datasets are a crucial part of the model’s generalisa-
tion capacity. The model will be built and it will learn according to the dataset’s quality,
since the dataset is the only learning source of the model. Taking this into account and
knowing that these models will be built by users that might be out of the Deep Learning
field, it is usually safe to think that those users may not have very dense datasets, limiting
the model’s improvement and generalisation, leading to a non-optimal performance. To
address this issue, the ZeroCostDL4Mic has implemented one step where users can ap-
ply data augmentation techniques to their dataset. Data augmentation is a quite common
solution that tries to lower the impact of having small datasets, enlarging the sample data
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by applying some transformations. In Figure 3.9, we can see multiple data augmentation
techniques which, given the input image, generate 5 new images, this is, augments the
dataset’s size by 5 fold.

Figure 3.9: Examples of different methods of data augmentation. Different transforma-
tions are applied to the original image in order to artificially create new samples. Source:
https://www.researchgate.net/figure/Data-augmentation-using-semantic-
preserving-transformation-for-SBIR_fig2_319413978

Secondly, the ZeroCostDL4Mic project also includes the functionality to perform transfer
learning via the loading of a pre-trained model as a starting model, rather than initialising
the training with a blank model. This powerful approach allows the platform to benefit
from the growing availability of pre-trained models from model Zoos3 without compro-
mising on the quality of the performance of a model on the specific data type provided by
the user. This can also have several advantages in terms of shortening training times and
reducing the amount of required training data. Moreover, it gives the user the chance of
training again the same model several times in different epochs, having the advantage of
accumulating new data over the time, so the model can be continuously improved.

3A model zoo is a machine learning model deployment platform where people upload already trained
models, so any other person can reuse that model without the need of training it again from scratch

https://www.researchgate.net/figure/Data-augmentation-using-semantic-preserving-transformation-for-SBIR_fig2_319413978
https://www.researchgate.net/figure/Data-augmentation-using-semantic-preserving-transformation-for-SBIR_fig2_319413978
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3.2.1 ZeroCostDL4Mic in Google Colab

As we have mentioned before, the ZeroCostDL4Mic projects are designed and imple-
mented in the Google Colab environment, what means that the users have free access
to high-performance computing resources needed to run the broad range of Deep Learn-
ing networks. However, to take advantage of these resources, users usually need to have
previous programming knowledge, which limits the range of researchers that are able
to exploit this environment. By establishing a user-friendly and efficient interface with
Google Colab, the ZeroCost project aims to leverage this cloud-computing system to de-
ploy state-of-the-art Deep Learning models for microscopy.

Google Colab provides access to remote virtual machines with free but finite resources
which are made available for a specific runtime duration (maximum 12h). Even if this
time limitation seems like a big inconvenience, one of the most important resources that
Google Colab lends us, if not the most important, is high-end GPUs, a very expensive
component that allows Deep Learning models to train and run between 5× and 200×
faster than a normal PC’s Central Processing Unit (CPU), making feasible for everyone
with any kind of PC to use this technology.

Considering the resources available with Colab, ZeroCostDL4Mic is considered to be
well suited for:

1. Prototyping image-analysis workflows and pipelines without financial investment.

2. Executing small-to-medium-size projects (a few 10’s of GB of data) compared to
large-scale projects often encountered in machine vision research.

3. Short-term projects not requiring a permanent investment in Deep Learning infras-
tructure.

4. As a resource for Deep Learning enthusiasts and students to learn about Deep
Learning methods and state-of-the-art architectures, such as U-Net [13] or (gen-
erative adversarial networks) GANs [21].

In addition, the ZeroCostDL4Mic notebooks are designed to be run outside Google Colab
in case the user wants it, downloading the notebooks in Jupyter notebook or Python file
format.
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3.3 Our implementation of RetinaNet in the ZeroCostDL4Mic

project

To achieve the main purpose of this project, we decided to implement a Deep Learn-
ing based object detection solution as part of the ZeroCostDL4Mic platform. This way,
users with no computer science background can apply this technology in their research.
As aforementioned, ZeroCostDL4Mic already has some object detection models imple-
mented, such as YOLOv2 [11]. However, that method is from 2016 and novel approaches
have demonstrated to perform better in precision and speed. For that reason, we decided
to implement RetinaNet, a one-stage solution with the current best benchmark results as
described in Section 3.1.

3.3.1 Implementation library

Deep Learning is an emerging science whose core is based on highly complicated nu-
merical computations that, making from scratch can take a very long time. Nowadays
is very common to use already created libraries4 that make it so much easier to build a
Deep Learning model, making the numerical computations transparent to the developer,
while performing the best as possible from both software and hardware points of view.
Nowadays, two of the most popular Deep Learning libraries used by the community are
TensorFlow [22] and PyTorch [23]. In this document, the difference between the two li-
braries will not be discussed but our choice for this project will be explained.

Although the original implementation of RetinaNet was presented in PyTorch by the Face-
book AI Research developers, our implementation has been done in TensorFlow in order
to learn it’s technology, stateful graph structure and the object detection API5 they made
for the version 2.x of TensorFlow (TensorFlow 2), which is an open-source framework
built on top of TensorFlow that makes it easy to construct, train and deploy object detec-
tion models.

