
Bachelor’s Thesis

Grado en Ingeniería Informática

Computación

One-Class models for the prognosis of COVID-19
infection outcome

Unai Carbajo Escajadillo

Advisors
Borja Calvo Molinos

Iñaki Inza Cano

Rubén Armañanzas Arnedillo (BCAM)

June 20th of 2021

Abstract

This project aims to address the prognosis prediction problem for COVID-19 patients

making use of One-Class Classi�cation techniques. Data retrieved from Spanish hospitals

has been used for the development of models in the attempt to predict whether a prior

COVID-19 positive inpatient will decease or not. This data collection includes clinical

information (age, sex, �rst hearth rate check, etc.), diagnosis and procedural information,

and laboratory �ndings (complete blood count variables, D-Dimer count, etc.) of 1,798

patients.

This project presents a machine learning work�ow composed by a data �ltering process,

followed by a model hyperparameter optimization step, and eventually, the training, testing

and evaluation steps of the �nal models. The work�ow implements 3 relevant One-Class

Classi�ers: One-Class Support Vector Machine, Local Outlier Factor and Autoencoder.

These models follow the One-Class Classi�cation paradigm, which is a branch of unsu-

pervised machine learning and it is based on making classi�cations with models entirely

trained with data belonging to a single class.

The 3 experiments showed an overall ROC-AUC of 0.558±0.101 and sensitivity of

0.567±0.123. The analysis made after the classi�cations turned out to highlight the weak

representation of deceased samples and strong similarity between deceased and discharged

patients, a key issue in COVID-19 prognosis prediction problems.

Keywords: One-Class Classi�cation, COVID-19, prognosis, unsupervised learning

i

Contents

Contents iii

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1

2 Objective 3

3 State-Of-The-Art Review 5

4 Data 7

5 Methods 9
5.1 One-Class Classi�cation . 9

5.1.1 Concepts . 10

5.1.2 Types of OCC methods . 15

5.1.3 Boundary based methods . 16

5.1.4 Reconstruction based methods . 20

5.2 Strategy . 21

5.2.1 Data structure . 23

5.2.2 Feature Filtering . 24

5.2.3 Sample/row �ltering . 26

5.2.4 Hyperparameter optimization . 27

5.2.5 Model �tting . 29

5.2.6 Outlierness processing: prediction 30

5.2.7 Evaluation . 33

5.2.8 Implementation: pipeline . 34

5.2.9 OCSVM . 34

5.2.10 LOF . 34

5.2.11 Autoencoder . 37

6 Experimental results and discussion 39
6.1 Evaluation (scoring) . 39

6.2 Interpretation of results and external study comparison (supervised approach) 39

iii

iv CONTENTS

6.3 Positive outlier analysis . 41

6.4 Post-classi�cation data analysis . 43

7 Conclusions 47

Appendix 49
Appendix A . 49

Appendix B . 52

Bibliography 55

List of Figures

4.1 Comorbidity number visualization . 8

4.2 Symptom number visualization . 8

5.1 Feature pair-plot representation for D0000AGE, CTHSDXXTEMP and CT00MONOP.

The representation of the data in the class "deceased" is tighter than in the "not

deceased" samples. 13

5.2 Outlierness representation example. Toy example for an expected outcome of a

One-Class Classi�cation problem: the samples in blue get the lowest outlierness
and they are represented quite clustered, whilst the orange samples get higher

outlierness and they are all spread out. Thus, blue samples show to be more

similar to the data used for training the classi�er, while orange samples don’t. 14

5.3 An example of K-neighbor representation for a K=5 with the points inside the

red circle. The 5
th

neighbor (E) sets the 5
th

distance for the xj data point. It is

represented as the reachability distance for thexi data point, which is the purple

line, the maximum between the 5
th

distance of xj and the distance between xj

and xi. The distance metric used in this toy example is the euclidean distance. 19

5.4 Example of a classical autoencoder structure. It is made up of the input nodes,

which include the original data, the latent space, which is the internal repre-

sentation of the data learned by the Autoencoder, and the output nodes, which

result in the reconstructed data of the autoencoder. This architecture is an

undercomplete autoencoder, a type of autoencoder whose hidden dimension is

less than the input dimension. 22

5.5 The work�ow (pipeline) summarizing the whole process of experimentation. . 23

5.6 Example of outlierness analysis for sample �ltering step in a certain fold of the

5-CV using LOF. The samples in yellow represent the cases whose outlierness
is higher the one de�ned at quantile 0.9. It is clear how a large number of

samples is gathered near 0 as expected, since the test subset is entirely made

up of positive samples. However, there can be observed samples with higher

outlierness that will eventually be labeled as outliers, and thus, removed from

the train �nal subset. 28

5.7 Nested Cross-Validation example. GridSearch optimization method works with

a set of parameters de�ned for the hypothetical hyperparameters alfa, beta and

gamma· . 29

v

vi LIST OF FIGURES

5.8 Manual cut-o� value selection example. Toy example for an expected outcome

of an one OCC approach. It is clear that a large number of samples is gathered

near 0, forming a small cluster. On the other hand, there are few remaining

samples that are all spread out, which are the ones with larger outlierness. In

this case the selection of the θ cut-o� value is in the value 1.1, which is the

threshold that separates clearly the samples with small and large outlierness. . 31

6.1 Outlierness representation for outlierness analysis with LOF. A lot of samples

are gathered near 1 (LOF lowest possible value), which represent inliers, whilst

there are less samples with higher outlierness which represent positive outliers

in the positive data of the training set. 42

6.2 Clustering of positive (deceased) and negative (discharged) samples. The red

cluster (1) includes a large number of samples of the positive class, whilst the

green cluster (0) includes more samples of the negative class. The circles with

the number of the cluster inside represent the centroid of each cluster, and as

observed they’re pretty close, thus, the clusters are not so separable. 45

6.3 Silhouette value representation for each sample, divided in 2 clusters. 45

List of Tables

5.1 Confusion matrix . 31

5.2 Con�guration summary of OCSVM. 35

5.3 Optimized parameters for OCSVM. 35

5.4 Con�guration summary of LOF. 36

5.5 Optimized parameters for LOF. 37

5.6 Con�guration summary of the autoencoder. 38

5.7 Optimized parameters for the autoencoder. 38

1 Description of features. 50

2 Table of mean and standard deviation for every feature, divided by the target

variable. 51

3 Complete evaluation of the OCSVM . 52

4 Complete evaluation of the LOF. 52

5 Complete evaluation of the autoencoder. 53

6 Results of the supervised approach [1] (Armañanzas et al.). 53

vii

List of algorithms

5.1 Feature �ltering process . 27

ix

CHAPTER 1

Introduction

Coronavirus disease (COVID-19) has been hitting the whole world since the start of the �rst

outbreak in Wuhan, China, in late 2019. This disease is caused by a new type of coronavirus

called SARS-CoV-2. The World Health Organization [2] registered by May 11
th

2021 a total

of 158,551,526 con�rmed cases of COVID-19 and 3,296,855 deaths (reported by national

authorities). But this disease did not discriminate at the time of hitting countries over all

continents. An example of this is the situation in Spain, which has been one of the most

damaged countries in Europe, leaving a total of 3,559,222 detected cases and 78,726 deaths

for the record of May 11
th

2020.

A large set of countries, in the try of slowing down the virus’ spread, have joined

their forces, resulting in changes in many �elds. This could be seen in the facemask

manufacturing process improvements, or even in the novel vaccines’ development.

However, the e�ect made by this disease is tangible over many other �elds. One example

is the improvement on science research made covering COVID-19 related issues. This

extends from a medical �eld as epidemiology to AI related �elds, even combinations of them.

The impact of the COVID-19-related research is so big that by the end of 2020 it became

the topic with more papers in history, registering more than 200,000 papers. However,

this overwhelming science growth was not worthless. All these improvements helped the

resource management of hospitals, lightening decision making processes of health security

entities, and enhancing the security countermeasures for COVID-19, among many others.

The people who su�er from COVID-19 share many of the most common symptoms,

such as fever, dry cough or fatigue. However, there are many more indicators, which are

less common in COVID-19 positive patients: headache, loss of taste or smell, etc. The most

severe patients show signs such as shortness of breath, loss of appetite, confusion, persistent

pain or pressure in the chest and high temperature (above 38 °C). All the symptoms are

collected in The World Health Organization’s COVID-19 section [2]. These symptoms,

along with other biochemical, laboratory-related and medication-related notes, were widely

used in the decision making process in ER of hospitals. These features were crucial at the

time of deciding whether a person would need urgent care or not.

Another application of the symptoms was the prediction of early diagnosis in persons

with unknown COVID-19 status. There is another important �eld that was tackled, which

1

1. Introduction

is the propagation analysis and prediction of COVID-19. This problem was about obtain-

ing early epidemiological results based on demographic data, including the reproduction

number of the virus, daily infection number in an area, etc. And, the one which has been

recently in an all-time-high situation is the vaccine/drug discovery, crucial at the time of

protecting the population against virus’ e�ects.

Even though science developments in COVID-19 related topics grow as days go on,

the availability of data still plays an important role in the scienti�c community. This

implies that most of the work was heavily biased by the dataset they were developed with.

Every database di�ered notably in many features, like the place the dataset was obtained

from, or the date it was obtained. These facts were clear in machine learning approaches

for prognosis/diagnosis prediction, where the reusability of models in hospitals between

countries, or even hospitals of the same region, was an impossible task. This was not a

viable problem, since the data used to tune the models belonged to di�erent regions and

timestamps. Therefore, the best scenario for this type of works should be the de�nition of a

unique standardization of COVID-19 data, and thus joining the e�orts of researching over

a retrievable and centralized data. However, this could imply the loss of the localization

aspect, which is the backbone of problems related to epidemiological analysis.

A large set of machine learning approaches for COVID-19 patient prognosis prediction

rely on the use of similar features that are proved to have a heavy impact at the time of

establishing the evolution of the disease in an infected person [3], [4], [5]. Clinical features

like the age, O
2

saturation at Emergency Room (ER) or the origin (place before hospital) of

the patient or other laboratory �ndings as the lactate dehydrogenase (LDH), D-dimer, etc.

represent the set of features that are usually related to severe COVID-19 patients. Many of

the previously mentioned problems used this knowledge in order to develop their models

in an optimized way. The experimentation of this project also applies these ideas.

This project has the following structure: Chapter 2 analyzes the main objective of the

project; Chapter 3 reviews advanced techniques applied to COVID-19 prognosis prediction

and the novelties of One-Class Classi�cation (OCC); Chapter 4 describes the dataset used

for the experimentation; Chapter 5 explains the main concepts of OCC, covering deeply

the techniques applied in the experimentation, and the evaluation made over the 3 main

techniques is analyzed; Chapter 6 contains the interpretation of the results obtained in the

main experimentation, de�ning a post-classi�cation analysis of data; Chapter 7 describes

the conclusions obtained over the analysis of the results.

2

CHAPTER 2

Objective

This project proposes an experimentation procedure for the prediction of the outcome of

hospitalized COVID-19 patients using a One-Class Classi�cation (OCC) approach [6]. The

OCC paradigm is an alternative proposal to the classical multi-class classi�ers, which is

based on modeling a classi�er around a single class, instead of estimating a prediction

based on the data of multiple classes.

The experimentation aims to show the performance of 3 well-known One-Class classi-

�ers, following an unsupervised approach and identifying the weaknesses and strengths

of these kinds of techniques. This project tackles the main concepts of OCC in chapter

5, analyzing step by step the ideas of OCC, specially applied to health-related problems,

showcasing the ideas which could make this approach a reliable option in contrast to the

"by default" supervised multi-class classi�cation.

The prognosis prediction in COVID-19 patients revolves around di�erent objectives.

This might include the prediction of mortality of a COVID-19 patient, which is usually

referred to as risk of mortality. This type of task can be addressed in 2 main ways. The

�rst one related to predict whether a COVID-19 patient will pass away or not [7, 4]; the

second one is related to the classi�cation of patients into risk �elds [1], [8], which represent

the severeness of the disease on infected patients. Even though the later method is not

carried out in this project, it is worth noting that the use of several scores for the evaluation

of the severeness of COVID-19 is quite popular, e.g. 4C Mortality Score by the ISARIC

Coronavirus Clinical Characterisation Consortium [8]. Another analysis developed in this

project is the prediction of hospitalization length of a COVID-19 patient [9], a method

that depends heavily on the location where the analysis was developed on, and how the

management of patients is made.

This project works with the �rst idea, estimating whether a patient will decease or,

on the other hand, will be discharged/translated. The data used for the experimentation

and analysis of this project is the database released from HM Hospitales on April 25
th

2020, thanks to the project COVID DATA SAVES LIVES (CDSL) [10]. This database is

fully anonymized and it contains clinical, biochemical and epidemiological features, widely

explained in the chapter 4.

Another issue to point in this project is the post-classi�cation analysis, made after the

3

2. Objective

predictions obtained by One-Class classi�ers. The experimentation covers the comparison

between OCC and classical classi�cation approaches, analyzing the real scope of OCC

through the representation of the data, and summarizing with �nal conclusions about the

use of OCC in COVID-19 prognosis prediction.

4

CHAPTER 3

State-Of-The-Art Review

Two of the more relevant works on COVID-19 prognosis are the contribution made by Yan

et al. (2020) [11] and Knight et al. (2020) [8]. Both models di�er heavily between them.

The work by Yan et al. is able to predict the outcome of the patients more than 10 days

in advance with an "interpretable" approach. The �nal model is based on the use of three

critical biomarkers highly related to the severeness disease: LDH (lactic dehydrogenase),

lymphocyte count and hs-CRP (high-sensitivity C-reactive protein). In order to carry out

the study, 485 blood samples were used (375 for training and 110 for test), all of them

collected from patients of the Tongji Hospital (Wuhan). Empirically, the idea behind this

model is to identify high-risk patients.

The work by Knight et al. summarizes the development of an easy-to-use risk strati�-

cation score with common clinical and biochemical parameters obtained at hospital stays

from patients of 260 hospitals across England, Scotland, and Wales. This project is one the

most relevant and exhaustive works of mortality risk prediction, making use of data from

34,692 patients, resulting in a total of 8 features each. The features contained clinical and

biochemical values: age, sex, number of comorbidities, respiratory rate, peripheral oxygen

saturation, level of consciousness, urea, and C-reactive protein.

In spite of the fact that COVID-19 studies have been covered from di�erent machine

learning and deep learning perspectives, the OCC paradigm has not been applied yet to

prognosis prediction. There are examples of OCC applied to the extraction of deep features

in normal chest CT scans of patients with pneumonia infection (derived from COVID-19)

[12], seen in the work by Khan et al. (2021). However, there has not been any One-Class

implementation to treat the prediction of the outcome of COVID-19 patients. Therefore,

this project presents a novel approach to address this problem.

