

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

GRADO EN INGENIERÍA MECÁNICA

TRABAJO FIN DE GRADO

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

DOCUMENTO 3- ANEXOS

Alumno: Villamayor Ortega, Alberto **Director:** Marcos Rodríguez, Ignacio

Curso: 2020-2021

Fecha: 15-06-2021

Índice

1. INTRODUCCIÓN	1
2. DATOS DE PARTIDA	2
3. ACCIONES	3
4. CUBIERTA	4
4.1. ELECCIÓN DE LA CUBIERTA	4
4.2. CÁLCULOS DE LA CUBIERTA	5
4.2.1. Peso propio	6
4.2.2. Sobrecarga de uso	6
4.2.3. Sobrecarga de nieve	7
4.2.4. Sobrecarga de viento	9
4.2.5. Resumen de cargas	18
4.3. COMBINACIONES DE CARGAS	19
5. CERRAMIENTO LATERAL	23
5.1. ELECCIÓN DEL CERRAMIENTO DE FACHADA	23
5.2. CÁLCULOS DE LA FACHADA	24
5.2.1. Peso propio	24
5.2.2. Sobrecarga de viento	24
5.2.3. Resumen de cargas	33
5.3. COMBINACIONES DE CARGAS	34
6. GRÚA PUENTE	38
6.1. DATOS DE PARTIDA DE LA GRÚA PUENTE	38
6.2. CLASIFICACIÓN DEL POLIPASTO	38
6.2.1 Clasificación según las condiciones de servicio	38
6.2.2 Determinación del grupo de trabajo	39
6.2.3 Elección del polipasto	40
6.3. ELECCIÓN DE LOS TESTEROS	40
6.4. ELECCIÓN DE LA GRÚA PUENTE	42
6.5. CÁCULO DE LA VIGA CARRIL	43
6.5.1. Clasificación de los puentes grúa	43
6.5.2. Acciones verticales de las ruedas de la grúa puente	46

6.5.3 Acciones horizontales longitudinales	48
6.5.4 Acciones horizontales transversales sobre los carriles de traslación o	-
6.5.5. Situaciones posibles debidas al puente grúa	53
6.5.6. Cálculo de la viga carril	55
6.5.7. Informe de resultados	71
7. DIMENSIONAMIENTO MEDIANTE EL PROGRAMA DE CÁLCULO	72
7.1. ELEMENTOS DE LA NAVE	86
7.1.1 Pórticos	86
7.1.2 Pilarillos hastiales	107
7.1.3 Vigas de arriostramiento y marcos de las cruces de San Andrés	116
7.1.4 Elementos de arriostramiento (Cruces de San Andrés)	125
7.1.5 Dinteles de las puertas de entrada y salida de material de la nave	128
7.1.6 Ménsulas de la viga carril	137
7.2. UNIONES	147
7.2.1 Especificaciones	147
7.2.2 Referencias y simbología	149
7.2.3 Comprobaciones en placas de anclaje	152
7.2.4 Memoria de cálculo	153
7.3. PLACAS DE ANCLAJE	239
7.4. CIMENTACIÓN	247
7.4.1. Elementos de cimentación aislados	247
7.4.2. Vigas de atado	256
7.4.3. Solera	257
8. RED DE SANEAMIENTO DE AGUAS PLUVIALES	257

1. INTRODUCCIÓN

En este documento se justificarán todas las soluciones tomadas para el desarrollo del proyecto. En él daremos cuenta de las hipótesis de partida, de los procedimientos seguidos para el cálculo de la estructura, de los resultados finales de los elementos y de las comprobaciones pertinentes de éstos.

Primeramente expondremos los datos de partida y las acciones a la que estará expuesta la estructura. Teniendo en cuenta estos datos dimensionaremos la cubierta y los cerramientos laterales del edificio. Posteriormente, mediante el programa informático de cálculo Nuevo Metal 3D de Cype Ingenieros dimensionaremos la nave. De esta manera agilizamos el proceso de cálculo a la vez que evitamos la tarea de realizar comprobaciones manuales. También elegiremos el polipasto del puente grúa según nuestras necesidades y dimensionaremos la viga carril y las ménsulas correspondientes que sustentarán a nuestra grúa puente.

Los resultados de los cálculos que se muestran a continuación corresponden a la estructura completa, cimentación y saneamiento.

2. DATOS DE PARTIDA

La nave industrial de estructura metálica y cubierta a dos aguas albergará en su interior una grúa puente con una capacidad de carga de 12,5 Toneladas.

Los datos de partida que utilizaremos a la hora de dimensionar nuestra nave serán los siguientes:

- Longitud: 50 metros

- Luz: 22 metros

- Altura útil: 10 metros

- Altura total: 11,1 metros

Inclinación de la cubierta: 5,71°

- Número de pórticos: 11

Distancia entre pórticos: 5 metros

3. ACCIONES

Ahora que ya tenemos definidos los parámetros más generales de nuestra nave pasamos a hacer los cálculos de cada elemento.

Para realizar los cálculos definiremos primero las distintas combinaciones de cargas que se pueden dar en nuestra nave. Los parámetros que tomaremos en consideración serán:

- Peso propio de la estructura (CP)
- Sobrecarga de uso (SU)
- Sobrecarga de nieve (SN)
- Sobrecarga de viento (V)
- Lo desdoblaremos en viento 1 (V1) a presión, y viento 2 (V2) a succión.

La disposición de juntas de dilatación puede contribuir a disminuir los efectos de las variaciones de la temperatura. En edificios habituales con elementos estructurales de hormigón o acero, pueden no considerarse las acciones térmicas cuando se dispongan juntas de dilatación de forma que no existan elementos continuos de más de 40 m de longitud. En nuestro caso no consideraremos los efectos de las acciones térmicas como permite la norma, al disponer nuestra nave de junta de dilatación.

Cada una de estas cargas puede actuar por separado o simultáneamente, y la norma establece unas directrices a seguir para combinarlas adecuadamente que explicaremos más adelante en el apartado de combinaciones, una vez que hayamos calculado todas las acciones.

Todas las acciones se calcularán en base al Documento Básico de Seguridad Estructural – Acciones de la Edificación (DB SE-AE).

4. CUBIERTA

4.1. ELECCIÓN DE LA CUBIERTA

Elegiremos para la cubierta un perfil de cubierta de tipo sándwich de 5 grecas de la gama ACH. Este tipo de perfil ofrece una solución de cubierta de alta calidad y durabilidad, garantizando una total estanqueidad, además de superar las mayores exigencias contra el fuego, y ofrecer un elevado nivel de aislamiento térmico. El diseño multigrecado le confiere una gran resistencia mecánica que permite luces mayores a igualdad de carga. El panel de 5 Grecas de Cubierta está especialmente diseñado para aquellas construcciones que requieran un elevado nivel de resistencia al fuego.

Figura 1. Cerramiento de cubierta

Para nuestro caso elegiremos un panel triapoyado que quedará del lado de la seguridad puesto que es más restrictivo que el panel multiapoyado que utilizaremos para nuestra obra.

El espesor del panel será de 80mm. Y la distancia de correas de 150cm.

acterísti	CdS				
Espesor	Peso (kg/m ^a	K (W/m²K)	El (min) Res. fuego*		
30	13,1	0,901	-		
40	14,3	0,840	-		
50	15,5	0,621	30		
60	16,7	0,589	30		
80	19,1	0,414	60		
100	21,5	0,404	120		
120	23,9	0,340	120		
150	27,5	0,275	120	15	
200	33.5	0.209			
	os disponibles al fab		120	6	
ultar certificad	os disponibles al fab			50	
ultar certificad	os disponibles al fab	ricante.		150	200
fico sobi	os disponibles al fab	ricante. Iel triapoyad	lo	150 2,21	200
iltar certificad fico sobi	os disponibles al fab recarga par 80	el triapoyad	120		200
fico sobi	os disponibles al fab recarga par 80 3,40	el triapoyad	120 2,60	2,21	200 - - 1,92
fico sobi Luz E30 E40	os disponibles al fab recarga par 80 3,40 3,60	100 2,90 3,10	120 2,60 2,85	2,21 2,35	-
fico sobi Luz E30 E40 E50	s disponibles al fab recarga par 80 3,40 3,60 3,96	100 2,90 3,10 3,42	120 2,60 2,85 2,98	2,21 2,35 2,50	- - 1,92
fico sobi Luz E30 E40 E50 E60	s disponibles al fab recarga pan 80 3,40 3,60 3,96 4,40	100 2,90 3,10 3,42 3,75	120 2,60 2,85 2,98 3,10	2,21 2,35 2,50 2,80	- 1,92 2,25
Luz E30 E40 E50 E60 E80	80 3,40 3,60 3,96 4,40 5,76	100 2,90 3,10 3,42 3,75 5,16	120 2,60 2,85 2,98 3,10 4,48	2,21 2,35 2,50 2,80 3,66	- 1,92 2,25 2,77
Luz E30 E40 E50 E60 E80	80 3,40 3,60 3,96 4,40 5,76 6,60	100 2,90 3,10 3,42 3,75 5,16 5,68	120 2,60 2,85 2,98 3,10 4,48 4,76	2,21 2,35 2,50 2,80 3,66 3,88	- 1,92 2,25 2,77 2,94

Figura 2. Características del panel de cubierta

De las tablas anteriores obtenemos los siguientes datos:

- Resistencia:3,66kN/m²

- Peso:19,1kg/m² = $187,37 \text{ N/m}^2$

– Distancia entre apoyos: 1,5m

- Espesor:80 mm

4.2. CÁLCULOS DE LA CUBIERTA

Tras haber realizado la selección de la cubierta, se procede al cálculo de las diferentes acciones que inciden en ella. Agrupamos dichas acciones en dos grupos diferentes:

- Acciones permanentes: el peso propio de la cubierta.
- Acciones variables: la sobrecarga de uso, de nieve y de viento que inciden en ella.

4.2.1. Peso propio

El peso propio es la carga propiadel panel:

Peso =
$$19,1 \text{ kg/m}2$$

Se trata de una carga gravitatoria que tiene una dirección vertical, por lo que debemos descomponerla en dos direcciones paralela y perpendicular, ya que la resistencia de la cubierta tiene una dirección perpendicular a ella misma.

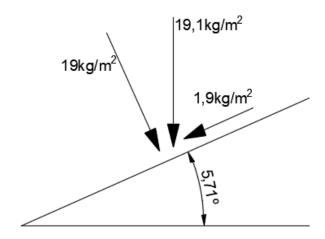


Figura 3. Descomposición del peso propio

Descomponiendo en dirección paralela y perpendicular al faldón resulta:

$$q_{cub} = 19.1 \text{ kg/m}^2 \cdot \cos(5.71) = 19.00 \text{ kg/m}^2 \text{ (perpendicular al faldón)}$$

$$q_{cub} = 19.1 \text{ kg/m}^2 \cdot \sin(5.71) = 1.90 \text{ kg/m}^2 \text{ (paralela al faldón)}$$

4.2.2. Sobrecarga de uso

La sobrecarga de uso es todo lo que puede gravitar sobre el edificio por razón de uso, sus efectos pueden simularse como una carga distribuida uniformemente.

El valor se obtendrá de la tabla 3.1 del documento básico de acciones en la edificación, en ella se diferencian las diferentes categorías deuso. Para este caso, la nave será la G1 (cubiertas ligeras sobre correas) y se obtienen dos valores de carga, una uniforme y otra puntual.

Categoría de uso Subcategorías de uso		ategorías de uso	Carga uniforme	Carga concentrada	
				[kN/m ²]	[kN]
Α	Zonas residenciales A1 Viviendas y zonas de habitaciones en, hospitales y hoteles		2	2	
	20.000	A2	Trasteros	3	2
В	Zonas administrativas	20		2	2
		C1	Zonas con mesas y sillas	3	4
		C2	Zonas con asientos fijos	4	4
С	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las categorías A, B, y D)	blico (con la excep- on de las superficies rtenecientes a las C3 movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.		5	4
				5	7
				5	4
seres:	5 MAG	D1	Locales comerciales	5	4
D	Zonas comerciales	D2	Supermercados, hipermercados o grandes superficies	5	7
Е	Zonas de tráfico y de ap	arcamie	nto para vehículos ligeros (peso total < 30 kN)	2	20 (1)
F	Cubiertas transitables a	ccesibles	s sólo privadamente (2)	1	2
	Cubiertas accesibles	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1(4)(6)	2
G	únicamente para con- Cubiertas ligeras sobre corre	Cubiertas ligeras sobre correas (sin forjado) (6)	0,4(4)	1	
servación (3)		ación (3) G2 Cubiertas con inclinación superior a 40°			2

Figura 4. Tabla 3.1. Valores característicos de las sobrecargas de uso.

☐ Carga uniforme: 0.4KN/m² (El valor se refiere a la proyección horizontal de la superficie de la cubierta).

El momento máximo se producirá con la carga uniformemente repartida, por lo que nos quedaremos con esta acción ya que es la más desfavorable.

Como el dato es en proyección horizontal lo descomponemos según la inclinación de la cubierta:

$$0.4 \text{ kN/m}^2 \cdot \cos(5.71) = 0.398 \text{ kN/m}^2$$

Descomponiendo nos quedaría:

0,398 kN/m2
$$\cdot$$
 cos(5,71) = 0,396 kN/m² (perpendicular al faldón)
0,398 kN/m2 \cdot sen(5,71) = 0,039 kN/m² (paralela al faldón)

4.2.3. Sobrecarga de nieve

La distribución y la intensidad de la carga de nieve sobre un edificio dependen del clima del lugar, del tipo de precipitación, del relieve del entorno, de la forma de la cubierta y de los intercambios térmicos. Para determinar la sobrecarga de nieve debemos ir al código técnico, Documento Básico de dla Seguridad Estructural de a la Edificación (SE-AE) apartado 3.5.1. Determinación de la carga de nieve, en este apartado aparece el valor de la carga de nieve por unidad de superficie en proyección horizontal como en el apartado anterior.

En el que:

$$q_N = \mu \cdot S_K$$

Donde:

μ: coeficiente de forma de la cubierta

0,5

Granada

S_K: valor característico de la carga de nieve sobre un terreno horizontal

El valor de la sobrecarga de nieve sobre un terreno horizontal, s_k , en las capitales de provincia y ciudades autónomas se puede tomar de la siguiente tabla:

Table	Tabla 3.0 Sobrecarga de meve en capitales de provincia y ciduades adtoriomas										
Capital	Altitud	Sk	Capital	Altitud	Sk	Capital	Altitud	Sk			
Сарітаі	m	kN/m ²	Capital	m	kN/m ²	Capitai	m	kN/m ²			
Albacete Alicante / Alacant Almería Ávila Badajoz Barcelona Bilbao / Bilbo Burgos Cáceres Cádiz Castellón Ciudad Real Córdoba	690 0 0 1.130 180 0 0 860 440 0 0 640 100 0	0,6 0,2 0,2 1,0 0,2 0,4 0,3 0,6 0,4 0,2 0,2 0,6 0,2 0,3	Guadalajara Huelva Huesca Jaén León Lérida / L/eida Logroño Lugo Madrid Málaga Murcia Orense / Ourense Oviedo Palencia	680 0 470 570 820 150 380 470 660 0 40 130 230 740	0,6 0,2 0,7 0,4 1,2 0,5 0,8 0,7 0,6 0,2 0,2 0,4 0,5 0,4	Pontevedra Salamanca SanSebas- tián/Donostia Santander Segovia Sevilla Soria Tarragona Tenerife Teruel Toledo Valencia/València	0 780 0 0 1.000 10 1.090 0 0 950 550 0 690 520	0,3 0,5 0,3 0,7 0,2 0,9 0,4 0,2 0,9 0,5 0,2 0,0 0,2			
Cuenca Gerona / Girona	1.010 70	1,0 0,4	Palma de Mallorca Palmas, Las	0	0,2	Vitoria / Gasteiz Zamora	650 210	0,4			
ociona / on ona	800		i allillas, Las	450		7	_	0.0			

Tabla 3.8 Sobrecarga de nieve en capitales de provincia y ciudades autónomas

Figura 5. Tabla 3.8. Sobrecarga de nieve en capitales de provincia.

Pamplona/Iruña

En nuestro caso la nave estará situada en Bilbao, que tiene una altitud de 0m por lo que su valor $S_K = 0.3 \text{ kN/m2}$.

En un faldón limitado inferiormente por cornisas o limatesas, y en el que no hay impedimento al deslizamiento de la nieve, el coeficiente de forma tiene el valor de 1 para cubiertas con inclinación menor o igual que 30° y 0 para cubiertas con inclinación de mayor o igual que 60° (para valores intermediose interpolará

0,2

linealmente). Si hay impedimento, se tomará $\mu = 1$ sea cual sea la inclinación.

Por lo que $\mu = 1$ para cubiertas con inclinación menor o igual que 30°.

$$q_N = \mu \cdot S_K \cdot \cos(5.71) = 0.298 \text{ kN/m}^2$$

Descomponiendo en dirección paralela y perpendicular al faldón resulta:

$$q_{SU} = 0.298 \text{ kN/m}^2 \cdot \cos(5.71) = 0.296 \text{ kN/m}^2 \text{ (perpendicular al faldón)}$$

$$q_{SU} = 0.298 \text{ kN/m}^2 \cdot \text{sen } (5.71) = 0.030 \text{ kN/m}^2 \text{ (paralela al faldón)}$$

4.2.4. Sobrecarga de viento

La acción de viento, en general una fuerza perpendicular a la superficie de cada punto expuesto, o presión estática, qe puede expresarse como:

$$qe = qb \cdot ce \cdot cp$$

De la cual, sus valores se definen como:

- qb: la presión dinámica del viento. Se obtienen los valores del CTE DB SE-AE.
- ce: el coeficiente de exposición, variable con la altura del punto considerado,
 en función del grado de aspereza del entorno donde se encuentra ubicada la construcción.
- cp: el coeficiente de presión, dependiente de la forma y orientación de la superficie respecto al viento.

Presión dinámica

Se conoce como la presión dinámica del viento. De forma simplificada, como valor en cualquier punto del territorio español, puede adoptarse 0,5 kN/m². Pueden obtenerse valores más precisos mediante el anejo D, en función del emplazamiento geográfico de la obra.

El valor básico de la presión dinámica del viento puede obtenerse con la expresión:

$$qb = 0.5 \cdot \delta \cdot vb^2$$

siendo δ la densidad del aire y vb el valor básico de la velocidad del viento.

Figura 6. Valor básico de la velocidad del viento.

El valor básico de la velocidad del viento en cada localidad puede obtenerse del mapa de la figura D.1. El de la presión dinámica es, respectivamente de 0,42 kN/m², 0,45 kN/m² y 0,52 kN/m² para laszonas A, B y C de dicho mapa.

Luego en nuestro caso:

$$q_b = 0.52 \text{ kN/m}^2$$

Coeficiente de exposición

El coeficiente de exposición tiene en cuenta los efectos de las turbulencias originadas por el relieve y la topografía del terreno. Su valor se puede tomar de la tabla 3.4, siendo la altura del punto considerado la medida respecto a la rasante media de la fachada a barlovento.

			Δltura	del r	unto	cons	idera	do (m)	·
	Grado de aspereza del entorno	3	6	9			18	• •	30
1	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	2,4	2,7	3,0	3,1	3,3	3,4	3,5	3,7
II	Terreno rural llano sin obstáculos ni arbolado de importancia	2,1	2,5	2,7	2,9	3,0	3,1	3,3	3,5
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	1,6	2,0	2,3	2,5	2,6	2,7	2,9	3,1
IV	Zona urbana en general, industrial o forestal	1,3	1,4	1,7	1,9	2,1	2,2	2,4	2,6
V	Centro de negocio de grandes ciudades, con profusión de edificios en altura	1,2	1,2	1,2	1,4	1,5	1,6	1,9	2,0

Tabla 3.4. Valores del coeficiente de exposición ce

Figura 7. Tabla 3.4. Valores del coeficiente de exposición, ce.

Interpolando:

$$ce = 1.9$$

Coeficiente de presión

Los coeficientes de presión exterior o eólico, c_p, dependen de la dirección relativa del viento, de la forma del edificio, de la posición de elemento considerado y de su área de influencia.

En las tablas D.3 a D.13 se dan valores de coeficientes de presión para diversas formas simples de construcciones, obtenidos como el pésimo de entre los del abanico de direcciones de viento definidas en cada caso. El signo " indica que el valor es idéntico al de la casilla superior. Cuando se aportan dos valores de distinto signo separados, significa que la acción de viento en la zona considerada puede variar de presión a succión, y que deben considerarse las dos posibilidades. En todas las tablas puede interpolarse linealmente para valores intermedios de las variables. Los valores nulos se ofrecen para poder interpolar.

Para comprobaciones locales de elementos de fachada o cubierta, el área de influencia será la del propio elemento.

Para los coeficientes de presión exterior, tendremos diferentes tablas según la dirección del viento (izquierda-derecha, frente).

1. Comenzamos con elviento en dirección izquierda-derecha.

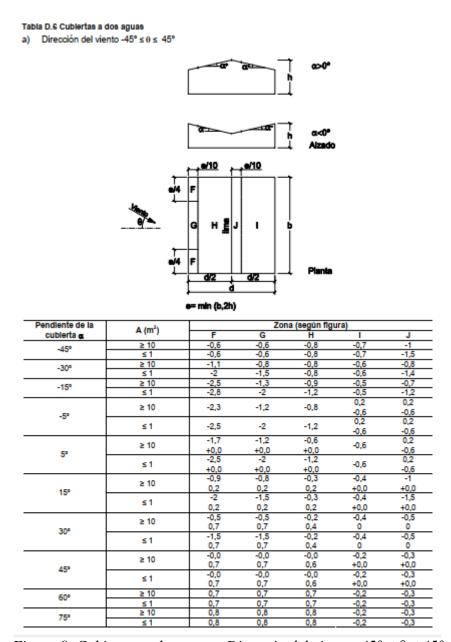
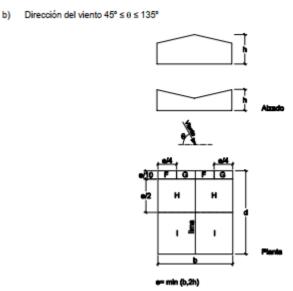


Figura 8. Cubiertas a dos aguas. Direccón del viento $-45^{\circ} \le \theta \le 45^{\circ}$


Nuestra cubierta tiene 5,71° de inclinación. Nos ayudamos de la figura anterior para obtener el valor de los coeficientes para las diferentes zonas.

Para nuestro caso estudiando la influencia del viento en las distintas zonas de la cubierta:

$$A \ge 10m^2$$
$$e = min (b, 2h) = 23m$$

	F	G	Н	I	J
SUCCIÓN	-1.7	-1.2	-0.6	-0.6	0.2
PRESIÓN	0	0	0	-0.6	-0.6

2. Viento de frente.

Pendlente de la	A (m²)	Zona (según figura), -45° ≤ 0 ≤ 45°				
cubierta 🕳	A (m)	F	G	Н	ı	
-45°	≥ 10	-1,4	-1,2	-1,0	-0,9	
-45"	s1	-2,0	-2,0	-1,3	-1,2	
-30°	≥ 10	-1,5	-1,2	-1,0	-0,9	
-30"	s 1	-2,1	-2,0	-1,3	-1,2	
-15° —	≥ 10	-1,9	-1,2	-0,8	-0,8	
-10"	s 1	-2,5	-2,0	-1,2	-1,2	
-5° —	≥ 10	-1,8	-1,2	-0,7	-0,6	
-	≤1	-2,5	-2,0	-1,2	-1,2	
5° —	≥ 10	-1,6	-1,3	-0,7	-0,6	
-	s 1	-2,2	-2,0	-1,2	-0,6	
15° —	≥ 10	-1,3	-1,3	-0,6	-0,5	
10	S1	-2,0	-2,0	-1,2	-0,5	
30° —	≥ 10	-1,1	-1,4	-0,8	-0,5	
-	≤1	-1,5	-2,0	-1,2	-0,5	
45° —	≥ 10	-1,1	-1,4	-0,9	-0,5	
40	s 1	-1,5	-2,0	-1,2	-0,5	
60° —	≥ 10	-1,1	-1,2	-0,8	-0,5	
•	s 1	-1,5	-2,0	-1,0	-0,5	
75° —	≥ 10	-1,1	-1,2	-0,8	-0,5	
13	S1	-1,5	-2,0	-1,0	-0,5	

Figura 9. Cubiertas a dos aguas. Direccón del viento $45^{\circ} \le \theta \le 135^{\circ}$

Nuestra cubierta tiene 5,71° de inclinación. Nos ayudamos de la figura anterior para obtener el valor de los coeficientes para las diferentes zonas.

Para nuestro caso estudiando la influencia del viento en las distintas zonas de la cubierta:

$$A \ge 10m^2$$

e = min (b, 2h) = 23m

	F	G	Н	I
SUCCIÓN	-1.6	-1.3	-0.7	-0.6

Ahora vamos a estudiar la presión interior. Para ello, tal y como hemos indicado antes aplicaremos la fórmula: $qe = qb \cdot ce \cdot cp$, sin embargo los coeficientes toman valores diferentes a los que hemos utilizado para la presión exterior.

La <u>presión dinámica</u> será 0.52 KN/m², ya explicada con anterioridad, ésta no cambia de valor para la exterior e interior.

En edificios de una sola planta, se considerará como coeficiente de exposición el correspondiente a la altura del punto medio del hueco, salvo que exista un hueco dominante, en cuyo caso el coeficiente de exposición será el correspondiente a la altura media de dicho hueco. Teniendo en cuenta esto y ayudandonos de la tabla de la figura 7, adoptamos un valor de 1,3 para el coeficiente de exposición.

Si el edificio presenta grandes huecos la acción del viento genera, además de presiones en el exterior, presiones en el interior, que se suman a las anteriores.

El coeficiente eólico de presión interior, c_{pi}, se considera único en todos los paramentos interiores del edificio que delimitan la zona afectada por la fachada o cubierta que presenta grandes huecos. El coeficiente de presión interior obtendrá un valor. Cuando el viento pega de frente por el lado del cerramiento, éste será sotavento. En el caso de que la nave tenga algún hueco se deberá estudiar también a barlovento, tomando entonces el coeficiente de presión interior dos valores.

Para estos casos el valor del coeficiente de presión interior se tomará de la tabla 3.6 que se presenta a continuación. En ella hay que entrar con la esbeltez en el plano paralelo al viento, que será la relación entre la altura de cumbrera y la longitud del largo de la nave, y con la relación del área de huecos en zonas de succión respecto al área de huecos total.

PRESION PRESIO

Figura 10. Presiones ejercidas por el viento en una construcción con grandes huecos.

Al tratarse de una nave con dos puertas en cada plano transversal se determina que la nave consta de cuatro puertas de 25m² cada una. Se tomarán las puertas de las fachadas transversales como abiertas o cerradas en conjunto y a conveniencia de las estimaciones oportunas de cálculo.

Consecuentemente, se establece que la situación más desfavorable consiste en mantener las puertas transversales de un plano abiertas y las del otro plano transversal cerradas. Además, dada la simetría de la nave, se pueden simplificar los cálculos a dos situaciones.

Para realizar el cálculo del coeficiente de presión interior se precisan los valores referentes a la esbeltez en el plano paralelo al viento y al área de los huecos en la zona de succión respecto al área total de huecos del edificio.

La esbeltez en el plano paralelo al viento será:

$$h/b = 11,5/50 = 0,23 < 1$$

A continuación analizaremos el área de huecos a succión con respecto al área total de huecos lo que nos generará las dos situaciones mencionadas anteriormente:

Huecos a barlovento (puertas abiertas en la fachada por donde incide el viento) $= 0m^2/50m^2 = 0, luego c_{pi} = 0,7$

Huecos a sotavento (puertas cerradas en la fachada por donde incide el viento) = $50\text{m}^2/50\text{m}^2 = 1$, luego $c_{pi} = -0.5$

Una vez calculadas las áreas de huecos en zonas de succión respecto al área total de huecos de la nave, introducimos los datos en la siguiente tabla y obtenemos los coeficientes de presión interior.

Tabla 3.6 Coeficientes de presión interior											
Esbeltez en el	Área d	e hueco	os en zo	nas de	succión	respec	to al áre	ea total	de huec	os del e	dificio
plano paralelo al viento	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
≤1	0,7	0,7	0,6	0,4	0,3	0,1	0,0	-0,1	-0,3	-0,4	-0,5
≥4	0,5	0,5	0,4	0,3	0,2	0,1	0,0	-0,1	-0,2	-0,3	-0,3

Figura 11. Tabla 3.6. Coeficientes de presión interior

Con lo que obtendremos un coeficiente de presión interior (c_{pi}) diferente para cada situación estudiada.

Resultados de la acción del viento

Con los coeficientes obtenidos aplicamos la siguiente fórmula para calcular la presión estática del viento (qe):

$$qe = qb \cdot ce \cdot cp$$

ACCION EXTERIOR DEL VIENTO

	Transversal		Longitudinal
	PRESIÓN	SUCCIÓN	SUCCIÓN
F	1,9 · 0,52 · 0 = 0	1,9 · 0,52 · (-1,7) = -1,68	1,9 · 0,52 · (-1,6) = -1,58
G	1,9 · 0,52 · 0 = 0	1,9 · 0,52 · (-1,2) = -1,19	1,9 · 0,52 · (-1,3) = -1,28
Н	1,9 · 0,52 · 0 = 0	1,9 · 0,52 · (-0,6) = -0,59	1,9 · 0,52 · (-0,7) = -0,69
I	1,9 · 0,52 · 0 = 0	1,9 · 0,52 · (-0,6) = -0,59	1,9 · 0,52 · (-0,6) = -0,59
J	1,9 · 0,52 · 0,2 = 0,2	1,9 · 0,52 · (-0,6) = -0,59	

ACCION INTERIOR DEL VIENTO

Huecos a barlovento (Presión interior)

$$\mathbf{q_{vp}}^{int} = 0.52 \cdot 1.3 \cdot 0.7 = 0.47 \text{ kN/m}^2$$

Huecos a sotavento (Succión interior)

$$\mathbf{q_{vs}}^{int} = 0.52 \cdot 1.3 \cdot (-0.5) = -0.34 \text{ kN/m}^2$$

RESULTADOS TOTALES

$$q_v = q_v^{ext} - q_v^{int}$$

TRANSVERSAL

Puesto que no existen huecos importantes en los cerramientos laterales de la nave, no se producirá ningún tipo de presión interior: $q_v^{int}=0$

Consecuentemente:

$$q_v = q_v^{ext}$$

PRESION	SUCCION
$q_f = 0$	$q_f = -1,68$
$q_g = 0$	$q_g = -1,19$
$q_h = 0$	$q_h = -0.59$
$q_i = 0$	$q_i = -0.59$
$q_j = 0.2$	$q_j = -0.59$

LONGITUDINAL

Huecos a barlovento	Huecos a sotavento
SUCCION	SUCCION
$q_f = -2,05$	$q_f = -1,24$
$q_g = -1,75$	$q_g = -0.94$

$q_h = -1,16$	$q_h = -0.35$
q _j = -1,06	$q_{j} = -0.25$

RESULTADOS FINALES

A la vista de los resultados obtenidos, seleccionamos los más desfavorables, que son los que emplearemos para cálculos posteriores siendo:

$$q_{vp} = 0.2 \text{ kN/m}^2$$

 $q_{vs} = -2.05 \text{ kN/m}^2$

4.2.5. Resumen de cargas

Procedemos a exponer un breve resumen de las cargas obtenidas para el cálculo posterior de las combinaciones de cargas:

Cargas permanentes

PESO PROPIO

$$q_{ppy} = 19,00 \text{ kg/m}^2 = 0,186 \text{ kN/m}^2$$

 $q_{ppx} = 1,90 \text{ kg/m}^2 = 0,019 \text{ kN/m}^2$

Cargas variables

SOBRECARGA DE USO

$$q_{suy} = 0.396 \text{ kN/m}^2$$

$$q_{sux} = 0.039 \text{ kN/m}^2$$

SOBRECARGA DE NIEVE

$$q_{ny} = 0.296 \text{ kN/m}^2$$

$$q_{nx} = 0.030 \text{ kN/m}^2$$

EFECTO DEL VIENTO (MÁS DESFAVORABLE)

Presión: $q_{vp} = 0.2 \text{ kN/m}^2$

Succion: $q_{vs} = -2,05 \text{ kN/m}^2$

4.3. COMBINACIONES DE CARGAS

A continuación, se describe el proceso seguido, según Código Técnico de la Edificación Documento Básico Seguridad Estructural, para plantear las posibles combinaciones de hipótesis de carga y posteriormente seleccionar las más peligrosas.

El valor de cálculo de los efectos de las acciones correspondiente a una situación persistente o transitoria, se determina mediante combinaciones de acciones a partir de la expresión:

$$\textstyle \sum\limits_{j \geq 1} \gamma_{\,G,\,j} \, \cdot \, G_{\,k,\,j} \, + \, \gamma_{\,P} \, \cdot P \, + \, \gamma_{\,Q,\,1} \, \cdot Q_{\,k,\,1} \, + \, \sum\limits_{i \geq 1} \gamma_{\,Q,\,i} \, \cdot \psi_{\,0,\,i} \, \cdot Q_{\,k,\,i}$$

Es decir, considerando la acción simultánea de:

- a) todas las acciones permanentes, en valor de cálculo (γG·
- Gk), incluido el pretensado ($\gamma P \cdot P$);
- b) una acción variable cualquiera, en valor de cálculo ($\gamma Q \cdot Q k$), debiendo adoptarse como tal una tras otra sucesivamente en distintos análisis;
- c) el resto de las acciones variables, en valor de cálculo de combinación ($\gamma Q \cdot \psi 0 \cdot Q k$).

Los valores de los coeficientes deseguridad, γ , se establecen en la tabla 4.1 para cada tipo de acción, atendiendo para comprobaciones de resistencia a si su efecto es desfavorable o favorable, considerada globalmente.

Tipo de verificación ⁽¹⁾	Tipo de acción	Situación persistente o transitoria				
		desfavorable	favorable			
	Permanente Peso propio, peso del terreno	1,35	0,80			
Resistencia	Empuje del terreno	1,35	0,70			
	Presión del agua	1,20	0,90			
	Variable	1,50	0			
		desestabilizadora	estabilizadora			
	Permanente Peso propio, peso del terreno	1,10	0.90			
Estabilidad	Empuje del terreno	1,35	0,80			
	Presión del agua	1,05	0,95			
	Variable	1,50	0			

Tabla 4.1 Coeficientes parciales de seguridad (γ) para las acciones

Figura 12. Tabla 4.1. Coeficientes parciales de seguridad (γ) para las acciones.

Para comprobaciones de estabilidad, se diferenciará, aun dentro de la misma acción, la parte favorable (la estabilizadora), de la desfavorable (la desestabilizadora).

Los valores de los coeficientes des imultaneidad que se emplean en las combinaciones, $\psi 0$, se establecen en la tabla 4.2.

Ψ0	Ψ1	Ψ2
0,7	0,5	0,3
0,7	0,5	0,3
0,7	0,7	0,6
0,7	0,7	0,6
0,7	0,7	0,6
	(1)	
0	0	0
0,7	0,5	0,2
0,5	0,2	0
0,6	0,5	0
0,6	0,5	0
0,7	0,7	0,7
	0,7 0,7 0,7 0,7 0,7 0 0,7 0,5 0,6	0,7 0,5 0,7 0,5 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 (1) 0 0 0,7 0,5 0,5 0,2 0,6 0,5

Tabla 4.2 Coeficientes de simultaneidad (ψ)

Figura 13. Tabla 4.2. Coeficiente de simultaneidad (ψ) para las acciones.

⁽¹⁾ Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C

⁽¹⁾ En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

Siguiendo los pasos descritos anteriormente, se estudian 9 combinaciones de hipótesis de carga que quedan de la siguiente manera:

1.
$$\gamma_{c} \cdot Q_{pp}$$

2. $\gamma_{G} \cdot Q_{pp} + \gamma_{SU} \cdot Q_{SU}$
3. $\gamma_{c} \cdot Q_{pp} + \gamma_{N} \cdot Q_{N}$
4. $\gamma_{c} \cdot Q_{pp} + \gamma_{V} \cdot Q_{Vp}$
5. $\gamma_{c} \cdot Q_{pp} + \gamma_{V} \cdot Q_{Vp}$
6. $\gamma_{G} \cdot Q_{pp} + \gamma_{N} \cdot Q_{N} + \Psi_{0} \cdot \gamma_{V} \cdot Q_{Vp}$
7. $\gamma_{c} \cdot Q_{pp} + \gamma_{N} \cdot Q_{N} + \Psi_{0} \cdot \gamma_{V} \cdot Q_{Vp}$
8. $\gamma_{G} \cdot Q_{pp} + \gamma_{V} \cdot Q_{Vp} + \Psi_{0} \cdot \gamma_{N} \cdot Q_{N}$
9. $\gamma_{G} \cdot Q_{pp} + \gamma_{V} \cdot Q_{Vs} + \Psi_{0} \cdot \gamma_{N} \cdot Q_{N}$

En esta ocasión se pueden tachar ciertos valores, pues observándolos directamente la lógica dice que van a ser menores en comparación con alguna ecuación restante. Por ejemplo, la ecuación del peso propio evidentemente presentará un resultado menor al de la ecuación de peso, nieve y viento a presión. De la misma forma se han despreciado las fórmulas de dos valores, exceptuando la de sobrecarga de uso, ya que las últimas cuatro ecuaciones complementan las anteriores con un elemento adicional, generando en comparación un resultado mayor. Por último, cabe destacar también, que la fórmula de peso propio con nieve y viento a succión es irrelevante y claramente sustituida por la última ecuación, de peso propio, viento a succión y nieve, dados los coeficientes parciales de seguridad, que en ese caso concreto hace nulo el valor de la sobrecarga de nieve, y los coeficientes de simultaneidad, los cuales reducen el efecto del viento a succión en la ecuación desechada.

Aclarando dichos puntos, se prosigue introduciendo los valores recopilados en el apartado anterior en las fórmulas seleccionadas, bien en perpendicular como en paralelo:

Perpendicular y paralelo

$$\gamma_{G} \cdot Q_{pp} + \gamma_{SU} \cdot Q_{SU}$$

• Perpendicular = $1,35 \cdot 0,186 + 1,5 \cdot 0,396 = 0,845 \text{kN/m}^2$

• Paralelo = $1,35 \cdot 0,019 + 1,5 \cdot 0,039 = 0,084 \text{kN/m}^2$

$$\gamma_{G} \cdot Q_{pp} + \gamma_{N} \cdot Q_{N} + \Psi_{0} \cdot \gamma_{V} \cdot Q_{Vp}$$

- Perpendicular = $1,35 \cdot 0,186 + 1,5 \cdot 0,296 + 0,6 \cdot 1,5 \cdot 0,2 = 0,875 \text{kN/m}^2$
- Paralelo = $1,35 \cdot 0,019 + 1,5 \cdot 0,030 = 0,070 \text{ kN/m}^2$

$$\gamma_{\text{G}} \cdot Q_{\text{pp}} + \gamma_{\text{V}} \cdot Q_{\text{Vp}} + \Psi_{0} \cdot \gamma_{\text{N}} \cdot Q_{\text{N}}$$

- Perpendicular = $1,35 \cdot 0,186 + 1,5 \cdot 0,2 + 0,5 \cdot 1,5 \cdot 0,296 = 0,773 \text{kN/m}^2$
- Paralelo = $1,35 \cdot 0,019 + 0,5 \cdot 1,5 \cdot 0,030 = 0,048 \text{kN/m}^2$

$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vs} + \Psi_0 \cdot \gamma_N \cdot Q_N$$

- Perpendicular = $0.8 \cdot 0.186 + 1.5 \cdot (-2.05) = -2.926 \text{kN/m}^2 < 3.66 \text{kN/m}^2$
- Paralelo = $0.8 \cdot 0.019 = 0.015 \text{kN/m}^2$

Teniendo en cuanta que la cubierta es capaz de soportar una tensión máxima admisible de 3,66KN/m², con esta última comprobación se confirma que la cubierta escogida es capaz de soportar las cargas a las cuales será sometida.

5. CERRAMIENTO LATERAL

5.1. ELECCIÓN DEL CERRAMIENTO DE FACHADA

Elegiremos para la fachada un Panel Basic de Fachada TV de la gama ACH. Es un panel metálico autoportante, con aislamiento en espuma de poliuretano y utilizado en las fachadas de edificios industriales y comerciales. Para elegir entre los diferentes tipos de panel tenemos en cuenta que será multiapoyado, con una distancia entre correas de 1,5m y elegiremos aquel que tiene un espesor de 60mm.

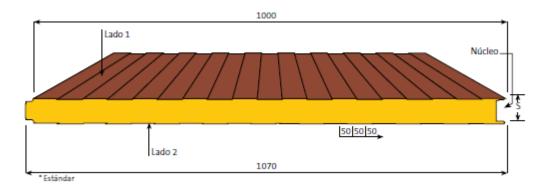


Figura 14. Cerramiento de fachada

El panel dispone de las siguientes características técnicas:

Acero	- acei	ro												
S mm	I	K	Peso panel kg/m²	Δ	Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ					Δ		P 1		Π
	Kcal m²h °C	Watt m ² °C	0,5+0,5	p=(daN/m²)	60	80	100	120	150	60	80	100	120	150
30	0,56	0,65	9,56	<i>l</i> =	2,80	2,65	2,45	2,20	2,00	2,40	2,25	2,05	1,95	1,75
35	0,48	0,56	9,77	<i>l</i> =	3,35	3,15	2,90	2,60	2,30	2,90	2,70	2,50	2,30	2,10
40	0,43	0,50	9,96	<i>l</i> =	3,55	3,35	3,15	2,90	2,60	3,25	3,00	2,80	2,60	2,30
50	0,35	0,41	10,34	<i>l</i> =	4,05	3,80	3,55	3,25	2,85	3,60	3,35	3,05	2,85	2,50
60	0,29	0,34	10,72	/ =	4,50	4,15	3,80	3,50	3,05	3,95	3,70	3,45	3,15	2,70
		•												

Figura 15. Características técnicas del panel

Analizando nuestras necesidades nos decantamos por un panel de 60mm de espesor el cual tiene un peso de $10,72 \text{ kg/m}^2$.

De la tabla de características anterior podemos ver que el panel podría soportar

una carga máxima de 3,05kN/m².

5.2. CÁLCULOS DE LA FACHADA

Tras haber realizado la selección de la fachada, se procede al cálculo de las diferentes acciones que inciden en ella. Agrupamos dichas acciones en dos grupos diferentes:

- Acciones permanentes: el peso propio de la cubierta.
- Acciones variables: la sobrecarga de uso, de nieve y de viento que inciden en ella.

En el caso del cerramiento de fachada, al contrario que en el caso de la cubierta, tanto la sobrecarga de uso como la sobrecarga de nieve son nulas. Al ser un paramento vertical no se le ejercerá ninguna sobrecarga de uso y por la misma razón (paramento vertical) no se acumulará nieve sobre éste.

Tomando estas consideraciones en cuenta simplificaremos las acciones sobre la fachada al peso propio de ésta y a la acción que el viento ejerce sobre dicha cubierta.

5.2.1. Peso propio

El peso propio es la carga propia del panel:

$$Peso = 10,72 \text{ kg/m}^2$$

Se trata de una carga gravitatoria que tiene una dirección vertical. En el caso de la fachada la carga del panel es paralela a éste por lo que no es necesario descomponer dicha carga.

5.2.2. Sobrecarga de viento

La acción de viento, en general una fuerza perpendicular a la superficie de cada punto expuesto, opresión estática, qe, puede expresarse como:

$$qe = qb \cdot ce \cdot cp$$

Presión dinámica

Se conoce como la presión dinámica del viento. De forma simplificada, como valor en cualquier punto del territorio español, puede adoptarse 0,5 kN/m². Pueden obtenerse valores más precisos mediante el anejo D, en función del emplazamiento geográfico de la obra.

El valor básico de la presión dinámica del viento puede obtenerse con la expresión:

$$qb = 0.5 \cdot \delta \cdot vb^2$$

siendo δ la densidad del aire y vb el valor básico de la velocidad del viento.

Figura 16. Valor básico de la velocidad del viento

El valor básico de la velocidad del viento en cada localidad puede obtenerse del mapa de la figura D.1. El de la presión dinámica es, respectivamente de 0,42 kN/m², 0,45 kN/m² y 0,52 kN/m² para las zonas A, B y C de dicho mapa.

Luego en nuestro caso:

$$qb = 0.52 \text{ kN/m}^2$$

Coeficiente de exposición

El coeficiente de exposición tiene en cuenta los efectos de las turbulencias originadas por el relieve y la topografía del terreno. Su valor se puede tomar de la tabla 3.4, siendo la altura del punto considerado la medida respecto a la rasante media de la fachada a barlovento.

Tabla 3.4. Valores del coeficiente de exposición ce

	Crade de conovers del enterno	Altura del punto considerado (m)									
	Grado de aspereza del entorno	3	6	9	12	15	18	24	30		
1	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	2,4	2,7	3,0	3,1	3,3	3,4	3,5	3,7		
П	Terreno rural llano sin obstáculos ni arbolado de importancia	2,1	2,5	2,7	2,9	3,0	3,1	3,3	3,5		
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	1,6	2,0	2,3	2,5	2,6	2,7	2,9	3,1		
IV	Zona urbana en general, industrial o forestal	1,3	1,4	1,7	1,9	2,1	2,2	2,4	2,6		
v	Centro de negocio de grandes ciudades, con profusión de edificios en altura	1,2	1,2	1,2	1,4	1,5	1,6	1,9	2,0		

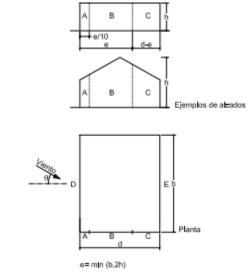
Figura 17. Tabla 3.4. Valores del coeficiente de exposición, ce.

Interpolando:

$$ce = 1.9$$

Coeficiente de presión

Los coeficientes de presión exterior o eólico, c_p, dependen de la dirección relativa del viento, de la forma del edificio, de la posición de elemento considerado y de su área de influencia.


En las tablas D.3 a D.13 se dan valores de coeficientes de presión para diversas formas simples de construcciones, obtenidos como el pésimo de entre los del abanico de direcciones de viento definidas en cada caso. El signo " indica que el valor es idéntico al de la casilla superior. Cuando se aportan dos valores de distinto signo separados, significa que la acción de viento en la zona considerada puede variar de presión a succión, y que deben considerarse las dos posibilidades. En todas las tablas puede interpolarse linealmente para valores intermedios de las variables. Los valores nulos se ofrecen para poder interpolar.

Para comprobaciones locales de elementos de fachada o cubierta, el área de influencia será la delpropio elemento.

Para los coeficientes de presión exterior, tendremos diferentes tablas según la dirección del viento (izquierda-derecha, frente).

1. Comenzamos con el viento en dirección izquierda-derecha.

Α	h/d	Zona (según figura), -45° < θ < 45°						
(m²)	II/U	Α	В	С	D	E		
≥ 10	5	-1,2	-0,8	-0,5	0,8	-0,7		
	1				a	-0,5		
	≤ 0,25				0,7	-0,3		
5	5	-1,3	-0,9	-0,5	0,9	-0,7		
	1				a	-0,5		
	≤ 0,25				0,8	-0,3		
2	5	-1,3	-1,0	-0,5	0,9	-0,7		
	1			.*	a	-0,5		
	≤ 0,25				0,7	-0,3		
≤1	5	-1,4	-1,1	-0,5	1,0	-0,7		
	1				a	-0,5		
	≤ 0,25					-0,3		

Figura 18. Paramentos verticales

Nos ayudamos de la figura anterior para obtener el valor de los coeficientes para las diferentes zonas.

Para nuestro caso estudiando la influencia del viento en las distintas zonas de la

cubierta:

 $A \ge 10m^2$

Por otro lado el parámetro h/d relaciona la altura y el ancho de la nave, con lo que 11,5/30 = 0,38. Con los datos que tenemos obtenemos los valores de los coeficientes necesarios.

Como ya sabemos los valores positivos indican presión y los valores negativos indican succión.

A ≥ 10m ²	A	В	C	D	Е
h/d = 0.38	-1.2	-0.8	-0.5	0.7	-0.3

2. Viento de frente.

Tabla D.3 Paramentos verticales

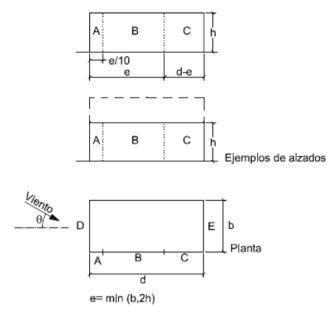


Figura 19. Paramentos verticales

Nos ayudamos de la figura anterior para obtener el valor de los coeficientes para las diferentes zonas.

Para nuestro caso estudiando la influencia del viento en las distintas zonas de la cubierta:

 $A > 10m^2$

Por otro lado el parámetro h/d relaciona la altura y el ancho de la nave, con lo que 11,5/50 = 0,23. Con los datos que tenemos obtenemos los valores de los coeficientes necesarios.

Como ya sabemos los valores positivos indican presión y los valores negativos indican succión.

A ≥ 10m ²	A	В	С	D	E
$h/d \le 0.25$	-1.2	-0.8	-0.5	0.7	-0.3

Ahora vamos a estudiar la presión interior. Para ello, tal y como hemos indicado antes aplicaremos la fórmula: $qe = qb \cdot ce \cdot cp$, sin embargo los coeficientes toman valores diferentes a los quehemos utilizado para la presión exterior.

La <u>presión dinámica</u> será 0.52 KN/m², ya explicada con anterioridad, ésta no cambia de valor para la exterior e interior.

En edificios de una sola planta, se considerará como coeficiente de exposición el correspondiente a la altura del punto medio del hueco, salvo que exista un hueco dominante, en cuyo caso el coeficiente de exposición será el correspondiente a la altura media de dicho hueco. Teniendo en cuenta esto y audandonos de la tabla de la figura 7, adoptamos un valor de 1,3 para el coeficiente de exposición.

Si el edificio presenta grandes huecos la acción del viento genera, además de presiones en el exterior, presiones en el interior, que se suman a las anteriores.

El <u>coeficiente eólico de presión interior</u>, c_{pi}, se considera único en todos los paramentos interiores del edificio que delimitan la zona afectada por la fachada o cubierta que presenta grandes huecos.

El coeficiente de presión interior obtendrá un valor. Cuando el viento pega de frente por el lado del cerramiento, éste será sotavento. En el caso de que la nave tenga algún hueco se deberá estudiar también a barlovento, tomando entonces el coeficiente de presión interior dos valores.

Para estos casos el valor del coeficiente de presión interior se tomará de la tabla 3.6 que se presenta a continuación. En ella hay que entrar con la esbeltez en el plano

paralelo al viento, que será la relación entre la altura de cumbrera y la longitud del largo de la nave, y con la relación del área de huecos en zonas de succión respecto al área de huecos total.

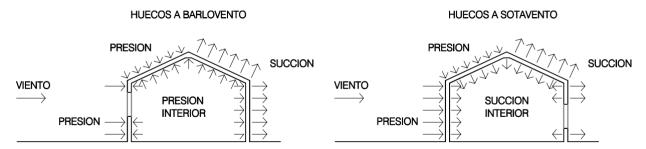


Figura 20. Presiones ejercidas por el viento en una construcción con grandes huecos

Al tratarse de una nave con dos puertas en cada plano transversal se determina que la nave consta de cuatro puertas de $25m^2$ cada una. Se tomarán las puertas de las fachadas transversales como abiertas o cerradas en conjunto y a conveniencia de las estimaciones oportunas de cálculo.