One of the most important reasons we decided to use the TensorFlow 2 (TF2) object
detection API was the need of using pre-trained models, and the TF2 object detection API
contains a Model Zoo of ready-to-use models. These models are pre-trained on various

4A library is a reusable chunk of code that can be included in your code.
5The acronym API stands for application programming interface, which is an interface that defines

interactions between multiple software applications or mixed hardware-software intermediaries.
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datasets such as COCO (Common Objects in Context) [24] dataset, the KITTI [25] dataset
and the Open Images Dataset [26]. This need is related to the ZeroCostDL4Mic project’s
purpose of creating a Deep Learning model that, training in the less time possible, shows a
good performance over new data, and this goal can only be achieved loading a knowledge
base previously acquired with large datasets, so the model can learn new features way
easier.

The TF2 object detection API libraries are available from their Github’s page. Once the
libraries are installed we can start preparing the environment.

3.3.2 Data pre-processing

First of all, the user needs to specify the path to the input images and their annotations.
Next, we have to pre-process and save that data so lately can be used for training and
validation purposes. Each image can contain n number of objects, being n∈ [0,∞). All the
data of every object of an image is saved in a table, including the bounding box location
of every object in that image with its actual corresponding class. Then, all the bounding
box coordinates are normalised to convert those numbers into the range [0,1] following
this formula:

Ŷ min =
Y min

image height

X̂min =
Xmin

image width

Ŷ max =
Y max

image height

X̂max =
Xmax

image width

where Y min and Xmin correspond to the origin (X, Y) of the bounding boxes, Ŷ min and X̂min

are those starting points normalised, Y max and Xmax correspond to the opposite corner
coordinates (X, Y) of the bounding boxes, Ŷ max and X̂max are those maximum points
normalised and image height and image width are the dimensions of the image being
processed (width×height) (Figure 3.10).

https://github.com/tensorflow/models


3.3 Our implementation of RetinaNet in the ZeroCostDL4Mic project 33

Figure 3.10: Representation of the variables used in the normalisation process.

The validation set is a a subset of the training set which provides an unbiased evaluation
of a model fit while tuning the model’s hyperparameters. The model does not tune its
hyperparameters using this subset, so it provides a good estimate of the performance of
the model on unseen data. The user choose what percentage of the training set will be
used as validation set.

The classes names are saved for their possible display in the predictions and a folder to
store the model is created, so it can be used afterwards.

3.3.3 Data augmentation

The next step in our implementation is to give the user the possibility to augment the
training dataset using simple data augmentation techniques such as image flipping and
rotation (Figure 3.11). This step can make the model to generalise better over the data,
resulting in a better quality predictor. The data augmentation is only applied to the training
set since it does not matter how big the validation set is because the model does not
improve with it and is just oriented to measure how well the model is generalising. Also, it
is important that data augmentation is done once the validation set and the training set are
split. Otherwise augmented versions of the same image may end up in both the training
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and the validation sets, jeopardising the validation metrics. In our implementation, the
training data can be augmented up to 8 times.

(a) Image rotation example.
Source: http://www.rmig.com:8080/erez3/
html/index.html

(b) Image flip example.
Source: https://ipiccy.com/blog/357-
2/mona-lisa-flipped-example

Figure 3.11: Examples of data augmentation transformations permitted in our implementation.

3.3.4 Creating a model from pre-trained model’s weights

As we mentioned before, one of the most important reasons of using the TF2 object de-
tection API is the ease of using a pre-trained model from a Zoo6 that the library’s authors
point out, so we start training a new object detection model with already trained weights.
The step after data augmentation is where the model is created with the configuration se-
lected by the user. This is, the user choose what CNN to use as the model’s backbone from
a list, and the model’s weights and configuration will be downloaded from the Zoo. The
user can change some configuration parameters such as the localisation weight and the
classification weight. These parameters are in charge of setting how the model’s loss func-
tion will penalise both, the prediction of the objects classes and their localisation. These
weight are real values contained in the range [0,∞) and they are set to 1.0 by default.

To better understand how these parameters work, let us see an example: If the user wants
to prioritise that the model predicts the location well rather than the classification, the
localisation weight can be set to 4.0 and the classification weight to 1.0. This decision
makes the model’s loss function be

Total loss = 1.0× classi f ication loss+4.0× localisation loss
6The model zoo can be found at https://github.com/tensorflow/models/blob/master/

research/object_detection/g3doc/tf2_detection_zoo.md

http://www.rmig.com:8080/erez3/html/index.html
http://www.rmig.com:8080/erez3/html/index.html
https://ipiccy.com/blog/357-2/mona-lisa-flipped-example
https://ipiccy.com/blog/357-2/mona-lisa-flipped-example
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
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focusing more on improving the localisation prediction than the classification one.

In the current implementation, we have three possible backbone models to choose from:

• ResNet50: The classical Residual Network (ResNet) [27] that is 50-layers deep
and takes as input images of size 640×640 pixels. This is the same CNN as the one
used in the RetinaNet’s original paper.