Most of the One-Class Classi�cation techniques are based on classical machine learning

methods. An example of this can be seen in the SVM application for OCC, known as One-

Class Support Vector Machine (OCSVM or 1SVM) [13], which transforms the original SVM

algorithm to model a single class. Even though these kinds of methods work well in many

applications, they often fail when working with high dimensional data due to bad scalability,

heavy computational weight and curse of dimensionality (further explanation in Section

5.1.3.1). So, this is where new methods have their chance to be developed. Thus, along

5

3. State-Of-The-Art Review

with the rise of the deep learning [14, 15] (LeCun et al., 2015; Schmidhuber, 2015) on the

last decade, OCC techniques have been developed as well, adapting to more sophisticated

methods based on deep learning and therefore solving many of the problems that classical

machine learning approaches have. The most relevant impact of these new techniques

was seen in feature �ltering processes, where shallow machine learning methods require

substantial feature �ltering, whilst deep learning techniques address this issue internally.

The improvements on Deep One-Class Classi�cation are clear in anomaly detection

tasks. An example of this technique is the novel technique of Deep Support Vector Data

Description [16] (Deep SVDD) by Ru� et al. (2018). A method based on training a neural

network while optimizing an hypersphere enclosing samples representatives of the target

class. This method improves the classical SVDD [17] by Tax and Duin (2004), by means

of the application of deep learning techniques. These improvements are shown on how

the minimization of the hypersphere forces the neural network to capture the most salient

features since the network has to map the target data points inside the hypersphere as

tight as possible. In this way, the classical feature �ltering methods, that are applied to the

majority of machine learning problems, are left aside.

Even though not all unsupervised approaches are considered as OCC, there are deep

learning methods that have demonstrated to work properly in One-Class scenarios. An

example of this is the Deep Autoencoder (Hinton and Salakhutdinov, 2006), a type of

arti�cial neural network that tries to extract salient features from a dataset by the use of

an intermediate reduced dimension. This approach is carried out following the classical

methodology of deep learning, designing a multi-layer neural network. This work makes

use of a shallow autoencoder, de�ning no more than a single hidden layer for the latent

space representation.

6

CHAPTER 4

Data

The data used for this project is a processed version of the database released on the project

COVID DATA SAVES LIVES (CDSL) [10], by HM Hospitales. This database contains

anonymized records from 2,310 patients, all of them collected from the HM Hospitales

Electronic Health Record (EHR) system. The patients registered were diagnosed previously

as "COVID positive" or "COVID pending", from the beginning of the epidemic until April

25
th

2020.

The collected variables in this database include clinical information of the patients

(2,226 records), with features like age, sex, data of ICU stays, �rst and last constant records at

emergency, and many more. The database also includes information about the administered

drugs to the patients (more than 60,000 records) during admission. Another information

registered is the record of vital signs taken during the admission, gathering up to 54,000

records. One of the most relevant data registered is the laboratory �ndings of each patient,

including requests made during admission and in the Emergency Room (ER); reaching a

total of 398,884 records. And �nally, data about the diagnosis and procedural information,

encoded in ICD-10 standard
1
. This information is taken during 2 main episodes, the �rst

one during hospital admission (more than 1,600 records), and the second one during an

emergency, if it happened. Finally, registering more than 1,900 pro�les.

The database was characterized as follows:

• Male/Female ratio: 58.78%

• Con�rmed COVID/Suspected covid patient percentage: 90.97%

• Deceased/Discharged (other) percentage: 14.96%

• Prior ER room stay patient percentage: 96.33%

However, the data used in this project was, as mentioned earlier, a processed version of

this database. This version of the data followed a preprocessing work in the project [1]

1

The ICD-10 standard is the 10
th

revision of the International Statistical Classi�cation of Diseases and Re-

lated Health Problems [18], a global standard for health data, clinical documentation, and statistical aggregation.

It is used for medical classi�cation.

7

4. Data

Figure 4.1: Comorbidity number visualization

Figure 4.2: Symptom number visualization

developed by Armañanzas et al. The pipeline to preprocess the data includes techniques

as imputation (�ltering missing values) and feature de�nition. It is summarized in 1,798

selected patients with 44 features each (plus the target variable), composed of 276 (15.35%)

deceased patients and 1,522 (84.65%) discharged patients. The percentage of male was

around 60.68%. More information about the features is registered in Table 1 of the Appendix

A, which shows a brief description of each feature. The mean and standard deviation for

every feature is shown in Table 2.

Features like the comorbidities are summarized in a single variable, which is the number

of comorbidities the patient has. The same �ltering is applied for the symptoms of the

patient. These two new variables are de�ned in a [0,3] range, de�ning the number of

comorbidities/symptoms the patient has, respectively. The value 3 is assigned for those

patients that have 3 or more comorbidities/symptoms. The conditions to check are Chronic

Cardiac Disease, Chronic Respiratory Disease (incl asthma), Chronic Renal Disease, Mild

to Sever Liver Disease, Dementia, Chronic Neurological Conditions, Connective Tissue

Disease, HIV or AIDS, Cancer, Obesity. And the symptoms to check are Dyspnea, Fatigue,

Lost of Consciousness, Myalgia, Sputum, Anosmia, Fever, Diarrhea, Vomiting and Cough.

The distribution of both features is shown in Figures 4.1 and 4.2.

8

CHAPTER 5

Methods

5.1 One-Class Classi�cation

One-Class Classi�cation (OCC) [19] is a machine learning paradigm whose objective resides

in identifying samples from a speci�c class. In contrast to more classical approaches (binary-

class classi�cation, multi-class), where a classi�er is trained with samples from all classes

that are involved in the problem. In order to predict the true class where a new unseen

sample belongs, One-Class classi�ers are trained exclusively with samples from one class,

�nally predicting whether a sample belongs to that class or not. This class is usually referred

to as normal or positive class, and, on the other hand, the samples that do not belong to the

normal class are considered as anomaly/outlier/novelty/negative samples. Despite the OCC

theory does not consider a second class, it is common to label them as anomaly/outlier

class, or basically, negative class.

It is usually assumed that the positive class is properly characterized, while the other

class is poorly characterized and usually a low number of samples of it is available. The

focus of the learning process is uniquely centered in the modelization of the "normal

class", i.e. a pattern for the rest of the classes is not learned. This is a common situation

in machine failure detection problems, where normal operations of a machine are easily

retrievable. However, as the machine is meant to work properly most of the time, the

samples of anomaly operations are quite low, so the whole classi�cation depends on the

characterization of normal operations and on the performance of the one-class classi�er’s

performance in order to identify normal operations.

Nevertheless, the OCC approaches may di�er on the representation of the data. It is

possible that both negative and positive samples are properly or fairly well de�ned. This

would be a straightforward approach for multi-class classi�cation techniques. However,

this problem could also be solved with OCC techniques, leaving our desired-to-predict

class as the positive class, and grouping other classes as the negative class. This kind of

approach is carried out in this project.

At �rst glance, OCC techniques were referred to as Single-Class Classi�cation [20]

by Minter, who designed a Bayes classi�er developing the OCC taxonomy as we know

it today, and so, de�ning those Single-Class classi�ers as classi�ers which will classify

9

5. Methods

data into the "class of interest"or the "other" classes but will require only labeled training
samples from the "class of interest" to design it. This de�nition perfectly characterizes

modern One-Class Classi�ers. Many years later, One-Class Classi�cation [19] term was

�rstly coined by Moya and Hush, in 1996. Over time, the de�nition of OCC has changed,

adapting it to several problems: outlier-detection, novelty-detection, enhancement of multi-

class classi�cation results, single-class modeling, concept learning, etc. OCC has shown a

particular great prominence in topics related to computer vision, such as abnormal image

detection, abnormal event detection and biometric applications, as is covered in the OCC

survey [21] by Perera et al.

Therefore, OCC techniques had been getting more relevant as they were frequently used

in the topics named earlier. Thus, they had su�ered many changes, and, in particular, crucial

improvements that helped unifying and regularizing standards that made the development

and understanding of new OCC methods easier.

One-Class classi�ers are considered as an unsupervised learning paradigm, since all

the samples used for training are supposed to be integrally composed of samples from

one speci�c class. Therefore, during the training process there is no use of samples apart

from those of the desired class, so the classi�er does not draw upon on any information

of the classes the label of the samples could provide. However, this does not mean that

One-Class classi�ers are limited for problems whose datasets are not untagged, in fact,

as every unsupervised classi�er, it has a high reliability in labeled datasets, and could

show better results than supervised classi�ers, especially in outlier detection problems,

where unsupervised classi�cation proves to work better in problems that rely on pattern

discovery.

This brings up the discussion about selecting an OCC approach rather than a multi-

class approach. Tax et al., 2002, registered in their paper [22] relevant principles of the

one-class/two-class classi�cation discussion, where they reach the origin of OCC, and

how the core of these problems totally depended on the distribution of the data. Having

this in mind, One-Class classi�ers only rely on how the positive class is represented. The

distribution of the negative class has no relevance, as it is not used at all during the training

process. This is directly related with classi�ers based on decision boundaries: conventional

two-class classi�ers set a decision supported from both boundary sides by samples of both

classes, whereas, with one-class classi�ers the boundary is solely supported by samples of

positive data. This fact makes it harder for the classi�er, which is based in just one class, to

decide how tight the boundary should �t around the data.

5.1.1 Concepts

As it is common in all classi�cation tasks, in OCC even the smallest concepts are in the need

of wider and deepest explanation. These concepts could include classical recurrent topics

that appear in every Machine Learning task, as the understanding and representation of the

data. And other, more speci�c concepts that include theoretical topics, such as the model’s

interpretability, which is highly relevant when working with health-related problems. In

addition, the representation of the outcome of classi�ers has an important role, which

represents one of the more important steps when working with One-Class classi�ers. These

topics (and more) will be discussed along this section.

Let X = {x1, ...,xn},xi ∈ Rd be the set of d-dimensional instances and Y =

10

5.1. One-Class Classi�cation

{y1, ..., yn} the corresponding label space (yi is the corresponding label to xi). Therefore, a

dataset D is de�ned by (xi, yi) pairs in the following way: D = {(x1, y1), ..., (xn, yn)} ∈
X · Y. Then the F space of functions to be learned (i.e., a model) is de�ned, which maps

the input xi to some output label yi. This mapping is learned by �tting the model to a

large data space Dtrain ∈ D, and this highly depends on the chosen classi�cation method.

Once the classi�er is trained, it is able to label an unseen x′ ∈ D\Dtrain thanks to the

function f of the hypothesis space in the following way: ŷ = f(x′). This is the common

de�nition for supervised classi�cation, which fully depends on how well all the unique

values (target classes) of Y are represented in the feature space X. As mentioned previously,

when talking about fraud, abnormal behavior detection, normal operations of a machine

are easily retrievable. However, those abnormal operations are really hard to identify, and

even more di�cult to collect. Thus, One-Class classi�ers become a reliable option.

One-Class Classi�ers are usually referred to as unsupervised learning. However, their

learning process can be approached from a supervised outlook. The approach carried out

in this project represents the classi�cation task as an unsupervised learning task, from the

OCC view:

(a) Without any knowledge from labels. This situation is quite common in scenarios

of fraud detection or undesired machine behavior. The notation is de�ned in the

following way: Let X = {x1, ...,xn},xi ∈ Rd be the set of samples, and the labels

corresponding to those objects are unknown. Therefore, a dataset D is entirely made

up of objects fromD = {x1, ...,xn}. ThenDtrain ∈ D is de�ned, whereDtrain only

contains samples from the desired class cp (positive/normal) class, and occasionally,

it might include some not-desired abnormal objects
1
. Then the F Hypothesis space

of functions to be learned (i.e., a model) is de�ned, which maps the input x′
in order

to predict an output label ŷ = f(x′), which may be inlier or outlier. This last

step is one of the most critical steps of OCC, because it introduces the novel term of

"outlierness". The "outlierness" of a sample is de�ned as the degree of a sample of

being outlier in comparison to a de�ned set of samples.

(b) With previous knowledge from labels. This approach has been carried out during

this project. The notation is de�ned in the following way: LetX = {x1, ...,xn},xi ∈
Rd be the set of samples and Y = {y1, ..., yn} the corresponding set of labels (yi is the

corresponding label toxi). Taking into account that yi ∈ C = {C1, ..., Cj} where i =
1..n. Even though the labeling is known, it does not a�ect the algorithm, as the

only relevant class is the positive one, known as cp. The dataset D does not include

those labels, but it is known whether an object belongs to the positive class or not,

in order to �t the model in the training step. Therefore, a dataset D is entirely made

up of objects of D = {x1, ...,xn}. Then, Dtrain ∈ D is de�ned, where Dtrain only

contains samples from the desired class cp (positive/normal)
2
. Then, the F Hypothesis

space of functions to be learned (i.e., a model) is de�ned, which maps the input x′
in

order to predict an output label ŷ = f(x′), which may be inlier or outlier.

1

It is common to �t the classi�er with positive samples and a little amount of poorly distributed negative

samples in this particular situation due to the unawareness of true distribution of the positive class in the

original data.

2

It is common to �t the classi�er with only positive samples in this particular situation.

11

5. Methods

As mentioned in these 2 situations, the data to train the model depends on the available

knowledge about the data. In the review of OCC [23] made by Khan et al., 2014, they

proposed a taxonomy for OCC, which is divided in 3 categories: Availability of Training

Data, Algorithm/Methodology and Application Domain. They tried to cover the state-of-

the-art by the time the survey was released, where they summarized the key contributions

made since the �rst works in OCC. For this project, the most important category is the �rst

category "Availability of Training Data". This is the one taken into account in this project.

In this certain category they list 3 options:

(a) Learning with positive examples only.

(b) Learning with positive examples and some amount of poorly sampled negative

examples or arti�cially generated outliers.

(c) Learning with positive and unlabeled data.

The authors mentioned methods as Support Vector Machine [13] (Scholkopf et al., 1999),

where they tackle the OCC problems by means of SVM methodology, using positive

examples only. This will be relevant during the development of the project. The main idea

is to learn a decision boundary around the positive data in order to discriminate unseen

data as outlier. This last issue will be explained widely in Section 5.1.4.

The idea of using only positive samples for the training step is carried out in this project,

following the OCC methodology. As it is pointed out in Section 4, the dataset originally

contained a reduced set of samples that were not labeled. These unlabeled samples were,

in fact, patients whose hospital stay was long enough to not get discharged or be deceased

by the end of the CDSL research. So they were labeled as "discharged", and as "negatives"

by the time of de�ning the OCC problem.

