
Degree in Computer Engineering
Computer science

End of degree work

Distributed integrity monitoring system based
on Blockchain technology

Author

Aitor Belenguer Rodriguez

2021

Degree in Computer Engineering
Computer science

End of degree work

Distributed integrity monitoring system based
on Blockchain technology

Author

Aitor Belenguer Rodriguez

Director(s)
Jose Antonio Pascual Saiz

Summary

As a consequence of digitalization, the number of IoT devices and systems connected to
the Internet has grown considerably. Those infrastructures are being constantly targeted
by cybercriminals due to the large amount of valuable information they manage or their
potential usage as elements of a botnet. Hence, the need to enhance the authenticity and
integrity of data has become a great deal. However, the high number of gadgets make
the task of monitoring security in real time very challenging. The aim of this project
is to design and implement a system that could handle and monitor information of IoT
devices, in a distributed, efficient and safe way. To perform it, a backbone interface which
implements a P2P communication protocol will be designed. Being some of the concepts
used in digital signature and Blockchain technology, the cornerstone of the development.

i

Contents

Summary i

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 The aims of the project 3

3 Preliminaries 5

3.1 Blockchain and Byzantine consensus . 5

3.1.1 Non permissioned blockchains 5

3.1.2 Permissioned blockchains and consensus 6

3.1.3 Fault tolerance and consensus 6

3.1.4 Synchronization models among agents 7

3.1.5 Design decisions . 7

3.1.6 Similar approaches . 8

3.2 Digital signature . 8

3.3 Sockets programming . 9

iii

CONTENTS

4 Design 11

4.1 Policies and constraints . 12

4.2 Structures . 14

4.2.1 Main data structures . 14

4.2.2 Hash history and blockchain . 17

4.2.3 Datagram structure . 18

4.3 Configurations . 19

4.4 Algorithm . 21

4.4.1 Auditor . 23

4.4.2 Server . 26

5 Implementation 29

5.1 Class diagram . 29

5.2 Relevant code fragments . 30

5.2.1 Sender . 31

5.2.2 Receiver . 34

5.2.3 Keys of the auditor . 35

5.3 Compilation and package dependencies 37

5.4 Console interface - User interaction . 37

5.5 Logs and execution modes . 39

5.6 Leaks . 41

6 Integration 43

7 Deployment and tests 45

7.1 Background . 45

7.2 Results . 46

iv

8 Project management 49

8.1 WBS diagram . 49

8.2 Work packages . 50

8.2.1 Preliminary study . 50

8.2.2 Protocol design . 50

8.2.3 Protocol implementation . 50

8.2.4 Performance tests . 51

8.2.5 Documentation . 51

8.3 Time estimation and deviations . 51

8.4 Deviation analysis . 53

8.4.1 Complex documentation material 53

8.4.2 Implementation complexity . 53

8.5 COVID-19 latent risk . 53

9 Conclusions and future work 55

A Appendix 59

A.1 UML diagram . 59

A.2 Makefile . 61

A.3 deploy.sh . 61

A.4 generate_keys.cpp . 61

A.5 generate_configs.py . 62

A.6 Tables . 63

A.7 Online repository . 63

Bibliography 65

v

List of Figures

3.1 Digital signing process. 9

4.1 Tree structure of the XML configuration file. 12

4.2 Main modules of the protocol. 15

4.3 Nested data structures. 16

4.4 Standard structure of a datagram. 18

4.5 Accurate plot based on binomial trials. 20

4.6 Pessimist plot based on approximation function. 21

4.7 Randomized waiting time for network deploy. 22

4.8 Fixed long waiting time before the auditor is launched. 23

4.9 Simplified algorithm of the auditor. 24

4.10 Encapsulated double datagram. 25

5.1 Menu shown in the console interface. 38

5.2 Network overview. 38

5.3 Detailed information of node 2 from node 1. 39

5.4 Hash update interaction. 39

5.5 Piece of a log generated by node 1 in a network of 10 nodes. 40

7.1 Distribution of the execution results and linear regression. 47

vii

LIST OF FIGURES

8.1 WBS diagram of the project. 49

8.2 Simplified Gantt diagram of the project. 52

9.1 Two networks interlaced by two nodes. 56

A.1 UML class diagram of the implementation. 60

viii

List of Tables

8.1 Estimation of tasks and their final required time. 52

A.1 Mean values from Table A.1 columns. 63

A.2 Execution time samples of 8 random nodes. 63

ix

1. CHAPTER

Introduction

As a result of continuous technological evolving and readaptation, not securely designed
systems are suffering the effects of turning them into smart devices. Although it is very
convenient to have 24/7 connected IoT gadgets, a gateway to the internet turns them into
a double-edged sword. Default passwords or misconfigurations transform smart systems
into weak, unpredictable targets that could be used as local network accessing backdoors.

Moreover, cybercriminals try to get control over misconfigured devices to perform DDoS1

attacks to thirds. A common example are ISP provided routers, with their default ad-
min/admin credentials; becoming the preferred agents of botnets by antonomasia. Others,
such as default credentials of Operating Systems (OS) accounts and databases, let sys-
tems to be publicly exposed; opening the doors to information dumping and modification
of configuration files. Therefore, integrity preservation and its monitoring is essential,
especially in environments where the amount of sensitive data is high; enterprises and
corporations.

On the one hand, conventional measures to mitigate network incoming cyberattacks usu-
ally involve the use of firewalls; being the application type ones the most sophisticated
systems. As part of the active security conglomerate, firewalls analyze incoming data-
grams and collate their content against specified rules or information from a database.
Although active security is the most important ally of cybersecurity, the effectiveness of
firewalls is highly questionable. At the end of the day, threats materialize or mutate into
new untracked attacks too quickly, outdating the rules of firewalls. On the other hand, the

1https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack

1

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack

2 Introduction

use of antivirus applications as the main pillar of passive security is globally spreaded.
Those applications, use as well content collating against a record rows as threat detection
main tool. As a consequence, the same fast expiration issues are inherited.

Furthermore, when integrity monitoring systems enter into the scene, it is from the hand
of centralized stations. Those stations act as servers that listen to the network and send
information request messages to other devices. Depending on the received answer, status
of the requested elements is determined SNMP2. Additionally, the use of Blockchain
technology can be a possible solution to status history simplification. Nevertheless, its use
usually implies the need of blockchain storing centralized servers. Making Blockchain a
not suitable technology in many environments.

The best option for an effective integrity monitoring system is to reorganize the existing
technological pieces and mold them into new protocols and applications. An example of it
are Blockchain based distributed protocols such as Trebizond or Tendermint; taken as
roadmaps to develop the core of this work. In the same thread, this project tries to answer
the following questions.

1. Can integrity be monitored in a distributed, secure and reduced resource cost way,
using Blockchain technology and digital signature?

2. In the current scenario, are P2P networks the best approach to create a scalable and
independent network protocol?

The short answer to the previous questions, based on future work, is “yes”.

2https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

2. CHAPTER

The aims of the project

The goal of the project is to create a custom integrity monitoring system based on avant-
garde technologies, such as Blockchain and digital signature. Allowing an implementation
of a distributed network protocol located into the application layer of the OSI1 model.

As part of the security environments of enterprises, integrity monitoring is usually per-
formed in a centralised and inefficient way. Moreover, it is typical to ensure data integrity
reactively, just by hardware redundancy. On the one hand, relying all network monitor-
ing tasks on a single computer could trigger scalability issues as well as become a weak
point of the system. On the other hand, the conventional way of sending secure informa-
tion throughout the network is by establishing a TLS2 connection between the agents and
sending a set of files to be analyzed. Those methods increase network traffic and burden
communications considerably.

A possible solution could reside in monitoring integrity in a distributed way, sending
just the needed data throughout the network. Therefore, no weak points will exist and
integrity leaks will quickly be detected due to a scalable peer-to-peer3 (P2P) auditing
system. Furthermore, a digest or hash value of the file(s) to be audited could be plainly
sent to the network, without needing extra security measures.

A network application protocol will be designed, implemented and tested with the aim of
creating a new paradigm that could serve as a starting point of alternative usages to P2P

1https://en.wikipedia.org/wiki/OSI_model
2https://en.wikipedia.org/wiki/Transport_Layer_Security
3https://en.wikipedia.org/wiki/Peer-to-peer

3

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Peer-to-peer

4 The aims of the project

networks and blockchain technology. At the same time, a complementary project at OS
level is being developed [Herrero, 2021]. The last project will act as an underlayer appli-
cation, providing a digest of a designated filesystem by Merkle Tree4 parsing. Hence, an
integration stage of the two projects will be carried out as well.

The main tasks of the project can be summarized into the next points:

1. Study of Blockchain technology, digital signature and sockets programming.

2. Design and implement a first stage network application protocol.

3. Perform the integration part with the OS level daemon.

4. Deploy and test the mentioned application to measure its scalability.

In spite of needing an internet connection and a pair of previously distributed asymmetric
keys, the application can be used in mostly any Linux kernel running IoT device. However,
constraints of the underlayer project have to be taken into consideration too. The main
milestones of the project will be performed in the next way.

First, how distributed networks work and maintain consistency has to be understood as
well as studying the fundamentals of Blockchain technology and digital signature. Af-
ter information gathering is finished, the protocol design will begin defining system be-
haviour, data structures and main algorithms. Once the design is ready, the implementa-
tion juncture will start using C++ programming language, accompanied by cryptographic
libraries and sockets programming tools. After it, the integration stage with the OS level
development will be carried out. To finalize, some deployment and scalability tests will
be performed.

4https://en.wikipedia.org/wiki/Merkle_tree

https://en.wikipedia.org/wiki/Merkle_tree

3. CHAPTER

Preliminaries

3.1 Blockchain and Byzantine consensus

Blockchain technology can act as a distributed trust provider in scenarios where an incre-
mental record of files has to be maintained. The chain is formed applying a hash function
to the concatenation of the latest chain digest and the arrived block. So, each of the blocks
is associated with its predecessor and any small change in any of its elements will alter
the result drastically. A hash function1 is an algorithm that processes an arbitrary sized
input data and transforms it into a fixed-size output; e.g. SHA-256, BLAKE3, MD5. The
main properties of hash functions are: deterministic behaviour, computational efficiency,
irreversibility, random appearance and collision resistance.

3.1.1 Non permissioned blockchains

Any entity identified by a public key-pair can join the system, propose new blocks to
be appended into the public blockchain and participate in the system status validation
consensus [Fernández-Bravo, 2018]. Proof of Work2 (PoW), mining process, is used as a
worktrace of the participant nodes to avoid gossiping attacks: e.g. Sybil attack [Douceur, 2002].
However, blockchain is still vulnerable to percentage attacks, being anyone in control
of more than a 50% of the network able to arbitrarily modify the chain. Non permis-

1https://en.wikipedia.org/wiki/Hash_function
2https://en.wikipedia.org/wiki/Proof_of_work

5

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Proof_of_work

6 Preliminaries

sioned blockchains are the ones used in cryptocurrency infrastructures, such as Bitcoin
and Ethereum.