• MobileNet v1: MobileNet [28] v1 is an efficient model thought to be run in mobile
and embedded vision applications. This network is worse than ResNet50 in terms
of accuracy but better in terms of speed. This CNN takes as input images of size
640×640 pixels.

• MobileNet v2: Same network as the previous one, with some speed enhancements
(almost twice faster than MobileNet v1) but worse accuracy results. This CNN takes
as input images of size 320×320 pixels.

All the previous models use the FPN algorithm and are implemented as single-shot detec-
tors.

When the weights are about to be loaded into the new model, two configuration parame-
ters are always changed: the freezing of the batch normalisation and the trainable layers
of the model.

Batch normalisation freeze

A batch is a cluster of n samples, being n ∈ (0, training samples], and is the number of
samples that are processed in the training process by the model before it tunes its weights.
It can be said that the model "learns" taking into account each batch’s loss value.

When we do not want a model to change the weights of one or more layers, we freeze

those layers, avoiding them to tune their weights on training (Figure 3.12).
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Figure 3.12: Fine-tuning a pre-trained model. Using an already trained model (bottom), transfer
learning is used so some of the layers of the model are frozen, i.e., their weights won’t change
during the training process and the remaining layers are fine tuned with new data (top). Source:
[5]

Batch normalisation [29] is a method used to make artificial neural networks faster and
more stable through normalisation of the layers’ inputs. The batch normalisation is based
on converting every value in the batch to a value contained in the range [0,1], being
1 the highest value of the actual batch. This method not only makes training faster, in
some cases by halving the epochs7 or better, and provides some regularisation, reduc-
ing generalisation error. The batch normalisation method uses two learnable parameters,
β and γ [29], which are learned along with the original model parameters, and restore the
representation power of the network. These two parameters are the reason of freezing the
batch normalisation in the new model, because, as we are loading the parameters of a pre-
viously trained model, we are interested in keeping the original values that the previous
trained model learned.

Another parameter that is changed is the model’s training possibility, this is, if the model
can tune its weights when training or they are frozen so the model can only be used for
inference8. Since we want to train the model with new data, this parameter has to be set
as True (training enabled).

Another option that the user has in this step is to avoid the creation of the new model and
loading the weights from a previous model that was trained and saved in order to continue
training it, with the same or a new dataset.

7An epoch is one training loop, this is, an iteration over all the batches of the dataset, when the model
has seen all the training data.

8Inference is the process of running live data points into a machine learning algorithm to calculate an
output.
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3.3.5 Training the model

Now that we have an object detection model created and pre-trained weights are loaded,
we will fine tune that model with the user-provided data. In order to save the actual model
for a future use, the model’s configuration and the dataset’s classes are saved in the path
that the user specified in Section 3.3.2. Including the model weights, these two blocks of
information are the core necessary to load the current model in a future. Once teh two
files with that information are created and saved, we start the training process.

Preparing data to train

Before the model starts training, we have to mould the data we have pre-processed before
so that the model can take it as input. In order to train our model we need three different
data subjects: the images’ RGB arrays, the ground truth position of the bounding boxes
and the actual class of each object. We extracted, processed and saved this data in Section
3.3.2, but the model needs the inputs to be in tensor form. A tensor is a generalisation of
vectors and matrices and is easily understood as a multidimensional array.

The first thing we do is to take all the images in the training set path, convert them into
arrays and then, if they are originally in the greyscale chromatic mode, we convert the
image to RGB (Red Green Blue). Finally we convert that array in a tensor and that would
be the final version of how an input image has to be for our model. The next step is to
convert the bounding box coordinates to tensors. The last step to have all the data ready
is moulding the classes of each object to be model’s input. Since we have the objects’
bounding boxes and their classes previously ordered, we only have to take care of con-
verting the classes to tensors. But there is a little problem, the classes are strings (e.g.,
dog, cat, parrot, etc.) and can’t be converted to tensors. To solve this issue, we convert all
the classes to a numerical value associated to its categorical value, this method is called
integer encoding.

Class 1 Class 2 Class 3

String Cat Dog Parrot

Numerical
value

1 2 3

Table 3.2: Example of integer encoding.
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Now that we have the ground truth classes as numerical data, we convert it to tensor, but
it is not its final form because the model asks that said input be one-hot encoded. This
is because, for categorical variables where no such ordinal relationship exists, the integer
encoding is not enough. In fact, using this encoding and allowing the model to assume a
natural ordering between categories may result in poor performance or unexpected results,
this is, in Table 3.2, the model can assume that a Parrot is more important than a Cat
because a Parrot integer value is 3 and the cat’s one 1 (1 < 3).

One-hot encoding is a method that is used to avoid this mentioned issue. One-hot en-
coding is a process by which categorical variables are converted into a form that could
be provided to ML algorithms to do a better job in prediction. In Table 3.3 is represented
how the one-hot encoding method would work for the example seen in Table 3.2. The me-
chanic is to create a different field for each existing class and then set the object’s actual
class to 1 and the remaining classes to 0.

