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Abstract: Monocarboxylate transporters (MCTs) have been proposed as important mediators of the
exchange between lactate (La−) producer and La− recipient (consumer) cells. Previous studies have
suggested that the MCT1 A1470T genotype could be related to different physical performance pheno-
types. This study followed the guidelines for Strengthening the Reporting of Genetic Association
Studies (STREGA) and aimed to evaluate the distribution of the MCT1 polymorphism rs1049434 in
endurance-trained athletes compared to the untrained population. Moreover, this study explored the
potential influence of the polymorphism alleles phenotypes on high-intensity exercise performance.
In a cross-sectional study fashion, a total of 85 triathletes from northern Spain were genotyped for
MCT1 rs1049434 and compared to a control group of 107 healthy male participants (1000 Genomes
Research Study for Iberian Populations in Spain). All athletes performed a 30 s Wingate all-out test
(WAnT) on a cycle ergometer. Peak and mean power (absolute and relative) were measured. After
verification of the Hardy–Weinberg equilibrium, the findings indicated that the MCT1 TT genotype
was overrepresented in triathletes in comparison to the genotypic frequency of the general Spanish
population. No significant associations were found between any MCT1 genotype and peak or mean
power performance in the WAnT. Further studies are required to understand the relationship among
MCT1 A1470T polymorphism, endurance-trained athletes, and high-intensity performance.

Keywords: lactate; genetics; endurance; metabolism; musculoskeletal; performance

1. Introduction

Lactate (La−) is undoubtedly one of the most studied metabolic markers measured
in health, disease, and exercise sciences [1]. In regard to its metabolism, during stressful
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conditions such as maximal exercise, La− acts as an energy source and has an important
role within the acid–base regulation mechanisms, in addition to its action in several adap-
tive responses to the physical effort due to its hormone-like effects (“lactormone”) [2].
According to Brooks (2018), oxygen availability has been classically considered to be a
primary driver of La− production, although there are numerous reasons to reconsider this
simplistic view [3]. For all-out (‘maximal’) explosive, high-intensity, or endurance efforts,
the La− accumulation is consequence of a higher rate of production versus a lower rate
of removal rather than the muscle “anaerobiosis” (under physiological conditions). In
fact, contrary to common belief, research on this topic has shown that no true “anaerobic
conditions” occur during an intense physical effort and, therefore, this would not be a
direct cause of increased La− formation [4].

High-intensity exercise is characterized by the predominance of extramitochondrial
pathways of energy production (i.e., phosphagen system and glycolysis), which drive the
subsequent production and accumulation of hydrogen ions (H+), with the associated decrease
in pH within fast-twitch muscle fibers [5]. It is this accumulation of H+ and other metabolites
(Pi and poor Ca2+ handling) in the active skeletal muscle, and not the La− concentration per
se, which is linked to the acute reduction in force and power (muscle fatigue) [6,7]. Actually,
due to the high energy requirements of the working muscle during physical exercise, a family
of proton-linked symporters called monocarboxylate transporters (MCTs, also known as the
SLC16A family) has been proposed as an important mediator of the exchange between La−

producer (driver) and La− recipient (consumer) cells in intracellular, cell–cell, and tissue–
tissue La− shuttles in muscle, liver, heart, kidneys, and brain [2]. For example, La− turnover
involves the recycling process in the liver through Cori’s cycle, which provides glucose to
the working skeletal muscle [8]. In particular, the MCT4 serves as the 1:1 transmembrane
cotransport of La− and H+ from muscle to the blood, while the MCT1 isoform is responsible
for La− uptake from the circulation. The latter enters the mitochondrial reticulum to support
cell energy homeostasis via oxidative phosphorylation of ADP and creatine [3,9]. In this
sense, during an endurance physical effort (where the predominant energy source is oxidative
phosphorylation), La− has shown an inhibitory effect on both lipolysis in adipose tissue (via
certain G-coupled protein receptors, such as GPR81, and subsequent CREB activation) [10]
and fatty-acid uptake in muscle (through the rise in malonyl-CoA, which inhibits carnitine
palmitoyl transferase-1) [11]. Therefore, La− may also regulate lipid oxidation and fuel
utilization throughout exercise. Indeed, repeated La− exposure and accumulation in active
tissues from regular exercise results in adaptive processes such as mitochondrial biogenesis
and improved metabolic flexibility [2]. Thus, the two isoforms of MCT1 and MCT4 are
important La−/H+ cotransporters which are involved in the regulation of muscle pH and
energy metabolism [12] (Figure 1).