3.1.2 Permissioned blockchains and consensus

The process of appending a block to the blockchain and achieving consensus is performed
by known entities of a trusted domain [Cachin and Vukolic, 2017], providing a consensus
environment to distributed systems. Nevertheless, the agents must satisfy the following
constraints:

• Each node knows the identity of all the nodes in the network.

• The public key distribution is done previously to the system start up, by a key
distribution mechanism.

• It is not necessary to implement PoW (not susceptible to Sybil attacks).

The importance of specifying a fault tolerant mechanism is vital to detect problems and
achieve synchrony. The following points establish a framework to maintain deterministic
consensus on a distributed node set:

1. Creation of a deterministic state machine, which implements the logic of the ser-
vice to be replicated.

2. Implementation of a consensus protocol which broadcasts requests among nodes,
so that a node executes the same request sequence in its self service instance.

State machines are used to implement Byzantine fault tolerant services, replicating the
servers and coordinating the interactions of the clients with the server replicas; accom-
plishing the set of replicas to perform as a unique centralized service [Schneider, 1990].

3.1.3 Fault tolerance and consensus

Blockchain based systems should countermeasure the highest amount of faults as pos-
sible, being byzantine nature faults the most dangerous ones. Byzantine faults represent
arbitrary malicious behaviors acting in an undetectable way for other components of the

3.1 Blockchain and Byzantine consensus 7

system. In the same thread, it is recommended to deploy the replicas over different plat-
forms and locations, which depend on distinct energy sources and network infrastructures.
As far as possible, employing different design versions and implementation components
to avoid hardware failures bringing down the entire system. The main problems to achieve
distributed consensus with presence of Byzantine faults are the following ones: synchro-
nization, consistency, fault detection and cryptography [Fernández-Bravo, 2018].

3.1.4 Synchronization models among agents

• Asynchronous communication model: No bounded time limits exist.

• Synchronous communication model: Bounded time limit exist.

• Partially synchronous communication model: The default behaviour of the sys-
tem is asynchronous, until a bounded time interval from a protocol is executed,
establishing time limits over message send and processing mechanisms. That exact
moment is called Global Stabilization Time (GST).

3.1.5 Design decisions

In the elaboration of a protocol working over a replicated state machine the design deci-
sions are:

1. Communications have to be established over trusted channels.

2. An atomic diffusion protocol is needed to achieve a global commitment about which
value should be accepted by all the processes.

3. On a fault tolerant distributed system, a partially synchronous communication model
is needed to achieve consensus.

4. To enhance protocol security and efficiency, independent consensus and application
engines are needed.

5. A scalability threshold of the system has to be estimated, tolerating f faults in n

nodes.

8 Preliminaries

3.1.6 Similar approaches

On the one hand Trebizond3 is an algorithm which maintains a shared state among a
series of distributed nodes; it is appropriate for permissioned blockchain systems. To its
deployment, public key sharing is assumed to be previously performed. Cryptographic
keys are used to sign and verify the authenticity of distributed messages among nodes.
Trebizond incorporates an explicit separation between the execution and consensus layers,
amplifying the productivity of the system.

On the other hand, Tendermint4 is an application formed by a Blockchain consensus
engine and an application interface. In consonance with this project, the consensus en-
gine ensures that the same transactions are recorded on every machine in the same order.
Moreover, it has a tolerance threshold of 1

3 of the total agents failure. Thus, the system
will continue working correctly while 2

3 of its agents are not compromised. As it is ex-
pected, both approaches have in common that every node acts as a replica; recording the
same blockchain transactions and data structures.

3.2 Digital signature

Digital signature is a base component of many cryptographic protocols. In the same way,
asymmetric cryptography is the main pillar on which digital signature is built. In short,
digital signature is an algorithm that given an input message and a private key, a series
of mathematical functions are applied to obtain, a signed cryptogram corresponding to
the original message. The signature is then attached to the original message and sent to
destination.

Digital signature tries to replicate handwritten signatures in a more secure way, providing
similar security features: authenticity, integrity and non-repudiation. As a result, the orig-
inal message, the signed cryptogram and the public key of the signer have to be used in
the signature verification process. The next Figure 3.1 shows how the signing process is
performed:

3https://riunet.upv.es/handle/10251/115369
4https://docs.tendermint.com/master/introduction/what-is-tendermint.html

https://riunet.upv.es/handle/10251/115369
https://docs.tendermint.com/master/introduction/what-is-tendermint.html

3.3 Sockets programming 9

Figure 3.1: Digital signing process.

3.3 Sockets programming

Sockets are communication channel resources provided by the OS, allowing the inter-
change of information among applications and services using IP directives. Different pro-
gramming languages such as C / C++ have libraries that make possible the usage of those
socket resources. From the point of view of a developer, sockets are “files” opened in a
special way. However, they are not so simple. On the one hand, an IP address and a port
number are needed in order to access the desired machine and service. On the other hand,
the client-server architecture has to be respected; implementing the correct socket type
on each application. The following steps show how client and server sockets have to be
created in C / C++:

Server

1. Open a socket: socket() Function returns a file descriptor.

2. Notify the OS: To make an association between a program and a socket, bind()
function has to be used.

10 Preliminaries

3. Start listening in the established address: listen() Function is used to make the
OS listen to the desired socket.

4. Accept connections: accept() Function asks the operating system about the incom-
ing service requester.

Client

1. Open a socket: Same process.

2. Connect to a server socket: connect() Function establishes a link with a specified
application from a server.

To send and receive data, both server and client use send() and recv() functions with
a fixed size buffer; being recv() execution blocking by default. Furthermore, once the
desired data interchange concludes, memory resources have to be released by closing the
connection close() in both interlocutors. Finally, sockets have OS established limitations;
e.g. the maximum number of sockets an application can open simultaneously in Linux
systems is 65535.

4. CHAPTER

Design

Although the protocol is nurtured by technologies and paradigms of previous chapters, the
design is fully custom. Developing a secure and consistent distributed network protocol
requires dealing with multiple concurrent scenarios. Moreover, Byzantine fault tolerant
protocols should take into account a wide variety of possible malicious situations and
have a countermeasure action to mitigate their effects. Hence, the process of designing
the algorithm and structuring data, is necessary to create a robust starting point before the
implementation is carried out.

The protocol is designed to operate in a permissioned enterprise network, with an initially
trusted node set. Despite not being centralised, each node has to know the whole network
topology; other nodes in the network. However, as the topology is completely virtual, the
location and interconnection of the nodes is up to the disposal of system administrators.

Each node has a group of directories and files to preserve in time, in which integrity
should not be altered until a system administrator, explicitly, indicates it. A hash or digest
of the chosen filesystem is computed by an underlayer daemon [Herrero, 2021] based on
Merkle Tree. The obtained hash is used as a descriptor to evaluate integrity of data and
as the main element to propagate throughout the network. Hash features allow sending
integrity information in a secure and light way; it is apparently random and impossible to
return to source data. Notwithstanding hash functions exempt from using confidentiality
providing cryptographic mechanisms, each node has to prove its identity to other nodes
and demonstrate that it is trustworthy. In order to achieve it, public key cryptography in
the form of digital signature is used.

11

12 Design

Additionally, the network should act as a highway to transport data, control and audition
messages. Every single node plays two roles at the same time, server and client. Thus,
the network is really a P2P one, in which the actors have to access the same memory
blocks preserving consistency. On the one hand, the client acts as an auditor and processes
requests from the interactive console interface. On the other hand, the server must answer
all the requests from the network to avoid incident accumulation.

4.1 Policies and constraints

Before starting with the deployment, a configuration XML file containing the network
specifications must be adjusted, by a system administrator, in each of the nodes. The
management file has to respect the following Figure 4.1 tree structure:

Figure 4.1: Tree structure of the XML configuration file.

Going deeper into the designing aspects of the configuration scheme. The previous Figure
4.1 establishes the main pillars on which future data structures will base. Those structures
correspond to the branches, self node and network. Containing, respectively, the attributes
describing the self node and a list of network nodes with their specifications. Each node

4.1 Policies and constraints 13

must have a unique identification number ID ∈ N as well as a valid IP address (IPv4 or
IPv6) and port numbers.

Besides, the self node must have a pair of public and private RSA keys (in DER - binary
format), issued using a PKI or similar infrastructure. In the same thread, the network
must contain all public keys from the rest of the nodes. Therefore, staff in charge of
the deployment, has to deal with public key distribution in a secure way; deciding key
propagation mechanism and channel. Moreover, the execution mode (0 - DEFAULT or 1
- DEBUG) and SHA256 digested hash updating password have to be specified.

The directory distribution of the application must follow the next scheme. A root directory
within all the needed directories are located:

• deploy_utils (deploying scripts and tools): XML generator python script and C++
RSA keys generator application.

• include (dependent packages): Rapid-XML package.

• logs (log history): Log files generated during the execution.

• RSA_keys (RSA keys): Public keys corresponding to all network nodes and a key-
pair of self node.

• src (main development): Application headers, source files, Makefile and network
deploying shell script.

• XML_config (configurations): XML configuration file.

A deterministic state machine with two states, trusted / mistrusted, has to be defined;
being the initial status of the network and all its nodes trusted. Moreover, during the
execution time, a minimum number of network nodes must be trusted and operative to
have a sanitized working network. The compulsory threshold to achieve that goal, is to
have at least 2

3 of the rest of the nodes not compromised.

Additionally, the minimum number of nodes to deploy the system is 3 (the main node and
two network ones). Each network node must have a default trust level number that will
decrease, a unit, each time a (well formulated) blaming message arrives. The trust level
has to be linked to the amount of nodes in the network; 2

3 times the number of network
nodes. Anomalies such as sudden hash updating will contribute to point losing, until trust
level reaches 0 and the node is banned from the network; declaring it as not trusted.

14 Design

Linked to the mentioned trust level, each node must have a maximum number of accumu-
lated incidents. In a similar way to trust level, incidents are an internal number associated
with a network node. However, they are managed in an isolated way; no blaming occurs
when incidents happen. Situations such as not being available, out of sync packages, sig-
nature failure, message faking and so on, will trigger incident accumulation. Surpassing
the maximum amount of allowed incidents, implies losing trust in a node completely.
As the natural incident number is expected to be directly proportional to the number of
network nodes, the roof will be established by a 1

3 of them (being 1 the minimum).

Although the designed distributed network protocol is completely asynchronous, some
timeouts are needed to arrive at different scenarios. Auditor interval, maximum response
delay, hash updating maximum and minimum time frames, network deployment time
space and incident number decreasing rate are necessary.

4.2 Structures

As mentioned previously, each node knows the whole network composition. So, the in-
formation and structures are replicated per node. Nodes are supposed to be running the
same implementation on independent machines. The following figures correspond to the
development structure, data representation and sent datagrams.

4.2.1 Main data structures

Thinking on future implementations, the system is divided into the modules of Figure 4.2:

4.2 Structures 15

Figure 4.2: Main modules of the protocol.