Cat Dog Parrot
Animal 1 0 1 0

Animal 2 1 0 0

Animal 3 0 0 1

Animal 4 1 0 0

Table 3.3: One-hot encoding example. The table represents that the Animal 1 is from class Dog,
the Animal 2 is from class Cat, the Animal 3 is from class Parrot and Animal 4 is from class Cat.

Finally, after applying the one-hot encoding conversion to the classes’ tensor, we have the
3 necessary training input tensors and, with this, all the data moulded to start the training
process.

Training process

Even though the TF2 object detection API gives the option to do both the training as
well as the validation and inference process automatically, in this project we have decided
to make those processes manually, using low level TensorFlow code and functions that
manage the model’s graph, updating the parameters and working directly with gradients.
This decision was made looking for self-learning of both the bases of Deep Learning and
the TensorFlow library and also more technical benefits for the project such as making it
a lot more customisable.
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Graphs are data structures that contain a set of TensorFlow operations, which represent
units of computation; and tensors, which represent the units of data that flow between
operations. Since these graphs are data structures, they can be saved, run, and restored all
without the original Python code (Figure 3.13).

Figure 3.13: Example of a graph defined in TensorFlow. Source: https://www.tensorflow.
org/guide/intro_to_graphs

The first step done in the training process is to calculate how many batches per epoch
(batches_per_epoch) and batches for all the training process (num_batches) will be. This
information will be used in the training loop to know when the model has to stop training
(when the batch num_batches arrives) and for making some calculations when one epoch
finishes (batches_per_epoch). These two values are calculated as follows:

batches_per_epoch = number o f training images
batch size

num_batches = number o f epochs×batches_per_epoch

https://www.tensorflow.org/guide/intro_to_graphs
https://www.tensorflow.org/guide/intro_to_graphs
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where batch size and number of epochs are given by the user in Section 3.3.2. After those
two values are calculated, we specify which weights has to fine tune, being these weights
all those referring to object localisation and classification.

Now, we define the train and validation steps. These steps are defined using some low-
level TensorFlow functions which access directly the model’s graph. Each step takes a
batch of the three different tensors created in the data preparation process (images tensors,
groundtruth locations and groundtruth classes) and outputs their three corresponding loss
values: Localisation loss, classification loss and total loss (the sum of the localisation and
classification loss). The training step works as follows:

1. We create a variable that will be stored in the graph. This variable’s dimensions have
to be specified so TensorFlow can manage the environment’s memory underneath.
The dimensions that will be specified are Batch size×640×640×3 (image width,
height and RGB channels for each image in the batch).

2. The objects’ groundtruth locations and the objects’ groundtruth classes are provided
to the model.

3. Since the images from the user’s dataset can be of any size, they have to be resized
to match the model’s backbone’s input dimensions.

4. A prediction for the images in the batch passed as input is done, taking the predicted
locations and classes for their corresponding objects.

5. Now, having the model’s predictions and the images’ groundtruth information, the
loss value is calculated by the model itself, giving as output both, the localisation
loss and the classification loss.

6. Taking into account the loss values, we calculate the total loss of the batch making
the sum of the two previous losses.

7. The gradient is computed using the total loss value and the hyperparameters we
want to fine tune, returning the loss function’s derivative.

8. Backpropgation is carried out to compute the gradient of the loss function with
respect to each weight of the network.

The validation step is analogous. It contains the same structure as the training step with
only one difference, the model does not make the gradient descent process, avoiding it to
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improve with the given input. Knowing this, the validation step would be the same as the
validation step removing the points 7 and 8.

With the training and validation steps defined we create the optimiser. Optimisers tie
together the loss function and model parameters by updating the model in response to
the output of the loss function. In simpler terms, optimisers aim at shaping and mould-
ing your model into its most accurate possible form by adjusting its weights. The loss
function is the guide to the terrain, telling the optimiser when it’s moving in the right or
wrong direction. There is a wide variety of optimisers, but in this project we opted to use
Adam [30] since we found it to work generally better, even though in the first instance we
experimented with the Stochastic gradient descent (SGD) [31] optimiser.

Next, the training loop is made. Here, the model will train for the number of epochs that
the user specified previously, running a training step with each batch in a epoch and a
validation step at the end of every epoch. This way, the user can see how the model is
evolving during the training phase and its actual improvement. The training loop is build
as follows:

1. A subset with a size corresponding to the batch size of images and their correspond-
ing groundtruth information is taken from the training dataset.

2. A training step is computed using the previous randomly chosen batches.

3. Once an epoch is completed, a validation step is performed and evaluation metrics
are displayed to the user. In our case, we use the Mean Average Precision (mAP)
metric, a popular evaluation metric used for object detection (i.e. localisation and
classification).

4. Repeat the same process for all the batches that defined one epoch.

5. Finally, model weights are saved and all the loss values calculated in each epoch
are exported to a local file.

3.3.6 Quality Control

Once the user has a functional model, it can be evaluated for any input. In this section, the
user can set the paths to test images and their annotations in order to test the model’s qual-
ity, showing its predictions together with the mAP values. Later, a comparison between



42 Methodology

the original test image, the predicted image and the groundtruth image will be displayed
to the user.