This brings up the next issue: selection of the positive class. Selecting which class

should be referred to as positive does not imply a critical issue in the majority of the

problems, since the application itself presents particular characteristics that make the

selection of the class a straightforward decision (e.g. correct machine behavior examples

as positive in abnormal machine behavior). However, there are particular cases , as seen

in the dataset obtained from the CDSL project, where two classes are de�ned (discarding

unlabeled samples): "discharged" or "deceased". This could represent a situation where

the main objective resides on identifying a single class among others, and so, model the

classi�er around that speci�c class. This kind of situations requires the establishment of

some follow-up steps in order to make a proper selection of the positive class:

• The class should �t the problem’s requirements, so the outcome produced by the

selection of that class should be useful for solving the problem.

• There should be enough samples in order set-up a proper decision boundary, avoiding

the risk of under�tting due to the lack of samples.

• The samples of the desired class should be informative enough. As explained in the

previous point, the classi�er should be able to de�ne a proper decision boundary

thanks to informative features. By the time of evaluating whether a sample is positive

or not, the classi�er should be able to discriminate that sample based on the retrieved

knowledge during the train process.

12

5.1. One-Class Classi�cation

Monocyte %-Age distribution plot Age-Temperature distribution plot

Figure 5.1: Feature pair-plot representation for D0000AGE, CTHSDXXTEMP and CT00MONOP.

The representation of the data in the class "deceased" is tighter than in the "not deceased" samples.

• The samples should follow a well de�ned and homogeneous distribution.

This project’s objective is about predicting the prognosis outcome of a COVID-19 positively

diagnosed patient by means of OCC models. This broughts up two options: selecting

discharged patients as the data belonging to the positive class, or selecting deceased patients

as the positive class. Firstly, this could be a problem, since both classes were perfectly

valid for the positive class position. Both options could be handled properly in order to

carry out the desired results. Following with the conditions mentioned, the used data,

discussed at Section 4, projected that the number of samples of the "discharged" class was,

in fact, considerably higher than the number of samples of the "deceased" class: 16.89%

(deceased) to 83.11% (discharged + unlabeled). This second condition was favorable for the

"discharged" class, which made the decision even tougher. The third condition (followed by

the fourth condition) was the one that made the decision clear: high number of variables

turn out to be distributed in a quite similar way for "deceased" and "discharged" classes.

However, there were few variables that turned out to be more consistent (less variance)

for the class "deceased", in contrast to samples belonging to "discharged". Those variables

were, in fact, the more informative features: the age of the patient (CD0000AGE), the

�rst temperature record taken at Emergency (CTHSDXXTEMP), the percentage (x10e3/µL

blood) of monocytes (CT00MONOP), etc. These three variables are represented in the

Figure 5.1. However, more features were identi�ed as relevant regarding to the deceased

patients.

Once the positive class is selected, it is time to get familiar with other concepts around

OCC. The idea of outlier-score, anomaly-score or simply outlierness. This concept rep-

resents the degree of a sample of being an outlier. The value of this score may change

depending on the chosen method. For the purpose of this project a rule for the visual

representation of the oulierness is de�ned: the lower the outlierness value, the lower the

likelihood of a sample of being outlier; and, the higher the outlierness value, the higher

likelihood of being outlier. An example can be seen in the Figure 5.2.

13

5. Methods

Figure 5.2: Outlierness representation example. Toy example for an expected outcome of a One-

Class Classi�cation problem: the samples in blue get the lowest outlierness and they are represented

quite clustered, whilst the orange samples get higher outlierness and they are all spread out. Thus,

blue samples show to be more similar to the data used for training the classi�er, while orange

samples don’t.

It is common that most of the output of One-Class classi�ers are in need of a threshold,

so the classi�er could predict whether a sample belongs to a certain class or not. This

threshold is set over the outlierness obtained over the test data for each classi�er. This

selection is one of the most critical steps when completing the evaluation of OCC models,

because it could entail the di�erence between a good and a bad classi�cation. Thus, this

is why the representation of the outlierness and the selection of the threshold is so

relevant in OCC.

In the previously mentioned work [6] by Tax, the author did not provide a variable

similar to outlierness. Instead, the author de�ned two values to measure how similar is

a sample z compared to the target data, previously represented by the training set (made

up of positive samples): distance d(z), which represents the distance of a sample z to the

target class, and the resemblance (or probability) p(z), which is de�ned as the probability

of a sample z belonging to the target class.

The author proposed a way to decide whether a new sample z belongs to the target

class or not based on setting up a threshold θd (for distance) and θp (for resemblance):

C(z) =

{
1 d(z) < θd

−1 otherwise

(5.1)

C(z) =

{
1 p(z) > θp

−1 otherwise

(5.2)

The approach de�ned in Equations 5.1 and 5.2 summarizes the way of making the "predic-

14

5.1. One-Class Classi�cation

tion" step
3

for the most of OCC methods. In this project multiple approaches have been

followed for this task, two of them based on the Equation 5.1. More details about each

model step are de�ned in Section 5.2.6.

Once the outlierness of each sample is calculated and every label assigned, it is the time

of obtaining the experimental results and evaluating each model with reliable metrics.

This last step does not di�er too much from classical multi-class classi�cation evaluation,

since the labels of the test samples are known and a probability for each one is learned

from the model. The selection of the evaluation metrics depends on many factors, such as

the problem’s nature (objective, �eld of work, etc.), availability and unbalancing situations

of the data, etc.

As previously discussed, One-Class Classi�ers are a common option when working

with problems related to anomaly detection, and so, these problems usually su�er from

unbalanced data. This is a common situation in machine abnormal behavior detection,

where the number abnormal register is critically low. This implies that the evaluation

metrics have to adapt to these kinds of situations, giving the minority samples the relevance

they lack due to the unbalance. For this reason, the use of metrics which balance the

classi�cation of both positive and negative class is critical in OCC.

Another important take in OCC is the selection of the evaluation metric, which depends

heavily on the problem’s nature. It is not the same situation to evaluate problems about

anomaly detection in the machinery and industry �eld, or evaluate classi�cation errors

in health related problems, which is the topic of this project. Every problem type should

be evaluated individually, measuring the classi�cation as is convenient for that speci�c

problem. There are some metrics which are widely used along all classi�cation topics. One

of those is the AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristic)

curve. This metric, apart from summarizing the performance of a classi�er in a single

metric, it properly describes the performance of a classi�er over an unbalanced dataset.

Leaving aside the general evaluation process of OCC, with regard to this project, we

have applied more metrics which are descriptive and helpful for explaining the results

related to patients’ outcome. The metrics used are common when dealing with health

related situations, and they’re discussed along Sections 5.2.6 and 5.2.7.

5.1.2 Types of OCC methods

When alluding to OCC types, it is proper to mention the work made by Tax (2001) in his

PhD Thesis [6] about OCC. In this work, the author proposed a method called Support

Vector Data Description (SVDD). These kinds of models are based on decision boundaries,

and they will be discussed later. Tax also focused on the establishment of OCC concepts,

in particular, the main approaches to solve OCC problems. These approaches had been

discussed later in several works [23, 24]. The author proposed (and eventually formalized)

3 approaches: density estimation, boundary methods and reconstruction methods. For the

purposes of this project, we will only make one of the methods of the last 2 categories.

These methods di�er heavily between them, even though each model exploits di�erent

characteristics of the data following a speci�c approach. Their goal is to identify those

samples that di�er from the data used for model training.

3

The positive class is usually represented as 1, and on the other hand, the negative class is represented as

-1.

15

5. Methods

Both selected methods are those based on boundaries and the ones based on reconstruc-

tion. The methods based on data density were not used as they need certain conditions to

be �lled in order to show a good outcome. These conditions are the next ones: have a great

number of training samples and have a sample size high and �exible. These conditions

show that density methods require a clear division between positive and negative samples’

distribution, which is not the case in our project. These kinds of methods have a basic but

e�ective working procedure. They are based on selecting a cut-o� value on the density of

the data, and labeling the samples based on the side of the cut-o� of their density.

5.1.3 Boundary based methods

Boundary methods aim to set a decision boundary around a selected group of samples.

In order to be correctly set up, the decision boundary usually relies on distances, and as

these are de�ned in an OCC scenario, the decision boundary is built up around the samples

belonging to the target (positive) class. These methods ensure to accept all positive samples

while minimizing the number of accepted outliers as positive.

Even though there are many method which apply this idea, as seen in the SVDD [17]

(Tax and Duin 2004) or One-Class Support Vector Machine (OCSVM) [13] (Scholkopf et
al., 1999), there are methods which do not consider a decision boundary in its classical

de�nition: they discriminate samples based only on distance-related metrics. So, this leads

to a really common characteristic in the OCC paradigm: label distance based methods as

boundary based methods.

So, taking this last point into account, both OCC methods based on decision boundaries

were OCSVM and Local Outlier Factor (LOF).

5.1.3.1 One-Class Support Vector Machine (OCSVM)

One-Class SVM [13] (Scholkopf et al., 1999) is a derivation from the classical Vapnik’s

SVM work made for the good of the progress of statistical learning theory [25] (Vapnik,

1995). The basic idea of the SVM resides on mapping the input data into a high-dimensional

feature space, and then, build an hyperplane around the training data that will maximize

the distance between patterns, where the hyperplane will serve as a segregation method in

that high-dimensional space for the new unseen test samples. SVMs try to minimize the

generalization error by the addition of regularization parameters. Later in this section will

be discussed deeply the idea of this regularization parameter, but applied to the OCSVM

case.

This same concept applies to the OCC version of the algorithm, which basically max-

imizes the distance of the hyperplane, but in this case the data transformed to the high-

dimensional space belongs to a single class, the positive class.

Algorithmic framework The algorithm has as objective to return a function f which

has the value +1 in a region which captures the most of the train data points, and -1 outside

that region. So, this method implements a solution where it transforms the data into

a feature space following a certain kernel, aiming to separate the data from the origin,

maximizing the margin. Thus, the function f is computed for a xi point, so the function

f(xi) returns +1 or -1 based on which side of the hyperplane lies the input. It can also be

returned the distance to the separating hyperplane.

16

5.1. One-Class Classi�cation

Let X = {x1, ...,xn},xi ∈ Rd be the training data. De�ne a feature map Φ so

X → F . In this way the data can be transformed into a high dimensional feature space:

X = {x1, ...,xn} → Φ(X) = {Φ1(x), ...,Φn(x)}. The idea of representing the feature

space resides computing the inner product 〈Φi(x) ·Φj(x)〉 in a function but for the original

input points, thanks to a kernel, which can be represented in multiple ways:

k(x, y) = (Φi(x) ·Φj(x)) (5.3)

This is where the separation hyperplane appears, which is de�ned by w, b, w being a

weight and b a bias.

Then, in order to separate the data from the origin, a quadratic function with restrictions

has to be solved:

min
w∈F,ξ∈R,p∈R

1

2
‖w‖2 + 1

νl

∑
i

ξi − ρ (5.4)

where (w ·Φi(x)) ≥ ρ− ξi, ξi ≥ 0. (5.5)

Here, ξi represents non zero slack variables to "incorporate" samples located in the

incorrect side of the hyperplane, and they are penalized in the objective function. On

the other hand, ν ∈ (0, 1), is a parameter which de�nes two concepts: the upper bound

(percentage) of incorrectly located samples the margin accepts, and the lower bound

(percentage) of Support Vectors (SVs) included in the process. The number SVs of the �rst

condition is calculated with regard to the total number of training samples. The trade-o�

between the margin and the outliers is controlled by this ν parameter. So having this in

mind, the dual problem is derived:

f(x) = sgn

(∑
i

αik(xi,x)− ρ

)
(5.6)

In this step the SVs are introduced as the xi patters with nonzero αi coe�cients, and so,

the dual problem is formulated as follows:

min
α

1

2

∑
ij

αiαjk(xi, xj) (5.7)

where 0 ≤ αi ≤
1

νl
,
∑
i

ai = 1 (5.8)

As seen in Equation 5.7 the kernel is up to be chosen, and it can be represented in several

ways (linear, Gaussian RBF, and more).

5.1.3.2 Local Outlier Factor (LOF)

Another distance/boundary based method is the popular Local Outlier Factor (LOF) [26]

(Breunig et al., 2000). It is an unsupervised algorithm which consists on �nding abnormal

data points in a local way, �nding points in the data which di�ers from the local density of

their neighbors.

17

5. Methods

The concept of local outlier represents a sample which di�ers highly to its neighbors,

and so, it is considered an outlier; but neighbor-wise, thus, it is considered a local outlier.

LOF algorithm aims to detect those local outliers based on the density of the neigh-

borhoods that are represented in the data, a degree variable named like the algorithm

itself: LOF. This degree increases as the sample is more isolated from the data points of its

surrounding neighborhood. This degree is taken in this project as the outlierness concept, as

it �ts in a proper form the de�nition of "distance" for the segregation Equation 5.1 de�ned

by Tax.

So, this method requires some concepts to be introduced before going after the algo-

rithm of the classi�er itself: K-distance (and K-neighbors), Reachability Distance, Local

Reachability Density, and �nally, the Local Outlier Factor.

K-distance (and K-neighbors) The K-distance is the distance of a certain point to its

K
th

nearest neighbor. The classical approaches are carried out using the Euclidean distance,

as it is de�ned for two arbitrary xi and xj points:

d(xi,xj) =

√√√√ n∑
r=1

(xri − xrj)2 (5.9)

For a given data point and a certain target point, their distance is computed. Then, for

that target sample, the points of the data are sorted based on the distance from smallest to

largest, and the �rst K entries are selected. These K samples are the K closest samples to

the target point. And the K-distance is the distance to the K
th

point of the �nal list. The

K-distance for a certain a point is denoted as NK(a).

For the LOF implementation used in this project, the distance measurement used was

the Minkowski distance, which calculates the distance between 2 points in a normed vector

space. It is considered as the generalization of Euclidean distance and Manhattan distance.

For two given xi and xj points and an integer p considered as the order, the Minkowski

distance is de�ned in the following way:

d(xi,xj) =

(
n∑
r=1

|xri− xrj|p
) 1

p

(5.10)

Reachability Distance (RD) Once the K-distance is calculated, another concept is de-

�ned, the Reachability Distance (RD). The RD is the maximum of the K-distance of a xj

arbitrary point and the distance between xi and xj , de�ned in Equation 5.11. These last

two points are visualized in Figure 5.3.

RD(xi,xj) = max(K − d(xj), d(xi,xj)) (5.11)

Local Reachability Density (LRD) The Local Reachability Density is de�ned as the

inverse of the average of a certain point’s RD to its K-neighbors. It is de�ned as follows:

LRDK(a) =
1∑

xj∈NK(a)
RD(a,xj)
||NK(a)||

(5.12)

18

5.1. One-Class Classi�cation

Figure 5.3: An example of K-neighbor representation for a K=5 with the points inside the red circle.