• Backbone section corresponds to data structures:

– Base node establishes all nodes common features to facilitate the implemen-
tation with inheritance.

– Self node corresponds to the features of the local node.

– Network node corresponds to information of a remote node.

– The network is the cornerstone of the system. All data structures are wrapped
up inside it, Figure 4.3. The network acts as an intermediate layer; the rest of
the modules have to go through it to access data of nodes.

16 Design

Figure 4.3: Nested data structures.

• Logic and communications section corresponds to the algorithm of the protocol:

– Server: Gives the pertinent responses according to data in the network struc-
ture.

– Auditor: Requests and evaluates incoming data according to the one in the
network structure.

• Tools section is a tool provider for the implementation:

– Utilities will offer random generating mechanisms, string processing methods
and so on.

– Crypto will provide other modules with public key cryptography resources.

• Configuration and tuning section is linked to setting up execution parameters:

– Globals will fold default configuration attributes.

– XML will represent compulsory configurations and network structure loading
track.

• Interactive section corresponds to a console interface in which a system administra-
tor can view and perform some operations in the network.

– Main will be part of the implementation, initializing the rest of the modules.

• The OS level section is linked to the Merkle Tree implementation.

4.2 Structures 17

– The linker is the only part including technology of the analogous project. It
will be a single directional bridge, updating the backbone section information
with the one provided by the OS level development.

4.2.2 Hash history and blockchain

The information received from other nodes is stored in three different data structures de-
pending on the nature of the message. Although the received digest descriptor algorithm is
completely modular, SHA256 is used to create the blockchains. The mentioned structures
are replicated in each node and should have similar content under normal circumstances
(while being trusted). The following scheme summarizes information representation per
network node:

• Good hash record: Each time a network node hash updating is performed correctly,
the received hash is stored into this LIFO structure. If the arrived node equals the
latest value of the structure, it will not be taken into account.

• Troublesome hash record: Each time a blame to a node is correctly performed and
does not match the latest troublesome hash in the record, the arrived hash will be
saved into this LIFO structure.

• Blockchain record: Each time the good or bad hash records are modified, the latest
hash of the structure is concatenated with the arrived one and the SHA256 prede-
fined digest function reapplied. The obtained hash will become the latest element
of the blockchain.

The following scheme resumes information representation in self node:

• Good hash record: For the self node, each hash update is considered to be OK.
Having a troublesome hash record in the self node does not make sense, because
integrity validation has to be done by the rest of the nodes. So, each time a moni-
tored file is altered, the hash will be recalculated and inserted into the record.

• Blockchain record: Each time the previous record is updated, the blockchain struc-
ture will be updated as well, in the same way, as in the network node case.

18 Design

4.2.3 Datagram structure

As the following Figure 4.4 shows, the main datagrams sent throughout the network are
composed of 6 sections. ACK and UPDATE_HASH are not included in this category,
because they are considered less relevant messages.

Figure 4.4: Standard structure of a datagram.

Sections of the datagram:

• Code: It is used as a selector of server options.

– 0: Hash update request.

– 1: Hash update.

– 2: Local hash value request.

– 2: Local hash value response. (Sent from server)

– 3: Blaming double datagram, Figure 4.10.

• Sender ID: It is used as an authenticity provider measure on future verifications.

• Destination ID: It is needed to specify identification of the destination as a security
measure on future verifications.

• Synchronization number: It is needed as a security measure to avoid message
reusing, letting replication attacks1. Each self node - network node transaction will
have a package counter. Every time they interchange a message, the synchronization
number will increase. Hence, messages with a higher synchronization number than
the latest one received will exclusively be accepted.

1https://ieeexplore.ieee.org/document/5948813

https://ieeexplore.ieee.org/document/5948813

4.3 Configurations 19

• Content: It can be empty if the message is a request. However, it can also contain
a hash value or encapsulate another entire datagram (blaming case).

• Digital signature: It is needed to grant integrity and authenticity of all the previous
fields as well to obtain a non-repudiation trace that will act as a blaming ticket. So,
all the fields are concatenated and signed with the private key of the sender. The
signature is encoded in hexadecimal and appended to the datagram.

4.3 Configurations

As it is mentioned previously, some configurations are set by default. Among those con-
figurations, some are fixed values and others are dynamically linked to the dimension of
the network. Whereas, others are introduced by a system administrator via XML file, as
it is mentioned in Section 4.1.

Focusing on the internal parameters, the default trust level decrease rate is a unit as
well as the default incident accumulation index. Moreover, the default hash updating
maximum time frame is of 5 minutes and the minimum is of 30 seconds. In the same
thread, the random waiting fixed component is of 1 minute and the default network
deploying time is of 30 seconds. Next, the maximum response delay is 2 seconds and
the auditor will send a request every 3 seconds (interval). Additionally, the first hash
to be included in all the lists and used as first block of all SHA256 blockchains is:
00. To end
with the static values, the defined threshold to consider the network operative is 2

3 .

The following parameters are linked to the network node number. As mentioned previ-
ously, the trust level of each node is 2

3 times the number of other nodes. Furthermore,
the maximum number of incidents allowed is a 1

3 of the network node number. The last
dynamic parameter is the incident reset time interval, which requires more attention:

The interval is computed using a Binomial distribution; establishing a probability bias of
a 70%, in which 2 or more times (X > 1 working with discrete numbers) a given network
node can be repeated by a balanced random sequence (Bernoulli trials). So, the number
of trials will be the number of audition requests before the incident reset mechanism
decreases the incidents a unit. Additionally, to calculate the reset waiting time, the number
of the mentioned audition requests have to be multiplied by the (3 sec) interval of the
auditor.

20 Design

• n : Number of trials?

• Probability of success (binary: YES or NO): 1
netNodeNumber

• Two or more times a given network node: X > 1.

• Minimum probability that should be achieved: 0.7.

X ∼ Binomial(n, 1
netNodeNumber);P(X > 1)≥ 0.7

However, working with such sophisticated models is complex. Hence, the following state-
ment is used as a more pessimist model to get the audition request trials number.

2∗netNodeNumber+ netNodeNumber
2

The following Figure 4.5 shows the original binomial trials per network node number:

Figure 4.5: Accurate plot based on binomial trials.

The previous Figure 4.5 is obtained using the following R code, Listing 4.1. In which the
number of trials is empirically incremented until the desired probability is achieved:

1 #R−script to obtain minimum number of trials

2

3 v1 <− 1:100

4 v2 <− c()

5

6 for (v in v1){

7 i <− 0

8 p <− 0

9 while(p < 0.7){

10 i <− i + 1;

11 p <− pbinom(1,size = i, prob = 1/v, lower.tail = FALSE)

12 }

4.4 Algorithm 21

13 v2 <− c(v2, i)

14 }

15 plot(v1,v2, main="Accurate", sub="Binomial basis",

16 xlab="Number of network nodes", ylab="Number of tries")

Listing 4.1: R-script to obtain minimum number of trials.

The following Figure 4.6 shows the chart of the second, more “pessimist” model:

Figure 4.6: Pessimist plot based on approximation function.

The previous Figure 4.6 is obtained using the following R code, Listing 4.2:

1 #Pessimist approach to Binomial trials

2 v3 <− c()

3 for (v in v1){

4 tmp <− 2*v + v/2

5 v3 <− c(v3, tmp)

6 }

7 plot(v1,v3,main="Pessimist", sub="2*nN + nN/2",

8 xlab="Number of network nodes", ylab="Number of tries")

Listing 4.2: R-script to obtain a similar approach.

4.4 Algorithm

The design is bounded to a staggered system deployment. During the starting phase, pre-
viously mentioned conditions have to be granted; key distribution, information about net-
work nodes and a suitable system configuration. After those requirements are met, the
server and linker are started up, followed by a time waiting synchronization sequence.

22 Design

That synchronization sequence is used to avoid network overloads and achieve consis-
tency before the auditor is started up. So, the delay between the two initial components
launch and the first hash update broadcast has to be partially random.

As the following Figure 4.7 shows, there is a fixed component of time, representing 1
3

of the waiting time and a variable component, with a balanced random function behind,
representing on average a 1

2 of the waiting time.

Figure 4.7: Randomized waiting time for network deploy.

Subsequently, the system hash update phase will begin. During this phase, the local node
will try to connect to all its known nodes and send them a hash updating request with a
working time specification. Then, the self node will wait a pre-established response delay
time, until a minimum number of 2

3 of network nodes send back an ACK response. This
response allows the node to test if the network is still operative and be assured that at least
2
3 of the network will receive the following messages appropriately.

In short, the sender will know that a specified remote working time frame has been
opened, in at least 2

3 of the network nodes. If the request process ends up successfully,
a local time frame will be opened as well. However, if acknowledgement messages do
not cover the minimum threshold, the system will interpret that the network is compro-
mised and network trust will be completely revoked; triggering a denial of external future
interactions.

Supposing that the acknowledgment phase has performed successfully, changes in the
filesystem will be carried out while the local working time frame is opened. Once the
specified time window runs out, the hash describing the current state of the filesystem
will be propagated throughout the network. Since other nodes have already received an
updating request from the local node, the hash sent will arrive in time, as expected, and
it will be recorded by the listeners. Nevertheless, if the message containing the hash does
not arrive in time, or arrives without being previously notified (no request), the incident
number of the sender will increase a unit.

The last part of the deploy involves waiting a predefined amount of time for messages
from other nodes to arrive. Each node in the network is expected to be launched simul-
taneously; being the synchronization traffic balanced by the mentioned random compo-

4.4 Algorithm 23

nent. Not delaying the startup of the auditor will unchain false positive blames. Hence,
to achieve consistency, all nodes are given enough time to send their hashes. This last
waiting stage has to be greater than the maximum possible hash updating time window,
Figure 4.8. Furthermore, a deployment delay could be added as extra setting up time.

Figure 4.8: Fixed long waiting time before the auditor is launched.

Once the auditor is started up, the protocol will be in its standard stage. At this point, the
network nodes and the self node are consistent. Equally, the linker, server and auditor are
running. The following stages will involve, self hash update reporting, anomaly blaming,
network monitoring and request serving.

While the system trusts the network and vice versa, a system administrator will be able to
make a hash updating request to the network. In order to do it, the steps of Section 5.4 have
to be followed. The process will continue similarly to the deployment phase. Nonetheless,
this time the auditor is active and it has to be paused until the working time runs out (to
avoid consistency issues). So, the server will continue working normally, responding to
all the requests, but the activity of the auditor will be in standby. Then, the hash update
process will proceed normally; other nodes will receive an update request, send back an
ACK response and finally receive the new hash.

4.4.1 Auditor

While the system trusts the network, the auditor will be in charge of sending an audition
request to a network node. Those messages are sent atomically to a node, by a predefined
time interval. The node to be audited is computed randomly by the system. However it has
to satisfy the constraints of being trusted and not having a hash update window opened.
Once a node is chosen, a hash status request datagram will be sent. If the destination node
is operative and the sending is performed successfully, a default response waiting time
will start. If the response does not arrive in time or the selected node was not available,
an incident associated with the node will be accumulated. In contrast, when a response
arrives, the received datagram will be evaluated following Figure 4.9 algorithm.