Consecuentemente, se establece que la situación más desfavorable consiste en mantener las puertas transversales de un plano abiertas y las del otro plano transversal cerradas. Además, dada la simetría de la nave, se pueden simplificar los cálculos a dos situaciones.

Para realizar el cálculo del coeficiente de presión interior se precisan los valores referentes a la esbeltez en el plano paralelo al viento y al área de los huecos en la zona de succión respecto al área total de huecos del edificio.

La esbeltez en el plano paralelo al viento será:

$$h/b = 11,5/50 = 0,23 < 1$$

A continuación analizaremos el área de huecos a succión con respecto al área total de huecos lo que nos generará las dos situaciones mencionadas anteriormente:

Huecos a barlovento (puertas abiertas en la fachada por donde incide el viento) = $0\text{m}^2/50\text{m}^2 = 0$, luego $c_{\text{pi}} = 0.7$

Huecos a sotavento (puertas cerradas en la fachada por donde incide el viento) =

$$50\text{m}^2/50\text{m}^2 = 1$$
, luego $c_{pi} = -0.5$

Una vez calculadas las áreas de huecos en zonas de succión respecto al área total de huecos de la nave, introducimos los datos en la siguiente tabla y obtenemos los coeficientes de presión interior.

	Tabla 3.6 Coeficientes de presión interior										
Esbeltez en el plano	Área d	le hueco	os en zo	onas de	succión	respec	to al áre	ea total	de huec	os del e	dificio
paralelo al viento	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
≤1	0,7	0,7	0,6	0,4	0,3	0,1	0,0	-0,1	-0,3	-0,4	-0,5
≥4	0,5	0,5	0,4	0,3	0,2	0,1	0,0	-0,1	-0,2	-0,3	-0,3

Figura 21. Tabla 3.6. Coeficientes de presión interior

Con lo que obtendremos un coeficiente de presión interior (c_{pi}) diferente para cada situación estudiada.

Resultados de la acción del viento

Con los coeficientes obtenidos aplicamos la siguiente fórmula para calcular la presión estática del viento (q_e) :

$$qe = qb \cdot ce \cdot cp$$

ACCION EXTERIOR DEL VIENTO

	TRANSVERSAL							
	PRESIÓN	SUCCIÓN						
Α		0,52 · 1,9 · (-1,2) = - 1,18						
В		$0,52 \cdot 1,9 \cdot (-0,8) = -0,79$						
С		$0,52 \cdot 1,9 \cdot (-0,5) = -0,49$						
D	$0.52 \cdot 1.9 \cdot 0.7 = 0.69$							
E		$0.52 \cdot 1.9 \cdot (-0.3) = -0.30$						

	LONGITUDINAL	
	PRESIÓN	SUCCIÓN
Α		0,52 · 1,9 · (-1,2) = - 1,18

В		$0.52 \cdot 1.9 \cdot (-0.8) = -0.79$
С		0,52 · 1,9 · (-0,5) = - 0,49
D	$0.52 \cdot 1.9 \cdot (0.7) = 0.69$	
E		0,52 · 1,9 · (-0,3) = - 0,30

ACCION INTERIOR DEL VIENTO

Huecos a barlovento (Presión interior)

$$\mathbf{q_{vp}}^{int} = 0.52 \cdot 1.3 \cdot 0.7 = 0.47 \text{ kN/m}^2$$

Huecos a sotavento (Succión interior)

$$\mathbf{q_{vs}}^{int} = 0.52 \cdot 1.3 \cdot (-0.5) = -0.34 \text{ kN/m}^2$$

RESULTADOS TOTALES

$$\mathbf{q}_{v} = \mathbf{q}_{v}^{\ ext}$$
 - $\mathbf{q}_{v}^{\ int}$

TRANSVERSAL

Puesto que no existen huecos importantes en los cerramientos laterales de la nave, no se producirá ningún tipo de presión interior: $\mathbf{q}_v^{int} = \mathbf{0}$

Consecuentemente:

$$\mathbf{q}_{v} = \mathbf{q}_{v}^{\ ext}$$

PRESION	SUCCION
	$q_a = -1,18$
	$q_b = -0.79$
	$q_c = -0.49$

$q_d = 0.69$	
	$q_{e} = -0.30$

LONGITUDINAL

Huecos a barlovento		Huecos a sotavento		
PRESION	SUCCION	PRESION	SUCCION	
	$q_a = -1,18 - 0,47 = -1,65$		$q_a = -1.18 + 0.34 = -0.84$	
	$q_b = -0.79 - 0.47 = -1.26$		$q_b = -0.79 + 0.34 = -0.45$	
	$q_c = -0.49 - 0.47 = -0.96$		$q_c = -0.49 + 0.34 = -0.15$	
q _d = 0,69 - 0,47 =		$q_d = 0.69 + 0.34 =$		
0,22		1,03		
	$q_e = -0.30 - 0.47 = -0.77$		$q_e = -0.30 + 0.34 = 0.04$	

RESULTADOS FINALES

A la vista de los resultados obtenidos, seleccionamos los más desfavorables, que son los que emplearemos para cálculos posteriores siendo:

$$q_{vp} = 1,03 \text{ kN/m}^2$$

$$q_{vs} = -1,65 \text{ kN/m}^2$$

5.2.3. Resumen de cargas

Procedemos a exponer un breve resumen de las cargas obtenidas para el cálculo posterior de las combinaciones de cargas:

Cargas permanentes

PESO PROPIO

$$q_{pp} = 10,72 \text{ kg/m}^2 = 0,105 \text{ kN/m}^2$$

Cargas variables

EFECTO DEL VIENTO (MAS DESFAVORABLE)

Presión: $q_{vp} = 1.03 \text{ kN/m}^2$

Succion: $q_{vs} = -1,65 \text{ kN/m}^2$

5.3. COMBINACIONES DE CARGAS

A continuación, se describe el proceso seguido, según Código Técnico de la Edificación Documento Básico Seguridad Estructural, para plantear las posibles combinaciones de hipótesis de carga y posteriormente seleccionar las más peligrosas.

El valor de cálculo de los efectos de las acciones correspondiente a una situación persistente o transitoria, se determina mediante combinaciones de acciones a partir de la expresión:

$$\sum_{j\geq 1} \gamma_{G,\,j} \cdot G_{k,\,j} \,+\, \gamma_P \cdot P \,+\, \gamma_{Q,1} \cdot Q_{k,1} \,+\, \sum_{i>1} \gamma_{Q,\,i} \cdot \psi_{0,\,i} \cdot Q_{k,\,i}$$

Es decir, considerando la acción simultánea de:

- a) todas las acciones permanentes, en valor de cálculo ($\gamma G \cdot Gk$), incluido el pretensado ($\gamma P \cdot P$);
- b) una acción variable cualquiera, en valor decálculo ($\gamma Q \cdot Q k$), debiendo adoptarse como tal una tras otra sucesivamente en distintos análisis;
- c) el resto de las acciones variables, en valor de cálculo de combinación ($\gamma Q \cdot \psi 0 \cdot Q k$).

Los valores de los coeficientes de seguridad, γ , se establecen en latabla 4.1 para cada tipo de acción, atendiendo para comprobaciones de resistencia asi su efecto es desfavorable o favorable, considerada globalmente.

Tipo de verificación ⁽¹⁾	(1) Tipo de acción Situación persisten			
		desfavorable	favorable	
	Permanente Peso propio, peso del terreno	1,35	0,80	
Resistencia	Empuje del terreno	1,35	0,70	
	Presión del agua	1,20	0,90	
	Variable	1,50	0	
		desestabilizadora	estabilizadora	
Fatabilidad	Permanente Peso propio, peso del terreno	1,10	0,90	
Estabilidad	Empuje del terreno	1,35	0,80	
	Presión del agua	1,05	0,95	
	Variable	1,50	0	

Tabla 4.1 Coeficientes parciales de seguridad (γ) para las acciones

Figura 22. Tabla 4.1. Coeficientes parciales de seguridad (γ) para las acciones

Para comprobaciones de estabilidad, se diferenciará, aun dentro de la misma acción, la parte favorable (la estabilizadora), de la desfavorable (la desestabilizadora).

Los valores de los coeficientes de simultaneidad que se emplean en las combinaciones, $\psi 0$, se establecen en la tabla 4.2.

	Ψ0	Ψ1	Ψ2
Sobrecarga superficial de uso (Categorías según DB-SE-AE)			
Zonas residenciales (Categoría A)	0,7	0,5	0,3
 Zonas administrativas(Categoría B) 	0,7	0,5	0,3
Zonas destinadas al público (Categoría C)	0,7	0,7	0,6
Zonas comerciales (Categoría D)	0,7	0,7	0,6
 Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría E) 	0,7	0,7	0,6
Cubiertas transitables (Categoría F)		(1)	
Cubiertas accesibles únicamente para mantenimiento (Categoría G)	0	0	0
Nieve			
para altitudes > 1000 m	0,7	0,5	0,2
• para altitudes ≤ 1000 m	0,5	0,2	0
Viento	0,6	0,5	0
Temperatura	0,6	0,5	0
Acciones variables del terreno	0,7	0,7	0,7

Tabla 4.2 Coeficientes de simultaneidad (ψ)

Figura 23. Tabla 4.2. Coeficiente de simultaneidad (ψ) para las acciones

Siguiendo los pasos descritos anteriormente, se estudian 9 combinaciones de

⁽¹⁾ Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C

⁽¹⁾ En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

hipótesis de carga que quedan de la siguiente manera:

2.
$$\gamma_G \cdot Q_{pp} + \gamma_{SU} \cdot Q_{SU}$$

3.
$$\gamma_G \cdot Q_{pp} + \gamma_N \cdot Q_N$$

4.
$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vp}$$

5.
$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vs}$$

6.
$$\gamma_G \cdot Q_{pp} + \gamma_N \cdot Q_N + \Psi_0 \cdot \gamma_V \cdot Q_{Vp}$$


7.
$$\gamma_G \cdot Q_{pp} + \gamma_N \cdot Q_N + \Psi_0 \cdot \gamma_V \cdot Q_{Vs}$$

8.
$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vp} + \Psi_0 \cdot \gamma_N \cdot Q_N$$

9.
$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vs} + \Psi_0 \cdot \gamma_N \cdot Q_N$$

En esta ocasión, para el caso de la fachada, se pueden desechar ciertos valores, ya que para este caso en concreto sólo se presentan el peso propio del cerramiento y la acción que el viento ejerce sobre él. De la misma manera, podemos desechar alguna de las fórmulas, quedándonos con las más críticas o desfavorables.

Resumiendo bajo las premisas consideradas anteriormente, nos quedaremos con las fórmulas que contienen tanto el peso propio como la acción del viento.

Teniendo en cuenta las consideraciones anteriores procedemos a introducir los datos recabados con anterioridad, tanto en perpendicular como en paralelo.

Perpendicular y paralelo

$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vp}$$

- Perpendicular = $0+1.5 \cdot 1.03 = 1.545 \text{kN/m}^2$
- Paralelo = $1,35 \cdot 0,105 + 0 = 0,142 \text{kN/m}^2$

$$\gamma_G \cdot Q_{pp} + \gamma_V \cdot Q_{Vs}$$

- Perpendicular = $0 + 1.5 \cdot (-1.65) = -2.475 \text{kN/m}^2 < 3.05 \text{kN/m}^2$
- Paralelo = $0.8 \cdot 0.105 + 0 = 0.084 \text{ kN/m}^2$

Teniendo en cuanta que la fachada es capaz de soportar una tensión máxima admisible de 3,05KN/m², con esta última comprobación se confirma que la fachada escogida es capaz de soportar las cargas a las cuales ésta será sometida.

6. GRÚA PUENTE

6.1. DATOS DE PARTIDA DE LA GRÚA PUENTE

El puente grúa es uno de los sistemas de manutención y transporte de productos que más se utiliza en la industria. Se desplaza longitudinalmente en naves industriales apoyando las ruedas del mismo en caminos de rodadura denominados vigas carril. A su vez, las vigas carril se apoyan en los soportes o pilares de la estructura del edificio de la nave.

Dotaremos a la nave de una grúa puente, necesaria para el transporte tanto de materiales y piezas realizadas asi como para el movimiento ocasional de maquinaria.

Las características principales de la grúa puente son las siguientes:

- Grúa birrail.
- Capacidad de carga: 12,5 toneladas.
- Altura de colocación de la grúa: 7 metros.
- Luz: 22 metros.
- Disposición de cuatro ramales.

6.2. CLASIFICACIÓN DEL POLIPASTO

6.2.1 Clasificación según las condiciones de servicio

Para un correcto y efectivo funcionamiento del polipasto debe de elegirse la clasificación adecuada para cada tipo de aplicación. Según la normativa FEM 9.511 la clasificación depende de los siguientes factores:

- Espectro de carga
- Tiempo medio de funcionamiento por día de trabajo
- a) Espectro de carga

El espectro de carga se evalúa en base a 4 tipos de condiciones de servicio.

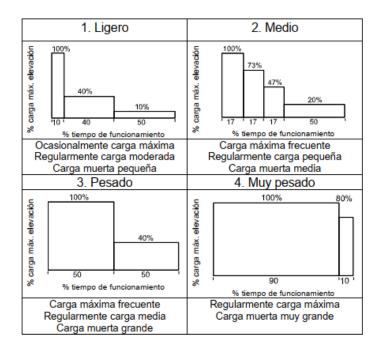


Figura 24. Tabla de determinación del espectro de carga

De acuerdo a la tabla anterior clasificaremos nuestro polipasto como <u>ligero</u>.

b) Tiempo medio de funcionamiento por día de trabajo
 El tiempo medio de trabajo (t) se calcula:

$$t = \frac{2 * H * N * T}{V * 60}$$

H = Altura media de elevación [m]

N = Numero de ciclos por hora [ciclos/h].

Un ciclo consiste en un movimiento de elevación y otro de descenso

T = Tiempo de trabajo [h]

V = velocidad de elevación [m/min]

Para nuestro caso concreto:

$$t = \frac{2 \cdot 6 \cdot 15 \cdot 8}{60 \cdot 6} = 4 h$$

6.2.2 Determinación del grupo de trabajo

Cuando se ha determinado el espectro de carga y el tiempo medio de

funcionamiento puede obtenerse la clasificación necesaria para el polipasto:

Espectro de carga	Tiempo medio de funcionamiento UNE/ISO/FEM (horas por día)				ito		
	0.5 1 2 4 8 16						
Ligero			М3	M4	M5	M6	
Ligero			1Bm	1Am	2m	3m	
Medio		М3	M4	M5	M6	M7	
IVICUIO		1Bm	1Am	2m	3m	4m	
Pesado	M3	M4	M5	M6	M7		
resauo	1Bm	1Am	2m	3m	4m		
Muy pesado	M4	M5	M6	M7			
widy pesado	1Am	2m	3m	4m			

Figura 25. Tabla clasificación grupo de trabajo

Por lo que nuestro polipasto pertenecerá al grupo de trabajo M4 según FEM.

6.2.3 Elección del polipasto

Una vez clasificado el polipasto ya podemos elegir el polipasto que mejor se adapte a las necesidades de nuestra grúa puente. Nos hemos decantado por un polipasto del tipo CX125H*4/1L* suministrado por la empresa JASO, siguiendo las indicaciones pertinentes para la elección del mismo. En la siguiente tabla del catálogo de JASO podemos observar las características técnicas de dicho polipasto.

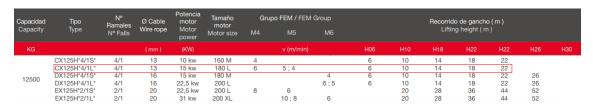


Figura 26. Características técnicas del polipasto

6.3. ELECCIÓN DE LOS TESTEROS

Del mismo modo que para elección del polipasto utilizaremos el catálogo de JASO para determinar los testeros necesarios y que mejor se adapten a nuestro puente grúa. Para ello nos iremos al gráfico de testeros grúa birrailes y tomaremos el número

de referencia de los testeros necesarios para soportar la luz y capacidad de carga de nuestra grúa puente:

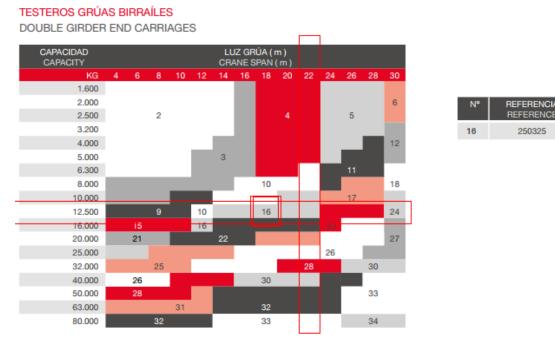


Figura 27. Tabla de referencia testeros

Por lo que nuestros testeros tendrán un número de referencia 250325.

Del mismo modo las cargas medias admisibles por rueda:

CARGAS MEDIAS ADMISIBLES POR RUEDA. S/NORMAS FEM 1987, GRUPO M4 (KG)

AVERAGE WORKING LOADS PER WHEEL, PER FEM 1987, GROUP M4 (KG)

Ø (mm)	Ancho cuadradillo mm Width square-bar mm	Reacción máxima kg. Maximun reaction kg.
125	40	4295
160	40	5425
200	40	7100
250	40	8945
315	40	11650
400	50	19570
500	50	24680
630	60	50325

Figura 28. Cargas medias admisibles por rueda

Utilizando el número de referencia de nuestros testeros obtenemos las dimensiones de los mismos:

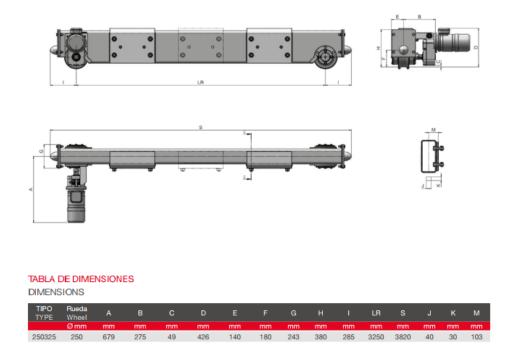


Figura 29. Dimensiones de los testeros

6.4. ELECCIÓN DE LA GRÚA PUENTE

Debido fundamentalmente a la amplia luz que debemos salvar con la grúa puente nos decantamos por una grúa puente birraíl suministrado por la marca JASO. Dicha puente grúa está capacitada para levantar cargas de hasta 12.500 kg. Las características de dicha grúa puente se adjuntan en la siguiente tabla.

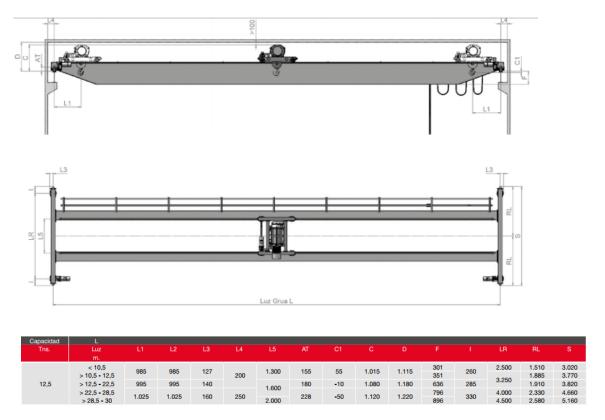


Figura 30. Características de la grúa

6.5. CÁCULO DE LA VIGA CARRIL

Para el cálculo de la viga carril seguiremos las indicaciones pertinentes establecidas en la norma UNE 76-201-88, "Construcciones metálicas, Caminos de rodadura de puentes grúa. Bases de Cálculo".

6.5.1. Clasificación de los puentes grúa

Todo puente grúa se proyecta para cumplir unos requisitos prefijados, entre los que cabe destacar, además de la carga nominal ya mencionada, su vida de servicio y la secuencia de variación aleatoria del valor de las diferentes cargas, izadas durante tal vida.

La norma UNE 58-112 define la vida de servicio de un aparato de elevación mediante el número máximo convencional de ciclos de maniobra que se espera que sean realizados; mientras que la secuencia de variación del valor de las diferentes cargas izadas la define mediante el coeficiente nominal, o parámetro, del espectro de

cargas K₀.

La misma norma especifica el valor máximo convencional de maniobras de un aparato a partir de las condiciones de utilización de éste; mientras que el parámetro del espectro de cargas es fijado en función de sus condiciones, o estados, de carga

Además, en la misma norma se recoge una clasificación global de los aparatos de elevación por grupos.

Para nuestro caso en concreto seleccionamos de la tabla 1 la denominación de puente grúa de taller con gancho que es la que mejor se adapta a nuestro caso en concreto.

Ejemplo de clasificación	de los aparatos de	elevación
	Condiciones	Condici

Denominación	Condiciones de utilización	Condiciones de carga	Grupo
Puente grúa de central Puente grúa de montaje y desmontaje para sala	Α	1-2	1-2
de máquinas	Α	2-3	2-3
Puente grúa de almacén	B-C	2-3	3-4-5-6
Puente grúa de taller con gancho	В	2-3	3-4
Puente grua con cuchara	B-C-D	4	5-6-7-8
Puente grúa para parque de chatarra o puente			
con electroimán*	B-C	4	5-6-7-8
Puente de colada*	В	4	5-6
Puente rompe-fundición*	B-C	4	5-6-7-8
Puente para deslingotar*	C-D	4	7-8
Puente para hornos de fosa*	B-C	4	5-6-7-8
Puente cargador de hornos*	C-D	4	5-6-7-8
Puente para forja*	C-D	4	5-6-7-8
Pórtico con gancho para servicio de parque de			
material	B-C	3	4-5-6
Pórtico con cuchara	B-C-D	4	5-6-7-8
Pórtico con gancho para descarga o carga sobre			
vehículo	B-C	3	4-5-6
Pórtico para almacén	B-C-D	4	5-6-7-8
Pórtico para desmontaje de material	A-B	2-3	2-3-4
Grúa para desmontaje y montaje de material	A-B	2-3	2-3-4
Grúa con gancho	B-C	3	4-5-6
Grúa con cuchara	B-C-D	4	5-6-7-8
Grúa de dique	В	3-4	4-5-6
Grúa de puerto con gancho	B-C	3	4-5-6
Grúa de puerto con cuchara	B-C	4	5-6-7-8
Grúa para servicio excepcional	A	1-2	1-2
Grúa flotante con gancho	A-B	3	3-4
Grúa flotante con cuchara	A-B	4	4-5-6
Grúa de astillero	A-B	3	3-4
Grúa de reparación sobre vía férrea	A	2-3	2-3
Grúa de a bordo	В	3-4	4-5-6
Grúa velocípeda automóvil	B-C	3	4-5-6
Grúa derrick	A-B	3	3
Monocarril (según utilización)			4-5-6-7-8
Pórtico y puente para contenedores	B-C	3	4-5-6

^{*} Puente especial

Figura 31. Tabla 1. Clasificación de los aparatos de elevación

Condiciones de utilización. En función del número convencional máximo de ciclos de maniobra, N_m , que el puente grúa debe cubrir durante su vida de servicio, se establecen las siguientes diez condiciones de utilización, recogidas en la tabla 2. Para nuestro caso en concreto el puente grúa tendrá una utilización regular en servicio ligero, a la cual le corresponde unas condiciones de utilización U_4 y un número convencional de $2,5 \cdot 10^5$ ciclos de maniobra (N_m) .

Tabla 2 Condiciones de utilización				
Condiciones de utilización	de nal de ciclos de	Observaciones		
U ₀	1,6 × 10 ⁴			
U ₁	3,2×10 ⁴			
U ₂	6,3 × 104	Utilización ocasional		
U ₃	1,25 x 10 ⁵			
U ₄	2,5 × 10 ⁵	Utilización regular en servicio ligero		
U _S	5 × 10 ⁵	Utilización regular en servicio intermitente		
U ₆	1 × 106	Utilización regular en servicio intensivo		
U ₇	2 × 106			
U ₈	4×106	Utilización intensiva		
Ug	Más de 4 x 106			

Figura 32. Tabla 2. Condiciones de utilización

Condiciones de carga. Las condiciones de carga se definen en función de la relación prevista entre las cargas que el puente grúa debe transportar normalmente en servicio y su carga nominal. En la tabla 3 se presentan las cuatro condiciones de carga, Q1, Q2, Q3, Q4, utilizados en el ámbito de la presente norma. Las condiciones de carga de nuestro puente grúa serán las de un aparato que levanta raramente la carga útil y corrientemente cargas muy pequeñas, por lo que su condición de carga será Q1-Ligero y su parámetro del espectro K_Q sera de 0,125.

Tabla 3 Condiciones de carga				
Condiciones de carga	Parámetro del espectro, K _Q	Observaciones		
Q1 – Ligero	0,125	Aparato que levanta raramente la carga útil y corrientemente carga muy pequeñas.		
Q2 – Moderado	0,25	Aparato que levanta con bastante frecuencia la carga útil y corriente mente cargas pequeñas.		
Q3 – Pesado	0,50	Aparato que levanta con bastante frecuencia la carga útil y corriente mente cargas medianas.		
Q4 – Muy pesado	1,00	Aparato que corrientemente ma- neja cargas próximas a la carga útil		

Figura 33. Tabla 3. Condiciones de carga

Grupos de puente grúa. En funcion de las condiciones de utilización y las de carga, definidas en los apartados anteriores, se clasificarán los puentes grúa en ocho grupos, definidos en la tabla 4. Para nuestro caso en concreto el puente grúa quedará classificado como perteneciente al grupo 3.

Condiciones de	Condiciones de utilización									
carga	Uo	Uı	U ₂	U ₃	U ₄	U ₅	U ₆	U ₇	♥8	Ug
Q1 – Ligero	1	1	1	2	3	4	5	6	7	8
Q2 – Moderado	1	1	2	3	4	5	6	7	8	8
Q3 – Pesado	1	2	3	4	5	6	7 .	8	8	8
Q4 – Muy Pesado	2	3	4	5	6	7	8	8	8	8

Figura 34. Tabla 4. Clasificación de los puentes grúa.

Coeficientes de efectos dinámicos vertical. Una vez determinado el grupo al que pertenece nuestro puente grúa podemos hallar en la tabla 5 el valor del coeficiente de efectos dinámicos vertical, el cual necesitaremos para calcular las acciones de las ruedas del puente en movimiento. El valor del coeficiente de efectos dinámicos vertical para nuestro caso en concreto viene resaltado en la siguiente tabla:

Grupo	Viga ca	Viga carrilera		Soportes		
Grupo	máx	red	máx	red		
1 y 2	1,1	1,1	1,0	1,0		
3 y 4	1,15	1,1	1,0	1,0		
5 y 6	1,25	1,1	1,1	1,0		
7 y 8	1,35	1,1	1,2	1,0		

Table 5

Figura 35. Tabla 5. Valor de los coeficientes dinámicos.

6.5.2. Acciones verticales de las ruedas de la grúa puente

Las acciones de las ruedas del puente en movimiento se obtienen a partir de las acciones estáticas máximas correspondientes, multiplicándolas por un coeficiente de efectos dinámicos. Con la notación establecida:

$$V_d = \phi \cdot V$$

REACCIONES POR RUEDA (kg) // REACTIONS PER WHEEL (kg)

La tabla 5 recoge los valores del coeficiente φ correspondiente a los distintos grupos de puentes grúa, tanto para las vigas del camino de rodadura como para el soporte de las mismas. Estos valores corresponden al caso de que, tanto el carril como las ruedas estén en buen estado y que las maniobras se efectúen normalmente.

Los inconvenientes provenientes de un mal estado del camino de rodadura, juntas defectuosas, carriles sin el necesario grado ded fijación, o de mal estado de las ruedas, rueda aplanada, son imposibles de tener en cuenta con valor alguno del coeficiente de efectos dinámicos.

Tomamos del catálogo de JASO los valores de las reacciones por rueda de nuestro puente grúa:

6.075 6.485 6.830 8.085 8.285 8.720 9.160 9.515 10.620 7.160 7,485 7.760 9.995 MIN 1.515 2.100 2.600 1.380 1.405 1.515 1.700 1.865 2.990 3.305 3.760 4.035

Figura 36. Reacciones por rueda

Teniendo en cuenta el valor de las reaaciones por rueda y el valor del coeficiente de efectos dinamicos ya podemos calcular el valor de las acciones verticales.

Para la viga:

$$V_{dmax} = \phi \cdot R_{max} = 2 \cdot 1,15 \cdot 8720 \text{ kg} = 20056 \text{ kg} = 196,75 \text{ kN}$$

$$V_{dmin} = \phi \cdot R_{min} = 2 \cdot 1,15 \cdot 2600 \text{ kg} = 5980 \text{ kg} = 58,67 \text{ kN}$$

Para los soportes:

$$\begin{split} V_{d\textit{max}} &= \phi \cdot R_{\textit{max}} = 2 \cdot 1,\! 0 \cdot 8720 \text{ kg} = 17480 \text{ kg} = 171,\! 48 \text{ kN} \\ V_{d\textit{min}} &= \phi \cdot R_{\textit{min}} = 2 \cdot 1,\! 0 \cdot 2600 \text{ kg} = 5200 \text{ kg} = 51,\! 01 \text{ kN} \end{split}$$

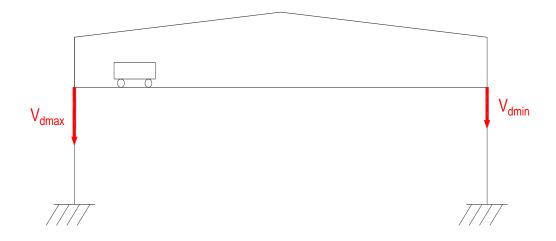


Figura 37. Acciones verticales

6.5.3 Acciones horizontales longitudinales

La aceleración, o el frenado, del movimiento de traslación del puente conducen a la aparición de acciones longitudinales aplicadas a las cabezas de los carriles. Estas fuerzas horizontales, que las llantas de las ruedas motrices del puente ejercen sobre el carril, se calcularán en función de la aceleración, o deceleraciones máximas que se produzcan en servicio normal.

Si los valores de las aceleraciones y deceleraciones no fueran dados por el constructor de la grúa o impuestos por el usuario, se podrá fijar, a título indicativo, en función de la velocidad de movimiento y de las tres condiciones de explotación siguientes:

- Aparatos de velocidad lenta y aparatos de velocidad media con grandes recorridos.
- 2. Aparatos de velocidad media y rápida de aplicación corriente.
- 3. Aparatos de velocidad rápida con fuertes aceleraciones.

La tabla 6 recoge los valores medios de las aceleraciones y deceleraciones, para las tres condiciones de explotación.

Cuando se desconozca la velocidad de movimiento del puente, se adoptará 0,4 m/s² como valor medio de la aceleración.

El valor medio de la resultante de las acciones longitudinales de acveleración de un puente estará limitado por la adherencia entre las ruedas motrices y los carriles.

Esta fuerza estará limitada por la adherencia entre las ruedas motrices y los carriles para que la selección del equipo sea correcta.

Para el cálculo de la viga carril y de sus vínculos a la estructura soporte se adoptará:

$$\sum H_{lmax} = (Q + C + P) \cdot (w + \frac{2jp}{g}) \le (Q + C + P) f kp$$

debiendo tomarse como valor del coeficiente de adherencia:

f = 0.12 en caminos de rodadura húmedos;

f = 0.2 en caminos secos.

Se considerará que la carga se halla en su posición mas elevada, y no se tendrá en cuenta su osclación- las acciones longitudinales se considerarán repartidas por igual en los dos carriles, siempre que su valor no esté limitado por la adherencia entre rueda y carril. En caso contrario, se repartirá en dos fuerzas desiguales, de la manera siguiente:

Reacción longitudinal menor:

$$H_{l2} = f kp \cdot \sum V_2$$

Reacción longitudinal mayor:

$$H_{l1} = \sum H_{lmax} - H_{l2}$$

siendo $\sum V_2 = \sum V_{min}$ la suma de las acciones verticales estáticas ejercidas por las ruedas de la viga testera menos cargada.

Para el cálculo de los soportes se adoptará:

$$H_l = 0.2 \cdot \sum V \cdot kp$$

siendo \sum V la suma de todas las acciones estáticas ejercidas por las ruedas de la viga testera correspondiente.

Procederemos al cálculo mediante la fórmula utilizada anteriormente:

$$\sum H_{lmax} = (Q + C + P) \cdot (w + \frac{2jp}{g}) \le (Q + C + P) f kp$$

donde:

Q peso de la carga nominal, 12500kg = 122,63kN

C peso del carro y su equipo, 800 kg = 7,85 kN

P peso del puente y su equipo, 10140kg = 99,47kN

 j_p aceleración media positiva o negativa del puente según la Tabla 6 "Valores medios de las aceleraciones y las deceleraciones".

Para obtener el valor medio de la aceleleración del puente introducimos en la Tabla 6 el valor de la velocidad de nuestra grúa, esto es, 20m/min = 0.33m/s. Para este valor obtendremos $j_p = 0.088\text{m/s}^2$

Velocidad m/s	1 Velocidad le con gran		2 Velocidad n (aplicacione		 Velocidad rápida con fuertes aceleraciones 		
	Duración de la aceleración s	Aceleración media m/s²	Duración de la aceleración s	Aceleración media m/s²	Duración de la aceleración s	Aceleración media m/s²	
4,00			8,0	0,50	6,0	0,67	
3,15			7,1	0,44	5,4	0,58	
2,50			6,3	0,39	4,8	0,52	
2,00	9,1	0,22	5,6	0,35	4,2	0,47	
1,60	8,3	0,19	5,0	0,32	3,7	0,45	
1,00	6,6	0,15	4,0	0,25	3,0	0,33	
0,63	5,2	0,12	3,2	0,19			
0,40	4,1	0,098	2,5	0,16	1 1		
0,25	3,2	0,078					
0,16	2,5	0,064					

Tabla 6 Valores medios de las aceleraciones y deceleraciones

Figura 38. Tabla 6. Valores medios de las aceleraciones.

- f coeficiente de adherencia de la rueda carril, 0,2 en caminos de rodadura secos.
- k_p relación entre el número de ruedas motrices del puente y su número total de ruedas, en nuestro caso 2/4 = 0.5.

Introducimos los parametros calculados en la expresión de la fuerza longitudinal y comprobamos la condición:

$$\sum H_{l_{\text{max}}} = (Q + C + P) \cdot (w + \frac{2jp}{g}) \le (Q + C + P) f kp$$

$$(122,63 + 7,85 + 99,47) \cdot (\frac{2 \cdot 0,088}{9,81}) \le (122,63 + 7,85 + 99,47) \cdot 0,2 \cdot 0,5$$

$$4,13kN \le 23,00kN$$

Por consiguiente, se posee la capacidad para elaborar la instrucción de las solicitaciones ejercidas por el puente grúa sobre el conjunto de la estructura.

Procedemos a continuación al cálculo de la fuerza longitudinal máxima y

mínimo:

$$H_{lmax} = V_{dmax} \cdot \frac{2jp}{g} = 171,48 \cdot \frac{2 \cdot 0,088}{9,81} = 3,08kN$$

$$H_{lmin} = V_{dmin} \cdot \frac{2jp}{g} = 51,01 \cdot \frac{2 \cdot 0,088}{9,81} = 0,92kN$$

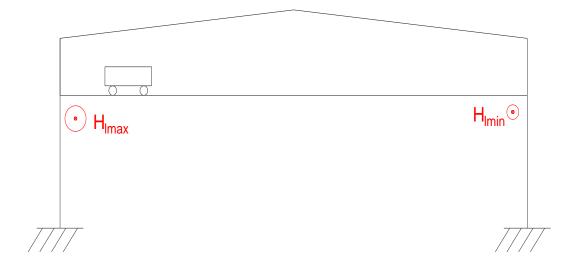


Figura 39. Acciones horizontales longitudinales

6.5.4 Acciones horizontales transversales sobre los carriles de traslación del puente

Acciones H_c debidas a la aceleración o deceleración del carro

La aceleración, o deceleración, de movimiento de traslación del carro conduce a la aparición de acciones horizontales trasversales al camino de rodadura. Estas fuerzas transversales se calcularán en función de la aceleración, deceleración, máximas que se produzcan en un servicio normal.

El valor de la aceleración media positiva o negativa es un dato que debe proporcionar el constructor de la grúa, o fijar el usuario. En caso de no ser conocido, podrán utilizarse a título indicativo los valores que se dan en la Tabla 6, para aplicaciones corrientes. Cuando se desconozca la velocidad de movimiento, se adoptará 0,2m/s² como aceleración media.

Para el cálculo de la viga carril y de sus vínculos a la estructura de soporte se tomará:

$$\sum H_{cmax} = (Q + C) \cdot (w + \frac{2jc}{g}) \le (Q + C)fkc$$

Siendo los valores del coeficiente de adherencia los mismos calculados anteriormente y considerando que la carga se encuentra en su posición más elevada.

donde:

- Q peso de la carga nominal, 12500kg = 122,63kN
- C peso del carro y su equipo, 800 kg = 7,85 kN
- J_c aceleración media positiva o negativa del carro según la Tabla 6 "Valores medios de las aceleraciones y las deceleraciones".

Para obtener el valor medio de la aceleleración del carro introducimos en la Tabla 6 el valor de la velocidad de nuestro carro, esto es, 40m/min = 0,66m/s. Para este valor obtendremos $j_c = 0,098\text{m/s}^2$

	Valores medios de las aceleraciones y deceleraciones								
Velocidad	1 Velocidad le con gran i			nedia y rápida s corrientes)	3 Velocidad rápida con fuertes aceleraciones				
m/s	Duración de la aceleración s	Aceleración media m/s²	Duración de la aceleración s	Aceleración media m/s²	Duración de la aceleración s	Aceleración media m/s²			
4,00			8,0	0,50	6,0	0,67			
3,15			7,1	0,44	5,4	0,58			
2,50			6,3	0,39	4,8	0,52			
2,00	9,1	0,22	5,6	0,35	4,2	0,47			
1,60	8,3	0,19	5,0	0,32	3,7	0,45			
1,00	6,6	0,15	4,0	0,25	3,0	0,33			
0,63	5,2	0,12	3,2	0,19					
0,40	4,1	0,098	2,5	0,16					
0,25	3,2	0,078	ľ l						
0,16	2,5	0,064							

Tabla 6 Valores medios de las aceleraciones y deceleraciones

Figura 40. Tabla 6. Valores medios de las aceleraciones.

- f coeficiente de adherencia de la rueda carril, 0,2 en caminos de rodadura secos.
- K_c relación entre el número de ruedas motrices del carro y su número total de ruedas, en nuestro caso 2/4 = 0.5.

Introducimos los parametros calculados en la expresión de la fuerza longitudinal y comprobamos la condición:

$$\sum H_{cmax} = (Q + C) \cdot (w + \frac{2jc}{g}) \le (Q + C)fkc$$

$$(122,63+7,85) \cdot (\frac{2 \cdot 0,098}{9,81}) \le (122,63+7,85) \cdot 0,2 \cdot 0,5$$
$$2,61 \text{kN} \le 13,05 \text{kN}$$

Por consiguiente, se posee la capacidad para elaborar la instrucción de las solicitaciones ejercidas por el puente grúa sobre el conjunto de la estructura.

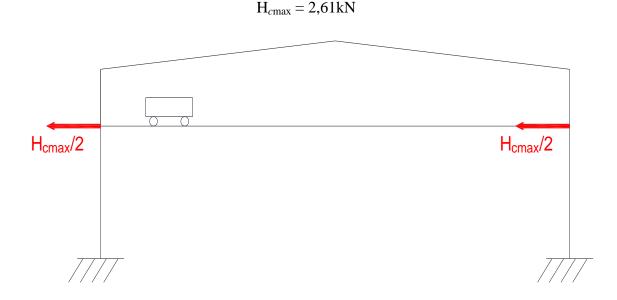


Figura 41. Acciones horizontales transversales.

6.5.5. Situaciones posibles debidas al puente grúa

Debemos considerar las dos situaciones probables del elemento estudiado para estimar con certeza las posibles consecuencias.

Se establece el moviento de un solo elemento en cada situación. Lo que quiere decir que el carro y el puente no se encontrarán en movimiento al mismo tiempo. Cuando se produzca el movimiento del carro el puente se encontrará estacionario y viceversa.

Las fuerzas a considerar sobre la viga carril son las siguientes:

- Verticales. Producidas por el peso propio de la viga carril y de las fuerzas verticales.
- Longitudinales. Producidas por la aceleración y frenado del puente grúa.

Trasnsversales. Producidas por la aceleración y frenado del carro.

Las fuerzas a considerar sobre los pilares del pórtico (soportes) son las siguientes:

- Verticales. Producidas por el peso propio de la viga carril y de las fuerzas verticales.
- <u>Trasnsversales.</u> Producidas por la aceleración y frenado del carro.

Las fuerzas sobre el entramado lateral son:

 Longitudinales. Producidas por la aceleración y frenado del puente grúa.

A continuación se estudiarán las posibles situaciones que podrán darse:

Situación 1. Puente en movimiento y carro parado.

En este caso el carro permanecerá parado mientras el puente está en movimiento. Por lo que aparecerán cargas longitudinales debido a la aceleración y frenado del puente y las cargas verticales dinámicas de los elementos que conforman el puente grúa.

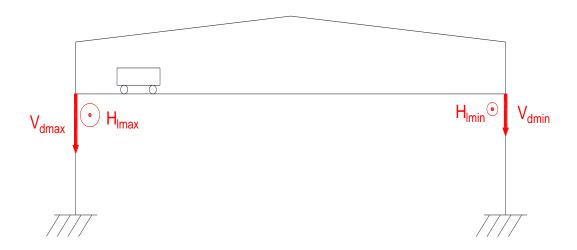


Figura 42. Situación 1

Situación 2. Puente en movimiento y carro parado.

En este caso el puente permanecerá parado mientras el carro está en movimiento. Por lo que aparecerán por una parte cargas transversales debido a la aceleración y frenado del carro y las cargas verticales dinámicas de los elementos que conforman el puente grúa.

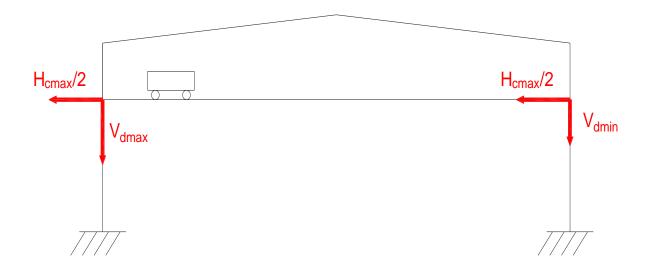


Figura 43. Situación 2

6.5.6. Cálculo de la viga carril

A la hora de calcular la viga carril, consideraremos las fuerzas verticales producidas por cada rueda del puente grúa con la carga máxima y la fuerza horizontal transversal producida por la aceleración y frenado del carro (situación 2).

La viga carril se comportará como una viga continua a lo largo de los 10 vanos de la nave, es decir, 50 m.

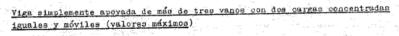
Por su parte la grúa será birraíl para una capacidad de 12,5 Tn, con una luz de 22 m y dispuesta a una altura de 7 m. La distancia entre ruedas de los testeros será de 3,25 m.

El coeficiente de mayoración dinámico para nuestra viga carril es de 1,15. Además, al ser la carga vertical variable, utilizaremos otro coeficiente de ponderación de cargas para el cálculo resistente de valor 1,5.

Dimensionaremos la viga carril a flexión como una viga continua para un puente grúa que genera una carga máxima por rueda de $R_{max}=85,54$ kN, con una distancia entre ruedas de a = 3,25 m y con una distancia entre apoyos de L = 5 m. la limitación de la flecha será de L/1000.

La fuerza vertical ejercida por cada rueda una vez aplicados los coeficientes de mayoración correspondientes quedarían de la siguiente forma:

$$F_{Vmax} = 1,15 \cdot 1,5 \cdot 85,54 = 147,56 \text{ kN}$$


$$F_{Vmin} = 1,15 \cdot 1,5 \cdot 25,51 = 44,00 \text{ kN}$$

La fuerza transversal ejercida por el carro una vez aplicados los coeficientes de mayoración correspondientes quedaría de la siguiente forma:

$$F_{Htrans} = 1.5 \cdot 2.61 = 3.92 \text{ kN}$$

Momento flector

Para el análisis del mayor momento flector debido a las reacciones del puente grúa, para una viga simplemente apoyada en más de tres vanos, con dos cargas concentradas iguales y móviles, se toma como referencia la tabla de la página 46 del libro "El proyectista de estructuras métalicas", de R. Nonnast.

12	MfB		Mf _C		MfD		Mf		Reacciones en los apoyos	
1	11	MfB	1'1	MfC	11	MfD	¹ '1	MfE	A	B = C
0 0,05 0,10 0,10 0,20 0,25 0,30 0,45 0,45 0,50 0,65 0,75 0,60 0,65 0,75 0,80 0,85 0,95 0,95	0,578·1 0,552·1 0,525·1 0,497·1 0,469·1 0,439·1 0,375·1 0,375·1 0,700·1 0,675·1 0,675·1 0,675·1 0,675·1 0,655·1 0,556·1 0,556·1 0,532·1 0,587·1 0,487·1	0,206 P·1 0,206 P·1 0,206 P·1 0,201 P·1 0,197 P·1 0,192 P·1 0,192 P·1 0,170 P·1 0,160 P·1 0,167 P·1 0,176 P·1 0,176 P·1 0,181 P·1 0,181 P·1 0,181 P·1 0,182 P·1 0,187 P·1 0,174 P·1	0,616·1 0,590·1 0,563·1 0,534·1 0,504·1 0,472·1 0,402·1 0,773·1 0,773·1 0,773·1 0,674·1 0,674·1 0,674·1 0,574·1 0,574·1 0,594·1 0,594·1 0,594·1	0,172-P-1 0,172-P-1 0,171-P-1 0,168-P-1 0,159-P-1 0,153-P-1 0,139-P-1 0,146-P-1 0,153-P-1 0,166-P-1 0,168-P-1 0,170-P-1 0,170-P-1 0,170-P-1 0,164-P-1 0,170-P-1 0,170-P-1	0,437·1 0,417·1 0,407·1 0,389·1 0,389·1 0,372·1 0,366·1 0,357·1 0,357·1 0,345·1 0,354·1 0,354·1 0,354·1 0,366·1 0,366·1 0,366·1 0,366·1 0,366·1 0,366·1 0,366·1	0,409·P·1 0,396·P·1 0,364·P·1 0,343·P·1 0,323·P·1 0,323·P·1 0,267·P·1 0,271·P·1 0,242·P·1 0,229·P·1 0,229·P·1 0,218·P·1 0,191·P·1 0,185·P·1 0,177·P·1 0,173·P·1	0,495·1 0,489·1 0,489·1 0,479·1 0,470·1 0,466·1 0,466·1 0,455·1 0,455·1 0,450·1 0,409·1 0,410·1 0,410·1 0,416·1 0,416·1 0,416·1 0,418·1 0,420·1	0,345-P-1 0,321-P-1 0,299-P-1 0,261-P-1 0,261-P-1 0,226-P-1 0,212-P-1 0,100-P-1 0,100-P-1 0,105-P-1 0,155-P-1 0,155-P-1 0,148-P-1 0,148-P-1 0,145-P-1 0,145-P-1 0,145-P-1	2,000 P 1,937 P 1,874 P 1,811 P 1,749 P 1,687 P 1,627 P 1,558 P 1,510 P 1,454 F 1,397 P 1,297 P 1,204 P 1,162 P 1,162 P 1,162 P 1,163 P 1,025 P 1,025 P 1,000 P	2,013 P 2,011 P 2,004 P 1,979 P 1,979 P 1,961 P 1,937 P 1,911 P 1,881 P 1,810 P 1,771 P 1,728 P 1,583 P 1,583 P 1,583 P 1,474 P 1,417 P 1,417 P 1,417 P 1,417 P 1,438 P

Figura 44. Tabla de momentos flectores.

Se observa en la tabla que la peor situación para la viga carril se da cuando la grúa puente se sitúa entre el primer y el segundo vano, en el apoyo B.

Teniendo en cuenta que:

- L₂ = LR = 3,25 m
- L = distancia entre pórticos = 5 m

Obtenemos para la zona B:

- L₂/LR = 3,25/5 = 0,65
- $-L_1 = 0.651 \cdot L = 0.651 \cdot 5 = 3.26 \text{ m}$
- $Mf_B = 0.176 \cdot P \cdot L = 0.176 \cdot 147,56 \cdot 5 = 129,85 \text{ kNm}$

Flecha máxima

A continuación se van a indicar las flechas máximas admisibles:

- Flecha vertical: en el centro de vano, debida a las reaaciones máximas por rueda, L/750.
- Flecha horizontal: que provocaría que la viga se saliese de su plano, impidiendo la circulación del puente grúa, L/1000.

Flecha máxima vertical

En este caso se aplicará el principio de superposición, sumando las flechas provocadas por la reacción vertical del puente grúa en su posición más perjudicial y la provocada por el peso propio de la viga carril.

$$F_{Vadm} = L/750 = 5000/750 = 6,67 \text{ mm}$$

Flecha máxima horizontal

En este caso solo tendremos en cuenta la carga producida por el movimiento de aceleración y deceleración del carro.

$$F_{Hadm} = L/1000 = 5000/1000 = 5 \text{ mm}$$

Pandeo lateral

De acuerdo con el CTE-SE-A, no será necesaria la comprobación a pandeo lateral cuando el ala comprimida se arriostra de forma continua o bien de forma puntual a distancias menores de 40 veces el radio de giro mínimo.

Procederemos a colocar rigidizadores en los apoyos y en el centro de vano, lo que es decir, cada 2,5 m, para quedar del lado de la seguridad y prevenir de esta manera el pandeo lateral.

Para el cálculo de la viga carril se ha realizado un estudio con el programa CRANEWAY 8.25, el cual permite:

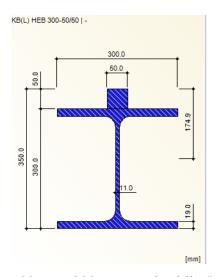
- Análisis de tensiones para puentes grúa y soldaduras.
- Análisis a fatiga para puentes grúa y soldaduras.
- Análisis de deformaciones.
- Cálculo de abolladura para la introducción de cargas en ruedas.
- Análisis de estabilidad para pandeo lateral según la teoría de pandeo lateral de 2º orden (MEF de elemento 1D)

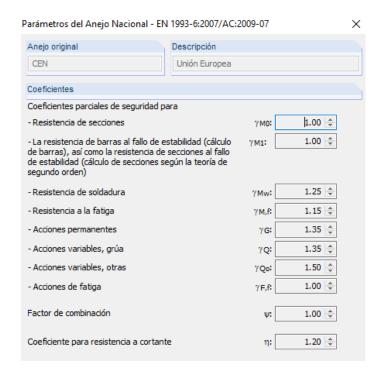
Este programa realiza el cálculo de vigas carril para puentes grúa según las normas EN 1993-6, DIN 4132 y DIN 18800.

Hemos seleccionado un perfil HEB 300 para la viga carril que llevará soldado

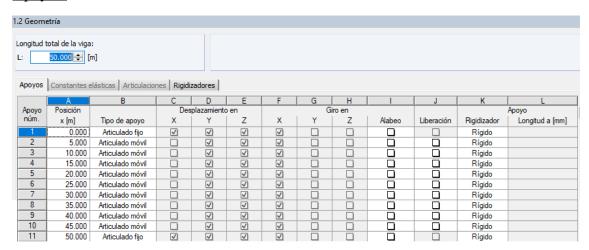
un un cuadradillo de 50 x 50 para el carril. El material del acero será S 275 JR.

Propiedades de la sección:




Figura 45. Perfil HEB 300 con cuadradillo 50 x 50.