Finally, the model can be used for predicting any kind of input images (the same type of
images that the model has been trained for), so in this final step the user hasn’t got the
need of using annotations.

3.4 User’s interaction in the project

In this section we will show an example of execution from the user’s perspective using
the dataset described in Section 4.2.

The run that will be seen in this section is made using the example dataset which can be
downloaded in the notebook’s Section 3.

Note that only some cells in the notebook are mandatory to be executed, and we will
mention them as we go.

3.4.1 Initialising Colab session

The first runnable cell of the notebook will connect the notebook to Colab and check if
we are granted with access to a GPU (see Figure 3.14).

Figure 3.14: Example of how the GPU access checking is displayed. It can be appreciated that the
Figure’s GPU model is a Tesla T4, having 16GB of VRAM memory.



3.4 User’s interaction in the project 43

The next step is to connect with a Google Drive account to which the user will have
read/write rights, this is, the user will be able to create, delete and read files contained in
that Google Drive account (see Figure 3.15a). The field under the Enter your authorisation

code text needs to be filled with a code obtained in the link shown also in the output.

(a) Before the user is connected to a Google Drive account.

(b) After the user is connected to a Google Drive account.

Figure 3.15: Example of what the user sees before and after he/she connects with a Google Drive
account.

3.4.2 Installing dependencies

Next, the model dependencies are installed and imported, together with our own code
functions. After this cell is run, a message which says that everything has been done with
no errors should be shown to the user.

3.4.3 Setting the training parameters

Now that all the dependencies are installed the notebook is ready to be used.

When we were building the notebook we stop to think about the type of user who only
wants to test the model. For this kind of user it would be probably annoying looking for
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an annotated dataset with the XML PASCAL VOC format required on the internet so
we decided to create a optional cell at the beginning of Section 3 that can be used for
downloading an already annotated dataset with the required format and placing it on the
user’s Colab’s current session so, when the user finishes using the notebook, the dataset
would be deleted automatically. We will refer to this dataset as the example dataset, which
is saved in the /content/example_dataset path.

Note: This dataset is defined later, in Chapter 4.

After this last optional cell comes the cell where the model’s training parameters are set as
well as the dataset that will be used to train the model. This cell only has to be executed if
user wants to train a model. The parameters that are set in this cell are the ones displayed
in Figure 3.16. Most of the fields are filled with default values that users can change as
they like, but the Training_Source, Annotations, model_name and model_path fields are
mandatory to be filled with their respective paths (The Training_Source and Annotations

fields contains the example dataset’s training images and annotation paths by default for
instructional purposes).



3.4 User’s interaction in the project 45

Figure 3.16: Fields of the parameters to set for training.

The Use_Default_Advanced_Parameters checkbox is used for using the training param-
eters defined by us if is checked. If it is not checked the parameters that will be used are
the ones of the fields that come after the If not, please input: text. Those parameters have
the same values as the following fields in Figure 3.16. Once the cell is run, a folder for
this new model is created in the path model_path + model_name (I.e. /content/gdrive/My-

Drive/MyModels/our_new_model_100_epochs in the example of Figure 3.16). Also, two
new folder called Validation_Source and Validation_Source_annotations will be created
in the dataset’s path where a random number n of images from training set’s will be moved
and used as validation set, being n the number corresponding to the training percentage
taken as validation chosen by the user.

Once the cell has been run dataset’s statistics will be displayed as well as the representa-
tion of a image from the training set with its groundtruth information over it as it can be
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seen in Figure 3.17b.
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(a) Statistics output for the example dataset. It is displayed how many objects per each class are in the
dataset and two different plots that gives a general idea to the user of how the chosen dataset is.

(b) An image from the training set is displayed with its corresponding annotations (the ground truth objects
localisation and class) drawn over it.

Figure 3.17: Output example of cell in Section 3.1 of the notebook.
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3.4.4 Data Augmentation

After having defined the training set path and having it split from the validation set now
the user can perform the data augmentation technique in order to make his/her training set
richer. Is important to know that doing data augmentation is not mandatory, but running
this cell it is in order to train the model later. This happens because some variables are
initialised inside this cell, so if the user doesn’t want to make the data augmentation he/she
has to uncheck the Use_Data_Augmentation checkbox and run the cell shown in Figure
3.18.

Figure 3.18: Example of the data augmentation cell and its output.

If the user unchecks the Use_Data_Augmentation checkbox then the data augmentation
process will not be done and it will be represented in the output by a simple text that
says "Data augmentation disabled". Otherwise, the data augmentation process will be
carried out, multiplying the training set the same amount of times as established in the
multiply_dataset_by slider, being 8 the maximum amount of times. After the data aug-
mentation process is finished, creating two new folder where the augmented images and
their annotations are saved are placed in the dataset’s defined path, an output similar to
the one of Figure 3.18 will be displayed, showing the same type of statistics as in the
Setting the training parameters cell (section 3.1) and then a few augmented images with
their augmented annotations drawn over them like in Figure 3.17b.
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3.4.5 Loading weights from a pre-trained network

At this point the dataset that will be used should be ready. As we mentioned before, we
don’t want to create this model from scratch but we want to create it and load the weights
from another pre-trained model, so the only thing we have to do is fine tune it with the
dataset with which the model has to work.