24 Design

Figure 4.9: Simplified algorithm of the auditor.

In the first place, response authenticity is evaluated validating the signature field and the
synchronization number. When either of them is not correctly performed, the system in-
terprets it as a soft error and an incident into the profile of the issuer is accumulated.
Specifically, if the signature is incorrect, performing a blaming broadcast is impossible
because no blaming ticket is achieved. Whereas, when the message is valid, the hash
into it will be collated against the latest version of the one (corresponding to the audited
node) in local dependencies. So, the possible scenarios are; receiving a matching hash and
declaring it as correct, or receiving a mismatching hash and going to the next step of the
algorithm. In which, the current datagram is broadcasted to the network, after being en-
capsulated inside another datagram and resigned with the signature of the auditor, Figure
4.10. As mentioned above, the non-repudiation trace of the digital signature is used as a
blaming ticket.

4.4 Algorithm 25

Figure 4.10: Encapsulated double datagram.

The auditor will again wait a pre-established delay time, until a minimum 2
3 of the net-

work nodes send back an UPDATE_HASH response. If the responses are received, it will
mean that the formerly incorrect hash value is committed by the network. Thus, the au-
ditor would have missed an update, having to reconsider the validity of the received hash
and update its internal structures. However, the previous is not the expected situation,
considering that each node hash update reaches at least 2

3 of the network. Hence, when
the blaming messages are successfully sent and no responses are received, the blame is
considered correct. Letting a decrease in the audited node trust level and reducing network
traffic in the expected scenario.

When a node makes changes in its filesystem not following the procedure of Section 5.4,
the hash descriptor will be updated maliciously and other nodes will start sending blaming
reports concerning it. At the end of the day, by probability, the faulty node will be exposed
to random auditing requests from other nodes every auditing interval. So, as trust level is
linked to the number of network nodes, as seen in Section 4.1, kicking a node from the
environment is supposed to be done along with the other nodes.

As it is going to be seen afterwards, when a node blames another one correctly, trust
level of both; blamer and blamed will decrease a unit in the destination(s). Broadcasting
blaming messages to the network implies nodes having an altruist behaviour; they will be
losing trust points during the process as well. However, it is contemplated that a single
node will not kick another one by its own; reason to enhance network security adding the
maximum number of nodes as possible (higher entropy). That mechanism will limit the

26 Design

power of the nodes by self-cancellation. Theoretically a single node will only be able to
kick an analogue one, if it focuses all its blaming efforts on a single target. An important
clarification has to be made at this point: The original trust level is not recovered or reset.
Each time the trust in a node is decreased, it is decreased permanently.

When a node is not trusted by the network, it will be ignored by a minimum 2
3 of the

network nodes. Meaning that every time it sends an auditing request, no response will be
received. Thus, it will accumulate incidents until the isolated node ends up not trusting
more than a 1

3 of the network, declaring the network as compromised.

The auditor is in charge of managing incidents of other nodes. As mentioned in Section
4.1, surpassing it means losing all trust points. However it is expected to have a minimum
tolerance due to the best approach nature of the Internet. The network could be busy, some
packages delayed, others lost and so on. That is why the auditor needs to reset the number
of incidents little by little; decreasing the number associated with a network node after
a determined time. Anyway, the incident decreasing rate has to be slower than incident
accumulation owing to network isolation (when a node is not trusted by the network).

The previous statement, in Figure 4.6, shows how many audition requests have to be sent
to pick up a given node, more than once, with a > 70% confidence level. In that way, the
incident accumulation due to trust lost is supposed to be faster than the incident decrease
interval. Therefore, the maximum number of incidents allowed can be as high as it is
wanted, because it will converge to its maximum once the node is not trusted by the
network.

4.4.2 Server

While the system trusts the network, the server will concurrently answer requests from
other nodes based on the submitted message code. However, before deciding which de-
cision should be taken, a series of verifications are processed. In the first place, when a
client establishes a connection with the server, a countdown with a predefined time space
will begin, Section 4.1. If the client does not make a request while the previous frame is
opened, the server will close the connection automatically, avoiding starvation of other
connections due to resource running out. Supposing that a request has arrived, its content
is evaluated checking trust level of the sender, comparing synchronization numbers and
verifying the veracity of the signature. If either of the elements is unsuccessfully verified,
the connection will be immediately closed.

4.4 Algorithm 27

At this point, the requesting node is trusted and the received datagram is OK. So, as
mentioned above, the server will respond differently depending on the received code:

• ’0’ - Hash modification request: A node wants to open a time frame and update its
corresponding hash. The requested update window will be opened and the node will
be temporarily disabled as an auditing candidate. An ACK message is sent back to
the requester.

• ’1’ - New hash / update: This message must be received while the update window
corresponding to the node is still opened. If it is received out of context, it will count
as an incident of the requester.

• ’2’ - Audit request: The server has to elaborate, sign and send a datagram, with its
current filesystem descriptor hash to the requester.

• ’3’ - Blame from Nx (blamer) to Ny (blamed): If the server identification cor-
responds to the blamed one, the package will be automatically discarded and the
connection closed. Nevertheless, if the blamed node is a network type one, the en-
capsulated datagram signature will be checked. As seen in Figure 4.10, Nx has to
encapsulate datagram the of Ny to have a non-repudiation trace. Therefore, if the
encapsulated datagram signature is OK, the process will continue. However, if the
signature is not OK, Nx will be treated as a faker and the incident number associ-
ated to it increased. Additionally, if Ny is not trusted already, the request will be
ignored.

Supposing that the previous steps were successful, the received hash will be checked
against the locally stored one. Once again, two possibilities could happen: On the
one hand, the received hash is the same as the one in the record. Suggesting that
the blamer has lost an update and needs to validate the hash of Ny. So, an UP-
DATE_HASH message will be sent to the blamer and an incident accumulated (in
the Nx structure). On the other hand, as the expected scenario, the local hash will
be different from the Ny one. As a result, the blaming is considered correct and the
trust level of Ny decreased. However, as mentioned previously, the trust level of Nx
will be preventively decreased at an equal rate as well. In that way, the blamer is
dissuaded from blaming other nodes arbitrarily with old stored packages, because
it will end up being self-cancelled from the network.

5. CHAPTER

Implementation

5.1 Class diagram

The class diagram in Appendix A.1 shows the ins and outs of the protocol implementa-
tion. The repository containing the whole implementation is available in Appendix A.7.
However, the most relevant aspects of the development are the following ones.

The Network class follows a singleton pattern. The constructor of it is private and a
getInstance static method is in charge of creating the new instance or returning the ex-
isting one. So, a unique static instance is created per execution. It takes on special im-
portance when multi thread programming is performed and every thread has to access the
same memory blocks of the instance. In this case, auditor, server and linker classes, which
operate in different threads, have to access network data structures.

Furthermore, the network class is in charge of initializing the whole data structure. Net-
work initialization is in charge of reading information from “config.xml” file and creating
the nested data structures inside it, Figure 4.3. Additionally, the network dimension de-
pendent variables, declared as external integers in globals file, are assigned by the network
constructor as well.

Moreover, nodes use inheritance to make the implementation of common points easier.
All common features of nodes are summed up into baseNode parent class. Being the only
class in which all its attributes are of protected type; attributes from the rest of the classes
are of private type. Hence, netNode and selfNode classes inherit attributes and functions of

29

30 Implementation

baseNode; being allowed to access directly to all its elements. However, other classes such
as linker, crypto, utils and globals, do not follow the same object-oriented pattern. Their
duty is to serve other classes with methods or elements, without defining a constructor.

5.2 Relevant code fragments

When the program is executed, three main threads are launched: server, linker and audi-
tor. As mentioned in previous chapters, the auditor is launched after finishing the network
deployment. Moreover, each thread is able to create more threads under demand. For ex-
ample, the server launches a child thread to satisfy all its requests concurrently. However,
the thread propagation goes a step beyond, because those request serving threads can cre-
ate time out threads to control the working time window of a node. Additionally, server,
linker and auditor threads will be killed when the network is declared as not trusted.
Nevertheless, the main thread will remain active displaying outdated information. The
following code Listing 5.1 shows the definition of a thread function and its call from the
main execution.

1 /* Server thread method */

2 void *serverThread(void *arg){

3 network *net = net−>getInstance();

4 server *s = new server(net);

5 s−>serverUP();

6 pthread_exit(NULL);

7 }

8 ...

9 /* Initialize server thread */

10 int main(int argc, char *argv[]){

11 ...

12 if (pthread_create(&serverTid, NULL, serverThread, NULL) != 0)

13 {

14 ...

15 Logger("Error creating server thread");

16 exit(1);

17 }

18 ...

Listing 5.1: Server thread method and call in main.

Working with threads that access the same memory structures inevitably brings consis-
tency problems. Hence, the use of mutual exclusion1 (mutex) mechanisms gains special
importance to avoid two or more processes accessing the same critical section. In the
class diagram of Appendix A.1, pthread_mutex_t type attributes are defined in network
and node tables. Those types of variables have to be declared, initialized and be locked

1https://www.cplusplus.com/reference/mutex/

https://www.cplusplus.com/reference/mutex/

5.2 Relevant code fragments 31

/ unlocked per critical section. For example, when a node receives an update request via
server thread to establish the value of changeFlag to true. The auditor thread will check
the value of the variable to decide if the node is suitable to be audited or not. The same
goes when the flag value is returned again to false by the timeout thread or the server
thread. As the following code fragment shows, Listing 5.2, lockChangeFlag variable is
used to prevent race conditions. Nonetheless, to avoid other processes starvation, it has to
be locked when a thread reaches a critical section and unlocked after exiting it.

1 ...

2 pthread_mutex_t lockChangeFlag;

3 ...

4 void baseNode::setChangeFlag(bool flagValue)

5 {

6 pthread_mutex_lock(&lockChangeFlag);

7 baseNode::changeFlag = flagValue;

8 pthread_mutex_unlock(&lockChangeFlag);

9 }

10 ...

Listing 5.2: changeFlag and its mutex declarations and usage in baseNode.

A relevant part of the implementation are the steps a node must follow to send a datagram
throughout the network. Working with sockets in C++ implies having a client socket and
a listener (server) socket. Thus, a node has to establish a client-server connection before
sending any data as well as it has to close and reassemble the socket to get it ready for
future operations. Additionally, the server implementation has its mechanisms to prevent
resource running out, as mentioned in Section 4.4.

5.2.1 Sender

The following rows, Listing 5.3, summarize the steps a node has to perform to broadcast
a datagram:

1 ...

2 network *net = net−>getInstance();

3 ...

4 net−>connectToAllNodes();

5 ...

6 net−>sendStringToAll(0, net−>getSelfNode()−>getID(), to_string(timeToWork));

7 ...