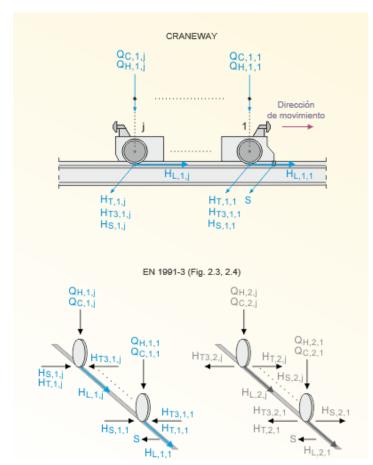
Canto h 300.0 mm Ancho b 300.0 mm Espesor de alma tw 11.0 mm Espesor del ala tf 19.0 mm Radio de empalme de raíz r 27.0 mm Canto entre alas hi 262.0 mm Canto del alma recta d 208.0 mm Área de la sección A 149.10 cm²
Espesor de alma t _w 11.0 mm Espesor del ala tf 19.0 mm Radio de empalme de raíz r 27.0 mm Canto entre alas hi 262.0 mm Canto del alma recta d 208.0 mm
Espesor del ala tf 19.0 mm Radio de empalme de raíz r 27.0 mm Canto entre alas hi 262.0 mm Canto del alma recta d 208.0 mm
Radio de empalme de raíz r 27.0 mm Canto entre alas hi 262.0 mm Canto del alma recta d 208.0 mm
Canto entre alas hi 262.0 mm Canto del alma recta d 208.0 mm
Canto del alma recta d 208.0 mm
Área de la sección A 149.10 cm ²
Área a cortante A _y 94.97 cm ²
Área a cortante Az 28.65 cm ²
Área a cortante según EC 3 A v,y 118.18 cm ²
Área a cortante según EC 3 A _{V,z} 47.45 cm ²
Área plástica a cortante Apl, 114.00 cm ²
Área plástica a cortante Apl,z 30.91 cm ²
Momento de inercia I _V 25170.00 cm ⁴
Momento de inercia Iz 8563.00 cm ⁴
Radio de giro determinante i _V 129.9 mm
Radio de giro determinante iz 75.8 mm
Radio de giro polar ip 150.4 mm
Radio de giro del ala con 1/5 del área del a lizg 80.6 mm
Volumen V 14910.00 cm ³ /m
Peso p 117.0 kg/m
Superficie A superf 1.730 m ² /m
Factor de sección Am/V 116.030 1/m
Módulo de torsión
Constante de alabeo I_{ω} 1.688E+06 cm ⁶
Módulo resistente elástico Wy 1678.00 cm ³
Módulo resistente elástico Wz 570.90 cm ³
Módulo resistente de alabeo W w 8009.49 cm ⁴
Momento estático S _{y,max} 934.50 cm ³
Momento estático S _{z,max} 213.75 cm ³
Constante de alabeo normalizado
Momento estático de alabeo S _{ω,max} 3003.19 cm ⁴
Módulo resistente plástico W pl,y 1869.00 cm ³
Módulo resistente plástico W pl,z 870.10 cm ³
Módulo resistente plástico de alabeo W pl, ω 12012.80 cm ⁴
Factor de forma plástica $\alpha_{pl,y}$ 1.114
Factor de forma plástica $\alpha_{pl,z}$ 1.524
Factor de forma plástica αρΙ,ω 1.500
Curva de pandeo (DIN 18800-2:2008-11) CP _{y,DIN} b
Curva de pandeo (DIN 18800-2:2008-11) CP _y ,DIN c
Curva de pandeo para acero con f _y >=461 CP _{y,DIN,S4} a
Curva de pandeo para acero con f _y >=46/ CP _{z,DIN,S4} b
Curva de pandeo según EN CP _{y,EN} b
Curva de pandeo según EN CP z,EN c
Curva de pandeo según EN para acero S 4 CP y,EN,546 a
Curva de pandeo según EN para acero S 4 CP z,EN,546 a


Propiedades del material:

Propiedades del material	Acero	S 275 JR EN 10025-2:2004
∃ Propiedades principales		
Módulo de elasticidad	E	21000.00 kN/cm ²
Módulo de cortante	G	8076.92 kN/cm ²
Coeficiente de Poisson	v	0.300
Peso específico	γ	78.50 kN/m ³
Coeficiente de dilatación térmica	α	1.2000E-05 1/°C
Propiedades adicionales		
- □ Intervalos de espesor t ≤ 3.0 mm		
Límite elástico	fy	27.50 kN/cm ²
Resistencia última a tracción	fu	43.00 kN/cm ²
- □ Intervalos de espesor t > 3.0 mm y t ≤ 16.0 mm		
Límite elástico	fy	27.50 kN/cm ²
Resistencia última a tracción	fu	41.00 kN/cm ²
Límite elástico Resistencia última a tracción □ Intervalos de espesor t > 40.0 mm y t ≤ 63.0 mm	f _y	26.50 kN/cn 41.00 kN/cn
	I U	41.00 KN/GI
Límite elástico	fy	25.50 kN/cm
Resistencia última a tracción	fu	41.00 kN/cm
☐ Intervalos de espesor t > 63.0 mm y t ≤ 80.0 mm		
Límite elástico	fy	24.50 kN/cm
Resistencia última a tracción	fu	41.00 kN/cm
☐ Intervalos de espesor t > 80.0 mm y t ≤ 100.0 mm		
Límite elástico	fy	23.50 kN/cm
Resistencia última a tracción	fu	41.00 kN/cn
- Intervalos de espesor t > 100.0 mm y t ≤ 150.0 mm		
Límite elástico	f _v	22.50 kN/cr
Resistencia última a tracción	fu	40.00 kN/cr
- Intervalos de espesor t > 150.0 mm y t ≤ 200.0 mm		
Límite elástico	fy	21.50 kN/cr
Resistencia última a tracción	fu	38.00 kN/cr
- Intervalos de espesor t > 200.0 mm y t ≤ 250.0 mm		20.00
Límite elástico	fy	20.50 kN/cr
Resistencia última a tracción	fu	38 00 kN/cr

Normativa:

Apoyos:


Rigidizadores:

	Α	В	С
Vano	Longitud	Número de	Tipo de
núm.	L [m]	paneles int.	posición
1	5.000	2	Regulamente
2	5.000	2	Regulamente
3	5.000	2	Regulamente
4	5.000	2	Regulamente
5	5.000	2	Regulamente
6	5.000	2	Regulamente
7	5.000	2	Regulamente
8	5.000	2	Regulamente
9	5.000	2	Regulamente
10	5.000	2	Regulamente

Parámetros de la grúa puente:

Parámetros de grúa							
Tope de grúa izquierdo	aL	0.330	m				
Tope de grúa derecho a R 0.330							
□ Cojinete de la grúa							
Número de cojinetes	nA	2					
Distancia al centro	a ₁	3.250	m				
□ Cargas de grúa							
— Ambas vigas (W-max y W-min)							
⊟ Viga con W-max							
- Cojinete	iΑ	1					
 Distancia de la fuerza oblicua 	е	0.000	m				
Fuerza oblicua	S	0.00	kN				
 Cargas verticales por rueda 	Qc,1,1	147.56	kN				
 Cargas verticales por rueda 	QH,1,1	44.00	kN				
 Cargas horizontales por rueda 	HT,1,1	0.00	kN				
 Cargas horizontales por rueda 	Hs,1,1	0.00	kN				
 Cargas horizontales por rueda 	HT3,1,1	1.96	kN				
Carga longitudinal	H _{L,1,1}	2.31	kN				
 Cargas verticales por rueda 	QC,1,2	147.56	kN				
 Cargas verticales por rueda 	QH,1,2	44.00	kN				
 Cargas horizontales por rueda 	H _{T,1,2}	0.00	kN				
 Cargas horizontales por rueda 	Hs,1,2	0.00	kN				
 Cargas horizontales por rueda 	HT3,1,2	1.96	kN				
Carga longitudinal	H _{L,1,2}	2.31	kN				

Cargas:

Cargas d	Cargas de grúa							
Viga i =	1 (W-max)							
Cojinete	Cargas vert	. por rueda	Cargas l	norizontales po	or rueda	Cargas long.		
j	Qc,i,j [kN] QH,i,j [kl		H _{T,i,j} [kN]	Hs,i,j [kN]	H _{T3,i,j} [kN]	H _L [kN]		
1	147.56	44.00	0.00	0.00	1.96	2.31		
2	147.56	44.00	0.00	0.00	1.96	2.31		

Casos de carga (resistencia):

Α	В
CC	
núm.	Descripción
CC1	Peso propio + Carga permanente adicional
CC2	Cargas variables adicionales
CC11	Qc
CC12	Qc Ф1
CC13	Qc Ф4
CC14	Q _H max(φ ₂ , φ ₃)
CC15	Qн Ф4
CC16	H _T φ ₅ + H _L φ ₅
CC17	(H _s + S)
CC18	H _{T3}

Casos de carga (fatiga):

Α	В
CC	
núm.	Descripción
CC1	Peso propio + Carga permanente adicional
CC2,4	$Q_c (1 + \phi_1)/2$
CC3,5	Q _H (1 + ϕ_2)/2

Combinaciones de carga (resistencia):

Α	В	С	D	Е	F
CO		Posición de	e 1ª rueda de grúa [m]		Descripción
núm.	Viga	Grúa 1	Grúa 2	Grúa 3	de la carga
CO1					γ _G CC1
CO2	Max	3.780			γ _G (CC1 + CC4) + γ _Q (CC6 + CC8) + γ _{Qo} CC2
CO3	Max	3.780			γ _G (CC1 + CC3) + γ _Q CC8 + γ _{Q0} CC2
CO4	Max	3.780			γ _G (CC1 + CC5) + γ _Q (CC7 + CC8) + γ _{Qo} CC2
CO5	Max	3.780			γ _G (CC1 + CC5) + γ _Q (CC7 + CC9) + γ _{Qo} CC2
CO6	Max	3.780			γ _G (CC1 + CC5) + γ _Q (CC7 + CC10)
CO7	Max	4.780			γ _G (CC1 + CC12) + γ _Q (CC14 + CC16) + γ _{Qo} CC2
CO8	Max	4.780			γ _G (CC1 + CC11) + γ _Q CC16 + γ _{Q0} CC2
CO9	Max	4.780			γ _G (CC1 + CC13) + γ _Q (CC15 + CC16) + γ _{Qo} CC2
CO10	Max	4.780			γ _G (CC1 + CC13) + γ _Q (CC15 + CC17) + γ _{Qo} CC2
CO11	Max	4.780			γ _G (CC1 + CC13) + γ _Q (CC15 + CC18)

Max	5.780	γ _G (CC1 + CC20) + γ _Q (CC22 + CC24) + γ _{Qo} CC2
Max	5.780	γ _G (CC1 + CC19) + γ _Q CC24 + γ _{Qo} CC2
Max	5.780	γ _G (CC1 + CC21) + γ _Q (CC23 + CC24) + γ _{Qo} CC2
Max	5.780	γ _G (CC1 + CC21) + γ _Q (CC23 + CC25) + γ _{Qo} CC2
Max	5.780	γ _G (CC1 + CC21) + γ _Q (CC23 + CC26)
Max	6.780	γ _G (CC1 + CC28) + γ _Q (CC30 + CC32) + γ _{Qo} CC2
Max	6.780	γ _G (CC1 + CC27) + γ _Q CC32 + γ _{Qo} CC2
Max	6.780	γ _G (CC1 + CC29) + γ _Q (CC31 + CC32) + γ _{Qo} CC2
Max	6.780	γ _G (CC1 + CC29) + γ _Q (CC31 + CC33) + γ _{Qo} CC2
Max	6.780	γ _G (CC1 + CC29) + γ _Q (CC31 + CC34)
Max	7.780	γ _G (CC1 + CC36) + γ _Q (CC38 + CC40) + γ _{Qo} CC2
Max	7.780	γ _G (CC1 + CC35) + γ _Q CC40 + γ _{Qo} CC2
Max	7.780	γ _G (CC1 + CC37) + γ _Q (CC39 + CC40) + γ _{Qo} CC2
Max	7.780	γ _G (CC1 + CC37) + γ _Q (CC39 + CC41) + γ _{Qo} CC2
Max	7.780	γ _G (CC1 + CC37) + γ _Q (CC39 + CC42)
Max	8.780	γ _G (CC1 + CC44) + γ _Q (CC46 + CC48) + γ _{Qo} CC2
Max	8.780	γ _G (CC1 + CC43) + γ _Q CC48 + γ _{Q0} CC2
Max	8.780	γ _G (CC1 + CC45) + γ _Q (CC47 + CC48) + γ _{Qo} CC2
Max	8.780	γ _G (CC1 + CC45) + γ _Q (CC47 + CC49) + γ _{Qo} CC2
Max	8.780	γ _G (CC1 + CC45) + γ _Q (CC47 + CC50)
Max	9.780	γ _G (CC1 + CC52) + γ _Q (CC54 + CC56) + γ _{Qo} CC2
Max	9.780	γ _G (CC1 + CC51) + γ _Q CC56 + γ _{Qo} CC2
Max	9.780	γ _G (CC1 + CC53) + γ _Q (CC55 + CC56) + γ _{Qo} CC2
Max	9.780	γ _G (CC1 + CC53) + γ _Q (CC55 + CC57) + γ _{Qo} CC2
Max	9.780	γ _G (CC1 + CC53) + γ _Q (CC55 + CC58)
Max	10.780	γ _G (CC1 + CC60) + γ _Q (CC62 + CC64) + γ _{Qo} CC2
Max	10.780	γ _G (CC1 + CC59) + γ _Q CC64 + γ _{Qo} CC2
Max	10.780	γ _G (CC1 + CC61) + γ _Q (CC63 + CC64) + γ _{Qo} CC2
Max	10.780	γ _G (CC1 + CC61) + γ _Q (CC63 + CC65) + γ _{Qo} CC2
Max	10.780	γ _G (CC1 + CC61) + γ _Q (CC63 + CC66)
Max	11.780	γ _G (CC1 + CC68) + γ _Q (CC70 + CC72) + γ _{Qo} CC2
Max	11.780	γ _G (CC1 + CC67) + γ _Q CC72 + γ _{Q0} CC2
Max	11.780	γ _G (CC1 + CC69) + γ _Q (CC71 + CC72) + γ _{Qo} CC2
Max	11.780	γ _G (CC1 + CC69) + γ _Q (CC71 + CC73) + γ _{Q0} CC2
Max	11.780	γ _G (CC1 + CC69) + γ _Q (CC71 + CC74)
Max	12.780	γ _G (CC1 + CC76) + γ _Q (CC78 + CC80) + γ _{Qo} CC2
Max	12.780	γ _G (CC1 + CC75) + γ _Q CC80 + γ _{Qo} CC2
Max	12.780	γ _G (CC1 + CC77) + γ _Q (CC79 + CC80) + γ _{Qo} CC2
Max	12.780	γ _G (CC1 + CC77) + γ _Q (CC79 + CC81) + γ _{Qo} CC2
Max	12.780	γ _G (CC1 + CC77) + γ _Q (CC79 + CC82)
Max	13.780	γ _G (CC1 + CC84) + γ _Q (CC86 + CC88) + γ _{Qo} CC2
Max	13.780	γ _G (CC1 + CC83) + γ _Q CC88 + γ _{Q0} CC2
Max	13.780	γ _G (CC1 + CC85) + γ _Q (CC87 + CC88) + γ _{Qo} CC2
Max	13.780	γ _G (CC1 + CC85) + γ _Q (CC87 + CC89) + γ _{Qo} CC2
	Max	Max 5.780 Max 5.780 Max 5.780 Max 5.780 Max 6.780 Max 6.780 Max 6.780 Max 6.780 Max 6.780 Max 7.780 Max 7.780 Max 7.780 Max 7.780 Max 7.780 Max 8.780 Max 8.780 Max 8.780 Max 8.780 Max 8.780 Max 9.780 Max 9.780 Max 9.780 Max 10.780 Max 10.780 Max 10.780 Max 11.780 Max 11.780 Max 11.780 Max 12.780 Max 12.780 Max 12.780 Max 13.780

CO56	Max	13.780	γ _G (CC1 + CC85) + γ _Q (CC87 + CC90)
CO57	Max	14.780	γ _G (CC1 + CC92) + γ _Q (CC94 + CC96) + γ _{Qo} CC2
CO58	Max	14.780	γ _G (CC1 + CC91) + γ _Q CC96 + γ _{Qo} CC2
CO59	Max	14.780	γ _G (CC1 + CC93) + γ _Q (CC95 + CC96) + γ _{Qo} CC2
CO60	Max	14.780	γ _G (CC1 + CC93) + γ _Q (CC95 + CC97) + γ _{Qo} CC2
CO61	Max	14.780	γ _G (CC1 + CC93) + γ _Q (CC95 + CC98)
CO62	Max	15.780	γ _G (CC1 + CC100) + γ _Q (CC102 + CC104) + γ _{Qo} CC2
CO63	Max	15.780	γ _G (CC1 + CC99) + γ _Q CC104 + γ _{Qo} CC2
CO64	Max	15.780	γ _G (CC1 + CC101) + γ _Q (CC103 + CC104) + γ _{Qo} CC2
CO65	Max	15.780	γ _G (CC1 + CC101) + γ _Q (CC103 + CC105) + γ _{Qo} CC2
CO66	Max	15.780	γ _G (CC1 + CC101) + γ _Q (CC103 + CC106)
CO67	Max	16.780	γ _G (CC1 + CC108) + γ _Q (CC110 + CC112) + γ _{Qo} CC2
CO68	Max	16.780	γ _G (CC1 + CC107) + γ _Q CC112 + γ _{Qo} CC2
CO69	Max	16.780	γ _G (CC1 + CC109) + γ _Q (CC111 + CC112) + γ _{Qo} CC2
CO70	Max	16.780	γ _G (CC1 + CC109) + γ _Q (CC111 + CC113) + γ _{Qo} CC2
CO71	Max	16.780	γ _G (CC1 + CC109) + γ _Q (CC111 + CC114)
CO72	Max	17.780	γ _G (CC1 + CC116) + γ _Q (CC118 + CC120) + γ _{Qo} CC2
CO73	Max	17.780	γ _G (CC1 + CC115) + γ _Q CC120 + γ _{Qo} CC2
CO74	Max	17.780	γ _G (CC1 + CC117) + γ _Q (CC119 + CC120) + γ _{Qo} CC2
CO75	Max	17.780	γ _G (CC1 + CC117) + γ _Q (CC119 + CC121) + γ _{Qo} CC2
CO76	Max	17.780	γ _G (CC1 + CC117) + γ _Q (CC119 + CC122)
CO77	Max	18.780	γ _G (CC1 + CC124) + γ _Q (CC126 + CC128) + γ _{Qo} CC2
CO78	Max	18.780	γ _G (CC1 + CC123) + γ _Q CC128 + γ _{Qo} CC2
CO79	Max	18.780	γ _G (CC1 + CC125) + γ _Q (CC127 + CC128) + γ _{Qo} CC2
CO80	Max	18.780	γ _G (CC1 + CC125) + γ _Q (CC127 + CC129) + γ _{Qo} CC2
CO81	Max	18.780	γ _G (CC1 + CC125) + γ _Q (CC127 + CC130)
CO82	Max	19.780	γ _G (CC1 + CC132) + γ _Q (CC134 + CC136) + γ _{Qo} CC2
CO83	Max	19.780	γ _G (CC1 + CC131) + γ _Q CC136 + γ _{Qo} CC2
CO84	Max	19.780	γ _G (CC1 + CC133) + γ _Q (CC135 + CC136) + γ _{Qo} CC2
CO85	Max	19.780	γ _G (CC1 + CC133) + γ _Q (CC135 + CC137) + γ _{Qo} CC2
CO86	Max	19.780	γ _G (CC1 + CC133) + γ _Q (CC135 + CC138)
CO87	Max	20.780	γ _G (CC1 + CC140) + γ _Q (CC142 + CC144) + γ _{Qo} CC2
CO88	Max	20.780	γ _G (CC1 + CC139) + γ _Q CC144 + γ _{Qo} CC2
CO89	Max	20.780	γ _G (CC1 + CC141) + γ _Q (CC143 + CC144) + γ _{Qo} CC2
CO90	Max	20.780	γ _G (CC1 + CC141) + γ _Q (CC143 + CC145) + γ _{Qo} CC2
CO91	Max	20.780	γ _G (CC1 + CC141) + γ _Q (CC143 + CC146)
CO92	Max	21.780	γ _G (CC1 + CC148) + γ _Q (CC150 + CC152) + γ _{Qo} CC2
CO93	Max	21.780	γ _G (CC1 + CC147) + γ _Q CC152 + γ _{Qo} CC2
CO94	Max	21.780	γ _G (CC1 + CC149) + γ _Q (CC151 + CC152) + γ _{Qo} CC2
CO95	Max	21.780	γ _G (CC1 + CC149) + γ _Q (CC151 + CC153) + γ _{Qo} CC2
CO96	Max	21.780	γ _G (CC1 + CC149) + γ _Q (CC151 + CC154)
CO97	Max	22.780	γ _G (CC1 + CC156) + γ _Q (CC158 + CC160) + γ _{Qo} CC2
CO98	Max	22.780	γ _G (CC1 + CC155) + γ _Q CC160 + γ _{Qo} CC2
CO99	Max	22.780	γ _G (CC1 + CC157) + γ _Q (CC159 + CC160) + γ _{Qo} CC2
			, , , , , , , , , , , , , , , , , , , ,

CO100	Max	22.780	γ _G (CC1 + CC157) + γ _Q (CC159 + CC161) + γ _{Qo} CC2
CO101	Max	22.780	γ _G (CC1 + CC157) + γ _Q (CC159 + CC162)
CO102	Max	23.780	γ _G (CC1 + CC164) + γ _Q (CC166 + CC168) + γ _{Qo} CC2
CO103	Max	23.780	γ _G (CC1 + CC163) + γ _Q CC168 + γ _{Qo} CC2
CO104	Max	23.780	γ _G (CC1 + CC165) + γ _Q (CC167 + CC168) + γ _{Qo} CC2
CO105	Max	23.780	γ _G (CC1 + CC165) + γ _Q (CC167 + CC169) + γ _{Qo} CC2
CO106	Max	23.780	γ _G (CC1 + CC165) + γ _Q (CC167 + CC170)
CO107	Max	24.780	γ _G (CC1 + CC172) + γ _Q (CC174 + CC176) + γ _{Qo} CC2
CO108	Max	24.780	γ _G (CC1 + CC171) + γ _Q CC176 + γ _{Qo} CC2
CO109	Max	24.780	γ _G (CC1 + CC173) + γ _Q (CC175 + CC176) + γ _{Qo} CC2
CO110	Max	24.780	γ _G (CC1 + CC173) + γ _Q (CC175 + CC177) + γ _{Qo} CC2
00110	Man	24.700	10 (00 100 100 100 100 100 100 100 100 1
CO111	Max	24.780	γ _G (CC1 + CC173) + γ _Q (CC175 + CC178)
CO112	Max	25.780	γ _G (CC1 + CC180) + γ _Q (CC182 + CC184) + γ _{Qo} CC2
CO113	Max	25.780	γ _G (CC1 + CC179) + γ _Q CC184 + γ _{Qo} CC2
CO114	Max	25.780	γ _G (CC1 + CC181) + γ _Q (CC183 + CC184) + γ _{Qo} CC2
CO115	Max	25.780	γ _G (CC1 + CC181) + γ _Q (CC183 + CC185) + γ _{Qo} CC2
CO116	Max	25.780	γ _G (CC1 + CC181) + γ _Q (CC183 + CC186)
CO117	Max	26.780	γ _G (CC1 + CC188) + γ _Q (CC190 + CC192) + γ _{Qo} CC2
CO118	Max	26.780	γ _G (CC1 + CC187) + γ _Q CC192 + γ _{Qo} CC2
CO119	Max	26.780	γ _G (CC1 + CC189) + γ _Q (CC191 + CC192) + γ _{Qo} CC2
CO120	Max	26.780	γ _G (CC1 + CC189) + γ _Q (CC191 + CC193) + γ _{Qo} CC2
CO121	Max	26.780	γ _G (CC1 + CC189) + γ _Q (CC191 + CC194)
COTZT	Max	20.700	76 (001 + 00103) + 70 (00131 + 00134)
CO122	Max	27.780	γ _G (CC1 + CC196) + γ _Q (CC198 + CC200) + γ _{Qo} CC2
CO123	Max	27.780	γ _G (CC1 + CC195) + γ _Q (CC200 + γ _{Qo} CC2
CO124	Max	27.780	γ _G (CC1 + CC197) + γ _Q (CC199 + CC200) + γ _{Qo} CC2
CO125	Max	27.780	γ _G (CC1 + CC197) + γ _Q (CC199 + CC201) + γ _{Qo} CC2
CO126	Max	27.780	γ _G (CC1 + CC197) + γ _Q (CC199 + CC202)
CO128	Max	28.780	γ _G (CC1 + CC204) + γ _Q (CC206 + CC208) + γ _{Qo} CC2
CO127	_		γ _G (CC1 + CC203) + γ _Q (CC200 + CC200) + γ _{Q0} CC2
CO129	Max	28.780	γ _G (CC1 + CC205) + γ _Q (CC207 + CC208) + γ _{Qo} CC2
	Max	28.780	γ _G (CC1 + CC205) + γ _Q (CC207 + CC209) + γ _{Qo} CC2
CO130	Max	28.780	γ _G (CC1 + CC205) + γ _Q (CC207 + CC210) γ _G (CC1 + CC205) + γ _Q (CC207 + CC210)
CO131 CO132	Max	28.780	γ _G (CC1 + CC212) + γ _Q (CC214 + CC216) + γ _{Qo} CC2
CO 132	Max	29.780	76 (001 + 00212) + 70 (00214 + 00210) + 700 002
CO122	Man	20.700	"CC1+CC211)+"CC216+"C-CC2
CO133		29.780	γ _G (CC1 + CC211) + γ _Q CC216 + γ _{Qo} CC2 γ _G (CC1 + CC213) + γ _Q (CC215 + CC216) + γ _{Qo} CC2
CO134	Max	29.780	γ _G (CC1 + CC213) + γ _Q (CC215 + CC216) + γ _{Q0} CC2 γ _G (CC1 + CC213) + γ _Q (CC215 + CC217) + γ _{Q0} CC2
CO135	Max	29.780	
CO136	Max	29.780	γ _G (CC1 + CC213) + γ _Q (CC215 + CC218)
CO137	Max	30.780	γ _G (CC1 + CC220) + γ _Q (CC222 + CC224) + γ _{Qo} CC2
CO138	Max	30.780	γ _G (CC1 + CC219) + γ _Q CC224 + γ _{Qo} CC2
CO139	Max	30.780	γ _G (CC1 + CC221) + γ _Q (CC223 + CC224) + γ _Q CC2
CO140	Max	30.780	γ _G (CC1 + CC221) + γ _Q (CC223 + CC225) + γ _{Qo} CC2
CO141	Max	30.780	γ _G (CC1 + CC221) + γ _Q (CC223 + CC226)
CO142	Max	31.780	γ _G (CC1 + CC228) + γ _Q (CC230 + CC232) + γ _{Qo} CC2
CO143	Max	31.780	γ _G (CC1 + CC227) + γ _Q CC232 + γ _{Qo} CC2

CO144	Max	31.780	γ _G (CC1 + CC229) + γ _Q (CC231 + CC232) + γ _{Qo} CC2
CO145	Max	31.780	γ _G (CC1 + CC229) + γ _Q (CC231 + CC233) + γ _{Qo} CC2
CO146	Max	31.780	γ _G (CC1 + CC229) + γ _Q (CC231 + CC234)
CO147	Max	32.780	γ _G (CC1 + CC236) + γ _Q (CC238 + CC240) + γ _{Qo} CC2
CO148	Max	32.780	γ _G (CC1 + CC235) + γ _Q CC240 + γ _{Qo} CC2
CO149	Max	32.780	γ _G (CC1 + CC237) + γ _Q (CC239 + CC240) + γ _{Qo} CC2
CO150	Max	32.780	γ _G (CC1 + CC237) + γ _Q (CC239 + CC241) + γ _{Qo} CC2
			γ _G (CC1 + CC237) + γ _Q (CC233 + CC241) + γ _Q CC2 γ _G (CC1 + CC237) + γ _Q (CC239 + CC242)
CO151	Max	32.780	
CO152	Max	33.780	γ _G (CC1 + CC244) + γ _Q (CC246 + CC248) + γ _{Qo} CC2
CO153	Max	33.780	γ _G (CC1 + CC243) + γ _Q CC248 + γ _{Qo} CC2
CO154	Max	33.780	γ _G (CC1 + CC245) + γ _Q (CC247 + CC248) + γ _{Qo} CC2
CO155	Max	33.780	γ _G (CC1 + CC245) + γ _Q (CC247 + CC249) + γ _{Qo} CC2
CO156	Max	33.780	γ _G (CC1 + CC245) + γ _Q (CC247 + CC250)
CO157	Max	34.780	γ _G (CC1 + CC252) + γ _Q (CC254 + CC256) + γ _{Qo} CC2
CO158	Max	34.780	γ _G (CC1 + CC251) + γ _Q CC256 + γ _{Qo} CC2
CO159	Max	34.780	γ _G (CC1 + CC253) + γ _Q (CC255 + CC256) + γ _{Qo} CC2
CO160	Max	34.780	γ _G (CC1 + CC253) + γ _Q (CC255 + CC257) + γ _{Qo} CC2
CO161	Max	34.780	γ _G (CC1 + CC253) + γ _Q (CC255 + CC258)
CO162	Max	35.780	γ _G (CC1 + CC260) + γ _Q (CC262 + CC264) + γ _{Qo} CC2
			γ _G (CC1 + CC250) + γ _Q (CC262 + CC264) + γ _{Q6} CC2 γ _G (CC1 + CC259) + γ _Q CC264 + γ _{Q6} CC2
CO163	Max	35.780	
CO164	Max	35.780	γ _G (CC1 + CC261) + γ _Q (CC263 + CC264) + γ _{Qo} CC2
CO165	Max	35.780	γ _G (CC1 + CC261) + γ _Q (CC263 + CC265) + γ _{Qo} CC2
CO166	Max	35.780	γ _G (CC1 + CC261) + γ _Q (CC263 + CC266)
CO167	Max	36.780	γ _G (CC1 + CC268) + γ _Q (CC270 + CC272) + γ _{Qo} CC2
CO168	Max	36.780	γ _G (CC1 + CC267) + γ _Q CC272 + γ _{Qo} CC2
CO169	Max	36.780	γ _G (CC1 + CC269) + γ _Q (CC271 + CC272) + γ _{Qo} CC2
CO170	Max	36.780	γ _G (CC1 + CC269) + γ _Q (CC271 + CC273) + γ _{Qo} CC2
CO171	Max	36.780	γ _G (CC1 + CC269) + γ _Q (CC271 + CC274)
CO172	Max	37.780	γ _G (CC1 + CC276) + γ _Q (CC278 + CC280) + γ _{Qo} CC2
CO173	Max	37.780	γ _G (CC1 + CC275) + γ _Q CC280 + γ _{Qo} CC2
CO174	Max	37.780	γ _G (CC1 + CC277) + γ _Q (CC279 + CC280) + γ _{Qo} CC2
CO175	Max	37.780	γ _G (CC1 + CC277) + γ _Q (CC279 + CC281) + γ _{Qo} CC2
CO176	Max	37.780	γ _G (CC1 + CC277) + γ _Q (CC279 + CC282)
00170	1-1GIA	07.700	10(00.000) 12(00.000)
CO177	May	38.780	γ _G (CC1 + CC284) + γ _Q (CC286 + CC288) + γ _{Qo} CC2
			γ _G (CC1 + CC283) + γ _Q (CC288 + γ _Q CC2
CO178	Max	38.780	
CO179	Max	38.780	γ _G (CC1 + CC285) + γ _Q (CC287 + CC288) + γ _{Qo} CC2
CO180	Max	38.780	γ _G (CC1 + CC285) + γ _Q (CC287 + CC289) + γ _{Qo} CC2
CO181	Max	38.780	γ _G (CC1 + CC285) + γ _Q (CC287 + CC290)
CO182	Max	39.780	γ _G (CC1 + CC292) + γ _Q (CC294 + CC296) + γ _{Qo} CC2
CO183	Max	39.780	γ _G (CC1 + CC291) + γ _Q CC296 + γ _{Qo} CC2
CO184	Max	39.780	γ _G (CC1 + CC293) + γ _Q (CC295 + CC296) + γ _{Qo} CC2
CO185	Max	39.780	γ _G (CC1 + CC293) + γ _Q (CC295 + CC297) + γ _{Qo} CC2
CO186	Max	39.780	γ _G (CC1 + CC293) + γ _Q (CC295 + CC298)
CO187	Max	40.780	γ _G (CC1 + CC300) + γ _Q (CC302 + CC304) + γ _{Qo} CC2

CO188	Max	40.780	γ _G (CC1 + CC299) + γ _Q CC304 + γ _{Qo} CC2
CO189	Max	40.780	γ _G (CC1 + CC301) + γ _Q (CC303 + CC304) + γ _{Qo} CC2
CO190	Max	40.780	γ _G (CC1 + CC301) + γ _Q (CC303 + CC305) + γ _{Qo} CC2
CO191	Max	40.780	γ _G (CC1 + CC301) + γ _Q (CC303 + CC306)
CO192	Max	41.780	γ _G (CC1 + CC308) + γ _Q (CC310 + CC312) + γ _{Qo} CC2
CO193	Max	41.780	γ _G (CC1 + CC307) + γ _Q CC312 + γ _{Qo} CC2
CO194	Max	41.780	γ _G (CC1 + CC309) + γ _Q (CC311 + CC312) + γ _{Qo} CC2
CO195	Max	41.780	γ _G (CC1 + CC309) + γ _Q (CC311 + CC313) + γ _{Qo} CC2
CO196	Max	41.780	γ _G (CC1 + CC309) + γ _Q (CC311 + CC314)
CO197	Max	42.780	γ _G (CC1 + CC316) + γ _Q (CC318 + CC320) + γ _{Qo} CC2
CO198	Max	42.780	γ _G (CC1 + CC315) + γ _Q CC320 + γ _{Qo} CC2
00100	Max	42.700	10 (001 - 00010) - 1@ 00020 - 1@0002
CO199	Max	42.780	γ _G (CC1 + CC317) + γ _Q (CC319 + CC320) + γ _{Qo} CC2
CO200	Max	42.780	γ _G (CC1 + CC317) + γ _Q (CC319 + CC321) + γ _{Qo} CC2
CO200	Max	42.780	γ _G (CC1 + CC317) + γ _Q (CC319 + CC322)
			γ _G (CC1 + CC324) + γ _Q (CC326 + CC328) + γ _{Qo} CC2
CO202	Max	43.780	γ _G (CC1 + CC324) + γ _Q (CC326 + CC326) + γ _{Q6} CC2
CO203	Max	43.780	
CO204	Max	43.780	γ _G (CC1 + CC325) + γ _Q (CC327 + CC328) + γ _Q CC2
CO205	Max	43.780	γ _G (CC1 + CC325) + γ _Q (CC327 + CC329) + γ _{Qo} CC2
CO206	Max	43.780	γ _G (CC1 + CC325) + γ _Q (CC327 + CC330)
CO207	Max	44.780	γ _G (CC1 + CC332) + γ _Q (CC334 + CC336) + γ _{Qo} CC2
CO208	Max	44.780	γ _G (CC1 + CC331) + γ _Q CC336 + γ _{Qo} CC2
CO209	Max	44.780	γ _G (CC1 + CC333) + γ _Q (CC335 + CC336) + γ _{Qo} CC2
CO210	Max	44.780	γ _G (CC1 + CC333) + γ _Q (CC335 + CC337) + γ _{Qo} CC2
CO211	Max	44.780	γ _G (CC1 + CC333) + γ _Q (CC335 + CC338)
CO212	Max	45.780	γ _G (CC1 + CC340) + γ _Q (CC342 + CC344) + γ _{Qo} CC2
CO213	Max	45.780	γ _G (CC1 + CC339) + γ _Q CC344 + γ _{Qo} CC2
CO214	Max	45.780	γ _G (CC1 + CC341) + γ _Q (CC343 + CC344) + γ _{Qo} CC2
CO215	Max	45.780	γ _G (CC1 + CC341) + γ _Q (CC343 + CC345) + γ _{Qo} CC2
CO216	Max	45.780	γ _G (CC1 + CC341) + γ _Q (CC343 + CC346)
CO217	Max	46.780	γ _G (CC1 + CC348) + γ _Q (CC350 + CC352) + γ _{Qo} CC2
CO218	Max	46.780	γ _G (CC1 + CC347) + γ _Q CC352 + γ _{Qo} CC2
CO219	Max	46.780	γ _G (CC1 + CC349) + γ _Q (CC351 + CC352) + γ _{Qo} CC2
CO220	Max	46.780	γ _G (CC1 + CC349) + γ _Q (CC351 + CC353) + γ _{Qo} CC2
COLLO	Max	40.700	10 (00. 000.10) 1/2 (0000. 0000.0) 1/20 000
CO221	May	46.780	γ _G (CC1 + CC349) + γ _Q (CC351 + CC354)
CO222			γ _G (CC1 + CC356) + γ _Q (CC358 + CC360) + γ _{Qo} CC2
	Max	47.780	γ _G (CC1 + CC355) + γ _Q (CC360 + CC360) + γ _Q ₀ CC2
CO223	Max	47.780	γ _G (CC1 + CC353) + γ _Q (CC350 + γ _Q CC2 γ _G (CC1 + CC357) + γ _Q (CC359 + CC360) + γ _Q CC2
CO224	Max	47.780	
CO225	Max	47.780	γ _G (CC1 + CC357) + γ _Q (CC359 + CC361) + γ _{Qo} CC2
CO226	Max	47.780	γ _G (CC1 + CC357) + γ _Q (CC359 + CC362)
CO227	Max	48.780	γ _G (CC1 + CC364) + γ _Q (CC366 + CC368) + γ _{Qo} CC2
CO228	Max	48.780	γ _G (CC1 + CC363) + γ _Q CC368 + γ _Q ₀ CC2
CO229	Max	48.780	γ _G (CC1 + CC365) + γ _Q (CC367 + CC368) + γ _{Qo} CC2
CO230	Max	48.780	γ _G (CC1 + CC365) + γ _Q (CC367 + CC369) + γ _{Qo} CC2
CO231	Max	48.780	γ _G (CC1 + CC365) + γ _Q (CC367 + CC370)
CO232	Max	49.470	γ _G (CC1 + CC372) + γ _Q (CC374 + CC376) + γ _{Qo} CC2
CO233	Max	49.470	γ _G (CC1 + CC371) + γ _Q CC376 + γ _{Qo} CC2
CO234	Max	49.470	γ _G (CC1 + CC373) + γ _Q (CC375 + CC376) + γ _{Qo} CC2
CO235	Max	49.470	γ _G (CC1 + CC373) + γ _Q (CC375 + CC377) + γ _{Q0} CC2
CO236	Max	49.470	γ _G (CC1 + CC373) + γ _Q (CC375 + CC378)
_			

Combinaciones de carga (fatiga):

Α	В	C	D	Е	F
CO		Posición de	e 1º rueda o		Descripción
núm.	Viga	Grúa 1	Grúa 2	Grúa 3	de la carga
CO1	Max	3.780			CC1+CC2+CC3
CO2	Max	4.780			CC1 + CC4 + CC5
CO3	Max	5.780			CC1 + CC6 + CC7
CO4	Max	6.780			CC1 + CC8 + CC9
CO5	Max	7.780			CC1 + CC10 + CC11
CO6	Max	8.780			CC1+CC12+CC13
CO7	Max	9.780			CC1 + CC14 + CC15
CO8	Max	10.780			CC1 + CC16 + CC17
CO9	Max	11.780			CC1 + CC18 + CC19
CO10	Max	12.780			CC1 + CC20 + CC21
CO11	Max	13.780			CC1 + CC22 + CC23
COTT	IVIQX	13.700			001 + 0022 + 0023
CO12	Max	14.780			CC1 + CC24 + CC25
CO13	Max	15.780			CC1+CC26+CC27
CO14	Max	16.780			CC1+CC28+CC29
CO15	Max	17.780			CC1+CC30+CC31
					CC1+CC30+CC31
CO16	Max	18.780			CC1+CC32+CC35
CO17	Max	19.780			CC1 + CC34 + CC35
CO18	Max	20.780			
CO19	Max	21.780			CC1 + CC38 + CC39
CO20	Max	22.780			CC1 + CC40 + CC41
CO21	Max	23.780			CC1 + CC42 + CC43
CO22	Max	24.780			CC1 + CC44 + CC45
	4				
CO23	Max	25.780			CC1 + CC46 + CC47
CO24	Max	26.780			CC1 + CC48 + CC49
CO25	Max	27.780			CC1 + CC50 + CC51
CO26	Max	28.780			CC1 + CC52 + CC53
CO27	Max	29.780			CC1 + CC54 + CC55
CO28	Max	30.780			CC1 + CC56 + CC57
CO29	Max	31.780			CC1 + CC58 + CC59
CO30	Max	32.780			CC1 + CC60 + CC61
CO31	Max	33.780			CC1 + CC62 + CC63
CO32	Max	34.780			CC1 + CC64 + CC65
CO33	Max	35.780			CC1 + CC66 + CC67
CO34	Max	36.780			CC1 + CC68 + CC69
CO35	Max	37.780			CC1 + CC70 + CC71
CO36	Max	38.780			CC1 + CC72 + CC73
CO37	Max	39.780			CC1 + CC74 + CC75
CO38	Max	40.780			CC1 + CC76 + CC77
CO39	Max	41.780			CC1 + CC78 + CC79
CO40	Max	42.780			CC1 + CC80 + CC81
CO41	Max	43.780			CC1 + CC82 + CC83
CO42	Max	44.780			CC1 + CC84 + CC85
CO43	Max	45.780			CC1 + CC86 + CC87
CO44	Max	46.780			CC1 + CC88 + CC89
	,,				
CO45	Max	47.780			CC1 + CC90 + CC91
CO46	Max	48.780			CC1 + CC92 + CC93
CO45	Max	49.470			CC1 + CC94 + CC95
0047	Mux	40.470			

6.5.7. Informe de resultados

Para cada posición de la grúa, existen numerosas combinaciones. El programa CRANEWAY 8.25 estudia cada combinación de carga y analiza los esfuerzos internos, deformaciones, tensiones, abolladura, soldadura y fatiga, en posiciones particulares a lo largo de la viga carril.

A continuación adjuntamos el resumen de cálculo que nos permite comprobar que el perfil HEB 300 elegido cumple los requisitos para poder soportar nuestro puente grúa de 12,5 Tn.

A	В	C	D	E	F
	Barra	Posición	Criterio de	CO	
Tipo de cálculo	núm.	x [m]	Existente	Límite	determinante
2.4 Análisis de tensiones	1	4.926	0.933	< 1.00	CO7
2.5 Análisis de deformación - Horizontal	1	2.112	3519.524	> 600.000	CO11
2.5 Análisis de deformación - Vertical	10	2.880	681.773	> 600.000	CO227
2.6 Cálculo a fatiga	1	4.853	0.780	< 1.00	
2.7 Análisis de abolladura	1	4.926	0.739	< 1.00	
2.8 Soldaduras - Análisis de tensiones	1	4.926	0.367	< 1.00	CO7
2.9 Soldaduras - Cálculo a fatiga	1	0.530	0.582	< 1.00	
2.10 Factor de carga crítica	1		4.560	> 1.00	CO222

Tambien podemos apreciar como son el primer y el último vano los más solicitados.

7. DIMENSIONAMIENTO MEDIANTE EL PROGRAMA DE CÁLCULO

Como ya indicamos anteriormente utilizaremos el programa de cálculo informático CYPE Ingenieros para evitar el complicado cálculo manual de la estructura a fin de evitar errores y optimizar la estructura.

Teniendo definida la geometría de la nace y realizado los cálculos correspondientes de los cerramientos tanto de cubierta como de los laterales, introducimos dichos parámetros en el módulo "Generador de Pórticos". Tras introducir los datos de partida y las acciones que actuarán sobre nuestra estructura, dimensionaremos las correas necesarias y posteriormente, los pórticos de nuestra estructura.

Datos generales de la obra

- Número de vanos: 10
- Separación entre pórticos: 5 m.
- Con cerramiento en cubierta.
 - Peso del cerramiento: 0,19 kN/m²
 - Sobrecarga del cerramiento: 0,40 kN/m² (en este apartado introducimos la sobrecarga de uso para mantenimiento no concomitante con el resto de variables).
- Con cerramiento en laterales.
 - Peso del cerramiento: 0,11 kN/m²

Datos de viento

La acción del viento queda definida según la normativa: CTE DB-SE AE.

- Zona eólica: C
- Grado de aspereza: IV. Zona urbana, industrial o forestal.
- Periodo de servicio (años): 50
- Con huecos en fachadas.

Fachada		Dh (m)	Dv (m)	Ph (m)	Pv (m)
Frontal (4)	~	5.00	5.00	5.50	2.50
Frontal (4)	~	5.00	5.00	16.50	2.50
Trasera (2)	~	5.00	5.00	5.50	2.50
Trasera (2)	~	5.00	5.00	16.50	2.50

Dichos huecos pertenecen a las puertas de entrada y de salida de la nave y a las puertas de evacuación. Cabe destacar que dichos huecos podrán estar abiertos o cerrados creando las pertinentes variables de viento.

Datos de nieve

La acción de la sobrecarga de nieve queda definida según la normativa: CTE DB-SE AE.

- Zona de clima invernal: 1.
- Altitud topográfica:60 m.
- Cubierta sin resaltos.
- Exposición al viento: Normal.

Aceros en los perfiles

El material que utilizaremos para la estructuraserá un acero laminado S-275, siendo el valor característico de su tensión de límite elástico $f_y=275\ \text{N/mm}^2\ \text{y}$ el módulo de elasticidad $E=210\ \text{GPa}$.

Combinación de acciones

A continuación se ennumeran todas las hipótesis de carga individualmente, que se derivan de las acciones que actúan sobre la estructura:

- 1) PP Peso propio
- 2) Q Sobrecarga de uso
- 3) Q 1 Carro a la izda
- 4) Q 2 Carro a la dcha

5) V(0°) H1	Viento a 0°, presión exterior tipo 1 sin acción en el interior
6) V(0°) H2	Viento a 0°, presión exterior tipo 1 Succión interior
7) V(0°) H3	Viento a 0°, presión exterior tipo 2 sin acción en el interior
8) V(0°) H4	Viento a 0°, presión exterior tipo 2 Succión interior
9) V(90°) H1	Viento a 90°, presión exterior tipo 1 Presión interior
10) V(90°) H2	Viento a 90°, presión exterior tipo 1 Succión interior
11) V(180°) H1	Viento a 180°, presión exterior tipo 1 sin acción en el interior
12) V(180°) H2	Viento a 180°, presión exterior tipo 1 Succión interior
13) V(180°) H3	Viento a 180°, presión exterior tipo 2 sin acción en el interior
14) V(180°) H4	Viento a 180°, presión exterior tipo 2 Succión interior
15) V(270°) H1	Viento a 270°, presión exterior tipo 1 Presión interior
16) V(270°) H2	Viento a 270°, presión exterior tipo 1 Succión interior
17) N(EI)	Nieve (estado inicial)
18) N(R) 1	Nieve (redistribución) 1
19) N(R) 2	Nieve (redistribución) 2

Correas

Tras haber definido los parámetros anteriores, se procede a calcular y dimensionar las correas, tanto las de cubierta como las de fachada.

Dadas las características simétricas de la estructura, se ha optado por la implantación de 8 correas en cada faldón de cubierta y 7 en cada lateral de fachada. Dichas correas irán colocadas longitudinalmente a lo largo del pabellón siendo los extremos los pórticos hastiales y el pórtico central, ya que en este caso sepresenta una junta de dilatación a 25 metros, puesto que los 50 metros de longitud de la nave superan los 40 metros máximos impuestos por norma.

Para estudiarlas se tomarán como vigas continuas de extremo a extremo y tendrán como apoyos los pórticos. El perfil de la serie IPE de las correas irá colocado de forma que el pandeo se produzca en su lado fuerte y este estará perpendicular al faldón.

Obtenemos los siguientes resultados según los datos introducidos:

Datos de correas de cubierta											
Descripción de correas	Parámetros de cálculo										
Tipo de perfil: IPE 120	Límite flecha: L / 300										
Separación: 1.50 m	Número de vanos: Tres vanos										
Tipo de Acero: S275	Tipo de fijación: Fijación rígida										

Comprobación de resistencia

Comprobación de resistencia

El perfil seleccionado cumple todas las comprobaciones.

Aprovechamiento: 48.07 % Parra pácima en cubierta

Barra pésima en cubi	erta											
Perfil: IPE 120 Material: S275												
		Nud	os	Longitu		Caracte mecá		S				
z		Inicial		Final	d (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)			
	0.7	46, 10.000, 10.575	C).746, 5.000, 10.575	5.000	13.2 0	318.0 0	27.7 0	1.69			
		Inercia respecto al Momento de inercia										
		F	Pan	deo		eral						
		Plano XY		Plano XZ	Ala	a sup.		Ala ii	nf.			
	β	0.00		1.00	(0.00		0.0	0			
	L _K	0.000		5.000	0	.000		0.00	0			
	C_{m}	1.000		1.00	1	.000		1.00	0			
i	C_1		-	•			1.000					
	Notación: β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos C_1 : \square actor de modificación para el momento crítico											

						COMPRO	BACION	NES (CTE I	DB SE-A	4)						
Barra	${\overline{\lambda}}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z		$\begin{matrix} NM_Y \\ M_Z \end{matrix}$	$\begin{matrix} NM_YM_ZV_Y\\ V_Z \end{matrix}$	M _t	M_tV_Z	M_tV_Y	Estado
pésima en cubierta	N.P. ⁽	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	N _{Ed} = 0.00 N.P. ⁽²⁾	N _{Ed} = 0.00 N.P. ⁽³⁾	x: 5 m η = 48.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 5 m η = 7.3	V _{Ed} = 0.00 N.P. ⁽⁵⁾	η < 0.1	N.P. ⁽	N.P. ⁽⁷	N.P. ⁽⁸⁾	M _{Ed} = 0.00 N.P. ⁽⁹⁾	N.P. ⁽¹	N.P. ⁽¹	CUMPL Ε η = 48.1
Notación: A:: Limitación A:: Abolladur. Ni: Resistenc. M: Resistenc. M: Resistenc. V: Resistenc. VV: Resiste M-VV: Resiste NM-MY: Resist NM-MY-VV: Resiste M: Resistenc. M: Resistenc. M: Resistenc. M: Resistenc. M: Resistenc. M: Resistenc. M: Resistenc.	a del ali la a traci la a con la a flex la a con la a con ncia a n lesisten la a tors ncia a con	ma inducida cción npresión kión eje Y kión eje Z te Z te Y nomento fle nomento fle i flexión y a cia a flexiór ortante Z y	ctor Y y fuer ctor Z y fuer xil combinad ı, axil y corta momento to	za cortante i za cortante os ante combina rsor combina	Y combinad ndos ndos											

- m: Kesstencia a torsión M/Vz: Resistencia a cortante Z y momento torsor combinados M/V; Resistencia a cortante Y y momento torsor combinados x: Distancia al origen de la barra p: Coeficiente de aprovechamiento (%) N.P.: No procede

- N.P.: No procede

 Comprobaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay axil de compresión ni de tracción.
 (2) La comprobación no procede, ya que no hay axil de tracción.
 (3) La comprobación no procede, ya que no hay axil de compresión.
 (4) La comprobación no procede, ya que no hay axil de compresión.
 (5) La comprobación no procede, ya que no hay momento flector.
 (6) La comprobación no procede, ya que no hay esfuerzo cortante.
 (6) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (7) No hay interacción entre momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
 (8) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (9) La comprobación no procede, ya que no hay momento torsor.
 (10) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en:

Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

24.41 ≤ 248.01 √

Donde:

h_w: 107.40 mm **h**_w: Altura del alma. t_w : tw: Espesor del alma. 4.40 A_w : Área del alma. 4.73 cm² A_{fc.ef}: Área reducida del ala comprimida. A_{fc,ef}: 4.03 cm² **k** : k: Coeficiente que depende de la clase de la sección. 0.30 E: Módulo de elasticidad. E: 210000 MPa **f**_{vf}: Límite elástico del acero del ala comprimida. **f_{vf}**: 275.00 MPa Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.481 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.746, 5.000, 10.575, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(0°) H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

 $\mathbf{M}_{\mathsf{Ed}}^{\mathsf{-}}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{Ed}}^{\mathsf{-}}$: 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $\mathbf{M_{c,Rd}}: \underline{15.90}$ kN·m

 M_{Ed}^{+} : 7.64 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de Clase : deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,y}: Módulo resistente plástico correspondiente a la fibra

con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

 $W_{pl,y}: 60.70 \text{ cm}^3$

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{м0}: 1.05 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.073** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.746, 5.000, 10.575, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(0°) H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 6.99 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 95.19 kN

Donde:

 A_v : Área transversal a cortante.