It has been reported that the total La− and H+ transport capacity is higher in slow-
twitch oxidative muscle fibers (perhaps due to the greater MCT1 density) than in fast-twitch
glycolytic muscle fibers [13]. Conversely, MCT4 density would be independent of fiber type
and displays a significant interindividual variation, albeit related to the extramitochondrial
metabolism capacity [14]. It has been shown that a single endurance exercise session (60%
VO2peak for 5–6 h) is able to increase the MCTs protein expression and to decrease muscle
[La−] because of a higher transport and removal rate [15]. However, it seems that the
expression of MCTs would depend on the type of physical effort, considering that an acute
bout of high-intensity exercise (200% VO2peak for 45 s) is associated with a significant
decrease in both MCT1 and MCT4 relative abundance [16]. Consequently, the expression
of both MCT isoforms can occur differently in response to a given stressor stimulus [3,14]
but it seems that MCT1 protein expression is more sensitive to training than MCT4 [12].
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Figure 1. Schematic representation of the link among glycolysis, Cori’s cycle, and lactate oxidation complex proposed in 
the lactate shuttle hypothesis. This hypothesis explains the exchange between driver cells of lactate [La−] production and 
recipient cells of La− consumption, which occurs within and among cells, tissues, and organs [3]. For physical exercise, 
fast-twitch muscle fibers (driver) produce lactate from glycolysis and express MCT4 at the sarcolemma for La− export, 
whereas slow-twitch oxidative and fast-oxidative glycolytic fibers (consumers) express MCT1 in the sarcolemma and mi-
tochondrial reticulum for La− import and oxidation. On the other hand, some La− travels through the bloodstream and is 
taken up in the liver, where it is converted back to glucose. LDH: lactate dehydrogenase, MCT4: protolinked monocarbox-
ylate transporter isoform 4, MCT1: protolinked monocarboxylate transporter isoform 1, PDH: pyruvate dehydrogenase, 
TCA: tricarboxylic acid cycle, A-CoA: acetyl coenzyme A, OXPHOS: oxidative phosphorylation, NADH: reduced form of 
nicotinamide adenine dinucleotide, ATP: adenosine triphosphate. Source: designed by the authors (A.M.-A.) using the 
licensed version of Adobe Illustrator CC, 2017. 
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Figure 1. Schematic representation of the link among glycolysis, Cori’s cycle, and lactate oxidation complex proposed in
the lactate shuttle hypothesis. This hypothesis explains the exchange between driver cells of lactate [La−] production and
recipient cells of La− consumption, which occurs within and among cells, tissues, and organs [3]. For physical exercise, fast-
twitch muscle fibers (driver) produce lactate from glycolysis and express MCT4 at the sarcolemma for La− export, whereas
slow-twitch oxidative and fast-oxidative glycolytic fibers (consumers) express MCT1 in the sarcolemma and mitochondrial
reticulum for La− import and oxidation. On the other hand, some La− travels through the bloodstream and is taken up in the
liver, where it is converted back to glucose. LDH: lactate dehydrogenase, MCT4: protolinked monocarboxylate transporter
isoform 4, MCT1: protolinked monocarboxylate transporter isoform 1, PDH: pyruvate dehydrogenase, TCA: tricarboxylic
acid cycle, A-CoA: acetyl coenzyme A, OXPHOS: oxidative phosphorylation, NADH: reduced form of nicotinamide adenine
dinucleotide, ATP: adenosine triphosphate. Source: designed by the authors (A.M.-A.) using the licensed version of Adobe
Illustrator CC, 2017.