8 numRes = net−>waitResponses(net−>getNetNodeNumber() * THRESHOLD, RESPONSE_DELAY_MAX);

9 ...

Listing 5.3: Steps a node has to follow to perform a broadcast.

32 Implementation

In the first place, the node establishes connection with the rest of the trusted nodes exe-
cuting the following lines, Listing 5.4, corresponding to the network class:

1 bool network::connectToAllNodes()

2 {

3 try

4 {

5 for (auto &i : netNodes)

6 if (i−>isTrusted())

7 if (i−>estConnection() == −1)

8 {

9 ...

10 i−>increaseIncidenceNum(INCIDENT_INCREASE);

11 }

12 else

13 {

14 FD_SET(i−>getSock(), &readfds); /* Add sockets for select */

15 if (i−>getSock() > maxFD)

16 maxFD = i−>getSock();

17 }

18 ...

Listing 5.4: Network method to open a socket with every node.

Omitting C++ sockets implementation requirements. A for loop is used to iterate over
all the trusted nodes and establish a connection with their running server. Moreover, a
FD_SET structure is created with all the opened sockets (readfds) and the maximum file
descriptor among them is stored in maxFD class variable for future uses.

The next code fragment, Listing 5.5, corresponds to the elaboration of a datagram:

1 void network::sendStringToAll(int code, int sourceID, string content)

2 {

3 ...

4 try

5 {

6 for (auto &i : netNodes)

7 if (i−>isConnected())

8 {

9 /* Get and increment Sync Number */

10 syncNum = i−>getSyncNum();

11 /* Specify msgcode + sourceID + destinationID + syncNum + content */

12 msg = to_string(code) + ";" + to_string(sourceID) + ";" + to_string(i−>getID()) + ";" + to_string(syncNum) + ";" + content;

13 signedMsg = sign(msg, std::to_string(sourceID));

14 msg = msg + ";" + signedMsg + ";";

15 buffer = msg;

16 if (i−>sendString(buffer.c_str()) == −1)

17 {

18 ...

19 Logger("Error sending: " + i−>getID());

20 }

21 else

22 i−>setSyncNum(i−>getSyncNum() + 1);

23 }

24 ...

Listing 5.5: Network method to send a message to every node.

5.2 Relevant code fragments 33

A personalized datagram is elaborated per trusted node due to previously mentioned syn-
chronization number exclusivity requirements. Moreover, if the whole operation is per-
formed correctly, the synchronization number is incremented to be ready for the next
delivery. The datagram elements are concatenated using ‘;’ character and signed using the
sign function. Thus, before sending each datagram using the previously opened socket,
the following signing procedure is applied, Listing 5.6:

1 std::string sign(std::string msg, std::string key_ID)

2 {

3 ...

4 CryptoPP::RSA::PrivateKey prv = get_prv(key_ID); /* import der priv key */

5 CryptoPP::RSASSA_PKCS1v15_SHA_Signer signer(prv); /* Sign and hex encode */

6 CryptoPP::StringSource ss1(msg, true,

7 new CryptoPP::SignerFilter(prng, signer,

8 new CryptoPP::HexEncoder(

9 new CryptoPP::StringSink(s))) // SignerFilter

10); // StringSource

11 return s;

12 }

Listing 5.6: Crypto method to sign a given message.

With the private key of the node, the concatenated datagram is signed employing Cryp-
toPP library tools. Additionally, the signed cryptogram is encoded in hexadecimal, ap-
pended to the datagram string and sent to the corresponding destination node.

Returning to the three first functions, waitResponses will be the last and more complex
one, Listing 5.7. This method is used to wait selectTime seconds for a resNum incoming
number of network messages to arrive. It is necessary in processes such as waiting 2

3s
of network nodes to answer. Hence, the following lines show how the previously created
readfs structure and maxFD index are used in order to wait for some concrete opened
sockets to answer; avoiding select to listen to any incoming network activity.

Moreover, the reason why ACK and UPDATE_HASH messages are not signed is be-
cause their duty is just to trigger a select statement by a previously opened socket. There-
fore, it is expected that if no Man-in-the-middle attack2 (MitM) is performed in the socket
opening, ACK and UPDATE_HASH messages from the correct sockets will only be at-
tended; socket descriptor lower or equal to maxFD by select(maxFD + 1. . .). However,
the received response order is expected to be random. So, the following loops and tempo-
rary variables update readfds and maxFD, decreasing the maxFD number and discarding
received response sockets to be listening just to the remaining connections.

2https://www.veracode.com/security/man-middle-attack

https://www.veracode.com/security/man-middle-attack

34 Implementation

1 int network::waitResponses(int resNum, int selectTime)

2 {

3 ...

4 while (1)

5 {

6 selectStatus = select(maxFD + 1, &readfds, NULL, NULL, &tv); /* Just monitor trusted sockets; low−eq maxFD descriptor */

7 counter += selectStatus;

8 if (selectStatus == 0 || counter >= resNum) /* If timeout or received message number is gr eq to resNum −> break the loop */

9 break;

10 else

11 {

12 /* tmp vars for reseting values */

13 FD_ZERO(&tmpFdSet); /* Clear the socket set */

14 tmpMaxFD = −1; /* Initialize tmpMaxFD */

15 /* Count all received connections */

16 for (auto &i : netNodes)

17 if (i−>isConnected())

18 if (!FD_ISSET(i−>getSock(), &readfds))

19 {

20 if (i−>getSock() > tmpMaxFD)

21 tmpMaxFD = i−>getSock();

22 FD_SET(i−>getSock(), &tmpFdSet);

23 }

24 /* Reset values for select */

25 readfds = tmpFdSet;

26 maxFD = tmpMaxFD;

27 }}

28 return counter;

29 }

Listing 5.7: Network method to wait 2
3 of the nodes to respond.

5.2.2 Receiver

The following code, Listing 5.8, represents the most relevant aspects of socketThread. It
corresponds to the child thread launched by the server to attend requests concurrently.

1 void *socketThread(void *arg)

2 {

3 ...

4 vectString = recvVectStringSocket(clientSocket);

5 ...

6 splitVectString(vectString, msgCode, clientID, selfID, syncNumReceived, content, MsgToVerify, MsgSignature);

7 ...

8 msgValid = net−>validateMsg(selfID, clientID, syncNumReceived, MsgToVerify, MsgSignature);

9 ...

10 switch (msgCode) {...}

11 ...

Listing 5.8: Steps a server thread follow to process the incoming data.

After receiving the datagram of the requester and splitting its concatenated elements,
the received message has to be validated. The first process is to check the validity of
the signature. Next, the message synchronization number is checked and incremented

5.2 Relevant code fragments 35

when all the verifications go well; if not, an incident is accumulated. The following code
fragment, Listing 5.9, shows how the validation process is done:

1 bool network::validateMsg(int selfID, int clientID, int syncNumReceived, string MsgToVerify, string MsgSignature)

2 {

3 netNode *nN = getNode(clientID);

4 if (selfID == self−>getID())

5 {

6 int syncNumStored = nN−>getSyncNum(); /* Verify if sync number is correct */

7 if (verify(MsgToVerify, MsgSignature, to_string(clientID))) /* Verify if msg is correctly signed */

8 {

9 if (syncNumReceived == syncNumStored) /* Standard situation */

10 {

11 nN−>setSyncNum(nN−>getSyncNum() + 1); /* Increment sync number */

12 return true; /* Verification successful */

13 }

14 else if (syncNumReceived > syncNumStored) /* Package lost occured, but greater values are valid −> resync */

15 {

16 nN−>setSyncNum(syncNumReceived + 1);

17 ...

18 Logger("Package lost, resyncing − ID: " + to_string(clientID));

19 return true;

20 }}}return false; }

Listing 5.9: Network validateMsg method.

Finally, the verify function uses cryptoPP tools to confirm the authenticity of a mes-
sage. The raw message and the signed hex encoded message have to be passed as main
arguments. Identification number of the signer has to be provided as well to verify the
message against a concrete public key. The following lines, Listing 5.10, correspond to
the verification function:

1 bool verify(std::string msg, std::string sign_msg, std::string key_ID)

2 {

3 CryptoPP::AutoSeededRandomPool prng;

4 CryptoPP::RSA::PublicKey pub = get_pub(key_ID); /* Import public key .der */

5 CryptoPP::RSASSA_PKCS1v15_SHA_Verifier verifier(pub);

6 std::string decodedSignature;

7 CryptoPP::StringSource ss(sign_msg, true,

8 new CryptoPP::HexDecoder(

9 new CryptoPP::StringSink(decodedSignature))); /* Decode */

10 bool result = false;

11 CryptoPP::StringSource ss2(decodedSignature + msg, true,

12 new CryptoPP::SignatureVerificationFilter(verifier,

13 new CryptoPP::ArraySink((byte *)&result,

14 sizeof(result)))); /* Verify */

15 return result;

16 }

Listing 5.10: Crypto signature verification method.

5.2.3 Keys of the auditor

The following lines, Listing 5.11, show the main sections of the auditor:

36 Implementation

1 int auditor::auditorUP()

2 {

3 ...

4 if (pthread_create(&incidentThread, NULL, resetincidentsThread, NULL) != 0) {...}

5 ...

6 while (1)

7 {

8 ...

9 selfNetwork−>updateTrustedNodeNumber();

10 ...

11 sleep(AUDITOR_INTERVAL);

12 ...

13 auditedID = selfNetwork−>getTrustedRandomNode();

14 ...

15 auditNode(auditedID);

16 ...

Listing 5.11: Main steps of an auditor.

In the first place, the incident reset thread is launched to decrease a unit the incident level
of each trusted node. Next, an infinite loop is started, in which the trusted node number is
updated and checked per iteration. A node will be selected to be audited if the auditor is
not paused (while changeFlag of self node is false). If the network is not trusted or there
are not enough nodes to be audited, the loop will be interrupted, exiting the auditor thread.
The following function in Listing 5.12 is in charge of picking up a node to be audited:

1 int network::getTrustedRandomNode()

2 {

3 int random = −1;

4 if (trustedNodeNumber < netNodeNumber * THRESHOLD) /* If not enough nodes are trusted return −1 */

5 return random;

6 while (1) /* If there are trusted nodes, pick one among them */

7 {

8 random = getRandomNumber(netNodeNumber + 1 + 1); /* Self node must be counted as well +1; first node starts at 1 −> +1 */

9 for (auto &i : netNodes)

10 if (i−>getID() == random)

11 if (i−>isTrusted() && !i−>getChangeFlag())

12 return random;

13 }}

Listing 5.12: Network method to get a random node.

The method checks whether there are enough trusted nodes to proceed or not. Then, an
infinite loop is used to obtain a random node that fits the constraints of being trusted and
not having opened a hash update time frame. To get secure random numbers, getRandom-
Number function is used, reading some bits from /dev/urandom file.