 A_v : 6.30 cm²

Siendo:

A: Área bruta de la sección transversal de la barra.

b: Ancho de la sección. t_f: Espesor del ala.

t_w: Espesor del alma.

r: Radio de acuerdo entre ala y alma.

A: 13.20 cm²

b: 64.00 mm

t_f: 6.30 mm **t**_w: 4.40 mm

r: 7.00 mm

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

21.23 < 64.71

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma. $\lambda_{\mathbf{w}}$: 21.23

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 64.71

 ϵ : Factor de reducción. ϵ : 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

 $5.37 \text{ kN} \le 47.60 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(0°) H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 5.37 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 95.19 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Comprobación de flecha

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento:

- Flecha: 97.71 %

Datos de correas laterales											
Descripción de correas	Parámetros de cálculo										
Tipo de perfil: IPE 120	Límite flecha: L / 300										
Separación: 1.50 m	Número de vanos: Tres vanos										
Tipo de Acero: S275	Tipo de fijación: Fijación rígida										

Comprobación de resistencia

Comprobación de resistencia

El perfil seleccionado cumple todas las comprobaciones.

Aprovechamiento: 52.57 %

Barra pésima en lateral

Perfil: IPE 120 Material: S275													
		Nuc	dos		Longitu	C	Caracte mecá		S				
Z		Inicial		Final	d (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4	I _t ⁽²⁾ (cm4)				
	0.00	00, 50.000, 0.750	0.	000, 45.000, 0.750	5.000	13.2 0	318.0 0	27.7 0	1.69				
	Notas: (1) (2)	Notas: ⁽¹⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de inercia a torsión uniforme											
Υ			Pan	deo		Pan	deo lat	eral					
		Plano XY		Plano XZ	Al	a sup		Ala i	nf.				
	β	0.00		1.00		0.00		0.00					
	L _K	0.000		5.000	C	0.000		0.00	00				
	C_{m}	1.000		1.000	1	.000		1.00	00				
i	C_1		-	-			1.000						
	Notación: β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos C_1 : Factor de modificación para el momento crítico												

		COMPROBACIONES (CTE DB SE-A)														
Barra	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z	M_ZV_Y	NM_Y M_Z	$NM_YM_ZV_Y$ V_Z	Mt	M_tV_Z	M_tV_Y	Estado
pésima en lateral	N.P. ⁽	$x{:}~0.833\\ m\\ \lambda_w \leq \\ \lambda_{w,m\acute{a}x}\\ Cumple$	N _{Ed} = 0.00 N.P. ⁽²⁾	N _{Ed} = 0.00 N.P. ⁽³⁾	x: 5 m η = 52.6	M _{Ed} = 0.00 N.P. ⁽⁴⁾	x: 5 m η = 10.9	V _{Ed} = 0.00 N.P. ⁽⁵⁾	x: 0.833 m η < 0.1	N.P. ⁽	N.P. ⁽	N.P. ⁽⁸⁾	M _{Ed} = 0.00 N.P. ⁽⁹⁾	N.P. ⁽¹	N.P. ⁽¹	CUMPL Ε η = 52.6

						COMPR	OBACIO	NES (CTE	DB SE-A)							
Barra	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	M _z	V _z	V _Y	M_YV_Z	M_zV_y	M_{Y}	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_Z	M_tV_Y	Estado
N; Resistenc N; Resistenc M; Resistenc V; Resistenc V; Resistenc MV; Resistenc MV; Resistenc MV, Resistenc MM, Resistenc MV; Resistenc MV; Resistenc MV; Resistenc MV; Resistenc MV; Resistenc	ra del aicia a tra- cia a tra- cia a fle- cia a con- cia a con- cia a con- encia a i encia a con- cia a tor- cia a con- encia a con-	ma inducida p cción mpresión xión eje Y xión eje Z rte Z te Y momento flect momento flect momento flect a flexión y sión cortante Z y m cortante Z y m	axil y cortante nomento torsor nomento torsor	cortante Z con cortante Y con combinados combinados												
(2) La compro (3) La compro (4) La compro (5) La compro (6) No hay int (7) No hay int (8) No hay int (9) La compro	obación obación obación obación deracción deracción deracción deracción	no procede, y, ne entre mome n entre mome no procede, y, no proced	a que no hay a a que no hay a a que no hay a a que no hay n a que no hay e nto flector y anto flector, axi a que no hay n	exil de tracción exil de compre- nomento flecto esfuerzo cortan fuerzo cortan or ni entre mo il y cortante pa nomento torso	sión. or. ite. te para nin mentos fle ora ninguna or.	guna combinac ctores en amba combinación.	es direccion Por lo tanti	es para ningu o, la comprob	probación no p una combinació ación no proce probación no <u>p</u>	n. Por Io de.	tanto, la	a comprobació	n no procede.			

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

24.41 ≤ 248.01 √

Donde:

$\mathbf{h_w}$: Altura del alma.	h _w :	107.40	mm
t _w : Espesor del alma.	t _w :	4.40	mm
$\mathbf{A_{w}}$: Área del alma.	A_{w} :	4.73	cm ²
A _{fc,ef} : Área reducida del ala comprimida.	$A_{fc,ef}$:	4.03	cm ²
k: Coeficiente que depende de la clase de la sección.	k :	0.30	
E: Módulo de elasticidad.	E:	210000	MPa
f _{vf} : Límite elástico del acero del ala comprimida.	f _{vf} :	275.00	MPa
Siendo:			_

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.526** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.000, 45.000, 0.750, para la combinación de acciones 1.35*G1 + 1.35*G2 + 1.50*V(90°) H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 8.36 kN·m

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^- : 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 15.90 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,v}: 60.70 \text{ cm}^3$

Clase: 1

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.109 V

 \checkmark

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.000, 45.000, 0.750, para la combinación de acciones 1.35*G1 + 1.35*G2 + 1.50*V(90°) H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 10.35 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

$V_{c,Rd}$:	95.19	kΝ
------------	---	-------	----

f_{vd}: 261.90 MPa

Donde:

 A_v : Área transversal a cortante. A_v : 6.30 cm²

Siendo:

A: Área bruta de la sección transversal de la barra.	A :	13.20	cm ²
b : Ancho de la sección.	b :	64.00	mm
t _f : Espesor del ala.	$\mathbf{t_f}$:	6.30	mm
tw: Espesor del alma.	t_w :	4.40	mm
r: Radio de acuerdo entre ala y alma.	r:	7.00	mm

Siendo:

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

21.23 < 64.71

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma. $\lambda_{\mathbf{w}}$: 21.23

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 64.71

 ϵ : Factor de reducción. ϵ : 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $4.41 \text{ kN} \le 47.60 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.833~m del nudo $0.000,\,50.000,\,0.750,\,\text{para la combinación de acciones }1.35*G1 + <math>1.35*G2 + 1.50*V(90°)$ H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 4.41 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 95.19 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Comprobación de flecha

Comprobación de flecha El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento: - Flecha: 99.22 %

Pórticos

Se dispondrán de 11 pórticos rígidos biempotrados, separados entre sí a 5 metros, conformando así una longitud total de la nave de 50 metros.

Los pórticos tendrán una luz de 22 metros, con 10 metros de altura de alero y 11,1 metros de altura de cumbrera.

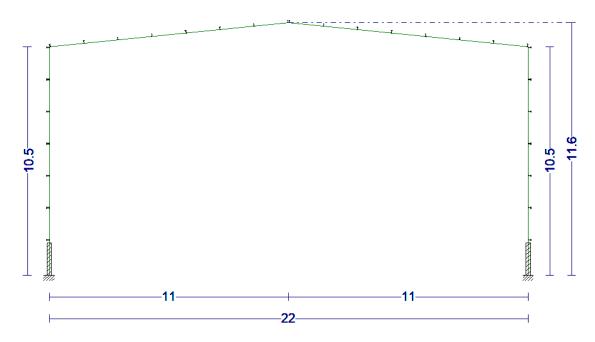


Figura 46. Dimensiones del pórtico

Como muestra la figura, las dimensiones de los pilares son 0,5 mayores; estos 0,5 metros de estructura irán soterrados dándonos el margen necesario para alojar el forjado de la nave.

Los pórticos serán traslacionales y, como ya hemos indicado anteriormente, biempotrados. Este empotramiento en la base de los pilares nos obligará a realizar zapatas de mayores dimensiones que en el caso de pórticos biarticulados, pero a cambio conseguiremos unos perfiles métalicos de menores dimensiones para nuestra

estructura.

Tras haber definido los parámetros de los pórticos exportamos la obra al módulo CYPE 3D.

En el módulo CYPE 3D se realizan las siguientes acciones que nos permitirán el cálculo y dimensionamiento de nuestra nave:

- Creación del resto de la geometría de la nave.
- Descripción de los nudos de la estructura.
- Descripción de las barras de la estructura.
- Introducción de coeficientes de pandeo y flechas límite.
- Cálculo y comprobación de la estructura.
- Cálculo de las uniones y de las placas de anclaje.
- Cálculo de la cimentación.

Además de las acciones previamente mencionadas, crearemos dos nuevas sobrecargas de uso, correspondientes a la grúa puente solicitando a la estructura en su posición más desfavorable, las cuales, debido a la simetria de la nave y a la agrupación de barras, serán suficientes para un correcto cálculo de la estructura.

Una vez definida la estructura de la nave procedemos al cálculo y dimensionamiento del resto de elementos de la nave industrial.

7.1. ELEMENTOS DE LA NAVE

A continuación, presentamos las comprobaciones pertinentes para la situación más desfavorable de cada elemento de la estructura con sus pertinentes consideraciones.

7.1.1 Pórticos

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

Dinteles

El perfil elegido para los dinteles será un HEB 280 con cartela inicial inferior

de 2,20 metros.

Tomamos la opción de acartelamiento de los dinteles en su unión con el pilar;

de esta manera conseguimos que un perfil menor sea capaz de aguantar los momentos

que se producen en la unión del dintel con el pilar y de la misma manera esto nos

ayudará a la hora de diseñar la unión atornillada entre el dintel y el pilar.

Decidimos no acartelar la unión de los dinteles en cumbrera, ya que los perfiles

simples elegidos son capaces de aguantar las solicitaciones en esas uniones y

simplemente podríamos colocarlos para facilitar su montaje en obra, cosa que para

nuestro caso en particular no hemos considerado necesario; de esta manera nos

ahorramos material sin perjudicar a la estructura.

En nuestro caso, serán los dinteles centrales los que se sometan a las mayores

solicitaciones. Dimensionaremos el resto de en función de estos para simplificar el

montaje en obra y para que sea posible una ampliación de la nave en el futuro en caso

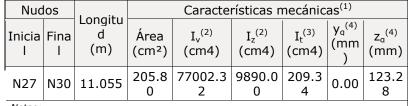
necesario.

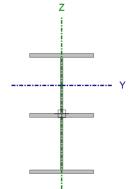
Todos los dinteles de los pórticos serán acartelados a excepción de los dinteles

de los pórticos hastiales, que son los que recibirán menores solicitaciones.

A continuación, se muestran las comprobaciones pertinentes que muestran que

el perfil elegido cumple los requisitos necesarios:


Barra N27/N30


Perfil: HE 280 B, Simple con cartelas (Cartela inicial inferior: 2.20 m.)

Material: Acero (S275)

87

Perfil: HE 280 B, Simple con cartelas (Cartela inicial inferior: 2.20 m.) Material: Acero (S275)

- Notas:

 (1) Las características mecánicas y el dibujo mostrados corresponden a la
 - (2) Inercia respecto al eje indicado
 - (3) Momento de inercia a torsión uniforme
 - (4) Coordenadas del centro de gravedad

	Pan	deo	Pandeo lateral				
	Plano XY	Plano XZ	Ala sup.	Ala inf.			
β	0.14	1.16	0.00	0.00			
L _K	1.500	12.791	0.000	0.000			
C_{m}	1.000	1.000	1.000	1.000			
C ₁		-	1.00	00			

Notación:

- β: Coeficiente de pandeo
- L_K : Longitud de pandeo (m)
- *C_m*: Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

	COMPROBACIONES (CTE DB SE-A)															
Barra	λ	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_Z	M_tV_Y	Estado
N27/N3 0	$\begin{array}{c} x\colon 2.34 \\ m \\ \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$x{:}~0.141\\ m\\ \lambda_w \leq \\ \lambda_{w,m\acute{a}x}\\ Cumple$	x: 2.34 m η = 2.0	x: 2.34 m η = 4.2	x: 2.342 m η = 42.9	0.00	x: 2.066 m η = 11.6	V _{Ed} = 0.00 N.P. ⁽²⁾	η < 0.1	N.P. ⁽	x: 2.342 m η = 48.4	η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	N.P. ⁽	N.P. ⁽	CUMPL Ε η = 48.4

- cumple

 otación:
 3: Limitación de espeitez

 1: Anoiladura del alma inducida por el ala comprimida

 1: Anoiladura del alma inducida por el ala comprimida

 1: Anoiladura del alma inducida por el ala comprimida

 1: Anoiladura del alma inducida por el ala comprimida

 1: Anoiladura del alma inducida por el ala comprimida

 1: Anoiladura del Rexión eje Z

 1: Resistencia a fiexión eje Z

 1: Resistencia a corte Y

 1: My.: Resistencia a momento flector Y y fuerza cortante Z combinados

 1: My.: Resistencia a momento flector Y y fuerza cortante Y combinados

 1: My.: Resistencia a fiexión, avi y cortante combinados

 1: My.: Resistencia a fiexión y avi y cortante combinados

 1: My.: Resistencia a cortante Z y momento torsor combinados

 1: My.: Resistencia a cortante Y y momento torsor combinados

 1: Distancia al origen de la barra

 1: Coeficiente de aprovechamiento (%)

 1: N.: No procede
- η: Coericience N.P.: No procede

- N.P.: No proceue

 Trobaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay momento flector.
 (2) La comprobación no procede, ya que no hay estuezo cortante.
 (3) La comprobación no procede, ya que no hay estuezo cortante.
 (4) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (4) La comprobación no procede, ya que no hay momento torsor.
 (5) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> λ̄: 1.19

> > 1

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

Clase :

131.40 cm² **A**: 265.00 MPa f_v :

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

N_{cr}: Axil crítico de pandeo elástico.

3.ANEXOS

kΝ

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

- a) Axil crítico elástico de pandeo por flexión respecto al eje Y.
 - 2441.22 kΝ $N_{cr,y}$:

2441.22

- b) Axil crítico elástico de pandeo por flexión respecto al eje Z.
- N_{cr,z}: 60750.61 kN
- c) Axil crítico elástico de pandeo por torsión.
- ∞ $N_{cr,T}$:

Donde:

- I_v: Momento de inercia de la sección bruta, respecto al eje Y. I_z: Momento de inercia de la sección bruta,
- respecto al eje Z.
- I₊: Momento de inercia a torsión uniforme.
- Iw: Constante de alabeo de la sección.
- E: Módulo de elasticidad.
- G: Módulo de elasticidad transversal.
- L_{ky}: Longitud efectiva de pandeo por flexión, respecto al eje Y.
- Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.
- **L**_{kt}: Longitud efectiva de pandeo por torsión.
- io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

- **I_v**: 19270.00 cm4
- **I**_z: 6595.00 cm4
- **I.**: 146.09 cm4
- $I_w: 1130000.00 \text{ cm}6$ E: 210000 MPa
- **G**: 81000 MPa
- 12.791 L_{ky}: m
- L_{kz} : 1.500 m
- 0.000 L_{kt}: m
 - io: 14.03 cm

Siendo:

- i_v , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.
- y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.
- i_v: 12.11 cm
- i_z: 7.08 cm 0.00

mm

yo:

0.00 mm z_0 :

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

48.00 ≤ 243.61 √

Donde:

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.020 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.340 m del nudo N27, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 65.92 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 3316.29 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 131.40 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 252.38 MPa

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.020

η: 0.042 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.340 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H4+0.75·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 67.47 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 3316.29 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase :

A: 131.40 cm² $\mathbf{f_{vd}}$: 252.38 MPa

1

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $\gamma_{\text{M0}}\text{:}$ Coeficiente parcial de seguridad del material.

f_v : __265.00 MPa

γ_{м0}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 1595.88 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

y 3. f_{vd} : Resistencia de cálculo del acero.

A: 131.40 cm²

f_{vd}: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $\mathbf{f_v}: \underline{265.00}$ MPa $\gamma_{M1}: \underline{1.05}$

 γ_{M1} : Coeficiente parcial de seguridad del material.

χ: Coeficiente de reducción por pandeo.

 $\chi_{v}: 0.48$

 $\chi_{z}: 0.98$

Siendo: $\phi_{\mathbf{v}}: 1.38$

φ_z: 0.54

 α : Coeficiente de imperfección elástica. α_{v} : 0.34

3.ANEXOS

 $\bar{\lambda}$: Esbeltez reducida.

α_z: 0.49

 $\overline{\lambda}_{\mathbf{v}}: 1.19$

 $\bar{\lambda}_z$: 0.24

 \mathbf{N}_{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 2441.22 kN

 $\mathbf{N}_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $N_{cr,v}$: 2441.22 kN

 $\mathbf{N}_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr.z}: 60750.61 kN

 $\mathbf{N}_{cr,T}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.429

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.342 m del nudo N27, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{+} : 80.88 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.342 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H4+0.75·N(EI).

 \mathbf{M}_{Ed} : Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 M_{Ed}^{-} : 166.21 kN·m

 $M_{c,Rd}$: 387.15 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 1

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 1534.00 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: *252.38* MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v : _265.00 MPa

γ_{м0}: 1.05

 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.116 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.066 m del nudo N27, para la combinación de acciones 1.35·PP+0.9·V(0°)H4+1.5·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 58.32 kN

El esfuerzo cortante resistente de cálculo $\boldsymbol{V}_{\boldsymbol{c},Rd}$ viene dado por:

 $V_{c,Rd}$: 502.60 kN

Donde:

 $\mathbf{A_{v}}$: Área transversal a cortante. $\mathbf{f_{vd}}$: Resistencia de cálculo del acero.

 $A_v : 34.49 \text{ cm}^2$ $f_{vd} : 252.38 \text{ MPa}$

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

18.67 < **65.92**

√

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 λ_{w} : 18.67

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}: 65.92$

ε: Factor de reducción.

ε: 0.94

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $75.64 \text{ kN} \le 413.10 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(0^{\circ})H4 + 1.5 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : ____75.64 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 826.19 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.449**

η: **0.484**

η: **0.286** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.342 m del nudo N27, para la combinación de acciones 1.35·PP+1.5·V(180°)H4+0.75·N(EI).

Donde:

Donac.	
$\mathbf{N_{c,Ed}}$: Axil de compresión solicitante de cálculo pésimo. $\mathbf{M_{y,Ed}}$, $\mathbf{M_{z,Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.	$\mathbf{N_{c,Ed}}$: 65.53 kN $\mathbf{M_{y,Ed}}$: 166.21 kN·m $\mathbf{M_{z,Ed}}^+$: 0.00 kN·m
Clase : Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.	Clase: 1
 N_{pl,Rd}: Resistencia a compresión de la sección bruta. M_{pl,Rd,y}, M_{pl,Rd,z}: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente. Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2) A: Área de la sección bruta. W_{pl,y}, W_{pl,z}: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, 	$N_{pl,Rd}$: 3316.29 kN $M_{pl,Rd,v}$: 387.15 kN·m $M_{pl,Rd,z}$: 181.11 kN·m A: 131.40 cm ² $W_{pl,v}$: 1534.00 cm ³
respectivamente. f_{vd}: Resistencia de cálculo del acero.	$\mathbf{W_{pl,z}}: \frac{717.60}{\mathbf{f_{vd}}} \text{ cm}^3$ $\mathbf{f_{vd}}: \frac{252.38}{\mathbf{f_{vd}}} \text{ MPa}$
Siendo: $f_{v} \colon \text{L\'imite elástico. (CTE DB SE-A, Tabla 4.1)}$ $\gamma_{M1} \colon \text{Coeficiente parcial de seguridad del material.}$ $k_{v}, \ k_{z} \colon \text{Coeficientes de interacción.}$	$\mathbf{f_v}: \underline{265.00}_{M1} \ MPa$ $\gamma_{M1}: \underline{1.05}_{M1}$
	k _z :1.00
$\mathbf{C}_{m,y},\;\mathbf{C}_{m,z}$: Factores de momento flector uniforme equivalente.	C _{m,v} : 1.00 C _{m,z} : 1.00
$\chi_y,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{v}}: \underline{\qquad 0.48} \\ \chi_{\mathbf{z}}: \underline{\qquad 0.98}$
$\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.	$ \frac{\overline{\lambda}_{\mathbf{v}}: \underline{1.19}}{\overline{\lambda}_{\mathbf{z}}: 0.24} $
α_y , α_z : Factores dependientes de la clase de la sección.	$\alpha_{\mathbf{v}}: \begin{array}{c} 0.27 \\ 0.60 \\ \alpha_{\mathbf{z}}: \end{array}$

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{c,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(0^{\circ})H4 + 1.5 \cdot N(EI)$.

 $75.64 \text{ kN} \le 413.10 \text{ kN}$

kΝ

Donde:

V_{Ed.z}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

 $V_{Ed,z}$: $V_{c,Rd,z}$: 75.64

826.19

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Pilares

El perfil elegido para los pilares será un HEB 280.

De la misma manera que ocurre para los dinteles, hemos dimensionado los pilares en función del que está sometido a mayores solicitaciones para facilitar el montaje en obra y que en un futuro, en caso de ser necesaria una ampliación de la estructura, ésta pueda realizarse de la forma más sencilla. También tenemos que tener en cuenta que si bien podría habernos servido, debido a las solicitaciones de flecha y resistencia un perfil menor, hemos optado por colocar el mismo perfil que el de los dinteles del pórtico, lo que nos facilitará el montaje en obra y el dimensionamiento de las uniones.

A continuación, se muestran las comprobaciones pertinentes que muestran que el perfil elegido cumple los requisitos necesarios:

Barra N102/N27

Perfil: HE 280 B

Material: Acero (S275)

Perfil: HE 280 B Material: Acero (S275)											
	Nuc	los	Lanaitu	Car	Características mecánic						
	Inicial	Final	Longitu (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)				
Z	N102	N27	3.000	131.40	19270.00	6595.00	146.09				
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme										
		Pandeo			Pa	ndeo late	teral				
		Plan	XY C	Plano X	Z Ala s	up. A	Ala inf.				
	β	0.14 1.50		0.0	0	0.00					
	L _K	0.4	29	4.500	0.0	00 (0.000				
	C _m	1.0	00	1.000	1.00	00	1.000				
	C_1		-		1.000						
,	Notación: β: Coeficiente de pandeo L _K : Longitud de pandeo (m) C _m : Coeficiente de momentos C ₁ : Factor de modificación para el momento crítico										

		COMPROBACIONES (CTE DB SE-A)														
Barra	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	V _z	V _Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_Z	M_tV_Y	Estado
N102/N2 7	$\begin{array}{c} \bar{\lambda} < \\ 2.0 \\ \text{Cumpl} \\ e \end{array}$	$\begin{array}{c} \lambda_w \leq \\ \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	x: 2.604 m η = 1.9	x: 0.1 m η = 3.1	x: 2.605 m η = 72.4	x: 0.1 m η = 1.1	x: 2.605 m η = 9.9	η < 0.1	η < 0.1	η < 0.1	x: 2.605 m η = 75.2	η < 0.1	M _{Ed} = 0.00 N.P. ⁽¹⁾	N.P.	N.P. ⁽	CUMPL E η = 75.2
N: F N: F No: F My: I Mz: I Vz: I Vy: F MyVz MzV, NMyI	Abolladura Resistencia Resistencia Resistencia Resistencia Resistencia Resistencia Resister Resister	a a tracción a a compres a a flexión e a a flexión e a a corte Z a a corte Y ncia a mome encia a flexi encia a flexi	iducida por el sión eje Y	y fuerza co y fuerza co binados	ortante Z com ortante Y com											

NM/MZYWZ. Resistencia a inexion, axii y Curtaine Comminator MI: Resistencia a torisión MI/v: Resistencia a cortante Z y momento torsor combinados MI/v: Resistencia a cortante Y y momento torsor combinados x: Distancia al origen de la barra n. Coeficiente de aprovechamiento (%) N.P.: No procede

Comprobaciones que no proceden (N.P.):

(1) La comprobación no procede, ya que no hay momento torsor.

(2) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> 0.42 $\bar{\lambda}$:

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

A: 131.40 cm² 265.00 MPa f_v : **N**_{cr}: 19723.13 kΝ

Clase :

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 19723.13 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr.z}: 744197.62 kN

c) Axil crítico elástico de pandeo por torsión.

 ∞ $N_{cr,T}$:

Donde:

I _y : Momento de inercia de la sección brut	a,
respecto al eje Y.	

I₂: Momento de inercia de la sección bruta, respecto al eje Z.

I_t: Momento de inercia a torsión uniforme.

 I_w : Constante de alabeo de la sección.

E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

Lky: Longitud efectiva de pandeo por flexión, respecto al eje Y.

L_{kz}: Longitud efectiva de pandeo por flexión, respecto al eje Z.

Lkt: Longitud efectiva de pandeo por torsión.

io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

I_v: 19270.00 cm4

I_z: 6595.00 cm4 **I**_t: 146.09 cm4

 $I_w: 1130000.00 \text{ cm}6$ E:_ 210000 MPa

G: 81000 MPa

4.500 L_{kv}: m

 L_{kz} : 0.429 m

 L_{kt} : 0.000 m

io: 14.03 cm

Siendo:

i_v , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

12.11 i_v: cm

i_z: 7.08 cm

0.00 mm **y**₀:

0.00 mm **Z**₀:

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en:

Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

23.24 ≤ 169.50 √

Donde:

h_w: Altura del alma.

h_w: 244.00 mm

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

 $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: $\boxed{10.50}$ mm $\mathbf{A_w}$: Área del alma. $\mathbf{A_w}$: 25.62 cm² $\mathbf{A_{fc,ef}}$: Área reducida del ala comprimida. $\mathbf{A_{fc,ef}}$: 50.40 cm² \mathbf{k} : Coeficiente que depende de la clase de la sección. \mathbf{k} : $\boxed{0.30}$ \mathbf{E} : Módulo de elasticidad. \mathbf{E} : $\boxed{210000}$ MPa $\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida. $\mathbf{f_{vf}}$: $\boxed{265.00}$ MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.019 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.604 m del nudo N102, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 62.54 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 3316.29 kN

Donde:

A: Área bruta de la sección transversal de la barra.A: $\underline{131.40}$ cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : $\underline{252.38}$ MPa

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η:__**0.028**___**√**

լ։ <u>0.031</u> √

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.100 m del nudo N102, para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(0^\circ)H4 + 1.5 \cdot N(EI)$.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 93.16 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 3316.29 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1,

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 131.40 cm²

f_{vd}: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 265.00 MPa

γ_{мо}: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 3044.31 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1,

f_{vd}: Resistencia de cálculo del acero.

A: <u>131.40</u> cm² **f**_{vd}: <u>252.38</u> MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

 $\gamma_{M1}: 1.05$

 $\mathbf{f_v}: 265.00$

χ: Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{y}}: 0.92$

 χ_z :

φν:

Siendo:

1.00

0.63

 $\phi_{z}: 0.47$

α: Coeficiente de imperfección elástica.

 $\alpha_{\mathbf{v}}$: 0.34 $\alpha_{\mathbf{z}}$: 0.49

 $\bar{\lambda}$: Esbeltez reducida.

MPa

 $\bar{\lambda}_{\mathbf{y}}: 0.42$

 $\overline{\lambda}_z$: 0.07

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 19723.13 kN

 $\mathbf{N}_{\mathbf{cr,y}}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $N_{cr,v}$: 19723.13 kN

N_{cr,z}: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 744197.62 kN

 $\mathbf{N}_{cr,T}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.724

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.605 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·V(180°)H4+0.75·N(EI).

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo. $\mathbf{M_{Ed}}^+$: 280.37 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.605 m del nudo N102, para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $\mathbf{M}_{\mathbf{Ed}}$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{Ed}}$: 178.71 kN·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

M_{c,Rd}: 387.15 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : _____1

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,v}: 1534.00 \text{ cm}^3$

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero.

f_{vd}: *252.38* MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.011 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.100 m del nudo N102, para la combinación de acciones 0.8·PP+1.5·V(90°)H2.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M_{Ed}}^+$: 1.94 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.100 m del nudo N102, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

 $\mathbf{M_{Ed}}^-$: Momento flector solicitante de cálculo pésimo. El momento flector resistente de cálculo $\mathbf{M_{c,Rd}}$ viene dado por: M_{Ed} : 1.94 kN·m

M_{c,Rd}: 181.11 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 717.60 \text{ cm}^3$

1

Clase :

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: *252.38* MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa $\mathbf{\gamma_{M0}}$: Coeficiente parcial de seguridad del material. $\mathbf{\gamma_{M0}}$: $\underline{1.05}$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.099 🗸

 \checkmark

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.605 m del nudo N102, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^\circ)H4 + 0.75 \cdot N(EI)$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 59.26 kN

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 599.31 kN

Donde:

 A_v : Área transversal a cortante.

 A_v : 41.13 cm²

Siendo:

A: Área bruta de la sección transversal de la barra.A: $\underline{131.40}$ cm²b: Ancho de la sección.b: $\underline{280.00}$ mmt_f: Espesor del ala.t_f: $\underline{18.00}$ mmt_w: Espesor del alma.t_w: $\underline{10.50}$ mmr: Radio de acuerdo entre ala y alma.r: $\underline{24.00}$ mm

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: 252.38 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

18.67 < **65.92**

/

Donde:

 λ_{w} : Esbeltez del alma. λ_{w} : __18.67

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 65.92

 ϵ : Factor de reducción. ϵ : 0.94

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < __**0.001**__**√**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.67 kN

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 1541.34 kN

Donde:

 A_v : Área transversal a cortante.

 $A_v: 105.78 \text{ cm}^2$

Siendo:

A: Área de la sección bruta.A: 131.40 cm²d: Altura del alma.d: 244.00 mm $\mathbf{t_w}$: Espesor del alma. $\mathbf{t_w}$: 10.50 mm

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: *252.38* MPa

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

 $55.16 \text{ kN} \le 299.66 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones

1.35·PP+1.5·V(180°)H4+0.75·N(EI).

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 55.16 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

 $V_{c,Rd}$: 599.31

kΝ

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V_{c,Rd}}$.

 $0.67 \text{ kN} \le 770.67 \text{ kN}$

kΝ

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(90^{\circ})H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.67

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: __1541.34_ kN

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.746** γ

η: **0.752**

η:__**0.459**__**√**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.605 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·V(180°)H4+0.75·N(EI).

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

 $\mathbf{M_{y,Ed}}$, $\mathbf{M_{z,Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

 $N_{\text{pl},Rd}$: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{yr}}$ $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

W_{pl,v}, W_{pl,z}: Módulos resistentes plásticos correspondientes a

 $N_{c,Ed}$: 73.44 kN

 $\mathbf{M_{v,Ed}}^{+}$: 280.37 kN·m $\mathbf{M_{z,Ed}}^{+}$: 0.00 kN·m

Clase: 1

 $N_{pl,Rd}$: 3316.29 kN $M_{pl,Rd,v}$: 387.15 kN·m

M_{pl,Rd,z}: 181.11 kN⋅m

A: 131.40 cm²

 $W_{pl,y}: 1534.00 \text{ cm}^3$

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

la fibra comprimida, alrededor de los ejes Y y Z, $W_{pl,z}: 717.60 \text{ cm}^3$ respectivamente. f_{vd}: Resistencia de cálculo del acero. **f_{vd}**: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 265.00 MPa γ_{M1} : Coeficiente parcial de seguridad del material. $\gamma_{M1}: 1.05$

k_v, **k**_z: Coeficientes de interacción.

 k_v : 1.01

k_z: 1.00

 $C_{m,v}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,v}: 1.00$

 $C_{m,z}$: 1.00

 χ_z :

 χ_{v} , χ_{z} : Coeficientes de reducción por pandeo, alrededor de los $\chi_{v}: 0.92$ 1.00

ejes Y y Z, respectivamente.

 $\overline{\lambda}_{\mathbf{v}}$, $\overline{\lambda}_{\mathbf{z}}$: Esbelteces reducidas con valores no mayores que $\overline{\lambda}_{\mathbf{v}}: 0.42$ 1.00, en relación a los ejes Y y Z, respectivamente.

 $\bar{\lambda}_z$: 0.07 α_v , α_z : Factores dependientes de la clase de la sección. 0.60 $\alpha_{\mathbf{v}}$:

> 0.60 α_z :

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $V_{c,Rd}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones

1.35·PP+1.5·V(180°)H4+0.75·N(EI).

 $55.16 \text{ kN} \le 299.66 \text{ kN}$

kΝ

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo. 55.16 $V_{Ed,z}$:

V_{c.Rd.z}: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 599.31 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por

lo tanto, la comprobación no procede.

7.1.2 Pilarillos hastiales

El perfil elegido para los pilarillos hastiales será un HEB 280.

De la misma manera que ocurre para los dinteles, hemos dimensionado los

pilarillos hastiles en función del que está sometido a mayores solicitaciones para

facilitar el montaje en obra.

Cabe destacar, que la base de los pilarillos será articulada, con el consiguiente

efecto de necesitar una cimentación menor para éstos.

Su cometido será el de soportal las fuerzas que el viento ejerce en estas caras

del cerramiento y transmitirlas a las vigas de arriostramiento y a la cimentación. En

nuestro caso en particular también ejercen la función de marcos para las puertas de

entrada y salida de material de nuestra nave.

Hemos escogido este tipo de perfil, si bien nos valdría uno menor para aguantar

las solicitaciones a resistencia y flecha, para poder alinear la rasante con los pilares de

los pórticos centrales y así facilitar el montaje de las correas laterales en particular y de

la obra en general.

A continuación, se muestran las comprobaciones pertinentes que muestran que

el perfil elegido cumple los requisitos necesarios:

Barra N65/N55

Perfil: HE 280 B

Material: Acero (S275)

107

Perfil: HE 280 B Material: Acero (S275)											
	Nuc	los	Longituu	Car	Características mecánicas						
	Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)				
Z	N65	N55	11.600	131.40	19270.00	6595.00	146.09				
		Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme									
			Pande	90	Pa	ndeo late	eral				
		Pland	XY	Plano X	Z Ala s	sup. A	la inf.				
	β	1.0	00	1.00	0.0	00	0.00				
	L _K	11.6	500	11.600	0.0	00 (0.000				
	C _m	1.0	00	1.000	1.00	00	1.000				
	C_1 - 1.000 Notación: β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos C_1 : Factor de modificación para el momento crítico										
'											

		COMPROBACIONES (CTE DB SE-A)														
Barra	$\bar{\lambda}$	λ_{w}	N _t	N _c	M _Y	M _Z	Vz	V _Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_Z	M_tV_Y	Estado
N65/N5 5	$\begin{array}{c} \bar{\lambda} < \\ 2.0 \\ \text{Cumpl} \\ e \end{array}$	$x{:}~0.58\\ m\\ \lambda_w \leq \\ \lambda_{w,m\acute{a}x}\\ Cumple$	x: 11.6 m η = 0.4	x: 0 m η = 6.0	x: 5.8 m η = 17.3	M _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0 m η = 3.8	V _{Ed} = 0.00 N.P. ⁽²⁾	x: 0.58 m η < 0.1	N.P. ⁽	x: 5.8 m η = 17.5	x: 0.58 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	N.P. ⁽	N.P. ⁽	CUMPL Ε η = 17.5

- Notación:

 i: Limitación de esbeltez

 i: Abolladura del alma inducida por el ala comprimida

 N: Resistencia a tracción

 N: Resistencia a compresión

 My: Resistencia a flexión eje Y

 i: Resistencia a flexión eje Y

 - M_z: Resistencia a flexión eje Z V_z: Resistencia a corte Z V_Y: Resistencia a corte Y

 - V: Resistencia a corte Y
 MW2: Resistencia a momento flector Y y fuerza cortante Z combinados
 MW4: Resistencia a momento flector Z y fuerza cortante Y combinados
 NM,M2: Resistencia a flexión y axil combinados
 NM,M2: Resistencia a flexión y axil combinados
 MM,M2: Resistencia a flexión y axil cortante combinados
 Mi. Resistencia a torsión
 MW2: Resistencia a cortante Z y momento torsor combinados
 MW2: Resistencia a cortante Y y momento torsor combinados
 X: Distancia al origen de la barra

 7: Coeficiente de aprovechamiento (%)
 N.P.: No procede

- Comprobaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay momento flector.
 (2) La comprobación no procede, ya que no hay esfuerzo cortante.
 (3) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (4) La comprobación no procede, ya que no hay momento torsor.
 (5) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\ \overline{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

> $\overline{\lambda}$: 1.85

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

Clase: 1

A: 131.40 cm^{2} f_v : 265.00 MPa $N_{cr}: 1015.82$ kΝ

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

- a) Axil crítico elástico de pandeo por flexión respecto al eje Y.
- N_{cr,v}: 2968.14 kΝ
- b) Axil crítico elástico de pandeo por flexión respecto al eje Z.
- $N_{cr,z}$: 1015.82 kΝ
- c) Axil crítico elástico de pandeo por torsión.
- α $N_{cr,T}$:

Donde:

- I_v: Momento de inercia de la sección bruta, respecto al eje Y.
- I₂: Momento de inercia de la sección bruta, respecto al eje Z.
- I_t: Momento de inercia a torsión uniforme.
- I_w : Constante de alabeo de la sección.
- E: Módulo de elasticidad.
- G: Módulo de elasticidad transversal.
- Lky: Longitud efectiva de pandeo por flexión, respecto al eje Y.
- Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.
- Lkt: Longitud efectiva de pandeo por torsión.
- io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

- I_v : 19270.00 cm4
- I_z: 6595.00 cm4
- **I**_t: 146.09 cm4 I_w: 1130000.00 cm6
- **E**: 210000 MPa
- **G**: 81000 MPa
- 11.600 L_{kv}: m
- L_{kz}: 11.600 m
- 0.000 Lkt: m
 - io: 14.03 cm

Siendo:

- i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.
- y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.
- 12.11 cm i_v:
- 7.08 i_z : cm
- 0.00 mm **y**₀:
- 0.00 **Z**₀: mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

23.24 ≤ 169.50 √

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

h_w: Altura del alma. **h**_w: 244.00 mm tw: Espesor del alma. **t**_w: 10.50 mm **A_w**: 25.62 cm² A_w : Área del alma. **A**_{fc,ef}: Área reducida del ala comprimida. $A_{fc,ef}: 50.40 \text{ cm}^2$ k: Coeficiente que depende de la clase de la sección. **k**: 0.30

E: 210000 MPa E: Módulo de elasticidad. f_{vf}: Límite elástico del acero del ala comprimida. f_{vf}: 265.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N55, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

N_{t.Ed}: Axil de tracción solicitante de cálculo pésimo. $N_{t.Ed}$: 14.70 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t.Rd}: 3316.29 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 131.40 cm² f_{vd}: Resistencia de cálculo del acero. **f**_{vd}: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{м0}: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.013**

η: **0.060**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N65, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^{\circ})H1 + 0.75 \cdot N(EI)$.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 44.53 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 3316.29 kN

Clase: 1

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

A: 131.40 cm²

f_{vd}: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 265.00 MPa

γмо: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 741.86 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

y 3.

f_{vd}: Resistencia de cálculo del acero.

A: 131.40 cm²

f_{vd}: 252.38 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_v: 265.00 MPa

γ_{M1}: 1.05

χ: Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{v}}: 0.55$

 $\chi_{z}: 0.22$

Siendo:

 $\phi_{v}: 1.24$

 ϕ_z : 2.62

α: Coeficiente de imperfección elástica.

 $\alpha_{\mathbf{v}}: 0.34$

 $\alpha_z : 0.49$

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{y}}: 1.08$

 $\bar{\lambda}_z$: 1.85

3.ANEXOS

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

> N_{cr.v}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

> N_{cr.z}: Axil crítico elástico de pandeo por flexión respecto al eje Z.

> N_{cr.T}: Axil crítico elástico de pandeo por

N_{cr}: 1015.82 kN

 $N_{cr,v}$: 2968.14 kN

N_{cr,z}: 1015.82 kN

N_{cr.T}: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.173**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 5.800 m del nudo N65, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{+} : 59.96 kN·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 5.800 m del nudo N65, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 66.82 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 387.15 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl.v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 1534.00 \text{ cm}^3$

Clase: 1

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 252.38 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\gamma_{MO}: 1.05$

f_v: 265.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.038 γ

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N65, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 23.05 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 599.31 kN

Donde:

 A_v : Área transversal a cortante.

 $A_v : 41.13 \text{ cm}^2$

Siendo:

A: Área bruta de la sección transversal de la barra.A: $\frac{131.40}{280.00}$ cm²b: Ancho de la sección.b: $\frac{280.00}{280.00}$ mmt_f: Espesor del ala.t_f: $\frac{18.00}{280.00}$ mmt_w: Espesor del alma.t_w: $\frac{10.50}{280.00}$ mmr: Radio de acuerdo entre ala y alma.r: $\frac{24.00}{280.00}$ mm

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

f_{vd}: *252.38* MPa

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 265.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

18.67 < **65.92**

√

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 $\lambda_{\mathbf{w}}: 18.67$

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 65.92

ε: Factor de reducción.

ε: 0.94

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{c,Rd}$.

 $20.74 \text{ kN} \le 299.66 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.580 m del nudo N65, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 20.74 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 599.31 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.165 🗸

η: **0.175** 🗸

η: 0.138 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 5.800 m del nudo N65, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^\circ)H1 + 0.75 \cdot N(EI)$.

Donde:

My,Ed, Mz,Ed: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.My,Ed : 59.96 kMz,Ed : 0.00	
Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple. N _{DLRd.} : Resistencia a compresión de la sección bruta. M _{PLRd.y.} M _{PLRd.z} : Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente. Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2) A: Área de la sección bruta. W _{PL,Y} , W _{PL,Z} : Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente. f _{vd} : Resistencia de cálculo del acero. Siendo: f _V : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ _{M1} : Coeficiente parcial de seguridad del material. k _V , k _Z : Coeficientes de interacción. c _{m,Y} , C _{m,Z} : Factores de momento flector uniforme equivalente. C _{m,Y} , C _{m,Z} : Factores de reducción por pandeo, alrededor de los χ _V , χ _Z : Coeficientes de reducción por pandeo, alrededor de los χ _V : 2.55 λχ _V : 2.55	os flectores solicitantes de cálculo $M_{v,Ed}^+$: 59.96 kN·m
$\begin{array}{c} \textbf{M}_{\text{pl,Rd,y}}, \textbf{M}_{\text{pl,Rd,z}} : \text{ Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.} \\ \textbf{Resistencia a pandeo:} \text{ (CTE DB SE-A, Artículo 6.3.4.2)} \\ \textbf{A: Área de la sección bruta.} \\ \textbf{W}_{\text{pl,y}}, \textbf{W}_{\text{pl,z}} : \text{ Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.} \\ \textbf{f}_{\text{vd}} : \text{ Resistencia de cálculo del acero.} \\ \textbf{Siendo:} \\ \textbf{f}_{\text{v}} : \text{ Límite elástico.} \text{ (CTE DB SE-A, Tabla 4.1)} \\ \textbf{g}_{\text{M1}} : \text{ Coeficiente parcial de seguridad del material.} \\ \textbf{k}_{\text{v}}, \textbf{k}_{\text{z}} : \text{ Coeficientes de interacción.} \\ \textbf{k}_{\text{v}}, \textbf{k}_{\text{z}} : \text{ Coeficientes de momento flector uniforme equivalente.} \\ \textbf{C}_{\text{m,v}}, \textbf{C}_{\text{m,z}} : \text{ Factores de momento flector uniforme equivalente.} \\ \textbf{x}_{\text{v}} : \textbf{2.65.00} \\ \textbf{C}_{\text{m,z}} : \textbf{1.00} \\ \textbf{C}_{\text{m,z}} : \textbf{2.100} \\ \textbf{C}_$	resistencia plástica de sus elementos
f_{y} : Límite elástico. (CTE DB SE-A, Tabla 4.1) $f_{y}: \underline{265.00}$ M $_{y_{M1}}$: Coeficiente parcial de seguridad del material. $\gamma_{M1}: \underline{1.05}$ 1.05 1.05 1.05 1.05 1.06 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.00	stencia a flexión de la sección bruta en , respecto a los ejes Y y Z,
$\mathbf{k_z}: 1.06$ $\mathbf{C_{m,y}}, \mathbf{C_{m,z}}: \text{ Factores de momento flector uniforme equivalente.}$ $\mathbf{C_{m,v}}: 1.00$ $\mathbf{C_{m,z}}: 1.00$ $\mathbf{c_{m,z}}: 1.00$ $\mathbf{c_{m,z}}: 1.00$	ente parcial de seguridad del material. $\gamma_{M1}: 1.05$
χ_{y}, χ_{z} : Coeficientes de reducción por pandeo, alrededor de los $\chi_{y}: 0.55$	·
oios V v 7 respectivemente	
ejes Y y Z, respectivamente. χ_z : 0.22	
$\overline{\lambda}_{\mathbf{y}}$, $\overline{\lambda}_{\mathbf{z}}$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente. $\overline{\lambda}_{\mathbf{z}}$: 1.85 $\alpha_{\mathbf{y}}$, $\alpha_{\mathbf{z}}$: Factores dependientes de la clase de la sección. $\alpha_{\mathbf{y}}$: 0.60 $\alpha_{\mathbf{z}}$: 0.60	s ejes Y y Z, respectivamente. $\overline{\lambda}_z$: 1.85 ndientes de la clase de la sección. α_y : 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

3.ANEXOS

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V_{C,Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.580 m del nudo N65, para la combinación de acciones 0.8·PP+1.5·V(270°)H2.

 $20.74 \ kN \le 299.66 \ kN$

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 20.74 kN $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 599.31 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

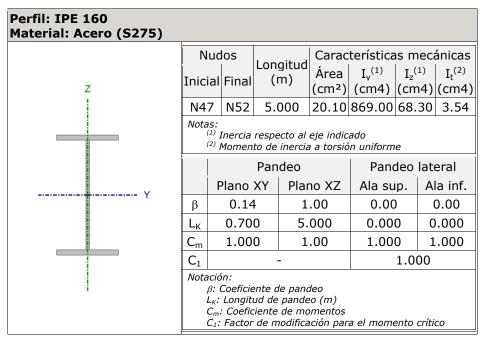
No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

7.1.3 Vigas de arriostramiento y marcos de las cruces de San Andrés

La misión fundamental de los arriostramientos en los edificios industriales, es absorber los empujes longitudinales provocados por el viento debido a su presión sobre las paredes frontales, así como las fuerzas de inercia longitudinal originadas por los puentes grúa en su movimiento.


Se han elegido perfiles IPE 160 tanto para las vigas de arriostramiento como para los marcos de las cruces de Andrés.

Si bien para nuestra estuctura podrían valernos perfiles de menor sección, de han elegido estos perfiles para dar una mayor estabilidad, para garantizar las condiciones de las uniones con el resto de la estructura y proporcionar el área de marco necesario para las cruces de San Andrés.

A continuación, se muestran las comprobaciones pertinentes que muestran que

el perfil elegido cumple los requisitos necesarios:

Barra N47/N52

		COMPROBACIONES (CTE DB SE-A)														
Barra	$\bar{\lambda}$	$\lambda_{\mathbf{w}}$	N _t	N _c	M _Y	M _Z	Vz	V _Y	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV$	M _t	M_tV_Z	M_tV_Y	Estado
N47/N5 2	$\begin{array}{c} \overline{\lambda} < \\ 2.0 \\ \text{Cumpl} \\ e \end{array}$	$\begin{array}{c} x \colon 0.313 \\ m \\ \lambda_w \leq \lambda_{w,\text{máx}} \\ \text{Cumple} \end{array}$	η = 0.4	η = 18.3	x: 2.5 m η = 2.0	M _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽²⁾	x: 0.313 m η < 0.1	N.P. ⁽³	x: 2.5 m η = 20.5	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	N.P. ⁽⁵	N.P. ⁽⁵	CUMPL E η = 20.5

- ión:
 \$\bar{x}\$: Limitación de esbeltez
 \$\bar{x}\$: Abolladura del alma inducida por el ala comprimida
 \$N_c\$: Resistencia a tracción
 \$N_c\$: Resistencia a Compresión
 \$M_c\$: Resistencia a flexión eje Y
 \$M_c\$: Resistencia a flexión eje Z

- V_z: Resistencia a corte Z V_Y: Resistencia a corte Y
- V;: Resistencia a corte Y
 Mv2: Resistencia a momento flector Y y fuerza cortante Z combinados
 M₂V;: Resistencia a momento flector Z y fuerza cortante Y combinados
 NM-M2: Resistencia a flexión y axil combinados
 NM-M2-V2: Resistencia a flexión, axil combinados
 M;: Resistencia a flexión, axil y cortante combinados
 M;: Resistencia a cortante Z y momento torsor combinados
 M;V: Resistencia a cortante Y y momento torsor combinados
 M;V: Resistencia a cortante Y y momento torsor combinados
 x: Distancia al origen de la barra

 ; Coeficiente de aprovechamiento (%)
 N,P.: No procede

Comprobaciones que no proceden (N.P.)

- rrobaciones que no proceden (N.P.):
 (**) La comprobación no procede, ya que no hay momento flector.
 (**) La comprobación no procede, ya que no hay esfuerzo cortante.
 (**) La comprobación no procede, ya que no hay esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (**) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (**) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ: **0.88**

Donde:

Clase: Clase de la sección, según la capacidad de deformación y Clase: de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3. **A**: 20.10 cm² **f**_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

N_{cr}: Axil crítico de pandeo elástico.

N_{cr}: 720.44 kN

El axil crítico de pandeo elástico \mathbf{N}_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,y}: 720.44 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr.z}: 2888.97 kN

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

I _v : Moment	o de inercia de la sec	ción bruta,
réspecto al	eje Y.	
-	· ·	

I_v : <u>869.00</u> cm4

I _z : Momento de inercia	de la	sección	bruta,
respecto al eje Z.			

I_z: 68.30 cm4 **I_t**: 3.54 cm4

I_t: Momento de inercia a torsión uniforme.I_w: Constante de alabeo de la sección.

 $I_{w}: 3960.00 \text{ cm6}$

E: Módulo de elasticidad.