The relative contribution to physical endurance performance of both MCT1 and MCT4
is not fully elucidated. Congenital disorders in MCT1 have been found in patients with
cryptic exercise intolerance, a rare condition in which individuals suffer severe chest pain
and muscle cramping upon vigorous exercise [17]. This highlights the importance of MCT1
in response to exercise since it is related to changes in La− metabolism (accumulation and
clearance) after both strength/power [18] and endurance [5] exercise training. Recent stud-
ies suggest that a widespread single-nucleotide polymorphism (SNP) located in A1470T
(rs1049434) of the MCT1 gene is associated with different phenotypic profiles [19–21] and
high athletic performance [22–24]. This common SNP results in a missense mutation
A1470T that causes the change from aspartic acid to glutamic acid in codon 490 [19]. Due
to the high frequency (30–50%) of this single mutation in the general population, it is no
longer considered a pathogenic mutation but rather a non-disease-causing mutation [25].
Individuals with a minor (mutant) A allele have a 60–65% reduction in La− transport
rates and exhibit a higher [bLa−] concentration during a high-intensity effort [24]. This
might be due to an impaired La− transport from circulation to oxidative fibers in men
carrying the A allele of MCT1 rs1049434 [21]. In support of this, Fedotovskaya et al. [23]
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reported that the major T allele and the TT genotype of this polymorphism were signifi-
cantly more prevalent in male Russian endurance athletes than in a control population.
Alternatively, Sawczuk et al. [24] found that the MCT1 AA genotype was associated with
elite sprint/power athletic status. These authors proposed that a higher [La−] in the muscle
and blood of power-trained A allele carriers might be related to the hypertrophy response
through regulation of mTORC1, IGF-1, and the growth hormone signaling pathways [26].
Kikuchi et al. [27] reported that the TT genotype of A1470T was overrepresented in Japanese
wrestlers and associated with lower [bLa−] after a 30 s Wingate all-out test (WAnT) and
during intermittent sprint tests.

Overall, previous studies have suggested that the MCT1 A1470T genotype could be
related to different physical performance phenotypes [25,27,28]. Accordingly, the MCT1
T allele might be related to better endurance performance favoring La− transport from
blood to slow-twitch oxidative muscle fibers, consequently increasing the capability of
using this La− as a source of energy. Meanwhile, the A allele of the MCT1 polymorphism
might be associated with high-intensity performance via a better power training response.
The aim of this study was to investigate the genotype distribution of the MCT1 A1470T
(rs1049434) polymorphism in endurance-trained northern Spanish athletes compared to
the untrained population. Additionally, we explored the potential association between
the MCT1 A1470T polymorphism and the high-intensity performance measured by the
30 s WAnT. We hypothesized that genotype distribution would differ between athletes
and general population, and that the MCT1 A1470T polymorphism might influence high-
intensity exercise performance in endurance-trained athletes.

2. Materials and Methods
2.1. Study Design

In a cross-sectional study fashion, the experimental protocol was double-blinded in
the sense that neither the evaluators nor the participants knew the genotype during the
physical test. The experimental procedures were conducted following the set of guiding
principles for reporting the results of genetic association studies defined by the Strengthen-
ing the Reporting of Genetic Association studies (STREGA) guidelines, an extension of the
STROBE statement [29].

2.2. Setting

All participants signed an informed consent form, which included (1) the goal of the
study, (2) a statement for the unique use of the samples for this study, and (3) explicit
anonymity regarding the final genetic result. The study protocol was approved by the
Human Research Ethics Committee of the School of Science and Technology, University of
the Basque Country (UPV/EHU) (M10_2017_108) in accordance with the Declaration of
Helsinki and ethical standards in sport and exercise science research.

2.3. Subjects

Eighty-eight endurance-trained athletes (triathletes) from northern Spain volunteered
and were eligible to participate in this study. The requirements to participate in the
study were as follows: (a) conducting 10–14 h of physical exercise per week mainly based
on endurance training and soft strength training, for more than 2 years, (b) refraining
from carrying out any kind of regular power training, such as powerlifting, sprints, or
short-distance fast running, and (c) being free of banned substances or doping penalties.
Participants were neither treated nor hospitalized in the last 12 months. Participants that
did not meet the inclusion criterion were excluded. Genotypic information of the general
population (n = 107, control group) was obtained from data published in phase 3 of the
1000 Genomes Research Study for Iberian Population (Iberian Populations in Spain (IBS)
available at https://www.internationalgenome.org/data-portal/population/IBS (accessed
on 20 March 2020)) [30]. It is worth noting that different strategies have been implemented
to protect the privacy of participants in genomic research projects; therefore, only genotypic

https://www.internationalgenome.org/data-portal/population/IBS
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information of the control group is available. For instance, the Ethical, Legal, and Social
Implications (ELSI) group in the 1000 Genomes Project set up several anonymization
practices to preserve privacy, mainly by oversampling and not collecting personal data
other than sex [31].