The 5
th

neighbor (E) sets the 5
th

distance for the xj data point. It is represented as the reachability

distance for the xi data point, which is the purple line, the maximum between the 5
th

distance of xj

and the distance between xj and xi. The distance metric used in this toy example is the euclidean

distance.

The interpretation of this factor is made in this way: a low value implies that the closest

cluster to the point is far; and a high value represents that the closest cluster is near to the

point.

Local Outlier Factor (LOF) Previous concepts sum up to the �nal equation of the LOF,

which is critical at the time of deciding whether a sample is an inlier, or an outlier. LOF

value is presented as the ratio of the average LRD of the K-neighbors of a given point a to

the LRD of that a point:

LOFK(a) =

∑
xj∈Nk(a)

LRDK(xj)

||NK(a)| |
× 1

LRDK(a)
(5.13)

LOF takes value near to 1 for an a point if the ratio of average LRD neighbors is close

to its LRD value. This means that the evaluated point a is an inlier. Whilst, higher values of

LOF would represent that the LRD of a point is less than the average LRD of the neighbors,

implying that the point is an outlier.

In this project, the LOF value is used as outlierness value to ’mark’ the samples.

Algorithm framework The algorithm for the LOF calculation as follows:

(1) Calculate the K-neighbors and compute the K-distance for each point (5.10).

(2) Compute the Reachability Distance for each point (5.11).

(3) Compute the Local Reachability Density (LRD) for each point (5.12).

19

5. Methods

(4) Compute the Local Outlier Factor (LOF) for each point (5.13).

(For new data) Compute steps (1), (2) and (3) with the initial data. Compute the step (4)

only with the new data.

5.1.4 Reconstruction based methods

Reconstruction methods were not initially designed for OCC. They were originally designed

to model the data, and so, obtain better representations of the data. These methods are

applied to develop a representation of the data that would, hopefully, mimic the generating

process of the underlying distribution of the original data. These methods are developed

with the idea of reducing data representation, and so, obtaining a more compact represen-

tation of the target data, reducing the impact of noise as the new representation would be

more informative about target classes than the original data.

Even though not �tting totally the meaning of reconstruction, the methods of the

dimensionality reduction �eld are commonly considered as reconstruction methods in

the classical OCC literature [6]. The main example of these techniques is the Principal

Component Analysis (PCA) [27] created by Pearson (1901) but formalized by Bishop

(1995) in his work Neural Networks for pattern recognition [28]. It is an orthogonal linear

transformation that simpli�es the complexity of a high dimensional feature space into a

smaller but still informative feature space. It is commonly used on problems of pattern

recognition. This method is commonly used at the preprocessing step of problems that

require an informative representation of the data.

There are methods that apply the concepts of PCA but with a neural network approach,

i.e. autoencoders.

5.1.4.1 Autoencoder

The approach of OCC problems with autoencoders �ts perfectly the de�nition of autoen-

coder, as Japkowicz de�ned the autoencoder in her work [29] A Novelty Detection Approach
to Classi�cation about novelty detection by means of autoencoders: "the approach of novelty

detection consists of training an autoencoder to reconstruct positive input instances at the

output layer and then using this autoencoder to recognize novel instances". The author also

proposed that training positive data, is, hopefully, reconstructed in a proper way; whilst,

the negative data, is more likely to be reconstructed incorrectly, and thus, recognized as

novelty/anomaly/non-positive.

In this project, the input data is made up of positive samples. In this speci�c case

deceased samples, and so, following the description made by Japkowicz, the autoencoder

should reconstruct correctly deceased samples. On the other hand, o�ering an incorrect

reconstruction of surviving patients.

The Autoencoder [29] is a type of arti�cial neural network used for unsupervised

learning. The goal of this kind of neural network is to recover the input data by learning

an internal representation of that input. It consists of two main parts: one of them is

the encoder, which compresses the data into a more compact representation following

an encoder function h = f(x). The second part is the encoder, which produces the

reconstruction of the data from the latent representation in the hidden layer, which is made

thanks to a reconstruction function r = g(h). Even though autoencoders are designed to

20

5.2. Strategy

not be able to fully copy the input of the data, they’re designed in a way that the neural

network is restricted to prioritize aspects of the input data that still resemble the initial

data, but only the useful properties of it are learned. At their origin they were mainly

used for dimensionality reduction or feature learning. However, nowadays they’re used for

many tasks such as denosising, or, as in this project, for anomaly detection applied in a

OCC approach.

Their architecture is based on the input data, the hidden layers, and the output data.

The dimensions of the input data and output data are the same. The hidden layers are

formed by a minimum of 1 layer, with learned-latent features in the intermediate layer,

which include the internal representation of the autoencoder of the initial data. The number

of neurons in the encoder side goes from more to less, and the number of neurons in the

decoder side goes from less to more. A common type of architecture can be seen in Figure

5.4.

However, there is a large variety of di�erent types of proposed autoencoders, many

of them used in OCC. One example of this is the Variational AutoEncoder (VAE), which

encodes an input as a distribution over the latent space, instead of encoding it into a single

point as happens in classical autoencoder. One example of the VAE is the work made by

Khalid (2020) for detection of deepfakes using VAE [30] in a OCC approach, which is a

clear example of the use of autoencoders in image processing.

This project implements a OCC approach for the shallow autoencoder.

Algorithm framework The autoencoder measures the quality of a reconstruction with

the reconstruction error, a concept that resembles the outlierness idea.

This is a classical autoencoder work�ow:

(1) The input data is de�ned as Dtrain = {x1, ...,xn}.

(2) The input data is encoded by means of a f function: h = f(Dtrain). The latent space

is de�ned.

(3) The data in the latent space is decoded by means of a g function: g(f(Dtrain)).

(4) The learning process of the neural network is described by minimizing a loss function:

L(Dtrain, g(f(Dtrain))). Where L is commonly represented by the mean squared

error (MSE):

MSE =
1

N

n∑
i=1

(xi,yi)
2

where xi ∈ Dtrain, yi ∈ g(f(Dtrain))) (5.14)

(5) The reconstruction error of a new sample is the MSE of the sample. We also have

the reconstructed version of itself.

5.2 Strategy

In this project a total of 3 One-Class classi�ers have been implemented, with the objective of

showing the performance of a classi�er designed for OCC in contrast to classical supervised

21

5. Methods

Figure 5.4: Example of a classical autoencoder structure. It is made up of the input nodes, which

include the original data, the latent space, which is the internal representation of the data learned by

the Autoencoder, and the output nodes, which result in the reconstructed data of the autoencoder.

This architecture is an undercomplete autoencoder, a type of autoencoder whose hidden dimension

is less than the input dimension.

classi�ers. These three classi�ers are the previously mentioned ones: One-Class Support

Vector Machine (OCSVM), Local Outlier Factor (LOF) and autoencoder (AE). Every of those

classi�ers need certain requirements to be ful�lled in order to work in a proper way. These

include the need for a compact representation of the data, a proper selection of the features,

balanced evaluation metrics, and many more.

These topics are all discussed in this section, where the strategy followed for each

classi�er is explained in a clear and concise way. The steps explained in the following

sections are not exclusive for a speci�c classi�er. In fact, all the 3 classi�ers explained

previously share many of those steps, but the process followed inside every step may

change according to the model’s requirements, and some steps are ignored for the same

reason. The covered steps extend from the structure and con�guration of the data, followed

by the preprocessing, and eventually ending with the evaluation of the classi�ers.

It is good to remind that the OCC is, in his base, an unsupervised method. Some of

the steps of the work�ow (e.g. preprocessing step) have been constructed following the

paradigm of unsupervised learning, with the objective of developing a work�ow loyal to

OCC methodology.

For a better understanding of the work�ow that will be explained step by step during

the following sections, a diagram of the whole process is de�ned in Figure 5.5.

22

5.2. Strategy

Figure 5.5: The work�ow (pipeline) summarizing the whole process of experimentation.

5.2.1 Data structure

The initial data was modi�ed before the start of the pipeline, with the objective of stan-

dardizing all the experimentations.

A multi-start procedure was applied to the initial data. The multi-start procedure is

based on creating sets from the initial data leaving the same percentage of class distribution

for all generated sets. This process can be interpreted as a repeated hold-out over the same

data.

There were created a total of 5 multi-starts
4
, generated in a random sampling way.

These multi-starts were �nally splitted into 80% - 20% train/test strati�ed splits. Leaving a

total of 5 train and 5 test subsets, assigning a single pair of them for each multi-start.

In order to avoid any risk of bias, only the train subset of each multi-start was used

during the feature �ltering, sample �ltering and hyperparameter optimization. And the

unseen test subset were left aside for the �nal models’ evaluation steps, like the outlierness
prediction procedure and the evaluation step.

The multi-start con�guration used in this project is the same one that was selected in

the supervised approach made in the work [1] by Armañanzas et al. These multi-starts are

shared for all the experiments, with the objective of keeping a high degree of consistency

for all the tests.

Previous to any experimentation, this later data modi�cation was carried out. And, in

4

The multi-starts were referred to as "universes".

23

5. Methods

the experiments made with the LOF and the OCVSM, the data was standardized avoiding

the risk of information lost in scale di�erences in the data.

5.2.2 Feature Filtering

The preprocessing of the data is a crucial procedure in machine learning, because any

classi�er’s performance relies greatly on how well the data describes the classes.

This step has an important role when facing problems that occur in data unbalancing

situations. An example of this is the curse of dimensionality [31] (Bellman, 1957), a common

phenomenon advised in problems with high-dimensional data and low sampled classes.

Implying that the representation of a high dimensionality space increases exponentially

when the number of features of the data increases [6]. This is clear in the OCSVM, speci�-

cally in the use of non-linear kernels
5
, which implies that the solving of this kind of kernel

can take large amount of time, and it is at risk of su�ering over�tting, another common

problem caused by data representation.

This phenomenon occurs when a classi�er builds a decision boundary extremely tight

to the training data, being in�exible for new unseen data. In this situation, the classi�er

performs correctly for the training data, but shows a large error when working with new

unseen test data. Implying that the generalization error is high. This problem is common

in situations where the data is de�ned over a large number of features, becoming worse as

the number of features increases, and even more in OCC problems.

Anyways, there’s no risk of curse of dimensionality in this project, since the data used

for this speci�c problem is de�ned in a space of 44 features. Avoiding the risk of having

the curse of dimensionality, but it can still be potentially subject to over�tting.

In addition, regarding to problems related to anomaly detection, having a smaller

(more compact) representation of the data could help obtaining better results at the time of

determining anomalies, but on the other hand, this could also imply losing information,

thus, losing the data that di�er more from the the normal data, classifying these examples

as not anomaly. This is totally related to the terms of this project, where an over-compacted

representation of the data could result in a di�use representation of the whole samples,

meaning that there wouldn’t be a clear separation between deceased and not deceased

samples anymore.

Having this in mind, the preprocessing was divided into a two-step process. The �rst

part about identifying the most salient subset of features based on previous knowledge.

This information was obtained from the observations made over the distribution of the

features (per class), and from similar works [32, 33]. And the second �ltering technique

is based on analyzing the variance of each sample. This later approach is based on the

information the variables provide, taking into account whether the samples are positive or

not. And in this way �tting to the OCC paradigm.

Both methods were applied one after another for every classi�er, however, the internal

procedure of the variance-related statistic di�er adapting to each classi�er’s requirements.

This process was de�ned as the �rst stage of the main pipeline, and it executed for all

44 features from the initial data.

5

Which is the case of this project, where a RBF kernel is used.

24

5.2. Strategy

Variance ratio analysis There are many methods that provide good results at the time

of the selection of subsets of features. Some of those methods are based on supervised

paradigms, making the selection of an optimal subset of features based on certain feedback

obtained thanks to the knowledge about samples’ labels. One example of this is making

decisions based on the performance of a classi�er (wrapper), or based on the relationship

between the features and the class (�lter). These methods require the true labels of the

data they’re working with in order to be applied. However, there are methods which do

not need the labels of the samples, many of them based on analyzing how redundant they

are, or on how the correlation between features is.

The approach followed in this project is de�ned over 2 techniques. First of all the

features are ranked based on a statistic based on variance, and later the optimal subset of

features is obtained following a wrapper criteria.

A quick summary is explained in Algorithm 5.1. Once understood the main idea, is

time go ahead with the details about the process:

• For every feature a statistic that summarizes how informative some features are

towards the positive samples is computed. This statistic is obtained from the variance

a feature has over all the samples and the variance the same feature has only over the

positive samples. As the class of the samples is used for the calculation of the statistic,

this approach is considered as supervised. However, is good to remind that usually

in OCC problems the positive class is known, but the other non-positive classes may

not be labeled. So, even though the OCC paradigm is considered unsupervised, this

supervised approach would be viable in every OCC problem.

This statistic, named variance ratio and calculated in Equation 5.15, represents how

informative a feature is to positive samples.

σ2ratio =
σ2total
σ2positive

(5.15)

The equation’s result can be interpreted in the following way: lower ratio value

means that the variance of a certain feature for the positive samples is greater than the

variance for all (positive and negative) samples, thus, the feature is less variable for

positive samples, and in fact, more informative; whilst, greater ratio values represents

a higher variance for all samples, and lower variance for positive samples, so that

feature is more variable for positive samples.

• The variance ratio is processed for all features of the data space, keeping aside the

features that were previously kept in the a priori knowledge step, if it was previously

applied. The features are sorted from lower to greater ratio.

• These calculations give raise the �nal step, the selection of the features. As mentioned,

this last procedure aims to select the best features based on the variance ratio and

how it a�ects the performance of a model.

To carry this out, a procedure based on the wrapper technique was designed. First of

all, a cross validation with 5 folds is made over the training data. Then a constant

p is selected, that will de�ne the maximum number of columns to drop during the

process. For each fold a total of p + 1 models are trained, removing from 0 to p

25

5. Methods

features. The l ∈ [0, p] features removed in each model are the features with higher

variance ratio.

In summary, there’s de�ned a 5-Cross-Validation (5-CV) where every fold is trained/tested

with several models. Each model �t by the initial data, but dropping a �xed number

of features, from 0 to p features. Every model
6

is trained with the corresponding

train subset of the fold.

The outlierness of the test subset is processed for all the models. Then, it is processed

and the AUC is calculated. This is used to measure the quality of the selection of the

subset of features (for every model).

Every fold selects the con�guration with better AUC. And then the con�guration of

features which had the best AUC of all folds is retrieved. Finally, the initial data is

modi�ed following the resultant con�guration.

5.2.3 Sample/row �ltering

It is common to look up for outliers inside the training set. This is a regular approach when

working in anomaly detection problems. This step is carried out in order to remove those

samples in the training set that could be represented as abnormal for one or more classes.