E: <u>210000</u> MPa **G**: 81000 MPa

G: Módulo de elasticidad transversal.L_{ky}: Longitud efectiva de pandeo por flexión,

L_{kv}: 5.000 m

respecto al eje Y. **L**_{kz}: Longitud efectiva de pandeo por flexión,

L_{kz} : _____0.700__ m

respecto al eje Z. L_{kt}: Longitud efectiva de pandeo por torsión.

L_{kt} : 0.000 m

 $\mathbf{i_0}$: Radio de giro polar de la sección bruta, respecto al centro de torsión.

i₀: 6.83 cm

Siendo:

 i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

i_y: 6.58 cm

 y_0 , z_0 : Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

 $\mathbf{i_z}$: 1.84 cm $\mathbf{y_0}$: 0.00 mm

z₀: 0.00 mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

29.04 ≤ 250.58 √

Donde:

h _w : Altura del alma.	h_w :	145.20	mm
$\mathbf{t_w}$: Espesor del alma.	t_{w} :	5.00	mm
$\mathbf{A_{w}}$: Área del alma.	$\mathbf{A}_{\mathbf{w}}$:	7.26	cm ²
A_{fc,ef}: Área reducida del ala comprimida.	$\mathbf{A}_{fc,ef}$:	6.07	cm ²
k: Coeficiente que depende de la clase de la sección.	k :	0.30	_
E: Módulo de elasticidad.	E:	210000	MPa
$\mathbf{f_{vf}}$: Límite elástico del acero del ala comprimida.	\mathbf{f}_{vf} :	275.00	MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004** 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP+1.5 \cdot V(0^{\circ})H1$.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 2.06 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 526.43 kN

Donde:

A: Área bruta de la sección transversal de la barra.A: 20.10 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.137** 🗸

η: 0.183

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(270°)H2+0.75·N(R)2.

N_{c.Ed}: Axil de compresión solicitante de cálculo pésimo. N_{c,Ed}: 72.09 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c.Rd}: 526.43 kN

Donde:

Clase: Clase de la sección, según la capacidad de Clase: 1 deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

A: 20.10 cm²

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa $\gamma_{M0}: 1.05$

 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo N_{b.Rd} en una barra comprimida viene dada por:

N_{b,Rd}: 394.60 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

A: 20.10 cm² f_{vd}: 261.90 MPa

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_v: 275.00 MPa

 $\gamma_{M1}: 1.05$

χ: Coeficiente de reducción por pandeo.

 $\chi_{\rm V}: 0.75$

 χ_z : 0.91

Siendo:

 $\phi_{v}: 0.95$

 ϕ_z : 0.64

α: Coeficiente de imperfección elástica.

 α_y : 0.21

 α_z : 0.34

 $\overline{\lambda}$: Esbeltez reducida.

3.ANEXOS

 $\overline{\lambda}_{\mathbf{y}}: 0.88$

 $\bar{\lambda}_z$: 0.44

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 720.44 kN

 $\mathbf{N}_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 720.44 kN

 $\mathbf{N}_{\mathbf{cr,z}}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 2888.97 kN

 $\mathbf{N}_{\mathbf{cr},\mathbf{T}}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.020 γ**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.500 m del nudo N47, para la combinación de acciones 1.35·PP.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 0.65 kN·m

Para flexión negativa:

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed} : 0.00 kN·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}: 32.48 \text{ kN} \cdot \text{m}$

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 1

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $\mathbf{W}_{pl,v}: 124.00$ cm³

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.004

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N47, para la combinación de acciones 1.35 PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.52 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c.Rd}: 146.16 kN

Donde:

 A_v : Área transversal a cortante.

 $A_v: 9.67$ cm²

Siendo:

A: Área bruta de la sección transversal de la barra. A: 20.10 cm² **b**: Ancho de la sección. **b**: 82.00 mm **t**_f: 7.40 mm **t**_f: Espesor del ala. t_w : Espesor del alma. **t**_w: 5.00 mm r: 9.00 mm

r: Radio de acuerdo entre ala y alma.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

25.44 < **64.71**

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 $\lambda_{\mathbf{w}}: 25.44$

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: $\underline{235.00}$ MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

 $0.46 \text{ kN} \le 73.08 \text{ kN}$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N47, para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.46 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 146.16 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η : **0.157 √**

η: **0.205** 🗸

η: **0.164** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.500 m del nudo N47, para la combinación de acciones 1.35·PP+1.5·V(270°)H2+0.75·N(R)2.

Donde:

Donde:	
$\mathbf{N_{c,Ed}}$: Axil de compresión solicitante de cálculo pésimo. $\mathbf{M_{y,Ed}}$, $\mathbf{M_{z,Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.	${f N_{c,Ed}}^+: {72.09} { m kN} \ {f M_{v,Ed}}^+: {0.65} { m kN} { m m} \ {f M_{z,Ed}}^+: {0.00} { m kN} { m m}$
Clase : Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.	Clase :1
N _{pl,Rd} : Resistencia a compresión de la sección bruta.	N_{pl,Rd} : 526.43 kN
$\mathbf{M}_{pl,Rd,y}$, $\mathbf{M}_{pl,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z,	M _{pl,Rd,v} : 32.48 kN⋅m
respectivamente.	M_{pl,Rd,z} : <u>6.84</u> kN⋅m
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Área de la sección bruta.	A : 20.10 cm ²
$\mathbf{W}_{pl,y},\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.	$W_{pl,v}$: 124.00 cm ³ $W_{pl,z}$: 26.10 cm ³
$\mathbf{f_{vd}}$: Resistencia de cálculo del acero.	f _{vd} : 261.90 MPa
Siendo:	
f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1)	f_v : <i>275.00</i> MPa
γ_{M1} : Coeficiente parcial de seguridad del material.	γ _{M1} : 1.05
$\mathbf{k_v},\ \mathbf{k_z}$: Coeficientes de interacción.	
	k _v : 1.12
	k _z :1.04
$\mathbf{C}_{m,y}$, $\mathbf{C}_{m,z}$: Factores de momento flector uniforme equivalente.	C _{m,v} : 1.00 C _{m,z} : 1.00
$\chi_y,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{v}}: \underline{0.75}$ $\chi_{\mathbf{z}}: \underline{0.91}$
$\overline{\lambda}_y$, $\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente. α_y , α_z : Factores dependientes de la clase de la sección.	$ \frac{\overline{\lambda}_{\mathbf{v}}: 0.88}{\overline{\lambda}_{\mathbf{z}}: 0.44} \\ \alpha_{\mathbf{v}}: 0.60} \\ \alpha_{\mathbf{z}}: 0.60 $

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

3.ANEXOS

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo V_{c.Rd}.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N47, para la combinación de acciones 1.35·PP.

 $0.46 \text{ kN} \le 73.08 \text{ kN}$

Donde:

V_{Ed.z}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{Ed.z}$:

0.46 kN

V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

V_{c,Rd,z}: 146.16

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y v momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

7.1.4 Elementos de arriostramiento (Cruces de San Andrés)

Su finalidad principal es la de absorber los empujes debido a la acción del viento. También colaboran en el frenado y arranque de la grúa puente. Los entramados arriostramiento se suelen colocar en los módulos extremos de la nave.

Para nuestra nave hemos elegido unos perfiles redondos R 22. Como llevamos haciendo hasta ahora, equipararemos el perfil que recibe mayores solicitaciones con el resto de elementos de arriostramiento, a fin de facilitar el montaje en obra.

A continuación, se muestran las comprobaciones pertinentes que muestran que el perfil elegido cumple los requisitos necesarios:

Barra N52/N74

Perfil: R 22

Material: Acero (S275)

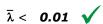
Perfil: R 22 Material: Acero (S275)												
	Nι	idos	Lanaitud		Características mecánica							
	Inicia	al Final	Longitud (m)		Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4	I _t ⁽²⁾ (cm4)				
Z	N52	N74	5.	839	3.80	1.15	1.15	2.30				
	(1	Notas: ⁽¹⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de inercia a torsión uniforme										
		Pandeo			Pan	deo la	teral					
		Plano	ΧY	Plan	o XZ	Ala sup.		Ala inf.				
	β 0.0)	0.00		0.00		0.00				
	L _K	0.00	0	0.0	000	0.00	0	0.000				
	C _m	1.00	0	1.0	000	1.00	0	1.000				
	C ₁ - 1.000											
•	Notación:											
	$β$: Coeficiente de pandeo L_{κ} : Longitud de pandeo (m)											
	C _m : Coeficiente de momentos C ₁ : Factor de modificación para el momento crítico											

Ī			COMPROBACIONES (CTE DB SE-A)													
	Barra	$\bar{\lambda}$	N _t	N _c	M _Y	Mz	Vz	V_Y	M_YV_Z	M_ZV_Y	M_{Y}	$NM_YM_ZV_Y$ V_Z	Mt	M_tV_Z	M_tV_Y	Estado
	N52/N7 4	$\overline{\lambda} \leq 4.0$ Cumpl	η = 83.8	N _{Ed} = 0.00 N.P. ⁽¹⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	V _{Ed} = 0.00 N.P. ⁽³⁾	V _{Ed} = 0.00 N.P. ⁽³⁾	N.P. ⁽	N.P. ⁽	N.P. ⁽	N.P. ⁽⁶⁾	M _{Ed} = 0.00 N.P. ⁽⁷⁾	N.P. ⁽		CUMPL Ε η = 83.8

- Notación: λ: Limitación de esbeltez

 - 2. Limitación de esbeltez
 N.: Resistencia a tracción
 N.: Resistencia a compresión
 Mr.: Resistencia a flexión eje Y
 Mr.: Resistencia a flexión eje Z
 Vr.: Resistencia a corte Z
 Vr.: Resistencia a corte Z
 Vr.: Resistencia a corte Z
 Vr.: Resistencia a momento flector Y y fuerza cortante Z combinados
 Mr.Vr.: Resistencia a momento flector Z y fuerza cortante Y combinados
 NM-Mr.: Resistencia a momento flector Z y fuerza cortante Y combinados
 NM-Mr.Vr.: Resistencia a flexión y axil combinados
 NM-Mr.Vr.: Resistencia a flexión, axil y cortante combinados
 NM-Vr.: Resistencia a cortante Z y momento torsor combinados
 Mr.Vr.: Resistencia a cortante Z y momento torsor combinados
 NM-Vr.: Resistencia a cortante Z y momento torsor combinados
 NM-Vr.: Resistencia a cortante Z y momento torsor combinados
 NM-Vr.: Distancia al origen de la barra

 - x: Distancia al origen de la barra η: Coeficiente de aprovechamiento (%) N.P.: No procede


Comprobaciones que no proceden (N.P.):

- probaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay axil de compresión.
 (2) La comprobación no procede, ya que no hay momento flector.
 (3) La comprobación no procede, ya que no hay esfuerzo cortante.
 (4) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (5) No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
 (6) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (7) La comprobación no procede, ya que no hay momento torsor.
 (8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

Donde:

A: Área bruta de la sección transversal de la barra.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

A: 3.80 cm²

f_v: 265.00 MPa

 N_{cr} : ∞

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.838 ∨**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(270^{\circ})H2 + 0.75 \cdot N(R)2$.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 80.37 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 95.94 kN

Donde:

A: Área bruta de la sección transversal de la barra. A: 3.80 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 252.38 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

3.ANEXOS

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

7.1.5 Dinteles de las puertas de entrada y salida de material de la nave

Se han escogido unos perfiles IPE 160 para los dinteles de las puertas de entrada y salida de material de nave, coincidiendo este perfil con el del arriostramiento longitudinal de nave y el de los marcos de las cruces de San Andrés, facilitando así la colocación de estos perfiles en la obra.

A continuación, se muestran las comprobaciones pertinentes que muestran que el perfil elegido cumple los requisitos necesarios:

Barra N128/N129

Perfil: IPE 160

Material: Acero (S275)

Perfil: IPE 160 Material: Acero (S275)												
	Nι	idos	Lanai	ام ـا	Carac	cterísticas mecánica						
z	Inicia	l Final	Longitud (m)		Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)				
	N128	N129	5.00	00	20.10	869.00	68.30	3.54				
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme											
			Pande	90		Pano	deo lat	eral				
		Plano 2	XΥ	Plar	no XZ	Ala sup.		la inf.				
	β	0.14		1.00		0.00)	0.00				
	L _K	0.700)	5.000		0.000		0.000				
	C _m	1.000)	1.0	000	1.000		1.000				
	C ₁ - 1.000											
i	Notación: β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos C_1 : Factor de modificación para el momento crítico											

		COMPROBACIONES (CTE DB SE-A)														
Barra	īλ	$\lambda_{\mathbf{w}}$	N _t	N _c	M _Y	M _z	Vz	V _Y	M_YV_Z	M_zV_Y	NM_YM_Z	$NM_YM_ZV_YV$	M _t	M_tV_Z	M_tV_Y	Estado
N128/N12 9		$x{:}~0.313\\ m\\ \lambda_w \leq \lambda_{w,m\acute{a}x}\\ Cumple$	η = 0.1	η = 0.1	x: 2.5 m η = 2.0	M _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0 m η = 0.4	V _{Ed} = 0.00 N.P. ⁽²⁾	x: 0.313 m η < 0.1	N.P. ⁽	x: 2.5 m η = 2.1	x: 0.313 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁴⁾	N.P. ⁽	N.P.\ 5)	CUMPL Ε η = 2.1

Notación:

- ción:

 \$\tilde{\lambda} \text{Limitación de esbeltez}\$
 \$\tilde{\lambda}_{\tilde

- (Omprobaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay momento flector.

 (2) La comprobación no procede, ya que no hay esfuerzo cortante.

 (3) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

 (4) La comprobación no procede, ya que no hay momento torsor.

 (5) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ̄: **0.88 √**

Donde:

Clase: Clase de la sección, según la capacidad de deformación y **Clase**: 1 de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

A: 20.10 cm² **f_v**: *275.00* MPa

N_{cr}: 720.44 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr.v}: 720.44 kN

b) Axil crítico elástico de pandeo por flexión respecto al eje

N_{cr,z}: 2888.97 kN

c) Axil crítico elástico de pandeo por torsión.

 α $N_{cr,T}$:

Donde:

$\mathbf{I_y}$: Momento de inercia de la sección bruta,
respecto al eje Y.
I _z : Momento de inercia de la sección bruta,

I_v: 869.00 cm4

I_z: 68.30 cm4 **I**_t: 3.54 cm4

I_w: 3960.00 cm6 **E**: 210000 MPa

G: 81000 MPa

Lky: Longitud efectiva de pandeo por flexión, respecto al eje Y.

L_{ky}: 5.000 m

Lkz: Longitud efectiva de pandeo por flexión, respecto al eje Z.

L_{kz}: 0.700 m

Lkt: Longitud efectiva de pandeo por torsión.

L_{kt}: 0.000 m

io: Radio de giro polar de la sección bruta, respecto al centro de torsión.

 i_0 : 6.83 cm

Siendo:

sección.

 i_y , i_z : Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

6.58 cm

y₀ , z₀: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la

1.84 cm 0.00 **y**₀: mm

z₀: 0.00 mm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

29.04 ≤ 250.58 √

Donde:

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

h_w: 145.20 mm **h**_w: Altura del alma. tw: Espesor del alma. 5.00 mm A_w : Área del alma. 7.26 A_w : cm² **A**_{fc,ef}: Área reducida del ala comprimida. A_{fc,ef}: 6.07 cm² k: Coeficiente que depende de la clase de la sección. 0.30 **k** :

E: Módulo de elasticidad.E: 210000 MPa f_{vf} : Límite elástico del acero del ala comprimida. f_{vf} : 275.00 MPa

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.001**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^\circ)H3 + 0.75 \cdot N(R)1$.

 $\mathbf{N_{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo. $\mathbf{N_{t,Ed}}$: <u>0.37</u> kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: <u>526.43</u> kN

Donde:

A: Área bruta de la sección transversal de la barra.A: 20.10 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{275.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : $\underline{1.05}$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.001 √**

η:_**0.001**_**√**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H4 + 0.75 \cdot N(R)2$.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 0.35 kN

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 526.43 kN

Clase: 1

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2

f_{vd}: Resistencia de cálculo del acero.

A: 20.10 cm²

ero. **f**_{vd} : <u>261.90</u> MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $f_v : _{275.00}$ MPa $\gamma_{M0} : _{1.05}$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 394.60 kN

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2

у 3

f_{vd}: Resistencia de cálculo del acero.

A: 20.10 cm²

f_{vd}: 261.90 MPa

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 275.00 MPa

γ_{M1}: Coeficiente parcial de seguridad del material.

γ_{M1}: 1.05

χ: Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{v}}: 0.75$

 χ_z : 0.91

Siendo:

 $\phi_{\mathbf{v}}: 0.95$

 ϕ_z : 0.64

α: Coeficiente de imperfección elástica.

 $\alpha_{\mathbf{y}}$: 0.21

0.34

 α_z :

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{v}}: 0.88$

 $\bar{\lambda}_z$: 0.44

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

 $\mathbf{N}_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $\mathbf{N}_{\mathbf{cr,z}}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

 $N_{cr,T}$: Axil crítico elástico de pandeo por

N_{cr}: 720.44 kN

 $N_{cr,y}$: 720.44 kN $N_{cr,z}$: 2888.97 kN

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.020 √**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.500 m del nudo N128, para la combinación de acciones 1.35·PP.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

 $\mathbf{M}_{\mathbf{Ed}}$: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo M_{c,Rd} viene dado por:

 $M_{Ed}^{+}: 0.65 \text{ kN} \cdot \text{m}$

 M_{Ed}^- : 0.00 kN·m

M_{c,Rd}: *32.48* kN⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,y}: 124.00 \text{ cm}^3$

f_{vd}: 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underbrace{275.00}_{\mathbf{y_{MO}}}$: MPa $\mathbf{y_{MO}}$: Coeficiente parcial de seguridad del material. $\mathbf{y_{MO}}$: $\underbrace{1.05}$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.004 √**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N128, para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.52 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 146.16 kN

Donde:

 $\mathbf{A}_{\mathbf{v}}$: Área transversal a cortante.

 A_v : 9.67 cm²

Siendo:

A: Área bruta de la sección transversal de la barra. A: 20.10 cm² **b**: Ancho de la sección. **b**: 82.00 mm **t**_f: 7.40 mm t_f: Espesor del ala. **t**_w: Espesor del alma. **t**_w: 5.00 mm **r**: 9.00 mm

r: Radio de acuerdo entre ala y alma.

f_{vd}: 261.90 MPa

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

25.44 < **64.71**

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma.

 λ_{w} : 25.44

 $\lambda_{máx}$: Esbeltez máxima.

 $\lambda_{\text{máx}}$: 64.71

ε: Factor de reducción.

ε: 0.92

Siendo:

 $\mathbf{f_{ref}}$: Límite elástico de referencia. $\mathbf{f_{ref}}$: 235.00 MPa $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V_{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $\mathbf{V_{c,Rd}}$.

0.46 kN ≤ 73.08 kN

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N128, para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : _____0.46____kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 146.16 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.021** 🗸

η: 0.021 🗸

η: **0.013** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 2.500 m del nudo N128, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^{\circ})H4 + 0.75 \cdot N(R)2$.

Donde:

Donac.	
$\mathbf{N}_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $\mathbf{M}_{y,Ed}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.	${f N_{c,Ed}}^+: {\color{red} 0.35 \atop 0.65} {\color{red} kN \cdot m} \ {f M_{z,Ed}}^+: {\color{red} 0.65 \atop 0.00} {\color{red} kN \cdot m}$
Clase : Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.	Clase: 1
$\mathbf{N}_{pl,Rd}$: Resistencia a compresión de la sección bruta.	$N_{pl,Rd}$: 526.43 kN
$\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{yr}}$ $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z,	M _{pl,Rd,y} : 32.48 kN⋅m
respectivamente.	$\mathbf{M}_{pl,Rd,z}$: 6.84 kN·m
Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)	
A: Area de la sección bruta.	A : 20.10 cm ²
$\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.	$W_{pl,v}: 124.00 \text{ cm}^3$
	$W_{pl,z}: 26.10 \text{ cm}^3$
$\mathbf{f_{vd}}$: Resistencia de cálculo del acero.	f_{vd} : <u>261.90</u> MPa
Siendo:	
$\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)	f_y : <u>275.00</u> MPa
γ_{M1} : Coeficiente parcial de seguridad del material.	γ _{м1} : 1.05
$\mathbf{k_v}$, $\mathbf{k_z}$: Coeficientes de interacción.	
	k _v :
	k _z : <u>1.00</u>
$\boldsymbol{C}_{m,y},\;\boldsymbol{C}_{m,z}$: Factores de momento flector uniforme equivalente.	C _{m,v} : 1.00 C _{m,z} : 1.00
$\chi_{y},\chi_{z}\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{v}}: \underline{0.75}$ $\chi_{\mathbf{z}}: \underline{0.91}$
$\overline{\lambda}_{y}$, $\overline{\lambda}_{z}$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente. α_{y} , α_{z} : Factores dependientes de la clase de la sección.	$ \frac{\overline{\lambda}_{\mathbf{v}}: 0.88}{\overline{\lambda}_{\mathbf{z}}: 0.44} \\ \alpha_{\mathbf{v}}: 0.60} \\ \alpha_{\mathbf{z}}: 0.60 $

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.313 m del nudo N128, para la combinación de acciones 1.35 PP.

 $0.46 \text{ kN} \le 73.08 \text{ kN}$

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. **V**_{c.Rd.z}: Esfuerzo cortante resistente de cálculo.

 $V_{Ed,z}$: 0.46

 $V_{c,Rd,z}$: 146.16

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

7.1.6 Ménsulas de la viga carril

Se han eleguido unos perfiles HEB 200 para las ménsulas.

A continuación, se muestran las comprobaciones pertinentes que muestran que el perfil elegido cumple los requisitos necesarios:

Barra N102/N103

Perfil: HE 200 B

Material: Acero (S275)

Perfil: HE 200 B Material: Acero (S275)										
	Nuc	los	Lanca attend	Características mecánicas						
	Inicial	Final	Longitud (m)	Área $I_v^{(1)}$ (cm ²) (cm4)		I _z ⁽¹⁾ (cm4	I _t ⁽²⁾) (cm4)			
Z	N102	N103	0.490	5696.00 2003.00		00 59.70				
Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme										
	Pandeo Pandeo latera									
		Plano	XY Plano XZ		Ala s	Ala sup. Al				
	β	2.00)	2.00	2.00 0.00		0.00			
	L _K	0.98	0 (0.980	0.00	00	0.000			
	C _m	1.00	0 :	1.000	1.00	00	1.000			
	C ₁ - 1.000									
i	Notación: β: Coeficiente de pandeo L _K : Longitud de pandeo (m) C _m : Coeficiente de momentos C ₁ : Factor de modificación para el momento crítico									

	COMPROBACIONES (CTE DB SE-A)															
Barra	λ	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z	M_ZV_Y	NM_YM_Z	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_z	M_tV_Y	Estado
N102/N10 3	$\begin{array}{c} \bar{\lambda} < \\ 2.0 \\ \text{Cumpl} \\ e \end{array}$	$\begin{array}{c} x \colon 0.14 \\ m \\ \lambda_w \le \\ \lambda_{w,m\acute{a}x} \\ Cumple \end{array}$	N _{Ed} = 0.00 N.P. ⁽¹⁾	η = 0.2	x: 0.14 m η = 32.5	M _{Ed} = 0.00 N.P. ⁽²⁾	x: 0.14 m η = 41.6	V _{Ed} = 0.00 N.P. ⁽³⁾	x: 0.14 m η < 0.1	N.P. ⁽	x: 0.14 m η = 32.7	x: 0.14 m η < 0.1	M _{Ed} = 0.00 N.P. ⁽⁵⁾	N.P. ⁽	N.P. ⁽	CUMPL Ε η = 41.6
1 A 1 ···· 1 325 ···· 1 416 ···· 1 327 ···· 1 416																
Comprobaciones que no proceden (N.P.): (i) La comprobación no procede, ya que no hay axil de tracción. (i) La comprobación no procede, ya que no hay momento flector. (i) La comprobación no procede, ya que no hay escivenzo cortante. (ii) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede, ya que no hay momento torsor. (ii) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede, ya que no hay momento torsor.																

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $~\overline{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ̄: **0.22** ✓

Donde:

Clase: Clase de la sección, según la capacidad de deformación Clase: _____1 y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

N_{cr}: 43226.28 kN

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

- a) Axil crítico elástico de pandeo por flexión respecto al
- N_{cr.v}: 122924.05 kN
- b) Axil crítico elástico de pandeo por flexión respecto al eje Z.
- **N**_{cr,z}: 43226.28 kN
- c) Axil crítico elástico de pandeo por torsión.
- α $N_{cr,T}$:

Donde:

$\mathbf{I}_{\mathbf{y}}$: Momento de inercia de la sección b	oruta,
respecto al eje Y.	

$$\mathbf{I_z}$$
: Momento de inercia de la sección bruta, respecto al eje Z.

$$\boldsymbol{I_w}\!\!:$$
 Constante de alabeo de la sección.

$$\mathbf{L}_{\mathbf{ky}}$$
: Longitud efectiva de pandeo por flexión, respecto al eje Y.

$$\mathbf{L}_{\mathbf{kz}}$$
: Longitud efectiva de pandeo por flexión, respecto al eje Z.

cm4

$$\mathbf{L_{kz}}$$
: 0.980 m m $\mathbf{L_{kt}}$: 0.000 m

Siendo:

$$\mathbf{i_y}$$
, $\mathbf{i_z}$: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

$$i_z$$
: 5.06 cm

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

18.89 ≤ 163.60 √

Donde:

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

Siendo:

η: **0.002**

η:__**0.002**__****

kΝ

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·PGIZDA.

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 3.92

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

N_{c,Rd}: 2045.48 kN

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero.

Clase : _____1

A: 78.10 cm² $\mathbf{f_{vd}}$: 261.90 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\gamma_{\mathbf{M0}}$: Coeficiente parcial de seguridad del

material.

f_v: 275.00 MPa

 γ_{MO} : 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 2021.62 kN Donde: A: Área de la sección bruta para las secciones de clase 1, 78.10 cm² **A**: $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero. **f**_{vd}: 261.90 MPa Siendo: f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_v: 275.00 MPa γ_{M1}: Coeficiente parcial de seguridad del material. 1.05 γм1: χ: Coeficiente de reducción por pandeo. $\chi_{\mathbf{y}}$: 1.00 0.99 χ_z : Siendo: 0.50 φν: φ_z : 0.53 α: Coeficiente de imperfección elástica. 0.34 α_{v} : α_z : 0.49 $\bar{\lambda}$: Esbeltez reducida. $\overline{\lambda}_{\mathbf{v}}$: 0.13 $\overline{\lambda}_z$: 0.22 N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores: N_{cr}: 43226.28 kN $N_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y. **N**_{cr.v}: 122924.05 kN N_{cr,z}: Axil crítico elástico de pandeo por flexión respecto al eje Z. N_{cr,z}: 43226.28 kN $N_{cr,T}$: Axil crítico elástico de pandeo por torsión. $N_{cr,T}$:

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η : <u>0.325</u> 🗸

Para flexión positiva:

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo. Para flexión negativa: $\mathbf{M_{Ed}}^+ : \underline{0.00} \text{ kN} \cdot \text{m}$

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.140 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·PGIZDA.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{Ed} : 54.71 kN⋅m

M_{c,Rd}: 168.27 kN·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl.v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

Clase: 1

 $W_{pl,v}: 642.50 \text{ cm}^3$

f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 275.00 MPa

 γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: **0.416** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.140 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·PGIZDA.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 156.46 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 375.76 kN

Donde:

 $\mathbf{A}_{\mathbf{v}}$: Área transversal a cortante.

 $A_v: 24.85 \text{ cm}^2$

Siendo:

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

A: Área bruta de la sección transversal de la barra.	A :	78.10	cm²
b : Ancho de la sección.	b :	200.00	mm
$\mathbf{t_f}$: Espesor del ala.	$\mathbf{t_f}$:	15.00	mm
$\mathbf{t_w}$: Espesor del alma.	t_w :	9.00	mm
r: Radio de acuerdo entre ala y alma.	r:	18.00	mm

f_{vd}: Resistencia de cálculo del acero. f_{vd}: 261.90 MPa

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 275.00 MPa γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

14.89 < 64.71

Donde:

 λ_w : Esbeltez del alma. $\lambda_{\mathbf{w}}: 14.89$

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{\text{máx}}: 64.71$

ε: Factor de reducción. ε: 0.92

Siendo:

f_{ref}: Límite elástico de referencia. f_{ref}: 235.00 MPa **f**_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

156.46 kN ≤ 187.88 kN

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.140 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·PGIZDA.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 156.46 kN

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: ___375.76__ kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.327** 🗸

η: **0.327** 🗸

η: **0.197**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.140 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·PGIZDA.

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 3.92 kN $M_{y,Ed}$, $M_{z,Ed}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente. $M_{z,Ed}$: 54.71 kN·m $M_{z,Ed}$ +: 0.00 kN·m Clase: Clase de la sección, según la capacidad de deformación Clase: 1

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{yr}}$, $\mathbf{M}_{\mathbf{pl},\mathbf{Rd},\mathbf{z}}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{vd}: Resistencia de cálculo del acero.

 $\mathbf{N}_{\mathsf{pl},\mathsf{Rd}}$: 2045.48 kN $\mathbf{M}_{\mathsf{pl},\mathsf{Rd},\mathsf{v}}$: 168.27 kN·m

 $M_{pl,Rd,z}$: 80.09 kN·m

 ${f M}: {78.10} {
m cm}^2 \ {f W}_{
m pl,v}: {642.50} {
m cm}^3$

 $\mathbf{W_{pl,z}}: 305.80 \text{ cm}^3 \ \mathbf{f_{vd}}: 261.90 \text{ MPa}$

O.ANEAUS

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 275.00 MPa γ_{M1} : Coeficiente parcial de seguridad del material. γ_{M1} : 1.05

 $\mathbf{k_v}$, $\mathbf{k_z}$: Coeficientes de interacción.

 k_y : 1.00

k_z: 1.00

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,v}$: 1.

 $C_{m,v}$: 1.00 $C_{m,z}$: 1.00

 $\chi_y,\,\chi_z\colon$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.

 $\chi_{v}: 1.00$ $\chi_{z}: 0.99$

 $\overline{\lambda}_{\pmb{y}},~\overline{\lambda}_{\pmb{z}} :$ Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 $\frac{\overline{\lambda}_{\mathbf{v}}: 0.13}{\overline{\lambda}_{\mathbf{z}}: 0.22}$

 α_{y} , α_{z} : Factores dependientes de la clase de la sección.

 $\alpha_{\mathbf{v}}$: 0.60 $\alpha_{\mathbf{z}}$: 0.60

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c.Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.140 m del nudo N102, para la combinación de acciones 1.35·PP+1.5·PGIZDA.

 $\textbf{156.46} \ kN \leq \ \textbf{187.88} \ kN$

Donde:

 $V_{\text{Ed,z}}$: Esfuerzo cortante solicitante de cálculo

pésimo.

 $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 156.46 k

V_{c,Rd,z}: 375.76 kN

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

7.2. UNIONES

En el caso de nuestra obra hemos intentado solucionar la mayoría de uniones mediante uniones atornilladas, ya que este tipo de uniones facilitan su montaje en obra y su desmonte, en el caso de que en un futuro quisiésemos cambiar algún elemento de nuestra estructura. Aún así, inevitablemente aparecerán en nuestra obra uniones soldadas que complementarán a las uniones atornilladas.

A fin de garantizar un cálculo y dimensionamiento óptimo de las uniones soldadas tendremos que tener una serie de consideraciones que detallaremos a continuación.

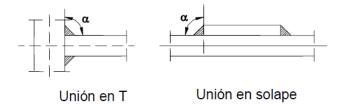
7.2.1 Especificaciones

Norma

La ejecución de las pertinentes comprobaciones se ajusta a las prescripciones dispuestas en los apartados "8.5. Resistencia de los medios de unión. Uniones atornilladas." y "8.6. Resistencia de los medios de unión. Uniones soldadas." contenidos en el DB SE-A.

Materiales

Los aceros en chapas y perfiles utilazos en nuestra obra entran dentro de lo establecido en el apartado "4. *Materiales*" del DB SE-A. de la misma manera los tornillos, tuercas y arandelas que se utilicen el las uniones cumplirán las características mecánicas mínimas que se establecen el este mismo apartado.


Cabe destacar que, en el caso de los materiales de aportación de las soldaduras, las características mecánicas de dichos materiales serán, en todos los casos, superiores a los del material base como bien indica la el DB SE-A en su apartado "4.4. Materiales de aportación".

Disposiciones constructivas

Para el caso de las uniones soldadas, se cumplirán las disposiciones constructivas especificadas en el DB SE-A, concretamente en el apartado "8.6.1. Disposiciones constructivas y clasificación".

Las prescripciones que siguen serán aplicables cuando los elementos a unir tienen al menos 4 mm de espesor y son de aceros estructurales soldables:

- Soldadura en ángulo. Se utiliza para unir elementos cuyas caras de fusión forman un ángulo (α) comprendido entre 60° y 120°. Pueden ser uniones en T o de solape. En el caso deuniones en T:
 - si $\alpha > 120^{\circ} \Rightarrow$ No se considerará que se pueden transmitir esfuerzos;
 - si α < 60° \Rightarrow Se considerará como soldadura a tope con penetración parcial.

- El espesor de garganta de un cordón de soldadura en ángulo no será menor de 3 mm.
- La longitud efectiva de un cordón de soldadura en ángulo será la total del cordón siempre quese mantenga el espesor de garganta nominal, pero no se considerarán cordonescuya longitud sea inferior a 40 mm o a seis veces el ancho de garganta.
- La ejecución de los cordones de longitud L₀ en los extremos de la pieza es un detalle obligatorio.

Comprobaciones

En lo referente a las comprobaciones necesarias para las uniones soldadas cabe destacar las siguientes consideraciones:

• Cordones de soldadura a tope con penetración total:

En este caso no será necesaria ninguna comprobación. La resistencia de la unión será igual a la de la más debil de las piezas a unir.

 Cordones de soldadura a tope con penetración parcial y con preparación de bordes:

En este caso se comprueban como soldaduras en ángulo considerando un espesor de garganta igual al canto nominal de la preparación menos 2 mm, tal y como se indica en el artículo "8.6.3. Resistencia de cálculo de las soldaduras a tope" del CTE DB SE-A.

• Cordones de soldadura en ángulo:

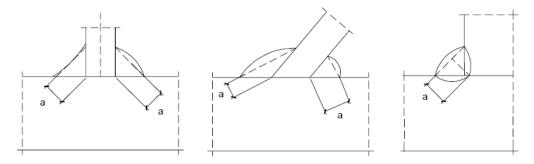
Se realiza la comprobación de tensiones de cada cordón de soldadura según el artículo "8.6.2. Resistencia de cálculo de las soldaduras en ángulo" del CTE DB-A.

Se comprueban los siguientes tipos de tensión:

- Tensión Von Mises

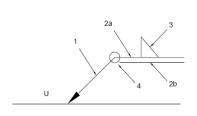
$$\sqrt{\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \tau_{\parallel}^2)} \le \frac{f_u}{\beta_W \gamma_{M2}}$$

- Tensión normal


$$\sigma_{\perp} \leq \frac{f_u}{\gamma_{M2}}$$

7.2.2 Referencias y simbología

Se destacan las siguientes referencias:


-a (mm): según el artículo "8.6.2. Resistencia de cálculo de las

soldaduras en ángulo" del DB SE-A, espesor de garganta del cordón en ángulo, que será la altura, medida perpendicularmente a la cara exterior, del triángulo que la tenga mayor, de entre los que se pueden inscribir entre las superficies de las piezas que hayan alcanzado la fusión y la superficie exterior de la soldadura.

- L (mm): según el artículo "8.6.2. Resistencia de cálculo de las soldaduras en ángulo" del DB SE-A, longitud efectiva del cordón de soldadura.

Método de representación de las soldaduras

Referencias:

1: línea de la flecha

2a: línea de referencia (línea continua)

2b: línea de identificación (línea a trazos)

3: símbolo de soldadura

4: indicaciones complementarias

U: Unión

Referencias 1, 2a y 2b

en el lado de la flecha.

El cordón de soldadura que se detalla se encuentra El cordón de soldadura que se detalla se encuentra en el lado opuesto al de la flecha.

Referencia 3

Designación	Ilustración	Símbolo
Soldadura en ángulo		
Soldadura a tope en 'V' simple (con chaflán)		~
Soldadura a tope en bisel simple		V
Soldadura a tope en bisel doble	AUTOMOTION	K
Soldadura a tope en bisel simple con talón de raíz amplio		Y
Soldadura combinada a tope en bisel simple y en ángulo		Þ
Soldadura a tope en bisel simple con lado curvo		~

Referencia 4

Representación	Descripción
	Soldadura realizada en todo el perímetro de la pieza
	Soldadura realizada en taller
	Soldadura realizada en el lugar de montaje

7.2.3 Comprobaciones en placas de anclaje

En cada placa de anclaje se realizan las siguientes comprobaciones (asumiendo la hipótesis de placa rígida):

Hormigón sobre el que apoya la placa

Se comprueba que la tensión de compresión en la interfaz placa de anclajehormigón es menor a la tensión admisible del hormigón según la naturaleza de cada combinación.

Pernos de anclaje

Resistencia del material de los pernos: se descompones los esfuerzos actuantes sobre en la placa en axiles y cortantes en los pernos y se comprueba que ambos esfuerzos, por separado y con interacción entre ellos (tensión de Von Mises) producen tensiones menores a la tensión límite del material de los pernos.

Anclaje de los pernos: se comprueba el anclaje de los pernos en el hormigónde tal manera que no se produzca el fallo de deslizamiento por adherencia, arrancamiento del cono de rotura o fractura por esfuerzo cortante (aplastamiento).

Aplastamiento: se comprueba que cada perno no supera el cortante que produciría el aplastamiento de la placa contra el perno.

Placa de anclaje

Tensiones globales: en las placas con vuelo, se analizan cuatro secciones en el perímetro del perfil, y se comprueba en todas ellas que las tensiones de Von Mises sean menores que la tensión límite según la norma.

Flechas globales relativas: se compruba que en los vuelos de las placas no se produzcan tensiones mayores que 1/250 del vuelo.

Tensiones locales: se comprueban las tensiones de Von Mises en todas las placas locales en las que tanto el perfil como los rigidizadores dividen a la placa de anclaje propiamente dicha. Los esfuerzos en cada una de las subplacas se obtienen a partir de las tensiones de contacto con el hormigón y los axiles de los pernos. El

modelo generado se resuelve por diferencias finitas.

7.2.4 Memoria de cálculo

TIPO 1 (Pilar con dintel y viga de atado en los pórticos hastiales)

a) Detalle

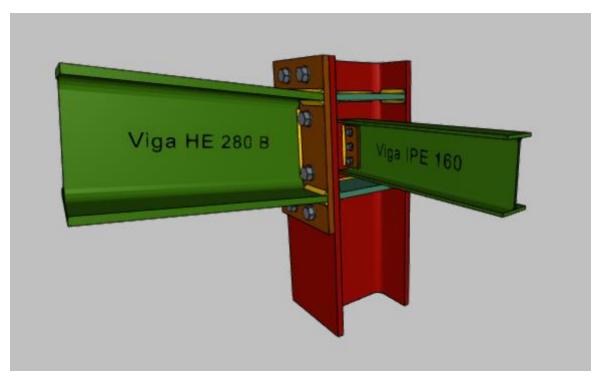


Figura 47. Unión tipo 1

a) Detalle

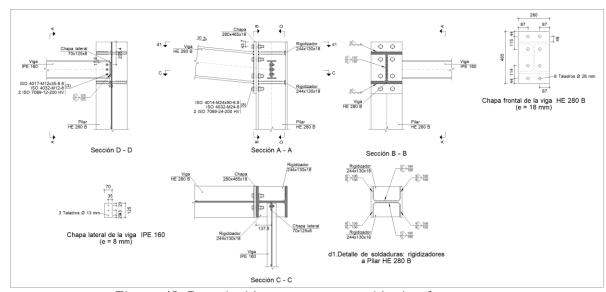


Figura 48. Descripción componentes unión tipo 1.

b) Descripción de los componentes de la unión

				Perfiles					
			G	Geometría			Acero		
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0
Viga	IPE 160	091	160	82	7.4	5	S275	275.0	410.0
Viga	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0

Elementos complementarios								
	G	ieometría		Tala	dros		Acero	
Pieza	Esquema	Ancho Canto (mm) (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _∨ (MPa)	f _u (MPa)

	Elementos complementarios									
	Ge	ometrí	a		Tala	Acero				
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Rigidizador	001	244	130	18	-	-	S275	275.0	410.0	
Chapa lateral: Viga IPE 160	\$27 \$\rightarrow\tau\$	70	125	8	3	13	S275	275.0	410.0	
Chapa frontal: Viga HE 280 B	465	280	465	18	8	26	S275	275.0	410.0	

Elementos de tornillería									
	Geo	ometría		Acero					
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)			
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0			
ISO 4014-M24x90-8.8 ISO 4032-M24-8 2 ISO 7089-24-200 HV		M24	90	8.8	640.0	800.0			

c) Comprobación

1) Pilar HE 280 B

	Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)						
Panel	Esbeltez				35.91						
Panei	kN	366.97	401.97	91.29							
Rigidizador superior	Tensión de Von Mises	N/mm²	80.74	261.90	30.83						
Rigidizador inferior	Tensión de Von Mises	N/mm²	85.99	261.90	32.83						
Rigidizador superior	Tensión de Von Mises	N/mm²	80.62	261.90	30.78						

	Rigidizador inferior	Tensión de Von Mises	N/mm²	86.12	261.90	32.88
	Δla	Desgarro	N/mm²	75.70	261.90	28.90
Ala		Cortante	N/mm²	73.24	261.90	27.96
0.1-	Tracción por flexión	kN	204.68	349.57	58.55	
Viga HE 280 B	Ala	Tracción	kN	70.99	562.15	12.63
	Alma	Tracción	kN	116.57	224.91	51.83
		Punzonamiento	kN	72.05	549.66	13.11
Viga IPE 160	Alma	Flexión por fuerza perpendicular	kN	72.09	100.21	71.94

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del rigidizador superior a las alas	En ángulo	9	106	18.0	90.00				
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00				
Soldadura del rigidizador inferior a las alas	En ángulo	9	106	18.0	90.00				
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00				
Soldadura del rigidizador superior a las alas	En ángulo	9	106	18.0	90.00				
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00				
Soldadura del rigidizador inferior a las alas	En ángulo	9	106	18.0	90.00				
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00				

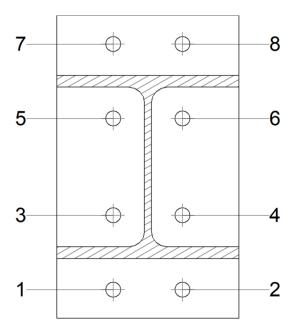
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Con	l	., .	_						
Comprobación de resistencia										
		Tensión de Von Mises					normal	f		
Ref.	$\sigma_{\perp} \\ (\text{N/mm}^2)$	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	f _u (N/mm²)	β _w	
Soldadura del rigidizador superior a las alas	57.0	57.0	1.9	114.1	29.58	57.1	17.39	410.0	0.85	
Soldadura del rigidizador superior al alma	0.0	0.0	78.6	136.1	35.28	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	60.8	60.8	1.9	121.6	31.50	60.8	18.52	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	83.7	145.0	37.57	0.0	0.00	410.0	0.85	
Soldadura del rigidizador superior a las alas	57.0	57.0	1.9	114.0	29.54	57.0	17.37	410.0	0.85	
Soldadura del rigidizador superior al alma	0.0	0.0	78.4	135.7	35.17	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	60.8	60.8	1.9	121.7	31.55	60.9	18.55	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	83.7	145.0	37.58	0.0	0.00	410.0	0.85	

2) Viga HE 280 B

Comprobaciones de resistencia

Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Chapa frontal	Tracción por flexión	kN	204.68	289.99	70.58
Ala	Compresión	kN	354.52	1326.58	26.72
Ald	Tracción	kN	135.17	561.79	24.06
Alma	Tracción	kN	59.49	305.00	19.50

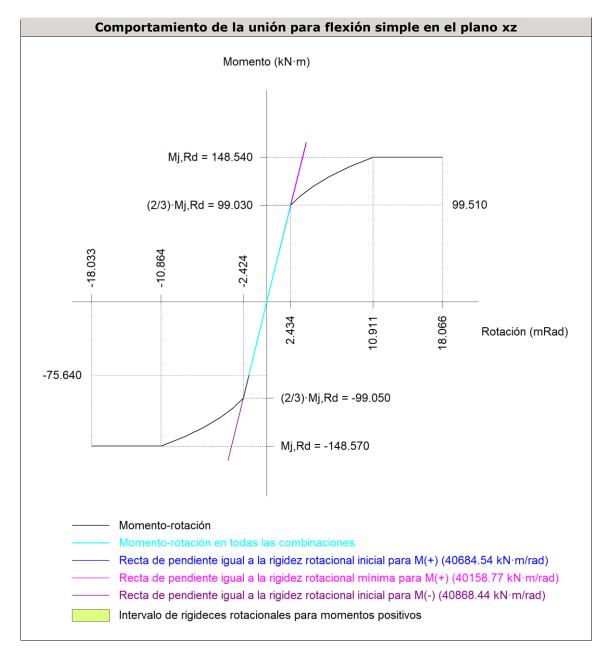

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	9	280	18.0	84.29					
Soldadura del alma	En ángulo	5	197	10.5	90.00					
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29					

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
Ref.		Tensiór	n de Vor	Tensión	normal	£			
	σ_{\perp} (N/mm²)	$\tau_{\perp} \\ \text{(N/mm²)}$	$ au_{ }$ (N/mm ²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}
Soldadura del ala superior	62.1	56.2	1.6	115.5	29.92	62.1	18.93	410.0	0.85
Soldadura del alma	54.0	54.0	22.7	114.9	29.77	54.0	16.45	410.0	0.85
Soldadura del ala inferior	59.2	65.4	0.9	127.7	33.10	59.2	18.03	410.0	0.85

Comprobaciones para los tornillos


Disposición									
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)		
1	ISO 4014-M24x90-8.8	26.0	44	87	114	107	43.7		
2	ISO 4014-M24x90-8.8	26.0	44	87	114	107	43.7		

	Disposición											
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
3	ISO 4014-M24x90-8.8	26.0		87	114	107	48.0					
4	ISO 4014-M24x90-8.8	26.0		87	114	107	48.0					
5	ISO 4014-M24x90-8.8	26.0		87	115	107	48.0					
6	ISO 4014-M24x90-8.8	26.0		87	115	107	48.0					
7	ISO 4014-M24x90-8.8	26.0	44	87	115	107	43.7					
8	ISO 4014-M24x90-8.8	26.0	44	87	115	107	43.7					
: La comprob	pación no procede.			•	•		•					

					Resistencia	а					
Tornil lo	Co	ortante	9			Tracció	on		Interacc ión tracción y cortante	Aprov. Máx. (%)	
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	14.4 01	144.76 5	9.95	Vástago	113.6 09	203.32 8	55.8 7	44.87	55.87	
1	Aplastamiento	14.4 01	354.24 0	4.07	Punzonami ento	113.6 09	420.39 0	27.0 2	44.67	55.67	
2	Sección transversal	14.4 01	144.76 5	9.95	Vástago	113.4 91	203.32 8	55.8 2	43.74	55.82	
2	Aplastamiento	14.4 01	354.24 0	4.07	Punzonami ento	113.4 91	420.39 0	27.0 0	43.74	33.62	
2	Sección transversal	10.4 87	144.76 5	7.24	Vástago	53.73 7	203.32 8	26.4 3	22.67	26.43	
3	Aplastamiento	10.4 87	354.24 0	2.96	Punzonami ento	53.73 7	420.39 0	12.7 8	22.67	20.43	
4	Sección transversal	10.8 80	144.76 5	7.52	Vástago	53.64 6	203.32 8	26.3 8	21.02	26.38	
4	Aplastamiento	10.8 80	354.24 0	3.07	Punzonami ento	53.64 6	420.39 0	12.7 6	21.02	20.36	
5	Sección transversal	7.11 8	144.76 5	4.92	Vástago	67.31 8	203.32 8	33.1 1	27.29	33.11	
5	Aplastamiento	7.11 8	354.24 0	2.01	Punzonami ento	67.31 8	420.39 0	16.0 1	27.29	33.11	
6	Sección transversal	7.66 5	144.76 5	5.29	Vástago	67.30 0	203.32 8	33.1 0	27.76	33.10	
0	Aplastamiento	7.66 5	354.24 0	2.16	Punzonami ento	67.30 0	420.39 0	16.0 1	27.76	33.10	
7	Sección transversal	6.87 7	144.76 5	4.75	Vástago	143.5 12	203.32 8	70.5 8	E4 14	70 50	
	Aplastamiento	5.38 8	201.79 9	2.67	Punzonami ento	143.5 12	420.39 0	34.1 4	54.14	70.58	
8	Sección transversal	6.78 8	144.76 5	4.69	Vástago	143.4 89	203.32 8	70.5 7	54.59	70 57	
Ö	Aplastamiento	6.78 8	223.99	3.03	Punzonami ento	143.4 89	420.39 0	34.1 3	34.39	70.57	

Digidoz rotacional inicial	Plano xy	Plano xz
Rigidez rotacional inicial	(kN·m/rad)	(kN·m/rad)

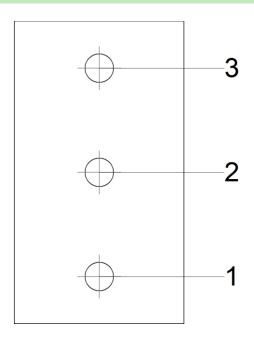
Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	45712.69	40684.54
Calculada para momentos negativos	45712.69	40868.44

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		0.77	1.80	42.92
Momento resistente	kNm	99.51	148.54	66.99
Capacidad de rotación	mRad	137.152	667	20.57

3) Viga IPE 160

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa lateral	Interacción flexión - cortante				0.13				

	Tensiones combinadas				27.86
	Pandeo local	N/mm ²	72.97	241.98	30.16
	Aplastamiento	kN	24.24	70.65	34.32
	Desgarro	kN	72.09	104.03	69.30
Alma	Aplastamiento	kN	24.24	49.20	49.28
Alma	Desgarro	kN	72.09	98.52	73.18


Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Detalle de la soldadura de la chapa lateral.	En ángulo	5	125	8.0	90.00					

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
	Tensión de Von Mises					Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	I _u (N/mm²)	β_{w}
Detalle de la soldadura de la chapa lateral.	40.8	40.8	0.4	81.6	21.14	40.8	12.43	410.0	0.85

Comprobaciones para los tornillos

	Disposición											
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0					
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
: La comprob	pación no procede.		•									

					Resistencia	1					
Tornil lo	Cortante Tracción										
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	23.8 91	26.976	88.5 6	Vástago	0.00	48.557	0.00	88.56	00 56	
1	Aplastamiento	23.8 91	70.645	33.8 2	Punzonami ento	0.00	58.782	0.00	88.36	88.56	
2	Sección transversal	24.0 31	26.976	89.0 8	Vástago	0.00	48.557	0.00	90.09	90.09	
2	Aplastamiento	24.0 31	70.646	34.0 2	Punzonami ento	0.00	58.782	0.00	89.08	89.08	
3	Sección transversal	24.2 44	26.976	89.8 7	Vástago	0.00	48.557	0.00	90.97	90.97	
3	Aplastamiento	24.2 44	70.646	34.3 2	Punzonami ento	0.00	58.782	0.00	89.87	89.87	

d) Medición

	Soldaduras										
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)							
410.0	En tallor	En ángulo	5	2212							
410.0	410.0 En taller En ángulo	9	2699								