2.4. Variables

Genotyping was considered as the main outcome (rs1049434 polymorphism for the
MCT1 gene). The body mass (BM, in kg), stature (cm), age (years), sex, sum of skinfolds
(SF) in mm, and the 30 s WAnT were also measured and/or reported.

2.5. Data Sources/Measurement
2.5.1. Anthropometry

The stature and BM were measured for each athlete following standard procedures.
The SF thicknesses were measured in the triceps, subscapular, suprailiac, abdominal,
mid-thigh, and medial calf using a Holtain Caliper (Holtain Ltd., Crymych, UK). All
measurements were performed twice, and the results were averaged. The trained anthro-
pometrist measured all participants according to the standard International Society for the
Advancement of Kinanthropometry (ISAK) protocol. The intra-observer technical error of
measurement was less than 7.5% for skinfolds and 1.5% for the other measurements, which
is considered acceptable by the ISAK recommendations.

2.5.2. MCT1 A1470T (rs1049434) Genotyping

We used buccal swabs (4N6FLOQSwab, Life Technologies, Carlsbad, CA, USA) to
obtain saliva samples. Subsequently, the QIAmp DNA Mini Kit (Qiagen, Hilden, Germany)
was used for DNA extraction, while quantification was carried out by fluorometry using
Qubit (Life Technologies, Carlsbad, CA, USA) and the Quant-iT PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad, CA, USA). Finally, DNA samples were genotyped in the Biomark
HD System (Fluidigm, South San Francisco, CA, USA) using an SNP type assay designed
explicitly for rs1049434.

2.5.3. 30 s Wingate All-Out Test (WAnT)

Endurance athletes performed a WAnT on an air-braked validated cycle ergometer
(Wattbike Pro, Nottingham, UK) [18]. A rig was used for the dynamic calibration of the
Wattbike ergometer based on first-principles approach by specialists at the Australian
Institute of Sport [19]. During the 48 h preceding the test, participants refrained from
any form of physical exertion that could influence the test results according to previous
recommendations [20]. Prior to the test, all athletes performed a 10 min warmup on the
cycle ergometer at 65% of their maximum heart rate, calculated according to the Karvonen
protocol [21,22]. An S625X heart rate monitor (Polar Electro, Kempele, Finland) was used
for measuring the heart rate. After warmup, a short rest period (120 s) was allowed while
participants received instructions and prepared for the maximal (all-out) effort of the WAnT
for 30 s [23]. The air-braking resistance was set to level 10, and the magnetic strength was
set to level 1 (equating to 1045 W at 130 rpm and approximately 90–100 W increases for
every further 5 rpm increase in cadence) [24]. The sprint test was carried out after 5 s of
countdown being still. Athletes received verbal encouragement during the test, and the
pedaling rate was recorded. The absolute and relative mean power (MP) and the peak
power (PP) over the entire 30 s were calculated for each participant (per BM in kg).

2.5.4. Statistical Analysis

Assessment of the Hardy–Weinberg equilibrium (HWE), a principle stating that the
genetic variation in a population will remain constant from one generation to the next
in the absence of perturbing factors, was carried out by means of the chi-square (χ2) test.
Genotype distribution and allele frequencies between athletes and controls were compared
using χ2 tests. The association of outcome variables (PP, MP, PP/BM, and MP/BM) with
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nongenetic factors (age, stature, BM, and the sum of SF) was investigated using linear
regression. Moreover, the association of the MCT1 A1470T polymorphism with each
outcome variable was analyzed under dominant (TT + AT vs. AA), recessive (AA vs.
AT + TT), and codominant (AA vs. AT vs. TT) models of inheritance. The whole-genome
association analysis (WGassociation) function of the ‘SNPassoc’ package was used for this
purpose, adjusting for the nongenetic variables significantly associated with each outcome
variable. The false discovery rate method was used to correct the p-values of each outcome
for multiple comparisons. All statistical analyses were performed using R version 3.2.3
(R Core Team 2015, R Foundation for Statistical Computing, Vienna, Austria) with the
significance level set at p < 0.05.