Figure 3.19: Loading weights section cell.

In Section 3.3 of the notebook, if the user wants to create a new model, he/she can choose
which pre-trained backbone want to load to the new model from a list of backbones set
by us. Once the backbone is chosen, the user can set the loss weights that the model will
have for localisation and classification in the model’s training phase (this functionality is
previously explained in this document, in Section 3.3.4), by default these two values are
set to 1.0. When the backbone and the values for the two losses are set the user can run the
cell, which will display the backbone weights download and a text saying that everything
went fine as it can be seen in Figure 3.19.

Another option for the user is to load a previous trained model that he/she saved in a
previous use of the notebook, so he/she can continue training it with the same data or new
dataset, improving the model’s quality. To use this option the user just needs to check
the Use_pre-trained_model checkbox and write the pre-trained model’s path in the pre-

trained_model_folder field.

3.4.6 Train the network

With all the scenario ready for the model usage, the user can start training the model.
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The model training cell is an executable cell that the user cannot interact with much more
than choosing if the validation’s set mAP metric is going to be calculated and displayed
(checking the verbose checkbox). If the mAP metric is calculated, the training process’
duration is slowed down a bit. Once the user runs the training cell, the model starts train-
ing, showing the model losses (training total loss, training classification loss, training
localisation loss and validation total loss) every epoch as well as the validation set’s AP
metric for each class and its mAP (Figure 3.20).

Figure 3.20: Output example of the training process.

Once the training process is finished, the model and its configuration is saved in the path
specified by the user in the section 3.1 of the notebook as well as a PDF file with the
model’s training information. Finally, the user has a valid RetinaNet model that can be
evaluated and used for object detection tasks.
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3.4.7 Choosing model for evaluation

In order to evaluate a model, in notebook’s Section 5 the user will find a cell like the one in
Figure 3.21 where he/she has to specify what model is going to be evaluated, a previously
saved one or one that has been trained in this notebook’s run.

Figure 3.21: Model for evaluation choosing cell.

If the user wants to use a model trained in this notebook’s session, he/she has to check the
Use_the_current_trained_model checkbox, otherwise this checkbox has to be unchecked
and the previously saved model’s path has to be specified in the QC_model_folder field.
Note: the QC abbreviations stands for ’Quality Control’. After running the cell with an
option set, a text with the chosen model’s name will be displayed.

3.4.8 Inspection of the loss function

It is good practice to evaluate the training progress by comparing the training loss with
the validation loss. The latter is a metric which shows how well the network performs on
a subset of unseen data which is set aside from the training dataset.

During training, both values should decrease before reaching a minimal value which does
not decrease further even if the model continues training. Comparing the development of
the validation loss with the training loss can give insights into the model’s performance,
and here is why the validation set is a very important/honest key in the training process,
because it is really usual to reach a point in training where the training loss value continues
decreasing but the validation loss value has reached a minimum value and won’t decrease
anymore, this is, the model continues improving with the training data but not for unseen
data. When this behaviour happens is called overfitting, which means that the model is
not actually improving, it is only learning how the training data is so, learning that data,
the model can improve the loss function. In order to have a good quality model we don’t
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want the model to overfit, so the ideal scenario would be to stop the training when the
validation loss stops decreasing.

In this cell it can also be seen the evolution of the validation’s mAP metric over the epochs,
which is also a honest metric that can be used to see if the model continued improving
when the training process ended.

Figure 3.22: A display example of the cell from Section 5.1 of the notebook. In this example, in the
first two plots, can be noted that both, the training loss (blue line) and the validation loss (orange
line) still decrease in the last epoch (epoch number 100), so the model probably can improve if it
continues training. It can also bee seen that the validation set’s mAP metric continued improving
slowly.

3.4.9 Quality metrics estimation

The Section 5.2 of the notebook is directed to check how a RetinaNet model can perform
with new data both quantitatively and qualitatively.
The user has to set two paths: one where a set of images unseen by the model will be (a
test set) and other one which the annotations of those images.
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Qualitative evaluation is performed by the user after observing the displayed predictions
to judge if they are good enough or not (see Figure 3.23).

Figure 3.23: Qualitative evaluation: a prediction of an image from the test set established by the
user.

On the other hand, the quantitative evaluation is given by the mAP metric that will be
calculated using the unseen annotated data set by the user, having numerical values for
each class in the images and for the overall predictions (Figure 3.24).
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Figure 3.24: Quantitative evaluation: mAP score for the test set and the AP metric of each class.

Finally, a randomly selected original image from the test set, its prediction and its ground
truth are displayed (Figure 3.25).
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Figure 3.25: Display of three different views of a test image: the original image, its prediction and
how it should have been predicted.

3.4.10 Use the model for actual predicting

This section allows the user to use the model to make predictions on new data.