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	244x130x18	17.93
COZE	Chapas	1	70x125x8	0.55
S275		1	280x465x18	18.40
			Total	36.87

	Elementos	de tornillería	
Tipo	Material	Cantidad	Descripción
Tamillas	Clase 8.8	8	ISO 4014-M24x90
Tornillos	Clase 6.6	3	ISO 4017-M12x35
Tuerene	Clara o	3	ISO 4032-M12
Tuercas	Clase 8	8	ISO 4032-M24
Arandalaa	D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	ISO 7089-12
Arandelas	Dureza 200 HV	16	ISO 7089-24

TIPO 2 (Pilar con dintel y viga de atado en los pórticos intermedios)

a) Detalle

Figura 49. Unión tipo 2

a) Detalle

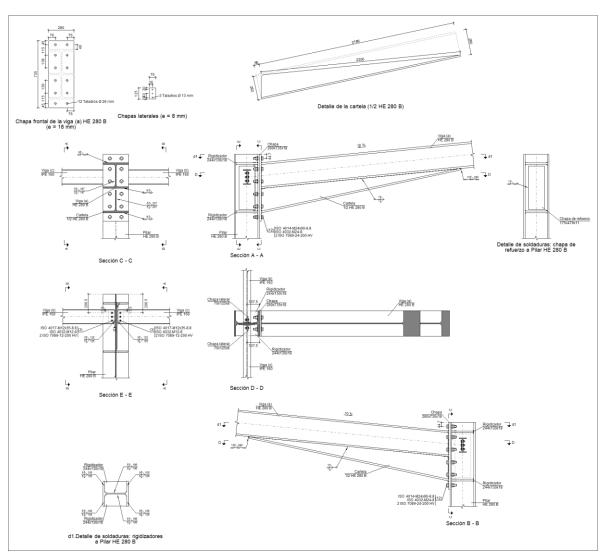


Figura 50. Descripción componentes unión tipo 2.

b) Descripción de los componentes de la unión

				Perfiles					
			C	Seometría				Acero	
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0
Viga	IPE 160	091	160	82	7.4	5	S275	275.0	410.0
Viga	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0

	Ele	mento	s com	plemen	tarios				
		ometrí			Tala	dros		Acero	
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Rigidizador	0°E 244	244	130	18	-	-	S275	275.0	410.0
Chapa de refuerzo	624	175	479	11	-	-	S275	275.0	410.0
Chapa lateral: Viga (c) IPE 160	\$21	70	125	8	3	13	S275	275.0	410.0
Chapa lateral: Viga (b) IPE 160	\$2 \$2 \$2 \$70	70	125	8	3	13	S275	275.0	410.0

Elementos complementarios										
	G	eometrí	a		Taladros		Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)	
Chapa frontal: Viga (a) HE 280 B	98. 280	280	735	18	12	26	S275	275.0	410.0	

	Elementos de tornillería										
	Geo		Acero								
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)					
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0					
ISO 4014-M24x90-8.8 ISO 4032-M24-8 2 ISO 7089-24-200 HV		M24	90	8.8	640.0	800.0					

c) Comprobación

1) Pilar HE 280 B

	Comprobaciones de resistencia											
	Componente	-			1	Aprov. (%)						
		Esbeltez				35.91						
	Panel	Cortante	kN	1034.43	1569.20	65.92						
	Rigidizador superior	Tensión de Von Mises	N/mm²	112.67	261.90	43.02						
	Rigidizador inferior	Tensión de Von Mises	N/mm²	125.92	261.90	48.08						
	Rigidizador superior	Tensión de Von Mises	N/mm²	112.67	261.90	43.02						
	Rigidizador inferior	Tensión de Von Mises	N/mm²	125.92	261.90	48.08						
	ΔIa	Desgarro	N/mm²	175.76	261.90	67.11						
	Ala	Cortante	N/mm²	196.19	261.90	74.91						
\/; (-) HE 200 B	Ala	Tracción por flexión	kN	228.72	329.60	69.39						
Viga (a) HE 280 B		Tracción	kN	103.45	617.00	16.77						
	Alma	Tracción	kN	111.87	227.75	49.12						
		Punzonamiento	kN	74.40	549.66	13.54						
Viga (c) IPE 160	Alma	Flexión por fuerza perpendicular	kN	72.38	100.21	72.23						
Viga (b) IPE 160	Alma	Punzonamiento	kN	74.40	549.66	13.54						

	Flexión por fuerza perpendicular	kN	72.38	100.21	72.23
--	-------------------------------------	----	-------	--------	-------

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del rigidizador superior a las alas	En ángulo	9	106	18.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	9	106	18.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador superior a las alas	En ángulo	9	106	18.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	9	106	18.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00					
Soldadura de la chapa de refuerzo al alma	En ángulo	7	1309	10.5	90.00					

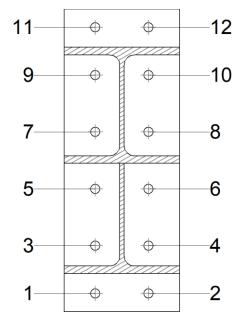
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Con	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	79.7	79.7	0.0	159.3	41.29	79.7	24.29	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	109.7	190.0	49.23	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	89.0	89.0	0.0	178.1	46.15	89.0	27.15	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	122.6	212.3	55.02	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a las alas	79.7	79.7	0.0	159.3	41.29	79.7	24.29	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	109.7	190.0	49.23	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	89.0	89.0	0.0	178.1	46.15	89.0	27.15	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	122.6	212.3	55.02	0.0	0.00	410.0	0.85
Soldadura de la chapa de refuerzo al alma		La comprobación no procede.						410.0	0.85

2) Viga (a) HE 280 B

Comprobaciones de resistencia							
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)		
Chapa frontal	Tracción por flexión	kN	228.72	291.45	78.48		
ΔIο	Compresión	kN	560.80	1349.88	41.54		
Ala	Tracción	kN	165.75	615.77	26.92		
Alma	Cargas concentradas en el alma	kN	76.86	639.11	12.03		

Tracción	1.01	75 27	207.04	25 27
Tracción	kN	/5.3/	297.04	75.37
11 4 5 5 5 1	1314	/3.3/		23.37

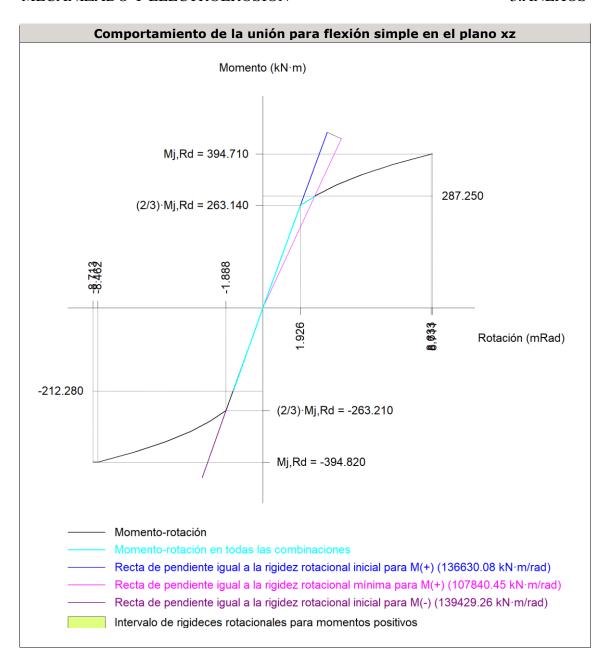

Cordones de soldadura

Comprobaciones geor	métricas				
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)
Soldadura del ala superior	En ángulo	9	280	18.0	84.29
Soldadura del alma	En ángulo	5	197	10.5	90.00
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29
Soldadura del alma de la cartela	En ángulo	5	225	10.5	90.00
Soldadura del ala de la cartela	En ángulo	9	280	18.0	77.92
Soldadura del alma de la cartela al ala inferior	En ángulo	7	2200	10.5	90.00
Soldadura del ala de la cartela al ala inferior	En ángulo	13	280	18.0	83.63

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Con	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β _w
Soldadura del ala superior	78.2	70.8	0.2	145.4	37.69	78.2	23.85	410.0	0.85
Soldadura del alma	80.3	80.3	16.7	163.3	42.31	80.3	24.49	410.0	0.85
Soldadura del ala inferior	26.2	23.8	0.1	48.8	12.65	26.2	8.00	410.0	0.85
Soldadura del alma de la cartela	68.0	68.0	17.4	139.2	36.08	68.0	20.72	410.0	0.85
Soldadura del ala de la cartela	71.9	88.9	0.0	169.9	44.04	80.5	24.55	410.0	0.85
Soldadura del alma de la cartela al ala inferior	0.0	0.0	10.7	18.5	4.79	0.0	0.01	410.0	0.85
Soldadura del ala de la cartela al ala inferior		La comprobación no procede.							0.85

Comprobaciones para los tornillos


	Dispos	sición					
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)
1	ISO 4014-M24x90-8.8	26.0	45	76	115	129	44.7
2	ISO 4014-M24x90-8.8	26.0	45	76	115	129	44.7
3	ISO 4014-M24x90-8.8	26.0		76	115	129	48.0
4	ISO 4014-M24x90-8.8	26.0		76	115	129	48.0
5	ISO 4014-M24x90-8.8	26.0		76	138	129	48.0
6	ISO 4014-M24x90-8.8	26.0		76	138	129	48.0
7	ISO 4014-M24x90-8.8	26.0		76	138	129	48.0
8	ISO 4014-M24x90-8.8	26.0		76	138	129	48.0
9	ISO 4014-M24x90-8.8	26.0		76	115	129	48.0
10	ISO 4014-M24x90-8.8	26.0		76	115	129	48.0
11	ISO 4014-M24x90-8.8	26.0	45	76	115	129	44.7
12	ISO 4014-M24x90-8.8	26.0	45	76	115	129	44.7
: La comprob	pación no procede.		•	•		•	

					Resistencia	э					
Tornil lo	Co		Traccić	n		Interacc ión tracción y cortante	Aprov. Máx. (%)				
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	20.8 23	144.76 5	14.3 8	Vástago	133.1 52	203.32 8	65.4 9	51.25	65.49	
1	Aplastamiento	20.8 23	354.24 0	5.88	Punzonami ento	133.1 52	420.39 0	31.6 7	51.25		
2	Sección transversal	20.8 23	144.76 5	14.3 8	Vástago	133.1 52	203.32 8	65.4 9	51.25	65.49	
2	Aplastamiento	20.8 23	354.24 0	5.88	Punzonami ento	133.1 52	420.39 0	31.6 7	31.23	03.49	
3	Sección transversal	20.8 23	144.76 5	14.3 8	Vástago	84.79 7	203.32 8	41.7 0	34.49	41.70	

					Resistencia	a .				
Tornil lo	Co	ortante	e			Tracció	on		Interacc ión tracción y cortante	Aprov. Máx. (%)
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim 0 (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
	Aplastamiento	20.8 23	354.24 0	5.88	Punzonami ento	84.79 7	420.39 0	20.1 7		
4	Sección transversal	20.8 23	144.76 5	14.3 8	Vástago	84.79 7	203.32 8	41.7 0	24.40	41.70
4	Aplastamiento	20.8 23	354.24 0	5.88	Punzonami ento	84.79 7	420.39 0	20.1 7	34.49	41.70
5	Sección transversal	7.61 0	144.76 5	5.26	Vástago	70.81 1	203.32 8	34.8 3	30.05	24 92
5	Aplastamiento	7.61 0	351.32 3	2.17	Punzonami ento	70.81 1	420.39 0	16.8 4	30.05	34.83
6	Sección transversal	7.61 0	144.76 5	5.26	Vástago	70.81 1	203.32 8	34.8 3	30.05	34.83
0	Aplastamiento	7.61 0	351.32 3	2.17	Punzonami ento	70.81 1	420.39 0	16.8 4	30.03	34.63
7	Sección transversal	8.60 7	144.76 5	5.95	Vástago	82.05 6	203.32 8	40.3 6	29.95	40.36
,	Aplastamiento	8.60 7	349.69 0	2.46	Punzonami ento	82.05 6	420.39 0	19.5 2	29.93	40.30
8	Sección transversal	8.60 7	144.76 5	5.95	Vástago	82.05 6	203.32 8	40.3 6	29.95	40.36
0	Aplastamiento	8.60 7	349.69 0	2.46	Punzonami ento	82.05 6	420.39 0	19.5 2	29.93	40.50
9	Sección transversal	9.79 0	144.76 5	6.76	Vástago	100.6 82	203.32	49.5 2	35.75	49.52
9	Aplastamiento	9.79 0	348.37 9	2.81	Punzonami ento	100.6 82	420.39 0	23.9 5	33.73	49.32
10	Sección transversal	9.79 0	144.76 5	6.76	Vástago	100.6 82	203.32 8	49.5 2	35.75	49.52
10	Aplastamiento	9.79 0	348.37 9	2.81	Punzonami ento	100.6 82	420.39 0	23.9 5	33.73	43.32
11	Sección transversal	36.6 68	144.76 5	25.3 3	Vástago	159.5 64	203.32 8	78.4 8	56.05	78 48
11	Aplastamiento	36.6 68	354.24 0	10.3 5	Punzonami ento	159.5 64	420.39 0	37.9 6	50.05	78.48
12	Sección transversal	36.6 68	144.76 5	25.3 3	Vástago	159.5 64	203.32 8	78.4 8	56.05	70.40
12	Aplastamiento	36.6 68	354.24 0	10.3 5	Punzonami ento	159.5 64	420.39 0	37.9 6	20.03	78.48

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	56936.15	136630.08
Calculada para momentos negativos	56936.15	139429.26

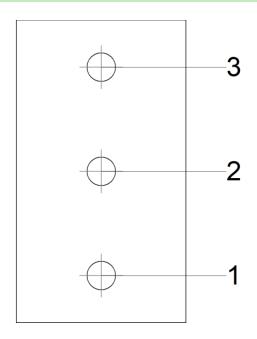
Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.84
Momento resistente	kNm	287.24	394.71	72.77
Capacidad de rotación	mRad	305.785	667	45.87

3) Viga (c) IPE 160

Comprobaciones de resistencia								
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)			
	Interacción flexión - cortante				0.13			
	Tensiones combinadas				28.70			
Chapa lateral	Pandeo local	N/mm²	72.97	241.98	30.16			
	Aplastamiento	kN	24.97	70.64	35.35			
	Desgarro	kN	74.40	104.03	71.52			
Alma	Aplastamiento	kN	24.97	31.54	79.18			

_		74 40		
Desgarro	kN	/4 4()	98.52	75 52
Desgarro	IXIX	71.10	JU.J2	/ 5.52


Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Detalle de la soldadura de la chapa lateral.	En ángulo	5	125	8.0	90.00				

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
	Tensión de Von Mises					Tensión	normal _		
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	β_{w}
Detalle de la soldadura de la chapa lateral.	42.1	42.1	0.2	84.2	21.82	42.1	12.83	410.0	0.85

Comprobaciones para los tornillos

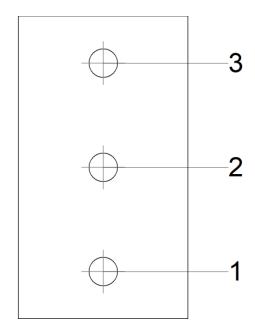
	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5				
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0				
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5				
: La comprob	pación no procede.										

Resistencia								
Tornil lo	Cortante	Tracción	Interacci ón tracción y cortante					

	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	24.9 73	26.976	92.5 7	Vástago	0.00	48.557	0.00	02.57	92.57
1	Aplastamiento	24.9 73	70.642	35.3 5	Punzonami ento	0.00	58.782	0.00		92.57
2	Sección transversal	24.8 01	26.976	91.9 4	Vástago	0.00	48.557	0.00	91.94	91.94
2	Aplastamiento	24.8 01	70.646	35.1 1	Punzonami ento	0.00	58.782	0.00	91.94	91.94
3	Sección transversal	24.6 75	26.976	91.4 7	Vástago	0.00	48.557	0.00	91.47	91.47
3	Aplastamiento	24.6 75	70.646	34.9 3	Punzonami ento	0.00	58.782	0.00	51.47	91.47

4) Viga (b) IPE 160

	Comprobaciones	de resiste	ncia		
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Interacción flexión - cortante				0.13
	Tensiones combinadas				28.70
Chapa lateral	Pandeo local	N/mm²	72.97	241.98	30.16
	Aplastamiento	kN	24.97	70.64	35.35
	Desgarro	kN	74.40	104.03	71.52
Alma	Aplastamiento	kN	24.97	31.54	79.18
Allila	Desgarro	kN	74.40	98.52	75.52


Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Detalle de la soldadura de la chapa lateral.	En ángulo	5	125	8.0	90.00				
a. Fanana annanta									

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
	Tensión de Von Mises					Tensión	normal		
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm²)	Aprov.	I _u (N/mm²)	β_{w}
Detalle de la soldadura de la chapa lateral.	42.1	42.1	0.2	84.2	21.82	42.1	12.83	410.0	0.85

Comprobaciones para los tornillos

	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5				
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0				
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5				
: La comprob	pación no procede.										

					Resistencia						
Tornil lo	Co	Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)				
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	24.9 73	26.976	92.5 7	Vástago	0.00	48.557	0.00	02.57	92.57	
1	1 Aplastamiento	24.9 73	70.642	35.3 5	Punzonami ento	0.00	58.782	0.00	92.57		
2	Sección transversal	24.8 01	26.976	91.9 4	Vástago	0.00	48.557	0.00	91.94	91.94	
2	Aplastamiento	24.8 01	70.646	35.1 1	Punzonami ento	0.00	58.782	0.00	91.94	91.94	
3	Sección transversal	24.6 75	26.976	91.4 7	Vástago	0.00	48.557	0.00	91.47	01.47	
3	Aplastamiento	24.6 75	70.646	34.9 3	Punzonami ento	0.00	58.782	0.00	91.47	91.47	

d) Medición

	Soldaduras										
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)							
		5	2912								
410.0	410.0 En taller	En ángulo	7	5709							
410.0			9	3201							
			13	280							

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores S275 Chapas	4	244x130x18	17.93
		2	70x125x8	1.10
S275		1	175x479x11	7.24
		1	280x735x18	29.08
			Total	55.34

Elementos de tornillería								
Tipo	Material	Cantidad	Descripción					
Tomillos	Class 0.0	12	ISO 4014-M24x90					
Tornillos	Clase 8.8	6	ISO 4017-M12x35					
T	Class 0	6	ISO 4032-M12					
Tuercas	Clase 8	12	ISO 4032-M24					
Avandalaa	D	12	ISO 7089-12					
Arandelas	Dureza 200 HV	24	ISO 7089-24					

TIPO 3 (Unión de los dinteles en cumbrera con pilarillo en pórticos hastiales)

a) Detalle

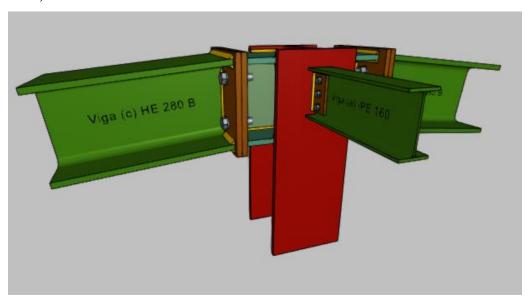


Figura 51. Unión tipo 3

a) Detalle

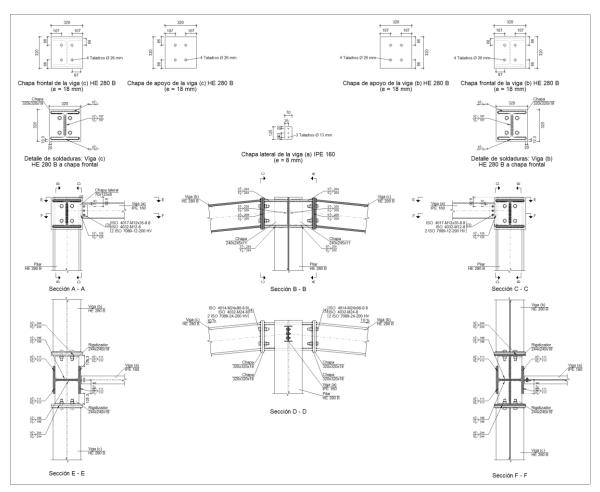


Figura 52. Descripción componentes unión tipo 3.

b) Descripción de los componentes de la unión

	Perfiles									
			Acero							
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)	
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0	
Viga	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0	

	Perfiles										
			Geometría								
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)		
Viga	IPE 160	5 # 4.	160	82	7.4	5	S275	275.0	410.0		

Elementos complementarios									
	Ge	eometrí	a		Tala	Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Rigidizador	244	244	240	18	-	-	S275	275.0	410.0
Chapa de apoyo de la viga Viga (c) HE 280 B	025	320	320	18	4	26	S275	275.0	410.0
Chapa vertical de la viga Viga (c) HE 280 B	240	240	245.3	11	-	-	S275	275.0	410.0
Chapa de apoyo de la viga Viga (b) HE 280 B	025	320	320	18	4	26	S275	275.0	410.0
Chapa vertical de la viga Viga (b) HE 280 B	8.55	240	245.3	11	-	-	S275	275.0	410.0
Chapa frontal: Viga (c) HE 280 B	©	320	320	18	4	26	S275	275.0	410.0

Elementos complementarios									
		eometrí			Tala	dros	Acero		
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _y (MPa)	f _u (MPa)
Chapa frontal: Viga (b) HE 280 B	930	320	320	18	4	26	S275	275.0	410.0
Chapa lateral: Viga (a) IPE 160	951	70	125	8	3	13	S275	275.0	410.0

Elementos de tornillería								
	Geo	Acero						
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)		
ISO 4014-M24x90-8.8 ISO 4032-M24-8 2 ISO 7089-24-200 HV		M24	90	8.8	640.0	800.0		
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0		

c) Comprobación

1) Pilar HE 280 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Panel	Esbeltez		1		35.91				
Pallel	Cortante	kN	16.33	401.97	4.06				
Rigidizador superior	Tensión de Von Mises	N/mm²	84.28	261.90	32.18				
Rigidizador inferior	Tensión de Von Mises	N/mm²	79.73	261.90	30.44				
Rigidizador superior	Tensión de Von Mises	N/mm²	84.28	261.90	32.18				
Rigidizador inferior	Tensión de Von Mises	N/mm²	79.73	261.90	30.44				
Chapa frontal [Viga (c) HE 280 B]	Interacción flexión - cortante				0.00				

		Deformación admisible	mRad		2	0.00
	Chapa vertical [Viga (c) HE 280 B]	Cortante	kN	156.11	339.32	46.01
	Chapa frontal [Viga (b) HE 280	Interacción flexión - cortante	1		-	0.00
	B]	Deformación admisible	mRad		2	0.00
	Chapa vertical [Viga (b) HE 280 B]	Cortante	kN	156.11	339.32	46.01
	Ala	Desgarro	N/mm²	42.12	261.90	16.08
	Ald	Cortante	N/mm²	49.98	261.90	19.08
	Rigidizadores	Tracción	kN	59.79	563.33	10.61
Viga (c) HE 280 B	Chapa de apoyo	Tracción por flexión	kN	227.78	331.76	68.66
	Chapa vertical	Tracción	kN	109.07	318.24	34.27
	Rigidizadores	Tracción	kN	59.79	563.33	10.61
Viga (b) HE 280 B	Chapa de apoyo	Tracción por flexión	kN	227.78	331.76	68.66
	Chapa vertical	Tracción	kN	109.07	318.24	34.27

Cordones de soldadura

Comprobaciones geomét	ricas				
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)
Soldadura del rigidizador superior a las alas	En ángulo	8	111	18.0	90.00
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00
Soldadura del rigidizador superior a la chapa frontal	En ángulo	9	320	18.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	8	111	18.0	90.00
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00
Soldadura del rigidizador inferior a la chapa frontal	En ángulo	9	320	18.0	90.00
Soldadura del rigidizador superior a las alas	En ángulo	8	111	18.0	90.00
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00
Soldadura del rigidizador superior a la chapa frontal	En ángulo	9	320	18.0	90.00
Soldadura del rigidizador inferior a las alas	En ángulo	8	111	18.0	90.00
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00
Soldadura del rigidizador inferior a la chapa frontal	En ángulo	9	320	18.0	90.00
Soldadura de la chapa vertical al alma	En ángulo	5	209	10.5	90.00
Soldadura de la chapa vertical a la chapa frontal	En ángulo	5	209	11.0	90.00
Soldadura de la chapa vertical al rigidizador superior	En ángulo	5	204	11.0	90.00
Soldadura de la chapa vertical al rigidizador inferior	En ángulo	5	204	11.0	90.00
Soldadura de la chapa vertical al alma	En ángulo	5	209	10.5	90.00
Soldadura de la chapa vertical a la chapa frontal	En ángulo	5	209	11.0	90.00
Soldadura de la chapa vertical al rigidizador superior	En ángulo	5	204	11.0	90.00
Soldadura de la chapa vertical al rigidizador inferior	En ángulo	5	204	11.0	90.00

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

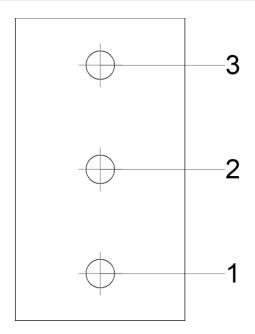
Comprobación de resistencia

		Tensiór	n de Vor	n Mises		Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm²)	Aprov.	f _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	0.0	0.0	54.7	94.8	24.57	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	4.4	7.7	1.99	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a la chapa frontal	6.5	6.5	1.4	13.2	3.42	6.5	1.98	410.0	0.85
Soldadura del rigidizador inferior a las alas	0.0	0.0	51.8	89.7	23.24	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	4.8	8.3	2.16	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a la chapa frontal	8.5	8.5	1.2	17.1	4.43	8.5	2.59	410.0	0.85
Soldadura del rigidizador superior a las alas	0.0	0.0	54.7	94.8	24.57	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	4.4	7.7	1.99	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a la chapa frontal	6.5	6.5	1.4	13.2	3.42	6.5	1.98	410.0	0.85
Soldadura del rigidizador inferior a las alas	0.0	0.0	51.8	89.7	23.24	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	4.8	8.3	2.16	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a la chapa frontal	8.5	8.5	1.2	17.1	4.43	8.5	2.59	410.0	0.85
Soldadura de la chapa vertical al alma	0.0	0.0	5.1	8.8	2.29	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical a la chapa frontal	0.0	0.0	5.1	8.8	2.29	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador superior	0.0	0.0	76.5	132.6	34.35	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador inferior	0.0	0.0	68.4	118.5	30.71	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al alma	0.0	0.0	5.1	8.8	2.29	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical a la chapa frontal	0.0	0.0	5.1	8.8	2.29	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador superior	0.0	0.0	76.5	132.6	34.35	0.0	0.00	410.0	0.85
Soldadura de la chapa vertical al rigidizador inferior	0.0	0.0	68.4	118.5	30.71	0.0	0.00	410.0	0.85

2) Viga (a) IPE 160

Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
Chapa lateral	Interacción flexión - cortante				0.13					

	Tensiones combinadas				4.18
	Pandeo local	N/mm ²	10.92	241.98	4.51
	Aplastamiento	kN	3.57	70.64	5.05
	Desgarro	kN	10.08	104.03	9.69
Alma	Aplastamiento	kN	3.57	49.20	7.25
Alma	Desgarro	kN	10.08	98.52	10.23


Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)						
Detalle de la coldadura de la chana lateral	En ángulo	(111111)	125	8.0	,						
Detalle de la soldadura de la chapa lateral.	Ell allgulo	5	125	0.0	90.00						

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia											
	Tensión de Von Mises					Tensión	normal	£			
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	I _u (N/mm²)	β_{w}		
Detalle de la soldadura de la chapa lateral.	5.7	5.7	0.4	11.4	2.96	5.7	1.74	410.0	0.85		

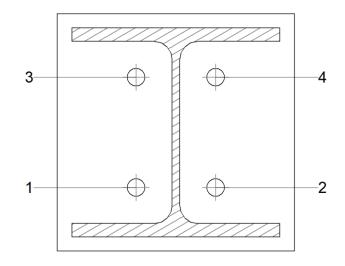
Comprobaciones para los tornillos

Disposición												
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0					
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
: La comprob	pación no procede.											

					Resistencia	l					
Tornil lo	Co	-	Traccio	Interacci ón tracción y cortante	Aprov. Máx. (%)						
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	3.22 0	26.976	11.9 4	Vástago	0.00	48.557	0.00	11.94	11.94	
1	Aplastamiento	3.22 0	70.570	4.56	Punzonami ento	0.00	58.782	0.00	11.94	11.94	
2	Sección transversal	3.36 1	26.976	12.4 6	Vástago	0.00	48.557	0.00	12.46	12.46	
2	Aplastamiento	3.36 1	70.636	4.76	Punzonami ento	0.00	58.782	0.00	12.40	12.40	
3	Sección transversal	3.56 7	26.976	13.2 2	Vástago	0.00	48.557	0.00	12.22	12.22	
3	Aplastamiento	3.56 7	70.638	5.05	Punzonami ento	0.00	58.782	0.00	13.22	13.22	

3) Viga (c) HE 280 B

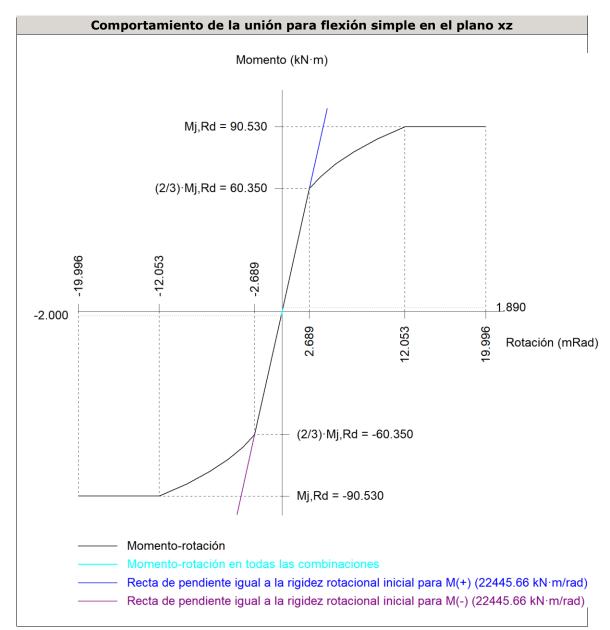
Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
Chapa frontal	Tracción por flexión	kN	227.78	331.21	68.77					
Ala	Compresión	kN	108.37	313.79	34.54					
	Tracción	kN	60.19	562.96	10.69					
Alma	Tracción	kN	108.28	306.19	35.36					


Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Soldadura del ala superior	En ángulo	9	280	18.0	84.29						
Soldadura del alma	En ángulo	5	197	10.5	90.00						
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29						

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia											
	Tensión de Von Mises					Tensión normal		£			
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)		I _u (N/mm²)	β_{w}		
Soldadura del ala superior	56.5	62.4	1.6	122.0	31.62	62.5	19.07	410.0	0.85		
Soldadura del alma	98.5	98.5	4.5	197.2	51.09	98.5	30.03	410.0	0.85		
Soldadura del ala inferior	57.5	63.5	1.1	124.2	32.19	63.7	19.41	410.0	0.85		


Comprobaciones para los tornillos

	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
2	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
3	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
4	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
: La comprob	pación no procede.										

					Resistencia	а				
Tornil lo		ortante	2			Tracción				Aprov. Máx. (%)
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	5.02 8	144.76 5	3.47	Vástago	137.8 64	203.32 8	67.8 0	51.05	67.80
1	Aplastamiento	5.02 8	354.24 0	1.42	Punzonami ento	137.8 64	420.39 0	32.7 9	51.05	07.80
2	Sección transversal	4.91 2	144.76 5	3.39	Vástago	95.81 9	203.32 8	47.1 3	35.93	47.13
2	Aplastamiento	4.91 2	354.24 0	1.39	Punzonami ento	95.81 9	420.39 0	22.7 9	33.93	47.13
3	Sección transversal	4.74 0	144.76 5	3.27	Vástago	139.8 36	203.32 8	68.7 7	52.18	68.77
3	Aplastamiento	4.74 0	354.24 0	1.34	Punzonami ento	139.8 36	420.39 0	33.2 6	52.16	08.77
4	Sección transversal	5.03 2	144.76 5	3.48	Vástago	79.87 0	203.32 8	39.2 8	30.92	39.28
4	Aplastamiento	5.03 2	354.24 0	1.42	Punzonami ento	79.87 0	420.39 0	19.0 0	30.92	33.20

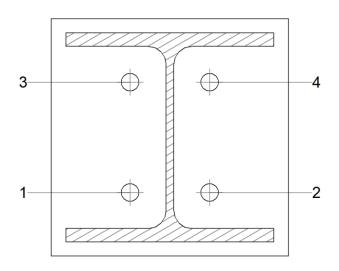
Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	35450.72	22445.66
Calculada para momentos negativos	35450.72	22445.66

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.84
Momento resistente	kNm	2.00	90.53	2.20
Capacidad de rotación	mRad	4.446	667	0.67

4) Viga (b) HE 280 B

Comprobaciones de resistencia										
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
Chapa frontal	Tracción por flexión	kN	227.78	331.21	68.77					

Ala	Compresión	kN	108.37	313.79	34.54
Ald	Tracción	kN	60.19	562.96	10.69
Alma	Tracción	kN	108.28	306.19	35.36


Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	9	280	18.0	84.29				
Soldadura del alma	En ángulo	5	197	10.5	90.00				
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29				

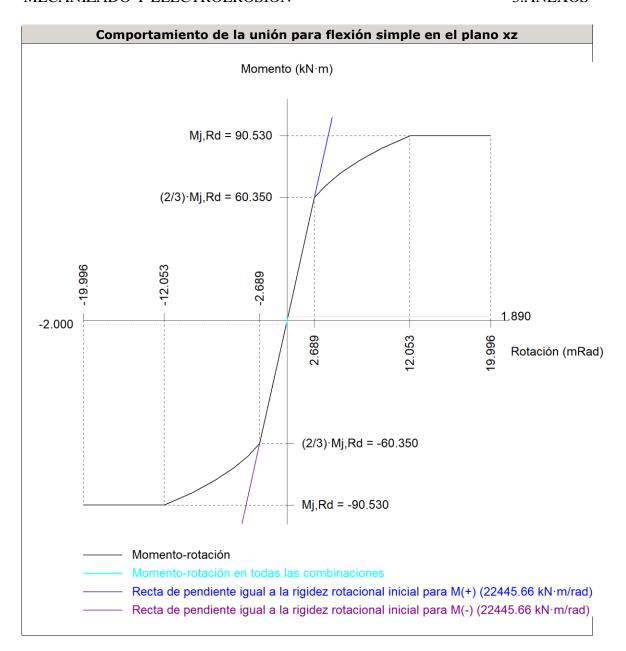
a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
		Tensiór	n de Vor	Tensión normal		4			
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	βw
Soldadura del ala superior	56.5	62.4	1.6	122.0	31.62	62.5	19.07	410.0	0.85
Soldadura del alma	98.5	98.5	4.5	197.2	51.09	98.5	30.03	410.0	0.85
Soldadura del ala inferior	57.5	63.5	1.1	124.2	32.19	63.7	19.41	410.0	0.85

Comprobaciones para los tornillos

	Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)				
1	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
2	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
3	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				
4	ISO 4014-M24x90-8.8	26.0		107	149	107	48.0				

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN


3.ANEXOS

Disposición									
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)		
: La comprobación no procede.									

					Resistencia	а				
Tornil lo	Co	ortante	9			Tracción				Aprov. Máx. (%)
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	4.91 2	144.76 5	3.39	Vástago	95.81 9	203.32 8	47.1 3	35.93	47.13
1	Aplastamiento	4.91 2	354.24 0	1.39	Punzonami ento	95.81 9	420.39 0	22.7 9	33.93	47.13
2	Sección transversal	5.02 8	144.76 5	3.47	Vástago	137.8 64	203.32 8	67.8 0	51.05	67.80
2	Aplastamiento	5.02 8	354.24 0	1.42	Punzonami ento	137.8 64	420.39 0	32.7 9	31.03	07.80
3	Sección transversal	5.03 2	144.76 5	3.48	Vástago	79.87 0	203.32 8	39.2 8	30.92	39.28
3	Aplastamiento	5.03 2	354.24 0	1.42	Punzonami ento	79.87 0	420.39 0	19.0 0	30.92	39.26
4	Sección transversal	4.74 0	144.76 5	3.27	Vástago	139.8 36	203.32 8	68.7 7	52.18	68.77
4	Aplastamiento	4.74 0	354.24 0	1.34	Punzonami ento	139.8 36	420.39 0	33.2 6	32.10	00.77

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	35450.72	22445.66
Calculada para momentos negativos	35450.72	22445.66

Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.84
Momento resistente	kNm	2.00	90.53	2.20
Capacidad de rotación	mRad	4.446	667	0.67

d) Medición

	Soldaduras								
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)					
			5	5912					
410.0	En taller	En ángulo	8	1772					
			9	4711					

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	244x240x18	33.10
		1	70x125x8	0.55
S275	Chapas	2	240x245x11	10.17
		4	320x320x18	57.88
			Total	101.69

Elementos de tornillería									
Tipo	Material	Cantidad	Descripción						
Tornillos	Class 9 9	8	ISO 4014-M24x90						
Tornillos Clase 8.8		3	ISO 4017-M12x35						
Tueros	Class 0	3	ISO 4032-M12						
Tuercas	Clase 8	8	ISO 4032-M24						
A d a l a	D 200 IIV	6	ISO 7089-12						
Arandelas	Dureza 200 HV	16	ISO 7089-24						

TIPO 4 (Unión de los dinteles en cumbrera en pórticos intermedios)

a) Detalle

Figura 53. Unión tipo 4

a) Detalle

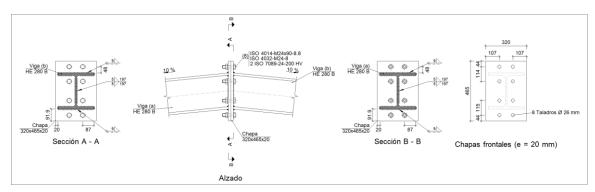


Figura 54. Descripción componentes unión tipo 4.

b) Descripción de los componentes de la unión

	Perfiles								
			C	Geometría			Acero		
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Viga	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0

Elementos complementarios									
	Ge	eometrí	a		Taladros		Acero		
Pieza	Esquema		Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Chapa frontal	320	320	465	20	8	26	S275	275.0	410.0

Elementos de tornillería								
	Geo	metría		Acero				
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)		
ISO 4014-M24x90-8.8 ISO 4032-M24-8 2 ISO 7089-24-200 HV		M24	90	8.8	640.0	800.0		

c) Comprobación

1) Viga (a) HE 280 B

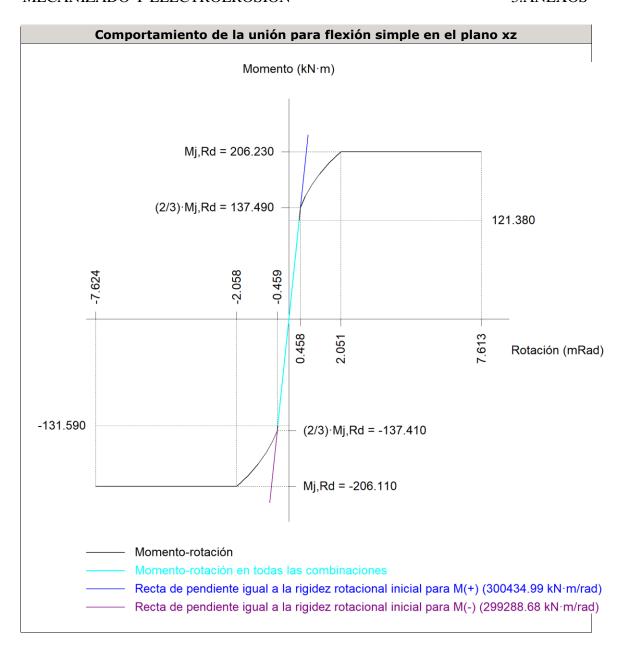
Comprobaciones de resistencia

NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Chapa frontal	Tracción por flexión	kN	265.23	317.85	83.44
Ala	Aplastamiento	kN	478.06	1326.58	36.04
Ald	Tracción	kN	175.16	561.37	31.20
Alma	Tracción	kN	76.90	304.86	25.22

Cordones de soldadura


Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	9	280	18.0	84.29				
Soldadura del alma	En ángulo	5	197	10.5	90.00				
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29				

Comprobación de resistencia									
	Tensión de Von Mises					Tensión normal		£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	$ au_{ }$ (N/mm ²)	Valor (N/mm²)	Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	I _u (N/mm²)	β _w
Soldadura del ala superior	81.3	89.9	0.4	175.6	45.51	81.3	24.79	410.0	0.85
Soldadura del alma	69.8	69.8	5.4	139.9	36.25	69.8	21.27	410.0	0.85
Soldadura del ala inferior	82.6	74.8	0.1	153.6	39.81	82.6	25.19	410.0	0.85

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	294971.20	300434.99
Calculada para momentos negativos	294971.20	299288.68

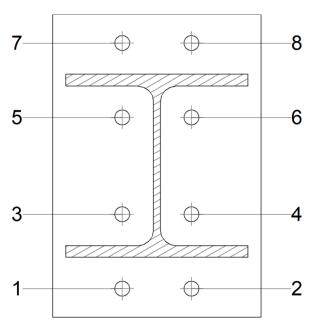
Comportamiento de la unión para flexión simple en el plano xz

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.06	1.80	59.15
Momento resistente	kNm	131.59	206.11	63.85
Capacidad de rotación	mRad	57.668	667	8.65

2) Viga (b) HE 280 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa frontal	Tracción por flexión	kN	265.23	317.85	83.44				
Ala	Compresión	kN	478.06	1326.58	36.04				
	Tracción	kN	175.16	561.37	31.20				
Alma	Tracción	kN	76.90	304.86	25.22				

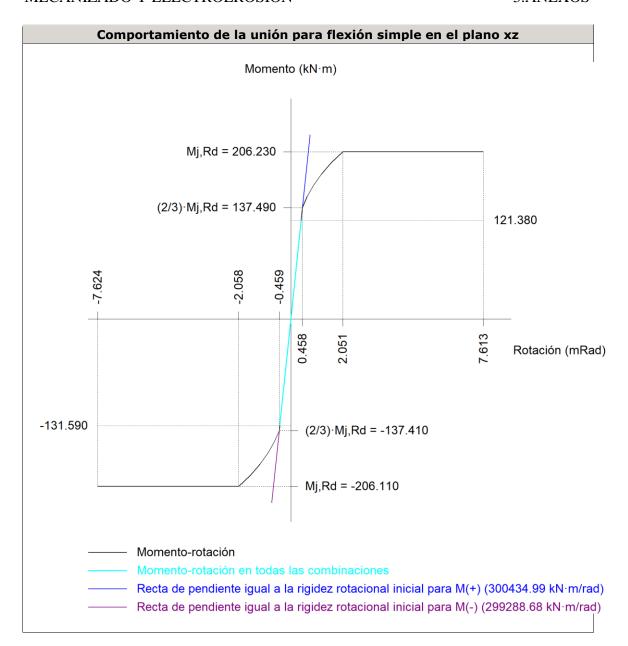

Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	9	280	18.0	84.29				
Soldadura del alma	En ángulo	5	197	10.5	90.00				
Soldadura del ala inferior	En ángulo	9	280	18.0	84.29				

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
	Tensión de Von Mises					Tensión normal		£		
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	βw	
Soldadura del ala superior	81.3	89.9	0.4	175.6	45.51	81.3	24.79	410.0	0.85	
Soldadura del alma	69.8	69.8	5.4	139.9	36.25	69.8	21.27	410.0	0.85	
Soldadura del ala inferior	82.6	74.8	0.1	153.6	39.81	82.6	25.19	410.0	0.85	

Comprobaciones para los tornillos



Disposición										
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)			
1	ISO 4014-M24x90-8.8	26.0	44	107	115	107	43.7			
2	ISO 4014-M24x90-8.8	26.0	44	107	115	107	43.7			
3	ISO 4014-M24x90-8.8	26.0		107	115	107	48.0			
4	ISO 4014-M24x90-8.8	26.0		107	115	107	48.0			
5	ISO 4014-M24x90-8.8	26.0		107	114	107	48.0			
6	ISO 4014-M24x90-8.8	26.0		107	114	107	48.0			
7	ISO 4014-M24x90-8.8	26.0	44	107	114	107	43.7			
8	ISO 4014-M24x90-8.8	26.0	44	107	114	107	43.7			

					Resistencia	a				
Tornil lo	Co	Cortante					Tracción			
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	(%)
4	Sección transversal	8.87 0	144.76 5	6.13	Vástago	169.6 67	203.32 8	83.4 4	F0.60	02.44
1	Aplastamiento	8.87 0	220.42 6	4.02	Punzonami ento	169.6 67	467.10 0	36.3 2	59.60	83.44
2	Sección transversal	8.87 0	144.76 5	6.13	Vástago	169.6 67	203.32 8	83.4 4	59.60	83.44
2	Aplastamiento	8.87 0	220.42 6	4.02	Punzonami ento	169.6 67	467.10 0	36.3 2	39.60	83.44
3	Sección transversal	2.25 2	144.76 5	1.56	Vástago	80.99 7	203.32 8	39.8 4	28.45	39.84
3	Aplastamiento	2.25 2	393.60 0	0.57	Punzonami ento	80.99 7	467.10 0	17.3 4	20.45	39.84
4	Sección transversal	2.25	144.76 5	1.56	Vástago	80.99 7	203.32 8	39.8 4		20.04
4	Aplastamiento	2.25 2	393.60 0	0.57	Punzonami ento	80.99 7	467.10 0	17.3 4	28.45	39.84
5	Sección transversal	2.25	144.76 5	1.56	Vástago	79.68 0	203.32 8	39.1 9	28.19	39.19
5	Aplastamiento	2.25	393.60 0	0.57	Punzonami ento	79.68 0	467.10 0	17.0 6	20.19	39.19
6	Sección transversal	2.25	144.76 5	1.56	Vástago	79.68 0	203.32 8	39.1 9	28.19	39.19
U	Aplastamiento	2.25	393.60 0	0.57	Punzonami ento	79.68 0	467.10 0	17.0 6	20.19	39.19
7	Sección transversal	9.73 7	144.76 5	6.73	Vástago	165.2 67	203.32 8	81.2 8	58.25	01 70
,	Aplastamiento	9.73 7	220.42 6	4.42	Punzonami ento	165.2 67	467.10 0	35.3 8	30.23	81.28
8	Sección transversal	9.73 7	144.76 5	6.73	Vástago	165.2 67	203.32 8	81.2 8	F0.35	04.20
Ö	Aplastamiento	9.73 7	220.42 6	4.42	Punzonami ento	165.2 67	467.10 0	35.3 8	58.25	81.28

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	294971.20	300434.99
Calculada para momentos negativos	294971.20	299288.68

Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.06	1.80	59.15
Momento resistente	kNm	131.59	206.11	63.85
Capacidad de rotación	mRad	57.668	667	8.65

d) Medición

	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En tallar	En ángulo	5	788						
410.0 En taller	En ángulo	9	2151							

Chapas									
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)					
C27E	Chapas Chapas		320x465x20	46.72					
S275			Total	46.72					

Elementos de tornillería									
Tipo	Material	Cantidad	Descripción						
Tornillos	Clase 8.8	8	ISO 4014-M24x90						
Tuercas	Clase 8	8	ISO 4032-M24						
Arandelas	Dureza 200 HV	16	ISO 7089-24						

TIPO 5 (Unión pilarillo con dintel)

a) Detalle

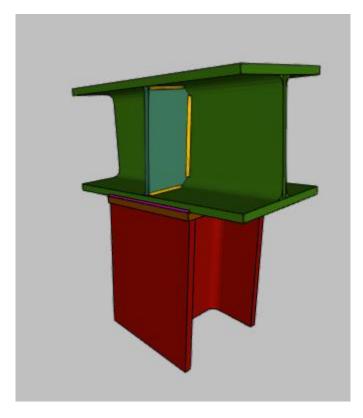


Figura 55. Unión tipo 5

a) Detalle

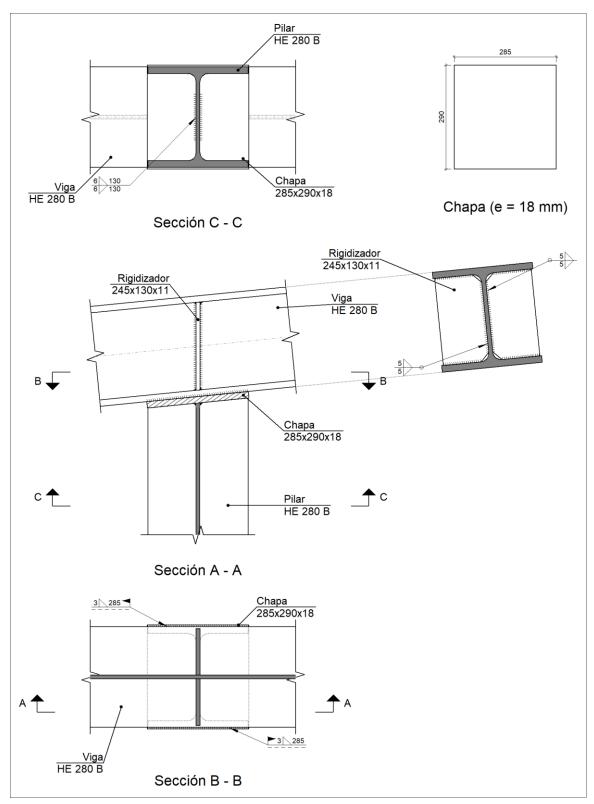


Figura 56. Descripción componentes unión tipo 5.

b) Descripción de los componentes de la unión

	Perfiles								
			Geometría						
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0
Viga	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0

	Element	os comp	lementa	arios			
	G	Acero					
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Tipo	f _v (MPa)	f _u (MPa)
Chapa frontal	285	285	290	18	S275	275.0	410.0
Rigidizador	245.2	245.2	130	11	S275	275.0	410.0

c) Comprobación

1) Viga HE 280 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Rigidizadores	Cortante	kN	41.11	389.58	10.55				
	Tracción	kN	41.11	342.83	11.99				

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del rigidizador al alma	En ángulo	5	197	10.5	90.00					
Soldadura del rigidizador a las alas	En ángulo	5	101	10.5	84.29					
Soldadura de la chapa a los bordes exteriores del ala	En ángulo	3	290	18.0	90.00					

Comprobaciones geométricas									
	Ref.				Tipo	a (mm) (mm)		igulo ados)
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas						l	,	, ,	
Comprobación de resistencia									
	Tensión de Von Mises					Tensión normal			
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}
Soldadura del rigidizador al alma	0.0	0.0	20.8	36.1	9.36	0.0	0.00	410.0	0.85
Soldadura del rigidizador a las alas		La comprobación no procede.					410.0	0.85	
Soldadura de la chapa a los bordes exteriores del ala	33.2	33.2	2.6	66.6	17.27	33.2	10.13	410.0	0.85

2) Pilar HE 280 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa frontal	Tensiones combinadas				9.90				
Alma	Pandeo local	N/mm²	17.54	261.90	6.70				

Cordones de soldadura

	Comprobaciones geométricas									
Ref.			Tipo		Tipo a I t (mm) (mm)		-	Ángı (grad		
Soldadura del alma	adura del alma En ángulo 6 130 10.6 84.					29				
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas										
		Compr	obación	de resi	istencia	ı				
		Tensión de Von Mises				Tensión	normal	£		
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}	
Soldadura del alma	18.2	24.5	22.0	59.9	15.53	26.5	8.09	410.0	0.85	

d) Medición

		Solda	nduras	
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)
	En taller	En ángulo	5	1637
410.0		En ángulo	6	260
	En e□ lugar de montaje	En ángulo	3	570

	Chapas										
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)							
	Rigidizadores	2	245x130x11	5.51							
S275	Chapas	1	285x290x18	11.68							
			Total	17.18							

TIPO 6 (Unión pilarillo con dintel de puerta principal)

a) Detalle

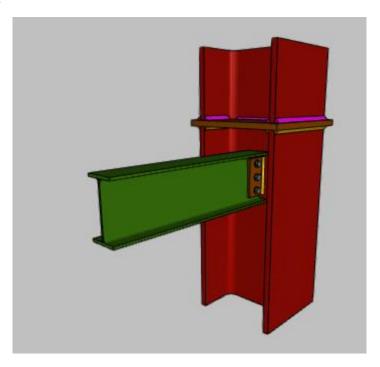


Figura 57. Unión tipo 6.

a) Detalle

Figura 58. Descripción componentes unión tipo 6.

b) Descripción de los componentes de la unión

				Perfiles						
			Œ	Geometría			Acero			
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)	
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0	
Viga	IPE 160	091	160	82	7.4	5	S275	275.0	410.0	

	Ge	eometrí	a		Tala	dros	Acero		
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Chapa de transición	320	320	320	18	-	-	S275	275.0	410.0
Chapa lateral: Viga IPE 160	\$21 \$\theta\$	70	125	8	3	13	S275	275.0	410.0

Elementos de tornillería										
	Geo		Acero							
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)				
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0				

c) Comprobación

1) Chapa de transición

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Interacción flexión - cortante				0.00
Deformación admisible	mRad		2	0.00

2) Pilar superior HE 280 B

Cordones de soldadura

Comprobaciones geométricas										
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	9	280	18.0	90.00					
Soldadura del alma	En ángulo	5	196	10.5	90.00					
Soldadura del ala inferior	En ángulo	9	280	18.0	90.00					

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia											
	Tensión de Von Mises Tensión normal										
Ref.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	w									

Comprobación de resistencia										
		Tensiór	n de Vor	Tensión normal		£				
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	β_{w}	
Soldadura del ala superior	61.4	61.4	0.2	122.9	31.84	61.4	18.73	410.0	0.85	
Soldadura del alma	42.0	42.0	0.8	84.0	21.76	42.0	12.80	410.0	0.85	
Soldadura del ala inferior	61.4	61.4	0.2	122.9	31.84	61.4	18.73	410.0	0.85	

3) Pilar inferior HE 280 B

		Comprobaciones de resistencia									
	Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
		Punzonamiento	kN	0.34	549.66	0.06					
Viga IPE 160	Alma	Flexión por fuerza perpendicular	kN	0.37	162.06	0.23					

Cordones de soldadura

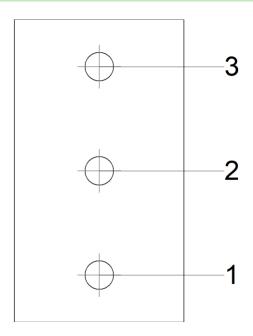
Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Soldadura del ala superior	En ángulo	9	280	18.0	90.00						
Soldadura del alma	En ángulo	5	196	10.5	90.00						
Soldadura del ala inferior	En ángulo	9	280	18.0	90.00						

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia											
		Tensiór	n de Vor	Tensión normal		£					
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}		
Soldadura del ala superior	61.4	61.4	0.2	122.9	31.84	61.4	18.73	410.0	0.85		
Soldadura del alma	42.0	42.0	0.8	84.0	21.76	42.0	12.80	410.0	0.85		
Soldadura del ala inferior	61.4	61.4	0.2	122.9	31.84	61.4	18.73	410.0	0.85		

4) Viga IPE 160

	Comprobaciones	de resiste	ncia		
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
	Interacción flexión - cortante				0.13
	Tensiones combinadas				0.58
Chapa lateral	Pandeo local	N/mm ²	1.22	241.98	0.50
	Aplastamiento	kN	0.38	58.31	0.65
	Desgarro	kN	0.64	104.03	0.62
Alma	Aplastamiento	kN	0.38	33.09	1.15
Allila	Desgarro	kN	0.64	98.52	0.65


Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Detalle de la soldadura de la chapa lateral.	En ángulo	5	125	8.0	90.00						
Farana managata											

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
		Tensiór	n de Vor	Tensión normal		£			
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)			$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	(N/mm²)	β_{w}
Detalle de la soldadura de la chapa lateral.	0.2	0.2	0.4	0.8	0.22	0.2	0.06	410.0	0.85

Comprobaciones para los tornillos

Disposición												
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0					
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5					
: La comprob	: La comprobación no procede.											