3. Results
3.1. Participants

We evaluated and analyzed the results obtained from 85 endurance-trained males
(age: 39.2 ± 7.9 years; body mass: 73.2 ± 7.2 kg; stature: 176.7 ± 5.9 cm). Three individuals
were withdrawn by the researchers due to unsatisfactory genetic testing results. Figure 1
shows the selection, grouping, and final data analysis of the individuals in a flow diagram.

3.2. Outcome Data

The MCT1 rs1049434 genotypes of endurance-trained athletes and controls exhibited
an HWE distribution (p > 0.05). The frequency of the TT genotype was significantly higher
in triathletes than in controls (p < 0.001) (Table 1).

Table 1. Comparison of genotype frequencies between triathletes and control group.

Triathletes Control

n Frequencies (%) p-Value n Frequencies (%) p-Value

T/T 33 38.8
>0.05

26 24.3
>0.05A/T 33 38.8 61 57.0

A/A 19 22.4 20 18.7

MCT1 gene distributions were in Hardy–Weinberg equilibrium (p > 0.05).

The athletes were characterized according to different genotypes using dominant, reces-
sive, and codominant models of inheritance, as shown in Table 2. Participants’ genotypes
did not significantly alter the variance of stature, BM, or sum of SF; only the stature was
significantly altered in the recessive model. The MP and PP values (absolute and relative) of
the WAnT were not significantly different regarding MCT1 rs1049434 genotypes (Figure 2).

Table 2. Results of WAnT across all genotypes using the codominant, dominant, and recessive allele models.

Codominant Model Dominant Model Recessive Model

T/T A/T A/A p A/T + A/A p A/T + T/T p
(n = 33) (n = 33) (n = 19) (n = 52) (n = 66)

Age
(years) 40.3 ± 6.9 38.9 ± 8.1 37.8 ± 9.6 0.374 38.5 ± 8.6 0.171 39.6 ± 7.5 0.381

Stature (cm) 177.9 ± 6.6 177 ± 5.4 174.3 ± 5.1 0.099 176 ± 5.4 0.146 177.5 ± 6 0.04 *
BM (kg) 74.5 ± 8.3 73.3 ± 6.5 71.1 ± 6.1 0.159 72.5 ± 6.4 0.146 73.9 ± 7.4 0.079

Sum of SF
(mm) 78.5 ± 31 75.6 ± 24.4 77.2 ± 20.6 0.485 76.5 ± 22.9 0.701 77 ± 27.7 0.231

WAnT PP
(W) a 1036 ± 138.7 1021.3 ± 148.7 993.5 ± 115.3 0.58 1011.2 ± 136.9 0.318 1028.8 ± 142.9 0.497

WAnT PP/BM
(W·kg−1) b 14.02 ± 2.13 13.98 ± 2.03 14.04 ± 1.75 0.542 14 ± 1.91 0.267 14 ± 2.06 0.672

WAnT MP (W) a 708.9 ± 67.1 705.5 ± 76.1 684.9 ± 63.5 0.599 698 ± 71.8 0.436 707.2 ± 71.2 0.367
WAnT MP/BM

(W·kg−1) b 9.62 ± 1.35 9.66 ± 1.1 9.69 ± 1.08 0.49 9.67 ± 1.08 0.674 9.64 ± 1.23 0.232

Values are expressed as the mean ± SD. BM, body mass; SF, skinfolds; WAnT, 30 s Wingate all-out Test; PP, peak power; MP, mean power. *
p < 0.05. a Adjusted for age, stature, and BM, b Adjusted for age.



Sports 2021, 9, 143 7 of 12Sports 2021, 9, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 2. Flowchart of participant selection for the analysis. 