To use this functionality it is the cell in Section 6.1 of the notebook where the user only
needs to insert the following information:

• Data_folder (path of the images): Path to the folder that contains the images to be
predicted.

• Result_folder: Path where the predictions will be saved (if the path does not exist
it will be automatically created).

• Score_threshold: A real value contained in the range [0, 1] which will limit the
display of the predictions, this is, the minimum percentage of confidence of the
model in the predictions. Set to 0.4 by default.

• Use_the_current_trained_model: Checkbox that set if the model that has been
trained in the current notebook’s session (if is checked then it will be used the
current trained model).

• Prediction_model_path: If the previous checkbox is not checked then the model
that will be used for prediction is the one from the path inserted in this field.
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Figure 3.26: Cell from Section 6.1 of the notebook where the predictions will be made and saved.

The following cell and also the last executable cell that the notebook has (Section 6.2 of
the notebook) is a cell which shows randomly one of the predictions of the previous cell
with its corresponding original image and with a different display format (Figure 3.27).

Figure 3.27: Display example of the last cell in the notebook.



CHAPTER 4

Experimentation

4.1 Familiarisation experiments

In the beginning of this project, in order to learn how RetinaNet works and how it could
be implemented with the TF2 object detection API, a previous Jupyter notebook was done
building the RetinaNet model from scratch to, later in that notebook, keep adding func-
tionalities until, in the end, the notebook could be a complete and useful object detection
model able to be quickly fine-tuned.

Note: this first notebook can be seen in the following link: https: // github. com/

ErlantzCalvo/ Object-detection-Tensorflow-2

4.1.1 Pre-trained RetinaNet on the COCO dataset

To get familiarised with both RetinaNet and the TF2 object detection API, we created a
first notebook that allows to predict objects from the COCO dataset.
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Figure 4.1: Prediction of two dogs in a picture by the model’s prototype.

4.1.2 Fine tuning for rubber ducky prediction

The next step was to adapt the notebook to make fine-tuning and predict a new class.

Addressing this task required one of two, either get an already annotated dataset or take
a set of images which contain one type of object and label it. Fortunately the TF2 object
detection API contains a tool that makes easy the image annotation in the Jupyter note-
book execution so we decided to download a set of rubber ducky images (5 images) and
label them manually (Figure 4.2).
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Figure 4.2: Manually annotated rubber ducks using the annotation tool from TF2 API.

After finishing the annotation part the pre-trained model’s weights are downloaded and
the model is configured for predicting only one class, the rubber duckies. Then the model
is fine-tuned making a custom training process which works in the same way a the Zero-
CostDL4Mic RetinaNet project’s training process (Section 3.3.5 of this document).

Figure 4.3: Inference results using the model fine-tuned with rubber duckies.

Note: in this notebook we tried making the fine-tune without loading the weights from
a pre-trained model and the results and accuracy of the model’s predictions were consis-
tently worse than with the weights loaded.
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4.1.3 Extension to multi-class prediction

Once we had a model that could easily be fine-tuned, a big part of the object detection
task was achieved but there was still an important functionality of this project missing,
the multi-class prediction. In the duckies notebook, the RetinaNet model only predicted
one single class, the rubber duck class. Taking into account what the ZeroCostDL4Mic
project is meant to be we can’t have a model which only can predict objects of one class,
so we had to figure that point out.

The following step was to get the model to predict several classes at the same time. This
functionality was achieved modifying the model’s configuration indicating the number
of classes that the model has to predict and building some pre-processing methods for
building up any kind of dataset passed. In order to test this new multi-class functionality
we added two new classes (Platypus and Minion1), making the fine-tuning and inference
for a test set.

Figure 4.4: Inference results using the model fine-tuned with rubber duckies, minions and platy-
puses.

In this toy notebook we didn’t measure the accuracy of the model with any metric, it was
all subjectively valued.

4.2 Dataset used

Our final ZeroCostSL4Mic notebook has been developed and tested with a dataset of 33
images containing MDA-MB-231 cells migrating on cell-derived matrices generated by
fibroblasts [32]. Every image has its corresponding XML PASCAL VOC format anno-
tation file attached, where all the cell’s bounding boxes location coordinates and class

1Minions are fictional yellow creatures that appear in the Despicable Me franchise.



4.3 Experimental results of the RetinaNet model in the MDA-MB-231 cell dataset 61

are manually labelled. All the images are 2D grey scale images in png format and the
dimensions of every image is 1388×1040 (Width×Height).

(a) (b)

Figure 4.5: Dataset’s image example. From left to right: (a) original image, and (b) expert anno-
tations on top of original image.

The given dataset contains 5 different types of cell: Elongated, Rounded, Dividing, De-
bris and Interphase. The figure 4.5b shows all the different types of cell, being each
cell’s bounding box represented by a different colour depending on it’s class, this is,
the green coloured boxes represent the Elongated cells, the blue coloured boxes repre-
sent the Rounded cells, the aquamarine coloured boxes represent the Interphase cells, the
white coloured boxes represent a Debris zone and the beige coloured boxes represent the
Dividing cells.