So, at the time of learning a classi�er, the classi�er would learn a better representation

of the data using good distributed samples, avoiding those abnormal samples that made

the representation of the data di�use. In problems that follow a OCC paradigm is quite

e�ective this kind of approach, since the training set is not used in its whole. Thus, the

"real" training set is made up of a single class. This allows the use of OCC approach for

this speci�c task, which works properly for anomaly detection, as mentioned earlier.

There are quite a few algorithm that are useful in this kind of scenario for multi-class

classi�cation that also work properly for OCC. One of those methods is the previously

mentioned Local Outlier Factor, revised in Section 5.1.3.2, which has as main objective to

detect samples of the data with lower density of samples in his surroundings, and thus, can

be used to detect outliers inside a certain data set, not caring about the true labeling.

In this speci�c project it was designed a way to detect and remove positive outliers

inside the training in an ad-hoc way
7
, using a default con�guration for the classi�er, except

for those which require a certain parameter to work properly.

The approach followed in this project for the train/test process is a Cross-Validation

technique. It was used to divide the training set into train/test subsets in order to �t and

test models with known data, leaving the unseen test data for later evaluation of the main

process.

The train data was divided thanks to a CV approach, which was set up with 5 folds.

For every fold a model was trained with positive samples of the training subset. Then, in

contrast to classical OCC problems, the data to test the model with was only composed by

positive samples. In this way, the outlierness of each positive sample in every test subset

6

The con�guration of the model is left as default. There’s no custom parameter, except for the LOF and

the autoencoder, which need some parameters to be de�ned previously.

7

Each experiment used an unique classi�er, and it was used for every step: feature �ltering, sample �ltering,

hyperparameter optimization and prediction.

26

5.2. Strategy

Feature �ltering

1 input: X, Y

2 output: feature_subset

3 results = []

4 ratio_list = []

5 for feature in X
features

6 σ2total = variance(X[feature])

7 σ2positive = variance(Xpositive[feature])

8 σ2ratio =
σ2
total

σ2
positive

9 insert(ratio_list, (feature, σ2ratio))
10 rof
11 sorted_features = sort(ratio_list))[0, :]

12 folds = 5-CV(X)

13 for fold in folds
14 Xtrain, Ytrain, Xtest, Ytest = fold
15 for l←− 1 to p

16 feature_con�guration = drop_last(sorted_features, l)

17 X̂train = Xtrain[column_configuration]

18 X̂test = Xtest[column_configuration]

19 De�ne classi�er

20 �t(classi�er, X̂train,positive)

21 outlierness = predict(classi�er, X̂test)

22 AUC = evaluate_AUC(outlierness)

23 insert(results, (AUC, feature_con�guration))

24 rof
25 rof
26 feature_subset = results[argmax(results[0,:])]

Algorithm 5.1: Feature �ltering process

was computed, making the detection of positive samples with high outlierness possible.

In order classify the test samples an approach based on analyzing the distribution of the

outlierness was designed. This technique was about selecting a quantile (by default 0.9),

and label all the samples (from each fold) with outlierness greater than the value at the

speci�ed quantile as outlier. An example of this can be seen at Figure 5.6.

Once the samples with outlierness larger than the one de�ned at the de�ned quantile

are identi�ed, they’re removed from the �nal train set.

5.2.4 Hyperparameter optimization

Every classi�er need certain parameters of his structure (hyperparameters) to be set up

in a speci�c way in order to result in a good outcome. The process of selection of the

27

5. Methods

Figure 5.6: Example of outlierness analysis for sample �ltering step in a certain fold of the 5-CV

using LOF. The samples in yellow represent the cases whose outlierness is higher the one de�ned at

quantile 0.9. It is clear how a large number of samples is gathered near 0 as expected, since the test

subset is entirely made up of positive samples. However, there can be observed samples with higher

outlierness that will eventually be labeled as outliers, and thus, removed from the train �nal subset.

hyperparameters di�ers from one classi�er to another, and there is no way to generalize the

process for every model. So, the best approach for this problem is to analyze individually

each type of classi�er the problem requires, and try to adjust them, validating the classi�er

in an external unseen set, and �nally comparing the results, selecting those parameters

that provide better results. Clearly there are methods that provide an automatic approach

for this problem, as seen in the work NeuroEvolution of Augmenting Topologies (NEAT)

[34] (Stanley et al., 2002), which aims to optimize parameters such as the structure (number

of hidden layers, number of neurons), batch size, learning rate, and many more hyperpa-

rameters of an arti�cial neural network using genetic algorithms. Another option is the

use of exhaustive search methods, which are the most common way of hyperparameter

optimization, and the ones that set up the main idea of parameter tuning. One of example

of this kind of methods is the GridSearch, which aims for the best con�guration of hyperpa-

rameters doing an exhaustive search over manually described set of parameters. In order to

de�ne a performance metric for this method, it is usually de�ned a CV over the train data.

In this project it was de�ned a GridSearch, which was applied together with a nested

cross-validation technique.

The nested cross-validation methodology de�nes a series of train/test splits. It is

commonly used in hyperparameter optimization, as it avoid leak of information from train

to test, discarding any risk of bias that this problem could lead to. The de�ned nested-cross

validation is presented in the following way:

A strati�ed 5-CV (80%/20%) is applied to the train set, 5 folds with train and test subsets.

And for each fold another 5-CV (80%/20%) is de�ned. The �rst CV is usually known as the

outer layer, whilst the CV de�ned at every fold is known as the inner layer. As One-Class

models are only trained with positive data, at the time of evaluating models from the outer

and inner layer, the samples that are not positive should be discarded, and they could be

added to the test subsets.

Once everything is de�ned, the inner layer classi�ers are trained following a GridSearch

approach, where the evaluation of every classi�er was made using the default prediction

28

5.2. Strategy

Figure 5.7: Nested Cross-Validation example. GridSearch optimization method works with a set of

parameters de�ned for the hypothetical hyperparameters alfa, beta and gamma·

algorithm
8

of each classi�er. For each fold of the inner layer, there is one evaluation for

each parameter that were de�ned for the GridSearch. So, the classi�cations are evaluated

and the F1-score is computed for each classi�er. The score of each fold is the maximum

F1-score obtained with the GridSearch, saving the con�guration of parameters. When the

inner layer has been fully processed, the corresponding model from the outer layer it is

tuned with the hyperparameters which resulted in the best response (in the inner layers).

The outer layers are processed (with every fold tuned with the parameters obtained from

their corresponding inner layers), resulting in a F1-score for each model.

Finally, the model with best outcome in the outer layers is selected and its hyperparam-

eters are retrieved. This ends up with an optimized set of hyperparameters that will be set

for the �nal model of the whole process.

For a better understanding of the whole process, a diagram is de�ned at Figure 5.7.

5.2.5 Model �tting

As mentioned earlier, the training process of One-Class classi�ers di�ers from the training

process of classical multi-class classi�ers. In contrast to the last ones, classi�ers designed

for OCC paradigm are trained only with positive samples.

In this process the �nal classi�er of each experiment is modeled. In order to carry

this idea out we have to take into account the previous steps, such as the hyperparameter

optimization and the data �ltering. However, there can be the case that there has not been

an optimization of parameters or any �ltering to the initial data, thus, in these situations

the �nal model is not getting the parameters tuned or the data to �ll the model with is kept

as it was originally.

In the case that all previous steps have been followed, the process is quite similar

but some di�erences are clear. First of all, a classi�er is de�ned and it is con�gured with

the parameters optimized previously. Following, the positive samples of the cured data

8

Set by the chosen implementation package.

29

5. Methods

(previously �ltered) are �tted. To be clear, the �tted data is the training set corresponding

to the multi-start with the optimized subset of features in it, and the marked samples as

outliers were removed from the training set. In this case, the negative samples that are not

used during the training process are not transferred to the test subset of the multi-start,

with the objective of keeping the test data as unseen as possible.

This process is equal for all classi�er types.

5.2.6 Outlierness processing: prediction

The outlierness of each model is not meant to be de�ned in the same way. So, in order

to standardize the visual representation of the outlierness of the models, the outlierness
is processed to be positive, meaning that those samples with lower value are more likely

inliers, whilst the samples with higher values are more likely outliers, this is previously

de�ned in Section 5.1.1. It is important to note that this transformation is only made for

visualization purposes; at the time of processing the outlierness for prediction, the values

are kept as they were initially calculated by the classi�er, and it is during that process

where the outlierness is transformed.

2 main approaches for the processing of the outlierness had been followed on this

project:

(a) The prediction process is made by the selection of the cut-o� (segregation) value θ
for the outlierness. θ is selected in two ways:

• θ is selected manually, based on an a posteriori observation made on the out-
lierness of the test set. An example of this situation can be seen in Figure 5.8.

• The outlierness is processed in order to transform every value as positive
9
.

Then, if needed, the outlierness is normalized and represented between 0 and

1. The ROC curve is calculated for the test set. Then, the Youden’s Index is

calculated, which is a criterion for selecting the optimum cut-o� value for

the ROC analysis, optimizing both the speci�city and sensibility. In order to

understand the calculation procedure of the Youden’s Index, some concepts

need to be explained, such as the speci�city and sensibility.

When doing a classi�cation which involves two classes (in this case, positive

class and remaining samples, referred to as negative class’ samples), at the time

of predicting the label of the two classes there can be inferred certain statistical

measures for the performance of the classi�er. The classi�cation is summarized

in a table named confusion matrix, represented in Table 5.1, which is helpful by

the time of understanding the previously mentioned measures methods. The

classi�cation presents 4 types of results, such as the "True Positive" (TP), which

are the positive samples that have been predicted as positive; "False Positive"

(FP), which are the negative samples that have been predicted as positive; "True

Negative" (TN) which are the negative samples that have been predicted as

negatives; and lastly, there are the "False Negatives" (FN), which are the positive

9

Keeping the next de�nition: lower the value, lower the likelihood of being outlier, and, larger the value,

higher the likelihood of being inlier.

30

5.2. Strategy

Figure 5.8: Manual cut-o� value selection example. Toy example for an expected outcome of an

one OCC approach. It is clear that a large number of samples is gathered near 0, forming a small

cluster. On the other hand, there are few remaining samples that are all spread out, which are the

ones with larger outlierness. In this case the selection of the θ cut-o� value is in the value 1.1, which

is the threshold that separates clearly the samples with small and large outlierness.

Positivepredicted Negativepredicted

Positiveg.t. TP FN

Negativeg.t. FP TN

Table 5.1: Confusion matrix

samples that have been predicted as negatives. Understanding these 4 values,

there can be inferred some measure metrics. For this speci�c task there are used

two lookalike measure metrics: sensitivity and speci�city. Sensitivity measures

the proportion of positive samples that have been correctly predicted, as seen

in Equation 5.16.

Sensitivity =
TP

(TP + FN)
(5.16)

Speci�city measures the proportion of negative samples that have been correctly

predicted, as seen in Equation 5.17.

Specificity =
TN

(TN + FP)
(5.17)

Sensitivity is commonly referred to as True Positive Rate (seen in ROC analysis)

or recall; and speci�city is known as True Negative Rate (seen in ROC analysis).

The use of sensitivity and speci�city has an important role when working with

medical data, this includes the use of more metrics such as F1-score, whose

meaning and application is widely discussed in Section 5.2.7.

Coming back to the application of the Youden’s Index, the ROC curve is cal-

culated from the outlierness. Then the Youden’s Index is calculated for the

31

5. Methods

selection of the cut-o� θ. This index [35] was suggested by Youden (1950), and

was �rstly de�ned as an index for rating diagnostic tests. As explained earlier,

this index is used along with the ROC curve, trying to optimize the outcome of

certain diagnostic tests (in this case the classi�cation of the test samples). The

index, commonly referred to as J, is de�ned in the following way:

J = sensitivity + specifity − 1 (5.18)

Thus, following the previous de�nition for sensitivity and speci�city, the ex-

panded formula is de�ned:

J =
TP

(TP + FN)
+

TN

(TN + FP)
− 1 (5.19)

A value 0 for J indicates that the proportion of positive samples predicted as

positives (TP) and negative samples predicted as positives (FP) is the same, and

thus, the classi�cation is useless. And, on the other hand, when the index is 1, it

indicates that the number of False Positives and False Negatives is 0, therefore,

it is a perfect classi�cation.

Finally, θ is assigned with J for the ROC curve obtained from normalized

outlierness. Then, the prediction is made based on the Equation 5.1, taking the

normalized outlierness as the distance to the positive class.

(b) The outlierness is de�ned in the range [a, b]a<0,b>0. a and b could reach in�nite and

-in�nite values theoretically, and they represent symbolic large distances from the

decision boundary. The samples whose outlierness is de�ned inside the range [0, b]
are predicted as positive. On the other hand, if the outlierness is de�ned inside [a, 0),
the sample is predicted as anomaly. This kind of approach is common in decision

boundary based methods (e.g. OCSVM). And the explanation of the use of this kind

of range is intrinsic to the classi�er de�nition. However, for the approach followed in

this project, when a new sample lies inside the decision boundary created during the

training process, the new sample is assigned with an outlierness with value between

0 and b (both inclusive) when the new sample lies inside the decision boundary made

by the classi�er with the positive train data; and it gets a value between a and 0

when the sample lies outside of the decision boundary. In this case, as mentioned

previously, the outlierness is given in a [a, b] range, which represents the distance of a

sample z to the separation boundary (hyperplane for OCSVM), d(z) as presented in

Equation 5.1. In summary, positive distance is assigned when the sample lies inside

the boundary, and negative distance when the sample lies outside. This leads to the

selection of θd for the project’s approach. This approach is used for the OCSVM,

which the method itself provides a discrimination method with the distance. So, the

θd threshold is the value 0, thus, following the next approach, which di�ers from the

ones de�ned in Equations 5.1 and 5.2:

C(z) =

{
1 d(z) ≥ θd
−1 otherwise

(5.20)

A point to take into account is the fact that the processing of the outlierness designed in

this project is divided in several categories as previously seen. Thus, the model to work

32

5.2. Strategy

with should select one of these categories in order to advance this step properly. However,

the approach of selecting θ based on the ROC analysis takes advantage of the true target

labels for the test set in order to select optimum cut-o� value (θ) for the outlierness, and so,

it couldn’t be used in situations where the true labels are not available.

5.2.7 Evaluation

The evaluation metrics used for this project adapt to the intrinsic idea of the problem:

medical prognosis. As it is clear in problems like the one treated in this project, where the

outcome of a patient is predicted, the main objective resides in correctly identifying those

samples with the pessimistic outcome, whereas the idea of misidentifying the samples

with the optimistic outcome has less relevance. This implies a direct impact at the time of

developing the conclusions of the experimentation.