Table 2. Results of WAnT across all genotypes using the codominant, dominant, and recessive allele models. 

 Codominant Model Dominant Model Recessive Model 

 
T/T A/T A/A 

p 
A/T + A/A 

p 
A/T + T/T 

p 
(n = 33) (n = 33) (n = 19) (n = 52) (n = 66) 

Age 
(years) 

40.3 ± 6.9 38.9 ± 8.1 37.8 ± 9.6 0.374 38.5 ± 8.6 0.171 39.6 ± 7.5 0.381 

Stature (cm) 177.9 ± 6.6 177 ± 5.4 174.3 ± 5.1 0.099 176 ± 5.4 0.146 177.5 ± 6 0.04 * 
BM (kg) 74.5 ± 8.3 73.3 ± 6.5 71.1 ± 6.1 0.159 72.5 ± 6.4 0.146 73.9 ± 7.4 0.079 

Sum of SF 
(mm) 

78.5 ± 31 75.6 ± 24.4 77.2 ± 20.6 0.485 76.5 ± 22.9 0.701 77 ± 27.7 0.231 

WAnT PP 
(W) a 1036 ± 138.7 1021.3 ± 148.7 993.5 ± 115.3 0.58 1011.2 ± 136.9 0.318 1028.8 ± 142.9 0.497 

WAnT PP/BM 
(W·kg−1) b 14.02 ± 2.13 13.98 ± 2.03 14.04 ± 1.75 0.542 14 ± 1.91 0.267 14 ± 2.06 0.672 

WAnT MP (W) a 708.9 ± 67.1 705.5 ± 76.1 684.9 ± 63.5 0.599 698 ± 71.8 0.436 707.2 ± 71.2 0.367 
WAnT MP/BM 

(W·kg−1) b 9.62 ± 1.35 9.66 ± 1.1 9.69 ± 1.08 0.49 9.67 ± 1.08 0.674 9.64 ± 1.23 0.232 

Values are expressed as the mean ± SD. BM, body mass; SF, skinfolds; WAnT, 30 s Wingate all-out Test; PP, peak power; 
MP, mean power. * p < 0.05. a Adjusted for age, stature, and BM, b Adjusted for age. 

4. Discussion 
The first aim of the present study was to determine the possible differences in the 

MCT1 A1470T genotype distribution between endurance-trained athletes and untrained 
population. Our findings showed that the MCT1 TT genotype was overrepresented in en-
durance-trained athletes compared to the general population (nonathletes, i.e., controls) 
(p < 0.05). Although we did not measure [bLa−], our results are partially in concordance 
with Fedotovskaya et al. [23] considering that the TT genotype was predominant in Rus-
sian endurance athletes, who showed greater La− clearance in comparison with other 
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4. Discussion

The first aim of the present study was to determine the possible differences in the
MCT1 A1470T genotype distribution between endurance-trained athletes and untrained
population. Our findings showed that the MCT1 TT genotype was overrepresented in
endurance-trained athletes compared to the general population (nonathletes, i.e., controls)
(p < 0.05). Although we did not measure [bLa−], our results are partially in concordance
with Fedotovskaya et al. [23] considering that the TT genotype was predominant in Rus-
sian endurance athletes, who showed greater La− clearance in comparison with other
genotypes. In this study, La− concentrations could not be measured due to technical issues.
However, according to previous evidence [28,32], we can hypothesize that the T allele
might be associated with benefits in increasing La− transport from circulation to slow-
twitch oxidative muscle fibers. Once there, La− (not pyruvate) enters the mitochondrial
reticulum to provide cell energy to resynthesize ATP and phosphocreatine via oxidative
phosphorylation [2]. Kikuchi et al. [27] previously reported in wrestlers that the MCT1
genotype is related to a higher power phenotype. In fact, the authors concluded that
the TT genotype of the MCT1 A1470T polymorphism was overrepresented in wrestlers
compared with controls. These results are, to some extent, in concordance with the ex-
planation proposed by Sawczuk et al. [24], who suggested that these possible genotype
differences are related to a more reduced capability of La− clearance in the AA genotype.
This might cause a higher [La−] in the muscle and blood during high-intensity exercise. In
fact, this phenomenon has been associated with the activation of power and hypertrophy
signaling pathways such as mTORC1, IGF-1, and the growth hormone [26]. Two essential
points should be noted here; both mentioned studies connected the La− kinetics with the
MCT1 genotype, and they analyzed only strength/power athletes. The current knowledge
regarding interindividual physiological and molecular allostatic response is limited; one
could hypothesize that the TT genotype might be overrepresented in endurance athletes
because they have a better “second shot” of La− in oxidative muscle fibers [33].
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Al-Haggar et al. [25] reported that different training stimuli possibly have a critical
effect on epigenetic factors and the adaptive physiological functions of the MCT1 poly-
morphism in the long term. This might explain why changes in MCT content are more
common in response to chronic contractile activity [12]. This adaptive response of MCT1
content has been reported to occur mainly in the mitochondria when exercise training
intensity is performed regularly above the VO2max [33]. Thus, the high intensity and the
regulation of internal pH would be of minor importance to improve physical performance
under all-out conditions [2]. Under these premises, despite MCT1 content being a critical
element involved in the regulation of cellular acidosis as an La− transporter, their metabolic
kinetics adaptations in the long-term after a specific and regular high-intensity stimuli
could be more relevant (oxidative stress, inflammatory markers, miRNAs, etc.) than only
the genotype [2].