	Resistencia												
Tornil lo	Co	Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)						
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.				

					Resistencia	1				
Tornil lo	Co	Tracción				Interacci ón tracción y cortante	Aprov. Máx. (%)			
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	0.38	26.976	1.41	Vástago	0.00	48.557	0.00	1.41	1.41
1	Aplastamiento	0.38	58.315	0.65	Punzonami ento	0.00	58.782	0.00	1.41	1.41
2	Sección transversal	0.21 4	26.976	0.79	Vástago	0.00	48.557	0.00	0.79	0.79
2	Aplastamiento	0.21 4	68.250	0.31	Punzonami ento	0.00	58.782	0.00	0.79	0.79
3	Sección transversal	0.37	26.976	1.38	Vástago	0.00	48.557	0.00	1 20	1 20
3	Aplastamiento	0.37	69.828	0.53	Punzonami ento	0.00	58.782	0.00	1.38	1.38

d) Medición

	Soldaduras												
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)									
	En taller	En ángulo	5	642									
410.0		En ángulo	9	1075									
410.0	Fu al lucas de seculada	En ángulo	5	392									
	En el lugar de montaje	Ell allgulo	9	1075									

	Chapas										
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)							
Clarate		1	70x125x8	0.55							
S275	Chapas	1	320x320x18	14.47							
			Total	15.02							

	Elementos de tornillería									
Tipo	Material	Cantidad	Descripción							
Tornillos	Clase 8.8	3	ISO 4017-M12x35							
Tuercas	Clase 8	3	ISO 4032-M12							
Arandelas	Dureza 200 HV	6	ISO 7089-12							

TIPO 7 (Unión ménsula con pilares intermedios)

a) Detalle

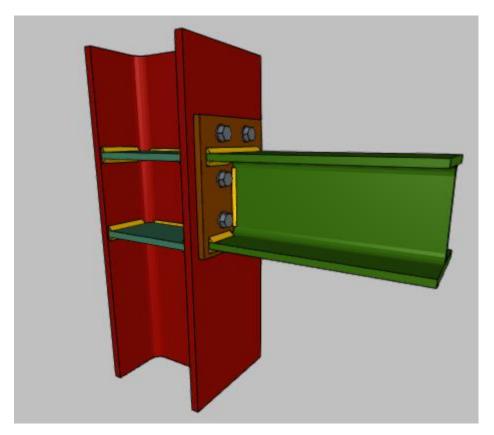


Figura 59. Unión tipo 7

a) Detalle

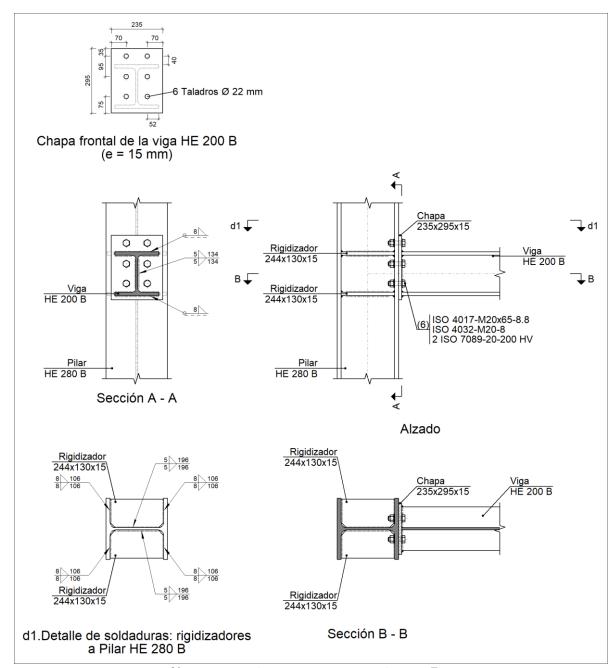


Figura 60. Descripción componentes unión tipo 7.

b) Descripción de los componentes de la unión

	Perfiles									
			G	Geometría			Acero			
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)	
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0	

	Perfiles									
			G	Geometría			Acero			
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)	
Viga	HE 200 B	200	200	200	15	9	S275	275.0	410.0	

	Elementos complementarios									
		eometrí				dros	Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)	
Rigidizador	OE 244	244	130	15	-	1	S275	275.0	410.0	
Chapa frontal: Viga HE 200 B	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	235	295	15	6	22	S275	275.0	410.0	

Elementos de tornillería										
	Geo		Acero							
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)				
ISO 4017-M20x65-8.8 ISO 4032-M20-8 2 ISO 7089-20-200 HV		M20	65	8.8	640.0	800.0				

c) Comprobación

1) Pilar HE 280 B

	Comprobacion	es de resi	istencia	1	
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Danal	Esbeltez				35.91
Panel	Cortante	kN	293.14	400.10	73.27
Rigidizador superior	Tensión de Von Mises	N/mm²	85.82	261.90	32.77
Rigidizador inferior	Tensión de Von Mises	N/mm²	74.40	261.90	28.41
Rigidizador superior	Tensión de Von Mises	N/mm²	85.82	261.90	32.77

	Rigidizador inferior	Tensión de Von Mises	N/mm²	74.40	261.90	28.41
	Ala	Cortante	N/mm²	128.45	261.90	49.04
Viga HE 200 B	Ala	Tracción por flexión	kN	165.09	282.24	58.49
		Tracción	kN	54.51	402.03	13.56
	Alma	Tracción	kN	94.91	182.92	51.89

Cordones de soldadura

Comprobaciones geo	Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del rigidizador superior a las alas	En ángulo	8	106	15.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	8	106	15.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador superior a las alas	En ángulo	8	106	15.0	90.00					
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00					
Soldadura del rigidizador inferior a las alas	En ángulo	8	106	15.0	90.00					
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00					

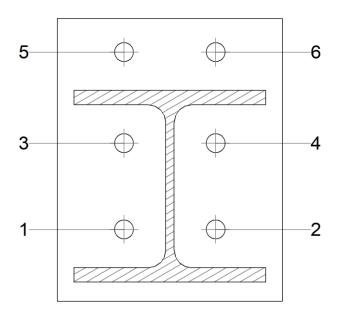
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

t. Espesor de prezus									
	Con	nproba	ción de	resiste	encia				
		Tensiór	n de Vor	Mises		Tensión	normal	f	
Ref.	$\sigma_{\perp} \\ \text{(N/mm²)}$	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	f _u (N/mm²)	βw
Soldadura del rigidizador superior a las alas	56.9	56.9	0.0	113.8	29.49	56.9	17.34	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	58.3	101.0	26.16	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	49.3	49.3	0.0	98.6	25.56	49.3	15.04	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	59.1	102.3	26.51	0.0	0.00	410.0	0.85
Soldadura del rigidizador superior a las alas	56.9	56.9	0.0	113.8	29.49	56.9	17.34	410.0	0.85
Soldadura del rigidizador superior al alma	0.0	0.0	58.3	101.0	26.16	0.0	0.00	410.0	0.85
Soldadura del rigidizador inferior a las alas	49.3	49.3	0.0	98.6	25.56	49.3	15.04	410.0	0.85
Soldadura del rigidizador inferior al alma	0.0	0.0	59.1	102.3	26.51	0.0	0.00	410.0	0.85

2) Viga HE 200 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa frontal	Tracción por flexión	kN	165.09	200.56	82.31				
Ala	Compresión	kN	264.52	785.71	33.67				

	Tracción	kN	107.57	392.86	27.38
Alma	Tracción	kN	41.34	180.36	22.92


Cordones de soldadura

Comprobaciones geométricas											
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)						
Soldadura del ala superior	En ángulo	8	200	15.0	90.00						
Soldadura del alma	En ángulo	5	134	9.0	90.00						
Soldadura del ala inferior	En ángulo	8	200	15.0	90.00						

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia										
		Tensiór	n de Vor	Tensión		+				
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	β_{w}	
Soldadura del ala superior	75.6	75.6	0.0	151.3	39.20	75.6	23.06	410.0	0.85	
Soldadura del alma	57.9	57.9	116.8	233.0	60.39	57.9	17.64	410.0	0.85	
Soldadura del ala inferior	76.4	76.4	0.0	152.9	39.61	76.4	23.30	410.0	0.85	

Comprobaciones para los tornillos

	Disposición												
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)						
1	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0						
2	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0						
3	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0						
4	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0						
5	ISO 4017-M20x65-8.8	22.0	35	70	95	96	35.0						

	Disposición											
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)					
6	ISO 4017-M20x65-8.8	22.0	35	70	95	96	35.0					
: La comprob	: La comprobación no procede.											

	Resistencia												
Tornil lo	Co	ortante	2			Tracció	n		Interacc ión tracción y cortante	Aprov. Máx.			
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	ón o nte		Apro v. (%)	Aprov.					
1	Sección transversal	26.0 77	78.400	33.2 6	Vástago	14.67 5	141.12 0	10.4 0	40.69	40.69			
1	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	14.67 5	294.58 8	4.98	40.69	40.69			
2	Sección transversal	26.0 77	78.400	33.2 6	Vástago	14.67 5	141.12 0	10.4 0	40.69	40.69			
_	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	14.67 5	294.58 8	4.98	40.09	10103			
3	Sección transversal	26.0 77	78.400	33.2 6	Vástago	49.83 1	141.12 0	35.3 1	58.48	58.48			
3	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	49.83 1	294.58 8	16.9 2	30.40	36.46			
4	Sección transversal	26.0 77	78.400	33.2 6	Vástago	49.83 1	141.12 0	35.3 1	58.48	58.48			
4	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	49.83 1	294.58 8	16.9 2	58.48	58.48			
5	Sección transversal	26.0 77	78.400	33.2 6	Vástago	116.1 58	141.12 0	82.3 1	92.06	02.06			
5	Aplastamiento 26.0 130.45 19.9 Punzonami 77 5 9 ento		116.1 58	294.58 8	39.4 3	92.06	92.06						
6	Sección transversal	26.0 77	78.400	33.2 6	Vástago	116.1 58	141.12 0	82.3 1	92.06	02.06			
О	Aplastamiento	26.0 77	130.45 5	19.9 9	Punzonami ento	116.1 294.58 39.4 58 8 3		39.4 3	92.00	92.06			

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)		
Calculada para momentos positivos	20307.50	21526.42		
Calculada para momentos negativos	20307.50	7689.96		

Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.88
Momento resistente	kNm	54.71	86.98	62.90
Capacidad de rotación	mRad	102.580	667	15.39

d) Medición

	Soldaduras										
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)							
410.0	410.0 En taller En ángulo —	5	1836								
410.0		En angulo	8	2466							

		Chapas		
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)
	Rigidizadores	4	244x130x15	14.94
S275	Chapas	1	235x295x15	8.16
			Total	23.10

	Elementos de tornillería										
Tipo	Material	Cantidad	Descripción								
Tornillos	Clase 8.8	6	ISO 4017-M20x65								
Tuercas	Clase 8	6	ISO 4032-M20								
Arandelas	Dureza 200 HV	12	ISO 7089-20								

TIPO 8 (Unión vigas de atado y ménsula con pilares en pórticos hastiales)

a) Detalle

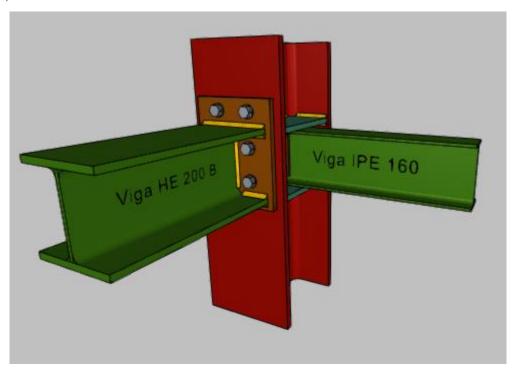


Figura 61. Unión tipo 8

a) Detalle

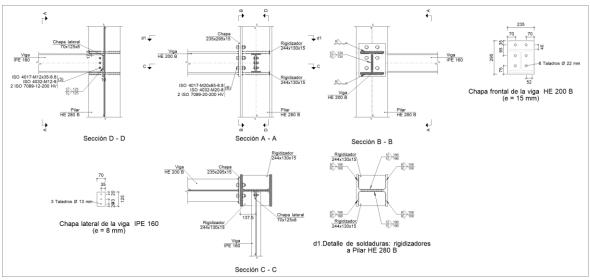


Figura 62. Descripción componentes unión tipo 8.

b) Descripción de los componentes de la unión

	Perfiles											
			G	Geometría			Acero					
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)			
Pilar	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0			
Viga	IPE 160	5 # 190	160	82	7.4	5	S275	275.0	410.0			
Viga	HE 200 B	9 7 7 200	200	200	15	9	S275	275.0	410.0			

Elementos complementarios										
	Geometría				Tala	Acero				
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _∨ (MPa)	f _u (MPa)	
Rigidizador	244	244	130	15	-	-	S275	275.0	410.0	

Elementos complementarios									
	Geometría				Taladros		Acero		
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)		f _v (MPa)	f _u (MPa)
Chapa lateral: Viga IPE 160	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70	125	8	3	13	S275	275.0	410.0
Chapa frontal: Viga HE 200 B	967	235	295	15	6	22	S275	275.0	410.0

Elementos de tornillería								
	Geometría				Acero			
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)		
ISO 4017-M12x35-8.8 ISO 4032-M12-8 2 ISO 7089-12-200 HV		M12	35	8.8	640.0	800.0		
ISO 4017-M20x65-8.8 ISO 4032-M20-8 2 ISO 7089-20-200 HV		M20	65	8.8	640.0	800.0		

c) Comprobación

1) Pilar HE 280 B

	Comprobaciones de resistencia							
	Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)		
	Panel	Esbeltez			1	35.91		
	Pallel	Cortante	kN	293.14	400.10	73.27		
	Rigidizador superior	Tensión de Von Mises	N/mm²	85.82	261.90	32.77		
	Rigidizador inferior	Tensión de Von Mises	N/mm²	74.40	261.90	28.41		
	Rigidizador superior	Tensión de Von Mises	N/mm²	85.82	261.90	32.77		
	Rigidizador inferior	Tensión de Von Mises	N/mm²	74.40	261.90	28.41		
	Ala	Cortante	N/mm²	40.95	261.90	15.64		
Viga HE 200 B	Ala	Tracción por flexión	kN	165.09	282.24	58.49		
		Tracción	kN	54.49	402.03	13.55		
	Alma	Tracción	kN	94.91	182.92	51.89		

	Punzonamiento	kN	49.69	549.66	9.04	
Viga IPE 160	Alma	Flexión por fuerza perpendicular	kN	49.69	162.06	30.66

Cordones de soldadura

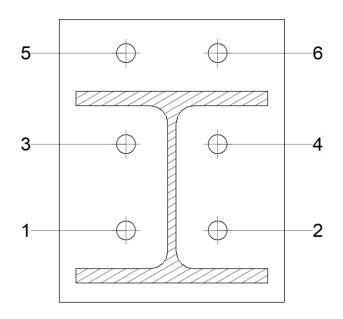
Comprobaciones geométricas								
Ref.	Tipo	a (mm)	(mm)	t (mm)	Ángulo (grados)			
Soldadura del rigidizador superior a las alas	En ángulo	8	106	15.0	90.00			
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00			
Soldadura del rigidizador inferior a las alas	En ángulo	8	106	15.0	90.00			
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00			
Soldadura del rigidizador superior a las alas	En ángulo	8	106	15.0	90.00			
Soldadura del rigidizador superior al alma	En ángulo	5	196	10.5	90.00			
Soldadura del rigidizador inferior a las alas	En ángulo	8	106	15.0	90.00			
Soldadura del rigidizador inferior al alma	En ángulo	5	196	10.5	90.00			

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

	Comprobación de resistencia									
		Tensiór	n de Vor	Mises		Tensión	normal	£		
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	f _u (N/mm²)	β_{w}	
Soldadura del rigidizador superior a las alas	56.9	56.9	0.0	113.8	29.49	56.9	17.34	410.0	0.85	
Soldadura del rigidizador superior al alma	0.0	0.0	58.3	101.0	26.16	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	49.3	49.3	0.0	98.6	25.56	49.3	15.04	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	59.1	102.3	26.51	0.0	0.00	410.0	0.85	
Soldadura del rigidizador superior a las alas	56.9	56.9	0.0	113.8	29.49	56.9	17.34	410.0	0.85	
Soldadura del rigidizador superior al alma	0.0	0.0	58.3	101.0	26.16	0.0	0.00	410.0	0.85	
Soldadura del rigidizador inferior a las alas	49.3	49.3	0.0	98.6	25.56	49.3	15.04	410.0	0.85	
Soldadura del rigidizador inferior al alma	0.0	0.0	59.1	102.3	26.51	0.0	0.00	410.0	0.85	

2) Viga HE 200 B

Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)				
Chapa frontal	Tracción por flexión	kN	165.09	200.56	82.31				
Ala	Compresión	kN	264.52	785.71	33.67				
	Tracción	kN	107.57	392.86	27.38				
Alma	Tracción	kN	41.32	180.36	22.91				

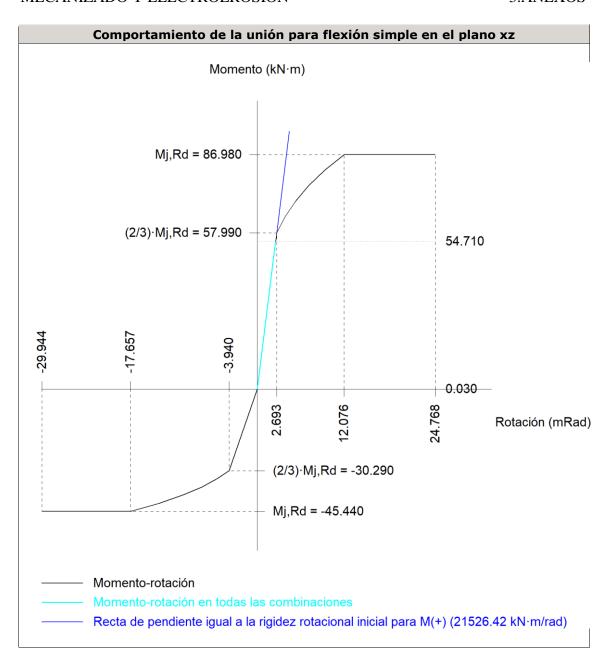

Cordones de soldadura

Comproba	Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)					
Soldadura del ala superior	En ángulo	8	200	15.0	90.00					
Soldadura del alma	En ángulo	5	134	9.0	90.00					
Soldadura del ala inferior	En ángulo	8	200	15.0	90.00					

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
		Tensiór	n de Vor	Tensión	normal	£			
Ref.	$\sigma_{\perp} \\ \text{(N/mm²)}$	$\tau_{\perp} \\ \text{(N/mm²)}$	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm²)	Aprov.	I _u (N/mm²)	βw
Soldadura del ala superior	75.6	75.6	0.0	151.3	39.20	75.6	23.06	410.0	0.85
Soldadura del alma	57.9	57.9	116.8	233.0	60.39	57.9	17.64	410.0	0.85
Soldadura del ala inferior	76.4	76.4	0.0	152.9	39.61	76.4	23.30	410.0	0.85

Comprobaciones para los tornillos


	Disposición									
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)			
1	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0			
2	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0			
3	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0			
4	ISO 4017-M20x65-8.8	22.0		70	90	96	40.0			
5	ISO 4017-M20x65-8.8	22.0	35	70	95	96	35.0			
6	ISO 4017-M20x65-8.8	22.0	35	70	95	96	35.0			
: La comprob	pación no procede.									

Resistencia

									ı	
Tornil lo	Co	2	Tracción				Interacc ión tracción y cortante	Aprov. Máx. (%)		
	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pésim o (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.	
1	Sección transversal	26.0 77	78.400	33.2 6	Vástago	14.67 5	141.12 0	10.4 0	40.69	40.69
1	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	14.67 5	294.58 8	4.98	40.09	40.69
2	Sección transversal	26.0 77	78.400	33.2 6	Vástago	14.67 5	141.12 0	10.4 0	40.69	40.69
2	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	14.67 5	294.58 8	4.98	40.69	
3	Sección transversal	26.0 77	78.400	33.2 6	Vástago	49.83 1	141.12 0	35.3 1	58.48	58.48
3	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	49.83 1	294.58 8	16.9 2	36.46	
4	Sección transversal	26.0 77	78.400	33.2 6	Vástago	49.83 1	141.12 0	35.3 1	58.48	58.48
4	Aplastamiento	26.0 77	246.00 0	10.6 0	Punzonami ento	49.83 1	294.58 8	16.9 2	30.40	36.46
5	Sección transversal	26.0 77	78.400	33.2 6	Vástago	116.1 58	141.12 0	82.3 1	92.06	92.06
5	Aplastamiento	26.0 77	130.45 5	19.9 9	Punzonami ento	116.1 58	294.58 8	39.4 3	92.00	92.00
6	Sección transversal	26.0 77	78.400	33.2 6	Vástago	116.1 58	141.12 0	82.3 1	92.06	92.06
O	Aplastamiento	26.0 77	130.45 5	19.9 9	Punzonami ento	116.1 58	294.58 8	39.4 3	92.00	92.06

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	20307.50	21526.42
Calculada para momentos negativos	20307.50	7689.96

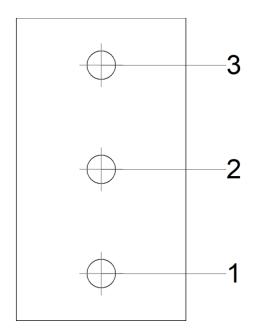
Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.88
Momento resistente	kNm	54.71	86.98	62.90
Capacidad de rotación	mRad	102.580	667	15.39

3) Viga IPE 160

	Comprobaciones de resistencia									
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)					
	Interacción flexión - cortante				0.13					
	Tensiones combinadas				19.27					
Chapa lateral	Pandeo local	N/mm²	50.46	241.98	20.85					
	Aplastamiento	kN	16.74	70.65	23.70					
	Desgarro	kN	49.69	104.03	47.77					
Alma	Aplastamiento	kN	16.74	49.20	34.03					

_		40.60	00 50	E0 44
Desgarro	kN	49 69	98.52	
Desgarro	IN IN	79.09	90.52	50.44


Cordones de soldadura

Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Detalle de la soldadura de la chapa lateral.	En ángulo	5	125	8.0	90.00				

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas

Comprobación de resistencia									
		Tensión de Von Mises				Tensión normal		f	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		$\sigma_{\perp} \\ \text{(N/mm²)}$	Aprov.	(N/mm²)	βw
Detalle de la soldadura de la chapa lateral.	28.1	28.1	0.2	56.2	14.57	28.1	8.57	410.0	0.85

Comprobaciones para los tornillos

Disposición								
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)	
1	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5	
2	ISO 4017-M12x35-8.8	13.0		25	43		35.0	
3	ISO 4017-M12x35-8.8	13.0	20	25	43		19.5	
: La comprob	: La comprobación no procede.							

Resistencia								
Tornil lo	Cortante	Tracción	Interacci ón tracción y cortante					

	Comprobación	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Comprobaci ón	Pési mo (kN)	Resiste nte (kN)	Apro v. (%)	Aprov.		
1	Sección transversal	16.4 38	26.976	60.9 4	Vástago	0.00	48.557	0.00	60.94	60.94	
1	Aplastamiento	16.4 38	70.643	23.2 7	Punzonami ento	0.00	58.782	0.00	00.94	60.94	
2	Sección transversal	16.5 64	26.976	61.4 0	Vástago	0.00	48.557	0.00	61.40	61.40	
2	Aplastamiento	16.5 64	70.646	23.4 5	Punzonami ento	0.00	58.782	0.00	61.40		
3	Sección transversal	16.7 42	26.976	62.0 6	Vástago	0.00	48.557	0.00	62.06	62.06	
3	Aplastamiento	16.7 42	70.646	23.7 0	Punzonami ento	0.00	58.782	0.00	02.00	62.06	

d) Medición

	Soldaduras							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
410.0	En tallor	En ángulo	5	2086				
410.0 En taller	En ángulo	8	2466					

	Chapas								
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)					
S275	Rigidizadores	4	244x130x15	14.94					
	Chapas	1	70x125x8	0.55					
		1	235x295x15	8.16					
			Total	23.65					

Elementos de tornillería								
Tipo	Material	Cantidad	Descripción					
Tornillos	Clase 8.8	3	ISO 4017-M12x35					
TOTTIIIOS	Clase 6.6	6	ISO 4017-M20x65					
Tuesda	Class 0	3	ISO 4032-M12					
Tuercas	Clase 8	6	ISO 4032-M20					
Arandelas	Dureza 200 HV	6	ISO 7089-12					
Aranueias		12	ISO 7089-20					

TIPO 9 (Unión marcos de cruces de San Andres con dinteles)

a) Detalle

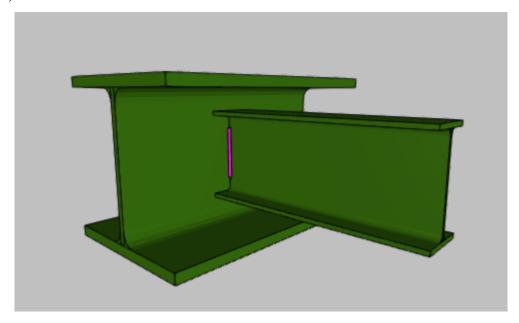


Figura 63. Unión tipo 9

a) Detalle

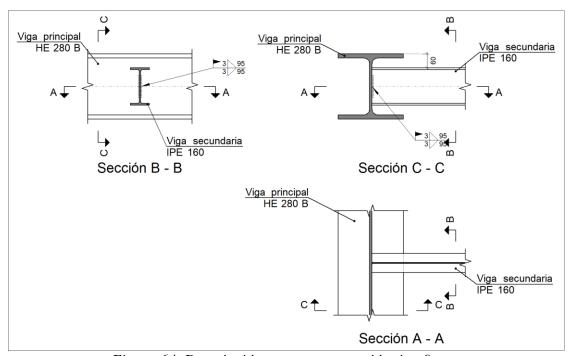


Figura 64. Descripción componentes unión tipo 9.

b) Descripción de los componentes de la unión

				Perfiles					
			Geometría						
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)	Espesor del ala (mm)	Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Viga	HE 280 B	10.5	280	280	18	10.5		275.0	
Viga	IPE 160	091	160	82	7.4	5	S275	275.0	410.0

c) Comprobación

1) Viga principal

Comprobaciones de resistencia								
Componente Comprobación Unidades Pésimo Resistente Aprov.								
Alma	Punzonamiento	kN	3.06	129.00	2.37			
	Flexión por fuerza perpendicular	kN	3.06	163.63	1.87			

2) Viga secundaria IPE 160

Comprobaciones de resistencia								
Componente	Componente Comprobación Unidades Pésimo Resistente Aprov. (%)							
Alma Tensión de Von Mises N/mm² 155.79 261.90 59.48								

Cordones de soldadura

Com	Comprobaciones geométricas							
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)			
Soldadura del alma	En ángulo	3	95	5.0	90.00			
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas								

Comprobación de resistencia									
Ref.		Tensiói	n de Von	Mises	_				
	σ_{\perp}	τ_{\perp}	$\tau_{ }$	Valor	Aprov.	σ_{\perp}	Aprov.	I _u (N/mm²)	β_{w}
	(N/mm ²)	(N/mm²)	(N/mm²)	(N/mm ²)	(%)	(N/mm ²)	(%)		
Soldadura del alma	48.2	55.0	0.9	106.7	27.66	55.0	16.76	410.0	0.85

d) Medición

	Soldaduras									
f _u (MPa)	Ejecuci□n	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En el lugar de montaje	En ángulo	3	190						

TIPO 10 (Unión entre pilarillos)

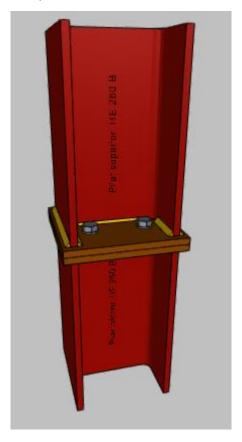


Figura 65. Unión tipo 10.

a) Detalle

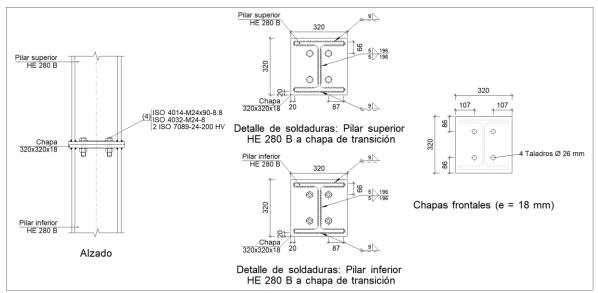


Figura 66. Descripción componentes unión tipo 10.

b) Descripción de los componentes de la unión

Perfiles									
			Geo	metría				Acero	
Pieza	Descripción	Esquema	Canto total (mm)	Ancho del ala (mm)		Espesor del alma (mm)	Tipo	f _v (MPa)	f _u (MPa)
Pilar inferior	HE 280 B	10.5	280	280	18	10.5		275.0	
Pilar superior	HE 280 B	10.5	280	280	18	10.5	S275	275.0	410.0

Elementos complementarios									
	Ge	Taladros		Acero					
Pieza	Esquema		Canto (mm)	Espesor (mm)	Cantidad Diámetro (mm)		Tipo	f _v (MPa)	f _u (MPa)
Chapa frontal	02°	320	320	18	4	26	S275	275.0	410.0

Elementos de tornillería									
	Geo	Acero							
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _v (MPa)	f _u (MPa)			

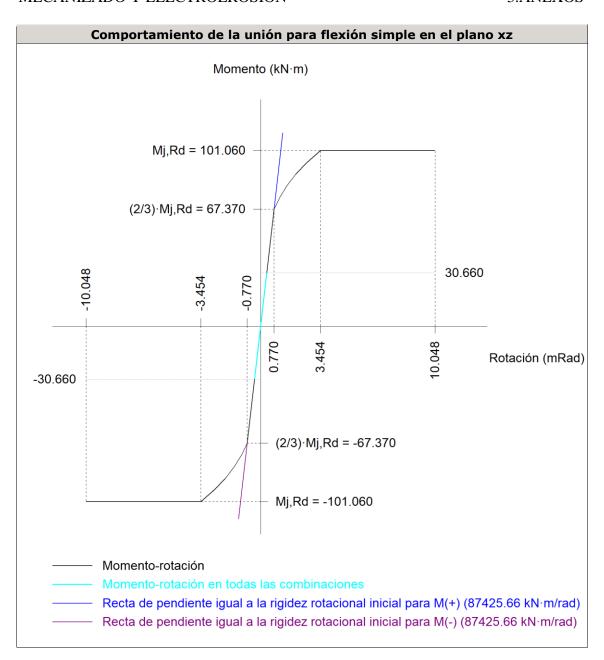
Elementos de tornillería									
	Geo	Acero							
Descripción	Esquema	Diámetro	Longitud (mm)	Clase	f _y (MPa)	f _u (MPa)			
ISO 4014-M24x90-8.8 ISO 4032-M24-8 2 ISO 7089-24-200 HV		M24	90	8.8	640.0	800.0			

c) Comprobación

1) Pilar inferior HE 280 B

Comprobaciones de resistencia								
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)			
Chapa frontal	Tracción por flexión	kN	134.05	400.70	33.45			
Ala	Aplastamiento	kN	163.23	1320.00	12.37			
Ala	Tracción	kN	35.29	559.83	6.30			
Alma	Tracción	kN	63.47	304.34	20.85			

Cordones de soldadura


Comprobaciones geométricas									
Ref.	Tipo	a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Soldadura del ala superior	En ángulo	9	280	18.0	90.00				
Soldadura del alma	En ángulo	5	196	10.5	90.00				
Soldadura del ala inferior	En ángulo	9	280	18.0	90.00				

a: Espesor garganta l: Longitud efectiva t: Espesor de piezas

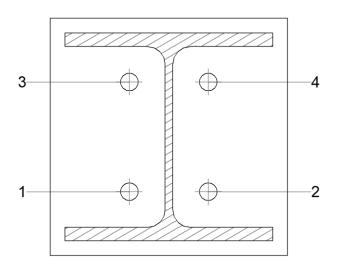
Comprobación de resistencia									
	Tensión de Von Mises					Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$\tau_{\perp} \\ \text{(N/mm²)}$	$\tau_{ }$ (N/mm ²)		Aprov.	σ_{\perp} (N/mm ²)	Aprov.	I _u (N/mm²)	β_{w}
Soldadura del ala superior	29.5	29.5	0.0	59.0	15.28	29.5	8.99	410.0	0.85
Soldadura del alma	58.0	58.0	12.0	117.9	30.55	58.0	17.69	410.0	0.85
Soldadura del ala inferior	29.5	29.5	0.0	59.0	15.28	29.5	8.99	410.0	0.85

Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)		
Calculada para momentos positivos	163550.60	87425.66		
Calculada para momentos negativos	163550.60	87425.66		

Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.84
Momento resistente	kNm	30.66	101.06	30.34
Capacidad de rotación	mRad	34.905	667	5.24

2) Pilar superior HE 280 B


Comprobaciones de resistencia								
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)			
Chapa frontal	Tracción por flexión	kN	134.05	400.70	33.45			
Ala	Compresión	kN	163.23	1320.00	12.37			
Ala	Tracción	kN	35.29	559.83	6.30			
Alma	Tracción	kN	63.47	304.34	20.85			

Cordones de soldadura

Comproba	Comprobaciones geométricas											
Ref.	Tipo	a (mm)	 (mm)	t (mm)	Ángulo (grados)							
Soldadura del ala superior	En ángulo	9	280	18.0	90.00							
Soldadura del alma	En ángulo	5	196	10.5	90.00							
Soldadura del ala inferior	En ángulo	9	280	18.0	90.00							

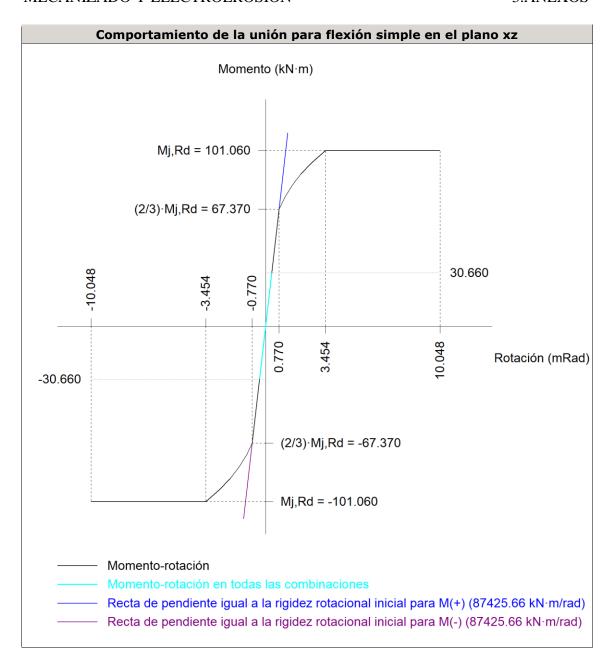
	Comprobación de resistencia												
		Tensiór	n de Von	Tensión	normal	£							
Ref.	σ_{\perp} (N/mm²)	$\tau_{\perp} \\ \text{(N/mm²)}$	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm²)		(N/mm²)	β_{w}				
Soldadura del ala superior	29.5	29.5	0.0	59.0	15.28	29.5	8.99	410.0	0.85				
Soldadura del alma	58.0	58.0	12.0	117.9	30.55	58.0	17.69	410.0	0.85				
Soldadura del ala inferior	dadura del ala inferior 29.5 29.5 0.0 59.0 15.28 29.5 8.99								0.85				

Comprobaciones para los tornillos

	Disposición												
Tornillo	Denominación	d ₀ (mm)	e ₁ (mm)	e ₂ (mm)	p ₁ (mm)	p ₂ (mm)	m (mm)						
1	ISO 4014-M24x90-8.8	26.0		107	148	107	48.0						
2	ISO 4014-M24x90-8.8	26.0		107	148	107	48.0						
3	ISO 4014-M24x90-8.8	26.0		107	148	107	48.0						
4 ISO 4014-M24x90-8.8 26.0 107 148 107 48.0													
: La comprob	pación no procede.												

Resistencia

a: Espesor garganta I: Longitud efectiva t: Espesor de piezas


NAVE PARA TALLER DE MECANIZADO Y ELECTROEROSIÓN

3.ANEXOS

Tornil lo	Comprobación	Pési mo	Resiste	Apro V. (%)	Comprobaci ón	Traccio Pési mo	Interacci ón tracción y cortante Aprov.	Aprov. Máx. (%)		
1	Sección transversal	7.54	144.76 5	5.21	Vástago	68.0 22	203.32	33.4 5	27.94	33.45
1	Aplastamiento		354.24 0	2.13	Punzonami ento	68.0 22	420.39 0	16.1 8	27.94	33.45
2	Sección transversal	7.54 6	144.76 5	5.21	Vástago	68.0 22	203.32 8	33.4 5	27.04	22.45
2	Aplastamiento	7.54 6	354.24 0	2.13	Punzonami ento	68.0 22	420.39 0	16.1 8	27.94	33.45
3	Sección transversal	7.54 6	144.76 5	5.21	Vástago	68.0 23	203.32 8	33.4 5	27.94	33.45
3	Aplastamiento	7.54 6	354.24 0	2.13	Punzonami ento	68.0 23	420.39 0	16.1 8	27.94	33.45
4	Sección transversal	7.54 6	144.76 5	5.21	Vástago	68.0 23	203.32 8	33.4 5	27.04	33.45
4	4 Aplastamiento		354.24 0	2.13	Punzonami ento	68.0 23	420.39 0	16.1 8	27.94	33.43

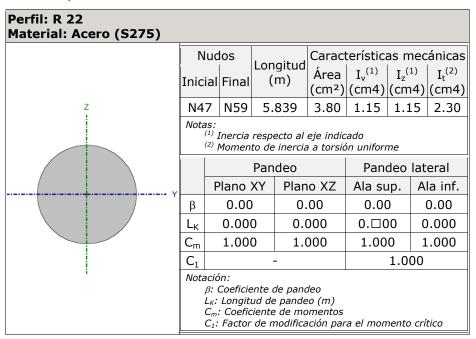
Rigidez rotacional inicial	Plano xy (kN·m/rad)	Plano xz (kN·m/rad)
Calculada para momentos positivos	163550.60	87425.66
Calculada para momentos negativos	163550.60	87425.66

Comportamiento de la unión para flexión simple en el plano xz

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Relación entre modos 1 y 3		1.31	1.80	72.84
Momento resistente	kNm	30.66	101.06	30.34
Capacidad de rotación	mRad	34.905	667	5.24

d) Medición

	Soldaduras										
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)							
410.0	En tallar	En ángulo	5	784							
410.0	En taller	En ángulo	9	2150							


	Chapas												
Material	Tipo	Cantidad	Dimensiones (mm)	Peso (kg)									
COZE	Chapas	2	320x320x18	28.94									
S275			Total	28.94									

	Elementos	de tornillería	
Tipo	Descripción		
Tornillos	Clase 8.8	4	ISO 4014-M24x90
Tuercas	Clase 8	4	ISO 4032-M24
Arandelas	Dureza 200 HV	8	ISO 7089-24

ARRIOSTRAMIENTOS

A continuación mostraremos la comprobación para el tirante que sufre las mayores solicitaciones y las comprobaciones en los nudos de los diferentes grupos de ellos.

Barra N47/N59

		COMPROBACIONES (CTE DB SE-A)												
Barra	λ	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z	$M_zV_Y \begin{vmatrix} NM_Y \\ M_Z \end{vmatrix}$	V_z	M _t	M_tV_Z	M_tV_Y	Estado

	COMPROBACIONES (CTE DB SE-A)														
Barra	$\bar{\lambda}$	N _t	N _c	M _Y	M _Z	V _Z	V _Y	M_YV_Z	M_ZV_Y	M_{Z}	$NM_YM_ZV_Y$ V_Z	M _t	M_tV_Z	M_tV_Y	Estado
N47/N5 9	$\begin{array}{c} \overline{\lambda} \leq \\ 4.0 \\ \text{Cumpl} \\ e \end{array}$	η = 81.9	N _{Ed} = 0.00 N.P. ⁽¹⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	M _{Ed} = 0.00 N.P. ⁽²⁾	V _{Ed} = 0.00 N.P. ⁽³⁾	V _{Ed} = 0.00 N.P. ⁽³⁾	N.P. ⁽	N.P. ⁽	N.P. ⁽	N.P. ⁽⁶⁾	M _{Ed} = 0.00 N.P. ⁽⁷⁾	N.P. ⁽	N.P. ⁽	CUMPL Ε η = 81.9

- Notación: $\bar{\lambda}$: Limitación de esbeltez

 - λ: Limitación de esbeltez
 N_c: Resistencia a tracción
 N_c: Resistencia a compresión
 M_r: Resistencia a flexión eje Y
 V_z: Resistencia a corte Z
 V_γ: Resistencia a corte Y

 - V.: Resistencia a corte Y
 Mv.: Resistencia a momento flector Y y fuerza cortante Z combinados
 Mz·V.: Resistencia a momento flector Z y fuerza cortante Y combinados
 MM·Mz: Resistencia a flexión y axil combinados
 MM·Mz·V.: Resistencia a flexión, axil y cortante combinados
 Mz: Resistencia a torsión
 Mv.: Resistencia a cortante Z y momento torsor combinados
 Mv.: Resistencia a cortante Y y momento torsor combinados
 X.: Distancia al origen de la barra

 T.: Coeficiente de aprovechamiento (%)
 N.P.: No procede

Comprobaciones que no proceden (N.P.):

- probaciones que no proceden (n.P.):

 (**) La comprobación no procede, y a que no hay axil de compresión.

 (**) La comprobación no procede, y a que no hay momento flector.

 (**) La comprobación no procede, ya que no hay esfuerzo cortante.

 (**) La comprobación no procede, ya que no hay esfuerzo cortante.

 (**) No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

 (**) No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
 - No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

 - La comprobación no procede, ya que no hay momento torsor.
 No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

 $\bar{\lambda}$ < 0.01 \checkmark

Donde:

A: Área bruta de la sección transversal de la barra.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

3.80 cm² f_v: 265.00 MPa

 ∞ N_{cr} :

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.819** 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(180°)H3+0.75·N(R)1.

N_{t.Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 78.57 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t.Rd}: 95.94 kN

3.ANEXOS

Donde:

A: Área bruta de la sección transversal de la barra. A: 3.80 cm² f_{vd} : Resistencia de cálculo del acero. f_{vd} : 252.38 MPa

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: $\underline{265.00}$ MPa γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Tipo 1

a) Detalle

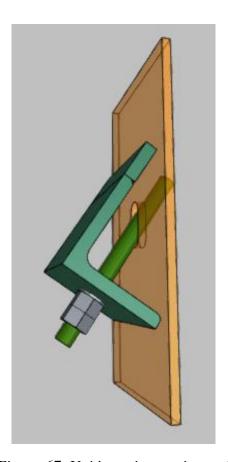


Figura 67. Unión arriostramientos 1

a) Detalle

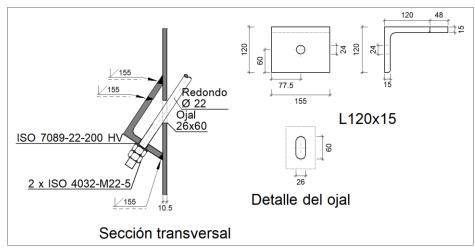


Figura 68. Descripción componentes unión tipo 1 arriostramientos.

b) Comprobación

1) L120x15 (S275)

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Cortante de la sección transversal	kN	41.03	297.13	13.81
Flector				75.53

Cordones de soldadura

Comprobaciones geométricas									
Ref.		Tipo		Preparación de bordes (mm)		l (mm)			
Soldaduras a tope del angu	lar a la	pieza	A tope	en bisel	simple		11		155
I: Longitud efectiva	I: Longitud efectiva								
Comprobación de resistencia									
		Tensió	n de Vor	n de Von Mises Tens		Tensión	normal	£	
Ref.	σ_{\perp} (N/mm²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)		σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}
Soldaduras a tope del angular a la pieza	La comprobación no procede. 410.0				410.0	0.85			

c) Medición

	Soldaduras							
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)				
410.0	En taller	A tope en bisel simple	15	465				

Angulares							
Material	Tipo	Descripción (mm)	Longitud (mm)	Peso (kg)			
COZE	Anclajes de tirantes	L120x15	155	4.11			
S275			Total	4.11			

Elementos de tornillería							
Tipo	Material	Cantidad	Descripción				
Tuercas	Clase 5	2	ISO 4032-M22				
Arandelas	Dureza 200 HV	1	ISO 7089-22				

Tipo 2

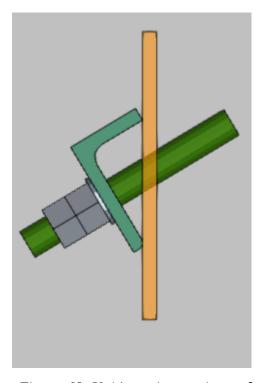


Figura 69. Unión arriostramientos 2

a) Detalle

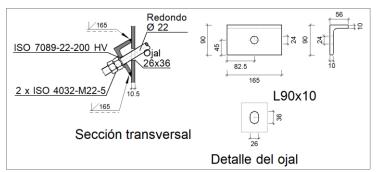


Figura 70. Descripción componentes unión tipo 2 arriostramientos.

b) Comprobación

1) L90x10 (S275)

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Cortante de la sección transversal	kN	27.20	213.21	12.76
Flector				72.74

Cordones de soldadura

Comprobaciones geométricas							
Ref.		Tipo		Preparación de bordes (mm)		l (mm)	
Soldaduras a tope del angu	lar a la pieza	A tope en bis	sel simple		10		
I: Longitud efectiva							
Comprobación de resistencia							
	Tensió	n de Von Mis	es	Tensión	normal	£	
Ref.	σ_{\perp} τ_{\perp} (N/mm ²)		or Aprov.	σ_{\perp} (N/mm ²)	Aprov.	f _u (N/mm²)	β_{w}
Soldaduras a tope del angular a la pieza	La comprobación no procede.			410.0	0.85		

c) Medición

	Soldaduras							
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)				
410.0	En taller	A tope en bisel simple	10	330				

Angulares							
Material	Tipo	Descripción (mm)	Longitud (mm)	Peso (kg)			
S275	Anclajes de tirantes	L90x10	165	2.20			
32/3			Total	2.20			

Elementos de tornillería							
Tipo	Material	Cantidad	Descripción				
Tuercas	Clase 5	2	ISO 4032-M22				
Arandelas	Dureza 200 HV	1	ISO 7089-22				

Tipo 3

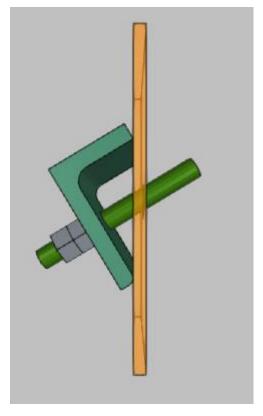


Figura 71. Unión tipo 3 arriostramientos

a) Detalle

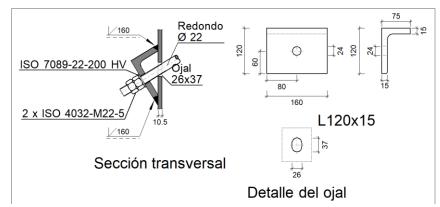


Figura 72. Descripción componentes unión tipo 3 arriostramientos.

b) Comprobación

1) L120x15 (S275)

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Cortante de la sección transversal	kN	42.19	308.47	13.68
Flector				75.25

Cordones de soldadura

Comprobaciones geométricas							
Ref.		Tipo		Preparación de bordes (mm)			
Soldaduras a tope del angu	lar a la pieza	A tope en bisel simple	11		160		
I: Longitud efectiva	I: Longitud efectiva						
Comprobación de resistencia							
	Tensió	n de Von Mises	Tensión normal	£			
Ref.	σ_{\perp} τ_{\perp} τ_{\perp} (N/mm^2)	$\tau_{ }$ Valor Aprov. (N/mm ²) (N/mm ²) (%)	σ_{\perp} Aprov. (%)	Γ _u (N/mm²)	β_{w}		
Soldaduras a tope del angular a la pieza	La comprobación no procede.				0.85		

c) Medición

Soldaduras							
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)			
410.0	En taller	A tope en bisel simple	15	320			

	Angulares										
Material	Tipo	Descripción (mm)	Longitud (mm)	Peso (kg)							
C27F	Anclajes de tirantes	L120x15	160	4.24							
S275			Total	4.24							

Elementos de tornillería									
Tipo	Material	Cantidad	Descripción						
Tuercas	Clase 5	2	ISO 4032-M22						
Arandelas	Dureza 200 HV	1	ISO 7089-22						

Tipo 4

Figura 73. Unión tipo 4 arriostramientos

a) Detalle

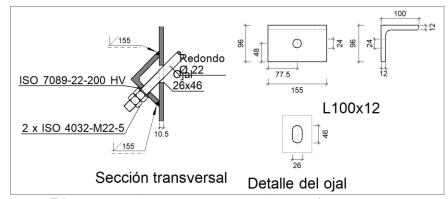


Figura 74. Descripción componentes unión tipo 4 arriostramientos.

b) Comprobación

1) L100x12 (S275)

Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Cortante de la sección transversal	kN	37.05	237.70	15.59
Flector				65.10

Cordones de soldadura

Comprobaciones geométricas											
Ref.		Tipo			Prepara	bordes	l (mm)				
Soldaduras a tope del angular a la pieza			A tope	en bisel	simple		11		155		
1: Longitud efectiva											
Comprobación de resistencia											
	Tensión de Von Mises			Tensión	normal	£					
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)		Aprov.	σ_{\perp} (N/mm²)	Aprov.	(N/mm²)	β_{w}		
Soldaduras a tope del angular a la pieza		La comprobación no procede.							0.85		

c) Medición

	Soldaduras									
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)						
410.0	En taller	A tope en bisel simple	12	310						

	Angulares										
Material	Tipo	Descripción (mm)	Longitud (mm)	Peso (kg)							
C27F	Anclajes de tirantes	L100x12	155	2.74							
S275			Total	2.74							

Elementos de tornillería									
Tipo	Material	Cantidad	Descripción						
Tuercas	Clase 5	2	ISO 4032-M22						
Arandelas	Dureza 200 HV	1	ISO 7089-22						

7.3. PLACAS DE ANCLAJE

Puesto que los pilares metálicos no pueden asentar directamente sobre el hormigón de la cimentación (debido a que éste no soportaría las tensiones transmitidas), se dispondrán unas placas metálicas entre el pilar y la cimentación. Su función principal será la de disminuir las tensiones que transmite el pilar para que sean aceptables por el hormigón. Los soportes distribuirán los esfuerzos de compresión, transmitidos por las zonas comprimidas del pilar, sobre una superficie suficiente de hormigón mediante elementos de transición como son las placas de anclaje, para que no se supere la resistencia de cálculo del hormigón. Las placas asentarán preferiblemente sobre un mortero de nivelación sin retracción interpuesto entre ambos materiales, estableciendose una capa de 25-60 mm.