In this project this is entirely translated to the prediction of deceased/not deceased

situations of the inpatients. This idea is represented in multiple related works of outcome

prediction for COVID-19 patients, such as the ones mentioned in the chapter 3, which

discussed the idea of giving relevance to the correctly classi�er deceased patients. Many of

these works present some countermeasures for the treatment of this issue, such as post-

classi�cation calibration and/or the selection of reliable measure metrics. In this project it

was followed an approach which worked with these 2 ideas.

In previous steps there were presented a few ideas revolving around the fact of com-

pensating the good classi�cation of certain samples in front of other ones. An example

of this can be seen in Section 5.2.6, in the use of techniques as Youden’s Index, which

aims to select a cuto� value for a given results in order to optimize the sensitivity and

speci�city values. And so, choosing metrics which punish the misclassi�cation of positive

samples, and the misclassi�cation of negative samples, respectively. Following this main

idea, another metric is presented: the F1-score.

This metric is de�ned as the harmonic mean of precision and recall (sensitivity), another

2 common metrics in binary classi�cation, de�ned in Equation 5.21. The precision is a

metric which is de�ned as the ratio of number of correctly predicted positive samples to the

number of samples predicted as positive (both positive and negative samples), it is de�ned

in Equation 5.22.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5.21)

Precision =
TP

(TP + FP)
(5.22)

Having the precision and sensitivity explained is easier to understand the main idea of

F1-score. This metric is sometimes criticized as it doesn’t consider True Negatives in

its formula, and this can be messy when working with medical data, which gives great

relevance to those misclassi�ed negative samples. But, as mentioned earlier in this section,

the problem approached in this project focuses mainly on correctly predicting positive

samples. So, the use of this metric is justi�ed by the time of comparing the results of the

experiments with other works, where the use of this metric is quite common.

In summary, the metrics used for the evaluation task are the next ones: ROC-AUC,

Sensitivity, Speci�city and F1-score.

33

5. Methods

5.2.8 Implementation: pipeline

The implementation of the whole process was made in a Jupyter Notebook computational

environment, all written in Python language. The main packages used for the data man-

agement were pandas (1.2.1), the main packages used for classi�cation tasks were sklearn
(0.23.2) and pyod (0.8.7), the package used for mathematical purposes was numpy (1.19.2)

and the packages used for visualization purposes were matplotlib (3.3.2) and seaborn (0.11.1).

For a better understanding, and looking forward to the reusability and modularity

of the implementation, the whole process of experimentation was wrapped into a single

class, creating a pipeline for further experimentations. The pipeline was made up of the

next Sections (independent between them): feature �ltering (5.2.2), sample �ltering (5.2.3),

hyperparameter optimization (5.2.4), model �tting (5.2.5, outlierness-processing (5.2.6) and

evaluation (5.2.7). The �rst 3 modules are independent from each other, and they can be

mixed, or even not executed some (or all) of them.

The whole implementation was saved in aGitHub repository: https://github.com/unaicar-

bajo/one-class-covid19

5.2.9 OCSVM

For the OCSVM it was computed as a single experiment with hyperparameter optimization.

The selected OCSVM was the one from the sklearn.OneClassSVM package.

In order to avoid scale problems during the computing of the model, the data was initially

standardized by removing the mean and scaling to unit variance. The standardization was

carried out for each feature xj , transforming the value xi,j ∈ {xi,1, ..., xi,n} of each

sample’s feature, following the next equation:

xi,j =
xi,j − νj
σj

(5.23)

Where ν is the mean of the training samples for the jth feature, and σ is the standard

deviation of the training samples for the jth feature.

Once the experiment is computed with the con�guration presented in Table 5.2, the

obtained model was set up in the following way:

• The feature �ltering process resulted in a total of 19 features to remove of the universe

42, and 16 of the universes 89, 151 and 6 of the universe 189. The sample �ltering

process turned out to remove a total of 25 samples of the training set of each universe

(quantile 0.9)
10

.

• The optimized parameters of the OCSVM are presented in Table 5.3.

5.2.10 LOF

The LOF algorithm was applied once, following the same process as the experiment of

the OCSVM, which included all the steps de�ned at Section 5.2.8. Despite not being the

10

As the outlierness of the OCSVM is represented from negative (outlier) to positive (inlier), the removed

samples are the ones with outlierness lower than the quantile 0.1.

34

https://github.com/unaicarbajo/one-class-covid19
https://github.com/unaicarbajo/one-class-covid19

5.2. Strategy

Feature �ltering
Features to keep

(a priori knowledge)

Feature name Description

CD0000AGE Age of the inpatient

CTHSDXXTEMP
First temperature record taken

at Emergency

CTHSDXXSAT
First record of oxygen saturation

taken at Emergency

CTHSDXXRATE
First heart rate record taken at

Emergency

Feature �ltering method Variance Ratio
Outcome performance metric ROC AUC
Number of columns to drop 20

Sample �ltering
Discard quantile 0.9

Hyperparameter optimization

Parameters nu

{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.1 , 0.11, 0.12, 0.13, 0.14, 0.15, 0.16,
0.17, 0.18, 0.19, 0.2 , 0.21, 0.22, 0.23, 0.24,
0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32,
0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ,
0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48,
0.49}

Outlierness processing
Cut-o� value selection OCSVM’s internal classi�cation method

Table 5.2: Con�guration summary of OCSVM.

Universe
Parameter 42 89 101 151 189 Common

nu 0.04 0.01 0.01 0.02 0.01 -

gamma - - - - - scale
kernel - - - - - RBF

Table 5.3: Optimized parameters for OCSVM.

35

5. Methods

Feature �ltering
Features to keep

(a priori knowledge)

Feature name Description

CD0000AGE Age of the inpatient

CTHSDXXTEMP
First temperature record taken

at Emergency

CTHSDXXSAT
First record of oxygen saturation

taken at Emergency

CTHSDXXRATE
First heart rate record taken at

Emergency

Feature �ltering method Variance Ratio
Outcome performance metric ROC AUC
Number of columns to drop 25

Sample �ltering
Discard quantile 0.9

Hyperparameter optimization

Parameters

number of
neighbors

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24}

outlierness processing
Cut-o� value selection Younden’s index of ROC AUC

Table 5.4: Con�guration summary of LOF.

common approach for the LOF technique, the algorithm was applied in 5-CV situations,

following a train/test structure instead of applying the technique just to one subset (as

train/test). In this way, the LOF is transformed to �t the OCC methodology, following a

positive train and negative test example. The implementation of pyod.models.lof package

of the LOF was the one used for this experiment.

As LOF is a distance-based algorithm, the data was initially standardized following the

classical standardization process of the Equation 5.23. In this way the problems of scaling

during the computing are avoided.

The pipeline is con�gured 5.4, and the model is set up with the resultant parameters:

• The feature �ltering process resulted in a total of 15, 9, 12, 13 and 13 features to

remove from the universe 42, 89, 101, 151 and 189 respectively. The sample �ltering

process turned out to remove a total of 25 samples of the training set of each universe

(quantile 0.9).

• The optimized parameters of the LOF are presented in Table 5.5.

36

5.2. Strategy

Universe
Parameter 42 89 101 151 189 Common

number of
neighbors

18 19 18 18 19 -

metric - - - - - minkowski

Table 5.5: Optimized parameters for LOF.

5.2.11 Autoencoder

Despite of the OCSVM and LOF, the experiment of the autoencoder did not include the

step of hyperparameter optimization, since the main hyperparameters of the autoencoder

were the architecture of the neural network itself, and, as mentioned in Section 5.2.4, the

optimization of the hyperparameters of neural networks could be di�cult to carry out

with classical approaches, and it should be made with approaches that make use of more

advanced techniques. So, the architecture of the autoencoder was de�ned previous to the

experiment, and it was not changed during the process. The architecture of the autoencoder

was composed by 32 neurons for the input and output layers (�rst and last hidden layers),

and 16 neurons for the central hidden layer, all of them fully connected. One problem to

avoid when designing the architecture of an autoencoder is the excessive compactness

of the latent space, which is clear when the number of neurons of the layer de�ning the

latent space is too small, thereby reducing the dimensions of the initial data in such a

way that the loss of information is critical. Another point to take into account is that the

autoencoder serves as feature �lter, and so, the step of feature �ltering shouldn’t be that

relevant, thus, the con�guration de�ned for the feature �ltering of this experiment was

almost insigni�cant parameterwise: a small number of features were �ltered. The package

used for the implementation of the autoencoder was pyod.models.auto_encoder.

So, having the initial con�guration of the autoencoder de�ned, and the pipeline de�ned

(Table 5.6), the obtained model was set up in the following way:

• The feature �ltering process resulted in a total of 8 features to remove from the

universe 89, and 9 features from the universe 42, 101, 151 and 189. The sample

�ltering process turned out to remove a total of 25 samples of the training set of each

universe (quantile 0.9).

• The optimized parameters of the autoencoder are presented in Table 5.7.

37

5. Methods

Feature �ltering
Features to keep

(a priori knowledge)

Feature name Description

CD0000AGE Age of the inpatient

CTHSDXXTEMP
First temperature record taken

at Emergency

CTHSDXXSAT
First record of oxygen saturation

taken at Emergency

CTHSDXXRATE
First heart rate record taken at

Emergency

Feature �ltering method Variance Ratio
Outcome performance metric ROC AUC
Number of columns to drop 10

Sample �ltering
Discard quantile 0.9

Hyperparameter optimization
-

outlierness processing
Cut-o� value selection Younden’s index of ROC AUC

Table 5.6: Con�guration summary of the autoencoder.

Universe
Parameter 42 89 101 151 189 Common

Architecture - - - - - 32-16-32

Loss function - - - - - Mean Squared Error
Optimizer - - - - - Adam optimizer

Batch size - - - - - 32

Dropout rate - - - - - 0.2

Table 5.7: Optimized parameters for the autoencoder.

38

CHAPTER 6

Experimental results and
discussion

6.1 Evaluation (scoring)

The evaluation of the mortality prediction is a process that has to be executed carefully, as

some medical aspects need to be taken into account. The metrics used for the evaluation of

the experiments were the ROC-AUC, Sensitivity, Speci�city and F1-score, which are widely

explained in Section 5.2.7. In addition to these metrics, the confusion matrix is shown,

which gives a general perspective for every classi�cation made.

The complete collection of results of the 3 experiments (over 5 multi-starts) is collected

in Appendix B, at Table 3, Table 4 and Table 5. From these outcomes, an overall results are

computed over the measurements obtained for each universe with every classi�er.

After the computing of the OCSVM experiment, the results showed a ROC-AUC of

0.445±0.023, a sensitivity of 0.607±0.045, a speci�city of 0.219±0.058 and a F1-score of

0.204±0.010. This test showed that a high number of both positive and negative samples

were predicted as positive, manifesting a really low speci�city but high sensitivity.

Just like the OCSVM, a test was computed for the LOF. It turned out to re�ect an overall

ROC-AUC of 0.696±0.022, a sensitivity of 0.400±0.106, a speci�city of 0.268±0.093 and a

F1-score of 0.144±0.023. In contrast to OCSVM, the LOF balanced the prediction of the

samples, instead of predicting the majority as positive.

The autoencoder was also computed, showing that the estimated ROC-AUC of the

autoencoder prediction was 0.525±0.021, the sensitivity was 0.694±0.107, the speci�city

was 0.140±0.109, and lastly, the F1-score was 0.214±0.010.

6.2 Interpretation of results and external study comparison
(supervised approach)

Given the results, it is clear that the overall performance of the One-Class Classi�ers turned

out to underperform. Analyzing each classi�er can be observed di�erent behaviors that

39

6. Experimental results and discussion

happened during the classi�cation:

• The classi�cation made with the OCSVM resulted in a large imbalance on the positive

and negative prediction. The high number of samples predicted as positive was

re�ected in an overall high sensitive but really low speci�city over all universes.

This results lead to several conclusions about the classi�er. One of them is that

the hyperplane �t the positive data but it left so much room for negative data to

�t inside. These last problem may occur due to several irregularization: the data

may not be that informative for the positive samples, since it may be corrupted by

abnormal positive samples, implying that the OCSVM could not create an optimized

hyperplane covering the positive class. Another explanation for this outcome could

be that the selection of the hyperparameters may not be right.

• The LOF showed a more balanced evaluation, which was re�ected in a better overall

ROC-AUC than the other classi�ers. Even though it was more balanced, the classi�-

cation showed the same problem as the OCSVM and the autoencoder, the number

of False Positives was still too high. And, if it was not enough, the number of False

Negatives, which is the value to care most about in this speci�c project, was higher

than the number of True Negatives for 4 of the 5 universes. These last two facts can

be summarized in the F1-score, which resulted to be really low for all universes. So,

the classi�cation of the LOF was bad too.

• Lastly, the autoencoder showed a similar performance to the OCSVM. It shared the

fact that the evaluation turned out to classify a large number of samples as positive,

re�ected in a high number of False Positives. As well as the OCSVM, the classi�cation

made by the autoencoder also showed a lower number of False Negatives in contrast

to True Positive, which is a good sign, since it represents that the number of inpatients

whose outcome is deceased, are correctly classi�ed as deceased. But, as happened in

all 3 experiments, the number of False Positives is really high.

None of the experiments showed any consistency through all the attempts, di�ering

the results too much one from another.

All experiments shared the same problems. Many of them can be addressed from

several waypoints. A common problem seen through all three experiments, is the large

number of negative samples predicted as positive, i.e., the large number of False Positives.

As mentioned in the analysis of results of the OCSVM, the explanation of this behavior

can be taken from two main sections. One of them is the con�guration of the model itself,

which is a really important point to take into account when working with highly parameter

dependant models, such as the OCSVM, whose computation is entirely based on how well

the parameters are tuned. The other two classi�ers are not that parameter dependant as

the OCSVM. So this leads to the second hypothesis, that is the structure of the positive

data, how it is de�ned, and how well is the segregation between those samples and the

negative samples.

The last mentioned issue may be the main problem that caused the bad outcome of

the experiments. In previous analysis of the data, it was observed that many inpatients

(deceased and discharged) shared a lot of similarities. A clear situation is that many

inpatients that ended up passing away, despite being COVID-19 positive, they had an

40

6.3. Positive outlier analysis

optimistic diagnosis, and they were eventually registered as deceased for the record. A

great number of these samples appeared during the sample �ltering made over the three

classi�ers. Therefore, these two analyses were made in the try of explaining the bad results

obtained with the classi�cation. One of them was about the outliers inside the positive

data, and the other one was about how well the positive/negative segregation was in the

initial data.

It is proper to compare the results obtained following an OCC paradigm (unsupervised)

to the supervised approach [1] made by Armañanzas et al. The authors of this later work

developed a probabilistic model making use of two regularization learners: logistic regressor

and lasso regressor. The data and multistart con�guration in their project is the one used

in our project. So, results can be compared for the 5 multi-starts.