The second aim of this study was to determine if there was a statistical associa-
tion between the MCT1 A1470T polymorphism and the high-intensity performance in
nonpower-trained athletes. The PP and MP output during a WAnT indicated that partici-
pants of our study showed excellent fitness (see results in Table 2) according to available
data from endurance-trained cyclists/triathletes [34,35]. Although the sample size could
limit the detection of small genetic effects of this SNP on high-intensity endurance, no
significant differences were found between the MCT1 A1470T polymorphism and the
measured physical variables. The study of genetic inheritance effects allows for estimation
of the genetic contribution to total variance in a given performance variable [36]; thus,
readers should note that models of inheritance allow exploring the biological rationale
behind a given genotype. Similar to the present study, other works have linked MCT1
genotypes to all-out/power performance. Massidda et al. [28] investigated the association
between the MCT1 A1470T polymorphism and different football phenotypes from five
different countries. They reported that forwards (faster athletes) have a predominance
of the TT genotype, this to frequent sprint training. Sawczuk et al. [24] also reported
how elite sprint/power athletes were more likely than national-level athletes to have the
AA genotype compared to TT. Lastly, TT genotypes might be more prone to suffer injury
incidents than AA genotype, possibly related to the acidic intracellular environment [37].
Therefore, according to the results of our study, we suggest that the absence of differences
in high-intensity endurance performance comparing genotypes for MCT1 polymorphism
could be caused by the characteristics of the athletes’ training routines more so than their
maximal biological potential. The majority of athletes included in the present study fol-
lowed a similar low-to-moderate intensity exercise program that does not include regular
maximal stimuli, which is in agreement with the frequent training practices that are typi-
cally made up of more prolonged and slower-paced sessions [27]. However, endurance
athletes may also use different training approaches that include high-intensity exercises;
however, further research is needed to evaluate physiological adaptations in this regard.

Overall, the MCT1 A1470T genotype could be a candidate to be analyzed in athletes
leading to a better individualization of high-intensity endurance in response to power
training. Notwithstanding, the perspective of categorize power performance phenotypes
according to their MCT1 genotype could be complemented by other physiological phe-
nomena, such as those involving the microbiome status and the hepatic gluconeogenesis
adaptive response. Therefore, to some extent, the La− concentration after a standardized
WAnT protocol does not explain per se the high-intensity endurance performance, but
this potential explanation needs to be explored in the future with parallel evaluations of
microbiome and short-chain fatty acid (SCFA) status in the colon. It is clear, however, that
La− is a chief messenger involved in a complex feedback loop with physiological implica-
tions, being more than only a metabolic waste product related to fatigue [3]. Thus, MCT
transporters after different rates of La− flux, oxidation, and gluconeogenesis are important
not only as a biomarker describing the endurance performance accurately. The genotype
might not only be essential to know the possible physiological potentialities, including
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endurance performance, but could also be essential to understand normal physiology
through supplying fuel, maintaining glycemia and cerebral metabolism, and signaling [2].