Finally, when a change occurs in the filesystem hash descriptor, either server or auditor
are capable of updating the data structures and blockchains of the corresponding node.
As mentioned previously, the default hash function used in the elaboration of blockchains
is SHA256. Blockchanis are computed concatenating the latest digest block of the chain

5.3 Compilation and package dependencies 37

with the newly arrived hash and reapplying SHA256. The following method is used to
hash strings, Listing 5.13:

1 std::string hashText(std::string inputText)

2 {

3 CryptoPP::SHA256 hash;

4 std::string digest;

5 CryptoPP::StringSource s(inputText, true, new CryptoPP::HashFilter(hash, new CryptoPP::HexEncoder(new CryptoPP::StringSink(digest)))); /*
SHA256 hash and hex encode */

6 return digest;

7 }

Listing 5.13: Crypto method to digest a given string.

5.3 Compilation and package dependencies

To make the compilation process easier a Makefile, Listing A.2, is created to be in charge
of managing package and library dependencies. In the same thread, the code is written in
C++ version 14 and g++ is used as the main compiler; from Linux build-essentials pack-
age. Moreover, the OS used to compile and run the application has to be Linux based; e.g.
reading from /dev/urandom and using systemd d-bus to communicate with the OS level
implementation. Additionally, the implementation has the following API dependencies:

• libcrypto++

• libpthread

• libsystemd

• rapidxml-1.13

The compiled file can be executed with and without argv parameters. If a parameter is
specified, it is interpreted to be the identification number of the self node. Thus, it will be
used to read its corresponding configuration file; configID.xml. However, if no parameter
is given, the execution will get its ID from the default config.xml file. In future sections,
this modularity will be used to build network deploying scripts.

5.4 Console interface - User interaction

The interface is a console with four options: close the application, display an overview of
the whole network, show a complete breakdown of a node and send a hash updating re-

38 Implementation

quest. However, information shown will only be coherent if the system trusts the network,
because being not trusted implies not receiving updates. To perform those operations, hu-
man interaction is needed. In this case, a system administrator is supposed to manage the
console. The following Figure 5.1 shows how the menu is displayed on a terminal:

Figure 5.1: Menu shown in the console interface.

When the second option is selected, the screen of Figure 5.2 is displayed, showing the
overall information of the network: whether the network is trusted or not, confidence in
each of the nodes and their respectives latest valid and blockchain hashes.

Figure 5.2: Network overview.

When the third option is selected, a specific node number is asked as well to perform a
complete breakdown of its information. The following screen is displayed, Figure 5.3,
showing the full history of the selected node: whether the node is trusted or not, a com-
plete blockchain history of the performed actions and both good and troublesome hash
records. In the same thread, those hash records are followed by a sequence number seq -

N. That number describes the hash arrival position and can be used to manually track the
blockchain. To the first default 000... values, seq - def traces are used.

5.5 Logs and execution modes 39

Figure 5.3: Detailed information of node 2 from node 1.

Finally, when the fourth option is selected, Figure 5.4, the user is asked to enter the source
text of the previously loaded (SHA256 digested) password. After verifications conclude,
the user is asked again to enter the amount of seconds the updating process will take (it
must be between the time bounds defined in globals). The user will be able to start with
the filesystem modification, after the auditor has been paused and an explicit message
indicating it is displayed.

Figure 5.4: Hash update interaction.

5.5 Logs and execution modes

As mentioned in previous sections, there are two execution modes: DEFAULT and DE-
BUG. They are in charge of managing the amount of information to be printed by the
standard output. On the one hand, DEFAULT prints the minimum amount of messages
to avoid poisoning the console interface with redundant feedback. It just displays the
main menu and all the actions triggered by the interactor. Nonetheless, the main de-
ploying stages and thread stops / pauses are shown as well; start sequence, thread kills
(network not trusted) and auditor pauses (hash updates). On the other hand, the DEBUG
mode prints every interaction among nodes, audition results, blame messages and so on.

40 Implementation

It is recommended when a detailed representation of what is going on in the network is
wanted. This mode is necessary to perform debugging tasks. In the same thread, DEBUG
is the only execution mode that displays standard error outputs.

However, there is still a third element in charge of maintaining a history of the network
events. Independently of the execution mode, a general overview log is formed with the
main reports and issues. The previously mentioned logs directory is created, containing
files with <ID_>yyyy-mm-dd.txt notation. Each file contains the main events happened
during the execution, such as successful blame messages, successful hash update opera-
tions, package lost incidents, thread status changes and so on.

Nevertheless, the logger messages do not include all the audition and datagram interac-
tions the DEBUG mode does. Whereas, when an error or significant event occurs, the two
report modes and the logger, specify the event originator process; printing Aud / Lnk / Srv

- <event>. Finally, the logger is the only reporting system recording the execution date
and hour per row; the following lines in Figure 5.5 show a fragment of a log file:

Figure 5.5: Piece of a log generated by node 1 in a network of 10 nodes.

5.6 Leaks 41

5.6 Leaks

Although the design and implementation are developed taking into account as many con-
sistency issues as possible, it is nearly impossible to create a 100% Byzantine fault tolerant
algorithm. Problems such as not expected attacks, hardware issues or percentage attacks,
can happen out of any methodically performed development. This section will cover the
main problems the algorithm has.

In spite of being an unusual situation, when an attacker gains control over 2
3 of the nodes,

the network will become unpredictable. The attacker could arbitrarily manipulate infor-
mation of the nodes and expel the not infected ones from the network. In addition, if
a private key from a node is compromised, an intruder might be able to perform MitM

attacks, impersonating the identity of a node and signing datagrams on behalf of it.

Moreover, external DDoS attacks are not handled by the algorithm; they are supposed to
be dealt by an external firewall, proxy or similar technology. However, interrupting the
audition message flow could negatively affect the behaviour of the network. The incident
level associated with the blocked nodes will start growing, until they are marked as not
trusted. In the same way, the nodes are disconnected for being mistrusted by the network.

Furthermore, the network can suffer from scalability problems. As mentioned previously,
every node must replicate the information structures of other nodes as well as store their
private keys. Although not being a big problem due to current memory availability and
the default needed blocks, the space required by the application is directly proportional to
the size of the network.

Another aspect linked to the dimension of the network is the amount of traffic generated
through it. When a node is corrupted and other nodes start sending blaming messages, the
traffic will increase considerably. Each node has to propagate a message to every trusted
network node. Hence, apart from skyrocketing the traffic, it could overload the sending
ability of the nodes, because no explicit broadcast method is designed. As mentioned
previously, each message needs a specific synchronization number per node to node com-
munication. Therefore, broadcast can not be a unique message to all nodes. A node has to
send individual messages to every trusted node.

Lastly, the previously mentioned synchronization number will increase a unit each time a
message is interchanged between two nodes. So, the situation of overflowing the counter
could arrive sometime; working with integers in C / C++ - INT_ MAX (4 bytes) limit.

6. CHAPTER

Integration

As mentioned in previous sections, this project is fully completed with File integrity mon-

itoring on Linux systems underlayer implementation. The kernel level daemon uses sys-
temd d-bus technology to send messages to the current upper layer environment. To merge
both projects, knowledge from both developers is joined and a linker class created. How-
ever, the linker implementation is located in the upper layer application, because it is
the only one using data from the other development. So, the linker can be described as
an unidirectional bridge from the OS implementation to the network protocol. For more
information about systemd and d-bus refer to [Herrero, 2021] documentation.

The most relevant aspects of the linker implementation, related to the network protocol,
are shown in the following code fragments:

1 int main(int argc, char *argv[])

2 {

3 ...

4 if (pthread_create(&linkerTid, NULL, linkerThread, NULL) != 0) {...}

5 ...

6 }

Listing 6.1: Launch of linker thread.

1 int dbus_init()

2 {

3 /* Definition of the bus object and method*/

4 static const sd_bus_vtable linker_vtable[] = {..., SD_BUS_METHOD("updateHash", "s", "i", method_updateHash, SD_BUS_VTABLE_UNPRIVILEGED |

SD_BUS_VTABLE_METHOD_NO_REPLY), ...};

5 ...

6 /* define a specific name and path */

7 int dbus_init()

8 {

43

44 Integration

9 ...

10 r = sd_bus_add_object_vtable(bus, &slot,

11 "/net/linker/manager", /* object path */

12 "net.linker.manager", /* interface name */

13 linker_vtable, NULL);

14 ...

15 }

Listing 6.2: Set up linker update method; object path and interface name.

The main execution process creates a thread, Listing 6.1, which configures and initializes
a d-bus listener in /net/linker/manager path, with net.linker.manager name, Listing 6.2.
So, the underlayer daemon can send messages to the created process referring to the lis-
tening domain. Each time a message is received, the following method will be executed,
Listing 6.3:

1 int method_updateHash(sd_bus_message *m, void *userdata, sd_bus_error *ret_error)

2 {

3 ...

4 network *net = net−>getInstance();

5 r = sd_bus_message_read(m, "s", &newHash);

6 if (net−>isNetworkCompromised()) {...} /* If network not trusted, kill thread */

7 ...

8 net−>getSelfNode()−>updateHashList(newHash);

9 ...

10 }

Listing 6.3: Update self hash in Linker through Network.

The network instance has been created at this point by the main execution. Hence, when
the linker calls getInstance method inside method_updateHash, the existing network in-
stance is returned. The next steps in Listing 6.3 involve; hash receiving, evaluation of
the network trust level and a call to updateHashList method with the received hash as
parameter.

7. CHAPTER

Deployment and tests

7.1 Background

In order to test the scalability of the protocol, the measure chosen is package send and
receiving time, for being the most restrictive one. Therefore, less restrictive measures,
such as memory demanding are not taken into account. However, as shown in Section
5.6, working with super massive networks could cause memory problems too. In the same
thread, OS sockets max amount could limit the size of the network as well, shown in
Section 3.3. Some deployment executions are performed locally in the following machine:

• Brand and model: Lenovo Thinkpad E14 - year 2020.

• CPU: i7-10510U 1.80Ghz x 4.

• RAM: 16GB DDR4.

• OS version: Linux Mint 20.1 Cinnamon 64-bit.

– Kernel version: 5.4.0-66-generic.

Although it is not a real situation in which all the nodes are distributed in remote ma-
chines, the tests show the average time a node requires to connect to the rest of the nodes,
send an individual message to each one of them (broadcast) and wait until 2

3 of the net-
work responds. As mentioned in previous sections, those three steps are part of the hash

45

46 Deployment and tests

updating sequence. Hence, as the maximum default waiting time to get a response is of 2
seconds, in a correctly working network, the values received should be always lower. In
the same thread, it is expected to achieve linearly incremental execution times, because
each node knows the whole network topology.

However, the implementation was not originally designed to deploy more than an instance
per machine. Thus, some modifications and scripts are created to make large scale deploy-
ments easier. A two variant shell script is designed deploy.sh, Listing A.3, which operates
differently depending on the introduced parameter number. On the one hand, if the num-
ber of nodes is the only provided field, the script interprets that the required files have
been previously created and it proceeds to run the application on independent shell tabs.
On the other hand, when a ’g’ (generate) second parameter is contiguously provided to
the node number, the script will use the tools inside deploy_utils directory to create the
required files.