The authors reported the overall results of the classi�cation. The ROC-AUC was

0.906±0.015, the accuracy was 0.768±0.026, the sensitivity was 0.745±0.031, and the F1-

score was 0.544± 0.028. The complete record of results is de�ned in the Appendix B at

Table 6.

The results obtained in this last work show a really low number of False Negatives,

re�ected in a high sensitivity over all multistarts. In the same way a great speci�city is

shown due to the large number of True Negatives in contrast to the lower number of False

Positives. This is where the supervised approach truly succeeded, since it could properly

identify a large majority of death samples while still properly classifying survival samples.

However, the number of survival patients classi�ed as dead is still high. The reason of

this behavior is mentioned earlier in this section. Addressing that problem through two

main issues: the con�guration of the model and the quality of the representation of both

dead and survived patients. As the techniques used in the supervised approach di�er

heavily from the OCC approach, the main explanation for the results may reside in the

poor representation of the data, which is analyzed in Sections 6.3 and 6.4.

However, it is clear that the supervised approach outperforms the unsupervised ap-

proach. Showing how important is the information gathered from deceased samples in this

kind of problem.

6.3 Positive outlier analysis

An analysis was made over the samples identi�ed as outliers inside of the positive training

subsets of every universe. This analysis was carried out with an LOF
1

set up with the

parameter of neighbors as 20. This analysis was executed following this steps:

(1) A priori knowledge �ltering

(2) Feature �ltering with variance ratio. Evaluated with ROC-AUC.

(3) LOF model train and tested. Both train and test are made over the same subset of

train of each universe, following the classical LOF algorithm.

(4) Samples over quantile 0.9 of outlierness identi�ed as outliers of positive samples.

1

This post-classi�cation evaluation could be also made with OCSVM and autoencoder. But for method-

ological reasons, it was only made with LOF, which �ts perfectly the objective of this analysis.

41

6. Experimental results and discussion

Figure 6.1: Outlierness representation for outlierness analysis with LOF. A lot of samples are

gathered near 1 (LOF lowest possible value), which represent inliers, whilst there are less samples

with higher outlierness which represent positive outliers in the positive data of the training set.

It is right to highlight that the data was previously standardized, since this kind of methods

based on distances su�er from issues when working with data of di�erent scales.

After the process execution, a total of 14, 9, 17, 12 and 7 features were removed in

the universes 42, 89, 101, 151 and 189 respectively. So, having the resultant features, as

explained previously, the outlierness was processed. The outlierness obtained for the

universe 151 can be observed in the �gure 6.1, where it is clear how a large number of

samples have low outlierness, compared to small numbers of samples which have higher

values.

Having this outlierness, the positive outliers were identi�ed
2
. And thus, the data of

these samples with the selected features was analyzed looking for patterns that could

explain the existence of these abnormal positive samples.

The analysis made over the data turned out to re�ect some abnormal values of certain

features that could explain this behavior: the feature "CT00000DD", which is the D-dimer

value in blood for the inpatient, took the value of mean for the positive samples of 4.083,607,

and for the negative samples of 1.829,778. So, the samples from the analysis obtained an

overall 1.419,187 value, which is way closer to the negative samples than to the positive

ones. This speci�c feature is really important when predicting the prognosis for COVID-19

patients, because it increases along with elevated in�ammation degrees, seen in COVID-19

severe patients, and that’s why it is a key parameter for prediction, and why it could be the

main reason for these positive outliers. A study for this in�ammation related features can

be seen in the work of Zhang et al. (2020) [32].

Another case would be the feature "CT0000LDH", which is the level of lactate dehydro-

genase of the inpatient, that is presented in a really higher overall value (1.353,067) than

the overall value for the negative samples (558,364), being closer to the overall value for

the positive samples (836,772), but, this does not mean that it is more informative for the

positive class. The extreme values for the feature do not �t to the overall representation

on the positive data, neither �t for the representation of the negative data. This shares

as relevance as the D-dimer value, since a higher value of LDH is directly related to less

2

For analysis purposes only the samples that were identi�ed more than 3 times along all universes were

chosen for analysis.

42

6.4. Post-classi�cation data analysis

favorable response to outcome of COVID-19 patients. An exhaustive analysis of this feature

can be reviewed in the work by Juan et al. (2020) [33], where is collected an analysis

made over 94 COVID-19 patients and the correlation between biochemical parameters and

COVID-19 patients’ outcome.

The "CT0000PCR" was another feature that was heavily impacted at the time of pre-

dicting the outcome of COVID-19 patients. This feature represents the level of C-protein

in blood, where higher values are present in acute infection or in�ammation, and as it

increases, it indicates a more severe infection, thus, more severe outcome of COVID-19

patients [36]. This was heavily re�ected in the samples detected as positive outliers inside

train sets, since the overall value obtained in these cases (97,402) was closer to the negative

samples (89,568) than to the positive ones (164,050).

More (not that relevant) features can be analyzed that show a closer overall value to

the negative class than to the positive class. For instance, the "CT00000NA" feature, which

de�nes the amount of sodium in blood, had an overall value of 137,902 for the positive

class, 136,738 for the negative class and 134,133 for the identi�ed outliers.

All this sum ups to the explanation that many samples which cover the properties

explained previously, are those patients that initially had an overall optimistic diagnostic,

but they ended up deceasing due to COVID-19, or some other unknown reason. These

samples represent the more noisy point of the positive data, and they make the training

more di�use at the time of �tting a decision boundary to the positive data. And, at the

time of predicting the outlierness of new unseen values, those samples are more commonly

evaluated as False Negatives along all universes.

6.4 Post-classi�cation data analysis

Even though some samples that belong to the positive class di�er a lot from the regular

representation of the majority of the samples of their own class, there were still a lot of

samples of the positive data that were informative enough classwise, but as a whole they

were not so informative, resulting in bad results at the time of the evaluation. It is important

to highlight that the samples analyzed before were, at the time of the �nal evaluation,

removed from the initial data, and thus, the �nal set was made up by a subset of positive

samples lightly cleansed of noise.

This leads to an exhaustive analysis of each sample, and how well the positive data

is related to itself and to the negative samples. To address this problem an unsupervised

clustering method was carried out, a K-means [37] clustering. Developed by MacQueen

(1967), K-means is a clustering that aims to divide the data into k clusters, assigning each

sample to the cluster with the lowest mean. The complete algorithm is de�ned as follows:

(1) Specify a number k, which is the number of clusters.

(2) Initialize the centroids of the k clusters by selecting k random points of the data, and

assign each to one individual cluster as their centroids.

(3) Compute the sum of the squared distance of each point to every centroid.

(4) Assign to each point the cluster with the closest centroid.

43

6. Experimental results and discussion

(5) Recalculate the centroid of each cluster by taking the average of every point of each

cluster.

(6) Iterate from the step (3) until no new assignments are made between clusters or other

conditions are �lled.

This algorithm can segregate the data into k clusters, so the next thing would be the

evaluation of the clustering. These evaluations are not like the evaluations of a classi�er,

which measure how well a classi�er performs evaluating with the true labels of the samples.

The evaluations made over a clustering, from the unsupervised perspective, are more about

measuring the consistency of the clustering. The technique used in this experiment was the

silhouette method. An evaluation metric which measures the similarity of a sample to his

own cluster (cohesion) compared to other clusters (separation). It is de�ned in equation 6.1,

and it provides a value between -1 and 1, where higher values indicate that the sample is in

tone with his own cluster and poorly matched his other clusters. An overall high silhouette

over all the samples of a cluster represents that the cluster is well made, and the data is

highly related to each other and not that much with samples of other clusters.

Given a sample x:

s(x) =
b(x)− a(x)

max(b(x), a(x))
(6.1)

a(x) represents the mean distance of the x sample to all other data points in the same cluster,

and b(x) represents the mean distance of the sample x to all the samples that not belong to

his own cluster. This evaluation metric �t well the objective of this experiment, which was

about evaluating the division between positive and negative data.

So, as this was a post-classi�cation analysis, the K-means algorithm was applied for the

whole data (previously standardized), including both train and test subsets. This algorithm

was applied for several k, but the one which returned the best overall silhouette value

of all samples was k=2, which resulted in an overall 0.096 silhouette. The clustering was

visualized using as axis the features of "CT0000LDH" and "CD0000AGE", two really salient

variables for the positive class, which make the visualization easier. The �nal clustering

can be observed at the �gure 6.3.

The clustering resolution was the next one: the cluster 0 was made up by 65 (23.55%

of the total) positive samples and 995 (65.37% of the total) negative samples. Clearly this

sample was created around the negative class. The second cluster (1), was formed by 221

(76.45% of the total) positive samples, and 527 (34.63% of the total) negative samples. Even

though the percentages of each class are well balanced, the unbalancing of the number of

samples per class plays a major role in this classi�cation, mimicking in certain ways the

outcome of the OCSVM, LOF and autoencoder for the main experiments. The negative

samples are more easily clustered, in part thanks to its great number of samples, and, on

the other hand, it is di�cult to properly segregate the positive class from the negative one

due to the bad representation of itself.

The �nal results can be seen in the �gure 6.3, where the samples belonging to cluster 0

are better matched to their own cluster than the samples of cluster 1 to their own cluster.

As mentioned, cluster 1 was the one which had most of the samples of the positive class

grouped in it, and it returned a negative silhouette for the majority of the samples. The

interpretation of these results are directly related to how the positive and negative samples

44

6.4. Post-classi�cation data analysis

Figure 6.2: Clustering of positive (deceased) and negative (discharged) samples. The red cluster

(1) includes a large number of samples of the positive class, whilst the green cluster (0) includes

more samples of the negative class. The circles with the number of the cluster inside represent the

centroid of each cluster, and as observed they’re pretty close, thus, the clusters are not so separable.

Figure 6.3: Silhouette value representation for each sample, divided in 2 clusters.

are represented, and how well is the di�erentiation between both of them, and it is slightly

related to the method of validation selected.

45

CHAPTER 7

Conclusions

All the experiments concluded, it is clear that One-Class Classi�cation relies heavily on

how well the representation for the positive class is made, underperforming in situations

where the di�erence between the positive and negative samples is not clear. A great number

of deceased patients turned out to share a lot of similarities with the discharged patients,

showing similar optimistic diagnostics like the discharged patients but eventually passing

away, which was re�ected as noise in the training data and as a prominent number of false

negatives over all classi�cations, analyzed in chapter 7. The machine learning techniques

applied in this work are not reliable when talking about the interpretability of the models,

which is a key cornerstone in the machine learning application for medical �elds, and,

added to the bad results obtained, the interpretability is summarized to the individual

analysis made over the positive outlier samples. Any other analysis made over the results

and the data obtained worked with, might be explained on a really abstract level, since

some more advanced conclusions should be carried out by a medical expert.

However, looking ahead, OCC techniques still have a promising future, and they have

enough room to be exploited in �elds such as health, industry, or even in day-to-day

situations like social networks.

As mentioned, the poor representation of the data was the main problem that punished

the classi�cation. But, there is another problem that makes even the simulation of the exter-

nal models complicated, and it is the lack of COVID-19 data, and the lack of standardization

between datasets. Even though this is an issue that is still up, the experimental results

of COVID-19 prognosis prediction models have shown a huge evolution since the start

of the pandemic, resulting in better results as days go by. Hopefully these methods will

eventually be implemented in ER of hospitals all over the world, lightening the decision

making process and improving the resource management of hospitals.

Future work The augmentation of natural data (obtained from hospitals) or arti�cial

data (generated by neural networks) of deceased patients in the dataset, may help breaking

the imbalance situation, obtaining a more detailed representation of the data, and thus,

modeling a classi�er powerful enough to discriminate properly between patients with

death outcome and other kind of patients, in a One-Class scenario.

47

Appendix

Appendix A

Feature Description
CT0000ADW Red blood cell distribution width

CT00000AP Prothrombin time

CT000APTT Activated Partial Thromboplastin Time

CT0000BAS Basophil count

CT000BASP Basophil Percentage

CT00000BT Bilirubin count

CT000CHCM Mean Corpuscular Hemoglobin Concentration

CT000CREA Creatinite count

CT00000DD D-Dimer count

CT0000EOS Eosinophil count

CT000EOSP Eosinophil Percentage

CT0000GGT Gamma-Glutamyl Transferase count

CT0000GLU Glucose count

CT0000GOT Glutamic Oxaloacetic Transaminase test: aspartate aminotransferase count

CT0000GPT Glutamic-Pyruvic Transaminase test: alanine transaminase count

CT0000HCM Mean Corpuscular Hemoglobin

CT000HCTO Hematocrit level

CT0000HEM Haematid count

CT0000HGB Hemoglobin level

CT0000INR International Normalized Ratio of the prothrombin time

CT000000K Potassium count

CT0000LDH Lactate Dehydrogenase count

CT000LEUC Leukocyte count

CT0000LIN Lymphocyte count

CT000LINP Lymphocyte Percentage

CT000MONO Monocyte count

CT00MONOP Monocyte Percentage

CT00000NA Sodium count

CT0000NEU Neutrophil count

CT000NEUP Neutrophil Percentage

CT0000PCR C-Reactive Protein count

CT000PLAQ Platelet count

CT00000TP Protombine Time

49

Appendix

CT000000U Urea nitrogen count

CT0000VCM Mean Corpuscular Volume

CT0000VPM Mean Platelet Volume

CT0000SYM Number of Symptoms

CT0000COM Number of Comorbidities

CD0000AGE Age

CTHSDXXRATE First measured Hearth Rate

CTHSDXXSAT First measured Oxigen Saturation

CTHSDXXTEMP First measured Temperature

CD000MSEX Male Sex

CD000FSEX Female Sex

Table 1: Description of features.