4.1. Future Directions

Although the majority of studies regarding MCTs and exercise performance have
focused mainly on La− metabolism and its relationship with acidosis, no previous stud-
ies have explored the possible adaptive mechanisms involving individual phenotypes of
microbiome status (SCFAs mainly in the colon). Thus, by connecting these conclusions
with the above-described rationale of the microbiome (La− regulation by SCFAs), one can
hypothesize that AA genotypes may develop other adaptive physiological responses to
mitigate this possible disadvantage related to greater acidosis in skeletal muscle. Indeed,
MCT1 is not only important as a myocyte membrane transporter but also expressed in
other tissues such as the gut epithelium to facilitate the absorption of SCFAs produced
by gut microbiota [38]. In this regard, it has been previously reported that the bacterial
microbiome could be able to regulate La− homeostasis through the absorption and resyn-
thesis of SCFAs, which are transported through the portal vein to the liver parenchyma
promote gluconeogenesis [8].

The study of the gut microbiome has been related to La− metabolism and endurance
performance via La−-utilizing bacteria. For example, (1) the major pathway metabo-
lizing La− to propionate is at higher relative abundance post exercise; (2) La− crosses
the epithelial barrier into the lumen of the gut; (3) Veillonella relative abundance is in-
creased in marathon runners post competition; (4) Veillonela atypica utilizes La− as their
sole carbon source producing propionate; (5) intrarectal instillation of Veillonella atypica or
propionate in mice is sufficient to increased treadmill run time performance [39]. SCFAs
show essential regulatory functions in metabolism, anti-inflammation, and the immune
system [40], in addition to being transported and used as energy metabolites in different
cell types, particularly by hepatocyte cells, which use propionate for gluconeogenesis.
Since MCT1 is widely expressed in almost all human tissues, and its substrate selectivity
includes additional endogenous metabolites such as acetate, propionate, and pyruvate
in the colon [41], SCFAs generated by fermentation of dietary fiber by intestinal bacteria
enter into colonic epithelial cells via MCT1 in order to serve as the major metabolic fuel for
these cells under physiological conditions, particularly butyrate. This might represent a
key mechanism for the influx/efflux across the polarized membrane of human intestinal
epithelial cells [42]. Hence, it is possible that bacterial species (i.e., Lactobacillus spp.) influ-
ence exercise performance by producing La−, which in turn can be used by La−-utilizing
bacteria to produce butyrate [43]. Furthermore, our research group has proposed a possible
host genetics–microbiome interaction regarding GALNTL6 rs558129 endurance-related
polymorphism and SCFA production by La−-consuming bacteria [44]. Thus, despite the
MCT1 isoform acting directly on the La− kinetics, the other metabolic pathways that use
La− as a substrate hinders the definitive conclusion of their implications in better/worse
endurance performance. In summary, although the measurement of La− response after
maximal exercise is scientifically accepted and used as a specific biomarker of endurance
performance, the limitations of their analysis are currently being discussed.

4.2. Limitations

The lack of [bLa−] measures in the present study hinders the establishment of a
relationship between the MCT1 A1470T genotype and metabolic processes. However,
this was not the primary aim of the present study in which we directly measured all-out
explosive exercise performance. In this regard, it could be interesting to measure [La−]
after a WAnT in power-trained and nonpower-trained individuals. Furthermore, it could
be valuable to perform more than one WAnT to measure La− clearance and fatigue index
between tests, in order to have a better understanding of the relationship between MCT1
A1470T genotype and [La−] kinetics in each case.
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5. Conclusions

The MCT1 TT genotype is overrepresented in Spanish endurance-trained athletes
compared to the general population; however, no significant associations were found
between any MCT1 A1470T genotype and WAnT performance. Due to the multifacto-
rial and polygenic nature of high-intensity endurance exercise, further studies are still
necessary, including other genetic polymorphisms, environmental factors and epigenetic
modifications, physiological factors related to individual adaptations (oxidative stress,
inflammation, miRNAs), and/or the impact of La−-consuming organisms from the gut
microbiota on La− metabolism.
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