The script iterates node number times, calling generate_keys RSA key-pair generator
(C++ application - Listing A.4) and generate_configs.py XML configurations generator
(Python script - Listing A.5). Therefore, the correct usage of the script involves calling
it (firstly) with the ’g’ parameter and then proceed to network deployment, executing the
script again with the same number of nodes, omitting the ’g’ clause.

7.2 Results

The previous script is called with 10, 20, 40, 80 and 160 nodes. The data is processed
making an average, among eight randomly chosen hash update times. Table A.1 shows
the mean of the experiment results collected in Table A.2.

7.2 Results 47

Table A.1 is used to elaborate Figure 7.1 chart. The chart shows the execution time distri-
bution and its corresponding linear regression, computed by the least squared method1.

Figure 7.1: Distribution of the execution results and linear regression.

As it was hypothesized, the distribution follows a complete linear tendency. The determi-
nation coefficient of the computed linear regression is nearly 1; 0.989. Hence, the obtained
values are quite optimistic, because the same growth trend is maintained independently of
the number of nodes; it does not get skyrocketed from one concrete value on. Neverthe-
less, in a real scenario where the nodes are deployed in different locations, other factors
such as bandwidth and network overload will have to be taken into account.

1https://mathworld.wolfram.com/LeastSquaresFitting.html

https://mathworld.wolfram.com/LeastSquaresFitting.html

8. CHAPTER

Project management

Project management has been crucial to develop a well structured project as well as to
elaborate a successful working schedule.

8.1 WBS diagram

The Work Breakdown Structure is a tree diagram of the performed work. It starts from the
root (project), being the underlying levels, main development stages and work packages
respectively. The following Figure 8.1 shows how the tasks have been structured.

Figure 8.1: WBS diagram of the project.

49

50 Project management

8.2 Work packages

The following points correspond to the breakdown of the stages needed to achieve the
goals of the project.

8.2.1 Preliminary study

The base of the project is founded on previous knowledge. Information search and syn-
thesis have created a solid background to approach future steps.

• Blockchain and Byzantine: Accomplish a deep study about what Byzantine con-
sensus is and how blockchain can be used in distributed environments.

• Digital signature: Determine the bases about digital signature and its usage in C++.

• Sockets programming: Understand how sockets work and their usage in C++.

8.2.2 Protocol design

Once the theoretical base is concluded, the design of a custom network protocol that
ensures data integrity on distributed blockchain environments has been performed.

• Policies: Define a series of rules and constraints the protocol has to take into ac-
count.

• Structures: Determine an appropriate way to represent the agents of the algorithm
as well as the modules for future implementations.

• Algorithm: Elaborate the main logics of the algorithm involving deterministic state
machines.

8.2.3 Protocol implementation

After the protocol is designed, a custom C++ application has been developed.

• Development of the classes: Designed modules are materialized into classes. In-
heritance and singleton pattern implementation techniques are used.

8.3 Time estimation and deviations 51

• Problem solving: Debug and little changes on the design are performed to adjust
both design and implementation.

• Interface and log creation: The user level interaction scope is established as well
as the feedback provided by the execution mode.

• Integration with OS daemon: Agreement between developers and knowledge
sharing is performed.

8.2.4 Performance tests

The network testing has to be performed once the whole development is carried out. A
good metric to measure network scalability in a local environment has to be chosen.

• Build a test environment: Deployment scripts and code adaptation to get datagram
broadcast needed time.

• Obtain results: The obtained results are analyzed and conclusions extracted.

8.2.5 Documentation

Once the development is finished, an extensive documentation phase has been carried out.
The documentation tries to summarize the main keys of the project.

• Project memory: The whole development of the project is written and documented.

• Code repository: The elaborated application is commented, a user manual is cre-
ated and all the files are uploaded to a GitHub repository.

8.3 Time estimation and deviations

After defining work stages and packages, a time estimation can be done to evaluate the a
priori required elaboration time. Once the project is concluded, the real time taken can be
compared with the hypothesized one. The following Table 8.1 gathers both a priori and a
posteriori times.

52 Project management

Estimated time Final time
Management phase 35 35
Planning 10 10
Communication 20 15
Preliminary Study 33 48
Distributed blockchain documentation 12 16
Byzantine consensus documentation 13 16
Digital signature documentation 4 8
Sockets in C documentation 4 8
Protocol design 90 90
Define policies 20 20
Create data structures 20 20
Development of the algorithm 50 50
Protocol implementation 88 125
Pose a C++ development of the design 50 60
Adapt the design to aroused problems 30 60
Integration between projects 8 5
Performance tests 20 17
Creation of a test environment 13 10
Obtain results 7 7
Documentation 38 38
Memory of the project 30 30
Code repository 8 8
Total amount of time 304 333

Table 8.1: Estimation of tasks and their final required time.

Although the idea of the project came to mind in July, 2020, the official project was
formalized in December, 2020. The milestones of it are collected in Figure 8.2.

Figure 8.2: Simplified Gantt diagram of the project.

8.4 Deviation analysis 53

8.4 Deviation analysis

8.4.1 Complex documentation material

In the previous Table 8.1, a considerable time deviation in the preliminary study phase can
be appreciated. On the one hand, the documentation about Byzantine consensus requires
a high amount of knowledge in areas such as consistency and distributed systems. There-
fore, extracting valuable information from esoteric texts is very time consuming. On the
other hand, documentation about digital signature and OS sockets was performed from the
prism of future C / C++ implementations. Hence, specific features of C++ cryptographic
libraries had to be compulsorily analyzed.

8.4.2 Implementation complexity

Undoubtedly, implementation has been the most challenging part of the project. Its com-
plexity was higher than expected and some extra hours had to be employed. Creating
a fully working distributed system, taking into account as many consistency constraints
as possible, has been beyond the original schedule. Furthermore, C++ programming lan-
guage was chosen due to its performance and plasticity specifications. Although some
aspects of C and C++ are quite similar, the initial lack of experience with C++ made the
first implementation steps harder. However, research on online forums and man pages
documentation made the development gear move on.

8.5 COVID-19 latent risk

This has been the second year affected by the SARS-CoV2, a global pandemic that caused
millions of deaths and threatened the welfare state as currently known. In the race of
mitigating the effects of the virus, The Spanish government maintained the state of alarm
until May, 2021. That supposed a constant uncertainty about how the imposed restrictions
situation could evolve. Fortunately, no global lock-downs were needed, as a result of an
arduous vaccine campaign. The project was implicitly affected by COVID-19, because
the working scenario was full of uncertainties; possible communication problems, lack of
access to material and so on. Hence, the risk was mitigated establishing online secondary
communication channels and hoarding all the needed resources with enough time.

9. CHAPTER

Conclusions and future work

Some interesting conclusions can be extracted at this point. However, having built such a
complex mechanism, opens the door to an uncountable number of possible improvements
and future versions. There is still a lot of work to be done in the integrity monitoring area.
The following answers round up the initial approaches.

1. Can integrity be monitored in a distributed, secure and resource cost reduced way,
using blockchain technology and digital signature?

Yes, it is possible. As shown in previous chapters, using reduced datagrams with the
structure of Figure 4.4, is secure and simple. Data confidentiality is granted because a
hash descriptor is sent throughout the network, with its random appearance and non-
return properties. So, no additional confidentiality mechanisms have to be added, because
anyone can read the sent data with no bad consequences. Moreover, authenticity, integrity
and non-repudiation are granted by digital signature; the entire datagram is signed with
the private key of the sender. Therefore, with just two datagrams (request and hash pay-
load), the filesystem description of a node can be updated. Finally, Blockchain technology
allows to maintain a simplified history of all the network activity. Each time a remarkable
event happens, the chain is updated. In addition, the protocol assures that 2

3 of the nodes
have at least the same chain value.

1. In the current scenario, are P2P networks the best approach to create a scalable and
independent network protocol?

55

56 Conclusions and future work

Yes, they are. P2P networks allow not having a centralised entity in charge of controlling
the network. The server and client are integrated in the same implementation and access
the same memory structures, in a fast way, using threads. Hence, no databases or inter-
change files have to be used elsewhere. Based on performed experiments, the execution
time to send and receive a datagram to and from all the network components is directly
proportional to the node number. In other words, both node number and execution delay
increase or decrease at the same rate. The delay increase does not change its growth rate
to a more pessimistic one from a determined node number on.

As mentioned previously, the design and development carried out, are the first rock of a
more bigger and promising application. Although the protocol has possible vulnerabili-
ties, analyzed in Section 5.6, the following lines will cover possible improvements beyond
the current implementation.

The main milestone of future approaches is to get a version with better scalability results.
Being the memory usage of the algorithm and broadcast performance completely inde-
pendent from the number of nodes; always should remain the same. In order to achieve
it, maintaining the main design of the implementation, interlaced smaller networks could
be created; as seen in Figure 9.1. In that way, each node will be in more than a network
simultaneously. The networks and all their components will be completely independent,
but they will have a common meeting point; e.g. when one of the networks is declared
as mistrusted, a flag will be set, indicating that the node must isolate itself from all the
networks. Then, the node will be declared as not trusted by other networks, stating that a
problem occurred in the node or in a network related to it and so on.

Figure 9.1: Two networks interlaced by two nodes.

Conclusions and future work 57

Other possible improvements to take into consideration are:

• Perform staggered broadcasts using tree propagation.

• Perform datagram hashing to make the signature process lighter.

• Add a mechanism to reconnect / reset non-trusted nodes.

• Add a mechanism to add more nodes once the network is deployed.

• Add more states to the network and nodes to make a more complex deterministic
state machine; not just trusted or not trusted.

• Reset synchronization number of the nodes to prevent integer overflow.

• Make an approach using PoW to extend the scope of the protocol to non permis-
sioned environments.

• Create an aesthetic, user friendly web interface and alert system.