4.3 Experimental results of the RetinaNet model in the MDA-

MB-231 cell dataset

Different experiments have been performed to test our implemented solution in the afore-
mentioned MDA-MB-231 cell dataset. In order to compare it with other available so-
lutions, we repeated the experiments with the YOLOv2 implementation available as a
ZeroCostDL4Mic notebook (FOOTNOTE).

For these tests, we have decided to use the ResNet50 as backbone of our RetinaNet model
instead of the two available MobileNet models, which usually perform faster but not as
accurate.
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Epochs Batch size Learning rate Training time (mins) mAP
YOLOv2 50 16 0.0001 25 0.22

YOLOv2 50 4 0.0001 34 0.20

YOLOv2 100 8 0.0001 46 0.22

RetinaNet 100 16 0.0001 9 0.39
RetinaNet 100 4 0.0001 14 0.40
RetinaNet 200 8 0.0001 28 0.38

Table 4.1: Comparison between RetinaNet and YOLOv2 performance on MDA-MB-231 cell
dataset. mAP results correspond to the test set values. In bold, best time and evaluation metric.

It is important to know that, due to the hardware limitations of the Colab environment,
the maximum batch size that can be set in our notebook is ≈ 16. Otherwise, setting the
batch size over 16 can cause the model to exceed memory capacity, causing the session
close and losing the notebook’s executed state until the moment of that memory exceed,
which probably comes in the training phase. The election of the ResNet50 backbone is
also related to this limitation because, if there was no memory limitation, choosing the
ResNet101 or ResNet150 models would result in better accuracy scores, but they are very
heavy in terms of hardware needs.

In Table 4.1, some of the tests with both models (RetinaNet and YOLOv2) can be seen.
Each row of the table represents a different configuration for the model given in the first
cell of the row, either a change on the batch size or in the number of epochs. Note that
YOLOv2 needs less epochs to converge its loss function but it also requires a notably
greater amount of time compared with the RetinaNet model.

We can also observe how, the lower is the batch size, the longer the training time. This
happens because the model tune its weights after it has seen all the data from a batch
and calculated the loss value relative to that batch. This means that the model tunes more
times its weights when the batch size is lower, what requires more operations to finish an
epoch.

In a general scope, the table shows that RetinaNet outperforms YOLOv2 in both mea-
sures, speed and precision (mAP). This means that the model has achieved the ambitious
goal we set for ourselves at the beginning of the project, building an object detection with
Deep Learning approach that could improve the existing ones.
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Conclusions

First of all, throughout this project we have gone around the state-of-the-art object de-
tection with Deep Learning techniques in order to understand how the most popular ap-
proaches of this field work and try to learn the most suitable approach to meet the require-
ments of our initial objective. We have delved into the one-stage and two-stage methods
to understand their strengths and weaknesses and we have come to the conclusion that,
although the two-stage approaches have always performed better than the one-stage ones
in terms of accuracy, their overall speed is quite worse and that feature does not fit in our
needs. Later, we have seen the RetinaNet model and how it improved the object detec-
tion field, outperforming the accuracy of the most popular two-stage approaches while it
preserves the one-stage models speed. It seemed that it was the ideal approach for our
project.

Then we studied what tools to use to implement the RetinaNet model in our project and
learnt about the TF2 object detection API and all the possibilities that it gives us like, in
our particular case, the strong feature of having a great model Zoo.

After we studied the TF2 object detection API, we had to learn about the ZeroCostDL4Mic
project’s workflow and how we could mould a RetinaNet model build and usage to work
within said project.

Next, we faced one of the most difficult parts of the whole project and its core, the Reti-
naNet implementation in the ZeroCostDL4Mic project. We went through many technical
difficulties caused by our inexperience using the TF2 object detection API and many other
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external code libraries and, also, moulding existing ZeroCostDL4Mic notebooks to work
with our implementation. Finally and after putting a lot of effort into it, we managed
to build a ZeroCostDL4Mic notebook that makes easy the task of building a RetinaNet
model for every kind of user without the need for prior knowledge of Deep Learning.

Once we had the final notebook, we tested it using an actual annotated dataset which is
publicly available. In order to make easier this task, we implemented the functionality of
downloading a public annotated dataset in the notebook for all the users that want to try
the notebook without the requirement of having an annotated dataset. We trained a model
and evaluated it using the said public dataset and checked that the predictions seemed not
only viable, but also of quality.

Finally, we have compared the results of our RetinaNet model with the results of an
already existing ZeroCostDL4Mic object detection model, the YOLOv2 project. This
comparison was done using the public dataset that can be downloaded in the RetinaNet
notebook. The results not only represent an improvement of our project compared to the
YOLOv2 one, but also the performance of the RetinaNet model is almost twice as good
as the YOLOv2 one, which is a great improvement. With all these data in mind, it can be
said that we have successfully met all the objectives proposed for the project.

As future work we will make a performance comparison of our model with more architec-
tures than YOLOv2. Also, we will add more backbone networks to choose when building
the RetinaNet model in the notebook. Then, we will study in a deeper way the reasoning
of the model’s hyperparameters to get a good knowledge of what values are the ideal for
each model.
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