La unión de la placa base con las zapatas de cimentación se llevará a cabomediantepernos de anclaje embebidos en el hormigón, los cuales inmovilizarán elpilar ante posibles fuerzas de arrancamiento o momentos. El material utilizado seráun acero S-275 para las placas y los pernos serán barras corrugadas B-400-S.

Según el CTE, para asegurar la resistencia de esfuerzos tangentes, comocortantes o momentos torsores, y en caso de no disponerse de elementosespecíficos para ello, tales como topes o conectadores de cortante, se debe justificarla capacidad resistente en la sección de contacto entre el soporte y el hormigónmediante:

- a) el rozamiento entre la placa base y el hormigón
- b) la resistencia a cortante de los pernos de anclaje

La comprobación de resistencia de la superficie de hormigón frente a lastensiones de contacto, y la de las regiones circundantes en la masa de éste para los esfuerzos internos necesarios para equilibrar los de contacto se realizará de acuerdoa la instrucción aplicable a los elementos estructurales de hormigón armado.

Finalmente, con el objetivo de procurar un sistema bastante homogéneo entrelas placas de anclaje implantadas en la obra, se considera apropiada la segregaciónde estos elementos en dos grupos:

• Grupo 1: (Placas de anclaje de los pilares de los pórticos)

N1, N3, N6, N8, N11, N13, N16, N18, N21, N23, N26, N28, N31, N33, N36,

N38, N41, N43, N46, N48, N51, N53

Grupo 2 : (Placas de anclaje de los pilarillos de los pórticos hastiales)
 N56, N58, N60, N62, N64, N65, N66, N68, N70, N72

De modo que, según la clasificación descrita anteriormente, las placas de anclaje empleadas en este proyecto responden ante las siguientes descripciones:

GRUPO 1: (Placas de anclaje de los pilares de los pórticos)

a) Detalle

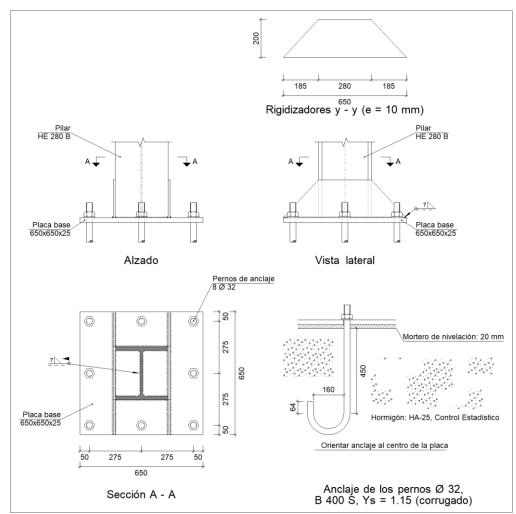


Figura 75. Descripción componentes placas de anclaje grupo 1.

b) Descripción de los componentes de la unión

Elementos complementarios

	Geometría				Tala	Acero			
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Placa base	09 + + +	650	650	25	8	32	S275	275.0	410.0
Rigidizador	650	650	200	10	-	-	S275	275.0	410.0

c) Comprobación

1) Pilar HE 280 B

Cordones de soldadura

Comprobaciones geométricas											
Ref.		Tipo	a (mm)	l (mm)	t (mm)	Áng) (gra					
Soldadura perimetral a la p	laca	En ángulo	7	1395	10.5	90.	.00				
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas											
	Comprobació	n de resistenc	ia								
	Tensión de	e Von Mises	Te	nsión n	ormal	£					
Ref.	σ_{\perp} τ_{\parallel} τ_{\parallel} τ_{\parallel} Valor Aprov. σ_{\perp} Aprov. (N/mm ²) (N/mm ²) (N/mm ²) (%) (%)				f _u (N/mm²)	βw					
Soldadura perimetral a la placa	La cor	nprobación no p	orocede	e.		410.0	0.85				

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entr□ pernos: 3 diámetros	Mínimo: 96 mm Calculado: 275 mm	Cumple
Separación mínima pernos-perfil: 1.5 diámetros	Mínimo: 48 mm Calculado: 125 mm	Cumple
Separación mínima pernos-borde: 1.5 diámetros	Mínimo: 48 mm Calculado: 50 mm	Cumple
Esbeltez de rigidizadores: - Paralelos a Y:	Máximo: 50 Calculado: 47.2	Cumple
Longitud mínima del perno: Se calcula la longitud de anclaje necesaria por adherencia.	Mínimo: 32 cm Calculado: 45 cm	Cumple

Referencia:	Valores	Coto de
Comprobación	Valores	Estado
Anclaje perno en hormigón:		
-Tracción:	Máximo: 160.01 kN	
	Calculado: 139.28 kN	Cumple
-Cortante:	Máximo: 112.01 kN	
	Calculado: 8.68 kN	Cumple
-Tracción + Cortante:	Máximo: 160.01 kN Calculado: 151.68 kN	C
To action and the model and an armonic		Cumple
Tracción en vástago de pernos:	Máximo: 204.55 kN Calculado: 127.24 kN	Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa	Cumple
rension de von Mises en vastago de pernos.	Calculado: 158.776 MPa	Cumple
Aplastamiento perno en placa:		Cumpic
Límite del cortante en un perno actuando contra la placa	Máximo: 419.05 kN Calculado: 8.35 kN	Cumanla
· · · · · · · · · · · · · · · · · · ·	Máximo: 261.905 MPa	Cumple
Tensión de Von Mises en secciones globales:		
- Derecha:	Calculado: 182.052 MPa	
- Izquierda:	Calculado: 182.052 MPa	Cumple
-Arriba:	Calculado: 194.778 MPa	Cumple
-Abajo:	Calculado: 194.778 MPa	Cumple
Flecha global equivalente:		
Limitación de la deformabilidad de los vuelos	Mínimo: 250	
-Derecha:	Calculado: 352.831	Cumple
-Izquierda:	Calculado: 352.831	Cumple
-Arriba:	Calculado: 4325.59	Cumple
-Abajo:	Calculado: 4325.59	Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa	
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 215.906 MPa	Cumple
Se cumplen todas las com	probaciones	
Información adicional:		
- Relación rotura pésima sección de hormigón: 0.166		
- Punto de tensión local máxima: (0.14, -0.0475)		

Cordones de soldadura

Comprobaciones geométricas													
Ref.						a (mm)	l (mm)	t (mm)	Ángulo (grados)				
Rigidizador y-y (x = -145): Soldadura a la placa base					ulo	7	650	10.0	90.00				
Rigidizador y-y (x = 145):	Soldadura a la ¡	olaca ba	se	En ángi	ulo	7	650	10.0	90.00				
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas													
	Comproba	ción de	resiste	ncia									
	Tensiór	n de Von	Mises	7	Tens	sión n	orma	ء ا					
Ref.	σ_{\perp} τ_{\perp} τ_{\perp} τ_{\perp} τ_{\perp} τ_{\perp}	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ _. (N/m		Aprov. (%)	f _u (N/mr	m²) β _w				

Comprobación de resistencia								
	Tensión de Von Mises Tensión normal	£						
Ref.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _u (N/mm²)	β_{w}					
Rigidizador y-y (x = - 145): Soldadura a la placa base	La comprobación no procede.	410.0	0.85					
Rigidizador y-y (x = 145): Soldadura a la placa base	La comprobación no procede.	410.0	0.85					

d) Medición

	Soldaduras						
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)			
410.0	En taller	En ángulo	7	2528			
410.0	En el lugar de montaje	En ángulo	7	1395			

Elementos de tornillería no normalizados						
Tipo	Cantidad	Descripción				
Tuercas	8	T32				
Arandelas	8	A32				

Placas de anclaje								
Material	Elementos	Cantida d	Dimensiones (mm)	Peso (kg)				
	Placa base	1	650x650x25	82.9 2				
S275	Rigidizadores pasantes	2	650/280x200/0x10	14.6 0				
			Total	97.5 2				
B 400 S, Ys = 1.15	Pernos de anclaje	8	Ø 32 - L = 527 + 366	45.0 8				
(corrugado)			Total	45.0 8				

GRUPO 2: (Placas de anclaje de los pilarillos de los pórticos hastiales)

a) Detalle

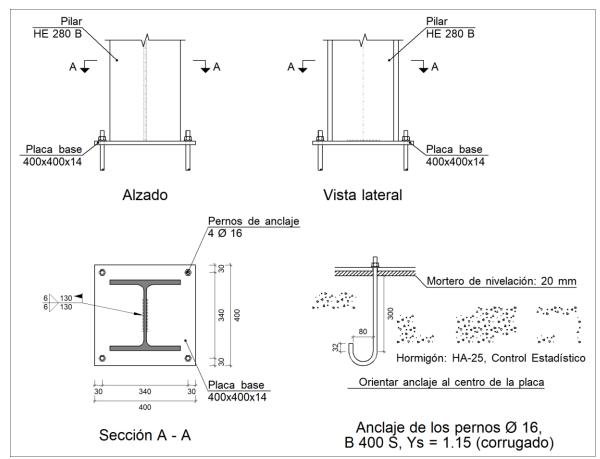


Figura 76. Descripción componentes placas de anclaje grupo 2.

b) Descripción de los componentes de la unión

Elementos complementarios									
	Ge	eometría		Taladros			Acero		
Pieza	Esquema	Ancho (mm)	Canto (mm)	Espesor (mm)	Cantidad	Diámetro (mm)	Tipo	f _v (MPa)	f _u (MPa)
Placa base	400	400	400	14	4	16	S275	275.0	410.0

c) Comprobación

1) Pilar HE 280 B

Comprobaciones de resistencia					
Componente	Comprobación	Unidades	Pésimo	Resistente	Aprov. (%)
Alma	Tensión de Von Mises	N/mm²	69.05	261.90	26.37

Cordones de soldadura

Comprobaciones	geométricas	
----------------	-------------	--

Ref.			Tipo		a (mm)	l (mm)	t (mm)	Ángı (grad	
Soldadura del alma			En áng	ulo	6	130	10.5	90.0	00
a: Espesor garganta I: Longitud efectiva t: Espesor de piezas									
		Compr	obación	de resi	istencia	ı			
	Tensión de Von Mises Tensión normal								
Ref.	σ_{\perp} (N/mm ²)	$ au_{\perp}$ (N/mm²)	τ (N/mm²)	Valor (N/mm²)	Aprov.	σ_{\perp} (N/mm²)	Aprov.	f _u (N/mm²)	β_{w}
Soldadura del alma	33.0	33.2	22.1	76.5	19.82	34.9	10.65	410.0	0.85

2) Placa de anclaje

Referencia:		
Comprobación	Valores	Estado
Separación mínima entre pernos: 3 diámetros	Mínimo: 48 mm Calculado: 340 mm	Cumple
Separación mínima pernos-perfil: 1.5 diámetros	Mínimo: 24 mm Calculado: 43 mm	Cumple
Separación mínima pernos-borde: 1.5 diámetros	Mínimo: 24 mm Calculado: 30 mm	Cumple
Longitud mínima del perno: Se calcula la longitud de anclaje necesaria por adherencia.	Mínimo: 16 cm Calculado: 30 cm	Cumple
Anclaje perno en hormigón:		
-Tracción:	Máximo: 53.34 kN Calculado: 5.65 kN	Cumple
-Cortante:	Máximo: 37.34 kN Calculado: 9.18 kN	Cumple
-Tracción + Cortante:	Máximo: 53.34 kN Calculado: 18.77 kN	Cumple
Tracción en vástago de pernos:	Máximo: 51.14 kN Calculado: 6.22 kN	Cumple
Tensión de Von Mises en vástago de pernos:	Máximo: 380.952 MPa Calculado: 82.4379 MPa	Cumple
Aplastamiento perno en placa: Límite del cortante en un perno actuando contra la placa	Máximo: 117.33 kN Calculado: 8.61 kN	Cumple
Tensión de Von Mises en secciones globales:	Máximo: 261.905 MPa	
-Derecha:	Calculado: 29.9128 MPa	Cumple
-Izquierda:	Calculado: 29.9128 MPa	Cumple
-Arriba:	Calculado: 31.1364 MPa	
-Abajo:	Calculado: 31.1364 MPa	Cumple
Flecha global equivalente:		
Limitación de la deformabilidad de los vuelos	Mínimo: 250	
- Derecha:	Calculado: 4116.01	Cumple

Referencia:		
Comprobación	Valores	Estado
-Izquierda:	Calculado: 4116.01	Cumple
-Arriba:	Calculado: 4116.01	Cumple
-Abajo:	Calculado: 4116.01	Cumple
Tensión de Von Mises local:	Máximo: 261.905 MPa	
Tensión por tracción de pernos sobre placas en voladizo	Calculado: 0 MPa	Cumple
Se cumplen todas las comprobac	iones	
Información adicional:		
- Relación rotura pésima sección de hormigón: 0.0192		

d) Medición

	Soldaduras					
f _u (MPa)	Ejecución	Tipo	Espesor de garganta (mm)	Longitud de cordones (mm)		
410.0	En el lugar de montaje	En ángulo	6	260		

Elementos de tornillería					
Tipo	Material	Cantidad	Descripción		
Tuercas	Clase 5	4	ISO 4032-M16		
Arandelas	Dureza 200 HV	4	ISO 7089-16		

Placas de anclaje						
Material	Elementos	Cantidad	Dimensiones (mm)	Peso (kg)		
S275	Placa base	1	400x400x14	17.58		
			Total	17.58		
B 400 S, Ys = 1.15 (corrugado)	Pernos de anclaje	4	Ø 16 - L = 350 + 183	3.36		
			Total	3.36		

7.4. CIMENTACIÓN

7.4.1. Elementos de cimentación aislados

Como bien se ha realizado en otros apartados, durante el proceso de diseño y de estimación de cálculos, se ha procurado optimizar y mantener las prestaciones de la cimentación implantada, para lo cual se ha determinado factible la posibilidad de procurar un resultado de cimentación lo más homogéneo posible.

Debido a la distribución de las zapatas y a las diferentes solicitaciones a las que se van a ver afectadas, podemos establecer una serie de agrupaciones que serán bastante útiles a la hora de establecer descripciones, mediciones e incluso comprobaciones de esta serie de elementos.

Por lo tanto, separaremos las zapatas en tres grupos diferenciados:

• Grupo 1: (Zapatas de los pilares esquineros)

N1, N3, N51, N53

• Grupo 2: (Zapatas de los pilares intermedios)

N6, N8, N11, N13, N16, N18, N21, N23, N26, N28, N31, N33, N36, N38, N41, N43, N46, N48

• Grupo 3: (Zapatas de los pilarillos hastiales I)

N56, N58, N70, N72

• Grupo 4: (Zapatas de los pilarillos hastiales II)

N60, N62, N64, N65, N66, N68

A continuación, mostramos la distribución en planta de las zapatas en la que se pueden apreciar los cuatro grupos de zapatas diferenciadas mencionados anteriormente:

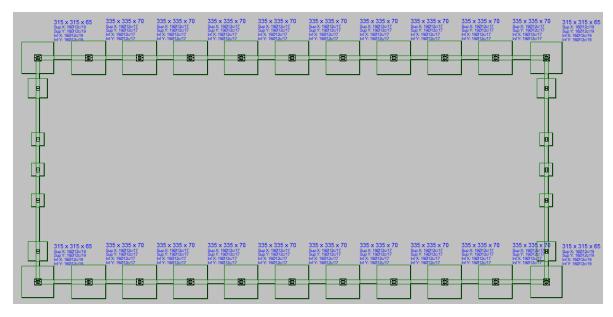


Figura 77. Disposición de la cimentación.

Por consiguiente, en lo referente a la descripción de los elementos anteriormente agrupados, procedemos a adjuntar sus respectivas comprobaciones:

GRUPO 1

Referencia: N1						
Dimensiones: 315 x 315 x 65						
Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c/19						
Comprobación	Valores	Estado				
Tensiones sobre el terreno:						
Criterio de CYPE						
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa					
	Calculado: 0.0329616 MPa	Cumple				
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa					
	Calculado: 0.0315882 MPa	Cumple				
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa					
viento:	Calculado: 0.0553284 MPa	Cumple				
Vuelco de la zapata:						
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.						
- En dirección X:	Reserva seguridad: 58.2 %	Cumple				
- En dirección Y:	Reserva seguridad: 14.8 %	Cumple				
Flexión en la zapata:						
-En dirección X:	Momento: 55.24 kN·m	Cumple				
-En dirección Y:	Momento: 124.02 kN·m	Cumple				

Dimensiones: 315 x 315 x 65

Comprobación Cortante en la zapata: En dirección X: En dirección Y: Cormpresión oblicua en la zapata: Situaciones persistentes: Criterio de CYPE Canto mínimo: Articulo 59.8.1 de la norma EHE-98 Espacio para anclar arranques en cimentación: En dirección X: Calculado: 144.8 kN/m² Cumple Canto mínimo: Articulo 59.8.1 de la norma EHE-98 Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE En dirección X: Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE En dirección X: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Articulo 42.3.2 de la norma EHE-98 Calculado: 0.0018 Cumple Cuantía mínima recesaria por flexión: Articulo 42.3.2 de la norma EHE-98 Armado inferior dirección X: Mínimo: 0.0002 Cumple Armado superior dirección X: Mínimo: 0.0002 Cumple Diámetro mínimo de las barras: Recomendación del Articulo 59.8.2 (norma EHE-98) Parrilla inferior: Parrilla inferior: Calculado: 12 mm Cumple Separación máxima entre barras: Articulo 59.8.2 de la norma EHE-98 Armado inferior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple Carmado superior dirección X: Calculado: 19 cm Cumple	Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c/19			
-En dirección X: -En dirección Y: -En dirección Y: -En dirección Oblicua en la zapata: -Situaciones persistentes: -Situaciones persisteres persistentes: -Situaciones persisteres pe	Comprobación	Valores	Estado	
-En dirección Y: Cortante: 120.07 kN Cumple Compresión oblicua en la zapata: -Situaciones persistentes: Criterio de CVPE Calculado: 144.8 kN/m² Calculado: 155 cm Calculado: 55 cm Calculado: 55 cm Calculado: 55 cm Calculado: 55 cm Calculado: 58 cm Calculado: 58 cm Cumple Sepacio para anclar arranques en cimentación: -N1: Calculado: 58 cm Cumple Sepacio para anclar arranques en cimentación: -N1: Calculado: 58 cm Cumple Lantía geométrica mínima: Criterio de CYPE En dirección X: -En dirección X: -En dirección Y: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección Y: Mínimo: 0.0002 Cumple Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) -Parrilla inferior: -Parrilla inferior: -Parrilla superior: Calculado: 12 mm Cumple Calculado: 12 mm Cumple Calculado: 12 mm Cumple Calculado: 12 mm Cumple Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección X:	Cortante en la zapata:			
Compresión oblicua en la zapata: - Situaciones persistentes: - Situaciones persistentes: - Situaciones persistentes: - Criterio de CYPE Canto mínimo: - Articulo 59.8.1 de la norma EHE-98 - Calculado: 144.8 kN/m² - Cumple Espacio para anclar arranques en cimentación: - N1: - Cuantía geométrica mínima: - Curterio de CYPE - Mínimo: 0.0018 - Calculado: 58 cm - Cumple Cuantía geométrica mínima: - Criterio de CYPE - En dirección X: - Calculado: 0.0018 - Cample Cuantía mínima necesaria por flexión: - Articulo 42.3.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección X: - Armado superior dirección Y: - Armado superior dirección Y: - Mínimo: 0.0002 - Cumple - Armado superior dirección Y: - Mínimo: 0.0003 - Cumple Diámetro mínimo de las barras: - Recomendación del Artículo 59.8.2 (norma EHE-98) - Parrilla inferior: - Parrilla inferior: - Parrilla inferior: - Calculado: 12 mm - Cumple - Separación máxima entre barras: - Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple	-En dirección X:	Cortante: 46.30 kN	Cumple	
-Situaciones persistentes: Criterio de CYPE Canto mínimo: Artículo 59.8.1 de la norma EHE-98 Espacio para anclar arranques en cimentación: -N1: Cumple Espacio para anclar arranques en cimentación: -N1: Cuantía geométrica mínima: Criterio de CYPE Mínimo: 0.0018 Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE -En dirección X: -En dirección Y: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Parrilla inferior: -Parrilla superior: Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior: -Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 -Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Armado inferio	-En dirección Y:	Cortante: 120.07 kN	Cumple	
Criterio de CYPE Calculado: 144.8 kN/m² Cumple Canto mínimo: Artículo 59.8.1 de la norma EHE-98 Espacio para anclar arranques en cimentación: -N1: Calculado: 58 cm Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE -En dirección X: -En dirección Y: Calculado: 0.0018 -Armado inferior dirección X: -Parrilla inferior: -Parrilla superior: Parrilla superior: Calculado: 12 mm Cumple Mínimo: 0.0002 Cumple Armado inferior dirección X: -Armado inferior dirección X: -Parrilla inferior: -Parrilla superior: Calculado: 12 mm Cumple Cumple Máximo: 30 cm Cumple Calculado: 12 mm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Cumple Carmado superior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Calculado: 19 cm Cumple Cumple Cumple Calculado: 19 cm Cumple Cumple Carmado superior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado sup	Compresión oblicua en la zapata:			
Canto mínimo: Artículo 59.8.1 de la norma EHE-98 Calculado: 65 cm Cumple Espacio para anclar arranques en cimentación: -N1: Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE -En dirección X: -En dirección Y: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Parrilla inferior: -Parrilla inferior: -Parrilla superior: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Parrilla inferior: -Parrilla superior: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -A	-Situaciones persistentes:	Máximo: 5000 kN/m²		
Artículo 59.8.1 de la norma EHE-98 Espacio para anclar arranques en cimentación: -N1: -N1: -N1: -N1: -N1: -N1: -N1: -N1	Criterio de CYPE	Calculado: 144.8 kN/m²	Cumple	
Espacio para anclar arranques en cimentación: -N1: -N1: -N1: -N1: -N1: -N1: -N1: -N1	Canto mínimo:	Mínimo: 25 cm		
-N1: Calculado: 58 cm Cumple Cuantía geométrica mínima: Criterio de CYPE - En dirección X: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 - Armado inferior dirección X: Mínimo: 0.0002 Cumple - Armado superior dirección Y: Mínimo: 0.0003 Cumple Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) Mínimo: 12 mm Cumple - Parrilla inferior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 Máximo: 30 cm - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado superior dirección X: Calculado: 19 cm Cumple - Armado superior dirección X: Calculado: 19 cm Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado superior dirección X: Calculado: 19 cm Cumple	Artículo 59.8.1 de la norma EHE-98	Calculado: 65 cm	Cumple	
Cuantía geométrica mínima: Criterio de CYPE -En dirección X: -En dirección Y: -En dirección Y: -En dirección Y: -En dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Parrilla superior: -Parrilla superior: -Parrilla superior: -Parrilla superior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección Y: -Parrilla superior: -Parrilla superior: -Parrilla superior: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior: -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado inferior dirección X: -Arma	Espacio para anclar arranques en cimentación:	Mínimo: 44 cm		
Criterio de CYPE - En dirección X: - En dirección X: - Calculado: 0.0018 - Cumple - Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 - Armado inferior dirección X: - Armado superior dirección X: - Armado superior dirección Y: - Armado superior dirección Y: - Parrilla inferior: - Parrilla inferior: - Parrilla superior: - Armado inferior dirección X: - Armado inferior dirección Y: - Parrilla superior: - Calculado: 12 mm - Cumple - Parrilla superior: - Calculado: 12 mm - Cumple - Calculado: 12 mm - Cumple - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Cumple	-N1:	Calculado: 58 cm	Cumple	
-En dirección X: -En dirección Y: -En dirección X: -En dirección Y: -En dirección X: -En di	Cuantía geométrica mínima:			
-En dirección Y: Calculado: 0.0018 Cumple Cuantía mínima necesaria por flexión: Articulo 42.3.2 de la norma EHE-98 -Armado inferior dirección X: -Armado inferior dirección Y: -Armado superior dirección Y: -Parrilla inferior: -Parrilla superior: -Parrilla superior: Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 -Armado inferior dirección X: -Armado superior dirección X: -Armado inferior dirección	Criterio de CYPE	Mínimo: 0.0018		
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-98 —Armado inferior dirección X: —Armado inferior dirección Y: —Armado superior dirección Y: —Armado superior dirección Y: —Parrilla inferior: —Parrilla superior: —Parrilla superior: —Parrilla superior: —Armado inferior dirección X: —Armado inferior dirección X: —Armado inferior dirección X: —Armado inferior: —Armado inferior dirección X: —Armado inferior dirección X: —Armado superior dirección X: —Armado inferior dirección X: —Armado superior dirección X: —Armado superior dirección X: —Armado superior dirección X: —Armado inferior dirección X: —Armado superior dirección X: —Armado super	-En dirección X:	Calculado: 0.0018	Cumple	
Artículo 42.3.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: - Armado superior dirección Y: - Armado superior dirección Y: Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) - Parrilla inferior: - Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección X: - Armado superior dirección X: - Armado superior dirección X: - Armado superior dirección Y: - Calculado: 19 cm Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección X: - Calculado: 19 cm Cumple	- En dirección Y:	Calculado: 0.0018	Cumple	
- Armado inferior dirección X: - Armado inferior dirección Y: - Armado inferior dirección Y: - Armado superior dirección X: - Armado superior dirección Y: - Armado superior dirección Y: - Mínimo: 0.0002 - Cumple - Armado superior dirección Y: - Mínimo: 0.0003 - Cumple Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) - Parrilla inferior: - Calculado: 12 mm - Cumple - Parrilla superior: - Calculado: 12 mm - Cumple - Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección Y: - Calculado: 19 cm - Cumple - Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Calculado: 19 cm - Cumple - Cumple - Cumple - Calculado: 19 cm - Cumple - Cumple - Cumple - Calculado: 19 cm - Cumple - Cumple - Cumple - Calculado: 19 cm - Cumple	•			
-Armado inferior dirección Y: -Armado superior dirección X: -Armado superior dirección Y:		Calculado: 0.001		
-Armado superior dirección X: -Armado superior dirección Y: Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) -Parrilla inferior: -Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 -Armado inferior dirección X: -Armado superior dirección X: -Armado superior dirección X: -Armado superior dirección Y: Calculado: 19 cm Cumple	-Armado inferior dirección X:	Mínimo: 0.0002	Cumple	
-Armado superior dirección Y: Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) -Parrilla inferior: -Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 -Armado inferior dirección X: -Armado inferior dirección X: -Armado superior dirección X: Calculado: 19 cm Cumple Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Armado superior dirección Y: Calculado: 19 cm Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Carmado superior dirección X: Calculado: 19 cm Cumple	-Armado inferior dirección Y:	Mínimo: 0.0004	Cumple	
Diámetro mínimo de las barras: Recomendación del Artículo 59.8.2 (norma EHE-98) - Parrilla inferior: - Parrilla superior: Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado superior dirección X: - Armado superior dirección X: - Calculado: 19 cm Cumple Cumple Calculado: 19 cm Cumple Carmado inferior dirección X: Calculado: 19 cm Cumple Carmado superior dirección X: Calculado: 19 cm Cumple Cumple	-Armado superior dirección X:	Mínimo: 0.0002	Cumple	
Recomendación del Artículo 59.8.2 (norma EHE-98) - Parrilla inferior: - Parrilla inferior: - Calculado: 12 mm Cumple - Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: - Calculado: 19 cm Cumple - Armado superior dirección Y: Calculado: 19 cm Cumple - Calculado: 19 cm Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 Mínimo: 10 cm - Armado inferior dirección X: - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple - Armado inferior dirección X: - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple	-Armado superior dirección Y:	Mínimo: 0.0003	Cumple	
- Parrilla inferior: - Parrilla superior: - Calculado: 12 mm - Cumple - Separación máxima entre barras: - Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Calculado: 19 cm - Cumple - Armado superior dirección X: - Calculado: 19 cm - Cumple - Armado superior dirección Y: - Calculado: 19 cm - Cumple	Diámetro mínimo de las barras:			
- Parrilla superior: Calculado: 12 mm Cumple Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: Calculado: 19 cm Cumple - Armado superior dirección X: Calculado: 19 cm Cumple - Armado superior dirección Y: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado inferior dirección X: Calculado: 19 cm Cumple - Armado superior dirección X: Calculado: 19 cm Cumple - Cumple - Cumple - Cumple - Cumple - Cumple - Cumple	Recomendación del Artículo 59.8.2 (norma EHE-98)	Mínimo: 12 mm		
Separación máxima entre barras: Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: - Armado superior dirección Y: - Armado superior dirección Y: - Calculado: 19 cm Cumple - Armado superior dirección Y: - Calculado: 19 cm Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección X: - Armado superior dirección X: - Calculado: 19 cm Cumple - Cumple - Calculado: 19 cm Cumple - Cumple - Calculado: 19 cm Cumple	- Parrilla inferior:	Calculado: 12 mm	Cumple	
Artículo 59.8.2 de la norma EHE-98 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: - Armado superior dirección X: - Armado superior dirección Y: - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple - Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 10 cm Cumple - Armado inferior dirección X: Calculado: 10 cm Cumple - Armado superior dirección X: Calculado: 10 cm Cumple	- Parrilla superior:	Calculado: 12 mm	Cumple	
- Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: - Armado superior dirección X: - Armado superior dirección Y: - Calculado: 19 cm Cumple Calculado: 10 cm Calculado: 10 cm Calculado: 10 cm Calculado: 10 cm Calculado: 19 cm Cumple	Separación máxima entre barras:			
-Armado inferior dirección Y: -Armado superior dirección X: -Armado superior dirección Y: Calculado: 19 cm Cumple -Armado superior dirección Y: Calculado: 19 cm Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 -Armado inferior dirección X: Calculado: 19 cm Cumple -Armado inferior dirección Y: Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple		Máximo: 30 cm		
-Armado superior dirección X: -Armado superior dirección Y: Calculado: 19 cm Cumple Cumple Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 -Armado inferior dirección X: Calculado: 19 cm Cumple	-Armado inferior dirección X:	Calculado: 19 cm	Cumple	
- Armado superior dirección Y: Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: Calculado: 19 cm Cumple Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple	-Armado inferior dirección Y:	Calculado: 19 cm	Cumple	
Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple	- Armado superior dirección X:	Calculado: 19 cm	Cumple	
Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: Calculado: 19 cm Cumple Calculado: 19 cm Cumple	-Armado superior dirección Y:	Calculado: 19 cm	Cumple	
Cimentación". Capítulo 3.16 - Armado inferior dirección X: - Armado inferior dirección Y: - Armado superior dirección X: Calculado: 19 cm Cumple Calculado: 19 cm Cumple Calculado: 19 cm Cumple	Separación mínima entre barras:			
-Armado inferior dirección Y: -Armado superior dirección X: Calculado: 19 cm Cumple Cumple		Mínimo: 10 cm		
-Armado superior dirección X: Calculado: 19 cm Cumple	-Armado inferior dirección X:	Calculado: 19 cm	Cumple	
	-Armado inferior dirección Y:	Calculado: 19 cm	Cumple	
-Armado superior dirección Y: Calculado: 19 cm Cumple	- Armado superior dirección X:	Calculado: 19 cm	Cumple	
	- Armado superior dirección Y:	Calculado: 19 cm	Cumple	

D (N 1 4
Datara	ncıaı	INI I
Refere	iicia.	1111

Dimensiones: 315 x 315 x 65

Armados: Xi:Ø12c/19 Yi:Ø12c/19 Xs:Ø12c/19 Ys:Ø12c/19

Comprobación	Valores	Estado
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
-Armado inf. dirección X hacia der:	Calculado: 76 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 76 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 76 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 76 cm	Cumple
-Armado sup. dirección X hacia der:	Calculado: 76 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 76 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 76 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 76 cm	Cumple

Se cumplen todas las comprobaciones

Información adicional:

- Zapata de tipo rígido (Artículo 59.2 de la norma EHE-98)
- Relación rotura pésima (En dirección X): 0.14
- Relación rotura pésima (En dirección Y): 0.31
- Cortante de agotamiento (En dirección X): 474.51 kN
- Cortante de agotamiento (En dirección Y): 474.51 kN

GRUPO 2

Referencia: N6

Dimensiones: 335 x 335 x 70

Armados: Xi:Ø12c/17 Yi:Ø12c/17 Xs:Ø12c/17 Ys:Ø12c/17		
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa	
·	Calculado: 0.037278 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa	
	Calculado: 0.0594486 MPa	Cumple
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa	
viento:	Calculado: 0.0709263 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
-En dirección X:	Reserva seguridad: 67.4 %	Cumple
- En dirección Y:	Reserva seguridad: 5.7 %	Cumple

Dimensiones: 335 x 335 x 70

Armados: Xi:Ø12c/17 Yi:Ø12c/17 Xs:Ø12c/17 Ys:Ø12c/	/17	
Comprobación	Valores	Estado
Flexión en la zapata:		
-En dirección X:	Momento: 85.78 kN·m	Cumple
-En dirección Y:	Momento: 160.32 kN·m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 66.41 kN	Cumple
- En dirección Y:	Cortante: 127.82 kN	Cumple
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE	Calculado: 191.1 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 59.8.1 de la norma EHE-98	Calculado: 70 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 44 cm	
-N6:	Calculado: 63 cm	Cumple
Cuantía geométrica mínima:		
Criterio de CYPE	Mínimo: 0.0018	
-En dirección X:	Calculado: 0.0019	Cumple
-En dirección Y:	Calculado: 0.0019	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-98	Calculado: 0.001	
-Armado inferior dirección X:	Mínimo: 0.0003	Cumple
-Armado inferior dirección Y:	Mínimo: 0.0005	Cumple
-Armado superior dirección X:	Mínimo: 0.0002	Cumple
-Armado superior dirección Y:	Mínimo: 0.0003	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 59.8.2 (norma EHE-98)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 59.8.2 de la norma EHE-98	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 17 cm	Cumple
-Armado inferior dirección Y:	Calculado: 17 cm	Cumple
- Armado superior dirección X:	Calculado: 17 cm	Cumple
-Armado superior dirección Y:	Calculado: 17 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 17 cm	Cumple
- Armado inferior dirección Y:	Calculado: 17 cm	Cumple
	23.03.330. 17 0.11	Cumpie

Dimensiones: 335 x 335 x 70

Armados: Xi:Ø12c/17 Yi:Ø12c/17 Xs:Ø12c/17 Ys:Ø12c/17

Comprobación	Valores	Estado
-Armado superior dirección X:	Calculado: 17 cm	Cumple
-Armado superior dirección Y:	Calculado: 17 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
-Armado inf. dirección X hacia der:	Calculado: 82 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 82 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 82 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Calculado: 82 cm	Cumple
-Armado sup. dirección X hacia der:	Calculado: 82 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 82 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 82 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 82 cm	Cumple

Se cumplen todas las comprobaciones

Información adicional:

- Zapata de tipo rígido (Artículo 59.2 de la norma EHE-98)
- Relación rotura pésima (En dirección X): 0.17
- Relación rotura pésima (En dirección Y): 0.31
- Cortante de agotamiento (En dirección X): 545.14 kN
- Cortante de agotamiento (En dirección Y): 545.14 kN

GRUPO 3

Refere	nciai	NISS
1/61616	ncia.	1450

Dimensiones: 190 x 190 x 40

Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø12c/30

Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE	Valores	LStado
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa Calculado: 0.0285471 MPa	Cumple
-Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.249959 MPa Calculado: 0.0217782 MPa	Cumple
-Tensión máxima en situaciones persistentes con viento:	Máximo: 0.249959 MPa Calculado: 0.0359046 MPa	Cumple
Vuelco de la zapata:		
Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		

Dimensiones: 190 x 190 x 40

Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø1	2c/30	
Comprobación	Valores	Estado
-En dirección X:	Reserva seguridad: 12.7 %	Cumple
- En dirección Y:	Reserva seguridad: 15930.0 %	Cumple
Flexión en la zapata:		
-En dirección X:	Momento: 18.55 kN⋅m	Cumple
-En dirección Y:	Momento: 13.85 kN⋅m	Cumple
Cortante en la zapata:		
-En dirección X:	Cortante: 27.47 kN	Cumple
- En dirección Y:	Cortante: 20.21 kN	Cumple
Compresión oblicua en la zapata:		
-Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE	Calculado: 159.6 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 59.8.1 de la norma EHE-98	Calculado: 40 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 30 cm	
-N58:	Calculado: 33 cm	Cumple
Cuantía geométrica mínima:		
Criterio de CYPE	Mínimo: 0.0018	
-En dirección X:	Calculado: 0.0019	Cumple
- En dirección Y:	Calculado: 0.0019	Cumple
Cuantía mínima necesaria por flexión:		
Artículo 42.3.2 de la norma EHE-98	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0003	Cumple
-Armado inferior dirección Y:	Mínimo: 0.0003	Cumple
- Armado superior dirección X:	Mínimo: 0.0001	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras:		
Recomendación del Artículo 59.8.2 (norma EHE-98)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:		
Artículo 59.8.2 de la norma EHE-98	Máximo: 30 cm	
-Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
-Armado superior dirección X:	Calculado: 30 cm	Cumple
- Armado superior dirección Y:	Calculado: 30 cm	Cumple
Separación mínima entre barras:		
Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	

Referencia: N58		
Dimensiones: 190 x 190 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:	Ø12c/30	
Comprobación	Valores	Estado
-Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
-Armado superior dirección X:	Calculado: 30 cm	Cumple
- Armado superior dirección Y:	Calculado: 30 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
- Armado inf. dirección X hacia der:	Calculado: 40 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 40 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 40 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 40 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 40 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 40 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 40 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 40 cm	Cumple
Se cumplen todas las	comprobaciones	
Información adicional:		

- Zapata de tipo rígido (Artículo 59.2 de la norma EHE-98)
- Relación rotura pésima (En dirección X): 0.22
- Relación rotura pésima (En dirección Y): 0.16
- Cortante de agotamiento (En dirección X): 188.55 kN
- Cortante de agotamiento (En dirección Y): 188.55 kN

GRUPO 4

Referencia: N65		
Dimensiones: 130 x 130 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø	012c/30	
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE		
-Tensión media en situaciones persistentes:	Máximo: 0.2 MPa	
	Calculado: 0.0306072 MPa	Cumple
-Tensión máxima en situaciones persistentes sin	Máximo: 0.249959 MPa	
viento:	Calculado: 0.025506 MPa	Cumple
-Tensión máxima en situaciones persistentes con	Máximo: 0.249959 MPa	
viento:	Calculado: 0.0457146 MPa	Cumple
Vuelco de la zapata:		

Referencia: N65 Dimensiones: 130 x 130 x 40 Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø12c/30 Comprobación Valores Estado -En dirección X: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio. Reserva seguridad: 28.0 % Cumple - En dirección Y: No procede(1) (1) Sin momento de vuelco Flexión en la zapata: - En dirección X: Momento: 7.24 kN·m Cumple - En dirección Y: Momento: 4.52 kN·m Cumple Cortante en la zapata: - En dirección X: Cortante: 9.61 kN Cumple - En dirección Y: Cortante: 5.59 kN Cumple Compresión oblicua en la zapata: -Situaciones persistentes: Máximo: 5000 kN/m² Criterio de CYPE Calculado: 94.3 kN/m² Cumple Canto mínimo: Mínimo: 25 cm Artículo 59.8.1 de la norma EHE-98 Calculado: 40 cm Cumple Espacio para anclar arranques en cimentación: Mínimo: 30 cm -N65: Calculado: 33 cm Cumple Cuantía geométrica mínima: Criterio de CYPE Mínimo: 0.0018

Referencia: N65		
Dimensiones: 130 x 130 x 40		
Armados: Xi:Ø12c/30 Yi:Ø12c/30 Xs:Ø12c/30 Ys:Ø		le
Comprobación	Valores	Estado
Separación mínima entre barras: Criterio de CYPE, basado en: J. Calavera. "Cálculo de Estructuras		
de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
-Armado inferior dirección X:	Calculado: 30 cm	Cumple
- Armado inferior dirección Y:	Calculado: 30 cm	Cumple
- Armado superior dirección X:	Calculado: 30 cm	Cumple
- Armado superior dirección Y:	Calculado: 30 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 22 cm	
- Armado inf. dirección X hacia der:	Calculado: 22 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 22 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 22 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 22 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 22 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 22 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 22 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 22 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
-Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple
-Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
-Armado inf. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
-Armado inf. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple
-Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
-Armado sup. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
-Armado sup. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
Se cumplen todas las comprobaciones		

Información adicional:

- Zapata de tipo rígido (Artículo 59.2 de la norma EHE-98)
- Relación rotura pésima (En dirección X): 0.13
- Relación rotura pésima (En dirección Y): 0.08
- Cortante de agotamiento (En dirección X): 127.92 kN
- Cortante de agotamiento (En dirección Y): 127.92 kN

7.4.2. Vigas de atado

Para las vigas de atado se ha supuesto la misma sección para toda la estructura.

La nave dispondrá de un muro de hormigon armado perimetralmente, por lo que será necesario contar unas vigas de atado de mayores dimensiones para que el muro perimetral pueda apoyar en ellas.

Las dimensiones de las vigas de atado serán las siguientes:

Figura 78. Cuadro de vigas de atado.

7.4.3. Solera

Según la norma NTE-RSS en lo referente a soleras, para un uso como el que se le va a dar en una nave industrial como la que se está diseñando se utilizan solera pesadas (RSS-6), sobrecarga estática superior a 5 t/m2.

La solera se ejecuta de la siguiente manera:

- Capa: arena de río con tamaño máximo de árido de 0,5 cm, formando una capa de 15 cm de espesor, extendida sobre firme estabilizado, consolidado y compactado.
- 2) Capa: lámina aislante de polietireno.
- 3) Capa: hormigón formado por una capa de 20 cm de espesor, extendido sobre la lámina aislante, terminando la superficie mediante reglado. El curado se realizará mediante riego que no produzca deslavado.

También se dispondrá de juntas de retracción así como juntas de aislamiento.

8. RED DE SANEAMIENTO DE AGUAS PLUVIALES

Utilizaremos tubos de P.V.C. para evitar la acumulación de agua que se da en las tuberías de fibrocemento.

Se utilizará la norma NTE-ISS referente a saneamiento para proyectar las dimensiones de los elementos que constituyen la red de saneamiento como: canalones, bajantes, colectores y arquetas. Además, se cumplirá lo establecido en el CTE-DB de salubridad.

Sumideros

De acuerdo con el documento DB-SE-HS del CTE se regula la disposición de los sumideros para facilitar la evacuación de las aguas pluviales recogidas en la cubierta de la nave.

El número de sumideros depende de la superficie de la cubierta. Para saber el número de sumideros se hace uso de la tabla 4.6 extraída del CTE (DB-SE-HS apartado 4.2.1)

Superficie de cubierta en proyección horizontal (m²)	Número de sumideros
S < 100	2
100≤ S < 200	3
200 ≤ S < 500	4
S > 500	1 cada 150 m*

Figura 79. Tabla 4.6. Nº de sumideros en función de la superficie de cubierta

En nuestro caso dispondremos de 8 sumideros, 4 para cada faldón de cubierta, debido a que disponemos de una superficie aproximada de 550m² para cada faldón.

Canalones

Las dimensiones de los canalones también dependen del volumen de agua a evacuar y por lo tanto de la superficie de cubierta en proyección horizontal.

Se debe conocer la intensidad pluviométrica de la zona donde se sitúe la nave, mostrada en el DB-SE-HS.

De donde observamos que la nave se encuentra en la zona isoyeta A-40. En la tabla se indica que la intensidad pluviométrica es de 125 mm/h, como se aprecia a continuación:

	In	tensi	dad F	fluvior	nétrica	a i (mi	m/h)					
Isoyeta	10	20	30	40	50	60	70	80	90	100	110	120
Zona A	30	65	90	125	155	180	210	240	275	300	330	365
Zona B	30	50	70	90	110	135	150	170	195	220	240	265

Figura 80. Intensidad pluviométrica.

A continuación, se deberá calcular la superficie en proyección horizontal que abarcará cada canalón, por lo que si la superficie total por faldón es de 550 m² la superficie aproximada para cada canalón será de 150 m². También se deberá considerar la inclinación de los canalones que será de un 2%.

El CTE establece que para un régimen de intensidad pluviométrica diferente de 100 mm/h, debe aplicarse un factor f de corrección a la superficie servida tal que: f = i/100.

Por lo tanto, con la intensidad pluviométrica calculada anteriormente se obtiene dicho factor de correción:

$$f = i/100 = 125/100 = 1,25$$

La superficie por canalón será: $150 \cdot 1,25 = 187,5 \text{ m}$.

Entrando con este dato en la tabla 4.7 de DB-SE-HS que se observa a continuación obtenemos el diametro mínino del que deberán de disponer los canalones.

Maxima e		en proyección horiz del canalón	Diametro nominal del cana	
0.5 %	1 %	2 %	4%	(mm)
35	45	65	95	100
60	80	115	165	125
90	125	175	255	150
185	260	370	520	200
335	475	670	930	250

Figura 81. Tabla 4.7. Diámetro del canalón s/régimen pluviométrico

Tomamos el valor del diámetro que corresponde al valor de la superficie mayor, para quedarnos del lado de la seguridad. Por lo tanto el diámetro de los canalones será de 150 mm.

<u>Bajantes</u>

Se sigue con el cáculo de los canalones establecido en 150 m² para obtener mediante la tabla 4.8 del DB-SE-HS el diámetro de las bajantes.

Superficie en proyección horizontal servida (m²)	Diámetro nominal de la bajante (mm)		
65	50		
113	63		
177	75		
318	90		
580	110		
805	125		
1.544	160		
2.700	200		

Figura 82. Tabla 4.8. Diámetro de las bajantes

Tomamos el valor del diámetro que corresponde al valor de la superficie mayor, para quedarnos del lado de la suguridad. Por lo tanto el diámetro nominal mínimo de la bajante será de 75 mm.

Colectores

Son tuberias que se encuentran soterradas para transportar el agua de recogida en las arquetas hasta los pozos de registro. Estas tuberias tienen una pendiente aproximada del 2%.

Dado que el caudal de recogida puede ser mayor en algunas arquetas que en otras, se dimensionará primero para un faldón de la cubierte y posteriormente para toda la cubierta.

De acuerdo con la tabla 4.9 del DB-SE-HS sacaremos el diámetro mínimo de los colectores individuales y del colector final.

	Diámetro nominal del colecto		
	(mm)		
1 %	2 %	4 %	(mm)
125	178	253	90
229	323	458	110
310	440	620	125
614	862	1.228	160
1.070	1.510	2.140	200
1.920	2.710	3.850	250
2.016	4.589	6.500	315

Figura 83. Tabla 4.9. Diámetro de los colectores

Para los colectores individuales:

 $1,25 \cdot 550 = 687,5$ m al 2%, díametro nominal mínimo del colector: 160 mm.

Para el colector final:

 $1,25 \cdot 1100 = 1375$ m al 2%, diámetro nominla mínimo del colector: 200 mm.

Arquetas

Se situarán debajo de cada bajante, separadas de la fachada, y donde exista algún cambio de dirección. Con una tubería de 160 mm de diámetro como mínimo que le llegará se obtiene de acuerdo a la tabla 4.13 del CTE el tamaño mínimo de la arqueta.

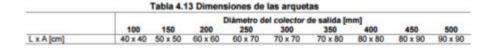


Figura 84. Tabla 4.13. Diámetro de las arquetas.

Se establece que las dimensiones mínimas de las arquetas para los tramos con tubería de diámetro mínimo de 160 mm serán de 60x60 cm, al igual que para la salida final con tubería de diámetro mínimo de 200 mm.