A. APPENDIX

Appendix

A.1 UML diagram

59

60
A

ppendix
A

Auditor

-selfNetwork: Network *

+auditor()
+auditor(selfNetwork: Network *)
+auditorUP()
+auditNode(auditedID: int)

baseNode

#ID: int
#sock: int
#IP: char *
#addr: struct socketaddr_in
#port: int
#changeFlag: bool
#pub: RSA::PublicKey
#hashRecord: list<string>
#nodeBChain: list<string>
#lockChangeFlag: pthread_mutex_t
#lockHashRecord: pthread_mutex_t
#lockNodeBCHain: pthread_mutex_t

+baseNode()
+baseNode(ID: int, ip: char *, port: int, pub: RSA::PublicKey)
+getID()
+setID(ID: int)
+getSock()
+getaddr()
+getChangeFlag()
+setChangeFlag(flagValue: bool)
+getLastHash()
+updateHashList(hash: string)
+printHashList()
+getLastNodeBChain()
+updateNodeBChain(hash: string)
+printNodeBchain()

netNode

-syncNum: int
-trustLvl: int
-connected: bool
-troublesomeHashRecord: List<string>
-lockTrustLvl: pthread_mutex_t
+lockIncidentNum: pthread_mutex_t
-lockSyncNum: pthread_mutex_t
-lockTroublesomeHashRecord: pthread_mutex_t

+netNode()
+netNode(ID: int, ip: char *, port: int, pub: RSA::PublicKey)
+getSyncNum()
+setSyncNum(num: int)
+getTrustLvl()
+setTrustLvl(trl: int)
+isTrusted()
+decreaseTrustLvlIn(sub: int)
+getIncidentNum()
+setIncidentNum(iN: int)
+increaseIncidentNum(sum: int)
+resetIncidentNum()
+isConnected()
+estConnection()
+getLastTroublesomeHash()
+updateTroublesomeHashList(hash: string)
+printTroublesomeHashList()
+createClientSocket()
+resetClientSocket()
+sendString(buffer: const char *)
+recvString()

Server

-selfNetwork: Network *

+server()
+server(selfNetwork: Network *)
+serverUp()

selfNode

-prv: RSA::PrivateKey

+selfNode()
+selfNode(ID: int, ip: char *, port: int, pub: RSA::PublicKey, prv: RSA::PrivateKey)
+createServerSocket()

Network

-netNodeNumber: int
-trustedNodeNumber: int
-networkCompromised: bool
-self: selfNode *
-netNodes: list<netNode *>
-passwdSHA256: string
-readfds: fd_set
-maxFD: int
-lockTrustedNodeNumber: pthread_mutex_t
-lockNetworkCompromised: pthread_mutex_t
-instance: network *

-network()
+getInstance()
+getSelfNode()
+getNode(ID: int)
+getNetNodeNumber()
+getTrustedNodeNumber()
+updateTrustedNodeNumber()
+isNetworkCompromised()
+setNetworkToCompromised()
+printNetwork()
+verifyPasswd(inPswd: string)
+connectToAllNodes()
+connectToNode(ID: int)
+reassembleSocket(ID: int)
+reassembleAllSockets()
+validateMsg(selfID: int, clientID: int, syncNumReceived: int, MsgToVerify: string, MsgSignature: string)
+sendString(code: int, destID: int, sourceID: int, content: string = "")
+sendStringToAll(code: int, sourceID: int, content: string = "")
+waitResponses(resNum: int, select_time)
+getTrustedRandomNode()
+resetIncidentNum()
+pauseAuditor()
+resumeAuditor()

+1

+1

+1

+1

Crypto

+hashText(inputText: string)
+get_pub(key_ID: string)
+get_prv(key_ID: string)
+sign(msg: string, key_ID: string)
+verify(msg: string, sign_msg: string, key_ID: string)

Linker

+slot: sd_bus_slot *
+bus: sd_bus *
+linker_vtable

+method_updateHash(m: sd_bus_message *, userdata: void *, ret_error: sd_bus_error *)
+linker_process()

Utils

+splitBuffer(buffer: const char *)
+getRandomNumber(maxNum: int)
+splitVectString(vectString: vector<string>, msgCode: int &, clientID: int &, ...)
+splitVectStringBlame(vectString: vector<string>, ..., susMsgCode: int &, suspectID: int &, auditorID: int &, ...)
+getCurrentDataTime(s: string)
+Logger(logMsg: string)

Globals

+CONFIG_FOLDER = "../XML_config/"
+KEYS_FOLDER = "../RSA_KEYS/"
+DEFAULT_MODE = 0
+DEBUG_MODE = 1
+EXEC_MODE = DEFAULT_MODE
+TIME_SPACE_BEFORE_AUDIT = 60
+RESPONSE_DELAY_MAX = 2
+TRUST_DECREASE = 1
+INCIDENT_INCREASE = 1
+HASH_UPDATE_TIMESPACE_MAX = 300
+HASH_UPDATE_TIMESPACE_MIN = 30
+THRESHOLD = 2/3
+AUDITOR_INTERVAL = 3
+FIRST_HASH = "00"
+FIRST_HASH_SEQ = FIRST_HASH + "; seq - def"

+1
+1

Configuration XML

+1

+1

+2..

+1

Figure A.1: UML class diagram of the implementation.

Appendix 61

A.2 Makefile

CC=g++

IDIR = ../src

DEPS = main.hpp crypto.hpp network.hpp server.hpp linker.hpp auditor.hpp baseNode.hpp netNode.hpp selfNode.hpp utils.hpp globals.hpp

OBJ = main.o crypto.o network.o server.o linker.o auditor.o baseNode.o netNode.o selfNode.o utils.o globals.o

CFLAGS=-I .

LIBS = -g -lcryptopp -lpthread -lsystemd

%.o: %.c $(DEPS)

$(CC) -std=c++1y -c -o $@ $< $(CFLAGS)

run: $(OBJ)

$(CC) -std=c++1y -o $@ $^ $(CFLAGS) $(LIBS)

A.3 deploy.sh

#!/bin/sh

#mkdir RSA_keys

#mkdir XML_config

node_number=$1

generate_keys_and_confs=$2

if [$node_number -lt '4']; then

echo "Error, enter valid node number (> 4) and generator g (optional) \n";

exit 1

fi

if [-z "$generate_keys_and_confs"]; then

echo "Deploting network locally \n"

for i in $(seq 1 $node_number)

do

gnome-terminal -x sh -c "./run $i ; bash"

done

else

echo "Generating keys and configurations... \n"

for i in $(seq 1 $node_number)

do

../deploy_utils/generate_keys $i

python3 ../deploy_utils/generate_configs.py $i $1

done

fi

A.4 generate_keys.cpp

1 #include "generate_keys.hpp"

2

3 void generate_keys(std::string key_ID)

4 {

5 CryptoPP::AutoSeededRandomPool prng;

6

7 CryptoPP::InvertibleRSAFunction params;

8 params.GenerateRandomWithKeySize(prng, 2048);

9 CryptoPP::RSA::PrivateKey prv(params);

10 CryptoPP::RSA::PublicKey pub(params);

11

62 Appendix A

12 std::string name = "../RSA_keys/RSA_prv" + key_ID + ".der";

13 CryptoPP::FileSink output1(name.c_str()); //Convert to char*
14 prv.DEREncode(output1);

15

16 name = "../RSA_keys/RSA_pub" + key_ID + ".der";

17 CryptoPP::FileSink output2(name.c_str());

18 pub.DEREncode(output2);

19 }

20

21 int main(int argc, char *argv[])

22 {

23 generate_keys(argv[1]);

24 }

Listing A.1: Server thread method and call in main.

A.5 generate_configs.py

#!/bin/python

import sys

import xml.etree.cElementTree as ET

ident = int(sys.argv[1])

totalNodeNumber = int(sys.argv[2])

def_ip = "127.0.0.1"

def_port = 25570

config = ET.Element("config")

ex_mode = ET.SubElement(config, "execution_mode").text = "1"

passwd = ET.SubElement(config, "passwd_sha256").text = "64E8DF328D36F9688A4AD76208CE3FC06AC582552531FF968742645C43DF1930"

node_self = ET.SubElement(config, "node_self")

idd = ET.SubElement(node_self, "id").text = str(ident)

ip = ET.SubElement(node_self, "ip").text = def_ip

port = ET.SubElement(node_self, "port").text = str(def_port + ident - 1)

pub = ET.SubElement(node_self, "pub").text = "../RSA_keys/RSA_pub" + str(ident) + ".der"

prv = ET.SubElement(node_self, "prv").text = "../RSA_keys/RSA_prv" + str(ident) + ".der"

network = ET.SubElement(config, "network")

for i in range(totalNodeNumber):

i = i+1

if (i != ident):

node = ET.SubElement(network, "node")

idd = ET.SubElement(node, "id").text = str(i)

ip = ET.SubElement(node, "ip").text = def_ip

port = ET.SubElement(node, "port").text = str(def_port + i - 1)

pub = ET.SubElement(node, "pub").text = "../RSA_keys/RSA_pub" + str(i) + ".der"

tree = ET.ElementTree(config)

path = "../XML_config/config" + str(ident) + ".xml"

tree.write(path)

Appendix 63

A.6 Tables

Node number 10 20 40 80 160
Mean exec time (ms) 19.9463 39.69625 70.11875 120.057625 289.733125

Table A.1: Mean values from Table A.1 columns.

Node Number 10 20 40 80 160
Exec randNode 1 (ms) 23.21 37.36 79.19 122.37 246.5
Exec randNode 2 (ms) 19.18 36.51 66.73 130.46 344.05
Exec randNode 3 (ms) 20.61 37.11 71.1 126.48 283.145
Exec randNode 4 (ms) 17.85 36.28 89.83 118.091 266.34
Exec randNode 5 (ms) 21.38 39.41 67.42 114.35 235.08
Exec randNode 6 (ms) 19.36 39.04 64.65 110.49 339.45
Exec randNode 7 (ms) 19.94 57.35 62.6 109.51 219.6
Exec randNode 8 (ms) 18.04 34.51 59.43 128.71 383.7

Table A.2: Execution time samples of 8 random nodes.

A.7 Online repository

The implementation is publicly available in the following GitHub repository:

http://github.com/aitorb16/Blockchain-based-integrity-monitoring-distributed-net-protocol

http://github.com/aitorb16/Blockchain-based-integrity-monitoring-distributed-net-protocol

Bibliography

[Cachin and Vukolic, 2017] Cachin, C. and Vukolic, M. (2017). Blockchain consensus
protocols in the wild.

[Douceur, 2002] Douceur, J. R. (2002). International workshop on peer-to-peer systems;
the sybil attack.

[Fernández-Bravo, 2018] Fernández-Bravo, F. J. (2018). Consenso bizantino y
blockchain.

[Herrero, 2021] Herrero, A. (2021). File integrity monitoring on linux systems.

[Schneider, 1990] Schneider, F. B. (1990). Implementing fault-tolerant services using the
state machine approach.

65

	Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	The aims of the project
	Preliminaries
	Blockchain and Byzantine consensus
	Non permissioned blockchains
	Permissioned blockchains and consensus
	Fault tolerance and consensus
	Synchronization models among agents
	Design decisions
	Similar approaches

	Digital signature
	Sockets programming

	Design
	Policies and constraints
	Structures
	Main data structures
	Hash history and blockchain
	Datagram structure

	Configurations
	Algorithm
	Auditor
	Server

	Implementation
	Class diagram
	Relevant code fragments
	Sender
	Receiver
	Keys of the auditor

	Compilation and package dependencies
	Console interface - User interaction
	Logs and execution modes
	Leaks

	Integration
	Deployment and tests
	Background
	Results

	Project management
	WBS diagram
	Work packages
	Preliminary study
	Protocol design
	Protocol implementation
	Performance tests
	Documentation

	Time estimation and deviations
	Deviation analysis
	Complex documentation material
	Implementation complexity

	COVID-19 latent risk

	Conclusions and future work
	Appendix
	UML diagram
	Makefile
	deploy.sh
	generate_keys.cpp
	generate_configs.py
	Tables
	Online repository

	Bibliography