Feature Total Discharged Deceased
CT0000ADW 13.02±2.08 12.88±2.0 13.78±2.33

CT00000AP 74.37±16.74 75.44±15.66 68.43±20.76

CT000APTT 32.94±7.03 32.68±6.05 34.39±10.85

CT0000BAS 0.02±0.02 0.02±0.02 0.02±0.02

CT000BASP 0.31±0.29 0.32±0.3 0.23±0.2

CT00000BT 0.57±0.45 0.55±0.35 0.69±0.79

CT000CHCM 33.62±1.42 33.68±1.39 33.25±1.51

CT000CREA 1.0±0.51 0.93±0.37 1.35±0.87

CT00000DD 2175.75±6823.36 1829.78±5813.5 4083.61±10629.91

CT0000EOS 0.05±0.21 0.06±0.23 0.02±0.04

CT000EOSP 0.7±1.57 0.79±1.67 0.23±0.59

CT0000GGT 74.26±90.8 74.63±92.41 72.24±81.47

CT0000GLU 125.47±45.97 122.24±42.36 143.33±59.25

CT0000GOT 45.02±94.96 41.02±34.85 67.09±227.22

CT0000GPT 39.05±71.5 38.11±39.64 44.25±157.11

CT0000HCM 29.66±2.27 29.62±2.24 29.84±2.47

CT000HCTO 40.53±5.27 40.64±5.13 39.91±5.93

CT0000HEM 4.61±0.66 4.64±0.64 4.49±0.73

CT0000HGB 13.64±1.92 13.7±1.88 13.34±2.14

CT0000INR 1.4±1.33 1.34±1.11 1.72±2.17

CT000000K 4.21±0.55 4.21±0.52 4.24±0.66

CT0000LDH 601.1±367.24 558.36±258.04 836.77±668.69

CT000LEUC 7.62±4.54 7.21±3.67 9.92±7.37

CT0000LIN 1.23±1.41 1.26±1.4 1.07±1.44

CT000LINP 18.19±10.44 19.21±10.31 12.59±9.32

CT000MONO 0.58±1.7 0.54±0.3 0.83±4.28

CT00MONOP 7.77±4.23 7.97±3.76 6.63±6.06

CT00000NA 136.92±4.5 136.74±3.79 137.9±7.17

CT0000NEU 5.75±3.77 5.33±3.24 8.03±5.37

CT000NEUP 73.01±12.99 71.71±12.63 80.17±12.62

50

Appendix A

CT0000PCR 101.0±100.87 89.57±91.34 164.05±125.03

CT000PLAQ 225.32±96.93 228.22±95.51 209.32±103.15

CT00000TP 15.39±13.89 14.69±10.64 19.25±24.81

CT000000U 43.17±30.72 38.59±23.03 68.41±49.78

CT0000VCM 88.23±5.77 87.95±5.49 89.78±6.94

CT0000VPM 10.35±0.98 10.31±0.96 10.58±1.05

CT0000SYM 0.06±0.26 0.06±0.27 0.03±0.18

CT0000COM 0.5±0.78 0.44±0.73 0.79±0.95

CD0000AGE 67.79±15.67 65.57±15.5 80.02±9.92

CTHSDXXRATE 79.28±14.75 78.45±13.75 83.83±18.76

CTHSDXXSAT 94.67±4.81 95.23±3.73 91.6±7.96

CTHSDXXTEMP 36.39±0.79 36.37±0.77 36.52±0.85

CD000MSEX 0.61±0.49 0.59±0.49 0.71±0.45

CD000FSEX 0.39±0.49 0.41±0.49 0.29±0.45

Table 2: Table of mean and standard deviation for every feature, divided by the target variable.

51

Appendix

Appendix B

Universe
Metric 42 89 101 151 189

Prediction + - + - + - + - + -

32 23 36 19 34 21 30 25 35 20Confusion

matrix 226 79 244 61 228 77 226 79 267 38

ROC-AUC 0.436 0.470 0.442 0.411 0.465

Sensitivity 0.581 0.654 0.618 0.545 0.636

Speci�city 0.259 0.200 0.252 0.259 0.124

F1-score 0.204 0.214 0.214 0.192 0.196

Table 3: Complete evaluation of the OCSVM

Universe
Metric 42 89 101 151 189

Prediction + - + - + - + - + -

Confusion

matrix

25 30 24 31 17 38 15 40 29 26

231 74 233 72 193 112 197 108 262 43

ROC-AUC 0.665 0.683 0.716 0.718 0.700

Sensitivity 0.454 0.436 0.309 0.272 0.527

Speci�city 0.242 0.236 0.367 0.354 0.140

F1-score 0.160 0.153 0.128 0.112 0.167

Table 4: Complete evaluation of the LOF.

52

Appendix B

Universe
Metric 42 89 101 151 189

Prediction + - + - + - + - + -

Confusion

matrix

43 12 30 25 43 12 30 25 34 21

286 19 214 91 285 77 226 20 240 65

ROC-AUC 0.500 0.526 0.516 0.559 0.525

Sensitivity 0.781 0.545 0.781 0.618 0.745

Speci�city 0.062 0.298 0.065 0.213 0.065

F1-score 0.223 0.200 0.224 0.206 0.215

Table 5: Complete evaluation of the autoencoder.

Universe
Metric 42 89 101 151 189

Prediction Death Surv. Death Surv. Death Surv. Death Surv. Death Surv.

Confusion

matrix

51 4 49 6 49 6 49 6 49 6

81 224 73 232 63 242 86 219 85 220

ROC-AUC 0.922 0.916 0.915 0.895 0.886

Accuracy 0.764 0.780 0.808 0.744 0.747

Sensitivity 0.927 0.891 0.891 0.891 0.891

Speci�city 0.734 0.761 0.793 0.718 0.721

F1-score 0.545 0.553 0.587 0.516 0.519

Table 6: Results of the supervised approach [1] (Armañanzas et al.).

53

Bibliography

[1] R. Armañanzas, A. Díaz, and S. Mazuelas. Derivation of a cost-sensitive COVID-19 mortality

risk indicator using a multistart framework. In Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases, 2021. Submitted. See pages vii, 3, 7,

23, 41, and 53.

[2] World health organization, who coronavirus (covid-19). https://worldhealthorg.
shinyapps.io/covid/. Accessed: 2021-05-11. See page 1.

[3] Atieh Pourbagheri-Sigaroodi, Davood Bashash, Fatemeh Fateh, and Hassan Abolghasemi.

Laboratory �ndings in COVID-19 diagnosis and prognosis. Clinica Chimica Acta, 510:475–482,

November 2020. See page 2.

[4] André Filipe de Moraes Batista, João Luiz Miraglia, Thiago Henrique Rizzi Donato, and

Alexandre Dias Porto Chiavegatto Filho. COVID-19 diagnosis prediction in emergency care

patients: a machine learning approach. preprint, Epidemiology, April 2020. See pages 2, 3.

[5] Konstantinos Bartziokas and Konstantinos Kostikas. Lactate dehydrogenase, COVID-19 and

mortality. Medicina Clínica, 156(1):37, 2021. Publisher: Elsevier. See page 2.

[6] David Martinus Johannes Tax. One-class classi�cation: Concept-learning in the absence of
counter-examples. PhD thesis, Technische Universiteit Delft, 6 2001. See pages 3, 14, 15, 20,

and 24.

[7] Manuel Sánchez-Montañés, Pablo Rodríguez-Belenguer, Antonio J. Serrano-López, Emilio

Soria-Olivas, and Yasser Alakhdar-Mohmara. Machine Learning for Mortality Analysis in

Patients with COVID-19. International Journal of Environmental Research and Public Health,

17(22):8386, January 2020. Number: 22 Publisher: Multidisciplinary Digital Publishing Institute.

See page 3.

[8] Stephen R. Knight, Antonia Ho, Riinu Pius, Iain Buchan, Gail Carson, Thomas M. Drake, Jake

Dunning, Cameron J. Fair�eld, Carrol Gamble, Christopher A. Green, Rishi Gupta, Sophie

Halpin, Hayley E. Hardwick, Karl A. Holden, Peter W. Horby, Clare Jackson, Kenneth A.

Mclean, Laura Merson, Jonathan S. Nguyen-Van-Tam, Lisa Norman, Mahdad Noursadeghi,

Piero L. Olliaro, Mark G. Pritchard, Clark D. Russell, Catherine A. Shaw, Aziz Sheikh, Tom

Solomon, Cathie Sudlow, Olivia V. Swann, Lance CW Turtle, Peter JM Openshaw, J. Kenneth

Baillie, Malcolm G. Semple, Annemarie B. Docherty, and Ewen M. Harrison. Risk strati�cation

of patients admitted to hospital with covid-19 using the ISARIC WHO clinical characterisation

protocol: development and validation of the 4c mortality score. BMJ, 370:m3339, 2020.

Publisher: British Medical Journal Publishing Group Section: Research. See pages 3, 5.

[9] Bassam Mahboub, Mohammad T. Al Bataineh, Hussam Alshraideh, Rifat Hamoudi, Laila

Salameh, and Abdulrahim Shamayleh. Prediction of covid-19 hospital length of stay and risk

of death using arti�cial intelligence-based modeling. Frontiers in Medicine, 8:389, 2021. See

page 3.

[10] Hm hospitales, covid data save lives. https://www.hmhospitales.com/coronavirus/
covid-data-save-lives. Accessed: 2021-02-15. See pages 3, 7.

55

https://worldhealthorg.shinyapps.io/covid/
https://worldhealthorg.shinyapps.io/covid/
https://www.hmhospitales.com/coronavirus/covid-data-save-lives
https://www.hmhospitales.com/coronavirus/covid-data-save-lives

Bibliography

[11] Li Yan, Hai-Tao Zhang, Jorge Goncalves, Yang Xiao, Maolin Wang, Yuqi Guo, Chuan Sun,

Xiuchuan Tang, Liang Jing, Mingyang Zhang, Xiang Huang, Ying Xiao, Haosen Cao, Yanyan

Chen, Tongxin Ren, Fang Wang, Yaru Xiao, Sufang Huang, Xi Tan, Niannian Huang, Bo Jiao,

Cheng Cheng, Yong Zhang, Ailin Luo, Laurent Mombaerts, Junyang Jin, Zhiguo Cao, Shusheng

Li, Hui Xu, and Ye Yuan. An interpretable mortality prediction model for COVID-19 patients.

Nature Machine Intelligence, 2(5):283–288, May 2020. See page 5.

[12] Muhammad Attique Khan, Seifedine Kadry, Yu-Dong Zhang, Tallha Akram, Muhammad

Sharif, Amjad Rehman, and Tanzila Saba. Prediction of COVID-19 - pneumonia based on

selected deep features and one class kernel extreme learning machine. Computers & Electrical
Engineering, 90:106960, 2021. See page 5.

[13] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and John Platt.

Support vector method for novelty detection. In Proceedings of the 12th International Conference
on Neural Information Processing Systems, NIPS’99, page 582–588, Cambridge, MA, USA, 1999.

MIT Press. See pages 5, 12, and 16.

[14] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. Nature, 521(7553):436–444,

2015. Number: 7553 Publisher: Nature Publishing Group. See page 6.

[15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. See page 6.

[16] Lukas Ru�, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,

Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classi�cation. In

International Conference on Machine Learning, pages 4393–4402. PMLR, 2018. ISSN: 2640-3498.

See page 6.

[17] David M.J. Tax and Robert P.W. Duin. Support vector data description. Machine Learning,

54(1):45–66, 2021. See pages 6, 16.

[18] World health organization, classi�cation of diseases (icd). https://www.who.int/
standards/classifications/classification-of-diseases. Accessed: 2021-05-29. See

page 7.

[19] Mary M. Moya and Don R. Hush. Network constraints and multi-objective optimization for

one-class classi�cation. Neural Networks, 9(3):463–474, 1996. See pages 9, 10.

[20] T. Minter. Single-class classi�cation. LARS Symposia, 1975. See page 9.

[21] Pramuditha Perera, Poojan Oza, and Vishal M. Patel. One-class classi�cation: A survey, 2021.

See page 10.

[22] David M. J. Tax and Robert P. W. Duin. Uniform object generation for optimizing one-class

classi�ers. The Journal of Machine Learning Research, 2:155–173, 2002. See page 10.

[23] Shehroz S. Khan and Michael G. Madden. One-class classi�cation: taxonomy of study and

review of techniques. The Knowledge Engineering Review, 29(3):345–374, 2014. Publisher:

Cambridge University Press. See pages 12, 15.

[24] Oleksiy Mazhelis. One-class classi�ers: A review and analysis of suitability in the context of

mobile-masquerader detection. South African Computer Journal, 36:29–48, 2006. See page 15.

[25] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995. See page

16.

[26] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying

density-based local outliers. SIGMOD Rec., 29, 2:93–104, May 2000. See page 17.

[27] Karl Pearson. LIII. on lines and planes of closest �t to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901. See page 20.

[28] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc.,

1995. See page 20.

56

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases

Bibliography

[29] Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection approach to

classi�cation. In In Proceedings of the Fourteenth Joint Conference on Arti�cial Intelligence,
pages 518–523, 1995. See page 20.

[30] Hasam Khalid and Simon S. Woo. OC-FakeDect: Classifying deepfakes using one-class varia-

tional autoencoder. In 2020 IEEE/CVF Conference on Computer Vision adnd Pattern Recognition
Workshops (CVPRW), pages 2794–2803, 2020. ISSN: 2160-7516. See page 21.

[31] Richard Bellman. Dynamic programming. Princeton University Press, 1957. Published:

Princeton, New Jersey: Princeton University Press. XXV, 342 p. (1957). See page 24.

[32] Litao Zhang, Xinsheng Yan, Qingkun Fan, Haiyan Liu, Xintian Liu, Zejin Liu, and Zhenlu

Zhang. D-dimer levels on admission to predict in-hospital mortality in patients with covid-19.

Journal of thrombosis and haemostasis: JTH, 18(6):1324–1329, 2020. See pages 24, 42.

[33] Jing Yuan, Rougrong Zou, Lijiao Zeng, Shanglong Kou, Jianfeng Lan, Xiaohe Li, Yanhua Liang,

Xiaoyan Ding, Guoyu Tan, Shenghong Tang, Lei Liu, Yingxia Liu, Yanchao Pan, and Zhaoqin

Wang. The correlation between viral clearance and biochemical outcomes of 94 COVID-19

infected discharged patients. In�ammation Research: O�cial Journal of the European Histamine
Research Society ... [et Al.], 69(6):599–606, 2020. See pages 24, 43.

[34] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10(2):99–127, 2002. See page 28.

[35] W. J. Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950. See page 32.

[36] Dominic Stringer, Philip Braude, Phyo K. Myint, Louis Evans, Jemima T. Collins, Alessia

Verduri, Terry J. Quinn, Arturo Vilches-Moraga, Michael J. Stechman, Lyndsay Pearce, Susan

Moug, Kathryn McCarthy, Jonathan Hewitt, Ben Carter, and COPE Study Collaborators.

The role of c-reactive protein as a prognostic marker in COVID-19. International Journal of
Epidemiology, 2021. See page 43.

[37] J. MacQueen. Some methods for classi�cation and analysis of multivariate observations.

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, pages 281–297, 1967. Publisher: University of California Press. See page 43.

57

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Objective
	State-Of-The-Art Review
	Data
	Methods
	One-Class Classification
	Concepts
	Types of OCC methods
	Boundary based methods
	Reconstruction based methods

	Strategy
	Data structure
	Feature Filtering
	Sample/row filtering
	Hyperparameter optimization
	Model fitting
	Outlierness processing: prediction
	Evaluation
	Implementation: pipeline
	OCSVM
	LOF
	Autoencoder

	Experimental results and discussion
	Evaluation (scoring)
	Interpretation of results and external study comparison (supervised approach)
	Positive outlier analysis
	Post-classification data analysis

	Conclusions
	Appendix
	Appendix A
	Appendix B

	Bibliography

